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Abstract. We consider the flow of two viscous and incompressible fluids within a bounded domain modeled by means of
a two-phase Navier–Stokes system. The two fluids are assumed to be immiscible, meaning that they are separated by an
interface. With respect to the motion of the interface, we consider pure transport by the fluid flow. Along the boundary of
the domain, a complete slip boundary condition for the fluid velocities and a constant ninety degree contact angle condition
for the interface are assumed. In the present work, we devise for the resulting evolution problem a suitable weak solution
concept based on the framework of varifolds and establish as the main result a weak-strong uniqueness principle in 2D. The
proof is based on a relative entropy argument and requires a non-trivial further development of ideas from the recent work
of Fischer and the first author (Arch. Ration. Mech. Anal. 236, 2020) to incorporate the contact angle condition. To focus
on the effects of the necessarily singular geometry of the evolving fluid domains, we work for simplicity in the regime of
same viscosities for the two fluids.
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1. Introduction

1.1. Context

The question of uniqueness or non-uniqueness of weak solution concepts in the context of classical fluid
mechanics models has seen a series of intriguing breakthroughs throughout the last three decades. In
case of the Euler equations, the journey started with the seminal works of Scheffer [23] and Shnirelman
[28] providing the construction of compactly supported nonzero weak solutions. The first example of an
energy dissipating weak solution to the Euler equations is again due to Shnirelman [29]. Later, De Lellis
and Székelyhidi Jr. not only strengthened these results in their groundbreaking works (see, e.g., [8] and
[9]), but in retrospect even more importantly introduced a novel perspective on the problem: their proofs
are based on a nontrivial transfer of convex integration techniques from typically geometric PDEs to the
framework of the Euler equations. Indeed, their ideas eventually culminated in the resolution of Onsager’s
conjecture by Isett [17]; see also the work of Buckmaster, De Lellis, Székelyhidi Jr. and Vicol [7].

By now, these developments also generated spectacular results for the Navier–Stokes equations. For
instance, Buckmaster and Vicol [5] as well as Buckmaster, Colombo and Vicol [6] establish that mild
solutions in the energy class are non-unique. The constructed solutions are not Leray–Hopf solutions, i.e.,
it is not proven that they are subject to the energy dissipation inequality. However, Albritton, Brué and
Colombo [2] even show in a very recent preprint that one can construct an external force such that there
exists a finite time horizon so that one may construct at least two distinct Leray–Hopf solutions for the
associated forced full-space Navier–Stokes equations in 3D (both starting from zero initial data).
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Hence, in terms of uniqueness of weak solutions the best one can expect in general is essentially a
weak-strong uniqueness principle. Roughly speaking, this refers to uniqueness of weak solutions within a
class of sufficiently regular solutions. In the context of the incompressible Navier–Stokes equations, such
results are classical and can be traced back to the works of Leray [19], Prodi [20] and Serrin [25]. In the
case of the compressible Navier–Stokes equations, we mention the works of Germain [15], Feireisl, Jin
and Novotný [10], as well as Feireisl and Novotný [11]. The usual strategy to establish these results is
based on a by now widely used method which infers weak-strong uniqueness from a quantitative stability
estimate for a suitable distance measure between two solutions, the so-called relative entropy (or relative
energy). We refer to the survey article by Wiedemann [33] for an overview on the relative entropy method
in the context of mathematical fluid mechanics.

In the present work, we are concerned with the question of weak-strong uniqueness with respect to a
two-phase free boundary fluid problem within a physical domain Ω ⊂ R

d, d ∈ {2, 3}. More precisely, we
study this question in terms of a suitably devised concept of varifold solutions for the evolution problem of
the flow of two incompressible Navier–Stokes fluids separated by a sharp interface. Along the boundary of
the domain, a complete slip boundary condition for the fluid velocities as well as a constant ninety degree
contact angle condition for the interface are assumed. For the precise PDE formulation of the model,
we refer to Sect. 1.2. For a discussion of the weak solution concept and its precise definition, we instead
refer to Sect. 1.3 and Definition 11, respectively. The main result of the present work establishes in 2D
a weak-strong uniqueness principle for the above introduced two-phase free boundary fluid problem. We
refer to Theorem 1 for the precise mathematical formulation of our result. In the spirit of [13], we also
derive a conditional weak-strong uniqueness result in the three-dimensional setting; cf. Proposition 4 for
the precise statement. To the best of the authors’ knowledge, the present work is the first to establish
weak-strong uniqueness in the context of an interface evolution problem incorporating contact point
dynamics in combination with a fluid mechanical coupling.

Even when neglecting the fluid mechanics, uniqueness of weak solutions in form of a weak-strong
uniqueness principle is in general the best one can expect also for interface evolution problems. In this
context, this is due to the formation of singularities and topology changes; see already, for instance, the
work of Brakke [4] for mean curvature flow of networks of interfaces in R

2 or the work of Angenent,
Ilmanen and Chopp [3] for mean curvature flow of surfaces in R

3. When restricting to the full-space
setting Ω = R

d and thus neglecting non-trivial boundary effects, Fischer and the first author [12] recently
established a weak-strong uniqueness principle up to the first topology change for the corresponding two-
phase free boundary fluid problem considered in this work. Their approach relies on a suitable extension of
the relative entropy method to get control on the difference in the underlying geometries of two solutions;
cf. Sect. 1.4 for a discussion in this direction. Their ideas were later generalized by Fischer, Laux, Simon
and the first author [13] to derive a weak-strong uniqueness principle for BV solutions of Laux and Otto
[18] to mean curvature flow of networks of interfaces in R

2, or even for canonical multiphase Brakke flows
of Stuvard and Tonegawa [31] (cf. also [16]).

The main challenges of the present work are twofold. First, we need to devise a weak solution concept
for the above introduced two-phase free boundary fluid problem. We emphasize that this is not already
contained in the work of Abels [1] which in the presence of surface tension only deals with the full-space
setting. Even though our notion of varifold solutions is clearly directly inspired by Abels’ formulation,
some additional thoughts are necessary in the present setting of a bounded domain with contact point
dynamics (cf. again Sect. 1.3 for a discussion). Indeed, the point is to formulate a solution concept which
on one side is weak enough to allow for a satisfactory global-in-time existence theory (cf. Appendix A for
a sketch of an existence proof along the lines of the argument of Abels [1]), but on the other side is still
strong enough to support a weak-strong uniqueness principle. To obtain the latter, the second challenge
of the present work is to further develop parts of the analysis of Fischer and the first author [12] to deal
with the non-trivial boundary effects and the necessarily singular geometry of the evolving fluid domains.
Due to the latter two, it turns out to be beneficial to implement the relative entropy argument based on
a two-step procedure rather in the spirit of [13] than the more direct approach from [12] (cf. Sect. 2.2 for
further discussion).
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1.2. Strong PDE Formulation of the Two-phase Fluid Model

We start with a description of the underlying evolving geometry. Denoting by Ω a bounded domain in
R

d with smooth and orientable boundary ∂Ω, d ∈ {2, 3}, each of the two fluids is contained within a
time-evolving domain Ω+(t) ⊂ Ω resp. Ω−(t) ⊂ Ω, t ∈ [0, T ). The interface separating both fluids is given
as the common boundary between the two fluid domains. Denoting it at time t ∈ [0, T ) by I(t) ⊂ Ω,
we then have a disjoint decomposition of Ω in form of Ω = Ω+(t) ∪ Ω−(t) ∪ (I(t) ∩ Ω) ∪ ∂Ω for every
t ∈ [0, T ). We write n∂Ω to refer to the inner pointing unit normal vector field of ∂Ω, as well as nI(·, t)
to denote the unit normal vector field along I(t) pointing towards Ω+(t), t ∈ [0, T ).

With respect to internal boundary conditions along the separating interface, first, a no-slip boundary
condition is assumed. This in fact allows to represent the two fluid velocity fields by a single continuous
vector field v. We also consider a single scalar field p as the pressure, which in contrast may jump across
the interface. Second, along the interface the internal forces of the fluids have to match a surface tension
force. Denoting by χ(·, t) the characteristic function associated with the domain Ω+(t), t ∈ [0, T ), and
defining μ(χ) := μ+χ+μ−(1−χ) with μ+ and μ− being the viscosities of the two fluids, the stress tensor
T := μ(χ)(∇v+∇vT) − p Id is required to satisfy

[[TnI ]](·, t) = σ HI(·, t) along I(t) (1)

for all t ∈ [0, T ), where moreover [[·]] denotes the jump in normal direction, σ > 0 is the fixed surface
tension coefficient of the interface, and HI(·, t) represents the mean curvature vector field along the
interface I(t), t ∈ [0, T ).

With respect to boundary conditions along ∂Ω, we assume in terms of the two fluids a complete slip
boundary conditions. In terms of the evolving geometry, a ninety degree contact angle condition at the
contact set of the fluid-fluid interface with the boundary of the domain is imposed. Mathematically, this
amounts to

v(·, t) · n∂Ω = 0 along ∂Ω, (2)
(
n∂Ω · μ(χ)(∇v + ∇vT)(·, t)B

)
= 0 along ∂Ω (3)

for all t ∈ [0, T ) and all tangential vector fields B along ∂Ω, as well as

nI(·, t) · n∂Ω = 0 along I(t) ∩ ∂Ω (4)

for all t ∈ [0, T ). These boundary conditions not only prescribe that the fluid cannot exit from the domain
and that it can move only tangentially to its boundary, but they also exclude any external contribution to
the viscous stress and any friction effect with the boundary. Observe also that the ninety degree contact
angle condition is consistent with the complete slip boundary conditions (2) and (3), in the sense that (4)
together with (2) implies (3). Furthermore, the ninety degree contact angle may be imposed only as an
initial condition: for later times it can be deduced using (2) and (3) and a Gronwall-type argument. For
details, see the remark after Definition 10.

Now, defining ρ(χ) := ρ+χ + ρ−(1−χ) with ρ+ and ρ− representing the densities of the two fluids,
the fluid motion is given by the incompressible Navier–Stokes equation, which by (1) and (3) can be
formulated as

∂t

(
ρ(χ)v

)
+ ∇ ·

(
ρ(χ)v ⊗ v

)
= −∇p + ∇ ·

(
μ(χ)(∇v + ∇vT)

)
+ σ HI |∇χ|�Ω, (5)

∇ · v = 0, (6)

where |∇χ|(·, t)�Ω represents the surface measure Hd−1�(I(t) ∩ Ω), t ∈ [0, T ). Second, the interface is
assumed to be transported along the fluid flow. In other words, the associated normal velocity of the
interface is given by the normal component of the fluid velocity v. Thanks to (2), (4) and (6), this is
formally equivalent to

∂tχ + (v · ∇)χ = 0. (7)
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Finally, from a modeling perspective, the total energy of the PDE system (5)–(7) is given by the sum
of kinetic and surface tension energies

E[χ, v] :=
∫

Ω

1
2
ρ(χ)|v|2 dx + σ

∫

Ω

1 d|∇χ| + σ+

∫

∂Ω

χ dS + σ−
∫

∂Ω

(1 − χ) dS, (8)

where σ+ and σ− are the surface tension coefficients of ∂Ω∩Ω+
t and ∂Ω∩Ω−

t , respectively. Note that the
ninety degree contact angle condition (4) corresponds to σ− = σ+. Indeed, a general constant contact
angle α ∈ (0, π) is prescribed by Young’s equation which in our notation reads as follows

σ cos α = σ+ − σ−.

In particular, by subtracting the constant
∫

∂Ω
1 dS from (8) we see that the relevant part of the total

energy does not contain a surface energy contribution along ∂Ω in our special case of a constant ninety
degree contact angle. By formal computations, one finally observes that this energy satisfies an energy
dissipation inequality

E[χ, v](T ′) +
∫ T ′

0

∫

Ω

μ(χ)
2

|∇v + ∇vT |2 dxdt ≤ E[χ, v](0), T ′ ∈ [0, T ). (9)

1.3. Varifold Solutions for Two-phase Fluid Flow with 90◦ Contact Angle

In terms of weak solution theories for the evolution problem (5)–(7), the energy dissipation inequality
suggests to consider velocity fields in the space L∞(0, T ;L2(Ω;Rd))∩L2(0, T ;H1(Ω;Rd)), and the evolv-
ing geometry may be modeled based on a time-evolving set of finite perimeter so that the associated
characteristic function χ is an element of L∞(0, T ;BV (Ω; {0, 1})).

However, a well-known problem arises when considering limit points of a sequence of pairs (χk, vk)k∈N

representing solutions originating from an approximation scheme for (5)–(7). Ignoring the time variable
for the sake of the discussion, the main point is that a uniform bound of the form supk∈N ‖χk‖BV (Ω) < ∞
in general does not suffice to pass to the limit (not even subsequentially) in the surface tension force
σ HIk

|∇χk|�Ω. Recalling that we work in a setting with a ninety degree angle condition, this term is
represented in distributional form by

∫

Ω

HIk
·B d|∇χk| = −

∫

Ω

(Id − nk ⊗ nk) : ∇B d|∇χk| (10)

for all smooth vector fields B which are tangential along ∂Ω, where nk = ∇χk

|∇χk| denotes the measure-
theoretic interface unit normal. One may pass to the limit on the right hand side of the previous display
provided |∇χk|(Ω) → |∇χ|(Ω). However, for standard approximation schemes there is in general no
reason why this should be true. For instance, hidden boundaries may be generated within Ω in the limit.
Furthermore, but now specific to the setting of a bounded domain, nontrivial parts of the approximating
interfaces may converge towards the boundary ∂Ω.

The upshot is that one has to pass to an even weaker representation of the surface tension force
than (10). A popular workaround is based on the concept of (oriented) varifolds. In the setting of the
present work and in view of the preceding discussion, this in fact amounts to consider the space of finite
Radon measures on the product space Ω×S

d−1. Indeed, introducing the varifold lift Vk := |∇χk|�Ω ⊗
(δnk(x))x∈Ω one may equivalently express the right hand side of (10) in terms of the functional B �→
−

∫
Ω×Sd−1(Id−s ⊗ s) : ∇B dVk(x, s) which is now stable with respect to weak∗ convergence in the space

of finite Radon measures on Ω×S
d−1. Note also that by the choice of working in a varifold setting, one

expects σ
∫
Ω

1 d|V |Sd−1 instead of σ
∫
Ω

1 d|∇χ| as the interfacial energy contribution in (8), where the
finite Radon measure |V |Sd−1 denotes the mass of the varifold V .

Motivated by the previous discussion, we give a full formulation of a varifold solution concept to two-
phase fluid flow with surface tension and constant ninety degree contact angle in Definition 11 below.
This definition is nothing else but the suitable analogue of the definition by Abels [1], who provides
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for the full-space setting a global-in-time existence theory for such varifold solutions with respect to
rather general initial data. Unfortunately, in the bounded domain case with non-zero interfacial surface
tension, to the best of our knowledge a global-in-time existence result for varifold solutions is missing. In
particular, such a result is not contained in the work of Abels [1]. For this reason, we include in this work
at least a sketch of an existence proof. To this end, one may follow on one side the higher-level structure
of the argument given by Abels [1] for the full-space setting. On the other side, additional arguments are
of course necessary due to the specified boundary conditions for the geometry and the fluids, respectively.
These additional arguments are outlined in Appendix A.

1.4. Weak-strong Uniqueness for Varifold Solutions of Two-phase Fluid Flow

In case the two fluids occupy the full space R
d, d ∈ {2, 3}, a weak-strong uniqueness result for Abels’

[1] varifold solutions of the system (5)–(7) was recently established by Fischer and the first author [12].
Given sufficiently regular initial data, it is shown that on the time horizon of existence of the associated
unique strong solution, any varifold solution in the sense of Abels [1] starting from the same initial data
has to coincide with this strong solution.

This result is achieved by extending a by now several decades old idea in the analysis of classical PDE
models from continuum mechanics to a previously not covered class of problems: a relative entropy method
for surface tension driven interface evolution. The gist of this method can be described as follows. Based on
a dissipated energy functional, one first tries to build an error functional — the relative entropy — which
penalizes the difference between two solutions in a sufficiently strong sense. A minimum requirement is
to ensure that the error functional vanishes if and only if the two solutions coincide. In a second step, one
proceeds by computing the time evolution of this error functional. In a third step, one tries to identify
all the terms appearing in this computation as contributions which either are controlled by the error
functional itself or otherwise may be absorbed into a residual quadratic term represented essentially by
the difference of the dissipation energies. One finally concludes by an application of Gronwall’s lemma.

The novelty of the work [12] consists of an implementation of this strategy for the full-space version
of the energy functional (8). More precisely, the relative entropy as it was originally constructed in the
full-space setting in [12] essentially consists of two contributions. The first aims for a penalization of the
difference of the underlying geometries of the two solutions. This in fact is performed at the level of the
interfaces by introducing a tilt-excess type error functional with respect to the two associated unit normal
vector fields. To this end, the construction of a suitable extension of the unit normal vector field of the
interface of the strong solution in the vicinity of its space-time trajectory is required. Furthermore, the
length of this vector field is required to decrease quadratically fast as one moves away from the interface
of the strong solution. The merit of this is that one also obtains a measure of the interface error in terms
of the distance between them.

Due to the inclusion of contact point dynamics in form of a constant ninety degree contact angle,
some additional ingredients are needed for the present work. We refer to Sect. 2.2 below for a detailed
and mathematical account on the geometric part of the relative entropy functional. There are however
two notable additional difficulties in comparison to [12] which are worth emphasizing already at this
point. Both are related to the required extension ξ of the unit normal vector field associated with the
evolving interface of the strong solution. The first is concerned with the correct boundary condition for
the extension ξ along ∂Ω. Since along the contact set the interface intersects the boundary of the domain
orthogonally, it is natural to enforce ξ to be tangential along ∂Ω. This indeed turns out to be the right
condition as it allows by an integration by parts to rewrite the interfacial part of the relative entropy as
the sum of interfacial energy of the weak solution and a linear functional with respect to the characteristic
function χ of the weak solution. This is crucial to even attempt computing the time evolution.

The second difference concerns the actual construction of the extension ξ. In contrast to [12], where
only a finite number of sufficiently regular closed curves (d = 2) or closed surfaces (d = 3) are allowed at
the level of the strong solution, this results in a nontrivial and subtle task in the context of the present



   93 Page 6 of 60 S. Hensel and A. Marveggio JMFM

work due to the necessarily singular geometry in contact angle problems. The main difficulty roughly
speaking is to provide a construction which on one side respects the required boundary condition and
on the other side is regular enough to support the computations and estimates in the Gronwall-type
argument. For a complete list of the required conditions for the extension ξ, we refer to Definition 2
below.

We finally turn to a brief discussion of the second contribution in the total relative entropy functional
from [12]. In principle, this term on first sight should be nothing else than the relative entropy analogue
to the kinetic part of the energy of the system, thus controlling the squared L2-distance between the fluid
velocities of the two solutions. However, as recognized in [12] a major problem arises for the two-phase
fluid problem in the regime of different viscosities μ+ = μ−: without performing a very careful (and
in its implementation highly technical) perturbation of this naive ansatz for the fluid velocity error, a
Gronwall-type argument will not be realizable; cf. for more details the discussion in [12, Sect. 3.4]. Since
the main focus of the present work lies on the inclusion of the ninety degree contact angle condition,
we do not delve into these issues and simply assume for the rest of this work that the viscosities of the
two fluids coincide: μ := μ+ = μ−. We emphasize, however, that at least for the construction of the
extension ξ and the verification of its properties we in fact do not rely on this assumption.

2. Main Results

2.1. Weak-strong Uniqueness and Stability of Evolutions

The main result of this work reads as follows.

Theorem 1. Let d = 2, and let Ω ⊂ R
2 be a bounded domain with orientable and smooth boundary. Let

(χu, u, V ) be a varifold solution to the incompressible Navier–Stokes equation for two fluids in the sense
of Definition 11 on a time interval [0, Tw). Let (χv, v) be a strong solution to the incompressible Navier–
Stokes equation for two fluids in the sense of Definition 10 on a time interval [0, Ts) where Ts ≤ Tw.

Then, for every T ∈ (0, Ts) there exists a constant C = C(χv, v, T ) > 0 such that the relative entropy
functional (29) and the bulk error functional (31) satisfy stability estimates of the form

E[χu, u, V |χv, v](t) ≤ CeCt
(
E[χu, u, V |χv, v](0) + Evol[χu|χv](0)

)
, (11)

Evol[χu|χv](t) ≤ CeCt
(
E[χu, u, V |χv, v](0) + Evol[χu|χv](0)

)
(12)

for almost every t ∈ [0, T ].
In particular, in case the initial data for the varifold solution and strong solution coincide, it follows

that

χu(·, t) = χv(·, t), u(·, t) = v(·, t) a.e. in Ω for a.e. t ∈ [0, Ts), (13)

Vt = (|∇χu(·, t)|�Ω) ⊗
(
δ ∇χu(·,t)

|∇χu(·,t)| (x)

)
x∈Ω

for a.e. t ∈ [0, Ts). (14)

Before proceeding with a discussion on the proof of Theorem 1, we comment on its validity in the
regime of different shear viscosities μ+ = μ− of the two fluids (cf. also the detailed discussion in [12,
Sect. 3.4]). In this case, one would have to deal with an additional term in the derivation of the Gronwall
inequality (11) of the form

−
∫ T ′

0

∫

Ω

(μ+ − μ−)(χu − χv)2(∇symu − ∇symv) : ∇v dx. (15)

A major problem then results from the observation that, even for strong solutions, the normal derivative of
the tangential velocity is discontinuous across the associated interface in case μ+ = μ−. As a consequence,
the term (15) is in fact only of linear order in our error functionals which makes the derivation of a stability
estimate as in (11) infeasible (cf. the example given in [12, Sect. 3.4]).
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The key idea for the weak-strong uniqueness result in the different viscosities regime in the full space
setting [12] was to adapt the kinetic energy contribution of the relative entropy: instead of directly
comparing u with v, one carefully constructs an auxiliary divergence free vector field w and compares u
with v+w. The two desired main properties of w are as follows. First, the L2 norm of w shall be controlled
by the interfacial error contribution of the relative entropy, so that the adapted relative entropy does not
lose coercivity with respect to the error in the velocity fields. Second, ∇w should be designed such that
it essentially compensates the linear order error term (15). The main idea for the latter is to adapt ∇v
through ∇w to the different location of the interface of the varifold solution.

