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Summary
1 Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we

discuss several optimization problems related to the use of PD, and the more general measure split diversity

(SD), in conservation prioritization.

2 Depending on the conservation goal and the information available about species, one can construct optimiza-

tion routines that incorporate various conservation constraints. We demonstrate how this information can be

used to select sets of species for conservation action. Specifically, we discuss the use of species’ geographic distri-

butions, the choice of candidates under economic pressure, and the use of predator–prey interactions between

the species in a community to define viability constraints.

3 Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a

reasonable amount of time using integer programming. We apply integer linear programming to a variety of

models for conservation prioritization that incorporate the SDmeasure.

4 We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef

community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.
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Introduction

Many important challenges in biodiversity conservation

involve the prioritization of species, habitats or ecosystems for

the allocation of limited conservation funding. These problems

require techniques that allow the selection of units that maxi-

mize a quantity of interest, such as species diversity, phyloge-

netic diversity or ecosystem function, subject to some number

of constraints (e.g. Purvis, Gittleman & Brooks 2005). A basic

approach is to focus on taxon richness (Gaston & Spicer 2004)

in order to maximize the number of taxa conserved. However,

the assumption that all taxa are equally valuable may make

taxon richness too simplistic (May 1990).

One approach to incorporating variation among species is

to use indices that take into account phylogenetic information

(Vanewright, Humphries &Williams 1991; Crozier 1992; Faith

1992), the most popular being phylogenetic diversity (PD;

Faith 1992). PD is the amount of evolutionary history encom-

passed by a given number of taxa (e.g. species) and is often pre-

dictive of phenotypic diversity or the ecosystem function

provided by a set of taxa (Isaac et al. 2007; Cadotte, Dinnage

& Tilman 2012; Srivastava et al. 2012; Winter, Devictor &

Schweiger 2013). Given a phylogenetic tree for a set of taxa,

the PD of a taxon subset is calculated as the sum of branch

lengths of the minimal subtree spanned by those taxa. PD

depends on the availability of a single, reliable phylogenetic

tree estimate with branch lengths and cannot readily be calcu-

lated when one wishes to use information from multiple trees.

The single tree may be a species tree reconstructed from many

genes that may have different evolutionary rates (Graur & Li

2000) or even support different tree topologies (Nei 1987). One

may instead wish to weigh evidence across these gene trees, or

across a number of candidate trees from bootstrap samples

(Felsenstein 1985) or from a Bayesian posterior distribution

(Yang&Rannala 1997). To resolve this issue, we have recently

introduced the concept of split diversity (SD), which general-

izes PD by combining information from multiple trees (Minh,

Klaere & vonHaeseler 2009).

Integer linear programming (ILP; Gomory 1958) is a

widely used technique to solve optimization problems in

various scientific disciplines (e.g. J€unger et al. 2010) with

great potential for conservation decision-making. ILP solves

problems by optimizing a linear objective function subject

to linear constraints acting on integral variables (such as

the inclusion or exclusion of species). Theoretically, solving*Correspondence author. E-mail: minh.bui@univie.ac.at
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ILP is nondeterministic polynomial-time hard (NP-hard),

meaningthattoguaranteeanoptimalsolutionitmaybenecessary

to evaluate exponentially many subsets of species (e.g. Karp

1972).

With the advances of state-of-the-art ILP software packages

such as CPLEX (2012) and GUROBI (2012) (free of charge

for academic use) many NP-hard problems can be solved

within a reasonable time while ensuring optimal solutions

(J€unger et al. 2010; and references therein).

Integer linear programming was first applied to the min-

imum representation problem in biodiversity conservation

(Cocks & Baird 1989). Subsequently, ILP has been applied

to more complex topics such as minimizing the total land

mass protected while maximizing the biodiversity (taxon

richness or PD) given limited resources (e.g. Underhill

1994; Possingham, Ball & Andelman 2000; Rodrigues &

Gaston 2002; €Onal & Briers 2003; Haight & Snyder 2009).

Moreover, ILP also works for the more general SD mea-

sure (Minh, Klaere & von Haeseler 2010) and predator–

prey relationships (Faller 2010). However, to the best of

our knowledge, none of the previous work considered spe-

cies’ diet compositions in the ILP formulations.

