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ABSTRACT
In the stochastic population protocolmodel, we are given a connected

graph with 𝑛 nodes, and in every time step, a scheduler samples an

edge of the graph uniformly at random and the nodes connected by

this edge interact. A fundamental task in this model is stable leader
election, in which all nodes start in an identical state and the aim is

to reach a configuration in which (1) exactly one node is elected

as leader and (2) this node remains as the unique leader no matter

what sequence of interactions follows. On cliques, the complexity of

this problem has recently been settled: time-optimal protocols stabi-

lize in Θ(𝑛 log𝑛) expected steps using Θ(log log𝑛) states, whereas
protocols that use 𝑂 (1) states require Θ(𝑛2) expected steps.

In this work, we investigate the complexity of stable leader elec-

tion on general graphs. We provide the first non-trivial time lower

bounds for leader election on general graphs, showing that, when

moving beyond cliques, the complexity landscape of leader election

becomes very diverse: the time required to elect a leader can range

from 𝑂 (1) to Θ(𝑛3) expected steps. On the upper bound side, we

first observe that there exists a protocol that is time-optimal on

many graph families, but uses polynomially-many states. In con-

trast, we give a near-time-optimal protocol that uses only𝑂 (log2 𝑛)
states that is at most a factor log𝑛 slower. Finally, we show that

the constant-state protocol of Beauquier et al. [OPODIS 2013] is at

most a factor 𝑛 log𝑛 slower than the fast polynomial-state proto-

col. Moreover, among constant-state protocols, this protocol has

near-optimal average case complexity on dense random graphs.
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1 INTRODUCTION
Leader election is one of the most fundamental symmetry-breaking

problems in distributed computing [8]: given a distributed system

consisting of 𝑛 identical nodes, the goal is to designate exactly one

node as a leader and all others as followers. In this work, we study

the computational complexity of leader election in the stochastic
population protocol model, a popular model of distributed computa-

tion among a population of (initially) indistinguishable agents that

reside on a graph and interact in a random manner [10, 13].

1.1 The stochastic population model on graphs
In the stochastic population protocol model, or simply the popu-
lation model, the system is described by a finite, connected graph

𝐺 = (𝑉 , 𝐸) with 𝑛 nodes. Each node represents an agent, corre-

sponding to a finite state automaton. Initially, all nodes are identical

and anonymous. Computation proceeds asynchronously, in a series

of random pairwise interactions between neighbouring nodes. In

each discrete time step, the following happen:

(1) the scheduler samples an ordered pair (𝑢, 𝑣) uniformly at
random among all pairs of nodes connected by an edge,

(2) the selected nodes 𝑢 and 𝑣 interact by exchanging informa-

tion and updating their local states, and

(3) every node maps their local state to an output value.

When the scheduler selects the ordered pair (𝑢, 𝑣) of nodes upon an

interaction step, we say that 𝑢 is the initiator of the interaction and

𝑣 is the responder. The algorithm is described by a state transition

function, which is typically given by a collection of local update

rules of the form 𝐴 + 𝐵 → 𝐶 + 𝐷 , where 𝐴 and 𝐵 are the states of

the initiator and the responder at the start of an interaction, and 𝐶

and 𝐷 are the resulting states after the interaction.

In the case of leader election, nodes have two possible output

values to indicate whether they are a leader or a follower. The goal
is to design the local update rules so that the system reaches a stable
configuration in which (1) exactly one node 𝑣 ∈ 𝑉 is elected as the

leader and all other nodes are followers and (2) the node 𝑣 remains

as the unique leader no matter what sequence of interactions fol-

lows (i.e., all reachable configurations from a stable configuration

have the same output). The time complexity is measured by stabi-
lization time, which is the total number of interaction steps needed
to reach a stable configuration. The typical aim is to guarantee

that stabilization time is small both in expectation and with high

probability. Finally, we measure space complexity as the maximum

number of distinct node states employed by the protocol.

1.2 Prior work on leader election in the
population model

The foundational work on population protocols [10, 13] already

raised the question of how the structure of the interaction graph
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influences both the computational power [12] and the complex-

ity [9] of stable computation in the population model. Prior to our

work, the complexity of stable leader election on general interaction

graphs was an open problem. Instead, most work in this area has

focused on a special case of the population model, where the inter-

action graph is restricted to be a clique [5, 25]. While this special

case naturally corresponds to well-mixed systems, it is often too

simplistic when modelling systems where the interaction patterns

among agents are influenced by some underlying spatial structure.

Leader election has been recognized as an especially important

problem in this model: for instance, the early work of Angluin, Asp-

nes and Eisenstat [11] showed that having a leader can be useful in

the population model on cliques: semilinear predicates can be stably

computed in 𝑂 (𝑛 log5 𝑛) time, and randomized LOGSPACE com-

putation can be performed with small error [11]. The above result

has motivated a vast amount of follow-up work on the complexity

of leader election on cliques [3–5, 15, 16, 24, 25, 27, 30, 31, 40, 42].
By now, the complexity of leader election on the clique is well-

understood: there exists a protocol that solves leader election in

Θ(𝑛 log𝑛) expected steps using Θ(log log𝑛) states per node [15],
which is optimal. To elect a leader in the clique model, all protocols

require Ω(𝑛 log𝑛) expected steps [40], any 𝑜 (log log𝑛)-state proto-
col requires𝑛2/polylog𝑛 expected steps [3] and the time complexity

bound for constant-state protocols is Θ(𝑛2) expected steps [24].

Somewhat surprisingly, much less is known about the complexity

of leader election on general interaction graphs. Angluin, Aspnes,

Fischer and Jiang [12] showed that self-stabilizing leader election

is not generally possible on all connected interaction graphs. At

the same time, Beauquier, Blanchard and Burman [14] showed

that there exists a constant-state protocol that solves stable leader

election as long as self-stabilization is not required. Subsequently,

research on leader election in the population model has largely

fallen into two categories: (1) work that tries to understand com-

putational complexity and space-time complexity trade-offs of

leader election under uniform random pairwise interactions on

the clique [4, 15, 16, 24, 27, 30, 31, 40, 42, 43], and (2) work that aims

to understand in which interaction graphs and under what model

assumptions leader election can be solved in, e.g., a fault-tolerant

manner [12, 14, 19, 20, 41, 44–46].

An interesting question left open by this line of work is the

computational complexity of stable leader election, without the

requirement of self-stabilization, on general interaction graphs [6].
One reason why this might still be open is that algorithmic [5, 15, 25,

27, 42, 43] and lower bound techniques [3, 24, 40] developed for the

clique model do not readily extend to the case of general interaction

graphs. More broadly, establishing tight bounds for randomized

leader election is known to be challenging even in well-studied

synchronous models of distributed computing, such as the LOCAL

and CONGEST models [35, 38].

1.3 Limits of existing techniques
Existing upper bound techniques on the clique naturally rely on

the fact that every pair of nodes can potentially interact. Specifi-

cally, fast and space-efficient algorithms [15, 27, 43] combine (1)

fast information dissemination, typical for the clique, with (2) care-

ful time-keeping across “juntas of nodes” to obtain space-efficient

phase clocks. It is not straightforward to generalize either of these

techniques to e.g. poorly-connected graphs, nor is it clear that they

would be time-optimal on sparse graphs.

The only existing work to explicitly consider the complexity

of non-self-stabilizing leader election on graphs is by Alistarh,

Gelashvili and Rybicki [6], whose overall goal was broader, that is

to find general ways of porting clique-based algorithms to regular

interaction graphs. (Chen and Chen [20] considered complexity of

self-stabilizing leader election in regular graphs, but this is compu-

tationally harder than stable leader election [12].) Specifically for

regular graphs, Alistarh et al. [6] gave a leader election protocol

that stabilizes in 1/𝜙2 · 𝑛 polylog𝑛 steps in expectation and with

high probability and uses 1/𝜙2 · polylog𝑛 states, where 𝜙 is the

conductance of the interaction graph. While this approach yields to

fairly efficient leader election protocols in graphs with high conduc-

tance, it performs poorly in low-conductance graphs. For example,

on cycles the protocol uses 𝑛2 polylog𝑛 states and requires Ω(𝑛3)
steps to stabilize.

Alistarh et al. [6] also showed that the constant-state protocol of

Beauquier et al. [14] stabilizes in the order of 𝐷𝑚𝑛2 log𝑛 steps in

expectation andwith high probability on any graphwith diameter𝐷

and𝑚 edges. This upper bound can be further refined to 𝑂 (C(𝐺) ·
𝑛 log𝑛), where C(𝐺) is the cover time of a classic random walk

on the graph 𝐺 , by leveraging the recent results of Sudo, Shibata,

Nakamura, Kim and Masuzawa [45]. However, beyond the case of

cliques, there are no results indicating whether this bound could

be improved.