Of course, also in our bounded domain setting with constant 90◦ degree contact angle and pure slip
condition, this additional adaptation of the relative entropy is needed to conclude about the validity of
Theorem 1 in case of different viscosities for the two fluids. In principle, we expect this to be possible in
the setting of the present work. However, adapting the construction of the compensating vector field w
from [12] in the vicinity of the domain boundary (in order to satisfy required boundary conditions)
together with then verifying all of its desired properties may certainly require a substantial amount of
technical work (e.g., due to the singular nature of the geometry at the contact set). For this reason, we
omit the rigorous study of the different viscosities regime in this work and we leave it as a possible further
development of our result. Finally, as for the validity of Theorem 1 for non-Newtonian fluids, we mention
that this is an open problem in both the full space setting and the setting of the present work.

Returning to the regime of same viscosities μ+ = μ−, we explain throughout the next two subsections
the key ideas underlying the proof of Theorem 1.

2.2. Quantitative Stability by a Relative Entropy Approach

Following the general strategy of [12], our weak-strong uniqueness result essentially relies on two ingre-
dients: i) the construction of a suitable extension ξ of the unit normal vector field of the interface of a
strong solution, and ii) based on this extension, the introduction of a suitably defined error functional
penalizing the interface error between a varifold and a strong solution in a sufficiently strong sense. In
comparison to [12], the extension of the unit normal has to be carefully constructed in the sense that
the vector field ξ is required to be tangent to the domain boundary ∂Ω (which is the natural boundary
condition in case of a 90◦ contact angle). Due to the singular nature of the geometry at the contact set,
this is a nontrivial task. The precise conditions on the extension ξ are summarized as follows.

Definition 2 (Boundary adapted extension of the interface unit normal). Let d ∈ {2, 3}, and let Ω ⊂ R
d

be a bounded domain with orientable and smooth boundary. Let T ∈ (0,∞) be a finite time horizon. Let
(χv, v) be a strong solution to the incompressible Navier–Stokes equation for two fluids in the sense of
Definition 10 on the time interval [0, T ].

In this setting, we call a vector field ξ : Ω × [0, T ] → R
d a boundary adapted extension of nIv

for
two-phase fluid flow (χv, v) with 90◦ contact angle if the following conditions are satisfied:

• In terms of regularity, it holds ξ ∈
(
C0

t C2
x ∩ C1

t C0
x

)(
Ω×[0, T ] \ (Iv ∩ (∂Ω×[0, T ]))

)
.

• The vector field ξ extends the unit normal vector field nIv
(pointing inside Ω+

v ) of the interface Iv

subject to the conditions

|ξ| ≤ max
{
0, 1−C dist2(·, Iv)

}
in Ω × [0, T ], (16a)

ξ · n∂Ω = 0 on ∂Ω × [0, T ], (16b)

∇ · ξ = −HIv
on Iv, (16c)

for some C > 0. Here, HIv
denotes the scalar mean curvature of the interface Iv (oriented with

respect to the normal nIv
).

• The fluid velocity approximately transports the vector field ξ in form of

∂tξ + (v · ∇)ξ + (Id −ξ ⊗ ξ)(∇v)Tξ = O(dist(·, Iv) ∧ 1) in Ω × [0, T ], (16d)
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∂t|ξ|2 + (v · ∇)|ξ|2 = O(dist2(·, Iv) ∧ 1) in Ω × [0, T ]. (16e)

Let us comment on the motivation behind this definition. Given a vector field ξ with respect to a fixed
strong solution (χv, v) as in the previous definition, we may introduce for any varifold solution (χu, u, V )
and for all t ∈ [0, T ] a functional

E[χu, V |χv](t) := σ

∫

Ω

1 d|Vt|Sd−1 − σ

∫

Iu(t)

∇χu(·, t)
|∇χu(·, t)| · ξ(·, t) dHd−1, (17)

where Iu(t) := supp|∇χu(·, t)| ∩ Ω denotes the interface associated to the varifold solution. The func-
tional E[χu, V |χv] is a measure for the interfacial error between the two solutions for the following reasons.
First of all, it is a consequence of the definition of a varifold solution, cf. the compatibility condition (42),
that for almost every t ∈ [0, T ] it holds |∇χu(·, t)|�Ω ≤ |Vt|Sd−1�Ω in the sense of measures on Ω. In
particular, it follows that the functional E[χu, V |χv] controls its “BV-analogue”

0 ≤ E[χu|χv](t) := σ

∫

Iu(t)

1 − ∇χu(·, t)
|∇χu(·, t)| · ξ(·, t) dHd−1 ≤ E[χu, V |χv](t). (18)

Introducing the Radon–Nikodým derivative θt := d|∇χu(·,t)|�Ω
d|Vt|Sd−1�Ω , one can be even more precise in the sense

that

E[χu, V |χv](t) = σ

∫

∂Ω

1 d|Vt|Sd−1 + σ

∫

Ω

1 − θt d|Vt|Sd−1 + E[χu|χv](t). (19)

This representation of the functional E[χu, V |χv] as well as the length constraint (16a) for the vector
field ξ lead to the following two observations. First, the functional E[χu, V |χv] controls the mass of hidden
boundaries and higher multiplicity interfaces (i.e., where θt ∈ [0, 1)) in the sense of

σ

∫

∂Ω

1 d|Vt|Sd−1 + σ

∫

Ω

1 − θt d|Vt|Sd−1 ≤ E[χu, V |χv](t). (20)

Second, because of (16a) it measures the interface error in the sense that

σ

∫

Iu(t)

1
2

∣
∣
∣
∣

∇χu(·, t)
|∇χu(·, t)| − ξ

∣
∣
∣
∣

2

dHd−1 ≤ E[χu|χv](t), (21)

σ

∫

Iu(t)

min
{
1, C dist2(·, Iv(t))

}
dHd−1 ≤ E[χu|χv](t). (22)

On a different note, the compatibility condition (42) satisfied by a varifold solution together with the
boundary condition (16b) also allows to represent the error functional E[χu, V |χv] in the alternative form

E[χu, V |χv](t) = σ

∫

Ω×Sd−1
1 − s · ξ dVt, (23)

which then entails as a consequence of (16a)

σ

∫

Ω×Sd−1

1
2
|s − ξ|2 dVt ≤ E[χu, V |χv](t), (24)

σ

∫

Ω

min
{
1, C dist2(·, Iv(t))

}
d|Vt|Sd−1 ≤ E[χu, V |χv](t). (25)

Finally, let us quickly discuss what is implied by E[χu, V |χv](t) = 0. We claim that (14) and Iu(t) ⊂
Iv(t) up to Hd−1-negligible sets have to be satisfied. Indeed, the latter follows directly from (18) and (22).
The former is best seen when representing the varifold Vt�(Ω×S

d−1) by its disintegration (|Vt|Sd−1�Ω) ⊗
(νx,t)x∈Ω. Then, it follows on one side from (20) that |Vt|Sd−1�∂Ω = 0 and |Vt|Sd−1�Ω = |∇χu(·, t)|�Ω as
measures on ∂Ω and Ω, respectively, and then on the other side that νx,t = δ ∇χu(·,t)

|∇χu(·,t)| (x)
for |∇χu(·, t)|-a.e.

x ∈ Ω due to
∫

Ω

∫

Sd−1

1
2

∣
∣
∣
∣s − ∇χu(·, t)

|∇χu(·, t)| (x)
∣
∣
∣
∣

2

dνx,t(s) d(|∇χu(·, t)|�Ω)(x)
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=
∫

Ω

∫

Sd−1
1 − s · ∇χu(·, t)

|∇χu(·, t)| (x) dνx,t(s) d(|∇χu(·, t)|�Ω)(x) = 0,

where for the last equality we simply plugged in the compatibility condition (42) and again |Vt|Sd−1�∂Ω =
0 as well as |Vt|Sd−1�Ω = |∇χu(·, t)|�Ω.

Apart from these coercivity conditions, it is equally important to be able to estimate the time evolution
of the error functional E[χu, V |χv]. The main observation in this regard is that the functional can be
rewritten as a perturbation of the interface energy E[χu, V ](t) := σ

∫
Ω

1 d|Vt|Sd−1 which is linear in
the dependence on the indicator function χu. Indeed, thanks to the boundary condition (16b) for the
extension ξ, a simple integration by parts readily reveals

E[χu, V |χv](t) = E[χu, V ](t) + σ

∫

Ω

χu(·, t)(∇ · ξ)(·, t) dx. (26)

This structure is in fact the very reason why we call E[χu, V |χv] a relative entropy. Computing the time
evolution of E[χu, V |χv] then only requires to exploit the dissipation of energy and using ∇ · ξ as a test
function in the evolution equation of the phase indicator χu of the varifold solution. The latter in turn
requires knowledge on the time evolution of ξ itself, which is encoded in terms of the fluid velocity v
through the Eqs. (16d) and (16e). The condition (16c) is natural in view of the interpretation of ξ as an
extension of the unit normal nIv

away from the interface Iv.
Even though all of this may already be quite promising, there is one small caveat: obviously, one can

not deduce from E[χu, V |χv] = 0 that χu = χv (e.g., χu representing an empty phase is consistent with
having vanishing relative entropy). This lack of coercivity in the regime of vanishing interface measure
motivates to introduce a second error functional which directly controls the deviation of χu from χv. The
main input to such a functional is captured in the following definition.

Definition 3 (Transported weight). Let d ∈ {2, 3}, and let Ω ⊂ R
d be a bounded domain with orientable

and smooth boundary. Let T ∈ (0,∞) be a finite time horizon, consider a solenoidal vector field v ∈
L2([0, T ];H1(Ω;Rd)) with (v · n∂Ω)|∂Ω = 0, and let (Ω+

v (t))t∈[0,T ] be a family of sets of finite perimeter
in Ω. Denote by Iv(t), t ∈ [0, T ], the reduced boundary of Ω+

v (t) in Ω. Writing χv(·, t) for the indicator
function associated to Ω+

v (t), assume that ∂tχv = −∇ · (χvv) in a weak sense.
In this setting, we call a map ϑ : Ω × [0, T ] → [−1, 1] a transported weight with respect to (χv, v) if the

following conditions are satisfied:
• (Regularity) It holds ϑ ∈ W 1,∞

x,t (Ω × [0, T ]).
• (Coercivity) Throughout the essential interior of Ω+

v (relative to Ω) it holds ϑ < 0, throughout the
essential exterior of Ω+

v (relative to Ω) it holds ϑ > 0, and along Iv ∪ ∂Ω we have ϑ = 0. There also
exists C > 0 such that

dist(·, ∂Ω) ∧ dist(·, Iv) ∧ 1 ≤ C|ϑ| in Ω × [0, T ]. (27)

• (Transport equation) There exists C > 0 such that

|∂tϑ + (v · ∇)ϑ| ≤ C|ϑ| in Ω × [0, T ]. (28)

The merit of the previous two definitions is now the following result. It reduces the proof of Theorem 1
to the existence of a boundary adapted extension ξ of the interface unit normal and a transported weight ϑ
with respect to a strong solution (χv, v), respectively.

Proposition 4 (Conditional weak-strong uniqueness principle). Let d ∈ {2, 3}, and let Ω ⊂ R
d be a

bounded domain with orientable and smooth boundary. Let (χu, u, V ) be a varifold solution to the incom-
pressible Navier–Stokes equation for two fluids in the sense of Definition 11 on a time interval [0, T ].
Consider in addition a strong solution (χv, v) to the incompressible Navier–Stokes equation for two fluids
in the sense of Definition 10 on a time interval [0, T ].

Assume there exists a boundary adapted extension ξ of the unit normal nIv
as well as a transported

weight ϑ with respect to (χv, v) in the sense of Definitions 2 and 3, respectively. Then the stability esti-
mates (11) and (12) for the relative entropy functional (29) and the bulk error functional (31) are satisfied,
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respectively. Moreover, if the initial data of the varifold solution and the strong solution coincide, we may
conclude that

χu(·, t) = χv(·, t), u(·, t) = v(·, t) a.e. in Ω for a.e. t ∈ [0, T ],

Vt = (|∇χu(·, t)|�Ω) ⊗
(
δ ∇χu(·,t)

|∇χu(·,t)| (x)

)
x∈Ω

for a.e. t ∈ [0, T ].

A proof of this conditional weak-strong uniqueness principle is presented in Sect. 3.3 below. We
emphasize again that it is valid for d ∈ {2, 3}. The key ingredient to the stability estimate (11) is the
following relative entropy inequality. We refer to Sect. 3.1 for a proof.

Proposition 5 (Relative entropy inequality in case of a 90◦ contact angle). Let d ∈ {2, 3}, and let Ω ⊂ R
d

be a smooth and bounded domain. Let (χu, u, V ) be a varifold solution to the incompressible Navier–Stokes
equation for two fluids in the sense of Definition 11 on a time interval [0, T ]. In particular, let θ be the
density θt := d|∇χu(·,t)|�Ω

d|Vt|Sd−1�Ω as defined in (43). Furthermore, let (χv, v) be a strong solution in the sense of
Definition 10 on the same time interval [0, T ], and assume there exists a boundary adapted extension ξ
of the interface unit normal nIv

with respect to (χv, v) as in Definition 2.
Then, the total relative entropy defined by (recall the definition (17) of the interface contribution

E[χu, V |χv])

E[χu, u, V |χv, v](t) :=
∫

Ω

1
2
ρ(χu(·, t))|u(·, t) − v(·, t)|2 dx + E[χu, V |χv](t) (29)

satisfies the relative entropy inequality

E[χu, u, V |χv, v](T ′) +
∫ T ′

0

∫

Ω

μ

2
|∇(u − v) + ∇(u − v)T|2 dxdt

≤ E[χu, u, V |χv, v](0) + Rdt + Radv + RsurTen, (30)

for almost every T ′ ∈ [0, T ], where we made use of the abbreviations (denote by nu := ∇χu

|∇χu| the measure-
theoretic unit normal)

Rdt = −
∫ T ′

0

∫

Ω

(ρ(χv) − ρ(χu))(u − v) · ∂tv dxdt,

Radv = −
∫ T ′

0

∫

Ω

(ρ(χu) − ρ(χv))(u − v) · (v · ∇)v dxdt

−
∫ T ′

0

∫

Ω

ρ(χu)(u − v) · ((u − v) · ∇)v dxdt,

as well as

RsurTen = − σ

∫ T ′

0

∫

Ω×Sd−1
(s − ξ) · ((s − ξ) · ∇)v dVt(x, s) dt

+ σ

∫ T ′

0

∫

Ω

(1 − θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

∫ T ′

0

∫

∂Ω

ξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

∫ T ′

0

∫

Ω

(χu − χv)((u − v) · ∇)(∇ · ξ) dxdt

− σ

∫ T ′

0

∫

Ω

(nu − ξ) · (∂tξ + (v · ∇)ξ + (Id−ξ ⊗ ξ)(∇v)Tξ) d|∇χu|dt

− σ

∫ T ′

0

∫

Ω

((nu − ξ) · ξ)(ξ ⊗ ξ : ∇v) d|∇χu|dt
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− σ

∫ T ′

0

∫

Ω

(
∂t

1
2
|ξ|2 + (v · ∇)

1
2
|ξ|2

)
d|∇χu|dt

+ σ

∫ T ′

0

∫

Ω

(1 − nu · ξ)(∇ · v) d|∇χu|dt.

The stability estimate (12) for the bulk error functional is in turn based on the following auxiliary
result; see Sect. 3.2 for a proof.

Lemma 6 (Time evolution of the bulk error). Let d ∈ {2, 3}, and let Ω ⊂ R
d be a smooth and bounded

domain. Let T ∈ (0,∞) be a finite time horizon, and let (χv, v) be as in Definition 3 of a transported
weight. Let (χu, u, V ) be a varifold solution to the incompressible Navier–Stokes equation for two fluids
in the sense of Definition 11 on [0, T ]. Assume there exists a transported weight ϑ with respect to (χv, v)
in the sense of Definition 3, and define the bulk error functional

Evol[χu|χv](t) :=
∫

Ω

|χu(·, t) − χv(·, t)||ϑ(·, t)|dx. (31)

Then the following identity holds true for almost every T ′ ∈ [0, T ]

Evol[χu|χv](T ′) = Evol[χu|χv](0) +
∫ T ′

0

∫

Ω

(χu − χv)(∂tϑ + (v · ∇)ϑ) dxdt

+
∫ T ′

0

∫

Ω

(χu − χv)
(
(u − v) · ∇

)
ϑ dxdt. (32)

2.3. Existence of Boundary Adapted Extensions of the Interface Unit Normal and Transported Weights
in Planar Case

To upgrade the conditional weak-strong uniqueness principle of Proposition 4 to the statement of The-
orem 1, it remains to construct a boundary adapted extension ξ of nIv

and a transported weight ϑ
associated to a given strong solution (χv, v). In the context of the present work, we perform this task
for simplicity in the planar regime d = 2. However, it is expected that the principles of the construction
carry over to the case d = 3 involving contact lines.

Proposition 7. Let d = 2, and let Ω ⊂ R
2 be a bounded domain with orientable and smooth boundary.

Let (χv, v) be a strong solution to the incompressible Navier–Stokes equation for two fluids in the sense
of Definition 10 on a time interval [0, T ]. Then there exists a boundary adapted extension ξ of nIv

w.r.t.
(χv, v) in the sense of Definition 2.

A proof of this result is presented in Sect. 6.2 below. One major step in the proof consists of reducing
the global construction to certain local constructions being supported in the bulk Ω or in the vicinity
of contact points along ∂Ω, respectively. The main ingredients for this reduction argument are provided
in Sect. 6.1. The construction of suitable local vector fields subject to conditions as in Definition 2 is in
turn relegated to Sect. 4 (bulk construction) and Sect. 5 (construction near contact points). We finally
provide the construction of a transported weight in Sect. 7.

Lemma 8. Let d = 2, and let Ω ⊂ R
2 be a bounded domain with orientable and smooth boundary. Let

(χv, v) be a strong solution to the incompressible Navier–Stokes equation for two fluids in the sense of
Definition 10 on a time interval [0, T ]. Then there exists a transported weight ϑ w.r.t. (χv, v) in the sense
of Definition 3.
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2.4. Definition of Varifold and Strong Solutions

In this subsection, we present definitions of strong and varifold solutions for the free-boundary problem of
the evolution of two immiscible, incompressible, viscous fluids separated by a sharp interface with surface
tension inside a bounded domain Ω ⊂ R

d, d ∈ {2, 3}, with smooth and orientable boundary. Recall in
this context that we restrict ourselves to the case of a 90◦ contact angle between the interface and the
boundary of the domain Ω. In order to define a notion of strong solutions, we first introduce the notion
of a smoothly evolving domain within Ω.

Definition 9 (Smoothly evolving domains and smoothly evolving interfaces with 90◦ contact angle). Let
d ∈ {2, 3}, and let Ω ⊂ R

d be a bounded domain with orientable and smooth boundary. Let T ∈ (0,∞)
be a finite time horizon. Consider an open subset Ω+

0 ⊂ Ω subject to the following regularity conditions:
• Denoting by I0 the closure of ∂Ω+

0 ∩ Ω in Ω, we require I0 to be a (d−1)-dimensional uniform C3
x

submanifold of Ω with or without boundary. Moreover, I0 is compact and consists of finitely many
connected components.

• Interior points of I0 are contained in Ω, whereas boundary points of I0 are contained in ∂Ω. In
particular, I0 ∩ ∂Ω is a (d−2)-dimensional uniform C3

x submanifold of ∂Ω.
• Whenever I0 intersects with ∂Ω, it does so by forming an angle of 90◦.

Now, consider a set Ω+ =
⋃

t∈[0,T ] Ω
+(t)×{t} represented in terms of open subsets Ω+(t) ⊂ Ω for all

t ∈ [0, T ]. Denote by I(t) the closure of ∂Ω+(t) ∩ Ω in Ω, t ∈ [0, T ]. We call Ω+ a smoothly evolving
domain in Ω, and I =

⋃
t∈[0,T ] I(t)×{t} a smoothly evolving interface with 90◦ contact angle, if there

exists a flow map ψ : Ω × [0, T ] → Ω such that the following requirements are satisfied:
• ψ(·, 0) = Id. For any t ∈ [0, T ], the map ψt := ψ(·, t) : Ω → Ω is a C3

x diffeomorphism such that
ψt(Ω) = Ω, ψt(∂Ω) = ∂Ω and supt∈[0,T ] ‖ψt‖W 3,∞

x (Ω) < ∞.
• For all t ∈ [0, T ], it holds Ω+(t) = ψt(Ω+

0 ) and I(t) = ψt(I0).
• ∂tψ ∈ C([0, T ];C1(Ω)) such that supt∈[0,T ] ‖∂tψ(·, t)‖W 1,∞

x (Ω) < ∞.
• Whenever I(t), t ∈ [0, T ], intersects ∂Ω it does so by forming an angle of 90◦.

With the geometric setup in place, we can proceed with our notion of strong solutions to two-phase
Navier–Stokes flow with 90◦ contact angle.

Definition 10 (Strong solution). Let d ∈ {2, 3}, and let Ω ⊂ R
d be a bounded domain with orientable

and smooth boundary. Let a surface tension constant σ > 0, the densities and shear viscosity of the two
fluids ρ±, μ > 0, and a finite time Ts > 0 be given. Let χ0 denote the indicator function of an open subset
Ω+

0 ⊂ Ω subject to the conditions of Definition 9. Denoting the associated initial interface by Iv(0), let
a solenoidal initial velocity profile v0 ∈ L2(Ω;Rd) be given such that it holds v0 ∈ C2(Ω \ Iv(0)). (Of
course, additional compatibility conditions in terms of an initial pressure p0 have to be satisfied by v0 to
allow for the below required regularity of the solution.)