Here, we further show the efficiency and flexibility of ILP to

maximize SD for more generalized conservation questions, the

spatial reserve selection and viable taxon selection. We exem-

plify our approach with two case studies: the Cape of South

Africa and the Caribbean coral reef community. We also show

that the inclusion of ecological constraints into the ILP formu-

lations is straightforward. Using theGUROBI library, the ILP

problems are solved within a few seconds. We provide an

implementation in the PDA software package (Minh, Klaere

& vonHaeseler 2009).

Materials andmethods

SPATIAL RESERVE SELECTION UNDER SPLIT DIVERSITY

The classical minimum representation problem (Cocks & Baird 1989)

and spatial reserve selection (Moilanen, Wilson & Possingham 2009)

assume that one has sufficient resources to protect all taxa (Data

S1). However, if the minimal cost required exceeds the allocated

budget, one can alternatively minimize the costs such that at least p

% of the diversity is still preserved. To measure biodiversity, we

utilize the concept of split diversity (SD; Minh, Klaere & von

Haeseler 2009), but we note that other diversity measures are also

applicable.

Spatial reserve selection was formulated as integer quadratic pro-

gramming (Possingham, Ball & Andelman 2000), where one optimizes

a quadratic objective function given linear constraints. Further, this

problem was discussed and reformulated as ILP (€Onal & Briers 2002,

2003). Here, we transform the quadratic objective function into linear

function and extend the initial problem to account for SD.

Let X = {s1, s2, . . ., sn} denote the set of n taxa of interest. Further,

for area i 2 {1, . . .,m} letRi ⊂ X denote the taxa present in area i. The

question is then

Problem 1 (Spatial reserve selection under SD constraints): Given

the taxon set X, m areas, the costs per unit boundary and a diversity

threshold p, find the cheapest area subset Wmin � f1; . . .;mg such

that the set of taxa preserved in Wmin must constitute at least p% of

the total SD of X.

We now formulate Problem 1 in ILP parlance. To this end, we con-

struct them 9 n presence/absence matrixR, where rij = 1 if taxon sj is

present in area i, and rij = 0 otherwise. Moreover, we encode an arbi-

trary subset W of areas by the binary vector (x1, x2,. . ., xm), where

xi = 1 if i 2 W, and xi = 0 otherwise.

The spatial reserve selection includes the area conservation costs (e.g.

acquisition and maintenance costs of the area) and boundary costs in

terms of the cost of fencing the entire selected areas, where high bound-

ary costs prevent highly fragmented areas. For area i 2 {1, . . .,m}, we

denote its cost by ci. To quantify the boundary length, we define a sym-

metric m 9 m matrix with each entry bij being the shared boundary

length between area i and j. If i and j are not adjacent we set bij = 0.

Finally, bii equals the perimeter of i. b defines the conservation cost per

unit boundary length.

For each pair of adjacent areas i and j (bij > 0), we introduce variable

zij, where zij = 1 if xi = xj = 1 and zij = 0, otherwise (i.e., zij � xixj).

The linear function equivalent to quadratic objective function in

Possingham, Ball &Andelman (2000) is given by

Xm
i¼1

cixi þ b
Xm
i¼1

biixi � 2
Xm�1

i¼1

Xm
j¼iþ1

bijzij

 !
;

where variables zij are constrained by zij ≤ xi and

zij �xj; 8i; j ¼ 1; 2; . . .;m, which ensures that zij = xixj Note that

the number of introduced variables zij is typically much smaller than�
m
2

�
as only pairs of spatially adjacent areas are relevant.

To introduce SD constraints, we follow the notations of Minh, Kla-

ere and von Haeseler (2010) by denoting an input split system as (Σ, k)
where Σ is a set of splits (bipartitions ofX) and k the split-weight func-

tion. A split r 2 Σ is represented by an n-element binary vector (r1,

r2,. . ., rn), where n is the number of taxa and ri takes a value of 0 or 1

depending on the bipartition that si belongs to. Note that the vector

(1 � r1, 1 � r2,. . ., 1 � rn) represents the same split.