Specifically, existing lower bound techniques for population pro-

tocols on the clique [3, 24, 40] do not directly generalize to general

graphs. In particular, such approaches usually rely on the fact that

short executions can lead to “populous” configurations which have

large “leader generating” sets of nodes; then, by carefully inter-

leaving interactions between nodes in such sets, short executions

can be extended to create new leaders. This suggests that short

executions are unlikely to yield stable configurations. However, to

create new leaders, existing arguments require the set of nodes to

be connected in the underlying graph. This is straightforward on

the clique, but non-trivial for general graphs.

The situation seems even more challenging when trying to es-

tablish space-time complexity trade-offs, such as showing that

constant-state protocols cannot run in sublinear time. In this case,

the only known approach is the surgery technique [3, 24], which
requires keeping track of the distribution of certain states that can

be used to generate a leader. On general graphs, one would therefore
also need to keep track of the spatial distribution of states created

by the protocol, which appears highly for general protocols and

interaction graphs.

To illustrate the difficulty of extending the above techniques to

general interaction graphs, a useful exercise is to consider the case

of star graphs, as there is a constant-state protocol that elects a

leader in a single interaction in any star of size 𝑛. Thus, the lower

bound of Ω(𝑛2) expected steps for constant-state protocols or the

general lower bound of Ω(𝑛 log𝑛) expected steps cannot hold in

general, as in some graphs, the graph structure can be used to break

symmetry fast.
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1.4 Our contributions
In this work, we give new upper bounds and lower bounds for

stable leader election in the population protocol model on general

graphs. For many graph families, we obtain either tight or almost

tight bounds; please see Table 1 for a summary of our results. We

now overview our main results. The detailed proofs of these results

are given in the full version of the paper [7].

Bounds on information propagation in the population model. We

phrase our upper bounds in terms of worst-case expected broadcast
time B(𝐺) on the graph𝐺 . Informally, B(𝐺) denotes the maximum

expected time until a broadcast originating from a single node

reaches all other nodes in the graph 𝐺 . This process is often called

“one-way epidemics” in the population protocol literature [11]. In

Section 3, we establish the worst-case broadcast time upper bounds

of 𝑂 (𝑚𝐷 +𝑚 log𝑛) and 𝑂 (𝑚/𝛽 · log𝑛) for any𝑚-edge graph with

diameter𝐷 and edge expansion 𝛽 . We also provide lower bounds on

the time that information propagates to a given distance 𝑘 . These

bounds are used to bound leader election time for general protocols.

While for regular graphs these dynamics correspond to well-studied

asynchronous rumour spreading [22, 29], when the graph is not

regular, the dynamics in the population model behave differently.

Fast space-efficient leader in close-to-broadcast time. We first ob-

serve that, if we disregard space complexity, there exists a sim-

ple protocol that solves leader election in 𝑂 (B(𝐺) + 𝑛 log𝑛) ex-
pected steps, on any graph 𝐺 : nodes can generate unique identi-

fiers, and then broadcast them to elect a leader. However, generat-

ing unique identifiers will require polynomially-many states. Our

first contribution is a space-efficient protocol that elects a leader

in 𝑂 (B(𝐺) · log𝑛) steps in expectation and with high probability

using only 𝑂 (log𝑛 · 𝐻 (𝐺)) states, where 𝐻 (𝐺) ∈ 𝑂 (log𝑛) is a
parameter depending on the broadcast time B(𝐺). Contrasting to
the identifier-based approach, this space-eficient protocol achieves

exponentially smaller space complexity of 𝑂 (log2 𝑛), with a factor

𝑂 (log𝑛) increase in stabilization time.

Our protocol builds on a time-optimal approach on the clique by

Sudo, Fukuhito, Izumi, Kakugawa and Masuzawa [43], and signifi-

cantly improves upon the state-of-the-art on general graphs. Specif-

ically, Alistarh, Gelashvili and Rybicki [6] gave a protocol for leader

election on Δ-regular graphs that stabilizes in 𝑂 (𝑛/𝜙2 · log6 𝑛) ex-
pected steps and uses𝑂 (log7 𝑛/𝜙2) states per node, where 𝜙 = 𝛽/Δ
is the conductance of the graph. Our protocol has stabilization time

𝑂 (𝑛/𝜙 · log2 𝑛) on regular graphs; this improves the dependency

on the conductance 𝜙 by a linear factor and the polylogarithmic

dependence from log
6 𝑛 to log

2 𝑛. In terms of space complexity, we

get an exponential improvement in conductance, as the parameter𝐻

in the space complexity bound satisfies𝐻 ∈ 𝑂 (log log𝑛+ log(1/𝜙))
in regular graphs.

We emphasize that our protocol also works in non-regular graphs,
and guarantees that the elected leader has degree Θ(Δ) with high

probability. Our protocol has high-degree nodes driving a space-

efficient and approximate distributed phase clock: nodes with de-

gree Θ(Δ) generate “clock ticks” roughly every B(𝐺) steps with
high probability. With this in place, we devise a protocol in which

high-degree nodes participate in a tournament that lasts for𝑂 (log𝑛)
phases, each of which lasting for 𝑂 (B(𝐺)) steps.

Time lower bounds for general protocols. On the negative side, we

show how to construct families of graphs in which leader election

and broadcast have the same asymptotic time complexity. Our ap-

proach is based on a probabilistic indistinguishability argument

similar in spirit to the lower bound argument of Kutten, Panduran-

gan, Peleg, Robinson and Trehan [35] for randomized leader election

in the synchronous LOCAL and CONGEST models. However, in

the population model, communication patterns are asynchronous

and stochastic instead of synchronous, so we need a more refined

approach to establish the lower bounds.

Roughly speaking, we show that if (a) the nodes of the graph

can be divided into constantly many subsets 𝑉1, . . . ,𝑉𝐾 such that

the local neighbourhoods of these sets are isomorphic up to some

distance ℓ and (b) there are sets whose distance-ℓ neighbourhoods

are disjoint, then any leader election protocol must propagate in-

formation at least up to distance ℓ to reach a stable configuration. If

propagation takes at least 𝑓 (𝑛) steps with at least a constant prob-

ability, then we get a lower bound of order 𝑓 (𝑛) for the expected
stabilization time. We call such graphs 𝑓 -renitent (see Section 6 for

a formal definition).

In general, it is fairly straightforward to construct graphs with

diameter Θ(𝐷) and Θ(𝑚) edges, which are Ω(𝐷𝑚)-renitent for
any 1 ≤ 𝐷 ≤ 𝑛 and 𝑛 ≤ 𝑚 ≤ 𝑛2. Moreover, in these graphs

broadcast time is Θ(𝐷𝑚). Our proof works for a general variant of
the population model, in which we do not restrict the state space

of the protocol and give each node an infinite stream of uniform,

fair random bits that assign unique identifiers for each node with

probability 1 at the start of the execution. Finally, we also show that

in any sufficiently dense graph, leader election requires Ω(𝑛 log𝑛)
expected steps. This part of the argument extends the lower bound

argument of Sudo and Masuzawa [40] from cliques to dense graphs.

Worst-case and average-case complexity of constant-state protocols.
As a baseline result, we show that the constant-state protocol of

Beauquier et al. [14] stabilizes in 𝑂 (B(𝐺) · 𝑛 log𝑛) steps in ex-

pectation and with high probability. It follows from the analyses

of Alistarh et al. [6] and Sudo et al. [45] that this stabilizes in

𝑂 (C(𝐺) · 𝑛 log𝑛) steps in expectation and with high probability,

where C(𝐺) is the cover time of a (classic) random walk on 𝐺 . Our

alternative analysis shows that the worst-case hitting and meeting

times of random walks in the population model are bounded by

𝑂 (B(𝐺) · 𝑛).
As our final contribution, we show that, in the class of constant-

state protocols, the average-case complexity of this protocol on

dense random graphs is optimal up to a 𝑂 (log2 𝑛) factor. More

formally, we show that the expected stabilization time of any leader

election protocol, that works on all connected graphs, is Ω(𝑛2) on
a connected Erdös-Rényi random graph 𝐺 ∼ 𝐺𝑛,𝑝 for any constant

𝑝 > 0. This is tight up to a polylogarithmic factor, as the broadcast

time satisfies B(𝐺) ∈ 𝑂 (𝑛 log𝑛) with high probability in these

graphs. Therefore, the 6-state protocol stabilizes in 𝑂 (𝑛2 log2 𝑛)
steps with high probability on an average, connected random graph

𝐺 ∼ 𝐺𝑛,𝑝 . To achieve this result, we extend the surgery technique,
used to prove space-time lower bounds for population protocols so

far only in the clique [3, 24], to the case of dense random graphs.
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Graph family Stabilization time States Notes