A pair (χv, v) consisting of a velocity field v : Ω × [0, Ts) → R
d and an indicator function χv : Ω ×

[0, Ts) → {0, 1} is called a strong solution to the free boundary problem for the Navier–Stokes equation
for two fluids with 90◦ contact angle and initial data (χ0, v0) if for all T ∈ (0, Ts) it is a strong solution
on [0, T ] in the following sense:

• It holds

v ∈ W 1,∞([0, T ];W 1,∞(Ω;Rd)),

∇v ∈ L1([0, T ]; BV(Ω;Rd×d)),

χv ∈ L∞([0, T ]; BV(Ω; {0, 1})).

• Define Ω+
v (t) := {x ∈ Ω : χv(x, t) = 1}. Then, Ω+

v =
⋃

t∈[0,T ] Ω
+
v (t)×{t} is a smoothly evolving

domain in Ω in the sense of Definition 9 with Ω+
v (0) = Ω+

0 . Denoting by Iv(t) the closure of
∂Ω+

v (t) ∩ Ω in Ω for all t ∈ [0, T ], the set Iv =
⋃

t∈[0,T ] Iv(t)×{t} is a smoothly evolving interface
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with 90◦ contact angle in the sense of Definition 9. In particular, for every t ∈ [0, T ] and every
contact point c(t) ∈ Iv(t) ∩ ∂Ω

n∂Ω(c(t)) · nIv
(c(t), t) = 0. (33)

Moreover, for every t ∈ [0, T ] and every c(t) ∈ Iv(t) ∩ ∂Ω the following higher-order compatibility
condition is required to hold:

−
(
(n∂Ω · ∇)(nIv

· v)
)
(c(t), t) = H∂Ω(c(t))(nIv

· v)(c(t), t), (34)

where H∂Ω denotes the scalar mean curvature of ∂Ω (with respect to the inward pointing unit
normal n∂Ω).

• The velocity field v has vanishing divergence ∇ · v = 0, and it satisfies the boundary conditions

v(·, t) · n∂Ω = 0 along ∂Ω, (35)
(
n∂Ω · μ(∇v + ∇vT)(·, t)B

)
= 0 along ∂Ω (36)

for all t ∈ [0, T ] and all tangential vector fields B along ∂Ω.
Moreover, the equation for the momentum balance

∫

Ω

ρ(χv(·, T ′))v(·, T ′) · η(·, T ′) dx −
∫

Ω

ρ(χ0))v0 · η(·, 0) dx

=
∫ T ′

0

∫

Ω

ρ(χv)v · ∂tη dxdt +
∫ T ′

0

∫

Ω

ρ(χv)v ⊗ v : ∇η dxdt

−
∫ T ′

0

∫

Ω

μ(∇v + ∇vT) : ∇η dxdt + σ

∫ T ′

0

∫

Iv(t)

HIv
· η dS dt (37)

holds true for almost every T ′ ∈ [0, T ] and every η ∈ C∞(Ω × [0, T ];Rd) such that ∇ · η = 0 as well
as (η · n∂Ω)|∂Ω = 0. Here, HIv

(·, t) denotes the mean curvature vector of the interface Iv(t). For the
sake of brevity, we have used the abbreviation ρ(χ) := ρ+χ + ρ−(1 − χ).

• The indicator function χv is transported by the fluid velocity v in form of
∫

Ω

χv(·, T ′)ϕ(·, T ′) dx −
∫

Ω

χ0ϕ(·, 0) dx =
∫ T ′

0

∫

Ω

χv(∂tϕ+(v · ∇)ϕ) dxdt (38)

for almost every T ′ ∈ [0, T ] and all ϕ ∈ C∞(Ω × [0, T ]).
• It holds v ∈ C1

t C0
x(Ω×[0, T ] \ Iv) ∩ C0

t C2
x(Ω×[0, T ] \ Iv).

Short-time existence of strong solutions in the precise sense of the previous definition may in principle
be established based on the results of Wilke [34] resp. Watanabe [32], which in turn are based on a maximal
Lp

x-Lp
t resp. Lq

x-Lp
t regularity approach (cf. [27], [22] and [26] for further maximal Lq

x-Lp
t regularity results

in the context of two-phase Navier–Stokes flow with surface tension). In these works, the evolving interface
is represented in terms of the graph of a time-dependent height function over the initial interface, whereas
the evolving phase of one of the fluids is represented in terms of the associated Hanzawa transform.

However, it has to be said that the results of [34] and [32] are not immediately sufficient to guarantee
the required higher regularity of the interface and the fluid velocity from Definition 10 (in particular, the
regularity up to time t = 0). One may expect that this higher regularity can be derived along the lines
of [12, Remark 7, Remark 36, and Remark 37], where for our purposes next to the higher regularity of
the fluid velocity from each side of the evolving interface one also has to provide similar arguments near
the domain boundary. Needless to say, one has to be particularly careful in the vicinity of contact points
or contact lines, for which our mathematically idealized setting of pure slip and constant ninety degree
contact angle may prove beneficial (cf. the discussion in [24] or [14]). In summary, a detailed proof of the
required higher regularity is certainly worth a paper on its own and thus out of the scope of this article.

We conclude the discussion on strong solutions with a series of remarks. First, by standard arguments
one may deduce from (38), the solenoidality of v, and the boundary condition (v · n∂Ω)|∂Ω = 0 that
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VIv
= v · nIv

holds true along the interface Iv for the normal speed VIv
of Iv (oriented with respect

to nIv
). Second, as a consequence of the contact point condition (33) it holds for all t ∈ [0, Ts)

∫

Iv(t)

HIv
· η dS = −

∫

Iv(t)

(
Id−nIv

(·, t) ⊗ nIv
(·, t)

)
: ∇η dS

for all test fields η ∈ C∞(Ω;Rd) subject to ∇ · η = 0 and (η · n∂Ω)|∂Ω = 0. Third, note that Definition 10
implies that all pairs of two distinct contact points at the initial time remain distinct at all later times
within a finite time horizon. This in fact is a consequence of the regularity of the velocity field and
the evolving interface. Indeed, denoting by t �→ c(t) ∈ Iv(t) ∩ ∂Ω resp. t �→ ĉ(t) ∈ Iv(t) ∩ ∂Ω the
trajectories of two distinct contact points, we may estimate the time evolution of their squared distance
α(t) := 1

2 |c(t)−ĉ(t)|2 by means of

d
dt

α(t) =
(
c(t)−ĉ(t)

)
·
(
v(c(t), t)−v(ĉ(t), t)

)
≥ −2‖∇v‖L∞

x,t
α(t).

Using Gronwall’s Lemma, we can conclude that α(t) ≥ α(0) exp(−2‖∇v‖L∞
x,t

t).
Fourth, we remark that it actually suffices to require the compatibility conditions (33) and (34) at

the initial time t = 0 only. For later times t ∈ (0, T ], they are in fact consequences of the regularity of
a strong solution, which can be seen as follows. For the sake fo simplicity, consider the case d = 2. By
means of the chain rule, the fact that v · n∂Ω = 0 along ∂Ω, and the formulas for ∇n∂Ω and ∇τ∂Ω from
Lemma 19, we may rewrite the boundary condition (μ(∇v + ∇vT) : n∂Ω ⊗ τ∂Ω) = 0 along ∂Ω as

H∂Ω(v · τ∂Ω) + (n∂Ω · ∇)(v · τ∂Ω) = 0 along ∂Ω,

which holds in particular at a contact point c(t) for any t ∈ [0, T ]. Then, since the quantities |τ∂Ω · τIv
| =

|nIv
· n∂Ω|, |τ∂Ω − nIv

| , |n∂Ω + τIv
| evaluated at a contact point can all be bounded from above by√

1 − nIv
· τ∂Ω, we may compute by adding zeros (see also the formulas for ∇n∂Ω and ∇τ∂Ω as well as

the expressions for d
dtτ∂Ω(c(t)) and d

dtnIv
(c(t), t) from Lemmas 19 and 20, respectively)

d
dt

[1 − nIv
(c(t), t) · τ∂Ω(c(t))]

= −
(
(nIv

· n∂Ω)((n∂Ω · ∇)(v · τ∂Ω) + (τIv
· ∇)(v · nIv

))
)∣∣

(c(t),t)

= −
(
(nIv

· n∂Ω)(∇v : (τ∂Ω − nIv
) ⊗ n∂Ω + ∇v : nIv

⊗ (n∂Ω + τIv
)

− HIv
(v · τIv

)(τ∂Ω · τIv
))

)∣∣
(c(t),t)

≤ C‖∇v‖L∞
x,t

[1 − nIv
(c(t), t) · τ∂Ω(c(t))]

for some C > 0 and any t ∈ [0, T ]. From an application of a Gronwall-type argument and the validity of
the contact angle condition (33) at the initial time t = 0, we may conclude that (33) is indeed satisfied
for any t ∈ [0, T ]. The compatibility condition (34) in turn follows from differentiating in time the angle
condition (33) along a smooth trajectory t �→ c(t) ∈ Iv(t)∩∂Ω of a contact point, see for details the proof
of Lemma 20.

We proceed with the notion of a varifold solution.

Definition 11 (Varifold solution in case of 90◦ contact angle condition). Let a surface tension constant
σ > 0, the densities and shear viscosity of the two fluids ρ±, μ > 0, a finite time Tw > 0, a solenoidal
initial velocity profile u0 ∈ L2(Ω;Rd), and an indicator function χ0 ∈ BV(Ω) be given.

A triple (χu, u, V ) consisting of a velocity field u, an indicator function χu, and an oriented varifold
V with

u ∈ L2([0, Tw];H1(Ω;Rd)) ∩ L∞([0, Tw];L2(Ω;Rd)),

χu ∈ L∞([0, Tw]; BV(Ω; {0, 1})),

V ∈ L∞
w ([0, Tw];M(Ω × S

d−1)),
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is called a varifold solution to the free boundary problem for the Navier-Stokes equation for two fluids
with 90◦ contact angle and initial data (χ0, u0) if the following conditions are satisfied:

• The velocity field u has vanishing divergence ∇ · u = 0, its trace a vanishing normal component on
the boundary of the domain (u · n∂Ω)|∂Ω = 0, and the equation for the momentum balance

∫

Ω

ρ(χu(·, T ))u(·, T ) · η(·, T ) dx −
∫

Ω

ρ(χ0))u0 · η(·, 0) dx

=
∫ T

0

∫

Ω

ρ(χu)u · ∂tη dxdt +
∫ T

0

∫

Ω

ρ(χu)u ⊗ u : ∇η dxdt

−
∫ T

0

∫

Ω

μ(∇u + ∇uT) : ∇η dxdt

− σ

∫ T

0

∫

Ω×Sd−1
(Id −s ⊗ s) : ∇η dVt(x, s) dt (39)

is satisfied for almost every T ∈ [0, Tw) and for every test vector field η subject to η ∈ C∞([0, Tw);C1

(Ω;Rd) ∩
⋂

p≥2 W 2,p(Ω;Rd)), ∇ · η = 0 as well as (η · n∂Ω)|∂Ω = 0. We again made use of the
abbreviation ρ(χ) := ρ+χ + ρ−(1 − χ).

• The indicator χu satisfies the weak formulation of the transport equation
∫

Ω

χu(·, T )ϕ(·, T ) dx −
∫

Ω

χ0ϕ(·, 0) dx =
∫ T

0

∫

Ω

χu(∂tϕ+(u · ∇)ϕ) dxdt (40)

for almost every T ∈ [0, Tw) and all ϕ ∈ C∞(Ω × [0, Tw)).
• The energy dissipation inequality

∫

Ω

1
2
ρ(χu(·, T ))|u(·, T )|2 dx + σ|VT |Sd−1(Ω) +

∫ T

0

∫

Ω

μ

2
|∇u+∇uT|2 dxdt

≤
∫

Ω

1
2
ρ(χ0(·))|u0(·)|2 dx + σ|∇χ0|(Ω) (41)

is satisfied for almost every T ∈ [0, Tw).
• The phase boundary ∂∗{χu(·, t) = 0} ∩ Ω and the varifold Vt satisfy the compatibility condition

∫

Ω×Sd−1
ψ(x) · sdVt(x, s) =

∫

Ω

ψ(x) · d∇χu(x, t) (42)

for almost every t ∈ [0, Tw) and every smooth function ψ ∈ C∞(Ω;Rd) such that (ψ · n∂Ω)|∂Ω = 0.
Finally, if (χu, V ) satisfy (14) we call the pair (χu, u) a BV solution to the free boundary problem for the
Navier-Stokes equation for two fluids with 90◦ contact angle and initial data (χ0, u0).

We conclude with a remark concerning the notion of varifold solutions. Denote by Vt ∈ M(Ω ×
S

d−1) the non-negative measure representing at time t ∈ [0, Tw) the varifold associated to a varifold
solution (χu, u, V ). The compatibility condition (42) entails that |∇χu(·, t)|�Ω is absolutely continuous
with respect to |Vt|Sd−1�Ω; in fact, |∇χu(·, t)|�Ω ≤ |Vt|Sd−1�Ω in the sense of measures on Ω. Hence, we
may define the Radon–Nikodym derivative

θt :=
d|∇χu(·, t)|�Ω
d|Vt|Sd−1�Ω

, (43)

which is a (|Vt|Sd−1�Ω)-measurable function with |θt| ≤ 1 valid (|Vt|Sd−1�Ω)-almost everywhere in Ω. In
other words, the quantity 1

θt
represents the multiplicity of the varifold (in the interior). With this notation

in place, it then holds
∫

Ω

f(x) d|∇χu(·, t)|(x) =
∫

Ω

θt(x)f(x) d|Vt|Sd−1(x) (44)

for every f ∈ L1(Ω, |∇χu(·, t)|) and almost every t ∈ [0, Tw).
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2.5. Summary of Strategy

To summarize, the proof of our weak-strong uniqueness result (Theorem 1) is divided into two parts. The
first part is concerned with the derivation of Gronwall stability estimates (cf. Proposition 4, Proposition 5
and Lemma 6) of the form

d
dt

E[χu, u, V |χv, v] ≤ C(E[χu, u, V |χv, v] + Evol[χu|χv]),

d
dt

Evol[χu|χv] ≤ C(E[χu, u, V |χv, v] + Evol[χu|χv]),

where E[χu, u, V |χv, v] and Evol[χu|χv] are two suitably constructed error functionals between a varifold
(cf. Definition 11) and a strong solution (cf. Definition 10). The functional E[χu, u, V |χv, v] has the form
of a relative entropy and penalizes, amongst other things, the error in the two velocity fields (cf. (29))
and the error in the locations of the two interfaces (cf. (18)–(25)). The other functional Evol[χu|χv] in
turn directly controls the difference between the phase indicator functions of the respective first fluids
of the two solutions (cf. (31)). These coercivity properties are not only sufficient to establish the above
Gronwall estimates, but also that the two solutions have to coincide if both error functionals are zero.

The argument in the first part of the proof is conditional in the sense that both error functionals rely
on suitable inputs which have to be constructed from the strong solution. More precisely, the interfacial
part of the relative entropy E[χu, u, V |χv, v] is defined in terms of a suitable extension ξ of the interface
unit normal nIv

of the strong solution (cf. Definition 2), whereas Evol[χu|χv] is defined based on a suitable
weight ϑ essentially representing a truncated signed distance function with respect to the phase of the
first fluid of the strong solution (cf. Definition 3). Once these two inputs are rigorously constructed, one
may infer our main result Theorem 1 from the corresponding conditional one of Proposition 4.

The second part of the proof therefore takes care of establishing the existence of such ξ and ϑ for
strong solutions (cf. Proposition 7 and Lemma 8). In the following, we provide some comments on the
construction of the former (which is the more challenging task). Away from the domain boundary, and
therefore in particular away from contact points, one may simply follow the ansatz from [12] which is

ξ(x, t) := ηIv
(sdist(x, Iv(t)))nIv

(PIv
(x, t), t), (45)

where ηIv
is a quadratic cutoff localizing to the width of a regular tubular neighborhood of the inter-

face Iv(t), sdist(·, Iv(t)) denotes the signed distance to Iv(t), and PIv
(·, t) represents the nearest point

projection onto Iv(t).
Near contact points ∂Iv(t), the above ansatz (45) requires a careful adaptation because one of the

main requirements for ξ is to be tangential along the domain boundary: (ξ · n∂Ω)|∂Ω ≡ 0. To achieve
this, it is first easiest to think about fixing the values of ξ along either the interface Iv or the domain
boundary ∂Ω:

ξ(x, t) := η∂Iv(t)(x, t)ξ̃ Iv (x, t), ξ̃ Iv (x, t) = nIv
(x, t) along Iv(t),

ξ(x, t) := η∂Iv(t)(x, t)ξ̃ ∂Ω(x, t), ξ̃ ∂Ω(x, t) = τ∂Ω(x, t) along ∂Ω,

where η∂Iv(t) is a quadratic cutoff localizing to a neighborhood of the contact points ∂Iv(t), and where
τ∂Ω(·, t) is a tangent vector field along ∂Ω extending locally for each contact point c ∈ ∂Iv(t) the nor-
mal nIv

(c, t). Due to the 90◦ degree contact angle condition, this is indeed meaningful and guarantees
continuity of ξ along Iv(t) ∪ ∂Ω.

Now, in order to define ξ in a full neighborhood of the contact points ∂Iv(t), the basic idea is to
interpolate between the two auxiliary fields ξ̃ Iv and ξ̃ ∂Ω. However, some care has to be taken here due to
the required regularity of ξ. This is the reason why we employ an expansion ansatz for both ξ̃ Iv and ξ̃ ∂Ω

of the structure

ξ̃ Iv := nIv
+ αIv

sdist(·, Iv)τIv
− 1

2
α2

Iv
sdist2(·, Iv)nIv

,
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ξ̃ ∂Ω := τ∂Ω + α∂Ω sdist(·, ∂Ω)n∂Ω − 1
2
α2

∂Ω sdist2(·, ∂Ω)τ∂Ω,

where the normal-tangent frames (nIv
, τIv

) and (n∂Ω, τ∂Ω) as well as the coefficients αIv
and α∂Ω are

extended constantly in the respective normal directions. The point then is to choose the coefficients in a
suitable way such that ∇ξ̃ Iv and ∇ξ̃ ∂Ω agree at contact points. With this in place, one may then inter-
polate between the two constructions so that the resulting vector field ξ satisfies the required regularity.
The second-order terms in the above expansions are only needed for a length correction of the first-order
perturbations. We finally remark that controlling the time evolution of the interpolation construction
requires the higher-order compatibility condition at contact points following from differentiating in time
the 90◦ contact angle condition.

With the constructions of suitable candidates for ξ in place, one technical problem remains. Namely,
the domains of definition for the above two outlined constructions away and near contact points overlap.
The solution for this technicality consists of carefully designing the quadratic cutoff functions ηIv

and η∂Iv

so that they form on one side a partition of unity along the interface of the strong solution, and that they
on the other side get transported along the fluid flow. Once this is established, the construction of ξ is
finished.

In terms of organization, the remaining parts of the paper are structured as follows. The first part of
the proof as outlined above is carried out in Sect. 3. The construction of the vector field ξ, which is the
main step of the second part of the proof, is distributed across Sect. 4 (construction away from contact
points), Sect. 5 (construction near contact points) and Sect. 6 (global construction by partition of unity).
We conclude the paper with the construction of the weight ϑ in Sect. 7.

2.6. Notation

Throughout the present work, we employ the notational conventions of [12]. A notable addition is the
following convention. If D ⊂ R

d is an open subset and Γ ⊂ D a closed subset of Hausdorff-dimension
k ∈ {0, . . . , d−1}, we write Ck(D\Γ) for all maps f : D → R which are k-times continuously differentiable
throughout D \Γ such that the function together with all its derivatives stays bounded throughout D \Γ.
Analogously, one defines the space Ck

t Cm
x (D \ Γ) for D =

⋃
t∈[0,T ] D(t) × {t} and Γ =

⋃
t∈[0,T ] Γ(t) × {t},

where (D(t))t∈[0,T ] is a family of open subsets of Rd and (Γ(t))t∈[0,T ] is a family of closed subsets Γ(t) ⊂
D(t) of constant Hausdorff-dimension k ∈ {0, . . . , d−1}.

3. Proof of Main Results

3.1. Relative Entropy Inequality: Proof of Proposition 5

The general structure of the proof is in parts similar to the proof of [12, Proposition 10]. In what follows,
we thus mainly focus on how to exploit the boundary conditions for the velocity fields (u, v) and a
boundary adapted extension ξ of the strong interface unit normal in these computations.