For an area subsetW � R, denote X|w the subset of taxa present in

at least one area inW. To compute SD ofX|w based on the split system

(Σ, k), we introduce a so-called split variable yr for every splitr, where
yr = 1 if r separates at least two taxa of X|w, and yr = 0 otherwise. It

then follows that

SD XjW
� � ¼X

r

kryr:

Finally, problem 1 is formulated as:

Minimize:
Xm
i¼1

cixi þ b
Xm
i¼1

biixi � 2
Xm�1

i¼1

Xm
j¼iþ1

bijzij

 !
eqn 1.1

Subject to: zij �xi and zij �xj 8i; j ¼ 1; 2; . . .;m eqn 1.2

Xm
i¼1

Xn
j¼1

rjrijxi � yr; 8r2R eqn 1.3

Xm
i¼1

Xn
j¼1

ð1� rjÞrijxi � yr; 8r 2 R eqn 1.4

X
r2R

kryr � p
X
r2R

kr eqn 1.5
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xi 2 f0; 1g; 8i ¼ 1; 2; . . . ;m

0� yr � 1; 8r 2 R

The objective function (1.1) together with constraints (1.2) is equiva-

lent to that of the spatial reserve selection. The so-called split con-

straints (1.3 and 1.4) determine the values of yr. The inequality (1.5)

ensures the conservation target p%of SD.

TAXON SELECTION UNDER VIABIL ITY CONSTRAINTS

We now turn to another problem that arises when predator–prey

interactions between species are incorporated into conservation

decisions. If the candidate species for prioritization depend on

each other, as in a food web representing the predator–prey rela-

tionships among community members, our prioritization can

account for such information. For example, we may wish to select

a set of taxa S with maximal diversity under the constraint that

these taxa form a viable food web (Moulton, Semple & Steel

2007). Here, we focus on the bottom-up dependencies represented

in food webs, so that a taxon is defined as viable in S if it is

either a basal taxon in the food web (i.e. a species without prey

such as a primary producer) or a predator that has at least one

prey in S. S is called viable if all its taxa are viable. The problem

is now formulated as:

Problem 2 (Viable taxon selection): Given a food web and a phylo-

genetic tree, choose a viable subset of at most k taxa, which maximizes

PD.

Problem 2 has been solved using ILP (Faller 2010). In the following,

we will further generalize the problem from PD to SD (Problem 3) and

propose an extended definition of viability that includes diet composi-

tion (Problem 4).

EXTENSION TO SD

Problem 3 (Viable taxon selection under SD): Given a food web and

a split system (Σ, k), choose a viable subset of at most k taxa, which

maximizes SD.

We transform Problem 3 into an ILP. To this end, we introduce for

each taxon si 2 X a taxon variable vi. A subset S ⊂ X is represented by

a vector (v1,. . ., vn), where vi = 1 if si 2 S and vi = 0 if si 62 S. For each

split r 2 Σ, we introduce a split variable yr, where yr = 1 if r sepa-

rates at least two taxa in S, and yr = 0 otherwise.

Following the notation of Moulton, Semple & Steel (2007), we

denote by D = (X, A) a directed acyclic graph representing the food

web, where A denotes the set of arrows (directed edges) represented as

a pair of taxa, s.t. (si, sj) 2 A if taxon si feeds on sj. We denote byCi the

set of preys of si. IfCi = ∅, si is called a basal prey.

Problem 3 is then equivalent to:

Maximize:
X
r2R

kryr eqn 3.1

Subject to:
Xn
i¼1

vi � k eqn 3.2

Xn
i¼1

rivi � yr; 8r 2 R eqn 3.3

Xn
i¼1

ð1� riÞvi � yr; 8r2R eqn 3.4

X
i2Cj

vi � vj; 8j : Cj 6¼ ; eqn 3.5

vi 2 0; 1f g; 8i ¼ 1; 2; . . .; n

yr 2 f0; 1g; 8r 2 R

The resulting solution (v1, . . ., vn) corresponds to a set Smax, which is

ensured by constraint (3.2) to contain at most k taxa. Preservation of

split ri is provided by the constraints (3.3 and 3.4) and viability of a

subset is assured by constraint (3.5).

If we want some of the taxa to be included in Smax irrespective of

constraints, we simply set the corresponding mj = 1.

EXTENSION TO ACCOUNT FOR DIET COMPOSIT ION

Problems 2 and 3 consider a predator as a viable member of a food

web even if only one of its prey taxa is conserved. However, if the con-

served prey taxonmakes up only a small fraction of the predator’s diet,

the predator is unlikely to maintain sufficient food intake to be treated

as a viable species. For that reason, we introduce amore realistic defini-

tion of viability that considers the diet composition of predators. To

this end, we denote by D = (X, W) a weighted food web of the taxon

set X, where W is the diet composition matrix. Here, we weight the

arrow (sj, si) of the food web by wij, the proportion of prey si in the diet

of predator sj, such that the diet composition for each predator sums

up to 100%, (i.e.
P
i

wij ¼ 1 for every predator sj).