General graphs 𝑂 (B(𝐺) + 𝑛 log𝑛) 𝑂 (𝑛4) Folklore + Theorem 4.2

𝑂 (B(𝐺) · log𝑛) 𝑂 (log2 𝑛) Theorem 5.1

𝑂 (B(𝐺) · 𝑛 log𝑛) 𝑂 (1) Protocol of [14] + Theorem 4.1

Renitent graphs* Ω(B(𝐺)) ∞ Theorem 6.5

Regular graphs 𝑂 (𝑛𝜙−2 log6 𝑛) 𝑂 (𝜙−2 log7 𝑛) [6]

𝑂 (𝑛𝜙−1 log𝑛) 𝑂 (𝑛3) Theorem 4.2

𝑂 (𝑛𝜙−1 log2 𝑛) 𝑂 (log𝑛 · (log log𝑛 − log𝜙)) Corollary 5.2

𝑂 (𝑛2𝜙−1 log2 𝑛) 𝑂 (1) Theorem 4.1

Cliques Θ(𝑛 log𝑛) Θ(log log𝑛) [3, 15, 40]

Θ(𝑛2) 𝑂 (1) [24]

Dense random graphs** Θ(𝑛 log𝑛) 𝑂 (𝑛4) Theorem 6.6; Theorem 4.2

𝑂 (𝑛 log2 𝑛) 𝑂 (log2 𝑛) Theorem 5.1

Ω(𝑛2) and 𝑂 (𝑛2 log2 𝑛) 𝑂 (1) Theorem 7.1; Theorem 4.1

Star graphs 𝑂 (1) 𝑂 (1) Trivial

Table 1: Complexity bounds for stable leader election. Stabilization time refers to the expected number of steps required to
reach a stable configuration. Here B(𝐺) is a characteristic of information dissemination dynamics in the population model
defined in Section 3; it can range from Θ(𝑛 log𝑛) to Θ(𝑛3). The 𝑂 (log2 𝑛) and 𝑂 (1)-state protocols also stabilize in the reported
time w.h.p. For regular graphs, 𝜙 denotes the conductance of the graph. (*) We define the class of renitent graphs in Section 6. (**)
For dense random graphs, the bounds are for average-case complexity, when the input graph is a connected Erdös-Reńyi random
graph 𝐺 ∼ 𝐺𝑛,𝑝 for any constant 𝑝 > 0. In these graphs, broadcast time is 𝑂 (𝑛 log𝑛) w.h.p., which implies the given bounds.

2 PRELIMINARIES
Graphs. Let 𝐺 = (𝑉 , 𝐸) be a undirected graph, where 𝑉 = 𝑉 (𝐺) is
the set of nodes and 𝐸 (𝐺) = 𝐸 is the set of edges of the graph. We

use 𝑛 = |𝑉 (𝐺) | to denote the number of nodes and𝑚 = |𝐸 (𝐺) | the
number of edges. The degree deg(𝑣) of a node 𝑣 is the number of

edges incident to it. We use Δ = max{deg(𝑣) : 𝑣 ∈ 𝑉 } to denote

the maximum degree and 𝛿 = min{deg(𝑣) : 𝑣 ∈ 𝑉 } the minimum

degree of the graph.We assume all interaction graphs are connected

unless otherwise specified.

Given a nonempty set 𝑆 ⊆ 𝑉 (𝐺), the edge boundary 𝜕𝑆 of 𝑆 is the
set 𝜕𝑆 = {{𝑢, 𝑣} ∈ 𝐸 (𝐺) : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑉 (𝐺) \ 𝑆}. The edge expansion
of 𝐺 is given by 𝛽 (𝐺) = min {|𝜕𝑆 |/|𝑆 | : ∅ ≠ 𝑆 ⊆ 𝑉 (𝐺), |𝑆 | ≤ 𝑛/2}.
We also define𝐺 [𝑆] to be a subgraph of𝐺 induced on vertices of 𝑆 .

The distance between two vertices 𝑢 and 𝑣 is denoted by dist(𝑢, 𝑣).
The radius-𝑟 neighbourhood of𝑢 is 𝐵𝑟 (𝑢) = {𝑣 ∈ 𝑉 : dist(𝑢, 𝑣) ≤ 𝑟 }
and 𝐵𝑟 (𝑈 ) =

⋃
𝑢∈𝑈 𝐵𝑟 (𝑢). For 𝑟 = 1 we use 𝐵(𝑢) = 𝐵1 (𝑢). The

diameter 𝐷 (𝐺) is given by 𝐷 (𝐺) = max{dist(𝑢, 𝑣) : 𝑢, 𝑣 ∈ 𝑉 (𝐺)}.
For any two graphs𝐺 and𝐻 , we write𝐺 ≃ 𝐻 if they are isomorphic.

For random graphs, we use the Erdős–Rényi random graph model

𝐺𝑛,𝑝 . In this model, a random graph𝐺 ∼ 𝐺𝑛,𝑝 is sampled as follows.

We start with 𝑛 nodes and for each 𝑢, 𝑣 ∈ 𝑉 , we add the edge {𝑢, 𝑣}
with probability 𝑝 independently of all other edges.

Population protocols on graphs. A (stochastic) schedule on a graph

𝐺 is an infinite sequence (𝑒𝑡 )𝑡≥1 of ordered pairs of nodes (𝑣,𝑢),
where each 𝑒𝑡 is sampled independently and uniformly at ran-

dom among all pairs of nodes connected by an edge in 𝐺 (there

are 2𝑚 such pairs). The order of nodes in the pair is used to dis-

tinguish between initiator and a responder. A protocol is a tu-

ple A = (Λ, 𝜉, Σin, Σout, init, out), where Λ is the set of states,

𝜉 : Λ × Λ→ Λ × Λ is the state transition function, Σin and Σout are
the sets of input and output labels, respectively, init : Σin → Λ is the

initialization function, and out : Λ→ Σout is the output function.
A configuration is a map 𝑥 : 𝑉 → Λ, where 𝑥 (𝑣) is the state of

the node 𝑣 in configuration 𝑥 . For any 𝑒 = (𝑢, 𝑣) and configura-

tions 𝑥 and 𝑥 ′, we write 𝑥 ⇒𝑒 𝑥
′
if 𝑥 ′ (𝑢), 𝑥 ′ (𝑣) = 𝜉 (𝑥 (𝑢), 𝑥 (𝑣))

and 𝑥 ′ (𝑤) = 𝑥 (𝑤) for all 𝑤 ∈ 𝑉 \ {𝑢, 𝑣}. For any sequence 𝜎 =

(𝑒1, . . . , 𝑒𝑡 ) we write 𝑥0 ⇒𝜎 𝑥𝑡 if 𝑥𝑖 ⇒𝑒𝑖+1 𝑥𝑖+1 for each 𝑖 ≥ 0. We

say that 𝑥 ′ is reachable from 𝑥 on 𝐺 if there exists some 𝑘 ≥ 1 and

𝜎 = (𝑒1, . . . , 𝑒𝑘 ) such that 𝑥 ⇒𝜎 𝑥
′
. Given input 𝑓 : 𝑉 (𝐺) → Σin,

a protocol and a schedule (𝑒𝑡 )𝑡≥1, an execution is the infinite se-

quence (𝑥𝑡 )𝑡≥0 of configurations, where 𝑥0 = init ◦ 𝑓 is the initial
configuration and 𝑥𝑡 ⇒𝑒𝑡+1 𝑥𝑡+1 for 𝑡 ≥ 0. Note that throughout,

the time step 𝑡 denotes the total number of pairwise interactions

that have occurred so far.

In the case of leader election, we assume that the input is a

constant function, unless otherwise specified. That is, all nodes

start in the same state. We say that a configuration 𝑥 is correct if
out(𝑥 (𝑣)) = leader for exactly one node 𝑣 ∈ 𝑉 and for all 𝑢 ∈
𝑉 \ {𝑣} we have out(𝑥 (𝑢)) = follower. A configuration 𝑥 is stable
if for every configuration 𝑥 ′ reachable from 𝑥 we have out(𝑥 (𝑣)) =
out(𝑥 ′ (𝑣)) for every node 𝑣 ∈ 𝑉 . The stabilization time of a leader
election protocol A is the minimum 𝑡 such that 𝑥𝑡 is stable and

correct. The state complexity of a protocol is |Λ|, the number of

distinct states.

Some of the protocols we consider are non-uniform in the fol-

lowing sense: the state space and transition function of the protocol

can depend on parameters that capture high-level structural in-

formation about the population and the interaction graph (e.g.,
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number of nodes and edges, broadcast time or the maximum de-

gree). However, upon initialization, all nodes receive exactly the

same information. For example, nodes do not initially know their

own degree or identity in the interaction graph.