Step 1: Since ρ(χv) is an affine function of χv, it consequently satisfies
∫

Ω

ρ(χv(·, T ′))ϕ(·, T ′) dx −
∫

Ω

ρ(χ0
v)ϕ(·, 0) dx =

∫ T

0

∫

Ω

ρ(χv)(∂tϕ + (v · ∇)ϕ) dxdt (46)

for almost every T ′ ∈ [0, T ] and all ϕ ∈ C∞(Ω × [0, T ]). By the regularity of v and an approximation
argument, we may test this equation with v · η for any η ∈ C∞(Ω × [0, T ];Rd), yielding

∫

Ω

ρ(χv(·, T ′))v(·, T ′) · η(·, T ′) dx −
∫

Ω

ρ(χ0
v)v(·, 0) · η(·, 0) dx

=
∫ T ′

0

∫

Ω

ρ(χv)(v · ∂tη + η · ∂tv) dxdt
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+
∫ T ′

0

∫

Ω

ρ(χv)(η · (v · ∇)v + v · (v · ∇)η) dxdt (47)

for almost every T ′ ∈ [0, T ]. Next, we subtract from (47) the equation for the momentum balance (37) of
the strong solution. It follows that the velocity field v of the strong solution satisfies

0 =
∫ T ′

0

∫

Ω

ρ(χv)η · ∂tv dxdt +
∫ T ′

0

∫

Ω

ρ(χv)η · (v · ∇)v dxdt

+
∫ T ′

0

∫

Ω

μ(∇v + ∇vT ) : ∇η dxdt − σ

∫ T ′

0

∫

Iv(t)

HIv
· η dS dt (48)

for almost every T ′ ∈ [0, T ] and every test vector field η ∈ C∞(Ω × [0, T ];Rd) such that ∇ · η = 0 and
(η · n∂Ω)|∂Ω = 0. For any such test vector field η, note that by means of (16c), the incompressibility of η
as well as (η · n∂Ω)|∂Ω = 0, we may rewrite

−σ

∫ T ′

0

∫

Iv(t)

HIv
· η dS dt = σ

∫ T ′

0

∫

Iv(t)

(∇ · ξ)η · nIv
dS dt

= −σ

∫ T ′

0

∫

Ω

χv(η · ∇)(∇ · ξ) dxdt. (49)

Hence, we deduce from inserting (49) back into (48) that

0 =
∫ T ′

0

∫

Ω

ρ(χv)η · ∂tv dxdt +
∫ T ′

0

∫

Ω

ρ(χv)η · (v · ∇)v dxdt

+
∫ T ′

0

∫

Ω

μ(∇v + ∇vT ) : ∇η dxdt − σ

∫ T ′

0

∫

Ω

χv(η · ∇)(∇ · ξ) dxdt (50)

for almost every T ′ ∈ [0, T ] and every test vector field η ∈ C∞(Ω × [0, T ];Rd) such that ∇ · η = 0 and
(η · n∂Ω)|∂Ω = 0. The merit of rewriting (48) into the form (50) consists of the following observation.
Consider a test vector field η ∈ C∞([0, T ];H1(Ω;Rd)) such that ∇ · η = 0 and (η · n∂Ω)|∂Ω = 0. Denoting
by ψ a standard mollifier, for every k ∈ N by ψk := kdψ(k·) its usual rescaling, and by PΩ the Helmholtz
projection associated with the smooth domain Ω, it follows from standard theory (e.g., by a combination
of [30] and standard Wm,2(Ω)-elliptic regularity theory – see also Appendix A) that ηk := PΩ(ψk ∗ η) is
an admissible test vector field for (50). Moreover, taking the limit k → ∞ in (50) with ηk as test vector
fields is admissible and results in

0 =
∫ T ′

0

∫

Ω

ρ(χv)η · ∂tv dxdt +
∫ T ′

0

∫

Ω

ρ(χv)η · (v · ∇)v dxdt

+
∫ T ′

0

∫

Ω

μ(∇v + ∇vT ) : ∇η dxdt − σ

∫ T ′

0

∫

Ω

χv(η · ∇)(∇ · ξ) dxdt (51)

for almost every T ′ ∈ [0, T ] and every test vector field η ∈ C∞([0, T ];H1(Ω;Rd)) such that ∇ · η = 0
and (η · n∂Ω)|∂Ω = 0. As an important consequence, because of the boundary condition for the velocity
fields (u, v) and their solenoidality, we may choose (after performing a mollification argument in the time
variable) η = u − v as a test function in (51) which entails for almost every T ′ ∈ [0, T ]

0 =
∫ T ′

0

∫

Ω

ρ(χv)(u − v) · ∂tv dxdt +
∫ T ′

0

∫

Ω

ρ(χv)(u − v) · (v · ∇)v dxdt

+
∫ T ′

0

∫

Ω

μ(∇v+∇vT) : ∇(u−v) dxdt − σ

∫ T ′

0

∫

Ω

χv((u−v) · ∇)(∇ · ξ) dxdt. (52)
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We proceed by testing the analogue of (46) for the phase-dependent density ρ(χu) with the test func-
tion 1

2 |v|2, obtaining for almost every T ′ ∈ [0, T ]
∫

Ω

1
2
ρ(χu(·, T ′))|v(·, T ′)|2 dx −

∫

Ω

1
2
ρ(χ0

u)|v0(·)|2 dx

=
∫ T ′

0

∫

Ω

ρ(χu)v · ∂tv dxdt +
∫ T ′

0

∫

Ω

ρ(χu)v · (u · ∇)v dxdt. (53)

We next want to test (39) with the fluid velocity v. Modulo a mollification argument in the time variable,
we have to argue that ∇v does not jump across the interface so that v is an admissible test function.
Indeed, since the tangential derivative (τIv

·∇)v is continuous across the interface it follows from ∇·v = 0
that also nIv

·(nIv
·∇)v does not jump across Iv. The only component which may jump is thus τIv

·(nIv
·∇)v.

However, this is ruled out by the equilibrium condition for the stresses along Iv together with having μ+ =
μ−. In summary, using v in (39) implies

−
∫

Ω

ρ(χu(·, T ′))u(·, T ′) · v(·, T ′) dx +
∫

Ω

ρ(χ0
u))u0 · v0(·) dx

−
∫ T ′

0

∫

Ω

μ(∇u + ∇uT) : ∇v dxdt

= −
∫ T ′

0

∫

Ω

ρ(χu)u · ∂tv dxdt −
∫ T ′

0

∫

Ω

ρ(χu)u · (u · ∇)v dxdt

+ σ

∫ T ′

0

∫

Ω×Sd−1
(Id − s ⊗ s) : ∇v dVt(x, s) dt (54)

for almost every T ′ ∈ [0, T ]. We finally use σ(∇ · ξ) as a test function in the transport equation (40) for
the indicator function χu of the varifold solution. Hence, we obtain

σ

∫

Ω

χu(·, T ′)(∇ · ξ)(·, T ′) dx −
∫

Ω

χ0
u(∇ · ξ)(·, 0) dx

= σ

∫ T ′

0

∫

Ω

χu(∇ · ∂tξ + (u · ∇)(∇ · ξ)) dxdt.

for almost every T ′ ∈ [0, T ]. Based on the boundary condition (16b), which in turn in particular implies
(∂tξ · n∂Ω)|∂Ω = ∂t(ξ · n∂Ω)|∂Ω = 0, we may integrate by parts to upgrade the previous display to

− σ

∫

Ω

nu(·, T ′) · ξ(·, T ′) d|∇χu(·, T )| +
∫

Ω

n0
u · ξ(·, 0) d|∇χu(·, 0)|

= −σ

∫ T ′

0

∫

Ω

nu · ∂tξ d|∇χu|dt + σ

∫ T ′

0

∫

Ω

χu(u · ∇)(∇ · ξ) dxdt (55)

for almost every T ′ ∈ [0, T ].
Step 2: Summing (52), (53), (41) as well as (54), we obtain

LHSkin(T ′) + LHSvisc + LHSsurEn(T ′)

≤ RHSkin(0) + RHSsurEn(0) + RHSdt + RHSadv + RHSsurTen, (56)

where the individual terms are given by (cf. the proof of [12, Proposition 10])

LHSkin(T ′) :=
∫

Ω

1
2
ρ(χu(·, T ′))|u−v|2(·, T ′) dx, (57)

RHSkin(0) :=
∫

Ω

1
2
ρ(χ0

u)|u0 − v0|2 dx, (58)

LHSsurEn(T ′) := σ|∇χu(·, T ′)|(Ω) + σ

∫

Ω

(1 − θT ′) d|VT ′ |Sd−1(x), (59)
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RHSsurEn(0) := σ|∇χ0
u(·)|(Ω), (60)

LHSvisc :=
∫ T ′

0

∫

Ω

μ

2
|∇(u − v) + ∇(u − v)T|2 dxdt, (61)

RHSdt := −
∫ T ′

0

∫

Ω

(ρ(χv) − ρ(χu))(u − v) · ∂tv dxdt, (62)

RHSadv := −
∫ T ′

0

∫

Ω

(ρ(χu) − ρ(χv))(u − v) · (v · ∇)v dxdt

−
∫ T ′

0

∫

Ω

ρ(χu)(u − v) · ((u − v) · ∇)v dxdt, (63)

RHSsurTen := −σ

∫ T ′

0

∫

Ω

χv((u−v) · ∇)(∇ · ξ) dxdt

+ σ

∫ T ′

0

∫

Ω×Sd−1
(Id −s ⊗ s) : ∇v dVt(x, s) dt. (64)

Adding zeros, ∇·v = 0, the boundary condition n∂Ω·(∇v+(∇v)T)ξ = n∂Ω·(∇v+(∇v)T)(Id−n∂Ω⊗n∂Ω)ξ =
0 due to (36) and (16b), and the compatibility condition (42) allow to rewrite the second term of (64) as
follows

σ

∫ T ′

0

∫

Ω×Sd−1
(Id − s ⊗ s) : ∇v dVt(x, s) dt

= −σ

∫ T ′

0

∫

Ω×Sd−1
(s − ξ) · ((s − ξ) · ∇)v dVt(x, s) dt

− σ

∫ T ′

0

∫

Ω×Sd−1
s · (∇v + (∇v)T)ξ dVt(x, s) dt

+ σ

∫ T ′

0

∫

Ω×Sd−1
ξ · (ξ · ∇)v dVt(x, s) dt

= −σ

∫ T ′

0

∫

Ω×Sd−1
(s − ξ) · ((s − ξ) · ∇)v dVt(x, s) dt

− σ

∫ T ′

0

∫

Ω

ξ · (nu · ∇)v d|∇χu|dt − σ

∫ T ′

0

∫

Ω

nu · (ξ · ∇)v d|∇χu|dt

+ σ

∫ T ′

0

∫

Ω

ξ · (ξ · ∇)v d|Vt|Sd−1 dt. (65)

Furthermore, because of (44) we obtain

σ

∫ T ′

0

∫

Ω

ξ · (ξ · ∇)v d|Vt|Sd−1 dt

= σ

∫ T ′

0

∫

Ω

(1−θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt + σ

∫ T ′

0

∫

Ω

θtξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

∫ T ′

0

∫

∂Ω

ξ · (ξ · ∇)v d|Vt|Sd−1 dt

= σ

∫ T ′

0

∫

Ω

(1 − θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt + σ

∫ T ′

0

∫

Ω

ξ · (ξ · ∇)v d|∇χu|dt

+ σ

∫ T ′

0

∫

∂Ω

ξ · (ξ · ∇)v d|Vt|Sd−1 dt. (66)
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The combination of (64), (65) and (66) together with ∇ · v = 0 then implies

RHSsurTen = − σ

∫ T ′

0

∫

Ω×Sd−1
(s − ξ) · ((s − ξ) · ∇)v dVt(x, s) dt

+ σ

∫ T ′

0

∫

Ω

(1 − θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

∫ T ′

0

∫

∂Ω

ξ · (ξ · ∇)v d|Vt|Sd−1 dt

− σ

∫ T ′

0

∫

Ω

χv((u − v) · ∇)(∇ · ξ) dxdt

− σ

∫ T ′

0

∫

Ω

ξ · ((nu − ξ) · ∇)v d|∇χu|dt

− σ

∫ T ′

0

∫

Ω

(nu − ξ) · (ξ · ∇)v d|∇χu|dt

+ σ

∫ T ′

0

∫

Ω

(Id − ξ ⊗ ξ) : ∇v d|∇χu|dt. (67)

In summary, plugging back (57)–(63) and (67) into (56), and then summing (55) to the resulting inequality
yields in view of the definition (29) of the relative entropy

E[χu, u, V |χv, v](T ′) +
∫ T ′

0

∫

Ω

μ

2
|∇(u − v) + ∇(u − v)T|2 dxdt

≤ E[χu, u, V |χv, v](0) + Rdt + Radv + R
(1)
surTen + R

(2)
surTen (68)

for almost every T ′ ∈ [0, T ], where in addition to the notation of Proposition 5 we also defined the two
auxiliary quantities

R
(1)
surTen := −σ

∫ T ′

0

∫

Ω×Sd−1
(s − ξ) · ((s − ξ) · ∇)v dVt(x, s) dt

+ σ

∫ T ′

0

∫

Ω

(1 − θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

∫ T ′

0

∫

∂Ω

ξ · (ξ · ∇)v d|Vt|Sd−1 dt, (69)

R
(2)
surTen := σ

∫ T

0

∫

Ω

χu(u · ∇)(∇ · ξ) dxdt

− σ

∫ T ′

0

∫

Ω

χv((u−v) · ∇)(∇ · ξ) dxdt

− σ

∫ T ′

0

∫

Ω

ξ · ((nu − ξ) · ∇)v d|∇χu|dt

− σ

∫ T ′

0

∫

Ω

(nu − ξ) · (ξ · ∇)v d|∇χu|dt

+ σ

∫ T ′

0

∫

Ω

(Id −ξ ⊗ ξ) : ∇v d|∇χu|dt

− σ

∫ T ′

0

∫

Ω

nu · ∂tξ d|∇χu|dt. (70)
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The remainder of the proof is concerned with the post-processing of the term R
(2)
surTen.

Step 3: By adding zeros, we can rewrite the last right hand side term of (70) as

− σ

∫ T ′

0

∫

Ω

nu · ∂tξ d|∇χu|dt

= −σ

∫ T ′

0

∫

Ω

(nu−ξ) · (∂tξ+(v · ∇)ξ+(Id−ξ ⊗ ξ)(∇v)Tξ) d|∇χu|dt

− σ

∫ T ′

0

∫

Ω

((nu − ξ) · ξ)(ξ ⊗ ξ : ∇v) d|∇χu|dt

− σ

∫ T ′

0

∫

Ω

(
∂t

1
2
|ξ|2 + (v · ∇)

1
2
|ξ|2

)
d|∇χu|dt

+ σ

∫ T ′

0

∫

Ω

ξ ⊗ (nu − ξ) : ∇v d|∇χu|dt

+ σ

∫ T ′

0

∫

Ω

nu · ((v · ∇)ξ) d|∇χu|dt. (71)

We proceed by manipulating the last term in the latter identity. To this end, we compute applying the
product rule in the first step and then adding zero

σ

∫ T ′

0

∫

Ω

nu · ((v · ∇)ξ) d|∇χu|dt

= σ

∫ T ′

0

∫

Ω

nu · (∇ · (ξ ⊗ v)) d|∇χu|dt

+ σ

∫ T ′

0

∫

Ω

(1 − nu · ξ)(∇ · v) d|∇χu|dt − σ

∫ T ′

0

∫

Ω

Id : ∇v d|∇χu|dt. (72)

Noting that for symmetry reasons ∇ · (∇ · (ξ ⊗ v)) = ∇ · (∇ · (v ⊗ ξ)), an integration by parts based on
the boundary conditions (16b) and (v · n∂Ω)|∂Ω = 0 entails

σ

∫ T ′

0

∫

Ω

nu · (∇ · (ξ ⊗ v)) d|∇χu|dt

= − σ

∫ T ′

0

∫

Ω

χu∇ · (∇ · (v ⊗ ξ)) dxdt − σ

∫ T ′

0

∫

∂Ω

χu(n∂Ω ⊗ v : ∇ξ) dS dt

= σ

∫ T ′

0

∫

Ω

nu · (∇ · (v ⊗ ξ)) d|∇χu|dt

+ σ

∫ T ′

0

∫

∂Ω

χu(n∂Ω · ((ξ · ∇)v − (v · ∇)ξ)) dS dt.

We next observe that the last right hand side term of the previous display is zero. Indeed, note first that
thanks to the boundary conditions (16b) and (v ·n∂Ω)|∂Ω = 0 the involved gradients are in fact tangential
gradients along ∂Ω. Since the tangential gradient of a function only depends on its definition along the
manifold, we are free to substitute (ξ · τ∂Ω)τ∂Ω for ξ resp. (v · τ∂Ω)τ∂Ω for v, obtaining in the process

∫ T ′

0

∫

∂Ω

χu(n∂Ω · ((ξ · ∇)v − (v · ∇)ξ)) dS dt

=
∫ T ′

0

∫

∂Ω

χu[(ξ · ∇)(v · τ∂Ω) − (v · ∇)(ξ · τ∂Ω)](τ∂Ω · n∂Ω) dS dt
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+
∫ T ′

0

∫

∂Ω

χu[((v · τ∂Ω)ξ − (ξ · τ∂Ω)v) · ∇)τ∂Ω] · n∂Ω dS dt = 0.

The combination of the previous two displays together with an integration by parts and an application
of the product rule thus yields

σ

∫ T ′

0

∫

Ω

nu · (∇ · (ξ ⊗ v)) d|∇χu|dt

= σ

∫ T ′

0

∫

Ω

(nu · v)(∇ · ξ) d|∇χu|dt + σ

∫ T ′

0

∫

Ω

nu ⊗ ξ : ∇v d|∇χu|dt.

By another integration by parts, relying in the process also on ∇ · v = 0 and (v · n∂Ω)|∂Ω = 0, we may
proceed computing

σ

∫ T ′

0

∫

Ω

nu · (∇ · (ξ ⊗ v)) d|∇χu|dt

= − σ

∫ T ′

0

∫

Ω

χu∇ · (v(∇ · ξ)) dxdt + σ

∫ T ′

0

∫

Ω

nu ⊗ ξ : ∇v d|∇χu|dt

= − σ

∫ T ′

0

∫

Ω

χu(v · ∇)(∇ · ξ) dxdt + σ

∫ T ′

0

∫

Ω

nu ⊗ ξ : ∇v d|∇χu|dt. (73)

In summary, taking together (71)–(73) and adding for a last time zero yields

−σ

∫ T ′

0

∫

Ω

nu · ∂tξ d|∇χu|dt

= − σ

∫ T ′

0

∫

Ω

χu(v · ∇)(∇ · ξ) dxdt

− σ

∫ T ′

0

∫

Ω

(nu−ξ) · (∂tξ+(v · ∇)ξ+(Id−ξ ⊗ ξ)(∇v)Tξ) d|∇χu|dt

− σ

∫ T ′

0

∫

Ω

((nu − ξ) · ξ)(ξ ⊗ ξ : ∇v) d|∇χu|dt

− σ

∫ T ′

0

∫

Ω

(
∂t

1
2
|ξ|2 + (v · ∇)

1
2
|ξ|2

)
d|∇χu|dt

+ σ

∫ T ′

0

∫

Ω

(1 − nu · ξ)(∇ · v) d|∇χu|dt

+ σ

∫ T ′

0

∫

Ω

(nu − ξ) ⊗ ξ : ∇v d|∇χu|dt + σ

∫ T ′

0

∫

Ω

ξ ⊗ (nu − ξ) : ∇v d|∇χu|dt

− σ

∫ T ′

0

∫

Ω

(Id−ξ ⊗ ξ) : ∇v d|∇χu|dt. (74)

Inserting (74) into (70) then implies that R
(1)
surTen + R

(2)
surTen combines to the desired term RsurTen. In

particular, the estimate (68) upgrades to (30) as asserted. �

3.2. Time Evolution of the Bulk Error: Proof of Lemma 6

Note that the sign conditions for the transported weight ϑ, see Definition 3, ensure that

Evol[χu|χv](t) =
∫

Ω

(
χu(·, t) − χv(·, t)

)
ϑ(·, t) dx
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for all t ∈ [0, T ]. Hence, as a consequence of the transport equations for χv and χu (see Definitions 10
and 11, respectively) one obtains

Evol[χu|χv](T ′) = Evol[χu|χv](0)

+
∫ T ′

0

∫

Ω

(χu−χv)∂tϑ dxdt +
∫ T ′

0

∫

Ω

(χuu−χvv) · ∇ϑ dxdt (75)

for almost every T ′ ∈ [0, T ]. Note that for any sufficiently regular solenoidal vector field F with (F ·
n∂Ω)|∂Ω = 0, since ϑ = 0 along Iv (see Definition 3), an integration by parts yields

∫

Ω

χv(F · ∇)ϑ dx = 0. (76)

Adding zero in (75) and making use of (76) with respect to the choices F = u and F = v in form of∫
Ω

χv

(
(u−v) · ∇

)
ϑ dx = 0 then updates (75) to (32). This concludes the proof of Lemma 6. �

3.3. Conditional Weak-strong Uniqueness: Proof of Proposition 4

Starting point for a proof of the conditional weak-strong uniqueness principle is the following important
coercivity estimate (cf. [12, Lemma 20]).

Lemma 12. Let the assumptions and notation of Proposition 4 be in place. Then there exists a constant
C = C(χv, v, T ) > 0 such that for all δ ∈ (0, 1] it holds

∫ T ′

0

∫

Ω

|χv−χu||u−v|dxdt ≤ C

δ

∫ T ′

0

E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt

+ δ

∫ T ′

0

∫

Ω

|∇u − ∇v|2 dxdt (77)

for all T ′ ∈ [0, T ].

Proof. It turns out to be convenient to introduce a decomposition of the interface Iv into its topological
features: the connected components of Iv ∩Ω and the connected components of Iv ∩∂Ω. Let N ∈ N denote
the total number of such topological features of Iv, and split {1, . . . , N} =: I ·∪C as follows. The subset I
enumerates the space-time connected components of Iv ∩ Ω (being time-evolving connected interfaces),
whereas the subset C enumerates the space-time connected components of Iv ∩ ∂Ω (being time-evolving
contact points if d = 2, or time-evolving connected contact lines if d = 3). If i ∈ I, we let Ti denote
the space-time trajectory in Ω of the corresponding connected interface. Furthermore, for every c ∈ C we
write Tc representing the space-time trajectory in ∂Ω of the corresponding contact point (if d = 2) or line
(if d = 3). Finally, let us write i ∼ c for i ∈ I and c ∈ C if and only if Ti ends at Tc. With this language
and notation in place, the proof is now split into five steps.