Using (X,W), we compute the total diet of a predator sj over all of its

prey taxa in a set S as:

dðsjjSÞ ¼
X
si2S

wij:

This allows us to set a constraint that each predatormust have amin-

imum proportion of its prey composition preserved for a set of taxa to

be viable. We define a subset S of taxa as d%-viable if every predator

sj 2 S has the score d (sj|S) ≥ d.

Problem 4 (d%-viable taxon selection under SD): Given a weighted

food webD = (X,W) and a split system (Σ, k), select a d%–viable sub-

set of atmost k taxa, whichmaximizes SD.

Problem 4 is again solved with ILP by simply modifying constraint

(3.5) in Problem 3 to:X
i

wijvi � dvj; 8j : Cj 6¼ ;:

SOFTWARE AVAILABIL ITY

We provide a user-friendly software package PDA (Minh, Klaere &

von Haeseler 2009), freely available at http://www.cibiv.at/software/

pda, to carry out conservation prioritization analysis based on PD and

SD including various constraints. The user inputs a phylogenetic

tree or a split network and additional information relevant for the

conservation decision problem (i.e. areas data, costs for areas, costs for

species, weighted or non-weighted dependency networks such as food

webs). As a result, PDA outputs optimal taxon or area sets selected by

ILP and detailed information about the sets. Additional details are

explained in the usermanual.

Results

CASE STUDY I : THE CAPE OF SOUTH AFRICA

We analyse a data set consisting of 735 flowering plant genera

(Forest et al. 2007; Data S1) distributed over 201 quarter-

© 2014 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society,

Methods in Ecology and Evolution, 6, 83–91

Integer programming for biodiversity optimization 85



degree squares (QDS; ca. 25 9 27 km2) of the Cape of South

Africa, a biodiversity hotspot (Myers et al. 2000). The Cape

region is a small area (ca. 90 000 km2) in the southernmost

part of the African continent and is one of themost botanically

species-rich areas of the world with more than 9000 species, of

which almost 70% are endemic (Goldblatt & Manning 2002).

This especially rich biodiversity has been extensively docu-

mented (Goldblatt & Manning 2002; Linder 2003, 2005) and

its importance as one of the major repositories of global bio-

logical diversity has been widely acknowledged (Linder 2001;

Kuper et al. 2004; Mittermeier et al. 2005; Kreft & Jetz 2007).

Among the 735 genera in this data set, 274 include at least one

species classified as vulnerable, endangered or critically endan-

gered (Raimondo et al. 2009); these will be referred here as

threatened genera. Of the 274 threatened genera, 17 belong to

the top-20 most-threatened genera of South Africa, based on

the proportion of their species that are threatened (Raimondo

et al. 2009).

QDS SELECTION UNDER SPLIT DIVERSITY

The minimum representation and spatial reserve selection (for

the analysis, see Data S3) are solely based on the concept of

genus richness. However, it was shown that genus richness and

PD are decoupled in the Cape of South Africa and that PD is

more appropriate than genus richness in certain conservation

scenarios (Forest et al. 2007). Here, we take one step further

by considering split diversity (Minh, Klaere & von Haeseler

2009) across the 100 bootstrap trees based on the rbcL

sequence alignment (Data S2). Moreover, we extend the

reserve selection to account for a diversity constraint that at

least p% of SD must be preserved, which can be solved again

with ILP (Problem 1; Materials and Methods). If p = 100%,

the problem is identical to the spatial reserve selection. If

p < 100%, we only protect a fraction of taxa, needing only a

fraction of the areas. Such a scenario is typically applied when

the available budget does not suffice to save 100%of diversity.

To conserve p = 95%, only seven QDS are necessary

(depicted in blue and hatched; W1 in Fig. 1), while for

p = 100% 28 QDS were selected (Fig. S1). The selected QDS

cover the Cape Peninsula (three QDS), part of the afrotemper-

ate forests along the southern coast (three QDS) and one QDS

in the Port Elizabeth area. Notably, the total cost in terms of

area, which shall be incurredwhen 95%of the SD is conserved,

is 2410 km2, less than one-fifth of the area needed for a

conservation goal of 100% (Fig. S1). This means saving the

last 5% of diversity needs four times the budget required by

the first 95%.

IMPACT OF ECONOMIC PRESSURE

The reserve selections presented so far implicitly assume uni-

form conservation cost per km2. This is unrealistic since it is

more expensive to establish reserves in the vicinity of big cities

(Cape Town and Port Elizabeth) than in rural areas. We there-

fore extend the model by increasing the conservation cost per

km2 of QDS in the urban areas relative to those of rural areas.