Probability-theoretic tools. Let 𝑋 and 𝑌 be real-valued random vari-

ables defined on the same probability space. We say that𝑋 stochasti-
cally dominates 𝑌 , written as 𝑌 ⪯ 𝑋 , if Pr[𝑋 ≥ 𝑥] ≥ Pr[𝑌 ≥ 𝑥] for
all 𝑥 ∈ R. We start with three concentration bounds. The first is a

folklore result; see e.g. [18] for a proof. The second is also standard

Chernoff bounds for sums of Bernoulli random variables. The third

result gives tail bounds on the sums of geometric random variables,

via Janson [32, Theorems 2.1 and 3.1].

Lemma 2.1. Let 𝑋 ∼ Poisson(𝜆) be a Poisson random variable
with mean 𝜆. Then

(a) Pr[𝑋 ≥ 𝑐𝜆] ≤ exp(−𝜆 · (𝑐 − 1)2/𝑐) for 𝑐 ≥ 1,
(b) Pr[𝑋 ≤ 𝑐𝜆] ≤ exp(−𝜆 · (1 − 𝑐)2/(2 − 𝑐)) for 𝑐 ≤ 1.

Lemma 2.2. Let 𝑋 = 𝑋 = 𝑌1 + . . . + 𝑌𝑘 be a sum of independent
Bernoulli random variables with Pr[𝑌𝑖 = 1] = 𝑝𝑖 . Then

(a) Pr[𝑋 ≥ (1 + 𝜆) · E[𝑋 ]] ≤ exp

(
−E[𝑋 ] · 𝜆2/3

)
for any 𝜆 ≥ 1,

(b) Pr[𝑋 ≤ (1 − 𝜆) · E[𝑋 ]] ≤ exp

(
−E[𝑋 ] · 𝜆2/2

)
for any 𝜆 ≤ 1.

Note that in the special case when 𝑝𝑖 = 𝑝 for all 1 ≤ 𝑖 ≤ 𝑘 , the sum
𝑋 ∼ Bin (𝑘, 𝑝) is a Binomial random variable.

Lemma 2.3. Let 𝑝1, . . . , 𝑝𝑘 ∈ (0, 1] and 𝑋 = 𝑌1 + . . . + 𝑌𝑘 be a
sum of independent geometric random variables with 𝑌𝑖 ∼ Geom(𝑝𝑖 ).
Define 𝑝 = min{𝑝𝑖 : 1 ≤ 𝑖 ≤ 𝑘} and 𝑐 (𝜆) = 𝜆 − 1 − ln 𝜆. Then

(a) Pr[𝑋 ≥ 𝜆 · E[𝑋 ]] ≤ 𝑒−𝑝 ·E[𝑋 ] ·𝑐 (𝜆) for any 𝜆 ≥ 1,
(b) Pr[𝑋 ≤ 𝜆 · E[𝑋 ]] ≤ 𝑒−𝑝 ·E[𝑋 ] ·𝑐 (𝜆) for any 0 < 𝜆 ≤ 1.

Lemma 2.4 (Wald’s identity). Let (𝑋𝑖 )𝑖≥1 be a sequence of real-
valued i.i.d. random variables and 𝑁 a non-negative integer-valued
random variable independent of (𝑋𝑖 )𝑖≥1. If 𝑁 and all 𝑋𝑖 have finite
expectation, then E[𝑋1 + · · · + 𝑋𝑁 ] = E[𝑁 ] · E[𝑋1].

3 BOUNDS ON INFORMATION PROPAGATION
Our results will rely on notions of broadcast time and propagation
time in the population model. For this, we define the following

infection process on a graph 𝐺 : initially, each node 𝑣 ∈ 𝑉 holds

a unique message. In every step, when nodes 𝑢 and 𝑣 randomly

interact they inform each other about all messages they have so far

received. The distance-𝑘 propagation time is the minimal time until

some message has reached a node at distance 𝑘 from its source. The

broadcast time is the expected time until all nodes in the network are

aware of all messages. Propagation time is used in our lower bounds,

whereas broadcast time appears in our upper bounds. Before we

formalize these notions below, we briefly discuss some work on

related, but different stochastic information propagation dynamics.

3.1 Information propagation in related models
Many variants of the above broadcasting process have been stud-

ied in settings ranging from information dissemination [1, 21–

23, 29, 34, 39] to models of epidemics [26, 36, 37]. For example,

in the synchronous push-pull model [23, 34], Chierichetti, Lat-

tanzi and Panconesi [22] first showed that broadcast succeeds

with high probability in 𝑂 (log4 𝑛/𝜙6) rounds on graphs of conduc-

tance 𝜙 . Subsequently, they improved the running time bound to

𝑂 (log𝑛/𝜙 ·log2 (1/𝜙)) rounds [21]. Finally, Giakkoupis [28] showed
that the push-pull algorithm succeeds in 𝑂 (log𝑛/𝜙) rounds with
high probability, and showed that for all 𝜙 ∈ Ω(1/𝑛) there is a

family of graphs in which this bound is tight.

In the asynchronous setting, Acan, Collevecchio, Mehrabian

and Wormald [1] and Giakkoupis, Nazari and Woelfel [29] studied

broadcasting in the continuous-time push-pull model, where each

node has a (probabilistic) Poisson clock that rings at unit rate. They

showed that on graphs in which the protocol runs in 𝑇 rounds, the

asynchronous protocol runs in𝑂 (𝑇 +log𝑛) continuous time. Ottino-

Löffler, Scott and Strogatz [37] studied an infection model that is

similar to this asynchronous setting, and characterized broadcast

time in cliques, stars, lattices and Erdős–Rényi random graphs.

Although the interaction patterns in the stochastic population

model and the above asynchronous models are the same for regular
graphs, they are different in general graphs. In the populationmodel,

instead of sampling a node and then one of its neighbours in each

step, our scheduler samples an edge. In the continuous-time setting,

this corresponds to having an independent Poisson clock at each

edge rather than each node in the network. Thus, high-degree nodes

interact more often than low-degree nodes in the population model.

3.2 Information propagation in the population
model

We now define information propagation dynamics in our setting.

Let (𝑒𝑡 )𝑡≥1 be a stochastic schedule on a graph𝐺 = (𝑉 , 𝐸). For each
node 𝑣 ∈ 𝑉 , let 𝐼0 (𝑣) = {𝑣}. For 𝑡 ≥ 0, define

𝐼𝑡+1 (𝑣) =
{
𝐼𝑡 (𝑣) ∪ 𝐼𝑡 (𝑢) if 𝑒𝑡+1 = (𝑢, 𝑣) or 𝑒𝑡+1 = (𝑣,𝑢);
𝐼𝑡 (𝑣) otherwise.

Following Sudo andMasuzawa [40], we say that 𝐼𝑡 (𝑣) is the set of in-
fluencers of node 𝑣 at the end of step 𝑡 . Nodes in 𝐼𝑡 (𝑣) are nodes who
can (in principle) influence what is the state of node 𝑣 at step 𝑡 . The

above dynamics can be seen as a rumour spreading process, where

each node starts with a unique message, and whenever two nodes

interact, they inform each other about all messages they possess.

Broadcast and propagation time. Let 𝑇 (𝑣,𝑢) = min{𝑡 : 𝑣 ∈ 𝐼𝑡 (𝑢)}
be the minimum time until node 𝑢 is influenced by node 𝑣 . The

broadcast time from source 𝑣 is 𝑇 (𝑣) = max{𝑇 (𝑣,𝑢) : 𝑢 ∈ 𝑉 (𝐺)}.
We define the worst-case expected broadcast time on 𝐺 to be

B(𝐺) = max{E[𝑇 (𝑣)] : 𝑣 ∈ 𝑉 }.

For each 𝑘 ≥ 0, let𝑇𝑘 (𝑢) = min{𝑇 (𝑢, 𝑣) : 𝑣 ∈ 𝑉 , dist(𝑢, 𝑣) = 𝑘}. The
distance-𝑘 propagation time in 𝐺 is 𝑇𝑘 (𝐺) = min{𝑇𝑘 (𝑢) : 𝑢 ∈ 𝑉 }.
If there are no nodes at distance 𝑘 from node 𝑢, then 𝑇𝑘 (𝑢) = ∞.
Moreover, 𝑇𝑘 (𝐺) = ∞ for all 𝑘 > 𝐷 (𝐺). Note that the distance-𝑘
propagation time gives lower bound for the expected broadcast

time as E[𝑇𝑘 (𝐺)] ≤ E[𝑇𝐷 (𝐺)] ≤ B(𝐺) for each 1 ≤ 𝑘 ≤ 𝐷 (𝐺).