Step 1: (Choice of a suitable localization scale) Denote by n∂Ω the unit normal vector field of ∂Ω
pointing into Ω, and by nIv

(·, t) the unit normal vector field of Iv(t) pointing into Ωv(t). Because of
the uniform C2

x regularity of the boundary ∂Ω and the uniform CtC
2
x regularity of the interface Iv(t),

t ∈ [0, T ], we may choose a scale r ∈ (0, 1
2 ] such that for all t ∈ [0, T ] and all i ∈ I the maps

Ψ∂Ω : ∂Ω × (−3r, 3r) → R
d, (x, y) �→ x + yn∂Ω(x), (78)

ΨTi(t) : Ti(t) × (−3r, 3r) → R
d, (x, y) �→ x + ynIv

(x, t) (79)

are C1 diffeomorphisms onto their image. By uniform regularity of ∂Ω and Iv (the latter in space-time),
we have bounds

sup
∂Ω×[−r,r]

|∇Ψ∂Ω| ≤ C, sup
Ψ∂Ω(∂Ω×[−r,r])

|∇Ψ−1
∂Ω| ≤ C, (80)
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sup
t∈[0,T ]

sup
Ti(t)×[−r,r]

|∇ΨTi(t)| ≤ C, sup
t∈[0,T ]

sup
ΨTi(t)(Ti(t)×[−r,r])

|∇Ψ−1
Ti(t)

| ≤ C (81)

for all i ∈ I. By possibly choosing r ∈ (0, 1
2 ] even smaller, we may also guarantee that for all t ∈ [0, T ]

and all i ∈ I it holds

ΨTi(t)(Ti(t)×[−r, r]) ∩ ΨTi′ (t)(Ti′(t)×[−r, r]) = ∅ for all i′ ∈ I, i′ = i, (82)

ΨTi(t)(Ti(t)×[−r, r]) ∩ Ψ∂Ω(∂Ω×[−r, r]) = ∅ ⇔ ∃c ∈ C : i ∼ c, (83)

ΨTi(t)(Ti(t)×[−r, r]) ∩ Ψ∂Ω(∂Ω×[−r, r]) ⊂ B2r(Tc(t)) if ∃c ∈ C : i ∼ c (84)

B2r(Tc(t)) ∩ B2r(Tc′(t)) = ∅ for all c, c′ ∈ C, c′ = c. (85)

Note finally that because of the 90◦ contact angle condition and by possibly choosing r ∈ (0, 1
2 ] even

smaller, we can furthermore ensure that

Ω \
(
Ψ∂Ω(∂Ω×[−r, r]) ∪

⋃

i∈I
ΨTi(t)(Ti(t)×[−r, r])

)

⊂ Ω ∩ {x ∈ R
d : dist(x, ∂Ω) ∧ dist(x, Iv(t)) > r}

(86)

for all t ∈ [0, T ]. Indeed, for x ∈ Ω \
(
Ψ∂Ω(∂Ω×[−r, r]) ∪

⋃
i∈I ΨTi(t)(Ti(t)×[−r, r])

)
it follows that

dist(x, ∂Ω) > r. In case the interface Iv(t) intersects ∂Ω it may not be immediately clear that also
dist(x, Iv(t)) > r holds true. Assume there exists a point x ∈ Ω \

(
Ψ∂Ω(∂Ω×[−r, r]) ∪

⋃
i∈I ΨTi(t)(Ti(t)×

[−r, r])
)

such that dist(x, Iv(t)) ≤ r. Then necessarily x ∈ (Ω ∩ Br(c(t))) \
⋃

i∈I ΨTi(t)(Ti(t)×[−r, r]) for
some boundary point c(t) ∈ ∂Ω ∩ Iv(t). Hence, because of the uniform C2

x regularity of ∂Ω and Iv(t)
intersecting ∂Ω at an angle of 90◦, one may choose r ∈ (0, 1

2 ] small enough such that x ∈ (Ω ∩ Br(c(t)))
implies dist(x, ∂Ω) ≤ r. As we have already seen, this contradicts x ∈ Ω \ Ψ∂Ω(∂Ω×[−r, r]).

Step 2: (A reduction argument) We may estimate by a union bound and (86)
∫ T ′

0

∫

Ω

|χv−χu||u−v|dxdt

≤
∫ T ′

0

∫

Ω∩Ψ∂Ω(∂Ω×[−r,r])\
⋃

c∈C B2r(Tc(t))

|χv−χu||u−v|dxdt

+
∑

i∈I

∫ T ′

0

∫

Ω∩ΨTi(t)(Ti(t)×[−r,r])\
⋃

c∈C B2r(Tc(t))

|χv−χu||u−v|dxdt

+ C
∑

c∈C

∫ T ′

0

∫

Ω∩B2r(Tc(t))

|χv−χu||u−v|dxdt

+
∫ T ′

0

∫

Ω∩{dist(·,∂Ω)∧dist(·,Iv(t))>r}
|χv−χu||u−v|dxdt. (87)

An application of Hölder’s inequality and Young’s inequality, the definition (29) of the relative entropy
functional, the coercivity estimate (27) for the transported weight, and the definition (31) of the bulk
error functional further imply

∫ T ′

0

∫

Ω∩{dist(·,∂Ω)∧dist(·,Iv(t))>r}
|χv−χu||u−v|dxdt

≤ C

∫ T ′

0

∫

Ω∩{dist(·,∂Ω)∧dist(·,Iv(t))>r}
|χv−χu|dxdt + C

∫ T ′

0

E[χu, u, V |χv, v](t) dt

≤ C

∫ T ′

0

E[χu, u, V |χv, v](t) + Evol[χu, χv](t) dt.

Hence, it remains to estimate the first three terms on the right hand side of (87).
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Step 3: (Estimate near the interface but away from contact points) First of all, because of the local-
ization properties (82)–(84) it holds for all i ∈ I

dist(·, Ti) = dist(·, ∂Ω) ∧ dist(·, Iv(t)) (88)

in Ω ∩ ΨTi(t)(Ti(t)×[−r, r]) \
⋃

c∈C B2r(Tc(t)). Hence, the local interface error height as measured in the
direction of nIv

on Ti

hTi
(x, t) :=

∫ r

−r

|χu − χv|(ΨTi(t)(x, y), t) dy, x ∈ Ti(t), t ∈ [0, T ],

is, because of (88) and the coercivity estimate (27) of the transported weight ϑ, subject to the estimate

h2
Ti

(x, t) ≤ C

∫ r

−r

|χu − χv|(ΨTi(t)(x, y), t)y dy

≤ C

∫ r

−r

|χu − χv|(ΨTi(t)(x, y), t)|ϑ|(ΨTi(t)(x, y), t) dy (89)

for all x ∈ Ti(t) \
⋃

c∈C B2r(Tc(t)), all t ∈ [0, T ] and all i ∈ I. Carrying out the slicing argument of the
proof of [12, Lemma 20] in Ω∩ΨTi(t)(Ti(t)×[−r, r]) \

⋃
c∈C B2r(Tc(t)) by means of ΨTi(t), which is indeed

admissible thanks to (79), (81) and (89), shows that one obtains an estimate of required form

∑

i∈I

∫ T ′

0

∫

Ω∩ΨTi(t)(Ti(t)×[−r,r])\
⋃

c∈C B2r(Tc(t))

|χv−χu||u−v|dxdt

≤ C

δ

∫ T ′

0

E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt + δ

∫ T ′

0

∫

Ω

|∇u − ∇v|2 dxdt.

Step 4: (Estimate near the boundary of the domain but away from contact points) The argument is
similar to the one of the previous step, with the only major difference being that the slicing argument
of the proof of [12, Lemma 20] is now carried out in Ω ∩ Ψ∂Ω(∂Ω×[−r, r]) \

⋃
c∈C B2r(Tc(t)) by means of

Ψ∂Ω. This in turn is facilitated by the following facts. First, the localization properties (82)–(84) ensure

dist(·, ∂Ω) = dist(·, ∂Ω) ∧ dist(·, Iv(t)) (90)

in Ω∩Ψ∂Ω(∂Ω×[−r, r])\
⋃

c∈C B2r(Tc(t)). Second, as a consequence of (90) and the coercivity estimate (27)
of the transported weight ϑ, the local interface error height as measured in the direction of n∂Ω

h∂Ω(x, t) :=
∫ r

−r

|χu − χv|(Ψ∂Ω(x, y), t) dy, x ∈ ∂Ω, t ∈ [0, T ],

satisfies the estimate

h2
∂Ω(x, t) ≤ C

∫ r

−r

|χu − χv|(Ψ∂Ω(x, y), t)y dy

≤ C

∫ r

−r

|χu − χv|(Ψ∂Ω(x, y), t)|ϑ|(Ψ∂Ω(x, y), t) dy. (91)

Hence, we obtain
∫ T ′

0

∫

Ω∩Ψ∂Ω(∂Ω×[−r,r])\
⋃

c∈C B2r(Tc(t))

|χv−χu||u−v|dxdt

≤ C

δ

∫ T ′

0

E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt + δ

∫ T ′

0

∫

Ω

|∇u − ∇v|2 dxdt.

Step 5: (Estimate near contact points) Fix c ∈ C, and let i ∈ I denote the unique connected interface
Ti such that i ∼ c. Because of the regularity of ∂Ω, the regularity of Ti, and the 90◦ contact angle
condition we may decompose the neighborhood Ω ∩ B2r(Tc(t))—by possibly reducing the localization
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scale r ∈ (0, 1
2 ] even further—into three pairwise disjoint open sets W∂Ω(t), WTi

(t) and W∂Ω∼Ti
(t) such

that Ω ∩ B2r(Tc(t)) \
(
W∂Ω(t) ∪ WTi

(t) ∪ W∂Ω∼Ti
(t)

)
is an Hd null set and

dist(·, ∂Ω) = dist(·, ∂Ω) ∧ dist(·, Iv(t)) in W∂Ω(t), (92)

dist(·, Ti(t)) = dist(·, ∂Ω) ∧ dist(·, Iv(t)) in WTi
(t), (93)

dist(·, ∂Ω) ∼ dist(·, Ti(t)) ∼ dist(·, Iv(t)) in W∂Ω∼Ti
(t), (94)

as well as

W∂Ω(t) ⊂ Ψ∂Ω(∂Ω×(−3r, 3r)), (95)

WTi
(t) ⊂ ΨTi(t)(Ti(t)×(−3r, 3r)), (96)

W∂Ω∼Ti
(t) ⊂ Ψ∂Ω(∂Ω×(−3r, 3r)) ∩ ΨTi(t)(Ti(t)×(−3r, 3r)). (97)

(Up to a rigid motion, these sets can in fact be defined independent of t ∈ [0, T ].) Hence, applying the
argument of Step 3 based on (93) and (96) with respect to Ω ∩ B2r(Tc(t)) ∩ WTi

(t), the argument of
Step 4 based on (92) and (95) with respect to Ω∩B2r(Tc(t))∩W∂Ω(t), and either the argument of Step 3
or Step 4 based on (94) and (97) with respect to Ω ∩ B2r(Tc(t)) ∩ W∂Ω∼Ti

(t) entails

∑

c∈C

∫ T ′

0

∫

Ω∩B2r(Tc(t))

|χv−χu||u−v|dxdt

≤ C

δ

∫ T ′

0

E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt + δ

∫ T ′

0

∫

Ω

|∇u − ∇v|2 dxdt.

This in turn concludes the proof of Lemma 12. �

Proof of Proposition 4. The proof proceeds in three steps.
Step 1: (Post-processing the relative entropy inequality (30)) It follows immediately from the L∞

x,t-
bound for ∂tv and ρ(χv) − ρ(χu) = (ρ+−ρ−)(χv−χu) that

|Rdt| ≤ C

∫ T ′

0

∫

Ω

|χv−χu||u−v|dxdt (98)

for almost every T ′ ∈ [0, T ]. Furthermore, the L∞
t W 1,∞

x -bound for v, the definition (29) of the relative
entropy functional, and again the identity ρ(χv) − ρ(χu) = (ρ+−ρ−)(χv−χu) imply that

|Radv| ≤ C

∫ T ′

0

∫

Ω

|χv−χu||u−v|dxdt + C

∫ T ′

0

E[χu, u, V |χv, v](t) dt (99)

for almost every T ′ ∈ [0, T ]. For a bound on the interface contribution RsurTen, we rely on the L∞
t W 1,∞

x -
bound for v, the L∞

t W 2,∞
x -bound for ξ, the L∞

t W 1,∞
x -bound for B, the definition (29) of the relative

entropy functional, as well as the estimates (16d) and (16e) of a boundary adapted extension ξ of nIv
to

the effect that

|RsurTen| ≤ C

∫ T ′

0

∫

Ω

|χv−χu||u−v|dxdt

+ C

∫ T ′

0

∫

Ω×Sd−1
|s − ξ|2 dVt(x, s) dt

+ C

∫ T ′

0

∫

Ω

1 − θt d|Vt|Sd−1 dt

+ C

∫ T ′

0

∫

∂Ω

1 d|Vt|Sd−1 dt

+ C

∫ T ′

0

∫

Ω

|nu − ξ|2 d|∇χu|dt
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+ C

∫ T ′

0

∫

Ω

dist2(·, Iv) ∧ 1 d|∇χu|dt

+ C

∫ T ′

0

∫

Ω

|ξ · (ξ − nu)|d|∇χu|dt

+ C

∫ T ′

0

E[χu, u, V |χv, v](t) dt (100)

for almost every T ′ ∈ [0, T ]. It follows from property (16a) of a boundary adapted extension ξ and the
trivial estimates |ξ · (ξ − nu)| ≤ (1−|ξ|2) + (1−nu · ξ) ≤ 2(1−|ξ|) + (1−nu · ξ) and 1 − |ξ| ≤ 1 − nu · ξ that

∫ T ′

0

∫

Ω

dist2(·, Iv) ∧ 1 d|∇χu|dt +
∫ T ′

0

∫

Ω

|ξ · (ξ − nu)|d|∇χu|dt

≤ C

∫ T ′

0

E[χu, u, V |χv, v](t) dt. (101)

Moreover, the trivial estimate |nu − ξ|2 ≤ 2(1 − nu · ξ) implies
∫ T ′

0

∫

Ω

|nu − ξ|2 d|∇χu|dt ≤ C

∫ T ′

0

E[χu, u, V |χv, v](t) dt. (102)

Recall finally from (24) and (20) that
∫ T ′

0

∫

Ω×Sd−1
|s − ξ|2 dVt(x, s) dt ≤ C

∫ T ′

0

E[χu, u, V |χv, v](t) dt,

∫ T ′

0

∫

Ω

1 − θt d|Vt|Sd−1 dt +
∫ T ′

0

∫

∂Ω

1 d|Vt|Sd−1 dt ≤ C

∫ T ′

0

E[χu, u, V |χv, v](t) dt. (103)

By inserting back the estimates (98)–(103) into the relative entropy inequality (30), then making use
of the coercivity estimate (77) and Korn’s inequality, and finally carrying out an absorption argument, it
follows that there exist two constants c = c(χv, v, T ) > 0 and C = C(χv, v, T ) > 0 such that for almost
every T ′ ∈ [0, T ]

E[χu, u, V |χv, v](T ′) + c

∫ T ′

0

∫

Ω

|∇(u−v) + ∇(u−v)T|2 dxdt

≤ E[χu, u, V |χv, v](0) + C

∫ T ′

0

E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt. (104)

Step 2: (Post-processing the identity (32)) By the L∞
t W 1,∞

x -bound for the transported weight ϑ, the
estimate (28) on the advective derivative of the transported weight ϑ, and the definition (31) of the bulk
error functional we infer that

Evol[χu|χv](T ′) ≤ Evol[χu|χv](0) + C

∫ T ′

0

Evol[χu|χv](t) dt

+ C

∫ T ′

0

∫

Ω

|χv−χu||u−v|dxdt

for almost every T ′ ∈ [0, T ]. Adding (104) to the previous display, and making use of the coercivity
estimate (77) in combination with Korn’s inequality and an absorption argument thus implies that for
almost every T ′ ∈ [0, T ]

E[χu, u, V |χv, v](T ′) + Evol[χu|χv](T ′) + c

∫ T ′

0

∫

Ω

|∇(u−v) + ∇(u−v)T|2 dxdt

≤ E[χu, u, V |χv, v](0) + Evol[χu|χv](0)



JMFM Stability for Two-phase Fluid Flow with 90◦ Contact Angle Page 29 of 60    93 

+ C

∫ T ′

0

E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt. (105)

Step 3: (Conclusion) The stability estimates (11) and (12) are an immediate consequence of the
estimate (105) by an application of Gronwall’s lemma. In case of coinciding initial conditions, it follows
that Evol[χu|χv](t) = 0 for almost every t ∈ [0, T ]. This in turn implies that χu(·, t) = χv(·, t) almost
everywhere in Ω for almost every t ∈ [0, T ]. The asserted representation of the varifold follows from the
fact that E[χu, u, V |χv, v](t) = 0 for almost every t ∈ [0, T ]. This concludes the proof of the conditional
weak-strong uniqueness principle. �

3.4. Proof of Theorem 1

This is now an immediate consequence of Proposition 4 and the existence results of Proposition 7 and
Lemma 8, respectively. �

4. Bulk Extension of the Interface Unit Normal

The aim of this short section is the construction of an extension of the interface unit normal in the vicinity
of a space-time trajectory in Ω of a connected component of the interface Iv corresponding to a strong
solution in the sense of Definition 10 on a time interval [0, T ].

Mainly for reference purposes in later sections, it turns out to be beneficial to introduce already at
this stage some notation in relation to a decomposition of the interface Iv into its topological features:
the connected components of Iv ∩ Ω and the connected components of Iv ∩ ∂Ω. Denoting by N ∈ N the
total number of such topological features present in the interface Iv we split {1, . . . , N} =: I ·∪C by means
of two disjoint subsets. In particular, the subset I enumerates the space-time connected components of
Iv ∩Ω, i.e., time-evolving connected interfaces, whereas the subset C enumerates the space-time connected
components of Iv ∩∂Ω, i.e., time-evolving contact points. If i ∈ I, we denote by Ti :=

⋃
t∈[0,T ] Ti(t)×{t} ⊂

Iv ∩ (Ω×[0, T ]) the space-time trajectory of the corresponding connected interfaces Ti(t) ⊂ Iv(t) ∩ Ω,
t ∈ [0, T ].

For each i ∈ I, we want to define a vector field ξi subject to conditions as in Definition 2; at least
in a suitable neighborhood of Ti. We first formalize what we mean by the latter in form of the following
definition.

Definition 13. Let d = 2, and let Ω ⊂ R
2 be a bounded domain with orientable and smooth boundary.

Let (χv, v) be a strong solution to the incompressible Navier–Stokes equation for two fluids in the sense
of Definition 10 on a time interval [0, T ]. Fix a two-phase interface i ∈ I. We call ri ∈ (0, 1] an admissible
localization radius for the interface Ti ⊂ Iv ∩ (Ω×[0, T ]) if the map

ΨTi
: Ti × (−2ri, 2ri) → R

2 × [0, T ], (x, t, s) �→
(
x + snIv

(x, t), t
)

(106)

is bijective onto its image im(ΨTi
) := ΨTi

(
Ti×(−2ri, 2ri)

)
, and its inverse is a diffeomorphism of class

C0
t C2

x(im(ΨTi
)) ∩ C1

t C0
x(im(ΨTi

)).
In case such a scale ri ∈ (0, 1] exists, we may express the inverse by means of Ψ−1

Ti
=: (PTi

, Id, sTi
) :

im(ΨTi
) → Ti×(−2ri, 2ri). Hence, the map PTi

represents in each time slice the nearest-point projection
onto the interface Ti(t) ⊂ Iv(t) ∩ Ω, t ∈ [0, T ], whereas sTi

bears the interpretation of a signed distance
function with orientation fixed by ∇sTi

= nIv
. In particular, sTi

∈ C0
t C3

x(im(ΨTi
)) ∩ C1

t C1
x(im(ΨTi

)) as
well as PTi

∈ C0
t C2

x(im(ΨTi
)) ∩ C1

t C0
x(im(ΨTi

)).
By a slight abuse of notation, we extend to im(ΨTi

) the definition of the normal vector field resp. the
scalar mean curvature of Ti by means of

nIv
: im(ΨTi

) → S
1, (x, t) �→ nIv

(PTi
(x, t), t) = ∇sTi

(x, t), (107)
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HIv
: im(ΨTi

) → R, (x, t) �→ −(ΔsTi
)(PTi

(x, t), t). (108)

Hence, we may register that nIv
∈ C0

t C2
x(im(ΨTi

)) ∩ C1
t C0

x(im(ΨTi
)) as well as HIv

∈ C0
t C1

x(im(ΨTi
)).

It is clear from Definition 10 of a strong solution to the incompressible Navier–Stokes equation for two
fluids, in particular Definition 9 of smoothly evolving domains and interfaces, that all interfaces admit an
admissible localization radius in the sense of Definition 13 as a consequence of the tubular neighborhood
theorem.

Construction 14. Let d = 2, and let Ω ⊂ R
2 be a bounded domain with orientable and smooth boundary.

Let (χv, v) be a strong solution to the incompressible Navier–Stokes equation for two fluids in the sense of
Definition 10 on a time interval [0, T ]. Fix a two-phase interface i ∈ I and let ri ∈ (0, 1] be an admissible
localization radius for the interface Ti ⊂ Iv in the sense of Definition 13. Then a bulk extension of the
unit normal nIv

along a smooth interface Ti is the vector field ξi defined by

ξi(x, t) := nIv
(x, t), (x, t) ∈ im(ΨTi

) ∩ (Ω×[0, T ]). (109)

We record the required properties of the vector field ξi.

Proposition 15. Let the assumptions and notation of Construction 14 be in place. Then, in terms of
regularity it holds that ξi ∈ C0

t C2
x ∩ C1

t C0
x(im(ΨTi

) ∩ (Ω×[0, T ])). Moreover, we have

∇ · ξi + HIv
= O(dist(·, Ti)), (110)

∂tξ
i + (v · ∇)ξi + (Id−ξi ⊗ ξi)(∇v)Tξi = O(dist(·, Ti)), (111)

∂t|ξi|2 + (v · ∇)|ξi|2 = 0 (112)

throughout the space-time domain im(ΨTi
) ∩ (Ω×[0, T ]).

Proof. The asserted regularity of ξi is a direct consequence of its definition (109) and the regularity of nIv

from Definition 13. In view of the definitions (109), (107) and (108), the estimate (110) is directly implied
by a Lipschitz estimate based on the regularity of HIv

from Definition 13. The Eq. (112) is trivially
fulfilled because ξi is a unit vector, cf. the definition (109).