The cost ratio between the urban and rural areas represents the

economic pressure put on urban areas. Because the ILP solu-

tion can be rapidly computed, we could analyse several differ-

ent scenarios. As QDS close to Cape Town and Port Elizabeth

are defined here as more expensive, the conservation cost

increases for fixed p (Fig. 2a).

Only in W1

Only in W5

In W1 and W5

Urban areas

Cape
Town

Port Elizabeth

Fig. 1. QDS selected to conserve 95% of split diversity under uniform

conservation cost (W1) and under prioritization of rural areas (W5).
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Fig. 2. (a)Minimal costs to conserve p = 95%, 99%and 100%of split

diversity with varying urban/rural cost ratios. The points on the curves

indicate the change in the optimal sets of QDS found by ILP. For

p = 95%, we identified five optimal sets denoted by W1 to W5. Also

note that preserving the last 1%of diversitymore than doubles the con-

servation cost. (b) Accumulated costs for optimal sets of QDSW1 and

W5 as the cost ratios gradually increase over time.
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Because we want to conserve a certain fraction of current

diversity at minimal costs, sometimes the selected QDS-set will

change. Each interval of the curves in Fig. 2a reflects a selected

set of QDS. For example, for p = 95%, five different sets of

optimal QDS are identified and denoted asW1 toW5 (Fig. 2a

and Table 1). The selected QDS in W1 to W5 gradually move

away from the cities (Table 1 and Fig. S3). For price ratios lar-

ger than 15�6, all selected QDS (W5) are outside urban regions

and a further increase of costs next to big cities does not affect

the conservation decision, indicated by a slope of zero

(Fig. 2a). Minimizing costs has different effects on the conser-

vation success of threatened genera (Table 1). If we consider

the most-threatened genera, then irrespective of the costs we

will always lose Polhillia (Leguminosae). This genus occurs in

8 QDS (Fig. S4), which are never included in the selected QDS.

Nevertheless, we always preserve 585 (ca. 80%) genera regard-

less of the cost ratios, 235 (ca. 86%) of which are threatened.

Figure 2a allows a second interpretation of the costs for bio-

diversity efforts that will lead to economicallymore sustainable

conservation decisions. If we take the urban/rural cost ratio as

the economic pressure put on the urban areas in the future,

then we can read the graph as the extrapolation of running

costs incurred in the future for a fixed value of p. For each set

of QDS selected the costs to protect will increase linearly with

increasing price ratio (this follows from the ILP formulation of

the problem). The total costs that will accumulate over the

years will therefore grow quadratically. The only exceptions

are selected areas where the conservation costs are independent

of the price ratio, likeW5 for p = 95%.However, the conserva-

tion costs at present are 11 482 virtual price units forW5 com-

pared with 6186 virtual price units forW1. But in the long run,

the accumulated costs will be lower for W5 (Fig. 2b). There-

fore, given the prediction about the economic pressure

imposed on urban areas, it may be better to select W5 right

from the beginning, because the most inexpensive selection

(W1) will already accumulate more costs if the price ratio is lar-

ger than 13�2 (Fig. 2b).

CASE STUDY I I : CARIBBEAN CORAL REEF COMMUNITY

The second case study demonstrates how predator–prey

interactions can be incorporated in the analysis used for con-

servation prioritization. We examine a food web representing

the predator–prey relationships of 242 taxa (mostly species)

and 6 aggregated trophic groups from a Caribbean coral reef

community (Table S1).

Of the 248 nodes in the food web, all but the four basal

nodes depend on consumption of at least one other taxon,

and all but one (tiger shark, Galeocerdo cuvier) is prey for at

least one other taxon. The food web is characterized by a

complex structure and extensive omnivory, with food chains

of as many as 25 links. Thus, this ecological network fea-

tures extensive and complex dependencies among species

that must be accounted for if we are to select a viable subset

of taxa.

For the 242 taxa, we obtained sequences for six distinct

genes if available (Table S3), computed for each gene a multi-

ple sequence alignment and reconstructed six maximum likeli-

hood (ML) trees (Fig. S7), that served as input to infer a split

system (Σ, k) (Data S2 and Fig. S9). We also computed the

ML tree T (Fig. S8) from the concatenated alignments. We

used T and (Σ, k) to compute PD and SD, respectively. The

split system (Σ, k) contains 558 non-trivial splits (i.e. splits that
contain at least two taxa on either side), which is 2�3 times

more splits than T. This indicates that the six gene trees are

incongruent. This incongruence has a number of potential

causes, including insufficient phylogenetic information, noise

in the alignments or even non-treelike evolution (Doolittle

1999; Philippe et al. 2011).