Sampling edge sequences. For a finite sequence 𝜌 ∈ 𝐸𝑘 of𝑘 edges, let
𝑋 (𝜌) be the number of steps until the scheduler has sampled each

edge from 𝜌 in order. Note that 𝑋 (𝜌) = 𝑌1 + · · · +𝑌𝑘 is a sum of i.i.d.

geometric random variables, where𝑌𝑖 ∼ Geom(1/𝑚) is the number
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of steps until the 𝑖th edge of 𝜌 is sampled after sampling the (𝑖−1)th
edge in the sequence 𝜌 . The next lemma follows from Lemma 2.3.

Lemma 3.1. Let 𝑐 (𝜆) = 𝜆− 1− ln 𝜆. For any fixed sequence 𝜌 ∈ 𝐸𝑘
we have E[𝑋 (𝜌)] = 𝑘𝑚 and

(a) Pr[𝑋 (𝜌) > 𝜆𝑘𝑚] ≤ 𝑒−𝑘𝑐 (𝜆) for 𝜆 ≥ 1, and
(b) Pr[𝑋 (𝜌) < 𝜆𝑘𝑚] ≤ 𝑒−𝑘𝑐 (𝜆) for 0 < 𝜆 ≤ 1.

With the above lemma, it is fairly straightforward to establish

the following upper bound on the worst-case expected broadcast

time B(𝐺). We give the details in the full version of the paper [7].

Theorem 3.2. Let 𝐺 be a graph with 𝑛 nodes,𝑚 edges, edge ex-
pansion 𝛽 and diameter 𝐷 . Then

B(𝐺) ∈ 𝑂
(
𝑚 ·min

{
log𝑛

𝛽
, log𝑛 + 𝐷

})
.

Note that there are graphs in which ln𝑛/𝛽 > 𝐷 , e.g. cycles,

and ln𝑛/𝛽 < 𝐷 , e.g., cliques. We will later give leader election

protocols whose stabilization time is bounded as a function of B(𝐺)
on any graph 𝐺 . In general, for any increasing function 𝑇 between

Ω(𝑛 log𝑛) and𝑂 (𝑛3), we can find families of graphs in which both

the expected broadcast time and leader election time are Θ(𝑇 ). We

give the construction in Section 6.

4 TWO BASELINES FOR STABLE LEADER
ELECTION ON GRAPHS

In this section, we discuss two protocols, which act as our baselines

for time complexity and space complexity. First, we observe that

constant-state protocol given by Beauquier et al. [14] stabilizes in

𝑂 (B(𝐺) ·𝑛 log𝑛) steps in expectation and with high probability. Sec-
ond, we note that if we allow polynomially-many states, then there

is a simple protocol that elects a leader in𝑂 (B(𝐺)+𝑛 log𝑛) expected
steps. This protocol is time-optimal for a large class of graphs.

First baseline: A space-efficient protocol. Our baseline for space-
efficient protocols is the constant-state leader election protocol given
by Beauquier et al. [14]. This protocol stabilizes in any connected

graph in finite expected time. The idea of the protocol is simple:

as input, we are given a nonempty set of leader candidates. At the

start of the execution, each leader candidate creates a “black token”.

In each interaction, the selected nodes swap their tokens with their

interaction partners. When ever two black tokens meet, one of

them is colored white and the other token is left black. Whenever a

leader candidate receives a white token, the candidate drops out of

the race by becoming a follower and removes the token from the

system. Eventually exactly one black token and leader remain. That

is, the protocol is always correct. Similarly to Alistarh et al. [6],

we exploit this property by using this constant-state protocol as a

backup protocol for faster protocols that may fail to elect a unique

leader with a polynomially small probability.

Recently, Alistarh et al. [6] and Sudo et al. [45] bounded the

meeting and hitting times of randomly walking tokens in the popu-

lation model. Using these analyses, it is possible to show that the

protocol stabilizes in 𝑂 (C(𝐺) · 𝑛 log𝑛) steps, where C(𝐺) is the
cover time of the classic random walk [2, 17, 33]. In the full version

of the paper [7], we give an alternative analysis of the protocol,

which connects hitting and meeting times of the randomly walking

tokens to the broadcast time B(𝐺). With this, we can bound the

stabilization time of the 6-state protocol using the broadcast time

B(𝐺); this allows a clean comparison of performance of the three

different protocols we consider in this work. In Section 7, we show

that the average-case time complexity of this protocol on dense

random graphs is almost-optimal among constant-state protocols.

Theorem 4.1. Given a nonempty set of leader candidates as input,
there is a 6-state protocol that elect exactly one candidate as a leader
in 𝑂 (B(𝐺) · 𝑛 log𝑛) steps in expectation and with high probability.

Second baseline: A time-efficient protocol. We next discuss our base-

line for fast protocols. For this, we use a simple protocol that stabi-

lizes in𝑂 (B(𝐺) + 𝑛 log𝑛) expected steps using polynomially many

states. The results in Section 6 show that this protocol is time-

optimal for a large class of graphs, as there are graphs where leader

election requires Θ(B(𝐺)) steps. In this protocol, we first generate

unique identifiers with high probability by using the stochasticity

of the scheduler and a large state space. Once we have unique iden-

tifiers, we can elect the node with the largest identifier as the leader

by a broadcast process.

The only non-trivial part is to get finite expected stabilization

time. This is achieved by interleaving the always-correct constant-

state protocol with the broadcasting process. Once a node has

generated its identifier, the node starts an instance of the constant-

state protocol labelled with its own identifier and designating itself

as a leader. If a node encounters an instance of the constant-state

protocol labeled with an identifier higher than the identifier of its

current instance (or its own identifier), the node joins as a follower

to the instance with the higher identifier. In the case that two or

more nodes generated the same (highest) identifier, the constant-

state protocol ensures that eventually only one leader candidate

remains. The analysis of this protocol, given in the full version of

the paper [7], yields the next result.

Theorem 4.2. There is a protocol that uses𝑂 (𝑛4) states on general
graphs and 𝑂 (𝑛3) states on regular graphs that elects a leader in
𝑂 (B(𝐺) + 𝑛 log𝑛) steps in expectation.

5 SPACE-EFFICIENT LEADER ELECTION IN
CLOSE-TO-BROADCAST TIME

We now give a leader election protocol whose stabilization time is

parameterized by the worst-case expected broadcast time B(𝐺) and
whose state complexity depends on the expansion properties of the

graph. The approach is inspired by a time-optimal algorithm on

the clique due to Sudo et al. [43], but with significant differences:

for instance, our algorithm works on any connected graph, and

guarantees that a high-degree node is elected as a leader.

Theorem 5.1. For any graph𝐺 with maximum degree Δ, there is a
leader election protocol that uses𝑂 (log𝑛 ·𝐻 (𝐺)) states and stabilizes
in 𝑂 (B(𝐺) · log𝑛) steps in expectation and with high probability,
where 𝐻 (𝐺) = log(Δ/𝛽 · log𝑛).

Observe that 𝐻 (𝐺) ∈ 𝑂 (log𝑛), so the protocol uses 𝑂 (log2 𝑛)
states. Moreover, for graphs where the ratio Δ/𝛽 is small, we can

obtain 𝑜 (log𝑛2) space complexity. For example, in regular graphs

we get the following bounds.
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Corollary 5.2. In any regular graph with conductance 𝜙 =

𝛽/Δ, there is a leader election protocol that stabilizes in 𝑂 (1/𝜙 ·
𝑛 log2 𝑛) steps in expectation and with high probability using𝑂 (log𝑛·
(log log𝑛 − log𝜙)) states.

The algorithm consists of three parts. First, we describe a space-

efficient way for nodes to approximately count the number of local
interactions. The second part is a two-phase protocol that first re-

moves low-degree nodes from the set of leader candidates and then

reduces the number of high-degree leader candidates to one with

high probability. Finally, to guarantee finite expected stabilization

time, we use the constant-state token-based leader election protocol

given in Theorem 4.1 as a backup protocol to handle the unlikely

cases where the fast part fails.

5.1 Local approximate clocks on graphs:
Triggering events at a controlled frequency

We first describe a subroutine that is used to trigger events ev-

ery Θ(2𝐻 ) expected interactions using exactly 𝐻 + 1 local states,
where 𝐻 ≥ 1 is a given parameter controlling the frequency of the

triggered events. Each node 𝑣 maintains a variable streak(𝑣) ∈
{0, . . . , 𝐻 }, which is initialized to 0. When 𝑣 interacts, it updates its

streak counter as follows:

• If 𝑣 is the initiator, then set streak(𝑣) ← streak(𝑣) + 1.
Otherwise, set streak(𝑣) ← 0.

• If streak(𝑣) = 𝐻 , then node 𝑣 is said to complete a streak.
Set streak(𝑣) ← 0.