For a proof of (111), we first note that ∂tsTi
(x, t) = −

(
v(PTi

(x, t), t) · ∇
)
sTi

(x, t) for all (x, t) ∈
im(ΨTi

)∩(Ω×[0, T ]). Indeed, ∂tsTi
equals the normal speed (oriented with respect to −nIv

) of the nearest
point on the connected interface Ti, which in turn by nIv

= ∇sTi
is precisely given by the asserted right

hand side term. Differentiating the equation for the time evolution of sTi
then yields (111) by means

of ∇PTi
= Id − nIv

⊗ nIv
− sTi

∇nIv
, the chain rule, and the regularity of v. Note carefully that this

argument is actually valid regardless of the assumption μ− = μ+ since (τIv
· ∇)v does not jump across

the interface Ti. �

5. Extension of the Interface Unit Normal at a 90◦ Contact Point

This section constitutes the core of the present work. We establish the existence of a boundary adapted
extension of the interface unit normal in the vicinity of a space-time trajectory of a 90◦ contact point on
the boundary ∂Ω.

The vector field from the previous section serves as the main building block for an extension of nIv

away from the domain boundary ∂Ω. However, it is immediately clear that the bulk construction in
general does not respect the necessary boundary condition n∂Ω · ξ = 0 along ∂Ω. (Even more drastically,
on non-convex parts of ∂Ω the domain of definition for the bulk construction from the previous section
may not even include ∂Ω!) Hence, in the vicinity of contact points a careful perturbation of the rather
trivial construction from the previous section is required to enforce the boundary condition. That this
can indeed be achieved is summarized in the following Proposition 16, representing the main result of
this section.
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For its formulation, it is convenient for the purposes of Sect. 6 to recall the notation in relation to
the decomposition of the interface Iv in terms of its topological features. More precisely, denoting by
N ∈ N the total number of such topological features present in the interface Iv, we split {1, . . . , N} =:
I ·∪ C, where I enumerates the time-evolving connected interfaces of Iv ∩ Ω, whereas C enumerates the
time-evolving contact points of Iv ∩ ∂Ω. If i ∈ I, Ti :=

⋃
t∈[0,T ] Ti(t)×{t} ⊂ Iv ∩ (Ω×[0, T ]) denotes

the space-time trajectory of the corresponding connected interface, whereas if c ∈ C, we denote by
Tc :=

⋃
t∈[0,T ] Tc(t)×{t} ⊂ Iv ∩ (∂Ω×[0, T ]) the space-time trajectory of the corresponding contact point.

Finally, we write i ∼ c for i ∈ I and c ∈ C if and only if Ti ends at Tc; otherwise i ∼ c.

Proposition 16. Let d = 2, and let Ω ⊂ R
2 be a bounded domain with orientable and smooth boundary ∂Ω.

Let (χv, v) be a strong solution to the incompressible Navier–Stokes equation for two fluids in the sense
of Definition 10 on a time interval [0, T ]. Fix a contact point c ∈ C and let i ∈ I be such that i ∼ c. Let
rc ∈ (0, 1] be an associated admissible localization radius in the sense of Definition 17 below.

There exists a potentially smaller radius r̂c ∈ (0, rc], and a vector field

ξc : Nr̂c,c(Ω) → S
1

defined on the space-time domain Nr̂c,c(Ω) :=
⋃

t∈[0,T ]

(
Br̂c

(Tc(t)) ∩ Ω
)
×{t}, such that the following

conditions are satisfied:

(i) It holds ξc ∈
(
C0

t C2
x ∩ C1

t C0
x

)(
Nr̂c,c(Ω) \ Tc

)
.

(ii) We have ξc(·, t) = nIv
(·, t) and ∇ · ξc(·, t) = −HIv

(·, t) along Ti(t) ∩ Br̂c
(Tc(t)) for all t ∈ [0, T ].

(iii) The required boundary condition is satisfied even away from the contact point, namely ξc · n∂Ω = 0
along Nr̂c,c(Ω) ∩ (∂Ω×[0, T ]).

(iv) The following estimates on the time evolution of ξchold true in Nr̂c,c(Ω)

∂tξ
c + (v · ∇)ξc + (Id −ξc ⊗ ξc)(∇v)Tξc = O

(
dist(·, Ti)

)
, (113)

∂t|ξc|2 + (v · ∇)|ξc|2 = 0. (114)

(v) Let ri ∈ (0, 1] be an admissible localization radius for the interface Ti, and let ξi be the bulk extension
of the interface unit normal on scale ri as provided by Proposition 15. The vector field ξc is a
perturbation of the bulk extension ξi in the sense that the following compatibility bounds hold true

|ξi(·, t) − ξc(·, t)| + |∇ · ξi(·, t) − ∇ · ξc(·, t)| ≤ C dist(·, Ti(t)), (115)

|ξi(·, t) · (ξi−ξc)(·, t)| ≤ C dist2(·, Ti(t)) (116)

within Br̂c∧ri
(Tc(t)) ∩

(
W c

Ti
(t) ∪ W c

Ω±
v
(t)

)
for all t ∈ [0, T ], cf. Definition 17.

A vector field ξc subject to these requirements will be referred to as a contact point extension of the
interface unit normal on scale r̂c.

A proof of Proposition 16 is provided in Sect. 5.4. The preceding three subsections collect all the
ingredients required for the construction.

5.1. Description of the Geometry Close to a Moving Contact Point, Choice of Orthonormal Frames, and
a Higher-order Compatibility Condition

We provide a suitable decomposition for a space-time neighborhood of a moving contact point Tc, c ∈ C.
The main ingredient is given by the following notion of an admissible localization radius. Though rather
technical and lengthy in appearance, all requirements in the definition are essentially a direct consequence
of the regularity of a strong solution. The main purpose of the notion of an admissible localization radius
is to collect in a unified way notation and properties which will be referred to numerous times in the
sequel.
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Definition 17. Let d = 2, and let Ω ⊂ R
2 be a bounded domain with orientable and smooth boundary ∂Ω.

Let (χv, v) be a strong solution to the incompressible Navier–Stokes equation for two fluids in the sense of
Definition 10 on a time interval [0, T ]. Fix a contact point c ∈ C and let i ∈ I be such that i ∼ c. Let ri ∈
(0, 1] be an admissible localization radius for the connected interface Ti in the sense of Definition 13. We
call rc ∈ (0, ri] an admissible localization radius for the moving 90◦ contact point Tc if the following list
of properties is satisfied:

(i) Let the map Ψ∂Ω : ∂Ω×(−2rc, 2rc) → R
2 be given by (x, s) �→ x+sn∂Ω(x). We require Ψ∂Ω to be

bijective onto its image im(Ψ∂Ω) := Ψ∂Ω

(
∂Ω×(−2rc, 2rc)

)
, and its inverse Ψ−1

∂Ω is a diffeomorphism
of class C2

x(im(Ψ∂Ω)). We may express the inverse by means of Ψ−1
∂Ω =: (P∂Ω, s∂Ω) : im(Ψ∂Ω) →

∂Ω×(−2rc, 2rc). Hence, P∂Ω represents the nearest-point projection onto ∂Ω, whereas s∂Ω is the
signed distance function with orientation fixed by ∇s∂Ω = n∂Ω. In particular, s∂Ω ∈ C3

x(im(Ψ∂Ω))
and P∂Ω ∈ C2

x(im(Ψ∂Ω)).
By a slight abuse of notation, we extend to im(Ψ∂Ω) the definition of the normal vector field

resp. the scalar mean curvature of ∂Ω by means of

n∂Ω : im(Ψ∂Ω) → S
1, (x, t) �→ n∂Ω(P∂Ω(x)) = ∇s∂Ω(x), (117)

H∂Ω : im(Ψ∂Ω) → R, (x, t) �→ −(Δs∂Ω)(P∂Ω(x)). (118)

Hence, we note that n∂Ω ∈ C2
x(im(Ψ∂Ω)) and H∂Ω ∈ C1

x(im(Ψ∂Ω)).
(ii) There exist sets W c

Ti
=

⋃
t∈[0,T ] W

c
Ti

(t)×{t}, W c
Ω±

v
=

⋃
t∈[0,T ] W

c
Ω±

v
(t)×{t} and W±,c

∂Ω =
⋃

t∈[0,T ]

W±,c
∂Ω (t)×{t} with the following properties:

First, for every t ∈ [0, T ], the sets W c
Ti

(t), W c
Ω±

v
(t) and W±,c

∂Ω (t) are non-empty subsets of

Brc
(Tc(t)) with pairwise disjoint interior. For all t ∈ [0, T ], each of these sets is represented by a

cone with apex at the contact point Tc(t) intersected with Brc
(Tc(t)). More precisely, there exist

six time-dependent pairwise distinct unit-length vectors X±
Ti

, XΩ±
v

and X±
∂Ω of class C1

t ([0, T ]) such
that for all t ∈ [0, T ] it holds

W c
Ti

(t) =
(
Tc(t)+{αX+

Ti
(t) + βX−

Ti
(t) : α, β ∈ [0,∞)}

)
∩ Brc

(Tc(t)), (119)

W c
Ω±

v
(t) =

(
Tc(t)+{αXΩ±

v
(t) + βX±

Ti
(t) : α, β ∈ [0,∞)}

)
∩ Brc

(Tc(t)), (120)

W±,c
∂Ω (t) =

(
Tc(t)+{αX±

∂Ω(t) + βXΩ±
v
(t) : α, β ∈ [0,∞)}

)
∩ Brc

(Tc(t)). (121)

The opening angles of these cones are constant, and numerically fixed by

X±
∂Ω · XΩ±

v
= X+

Ti
· X−

Ti
= cos(π/3), XΩ±

v
· X±

Ti
= cos(π/6). (122)

Second, for every t ∈ [0, T ], the sets W c
Ti

(t), W c
Ω±

v
(t) and W±,c

∂Ω (t) provide a decomposition of
Brc

(Tc(t)) in form of

Brc
(Tc(t)) ∩ Ω

=
(
W c

Ti
(t) ∪ W c

Ω+
v
(t) ∪ W c

Ω−
v
(t) ∪ W+,c

∂Ω (t) ∪ W−,c
∂Ω (t)

)
∩ Ω.

(123)

Third, for each t ∈ [0, T ], the following inclusions hold true (recall from Definition 13 the
notation for the diffeomorphism ΨTi

):

Brc
(Tc(t)) ∩ Ti(t) ⊂

(
W c

Ti
(t) \ Tc(t)

)
⊂ {x ∈ Ω: (x, t) ∈ im(ΨTi

)}, (124)

Brc
(Tc(t)) ∩ ∂Ω ⊂ W+,c

∂Ω (t) ∪ W−,c
∂Ω (t), (125)

W±,c
∂Ω (t) ⊂ {x ∈ R

2 : x ∈ im(Ψ∂Ω)}, (126)

W c
Ω±

v
(t) \ Tc(t) ⊂ Ω±

v (t) ∩ {x ∈ Ω: (x, t) ∈ im(ΨTi
), x ∈ im(Ψ∂Ω)}. (127)

(iii) Finally, there exists a constant C > 0 such that

dist(·, Tc) ∨ dist(·, ∂Ω) ≤ C dist(·, Ti) on W c
Ω±

v
∪ W±,c

∂Ω , (128)



JMFM Stability for Two-phase Fluid Flow with 90◦ Contact Angle Page 33 of 60    93 

∂Ω

ic

(a) Interface wedge W c
i
.

∂Ω

ic

(b) Boundary wedges W±
∂Ω.

∂Ω

ic

(c) Interpolation wedges W c

Ω±
v

.

Fig. 1. Decomposition for a space-time neighborhood of Tc

We refer from here onwards to W c
Ti

as the interface wedge, W±,c
∂Ω as boundary wedges, and W c

Ω±
v

as
interpolation wedges.

Figures 1, 2 and 3 contain several illustrations of the previous definition. Before moving on, we briefly
discuss the existence of an admissible localization radius.
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∂Ω

ic

(a) Inclusion in the image of ΨTi .

∂Ω

ic

(b) Inclusion in the image of Ψ∂Ω.

Fig. 2. Inclusion properties of diffeomorphisms

Fig. 3. Orientation of normal and tangential vectors at Tc

Lemma 18. Let the assumptions and notation of Definition 17 be in place. There exists a constant C =
C(∂Ω, χv, v, T ) ≥ 1 such that each rc ∈ (0, 1

C ] is an admissible localization radius for the contact point Tc

in the sense of Definition 17.

Proof. The first item in the definition of an admissible localization radius is an immediate consequence
of the tubular neighborhood theorem, which in turn is facilitated by the regularity of the domain bound-
ary ∂Ω.

For a construction of the wedges, we only have to provide a definition for the vectors X±
Ti

, XΩ±
v

and X±
∂Ω

A possible choice is the following. Fix t ∈ [0, T ] and let {c(t)} = Tc(t). The desired unit vectors are
obtained through rotation of the inward-pointing unit normal n∂Ω(c(t)). Note that

(
n∂Ω(c(t)), nIv

(c(t), t)
)

form an orthonormal basis of R2 thanks to the contact angle condition (33). We then let X±
Ti

(t) be the

unique unit vector with X±
Ti

(t)·n∂Ω(c(t)) =
√

3
2 as well as sign

(
X±

Ti
(t)·nIv

(c(t), t)
)

= ±1. Similarly, XΩ±
v
(t)

represents the unique unit vector with XΩ±
v
(t)·n∂Ω(c(t)) = 1

2 and sign
(
XΩ±

v
(t)·nIv

(c(t), t)
)

= ±1. Finally,
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X±
∂Ω(t) denotes the unique unit vector with X±

Ω (t) · n∂Ω(c(t)) = − 1
2 and sign

(
X±

Ω (t) · nIv
(c(t), t)

)
= ±1.

For an illustration, we refer again to Fig. 1.
The wedges W c

Ti
(t), W c

Ω±
v
(t) and W±,c

∂Ω (t) may now be defined through the right hand sides of (119),
(120) and (121), respectively. The properties (123)–(128) are then obviously valid for sufficiently small
radii as a consequence of the regularity of the domain boundary ∂Ω, the regularity of the interface Iv due
to Definition 10 of a strong solution, as well as the 90◦ contact angle condition (33). �

A main step in the construction of a contact point extension of the interface unit normal consists of
perturbing the bulk construction of Sect. 4 by introducing suitable tangential terms, cf. Sect. 5.2 below.
(This in turn becomes necessary due to the boundary constraint n∂Ω · ξc = 0 along ∂Ω.) To this end, the
following constructions and formulas will be of frequent use.

Lemma 19. Let the assumptions and notation of Definitions 13 and 17 be in place. Let rc be an ad-
missible localization radius of a contact point Tc and let i ∈ I such that i ∼ c. Define Nrc,c(Ω) :=⋃

t∈[0,T ]

(
Brc

(Tc(t))∩Ω
)
×{t}. We fix unit-length tangential vector fields τ̃Iv

resp. τ̃∂Ω along Nrc,c(Ω)∩Ti

resp. ∂Ω with orientation chosen such that τ̃Iv
= −n∂Ω resp. τ̃∂Ω = nIv

hold true at the contact point Tc.
We then define extensions

τIv
: Nrc,c(Ω) ∩ im(ΨTi

) → S
1, (x, t) �→ τ̃Iv

(PTi
(x, t), t),

τ∂Ω : im(Ψ∂Ω) → S
1, x �→ τ̃∂Ω(P∂Ω(x)),

Then, it holds τIv
∈ C0

t C2
x(Nrc,c(Ω) ∩ im(ΨTi

)) ∩ C1
t C0

x(Nrc,c(Ω) ∩ im(ΨTi
)) as well as τ∂Ω ∈ C2

x

(im(Ψ∂Ω)). Moreover,

∇nIv
= −HIv

τIv
⊗ τIv

+ O(dist(·, Ti)) in Nrc,c(Ω) ∩ im(ΨTi
), (129)

∇τIv
= HIv

nIv
⊗ τIv

+ O(dist(·, Ti)) in Nrc,c(Ω) ∩ im(ΨTi
). (130)

Analogous formulas hold on im(Ψ∂Ω) for the orthonormal frame (n∂Ω, τ∂Ω).

Proof. By the choice of the orientations, there exists a constant matrix R representing rotation by 90◦

so that nIv
= RτIv

and n∂Ω = Rτ∂Ω. The regularity of the tangential fields τIv
and τ∂Ω thus follows from

Definition 13 and Definition 17, respectively. Moreover, the formula (130) simply follows from (129) and
the product rule. For a proof of (129), note first that (nIv

· ∇)nIv
= ∇ 1

2 |nIv
|2 = 0 and, as a consequence

of ∇nIv
= ∇2sTi

being symmetric, that (∇nIv
)TnIv

= (nIv
· ∇)nIv

= 0. The only surviving component
of ∇nIv

is thus the one in the direction of τIv
⊗ τIv

, which on the interface in turn evaluates to −HIv
,

see (108). The regularity of the map HIv
from Definition 13 then entails (129). Of course, the exact same

argument works in terms of the orthonormal frame (n∂Ω, τ∂Ω). �

The values of a contact point extension in the sense of Proposition 16 are highly constrained along
the domain boundary ∂Ω (i.e., n∂Ω · ξc = 0) or along the interface Ti (i.e., ξc = nIv

), respectively. This
will be reflected in the construction by stitching together certain local building blocks (i.e., ξc

∂Ω and ξc
Ti

,
see Sect. 5.2 below) which in turn take care of these restrictions on an individual basis (i.e., n∂Ω · ξc

∂Ω = 0
along ∂Ω, or ξc

Ti
= nIv

along Ti, in the vicinity of the contact point). These local building blocks will
be unified into a single vector field by interpolation (see Sect. 5.3 below). With this in mind, it is of no
surprise that compatibility conditions (including a higher-order one) at the contact point are needed to
implement this procedure. Indeed, recall from Proposition 16 that a contact point extension requires a
certain amount of regularity in combination with a control on its time evolution. We therefore collect for
reference purposes the necessary compatibility conditions in the following result.

Lemma 20. Let the assumptions and notation of Definitions 13 and 17 and Lemma 19 be in place. Then
it holds

nIv
(·, t) = τ∂Ω(·), τIv

(·, t) = −n∂Ω(·) at Tc(t), t ∈ [0, T ], (131)
(
τIv

(·, t) · ∇
)
(nIv

· v)(·, t) = H∂Ω(·)(nIv
· v)(·, t) at Tc(t), t ∈ [0, T ]. (132)
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Proof. The relations (131) are immediate from the choices made in the statement of Lemma 19. Let
{c(t)} = Tc(t) for all t ∈ [0, T ]. The compatibility condition (132) follows from differentiating in time the
condition nIv

(c(t), t) = τ∂Ω(c(t)). Indeed, one one side we may compute by means of the chain rule, the
analogue of (130) for τ∂Ω, (131), and d

dtc(t) =
(
nIv

(c(t), t) · v(c(t), t)
)
nIv

(c(t), t) that

d
dt

τ∂Ω(c(t)) = H∂Ω(c(t))
(
nIv

(c(t), t) · v(c(t), t)
)
n∂Ω(c(t)).

On the other side, it follows from an application of the chain rule, the formula (129), the previous
expression of d

dtc(t), ∂tsTi
(·, t) = −nIv

(·, t) · v(PTi
(·, t), t), as well as nIv

= ∇sTi
that

d
dt

nIv
(c(t), t) = −

(
τIv

(c(t), t) · ∇
)(

nIv
· v

)
(c(t), t)τIv

(c(t), t).

The second condition of (131) together with the previous two displays thus imply the compatibility
condition (132) as asserted. �

5.2. Construction and Properties of Local Building Blocks

We have everything in place to proceed on with the first major step in the construction of a contact
point extension in the sense of Proposition 16. We define auxiliary extensions ξc

Ti
resp. ξc

∂Ω of the unit
normal vector field in the space-time domains Nrc,c(Ω) ∩ im(ΨTi

) resp. Nrc,c(Ω) ∩ (im(Ψ∂Ω)×[0, T ]). In
other words, we construct the extensions separately in the regions close to the interface or close to the
boundary (but always near to the contact point).

5.2.1. Definition and Regularity Properties of Local Building Blocks for the Extension of the Unit Nor-
mal. A suitable ansatz for the two vector fields ξc

Ti
and ξc

∂Ω may be provided as follows.

Construction 21. Let the assumptions and notation of Definition 13, Definition 17 and Lemma 19 be in
place. Expressing {c(t)} = Tc(t) for all t ∈ [0, T ], we define coefficients

αTi
: Nrc,c(Ω) ∩ im(ΨTi

) → R, (x, t) �→ −H∂Ω(c(t), t), (133)

α∂Ω : Nrc,c(Ω) ∩ (im(Ψ∂Ω)×[0, T ]) → R, (x, t) �→ −HIv
(c(t), t). (134)

Based on these coefficient functions, we then define extensions

ξc
Ti

: Nrc,c(Ω) ∩ im(ΨTi
) → R

2, ξc
∂Ω : Nrc,c(Ω) ∩

(
im(Ψ∂Ω)×[0, T ]

)
→ R

2

of the normal vector field nIv
by means of an expansion ansatz

ξc
Ti

:= nIv
+ αTi

sTi
τIv

− 1
2
α2

Ti
s2

Ti
nIv

, (135)

ξc
∂Ω := τ∂Ω + α∂Ωs∂Ωn∂Ω − 1

2
α2

∂Ωs2
∂Ωτ∂Ω. (136)

Regularity properties of ξc
Ti

and ξc
∂Ω, in particular compatibility up to first order at the contact point,

are the content of the following result.