We now discuss the optimal taxon sets obtained under dif-

ferent constraints. We require that the aggregate trophic

groups are always included in the optimal sets, because they

are at the base of the food web and because they represent

taxonomically diverse collections of organisms rather than

defined taxa.

Maximizing PD or SD without taking into account the

food web leads to inviable sets, where Synodus foetens and

Antennarius striatus do not find prey (Data S3 and Fig. S5).

Therefore, in the following, we require that the optimal SD

set is viable (i.e. each predator must have at least one prey in

the set). The problem is then called Viable Taxon Selection

under SD (Problem 3).

The resulting optimal set denoted S1 (red and blue nodes;

Fig. 3) containing 10% of the taxa has a relative SD of

Table 1. Features of the five optimal sets of QDS (W1 toW5) to preserve 95% of split diversity under different urban/rural cost ratios. The sets of

QDS forW2,W3,W4 can be found in Fig. S3

Urban/rural cost ratio range 1–1�7 1�8–6�2 6�3–9�0 9�1–15�6 >15�6

QDS-set W1 (Fig. 1) W2 W3 W4 W5 (Fig. 1)

#QDS 7 7 9 9 11

#UrbanQDS 4 3 3 1 0

Area (km2) 2410 2150 3200 3805 4970

#Genera 648 656 660 657 662

#Threatened genera 244 249 254 253 250

Most-threatened genera

that are not conserved

Polhillia

Clivia

Daubenya

Marasmodes

Polhillia

Clivia

Daubenya

Polhillia Polhillia

Clivia

Daubenya

Polhillia

Clivia

Daubenya
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57�67% comparedwith the total SD of all taxa (i.e. only 0�22%
less than the taxon-set chosen solely on SD). This loss in

relative diversity is due to the replacement ofAntennarius stria-

tus (the ‘non-viable’ species, Data S3) withElacatinus evelynae.

Therefore, S1 ‘repairs’ the viability with negligible loss of

diversity.

We now look in more detail at the diet composition of the

species in S1. For each predator sj 2 S1, we compute its pro-

portion of diet conserved in S1 : dðsjjS1Þ ¼ Rsi2S2
wij, where wij

is the proportion of prey si in the diet of sj (Materials and

Methods). For the taxaGaleocerdo cuvier, octopuses, Sphyrae-

na barracuda and Holacanthus ciliaris (four red nodes; Fig. 3)

only 11%, 7%, 6% and 2%of their diet is conserved, while for

pycnogonids, hermit crabs, spiny lobsters andHaemulon plum-

ierii the diet proportion conserved ranges between 20% and

50% (Table S4).

The above observations indicate that the simple viability

constraint (conserving at least one prey per predator) might

result in some predators having an insufficient availability and

variety of prey. To address this, we applied the d%-viability

constraint, which requires that every taxon in the optimal SD

set must have at least d% of its diet composition conserved

(Materials and Methods). Note that the d%-viability con-

straint reduces to the simple viability constraint if we set d = 2
(i.e. a very small number). Despite this additional constraint,

the problem of d%-viable taxon selection can still be solved by

ILP (Problem 4,Materials andMethods).

As an illustration, for k = 24 and d = 30%, the optimal set

S2 (green and blue nodes; Fig. 3) has a relative SD of 56�36%,

a reduction of 1�31% compared with S1. Moreover, more

stringent viability constraints with higher d still provide almost

equally optimal subsets (Data S3 and Fig. S6).

S2 has five species (green nodes; Fig. 3) not present in S1. At

the same time, five taxa (red nodes; Fig. 3) are not present in

S2, of which G. cuvier, octopuses and S. barracuda have less

than 30% diet conserved by their preys in S1. On the other

hand, pycnogonids, H. ciliaris and hermit crabs, which have

less than 30% diet conserved in S1, now become 30%-viable in

S2. This is because the newly added taxon (bivalves; green

node; Fig. 3) is a prey of hermit crabs, contributing 80% to

their diet. Another new taxon (sponges) being a prey of pyc-

nogonids and H. ciliaris contributes to their diets 15% and

97% respectively, making them 30%-viable.