Let𝐾 denote the number of times a fixed node needs to interact until

it completes a streak. Here 𝐾 is the number of fair coin flips needed

to observe 𝐻 consecutive heads, as the scheduler picks the role of

initiator and responder uniformly at random and independently

from previous interactions. We start with a technical result that ap-

proximates the distribution of 𝐾 using geometric random variables.

Recall that 𝑋 ⪯ 𝑌 denotes that 𝑌 stochastically dominates 𝑋 .

Lemma 5.3. The random variable 𝐾 satisfies 𝑍0 ⪯ 𝐾 ⪯ 𝑍1 + 𝐻 ,
where 𝑍0 ∼ Geom(2−𝐻 ) and 𝑍1 ∼ Geom(2−𝐻−1).

We use 𝑋 (𝑑) to denote the number of steps (i.e., the number of

node pairs sampled by the scheduler) until a fixed node of degree 𝑑

completes a streak. Note that high degree nodes have a higher prob-

ability to complete their streaks, as they interact more often. The

next lemma summarizes some useful properties of 𝐾 and 𝑋 (𝑑). The
proof follows by application of concentration bounds on geometric

random variables (Lemma 2.3) and Wald’s identity (Lemma 2.4).

Lemma 5.4. Let 1 ≤ 𝑑 ≤ 𝑛. The random variables 𝐾 and 𝑋 (𝑑)
satisfy the following:

(a) The expected value of 𝐾 is E[𝐾] = 2
𝐻+1 − 2.

(b) The expected value of 𝑋 (𝑑) is E[𝑋 (𝑑)] = E[𝐾] ·𝑚/𝑑 .
(c) For any 0 ≤ 𝜆 ≤ 1, Pr[𝑋 (𝑑) ≤ 𝜆 E[𝑋 (𝑑)]] ≤ 4𝜆 + 21−𝜆𝐻 .

Together with the above results, we can show that the number 𝑅

of interactions to complete ℓ ≥ ln𝑛 streaks is strongly concentrated

around the interval [E[𝑅]/2, 4E[𝑅]]. Thus, the above process can
be essentially used as space-efficient local clock which ticks at a

desired (approximate) frequency. In the following, we write 𝑐 (𝜆) =
𝜆 − 1 − ln 𝜆 for any 𝜆 > 0.

Lemma 5.5. Let ℓ ≥ ln𝑛 and 𝑅 be the number of interactions a
node needs to complete ℓ streaks. Then

(a) The expected value of 𝑅 is E[𝑅] = (2𝐻+1 − 2)ℓ .
(b) Pr[𝑅 ≤ 𝜆 · E[𝑅]/2] ≤ 1/𝑛𝑐 (𝜆) for all 0 < 𝜆 ≤ 1

(c) Pr[𝑅 ≥ 𝜆 · 4E[𝑅]] ≤ 1/𝑛𝑐 (𝜆) for all 𝜆 ≥ 1

Finally, we examine the concentration of the number of steps

until a node completes a certain number of streaks.

Lemma 5.6. Suppose 𝐻 ∈ 𝜔 (1). Let ℓ ≥ ln𝑛 and 𝑆 = 𝑆 (𝑑, ℓ) be
the number of steps until a fixed node of degree 𝑑 completes ℓ streaks.
Then for all sufficiently large 𝑛, we have

(a) E[𝑆] = E[𝐾] · ℓ𝑚/𝑑 = (2𝐻+1 − 2) · ℓ𝑚/𝑑 ,
(b) Pr[𝑆 ≤ 𝜆2 · E[𝑆]/4] ≤ 2/𝑛𝑐 (𝜆) for any 𝜆 ≤ 1, and
(c) Pr[𝑆 ≥ 𝜆2 · 8E[𝑆]] ≤ 2/𝑛𝑐 (𝜆) for any 𝜆 ≥ 1.

5.2 The fast leader election protocol
With the time-keeping mechanism in place, we now describe and

analyse the leader election protocol that reduces the number of

leader candidates to one, with high probability, in 𝑂 (B(𝐺) · log𝑛)
steps. Let 𝜏 ≥ 1 be an arbitrary fixed constant that controls the prob-

ability that the protocol fails (increasing 𝜏 decreases the probability

of failure). Fix the parameters

𝐻 = 8 + ⌈log (B(𝐺) · Δ/𝑚)⌉ and 𝐿 = ⌈2𝜏 log𝑛⌉,
where Δ denotes the maximum degree of the graph 𝐺 . Note that

with this choice of parameters 𝑋 (𝑑) ∈ 𝑂 (B(𝐺)) for any 𝑑 ≤ Δ
and also 𝑋 (𝑑) ∈ Θ(B(𝐺)) for 𝑑 ∈ Θ(Δ). We also note that 𝐻 ∈
Ω(log log𝑛), as in any graph B(𝐺) ≥ 𝑚 ln(𝑛 − 1)/Δ.

The protocol. As a subroutine, each node runs the streak counter

protocol with 𝐻 fixed as above. Every node 𝑣 also maintains two

state variables status(𝑣) ∈ {leader, follower} and a local counter

level(𝑣) ∈ {0, . . . , 𝛼 (𝜏) · 𝐿}, where 𝛼 (𝜏) > 1 is a constant we

fix later in the analysis. Each node 𝑣 initializes the variables to

status(𝑣) ← leader and level(𝑣) ← 0. When 𝑣 interacts with

𝑢, node 𝑣 updates its state using the following rules applied in

sequence:

(1) If 𝑣 completes a streak and status(𝑣) = leader, then
set level(𝑣) ← min{level(𝑣) + 1, 𝛼 (𝜏) · 𝐿}.

(2) If level(𝑣) < level(𝑢) and level(𝑢) ≥ 𝐿, then
set status(𝑣) ← follower.

(3) If max{level(𝑢), level(𝑣)} ≥ 𝐿, then
set level(𝑣) = max{level(𝑢), level(𝑣)}.

The analysis. We now analyse the protocol. We say that a node is at

level ℓ at time step 𝑡 if its level variable is ℓ at time step 𝑡 . A node is

in the elimination phase if its at least at level 𝐿. Otherwise, it is in the
waiting phase. When a node 𝑣 in the waiting phase interacts with

a node in the elimination phase, then 𝑣 moves to the elimination

phase (as a follower).

Note that a node can only remain a leader and increase its level

if it completes a streak. When a node increases its level without

completing a streak, it must become a follower by Rules (2) and (3).

Moreover, by Rule (2), in every time step one of the nodes in the

graph with the highest level must be a leader. Thus, the protocol

guarantees that there is always at least one leader in every step.

Finally, as B(𝐺) is the worst-case expected broadcast time, Rule (3)
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implies that if some node is at level ℓ ≥ 𝐿 at step given step, then

within B(𝐺) expected steps all nodes are at level at least ℓ .

The first step in the analysis considers fixed pairs of nodes, char-

acterizing the period of time after which at least one node from a

given pair drops out of contention.

Lemma 5.7. Let 𝑢 and 𝑣 be nodes with degree at least 𝑑 . If 𝑢 and
𝑣 have level at least 𝐿 and less than 𝛼 (𝜏) · 𝐿 at step 𝑡 , then at least
one of them is a follower at time step 𝑡 + 16 · (E[𝑋 (𝑑)] + B(𝐺)) with
probability at least 1/8.

The second technical lemma leverages this to show a higher

concentration result for eliminating all-but-one candidate from

contention, assuming all nodes are in the elimination phase.

Lemma 5.8. Suppose all leader candidates have degree at least 𝑑
and all nodes are in the elimination phase. Let 𝑡 (𝑑) = 16(𝜏 + 2) ·
log

8/7 𝑛 · (E[𝑋 (𝑑)] + B(𝐺)). If no node reaches level 𝛼 (𝜏)𝐿 by time
𝑡 +𝑡 (𝑑), then exactly one leader candidate remains at time step 𝑡 +𝑡 (𝑑)
with probability at least 1 −𝑂 (𝑛−𝜏 ).

Next, we provide an upper bound on the time when, with high

probability, all nodes are in the elimination phase, and all nodes of

small degree have been eliminated.

Lemma 5.9. There exist constants 𝜆 ≥ 1 and 𝛾 ≥ 1 such that at
time 𝜆𝐿 · B(𝐺) the following holds with probability 1 −𝑂 (𝑛−𝜏 ):

(1) all nodes are in the elimination phase, and
(2) all nodes of degree at most Δ/𝛾 are followers.

Finally, we put everything together to obtain a w.h.p. bound on

the time by which there is a single candidate left.

Lemma 5.10. There exist constants 𝛼 (𝜏) and 𝐶 = 𝐶 (𝜏) such that
there is exactly one leader candidate at time step𝐶 · B(𝐺) · log𝑛 with
probability at least 1 −𝑂 (𝑛−𝜏 ).