Lemma 22. Let the assumptions and notation of Construction 21 be in place. Then the auxiliary vector
fields satisfy ξc

Ti
∈ (C0

t C2
x ∩ C1

t C0
x)(Nrc,c(Ω) ∩ im(ΨTi

)) and ξc
∂Ω ∈ (C0

t C2
x ∩ C1

t C0
x)

(Nrc,c(Ω) ∩ (im(Ψ∂Ω)×[0, T ])), with corresponding estimates for k ∈ {0, 1, 2}

|∇kξc
Ti

| + |∂tξ
c
Ti

| ≤ C, on Nrc,c(Ω) ∩ im(ΨTi
), (137)

|∇kξc
∂Ω| + |∂tξ

c
∂Ω| ≤ C, on Nrc,c(Ω) ∩ (im(Ψ∂Ω)×[0, T ]). (138)

Moreover, the constructions are compatible to first order at the contact point in the sense that

ξc
Ti

(·, t) = ξc
∂Ω(·, t), ∇ξc

Ti
(·, t) = ∇ξc

∂Ω(·, t) at Tc(t), t ∈ [0, T ]. (139)
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Proof. Step 1 (Regularity estimates): Note first that αTi
, α∂Ω ∈ C1

t ([0, T ]) due to the regularity of the
maps HIv

resp. H∂Ω from (108) resp. (118). The asserted bounds (137) and (138) for the derivatives of
the vector fields ξc

Ti
and ξc

∂Ω can thus be inferred from the definitions (135) and (136) in combination
with the regularity of sTi

, nIv
from Definition 13, the regularity of s∂Ω, n∂Ω from Definition 17, as well as

the regularity of τIv
, τ∂Ω from Lemma 19.

Step 2 (First order compatibility at the contact point): The zeroth order condition of (139) is a direct
consequence of the definitions (135) and (136) in combination with the compatibility condition (131). In
order to prove the first order condition, it directly follows from (129)–(130) and their analogues for the
frame (n∂Ω, τ∂Ω), as well as the definitions (135) and (136) that

∇ξc
Ti

= −HIv
τIv

⊗ τIv
+ αTi

τIv
⊗ nIv

+ O(dist(·, Ti)), (140)

∇ξc
∂Ω = H∂Ωn∂Ω ⊗ τ∂Ω + α∂Ωn∂Ω ⊗ n∂Ω + O(dist(·, ∂Ω)). (141)

Finally, since we have (131) due to the conventions adopted, using (133) and (134) we can deduce the
first order compatibility condition of (139). �

5.2.2. Evolution Equations for Local Building Blocks. The following lemma provides the approximate
evolution equations for our local constructions ξc

Ti
and ξc

∂Ω, which will eventually lead us to (113)–(114).

Lemma 23. Let the assumptions and notation of Construction 21 be in place. Then it holds

∂tξ
c
Ti

+ (v · ∇)ξc
Ti

+ (Id −ξc
Ti

⊗ ξc
Ti

)(∇v)Tξc
Ti

= O(dist(·, Ti)), (142)

∂t|ξc
Ti

|2 + (v · ∇)|ξc
Ti

|2 = O(dist3(·, Ti)), (143)

|1 − |ξc
Ti

|2| = O(dist4(·, Ti)) (144)

throughout the space-time domain Nrc,c(Ω) ∩ im(ΨTi
). Moreover, we have

∂tξ
c
∂Ω+(v · ∇)ξc

∂Ω+(Id −ξc
∂Ω ⊗ ξc

∂Ω)(∇v)Tξc
∂Ω = O(dist(·, ∂Ω) ∨ dist(·, Tc)), (145)

∂t|ξc
∂Ω|2 + (v · ∇)|ξc

∂Ω|2 = O(dist3(·, ∂Ω)), (146)

|1 − |ξc
∂Ω|2| = O(dist4(·, ∂Ω)) (147)

throughout the space-time domain Nrc,c(Ω) ∩
(
im(Ψ∂Ω)×[0, T ]

)
.

Proof. Step 1 (Proof of (142)): Note that because of the definitions (109) and (135), it holds ξc
Ti

=
ξi + αTi

sTi
τIv

− 1
2α2

Ti
s2

Ti
nIv

. Since we already proved (111), we only need to show that

αIv
(∂tsTi

)τIv
+ αIv

(v · ∇sTi
)τIv

= O(dist(·, Ti)).

However, the above relation is an immediate consequence of the identity ∂tsTi
(x, t) = −

(
v(PTi

(x, t), t) ·
∇

)
sTi

(x, t) and the regularity of v, see Definition 10 of a strong solution, through a Lipschitz estimate.
This proves (142).

Step 2 (Proof of (145)): From the definition (136) and α∂Ω ∈ C1
t ([0, T ]) it directly follows

∂tξ
c
∂Ω = (∂tα∂Ω)s∂Ωn∂Ω = O(dist(·, ∂Ω)).

Having ξc
∂Ω = τ∂Ω + α∂Ωs∂Ωn∂Ω − 1

2α2
∂Ωs2

∂Ωτ∂Ω, cf. the definition (136), it follows from ∇s∂Ω = n∂Ω,
the analogues of (129)–(130) for the frame (n∂Ω, τ∂Ω), as well as the boundary condition v · n∂Ω = 0
along ∂Ω that

(v · ∇)ξc
∂Ω = (v · ∇)(τ∂Ω + α∂Ωs∂Ωn∂Ω) + O(dist(·, ∂Ω))

= (v · τ∂Ω)τ∂Ω · (H∂Ωτ∂Ω ⊗ n∂Ω + α∂Ωn∂Ω ⊗ n∂Ω) + O(dist(·, ∂Ω))

= (v · τ∂Ω)H∂Ωn∂Ω + O(dist(·, ∂Ω)).
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Moreover, based on ξc
∂Ω = τ∂Ω +O(dist(·, ∂Ω)) due to (136), v(c(t), t) =

(
v(c(t), t) ·nIv

(c(t), t)
)
nIv

(c(t), t)
along the moving contact point {c(t)} = Tc(t), the formula (129), and the compatibility conditions (131)–
(132) we infer that

(Id −ξc
∂Ω ⊗ ξc

∂Ω)(∇v)Tξc
∂Ω

= (Id −τ∂Ω ⊗ τ∂Ω)(∇v)Tτ∂Ω + O(dist(·, ∂Ω))

= (τ∂Ω · (n∂Ω · ∇)v)n∂Ω + O(dist(·, ∂Ω))

= −
(
nIv

(c(t), t) ·
(
τIv

(c(t), t) · ∇
)
v(c(t), t)

)
n∂Ω + O(dist(·, ∂Ω) ∨ dist(·, Tc))

= −
((

τIv
(c(t), t) · ∇

)
(v · nIv

)(c(t), t)
)
n∂Ω + O(dist(·, ∂Ω) ∨ dist(·, Tc))

= −(v · τ∂Ω)H∂Ωn∂Ω + O(dist(·, ∂Ω) ∨ dist(·, Tc)).

Hence, the estimate (145) follows as a consequence of the previous three displays.
Step 3 (Proof of (143)–(144) and (146)–(147)): Simply note that (143)–(144) as well as (146)–(147)

directly follow from the definitions (135) resp. (136) of the vector field ξc
Ti

resp. the vector field ξc
∂Ω in

form of

|ξc
Ti

|2 =
(
1−1

2
α2

Ti
s2

Ti

)2

+ α2
Ti

s2
Ti

= 1 +
1
4
α4

Ti
s4

Ti
, (148)

|ξc
∂Ω|2 =

(
1−1

2
α2

∂Ωs2
∂Ω

)2

+ α2
∂Ωs2

∂Ω = 1 +
1
4
α4

∂Ωs4
∂Ω. (149)

This concludes the proof of Lemma 23. �

5.3. From Building Blocks to Contact Point Extensions by Interpolation

As we discussed in the previous subsections, the auxiliary vector fields ξc
Ti

and ξc
∂Ω provide main building

block for a contact point extension of the interface unit normal near the connected interface Ti or near the
domain boundary ∂Ω, respectively. More precisely, we will make use of the auxiliary vector field ξc

Ti
on the

wedges W c
Ti

∪W c
Ω+

v
∪W c

Ω−
v
, and of the auxiliary vector field ξc

∂Ω on the wedges W+,c
∂Ω ∪W−,c

∂Ω ∪W c
Ω+

v
∪W c

Ω−
v
.

Note that this is indeed admissible thanks to the inclusions (124), (126) and (127). As the domains of
definition for the auxiliary vector fields overlap, we adopt an interpolation procedure on the interpolation
wedges W c

Ω±
v
. To this end, we first define suitable interpolation functions.

Lemma 24. Let the assumptions and notation of Definition 17 be in place. Then there exists a pair of
interpolation functions

λ±
c :

⋃

t∈[0,T ]

(
W c

Ω±
v
(t) \ Tc(t)

)
×{t} → [0, 1]

which satisfies the following list of properties:
(i) On the boundary of the interpolation wedges W c

Ω±
v

intersected with Brc
(Tc), the values of λ±

c and its
derivatives up to second order are given by

λ±
c (·, t) = 0 on

(
∂W c

Ω±
v
(t) ∩ ∂W±,c

∂Ω (t)
)

\ Tc(t), (150)

λ±
c (·, t) = 1 on

(
∂W c

Ω±
v
(t) ∩ ∂W c

Ti
(t)

)
\ Tc(t), (151)

∇λ±
c (·, t) = 0, on

(
∂W c

Ω±
v
(t) ∩ Brc

(Tc(t))
)

\ Tc(t), (152)

∇2λ±
c (·, t) = 0, ∂tλ

±
c (·, t) = 0 on

(
∂W c

Ω±
v
(t) ∩ Brc

(Tc(t))
)

\ Tc(t) (153)

for all t ∈ [0, T ].
(ii) There exists a constant C such that the estimates

|∂tλ
±
c (·, t)| + |∇λ±

c (·, t)| ≤ C|dist(·, Tc(t))|−1, (154)
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|∇∂tλ
±
c (·, t)| + |∇2λ±

c (·, t)| ≤ C|dist(·, Tc(t))|−2 (155)

hold true on W c
Ω±

v
(t) \ Tc(t) for all t ∈ [0, T ].

(iii) We have an improved estimate on the advective derivative in form of
∣
∣∂tλ

±
c (·, t) +

(
v · ∇

)
λ±

c (·, t)
∣
∣ ≤ C (156)

on W c
Ω±

v
(t) \ Tc(t) for all t ∈ [0, T ].

Proof. We fix a smooth function λ̃ : R → [0, 1] such that λ̃ ≡ 0 on [23 ,∞) and λ̃ ≡ 1 on (−∞, 1
3 ]. Recall

the representation (120) of the interpolation wedges WΩ±
v
, and that their opening angle is determined

via X±
Ti

· XΩ±
v

= cos(π/6) along Tc, see (122). We then define a function λ : [−1, 1] → [0, 1] by λ(u) :=
λ̃( 1−u

1− cos(π/6) ), and set

λ±
c (x, t) := λ

(
X±

Ti
(t) · x−c(t)

|x−c(t)|

)
, t ∈ [0, T ], x ∈ WΩ±

v
(t) \ Tc(t).

The assertions of the first two items of Lemma 24 are now immediate consequences of the definitions due
to d

dtX
±
Ti

∈ C0([0, T ]), cf. Definition 17.
It remains to prove the estimate (156) on the advective derivative. To this end, abbreviating u± :=

X±
Ti

(t) · x−c(t)
|x−c(t)| we compute

∂tλ
±
c (x, t) = λ′(u±)X±

Ti
(t) · ∂t

x−c(t)
|x−c(t)| + λ′(u±)

x−c(t)
|x−c(t)| · d

dt
X±

Ti
(t)

= λ′(u±)X±
Ti

(t) · 1
|x−c(t)|

(
Id− x−c(t)

|x−c(t)| ⊗ x−c(t)
|x−c(t)|

) d
dt

c(t)

+ λ′(u±)
x−c(t)
|x−c(t)| · d

dt
X±

Ti
(t)

= −
( d

dt
c(t) · ∇

)
λ±

c (x, t) + λ′(u±)
x−c(t)
|x−c(t)| · d

dt
X±

Ti
(t).

This in turn yields the asserted estimate (156) due to d
dtX

±
Ti

∈ C0([0, T ]), cf. Definition 17, d
dtc(t) =

v(c(t), t), and a Lipschitz estimate based on the regularity of the fluid velocity v from Definition 10
(which counteracts the blow-up (154) of ∇λ±

c ). This concludes the proof. �

We have by now everything in place to state the definition of a vector field which in the end will give
rise to a contact point extension of the interface unit normal in the precise sense of Proposition 16.

Construction 25. Let the assumptions and notation of Definition 17, Construction 21 and Lemma 24 be
in place. In particular, let rc ∈ (0, 1] be an admissible localization radius for the contact point Tc. We
define a vector field

ξ̂c : Nrc,c(Ω) → R
2

on the space-time domain Nrc,c(Ω) :=
⋃

t∈[0,T ]

(
Brc

(Tc(t)) ∩ Ω
)
×{t} as follows (recall the decomposi-

tion (123) of the neighborhood Br(Tc(t)) ∩ Ω):

ξ̂c(·, t) :=

⎧
⎪⎨

⎪⎩

ξc
Ti

(·, t) on W c
Ti

(t) ∩ Ω,

ξc
∂Ω(·, t) on W±,c

∂Ω (t) ∩ Ω,

λ±
c (·, t)ξc

Ti
(·, t) +

(
1−λ±

c (·, t)
)
ξc
∂Ω(·, t) on WΩ±

v
(t) \ Tc(t) ∩ Ω,

(157)

for all t ∈ [0, T ]. Note that the vector field ξ̂c is not yet normalized to unit length, which is the reason
for denoting it by ξ̂c instead of ξc. Observe also that (157) is well-defined in view of the inclusions (124),
(126) and (127).
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5.4. Proof of Proposition 16

The proof proceeds in several steps. We first establish the required properties in terms of the vector
field ξ̂c. The penultimate step is devoted to fixing r̂c ∈ (0, rc] such that

∣
∣ξ̂c

∣
∣ ≥ 1

2 on Nr̂c,c(Ω), so that one
may define ξ :=

∣
∣ξ̂c

∣
∣−1

ξ̂c ∈ S
1 throughout Nr̂c,c(Ω) and transfer the properties of ξ̂c to ξc. Finally, in the

last step we verify the asserted compatibility conditions between a contact point extension and a bulk
extension of the interface unit normal.

Step 1: Regularity of ξ̂c and properties i)–iii). Because of the inclusion (124) as well as the defini-
tions (135) and (157), it follows that ξ̂c(·, t) = nIv

(·, t) along Ti(t)∩Brc
(Tc(t)) for all t ∈ [0, T ]. By the same

reasons, relying also on ξc
Ti

= ξi +αTi
sTi

τIv
− 1

2α2
Ti

s2
Ti

nIv
, cf. the definitions (109) and (135), ∇sTi

= nIv

and (110), we deduce that ∇ · ξ̂c(·, t) = −HIv
(·, t) along Ti(t) ∩ Brc

(Tc(t)) for all t ∈ [0, T ]. Moreover, in
view of the inclusion (125) as well as the definitions (136) and (157), we obtain ξ̃c(·, t)·n∂Ω = τ∂Ω ·n∂Ω = 0
along Brc

(Tc(t)) ∩ ∂Ω. This yields the asserted properties i)–iii) of a contact point extension in terms
of ξ̂c on scale rc.

The vector fields ξ̂c, ∂tξ̂
c, ∇ξ̂c and ∇2ξ̂c exist in a pointwise sense and are continuous through-

out Nrc,c(Ω) \ Tc due to the definition (157) of ξ̂c, the regularity of the local building blocks ξc
Ti

and ξc
∂Ω

as provided by Lemma 22, as well as the regularity of the interpolation parameter λ±
c from Lemma 24.

Note in this context that no jumps occur across the boundaries of the interpolation wedges as a conse-
quence of the conditions (150)–(153). It remains to prove the bounds

|∂tξ̂
c(·, t)| + |∇k ξ̂c(·, t)| ≤ C on

(
Brc

(Tc(t)) \ Tc

)
∩ Ω (158)

for k ∈ {0, 1, 2}, for all t ∈ [0, T ] and some constant C > 0.
In the wedges W c

Ti
and W±,c

∂Ω containing the interface or the boundary of the domain, respectively,
the estimate follows directly from the estimates (137)–(138) and the definition (157). On interpolation
wedges W c

Ω±
v
, we compute recalling (157)

∂tξ̂
c = λ±

c ∂tξ
c
Ti

+ (1−λ±
c )∂tξ

c
∂Ω + (ξc

Ti
−ξc

∂Ω)∂tλ
±
c

∇ξ̂c = λ±
c ∇ξc

Ti
+ (1−λ±

c )∇ξc
∂Ω + (ξc

Ti
−ξc

∂Ω) ⊗ ∇λ±
c ,

∇2ξ̂c = λ±
c ∇2ξc

Ti
+ (1−λ±

c )∇2ξc
∂Ω + (∇λ±

c ⊗ ∇sym)(ξc
Ti

−ξc
∂Ω) + (ξc

Ti
−ξc

∂Ω) ⊗ ∇2λ±
c .

Then we recall the bounds (154) and (155) for the derivatives of the interpolation functions, the esti-
mates (137) and (138) as well as the compatibility conditions (139) for the auxiliary vector fields ξc

Ti

and ξc
∂Ω. Feeding these into the previous display establishes (158) on the interpolation wedges.

Step 2: Evolution equation in terms of ξ̂c. We claim that

∂tξ̂
c + (v · ∇)ξ̂c + (∇v)Tξ̂c = O(dist(·, Ti)) in Nrc,c(Ω). (159)

The validity of (159) on the wedges W c
Ti

and W±,c
∂Ω follows directly from the estimates (142) resp.

(145), the definition (157) and the bound (128). Hence, we only need to prove the bound (159) on the
interpolation wedges W c

Ω±
v
.

To this end, recall first that on the interpolation wedges W c
Ω±

v
the distance with respect to the contact

point Tc or the distance with respect to the domain boundary ∂Ω is dominated by the distance to the
connected interface Ti, see (128). Writing ξ̂c = ξc

Ti
+(1−λ±

c )(ξc
∂Ω−ξc

Ti
), and resp. ξ̂c = ξc

∂Ω+λ±
c (ξc

Iv
−ξc

∂Ω),
we then immediately see that

ξ̂c ⊗ ξ̂c = ξc
Ti

⊗ ξc
Ti

+ O(dist2(·, Ti)), (160)

ξ̂c ⊗ ξ̂c = ξc
∂Ω ⊗ ξc

∂Ω + O(dist2(·, Ti)), (161)
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due to compatibility (139) up to first order at the contact point Tc, and the regularity estimates (137)–
(138). Using the product rule and the definition (157) of ξ̂c on W c

Ω±
v
, we thus obtain

∂tξ̂
c + (v · ∇)ξ̂c + (Id −ξ̂c ⊗ ξ̂c)(∇v)Tξ̂c

= λ±
c

(
∂t + (v · ∇) + (Id −ξc

Ti
⊗ ξc

Ti
)(∇v)T

)
ξc
Ti

+ (1 − λ±
c )

(
∂t + (v · ∇) + (Id −ξc

∂Ω ⊗ ξc
∂Ω)(∇v)T

)
ξc
∂Ω

+ (∂tλ
±
c + (v · ∇)λ±

c )(ξc
Ti

− ξc
∂Ω) + O(dist2(·, Ti)). (162)

Hence, we obtain (159) on interpolation wedges as a consequence of the estimates (142) resp. (145),
the bound (156) on the advective derivative of the interpolation parameter, as well as the compatibility
condition (139).

Step 3: We next claim that

∂t

∣
∣ξ̂c

∣
∣2 + (v · ∇)

∣
∣ξ̂c

∣
∣2 = O(dist(·, Ti)) in Nrc,c(Ω), (163)

∣
∣
∣∇|ξ̂c

∣
∣2

∣
∣
∣ = O(dist(·, Ti)) in Nrc,c(Ω). (164)

Outside of interpolation wedges, both claims are already established in view of the estimates (143)–
(144) resp. (146)–(147), the estimate (128) as well as the definition (157). Using the latter, we may
compute on interpolation wedges W c

Ω±
v

|ξ̂c|2 − 1 = λ± 2
c (|ξc

Ti
|2 − 1) + (1 − λ±

c )2(|ξc
∂Ω|2 − 1)

+ 2λ±
c (1 − λ±

c )(ξc
Ti

· ξc
∂Ω − 1), (165)

and thus
(
∂t+(v · ∇)

)∣∣ξ̂c
∣
∣2 =

(
∂t+(v · ∇)

)(
(λ±

c )2|ξc
Ti

|2+(1−λ±
c )2|ξc

∂Ω|2 + 2λ±
c (1−λ±

c )
)

+ (ξc
Ti

· ξc
∂Ω−1)

(
∂t+(v · ∇)

)(
2λ±

c (1−λ±
c )

)

+ 2λ±
c (1−λ±

c )
(
∂t+(v · ∇)

)
(ξc

Ti
· ξc

∂Ω−1). (166)

Because of (143)–(144) and (146)–(147), the first right hand side term of (166) is of required order.
For an estimate of the second and third right hand side term of (166), observe that it suffices to prove
ξc
Ti

· ξc
∂Ω−1 = O(dist2(·, Ti)) on interpolation wedges as the advective derivative of the interpolation

parameter is bounded, see (156). However, it follows immediately from the definitions (135) and (136),
the formulas (140) and (141), as well as the compatibility condition (139), that at the contact point Tc

it holds ξc
Ti

· ξc
∂Ω = 1, (∇ξc

Ti
)Tξc

∂Ω = 0 and (∇ξc
∂Ω)Tξc

Ti
= 0. Hence, ξc

Ti
· ξc

∂Ω−1 = O(dist2(·, Ti)) is a
consequence of a Lipschitz estimate making use of the estimates (137)–(138) and the bound (128).

In summary, the above arguments upgrade (166) to (163), and analogous considerations based on (165)
also entail (164) on interpolation wedges.

Step 4: Choice of r̂c and definition of the normalized vector field ξc. By the definition (157) of the
vector field ξ̂c we have |ξ̂c(·, t)| = 1 on Brc

(Tc(t)) ∩ (∂Ω ∪ Ti(t)) for all t ∈ [0, T ]. Due to its Lipschitz
continuity, see Step 1 of the proof, we may choose a radius r̂c ≤ rc such that |ξ̂c| ≥ 1

2 holds true in the
space-time domain Nr̂c,c(Ω). We then define ξc :=

∣
∣ξ̂c

∣
∣−1

ξ̂c ∈ S
1 throughout Nr̂c,c(Ω), so that it remains

to argue that the properties of ξ̂c are inherited by ξc.
Since ξc(·, t) = ξ̂c(·, t) on Brc

(Tc(t)) ∩ (∂Ω ∪ Ti(t)) for all t ∈ [0, T ], it immediately follows that
ξc(·, t) = nIv

(·, t) along Ti(t)∩Br̂c
(Tc(t)) as well as ξc(·, t)·n∂Ω(·) = 0 along ∂Ω∩Br̂c

(Tc(t)) for all t ∈ [0, T ].