COMPUTATIONAL TIME AND OPTIMALITY

The computational time to solve all the problems with the

PDA software was less than 8 s on a 2�66 GHz computer.

98% of the runs for different parameters of Problem 4

consumed less than 1 s with a maximum of 3 s. Simulations

with varying complexities of split networks and food webs

yielded average run times of 2 s, with amaximumof 8 s.

We also applied the software Marxan 2.1.1 (Ball, Possing-

ham & Watts 2009; Data S3) to the minimum representation

and spatial reserve selection (subproblems of Problem 1) for

the first case study. Marxan found optimal solutions in only

7/50 runs and 3/50 runs, respectively. Marxan also required

20 min for 50 runs. Therefore, Marxan does not guarantee

optimal solutions while requiring more computations than

PDA.

Discussion

We have presented ILP solutions for various biodiversity opti-

mization problems that incorporate SD and include economic

and ecological constraints. The first advantage of ILP com-

pared to other approaches is its flexibility: we can account for a

variety of constraints while using the same basic formulations.

While many other computational techniques have been intro-

duced for some of the problems presented (Chernomor et al.

Amphipods

Crabs

H.plumierii

E.evelynae

Chitons

Octopuses
S.barracuda

G.cuvierS.picudilla

Squids 

C.leucas

Bivalves

Sponges

S.planifrons

Shrimps

Pycnogonids

O.atlanticus

Spiny lobsters

Holothurians

Zooplankton

Microfauna

Organic matter Benthic autotrophs

Phytoplankton

Isopods

H.ciliaris

Hermit crabs

Ophiuroids

Symbiotic algae

Fig. 3. Food web restricted to only those taxa

present in S1 or S2 (see main text). Red, green

and blue nodes depict the taxa present exclu-

sively in S1, exclusively in S2, and in both sets,

respectively. Light blue nodes correspond to

aggregated groups. Arrows connect from pre-

dators to their preys with thickness reflecting

the prey proportion in the predator diet.

Arrows pointing to or from green and red

nodes are coloured green and red respectively.

Arrows between blue nodes are coloured blue.

Note that the arrows between green and red

nodes are ignored.
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2014; and references therein), here, we further show that ILP

provides a general framework to address manymore problems

without much extra effort. Therefore, the PDA software

provided here complements existing conservation prioritiza-

tion tools such as Marxan or Zonation (Moilanen, Kujala &

Leathwick 2009).

The second advantage of ILP is the computational efficiency

and the guarantee of optimality. Thanks to the powerful

GUROBI solver employed, the analyses were carried out

within seconds (Data S3). This is contrary to the computing

times reported by Pressey, Possingham &Margules (1996) but

in accordance with others (Rodrigues & Gaston 2002; €Onal

2004). The different time requirements might be explained by

inefficient ILP solvers (LP_SOLVE and LINGO) whereas

Rodrigues & Gaston (2002) used the well-known CPLEX

library (see also €Onal 2004).

We demonstrated the practical utility of ILP with two large-

scale case studies: the flora of the Cape region of South Africa

and the Caribbean reef food web. In the first case study, the

inclusion of the increasing protection costs in urban areas acts

as a paradigm of how future developments may influence pres-

ent day decisions. Such amodel suggests a long-term conserva-

tion goal that appears expensive for the time being but will be

more sustainable in the future. Admittedly, one limitation of

the Cape region example is the simple cost model, mainly

due to the unavailability of land price data. However, more

complex cost indices can be easily incorporated thanks to the

flexibility of the ILP paradigm. Further limitations include the

somewhat coarse nature of the data (i.e. genus-level phyloge-

netic trees and quarter-degree square distribution data). The

latter may be inappropriate for the conservation purposes due

to the large area covered by aQDS (ca 675 km2) and the heter-

ogeneity of the landscape in the Cape of South Africa. This

situation leads to a relatively high species turnover along

environmental and geographical gradients (Cowling, Holmes

&Rebelo 1992).

The Caribbean food web example demonstrates the usage

of viability constraints in conservation prioritization thanks

to the availability of food web and diet composition data.

Such food webs allow us to analyse an entire set of species

as an interaction network rather than as isolated units. We

find that in the case of the Caribbean food web, including

viability constraints results in only small reductions in the

amount of biodiversity that can be preserved. This is

explained by the fact that the most evolutionarily distant

taxa are concentrated on the low trophic levels of the food

web. Therefore, by maximizing PD or SD for the Caribbean

community, we already obtained almost viable sets. How-

ever, taxon selection based on viability also highlighted

which representatives of each subclade contribute to viability

of the set. In practice, incorporating viability constraints has

the potential to prevent the use of limited resources on spe-

cialist taxa unless a sufficient resource base to support them

is also preserved.