Finally, to guarantee finite expected stabilization time, the pro-

tocol includes a backup phase following the same approach as

in [6]. The first node to reach level 𝛼 (𝜏)𝐿 must be a leader candi-

date. When a node 𝑣 reaches level 𝛼 (𝜏)𝐿, it switches to executing

the constant-state token-based leader election protocol. When this

happens, node initializes the constant-state protocol with the in-

put status(𝑣) ∈ {leader, follower} and starts running the protocol
while simultaneously continues broadcasting its level(𝑣) value us-
ing Rule (3). Within B(𝐺) expected steps, all nodes are running the

constant-state protocol. This protocol guarantees that eventually

only one leader remains after polynomially many expected steps.

Theorem 5.1. For any graph𝐺 with maximum degree Δ, there is a
leader election protocol that uses𝑂 (log𝑛 ·𝐻 (𝐺)) states and stabilizes
in 𝑂 (B(𝐺) · log𝑛) steps in expectation and with high probability,
where 𝐻 (𝐺) = log(Δ/𝛽 · log𝑛).

Proof. The protocol uses𝑂 (𝐻𝐿) states. By Theorem 3.2,B(𝐺) ≤
𝐶𝑚/𝛽 log𝑛 for some constant 𝐶 . Thus,

𝐻 = 8 +
⌈
log

(
B(𝐺) · Δ

𝑚

)⌉
≤ 8 +

⌈
log

(
𝐶𝑚 log𝑛 · Δ

𝑚𝛽

)⌉
∈ 𝑂

(
log

(
log𝑛 · Δ

𝛽

))
.

Clearly, 𝐿 ∈ Θ(log𝑛), so the claim on the state complexity fol-

lows. By Lemma 5.10, the fast protocol stabilizes in𝑂 (B(𝐺) · log𝑛)
steps with probability at least 1 − 𝑂 (𝑛−𝜏 ). By Theorem 4.1, the

constant-state backup protocol stabilizes in 𝑂 (𝑛4 log𝑛) expected
steps, as B(𝐺) is 𝑂 (𝑛3) for any connected graph by Theorem 3.2.

With probability at most 𝑂 (𝑛−𝜏 ), at least two leader candidates

enter the backup phase. Choose 𝜏 ≥ 4 and let 𝑇 (𝜏) be stabilization
time of the protocol. Then 𝑇 (𝜏) ∈ 𝑂

(
B(𝐺) · log𝑛 + 𝑛−𝜏 · 𝑛4 log𝑛

)
,

which is 𝑂 (B(𝐺) · log𝑛). □

6 TIME LOWER BOUNDS FOR GENERAL
PROTOCOLS

In this section, we establish time lower bounds for leader election for

general protocols with unbounded state space. First, we give a fairly

general technique for constructing graphs, where leader election

has desired time complexity. This technique can be also applied

to specific graph families to characterize the complexity of leader

election in these families.We also give a result that shows that in any

sufficiently dense graph leader election requires Ω(𝑛 log𝑛) steps.

6.1 The lower bound for renitent graphs
We first introduce the notion of isolating covers. The idea is that
we can cover the vertices of the graph with at most 𝐾 subsets

of the same size, each of which has isomorphic neighbourhood

up to some distance ℓ ≥ 0, and that there are at least two such

sets that are sufficiently far apart. Let 𝐺 = (𝑉 , 𝐸) be a graph and

C = {𝑉0, . . . ,𝑉𝐾−1} ⊆ 2
𝑉
be a collection of subsets of 𝑉 . We say

that C is a (𝐾, ℓ)-cover of the graph 𝐺 if

(1) for each 0 ≤ 𝑖 < 𝑗 < 𝐾 there exists an isomorphism 𝜙

between 𝐺 [𝐵ℓ (𝑉𝑖 )] and 𝐺 [𝐵ℓ (𝑉𝑗 )] such that 𝜙 (𝑉𝑖 ) = 𝑉𝑗 ,
(2) there exists some 𝑉𝑖 and 𝑉𝑗 such that 𝐵ℓ (𝑉𝑖 ) ∩ 𝐵ℓ (𝑉𝑗 ) = ∅,
(3) 𝑉0 ∪ · · · ∪𝑉𝐾−1 = 𝑉 (𝐺).

That is, (1) the local neighbourhoods are isomorphic up to distance

ℓ and this isomorphism maps vertices of 𝑉𝑖 to 𝑉𝑗 , (2) there are two

sets whose vertices are all far apart, and (3) the union of the sets

covers the entire graph.

Define𝑌 (C) = min{𝑡 : 𝐼𝑡 (𝑉𝑖 ) \𝐵ℓ (𝑉𝑖 ) ≠ ∅ for some 𝑉𝑖 } to be the
isolation time of the cover C. This is the minimum time until some

node in𝑉𝑖 is influenced by some node at distance greater than ℓ from

all nodes of 𝑉𝑖 . We say that C is 𝑡-isolating if Pr[𝑌 (C) ≥ 𝑡] ≥ 1/2.
This property states that it is unlikely that during the first 𝑡 steps,

nodes in the set 𝑉𝑖 can be influenced by nodes that are far away

from nodes in 𝑉𝑖 . Note that if the distance-ℓ propagation time on

𝐺 satisfies Pr[𝑇ℓ (𝐺) < 𝑡] ≤ 1/2, then any (𝐾, ℓ)-cover of 𝐺 is 𝑡-

isolating. Thus, we may bound the minimum propagation times to

show that a cover is isolating.

Let G be an infinite family of graphs and 𝑓 : N → N be an

increasing function. We say that graphs in G are 𝑓 -renitent if there
exists a constant 𝐾 ≥ 2 and function ℓ : N→ N and such that every

𝑛-node graph 𝐺 ∈ G has an 𝑓 (𝑛)-isolating (𝐾, ℓ (𝑛))-cover. In this

section, we give the following result.

Theorem 6.1. If the graph𝐺 is 𝑓 -renitent, then any leader election
protocol takes Ω(𝑓 ) expected steps to stabilize on 𝐺 .
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Our approach is inspired by the lower bound construction for

randomized leader election in synchronous message-passing mod-

els by Kutten et al. [35, Theorem 3.13]. However, in the population

model communication is both stochastic and asynchronous with

sequential interactions, so we need to further refine the approach

to make it work in our setting. We prove our result in a stronger

variant of the population model: we do not restrict the number

of states used by the nodes and give each node access to its own

(independent and infinite) sequence of random bits.

Formally, we assume that each node 𝑣 ∈ 𝑉 is given as input a

random value𝑦 (𝑣) sampled independently and uniformly at random

from the unit interval [0, 1). Since we do not restrict the state space
of the nodes, the nodes can locally store this value to access an

infinite sequence of i.i.d. random bits. The random bits assign nodes

unique identifiers with probability 1. Any protocol that does not

use these random bits can ignore them.

Outline of the proof. Suppose 𝐺 is 𝑓 -renitent and A is leader elec-

tion protocol on𝐺 that stabilizes in𝑇 steps. Without loss of general-

ity, assume 𝑓 (𝑛) ≥ 6, as otherwise the claim of Theorem 6.1 is triv-

ially true. Fix any 𝑓 (𝑛)-isolating (𝐾, ℓ)-cover C = {𝑉0, . . . ,𝑉𝐾−1}
of the graph 𝐺 , where 𝐾 is a constant independent of 𝑛, and let

𝑌 = 𝑌 (C) be the isolation time of the cover. Let 𝑋 ∼ Poisson(𝜆)
be a Poisson random variable with mean 𝜆 = 𝑓 (𝑛)/2 and E be the

event that 𝑋 < 𝑌 . Intuitively, 𝑋 represents a random time step

(independent of 𝑌 ) at which we investigate the state of the system.

To this end, we define 𝐿𝑖 to be the event that some node 𝑣 ∈ 𝑉𝑖
outputs that it is a leader at step 𝑋 .

Lemma 6.2. The following hold:
(a) Pr[𝐿0 | E] = Pr[𝐿𝑖 | E] for each 0 ≤ 𝑖 < 𝐾 , and
(b) Pr[𝐿𝑖 ∩ 𝐿𝑗 | E] = Pr[𝐿𝑖 | E] · Pr[𝐿𝑗 | E] for some 0 ≤ 𝑖 <

𝑗 < 𝐾 .

Lemma 6.3. There exists a constant 𝐶 (𝐾) > 0 such that the stabi-
lization time 𝑇 of protocol A satisfies Pr[𝑇 > 𝑋 ] ≥ 𝐶 (𝐾).

These two lemmas together imply our main result of this section.

Theorem 6.1. If the graph𝐺 is 𝑓 -renitent, then any leader election
protocol takes Ω(𝑓 ) expected steps to stabilize on 𝐺 .