While the incorporation of predator–prey links and diet

composition gets us closer to ecological realism, there are

nonetheless many factors that are not accounted for in the

examples described here. First, we are only considering preda-

tor–prey relationships, and not other interaction types such as

mutualism, facilitation or interference competition (Kefi et al.

2012). This framework should be applicable to other types of

interaction networks, such as mutualism networks, that allow

viability criteria to be specified. For example, a viable taxon

may require the preservation of at least one mutualist partner

sufficient to contribute a certain fraction of mutualist benefit.

We also consider only the bottom-up dependencies within food

webs, not top-down effects of predators on their prey (e.g.

apparent competition, trophic cascades). The proper incorpo-

ration of the complexity of interactions that result from top-

down effects may require a move from a static representation

of a food web to a population-dynamic model that explicitly

includes extinction due to population decline (Ebenman, Law

& Borrvall 2004). However, this is beyond the scope of this

paper.

One may also need to consider how and if it is appropriate

to incorporate diet composition to ensure that each taxon has

at least d% of its food base preserved. Most published food

webs contain only a topological representation of predator–

prey relationships, and large food webs such as the Caribbean

data set that include weights representing energy flow or diet

composition are rare. However, even in the absence of diet

composition data, one has the option of assigning the links

between a predator and each of its n prey a weight of 1/n,

assuming that they are of equal importance. This allows the

application of additional criteria; for example, that a viable

predator must have access to at least 50% of its prey taxa.

Where diet composition data are available, they provide a

means of indirectly considering taxon abundances, as more

abundant taxa will generally make up a greater proportion of

their predators’ diets. Further, if some prey types are only

available during certain seasons, one could devise ‘seasonal

constraints’ (similar to area constraints) ensuring that some

prey taxa are present for every season. Finally, one could con-

sider contributions from preys that do not appear in the food

web (e.g. preys consumed outside the spatial area covered by

the food web data) by crediting these predators with some pro-

portion of their prey intake regardless of the taxon set selected.

Such additional constraints can be easily included in the ILP

framework.

The set of taxa returned by the optimization procedure is a

starting point for conservation planning, but should be

followed by consideration of the biology of the selected taxa.

A food web is a simplified representation of a community or

meta-community and lacks information that might bear on the

suitability of the taxon set. For example, it should be con-

firmed that the prey taxa predicted to support each predator

are sufficiently abundant and widespread to do so, or that they

can reasonably be expected to become more common as a

result of conservation action. If the food web contains errors,

such as a link between taxa that no longer co-occur or the

omission of an important link, it might lead to suboptimal

taxon selection. Further, taxa may be subject to additional

constraints that may be difficult to capture in the ILP, so at

times it may be necessary to reconsider the taxa targeted for
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conservation action in light of additional biological or societal

information.

We note that the ILP framework is extensible to other

diversity measures provided that the measures can be

expressed as a linear function, for example the number of

segregating sites (Watterson 1975; Bryant & Klaere 2012).

Moreover, the spatial reserve selection under SD (Problem 1)

can be extended to take into account abundance data (e.g.

the population size of plant species). The constraint is then to

preserve at least the minimum abundance required for the

persistence of each taxon. Another extension to the viable

taxon selection problems 2, 3 and 4 is to choose species

under budgetary constraints. Here, each species has a conser-

vation cost and the inclusion of the taxon is constraint by the

budget. Close collaboration between conservation biologists

and mathematicians is recommended to convert complex

conservation problems into an ILP framework (see also

Underhill 1994).

The importance of preserving the diversity of life is widely

recognized and understood. In an ideal world, we could

ensure the persistence of all levels of biodiversity, but with

limited resources the prioritization of some taxa or ecosys-

tems is unavoidable. We thus need good criteria with which

to apply triage, to prioritize the allocation of these resources

to maximize conservation return under budget constraints

(Bottrill et al. 2008). We have demonstrated the utility of

the ILP approach to show how sensible and objective con-

servation decisions can be made in a world of limited

resources, numerous economical and ecological constraints.

The evaluation of different future scenarios with the aid of

the ILP approach presented here will certainly prove to be a

valuable contribution to conservation planning in a chang-

ing world.
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