Constructing renitent graphs. We now give examples of 𝑓 -renitent

graphs; by Theorem 6.1 the expected stabilization time on these

graphs will be Ω(𝑓 ). For example, it is not hard to see that cycles

are Ω(𝑛2)-renitent: we can split the cycle into four paths𝑉0, . . . ,𝑉3
of length roughly 𝑛/4 and information propagation from set 𝑉1
to 𝑉3 requires Ω(𝑛2) steps with constant probability. In fact, for

any constant 𝑘 > 0, the idea generalizes to higher dimensions: 𝑘-

dimensional toroidal grids are Ω(𝑛1+1/𝑘 )-renitent; one can partition
such grids into constantly many subcubes of diameter Θ(𝑛1/𝑘 )
and observe that propagating information to distance 𝐷 in regular

graphs requires Ω(𝐷𝑛) steps with constant probability.

The next lemma allows us to obtain Ω(𝐷𝑚)-renitent graphs for
essentially any 𝐷 and𝑚.

Lemma 6.4. Let𝐺 be a connected graph with 𝑛 nodes,𝑚 edges and
diameter 𝐷 . For any integer ℓ such that 𝐷 ≤ ℓ ≤ 𝑛, there exists an
Ω(ℓ𝑚)-renitent graph𝐺 ′ with Θ(𝑛) nodes, Θ(𝑚) edges and diameter
Θ(ℓ). In addition, B(𝐺 ′) ∈ Ω(ℓ𝑚).

This lemma can be used to show the following lower bound.

Theorem 6.5. For any increasing function 𝑇 : N→ N such that
𝑛 log𝑛 ≤ 𝑇 (𝑛) ≤ 𝑛3, there is an infinite family of graphs in which
leader election takes Θ(𝑇 (𝑛)) expected steps and the broadcast time
satisfies B(𝐺) ∈ Θ(𝑇 ) .

Proof. For any𝑁 ≥ 1, we construct a graph𝐺 with𝑛 ≥ 𝑁 nodes

as follows. We distinguish two cases. First, if 𝑇 ∈ 𝜔 (𝑛2 log𝑛), then
apply Lemma 6.4 with a clique𝐻 of size𝑁 and ℓ = ⌈𝑇 (𝑁 )/𝑁 2⌉. Oth-
erwise, if 𝑇 ∈ 𝑂 (𝑛2 log𝑛), then set ℓ = ⌈log𝑁 +𝑇 (𝑁 )/(𝑁 log𝑁 )⌉,
take a star graph and add Θ(𝑇 (𝑁 )/ℓ) edges in an arbitrary fashion

to obtain the graph 𝐻 . Adding this many edges is always possible

since 𝑇 (𝑁 )/ℓ ∈ 𝑂 (𝑁 2). In both cases, apply Lemma 6.4 with 𝐻

and ℓ to obtain a graph 𝐺 . Note that Lemma 6.4 implies that the

graph 𝐺 will be Ω(𝑇 )-renitent and satisfy B(𝐺) ∈ Ω(𝑇 ). By Theo-

rem 6.1 leader election will take Ω(𝑇 ) expected steps on this graph.

The graph 𝐻 has constant diameter, and since ℓ ∈ Ω(log𝑛), 𝐺 has

diameter Ω(log𝑛). By construction, 𝐷𝑚 ∈ Θ(𝑇 ), and therefore,

Theorem 3.2 implies that B(𝐺) ∈ 𝑂 (𝑇 ). Now Theorem 4.2 implies

the upper bound for leader election time. □

6.2 A lower bound for dense graphs
The above gives graph families in which expected leader election

and broadcast time are of the same order. However, this is not gen-

erally true. Leader election time can be much lower than broadcast

time in graphs, where the local structure helps break symmetry fast.

The star graph (i.e., a tree of depth one) is the simplest example:

there is a trivial constant-state protocol that elects a leader in one

interaction, but broadcast time in a star is Θ(𝑛 log𝑛) by a simple

coupon collector argument. This rules out the existence of a general

Ω(𝑛 log𝑛) lower bound for leader election in sparse graphs. In the

full version, we show that in dense graphs with sufficiently high

minimum degrees, we cannot easily exploit local graph structure

to break symmetry fast.

Theorem 6.6. Let 0 < 𝜆 < 1 and 0 < 𝜙 < 1 be constants. Suppose
𝐺 has minimum degree 𝛿 ≥ 𝜆𝑛𝜙 and at least𝑚 ≥ 𝜆𝑛2 edges. Then
any leader election protocol on 𝐺 requires Ω(𝑛 log𝑛) expected steps
to stabilize.

At its core, the argument is an extension of lower bound result

of Sudo and Masuzawa [40] from cliques to general high-degree

graphs. However, to deal with the general structure of the inter-

action graph, we introduce the two new concepts: multigraphs of

influencers and leader generating interaction patterns.

We assume 𝐺 is as in the above theorem. Our proof strategy is

roughly as follows. We assume that there is a fast protocol that

stabilizes in 𝑜 (𝑛 log𝑛) steps. First, we aim to capture the spatial

structure of the part of the graph that influenced a node 𝑣 to be

elected as a leader; we call this structure “leader generating interac-

tion pattern”. We show that this structure is fairly small and almost

tree-like. We show that this can be unfolded into a larger tree, with-

out growing the tree too much. Then we argue that because the

graph has high degrees, a tree of this size can be found in the set of

nodes that have not interacted yet.
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7 LOWER BOUND FOR CONSTANT-STATE
PROTOCOLS

In this section, we give lower bounds for constant-state protocols

that stabilize in finite expected time on any connected graph. In the

clique, the classic approach has been to utilize the so-called surgery
technique of Doty and Soloveichik [24], later extended by Alistarh

et al. [3] to show lower bounds for super-constant state protocols.

Roughly, surgeries consists of carefully “stitching together” transi-

tion sequences, in order to completely eliminate states whose count

decreases too fast (e.g., the leader state), thus resulting in incorrect

executions (e.g., executions without a leader).

When moving beyond cliques, applying surgeries is difficult.

The key challenge is that in addition to keeping track of the counts

of states, we also need to control for the spatial distribution of

generated states in order to determine if a given configuration is

stable. For example, if we know that an interaction (𝑎, 𝑏) → (𝑐, 𝑑)
produces a leader, then in the case of a clique it suffices to check if

states 𝑎 and 𝑏 are present in the overall population to determine if

this interaction can produce a new leader. However, in the case of

general interaction graphs, the rule (𝑎, 𝑏) → (𝑐, 𝑑) can only produce
a leader if some nodes with states 𝑎 and 𝑏 in the configuration are

adjacent.
We circumvent this obstacle by considering a random graph

setting, where the interaction graph itself is probabilistic. Instead of

showing a lower bound for a given graph, we give a lower bound

that holds in most graphs, where “most” is interpreted as having

graphs coming from a certain probability distribution. We will

focus on the Erdős–Rényi random graph model 𝐺𝑛,𝑝 . As we are

only interested in connected graphs 𝐺 , we adopt the convention

that stabilization time 𝑇P (𝐺) = ∞, if 𝐺 is disconnected. Our main

result is the following.

Theorem 7.1. Suppose P is a protocol that stabilizes on any con-
nected graph and whose state transition function is independent of
the communication graph. Fix a constant 𝑝 > 0 and let 𝐺 ∼ 𝐺𝑛,𝑝 .
Then the stabilization time 𝑇P (𝐺) of P on 𝐺 satisfies

E[𝑇P (𝐺) | 𝐺 is connected ] ∈ Ω(𝑛2) .

This result generalizes the lower bound of Doty and Solove-

ichik [24] from cliques to dense random graphs. As such, we follow

a similar approach, but provide new ideas to deal with the structure

of the interaction graph. First, we show that any protocol starting

from a uniform initial configuration, passes through a “fully dense”

configuration with very high probability on a sufficiently-dense

Erdős–Rényi random graph. Second, we show that if the protocol

stabilizes too fast, then there exist reachable configurations with

many states in low count. Finally, we use surgeries to show that

such a protocol must fail even on the clique.

8 CONCLUSIONS
We have performed the first focused investigation of time-space

trade-offs in the complexity of leader election on general graphs, in

the population model. We have provided some of the first time and

space-efficient protocols for leader election, and the first bounds

that are tight within logarithmic factors. We introduced “graphical”

variants of classic techniques, such as information dissemination

and approximate phase clocks on the upper bound side, and indis-

tinguishability and surgeries for lower bounds.

Our work leaves open the question of tight bounds for both
space and time complexity on general graph families, particularly

in the case of sparse graphs. Another direction is considering other

fundamental problems, such as majority, in the same setting, for

which our techniques should prove useful.
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