Moreover, ∇ · ξc = |ξ̂c|−1∇ · ξ̂c − (ξ̂c·∇)|ξ̂c|2

2|ξ̂c|3 so that ∇ · ξc = −HIv
(·, t) holds true on Ti(t) ∩ Br̂c

(Tc(t)) for

all t ∈ [0, T ] because of (164), the validity of this equation in terms of ξ̂c, and the fact that |ξ̂c(·, t)| = 1
on Ti(t) ∩ Br̂c

(Tc(t)) for all t ∈ [0, T ]. In summary, properties ii)–iii) are satisfied.
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The required regularity is obtained by the choice of the radius r̂c, the definition ξc :=
∣
∣ξ̂c

∣
∣−1

ξ̂c, and
the fact that the vector field ξ̂c already satisfies it as argued in Step 1 of this proof. Since ξc ∈ S

1

throughout Nr̂c,c(Ω), (114) holds true for trivial reasons. For a proof of (113), one may argue as follows.
Recalling that |ξ̂c| ≥ 1

2 holds true in Nr̂c,c(Ω), adding zero and using the product rule yields

∂tξ
c + (v · ∇)ξc + (Id −ξc ⊗ ξc)(∇v)Tξc

= ∂tξ
c + (v · ∇)ξc + (Id −ξ̂c ⊗ ξ̂c)(∇v)Tξc − (1 − |ξ̂c|2)(ξc ⊗ ξc)(∇v)Tξc

=
1

|ξ̂c|
(
∂tξ̂

c + (v · ∇)ξ̂c + (Id −ξ̂c ⊗ ξ̂c)(∇v)Tξ̂c
)

− ξ̂c

2|ξ̂c|3
(∂t|ξ̂c|2 + (v · ∇)|ξ̂c|2)

− (1 − |ξ̂c|2)(ξc ⊗ ξc)(∇v)Tξc

throughout Nr̂c,c(Ω). Observe that the first right hand side term is estimated by (159), the second
by (163), and the third by a Lipschitz estimate based on the fact |ξ̂c(·, t)| = 1 along Ti(t) ∩ Br̂c

(Tc(t)) for
all t ∈ [0, T ]. Hence, (113) holds true.

Step 5: Contact point extensions as perturbations of bulk extensions. As a preparation for the proof of
the compatability estimates, we claim that

|ξc−ξ̂ c| ≤ C dist2(·, Ti). (167)

Note that because of the definition (157), the compatibility conditions (139) at the contact point, the
regularity estimates (137)–(138) for the local building blocks, the controlled blow-up (154) , the coercivity
estimate (144) , and the estimate (128), it holds

∇ 1

|ξ̂ c|
= − (ξ̂ c · ∇)ξ̂ c

|ξ̂ c|3
= −

(ξc
Ti

· ∇)ξ̂ c

|ξ̂ c|3
+ O(dist(·, Ti))

= −
(ξc

Ti
· ∇)ξ c

Ti

|ξ̂ c|3
+ O(dist(·, Ti)) = O(dist(·, Ti)).

Hence, the asserted estimate (167) follows from ξc−ξ̂ c = (|ξ̂ c|−1−1)ξ̂ c, the fact that ξc(·, t) = ξ̂ c(·, t) ≡
nIv

(·, t) along the local interface patch Ti(t) ∩ Br̂ c(Tc(t)) for all t ∈ [0, T ], and the previous display.
We exploit (167) as follows. Within the interface wedge W c

Ti
, it now follows from the definitions (109),

(135) and (157) that

ξc − ξi = ξc
Ti

− ξi + O(dist2(·, Ti)) = αTi
sTi

τIv
− 1

2
α2

Ti
s2

Ti
nIv

+ O(dist2(·, Ti)).

Within interpolation wedges, we have the same representation thanks to the first-order compatibility (139)
in form of

ξc − ξi = ξ̂c − ξi + O(dist2(·, Ti))

= (ξc
Ti

− ξi) + (1−λ±
c )(ξc

∂Ω − ξc
Ti

) + O(dist2(·, Ti))

= αTi
sTi

τIv
− 1

2
α2

Ti
s2

Ti
nIv

+ O(dist2(·, Ti)).

In particular, the compatibility bounds (115) and (116) are satisfied within interface and interpolation
wedges, respectively. �

6. Existence of Boundary Adapted Extensions of the Unit Normal

6.1. From Local to Global Extensions

The idea for proving Proposition 7 consists of stitching together the local extensions from the previous
two sections by means of a suitable partition of unity on the interface Iv. For a construction of the latter,
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recall first the decomposition of the interface Iv into its topological features, namely, the connected
components of Iv ∩ Ω and the connected components of Iv ∩ ∂Ω. Denoting by N ∈ N the total number of
such topological features present in the interface Iv we split {1, . . . , N} =: I ·∪ C by means of two disjoint
subsets. Here, the subset I enumerates the space-time connected components of Iv ∩ Ω (being time-
evolving connected interfaces), whereas the subset C enumerates the space-time connected components
of Iv ∩ ∂Ω (being time-evolving contact points). If i ∈ I, we let Ti ⊂ Iv denote the space-time trajectory
in Ω of the corresponding connected interface. Furthermore, for every c ∈ C we write Tc representing the
space-time trajectory in ∂Ω of the corresponding contact point. Finally, let us write i ∼ c for i ∈ I and
c ∈ C if and only if Ti ends at Tc; otherwise i ∼ c.

Lemma 26 (Construction of a partition of unity). Let d = 2, and let Ω ⊂ R
2 be a bounded domain

with orientable and smooth boundary. Let (χv, v) be a strong solution to the incompressible Navier–Stokes
equation for two fluids in the sense of Definition 10 on a time interval [0, T ]. For each i ∈ I let ri

be the localization radius of Definition 13, and for each c ∈ C denote by r̂c the localization radius of
Proposition 16. There then exists a family (η1, . . . , ηN ) of cutoff functions

ηn : R2 × [0, T ] → [0, 1], n ∈ {1, . . . , N},

with the regularity ηn ∈ (C0
t C2

x ∩ C1
t C0

x)
(
R

2×[0, T ] \
⋃

c∈C
Tc

)
, (168)

and a localization radius r̂ ∈ (0,mini∈I ri ∧ minc∈C r̂c), which together are subject to the following list of
conditions:

• The family (η1, . . . , ηN ) is a partition of unity along the interface Iv. Defining a bulk cutoff by means
of ηbulk := 1 −

∑N
n=1 ηn, it holds ηbulk ∈ [0, 1]. On top we have coercivity estimates in form of

1
C

(dist2(·, Iv) ∧ 1) ≤ ηbulk ≤ C(dist2(·, Iv) ∧ 1) in R
2 × [0, T ], (169)

|∇ηbulk| ≤ C(dist(·, Iv) ∧ 1) in R
2 × [0, T ], (170)

• For all two-phase interfaces i ∈ I it holds

supp ηi(·, t) ⊂ ΨTi
(Ti(t)×{t}×[−r̂, r̂]) for all t ∈ [0, T ], (171)

with ΨTi
denoting the change of variables from Definition 13. For contact points c ∈ C, it is required

that

supp ηc(·, t) ⊂ Br̂

(
Tc(t)

)
for all t ∈ [0, T ]. (172)

• For all distinct two-phase interfaces i, i′ ∈ I it holds

supp ηi(·, t) ∩ supp ηi′(·, t) = ∅ for all t ∈ [0, T ]. (173)

The same is required for all distinct contact points c, c′ ∈ I
supp ηc(·, t) ∩ supp ηc′(·, t) = ∅ for all t ∈ [0, T ]. (174)

• Let a two-phase interface i ∈ I and a contact point c ∈ C be fixed. Then supp ηi ∩ supp ηc = ∅ if and
only if i ∼ c, and in that case it holds

supp ηi(·, t) ∩ supp ηc(·, t) ⊂ Br̂(Tc(t)) ∩
(
W c

Ti
(t) ∪ W c

Ω±
v
(t)

)
(175)

for all t ∈ [0, T ], with the wedges W c
Ti

and W c
Ω±

v
introduced in Definition 17.

Proof. The proof proceeds in several steps.
Step 1: (Definition of auxiliary cutoff functions) Fix a smooth cutoff function θ : R → [0, 1] with the

properties that θ(r) = 1 for |r| ≤ 1
2 and θ(r) = 0 for |r| ≥ 1. Define

ζ(r) := (1 − r2)θ(r2), r ∈ R. (176)

Based on this quadratic profile, we may introduce two classes of cutoff functions associated to the two
different natures of topological features present in the interface Iv. To this end, let r̂ ∈ (0,mini∈I ri ∧
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minc∈C r̂c). Moreover, let δ ∈ (0, 1] be a constant. Both constants r̂ and δ will be determined in the course
of the proof.

For two-phase interfaces Ti ⊂ Iv, i ∈ I, we may then define

ζi(x, t) := ζ
( sdist(x, Ti(t))

δr̂

)
, (x, t) ∈ im(ΨTi

) := ΨTi

(
Ti×(−2ri, 2ri)

)
(177)

where the change of variables ΨTi
and the associated signed distance sdist(·, Ti) are from Definition 13

of the admissible localization radius ri. Furthermore, for contact points Tc, c ∈ C, we define

ζc(x, t) := ζ
(dist(x, Tc(t))

δr̂

)
, (x, t) ∈ R

2 × [0, T ]. (178)

Step 2: (Choice of the constant r̂ ∈ (0,mini∈I ri ∧ minc∈C r̂c)) It is a consequence of the uniform
regularity of the interface Iv in space-time that one may choose r̂ ∈ (0,mini∈I ri ∧ minc∈C r̂c) small
enough such that the following localization properties hold true

ΨTi
(Ti(t)×{t}×[−r̂, r̂]) ∩ ΨTi′ (Ti′(t)×{t}×[−r̂, r̂]) = ∅ ∀i′ ∈ I, i′ = i, (179)

ΨTi
(Ti(t)×{t}×[−r̂, r̂]) ∩ Br̂(Tc(t)) = ∅ ⇔ ∃c ∈ C : i ∼ c, (180)

Br̂(Tc(t)) ∩ Br̂(Tc′(t)) = ∅ ∀c, c′ ∈ C, c′ = c. (181)

for all t ∈ [0, T ] and all i ∈ I.
Step 3: (Construction of the partition of unity, part I) We start with the construction of the cutoffs

ηi for two-phase interfaces i ∈ I. Away from contact points, we set

ηi(x, t) := ζi(x, t), (x, t) ∈ im(ΨTi
) \

⋃

c∈C

⋃

t′∈[0,T ]

Br̂

(
Tc(t′)

)
×{t′}, (182)

which is well-defined due to the choice of r̂.
Assume now there exists c ∈ C such that i ∼ c. Recall from Definition 17 of the admissible localization

radius rc that for all t ∈ [0, T ] we decomposed Ω ∩ Brc
(Tc(t)) by means of five pairwise disjoint open

wedges W±,c
∂Ω (t),W c

Ti
(t),W c

Ω±
v
(t) ⊂ R

2. In the wedge W c
Ti

containing the two-phase interface Ti ⊂ Iv, we
define

ηi(x, t) := (1 − ζc(x, t))ζi(x, t), (x, t) ∈
⋃

t′∈[0,T ]

(
Br̂

(
Tc(t′)

)
∩ W c

Ti
(t′)

)
×{t′}. (183)

This is indeed well-defined by the choice of r̂ and having

Brc
(Tc(t)) ∩ W c

Ti
(t) ⊂ ΨTi

(Ti(t)×{t}×(−2rc, 2rc))

for all t ∈ [0, T ]; the latter in turn being a consequence of Definition 17 of the admissible localization
radius rc.

Within the ball Br̂(Tc(t)), we aim to restrict the support of ηi(·, t) to the region Br̂(Tc(t))∩
(
W c

Ti
(t)∪

W c
Ω±

v
(t)

)
for all t ∈ [0, T ]. This will be done by means of the interpolation functions λ±

c of Lemma 24.
Recall in this context the convention that λ±

c (·, t) was set equal to one on
(
∂W c

Ω±
v
(t) ∩ ∂W c

Ti
(t)

)
\ Tc(t)

and set equal to zero on
(
∂W c

Ω±
v
(t) ∩ ∂W±,c

∂Ω (t)
)

\ Tc(t) for all t ∈ [0, T ]. In particular, we may define in
the interpolation wedges W c

Ω±
v

ηi(x, t) := λ±
c (x, t)(1 − ζc(x, t))ζi(x, t),

(x, t) ∈
⋃

t′∈[0,T ]

(
Br̂

(
Tc(t′)

)
∩ W c

Ω±
v
(t)

)
×{t′}. (184)

Again, this is well-defined because of the choice of r̂ and the fact that

Brc
(Tc(t)) ∩ W c

Ω±
v
(t) ⊂ ΨTi(t)(Ti(t)×{t}×(−2rc, 2rc))

for all t ∈ [0, T ] due to Definition 17 of the admissible localization radius rc.
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Outside of the space-time domains appearing in the definitions (182)–(184), we simply set ηi equal to
zero.

In view of the definitions (176)–(178) and the definitions (182)–(184), it now suffices to choose δ ∈ (0, 1]
sufficiently small such that (171) holds true, and in case there exists c ∈ C such that i ∼ c one may on
top achieve

supp ηi(·, t) ∩ Br̂(Tc(t)) ⊂ Br̂(Tc(t)) ∩
(
W c

Ti
(t) ∪ W c

Ω±
v
(t)

)
(185)

for all t ∈ [0, T ]. Moreover, in light of (171) and (179) we also obtain (173).
Step 4: (Construction of the partition of unity, part II) We proceed with the construction of the cutoffs

ηc for contact points c ∈ C. To this end, let i ∈ I be the unique two-phase interface such that i ∼ c. In
the wedge W c

Ti
containing the two-phase interface Ti ⊂ Iv we set

ηc(x, t) := ζc(x, t)ζi(x, t), (x, t) ∈
⋃

t′∈[0,T ]

(
Br̂

(
Tc(t′)

)
∩ W c

Ti
(t′)

)
×{t′}, (186)

which is well-defined based on the same reason as for (183).
Moreover, in the interpolation wedges W c

Ω±
v

we define

ηc(x, t) := λ±
c (x, t)ζc(x, t)ζi(x, t) + (1 − λ±

c (x, t))ζc(x, t),

(x, t) ∈
⋃

t′∈[0,T ]

(
Br̂

(
Tc(t′)

)
∩ W c

Ω±
v
(t)

)
×{t′}. (187)

By the same argument as for (184), this is again well-defined.
Outside of the space-time domains appearing in the previous two definitions we simply set ηc := ζc.

In particular, we register for reference purposes that

ηc(x, t) := ζc(x, t), (x, t) ∈
⋃

t′∈[0,T ]

(
Br̂

(
Tc(t′)

)
\

(
W c

Ti
(t′) ∪ W c

Ω±
v
(t)

))
×{t′}. (188)

It now immediately follows from the definition (178) that (172) is satisfied. In particular, for pairs
i ∈ I and c ∈ C such that i ∼ c, supp ηi ∩ supp ηc = ∅ and we obtain (175) as an update of (185).
Moreover, by (172) and (181) we deduce the validity of (174). In the case of pairs i ∈ I and c ∈ C with
i ∼ c, due to (180), (171) and (172), we can conclude that supp ηi ∩ supp ηc = ∅.

Step 5: (Partition of unity property along the interface) Fix t ∈ [0, T ], and consider first the case
of x ∈ Iv(t) \

⋃
c∈C Br̂(Tc(t)). The combination of the support properties (171) and (172) with the

localization property (179) implies there exists a unique two-phase interface i∗ = i∗(x) ∈ I such that∑N
n=1 ηn(x, t) = ηi∗(x, t). Hence, we may deduce from (182) that

∑N
n=1 ηn(x, t) = 1 for all t ∈ [0, T ] and

all x ∈ Iv(t) \
⋃

c∈C Br̂(Tc(t)).
Fix a contact point c ∈ C and a point x ∈ Iv(t) ∩ Br̂(Tc(t)). Let i ∈ I be the unique two-phase

interface such that i ∼ c. By the support properties (171) and (172) in combination with the localization
properties (179)–(181) it follows that

∑N
n=1 ηn(x, t) = ηc(x, t) + ηi(x, t). In particular

∑N
n=1 ηn(x, t) = 1

due to the definitions (183) and (186). The two discussed cases thus imply that
N∑

n=1

ηn(x, t) = 1, (x, t) ∈
⋃

t′∈[0,T ]

Iv(t′) × {t′}. (189)

Step 6: (Regularity) Outside of interpolation wedges, the required regularity is an immediate conse-
quence of the uniform regularity of the interface Iv and the definitions (182), (183), (186) and (187).

In interpolation wedges, one has to argue based on the definitions (184) and (187). In terms of regular-
ity, the critical cases originating from an application of the product rule consist of those when derivatives
hit the interpolation parameter. However, the by (154)–(155) controlled blow-up of the derivatives of the
interpolation parameter is always counteracted by the presence of the term 1 − ζc (cf. (184) and (187))
which is of second order in the distance to the contact point due to (176) and (178). In other words, the
required regularity also holds true within interpolation wedges.
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The two considered cases taken together entail the asserted regularity.
Step 7: (Estimate for the bulk cutoff) In the course of establishing the desired coercivity estimates (169)

and (170), we also convince ourselves of the fact that

ηbulk = 1 −
N∑

n=1

ηn ∈ [0, 1] (190)

throughout R
2 × [0, T ]. By the support properties (171) and (172), in both cases it suffices to argue for

points contained in ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\

⋃
c∈C Br̂

(
Tc(t)

)
or Br̂(Tc(t)) for all i ∈ I, all c ∈ C and all

t ∈ [0, T ].
We start with the latter and fix i ∈ I as well as t ∈ [0, T ]. Due to the localization property (179) and

subsequently plugging in (182), we get

ηbulk(·, t) = 1−ηi(·, t) = 1−ζi(·, t) in ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\

⋃

c∈C
Br̂

(
Tc(t)

)
. (191)

The validity of (169), (170) and (190) in ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\
⋃

c∈C Br̂

(
Tc(t)

)
thus follows immediately

from definition (177).
Fix c ∈ C, and let i ∈ I be the unique two-phase interface with i ∼ c. Due to (171), (172) as well

as (179)–(181) we have

ηbulk(·, t) = 1 − ηc(·, t) − ηi(·, t) in Br̂

(
Tc(t)

)
∩

(
W c

Ti
(t) ∪ W c

Ω±
v
(t)

)
. (192)

Plugging in (183) and (186) or (184) and (187), respectively, yields

ηbulk(·, t) = 1 − ζi(·, t) in Br̂

(
Tc(t)

)
∩ W c

Ti
(t), (193)

as well as

ηbulk(·, t) = λ±
c (·, t)(1−ζi(·, t)) + (1−λ±

c (·, t))(1−ζc(·, t)) in Br̂

(
Tc(t)

)
∩ W c

Ω±
v
(t). (194)

Hence, we can infer by means of (177) and (178) that (169), (170) and (190) hold true in the do-
main Br̂

(
Tc(t)

)
∩

(
W c

Ti
(t) ∪ W c

Ω±
v
(t)

)
. Finally, we have

ηbulk(·, t) = 1 − ηc(·, t) = 1 − ζc(·, t) in Br̂

(
Tc(t)

)
\

(
W c

Ti
(t) ∪ W c

Ω±
v
(t)

)
(195)

as a consequence of (171), (172), (179)–(181) and (188). The previous display in turn implies (169), (170)
and (190) in Br̂

(
Tc(t)

)
\

(
W c

Ti
(t) ∪ W c

Ω±
v
(t)

)
because of (178). This eventually concludes the proof of

Lemma 26. �

Construction 27 (From local to global extensions). Let d = 2, and let Ω ⊂ R
2 be a bounded domain with

orientable and smooth boundary. Let (χv, v) be a strong solution to the incompressible Navier–Stokes
equation for two fluids in the sense of Definition 10 on a time interval [0, T ]. Let (η1, . . . , ηN ) be a partition
of unity along the interface Iv as given by the proof of Lemma 26. For each two-phase interface i ∈ I
denote by ξi the bulk extension of Proposition 15, and for each contact point c ∈ C let ξc be the contact
point extension of Proposition 16.

We then define a vector field ξ : Ω × [0, T ] → R
2 with regularity

ξ ∈
(
C0

t C2
x ∩ C1

t C0
x

)(
Ω×[0, T ] \ (Iv ∩ (∂Ω×[0, T ]))

)
(196)

by means of the formula

ξ :=
N∑

n=1

ηnξn. (197)

Before we proceed on with a proof of Proposition 7, we first deduce that the bulk cutoff ηbulk of
Lemma 26 is transported by the fluid velocity v up to an admissible error in the distance to the interface
of the strong solution.
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Lemma 28 (Transport equation for bulk cutoff). Let d = 2, and let Ω ⊂ R
2 be a bounded domain with

orientable and smooth boundary. Let (χv, v) be a strong solution to the incompressible Navier–Stokes
equation for two fluids in the sense of Definition 10 on a time interval [0, T ]. Let (η1, . . . , ηN ) be a
partition of unity along the interface Iv as given by the proof of Lemma 26.

The bulk cutoff ηbulk = 1−
∑N

n=1 ηn is then transported by the fluid velocity v to second order in form
of

|∂tηbulk + (v · ∇)ηbulk| ≤ C(1 ∧ dist2(·, Iv)) in Ω × [0, T ]. (198)

Proof. Let r̂ ∈ (0, 1
2 ] be the localization radius of Lemma 26. In view of the regularity estimate (168) and

the fact that

Ω \
( ⋃

c∈C
Br̂(Tc(t)) ∪

⋃

i∈I
im(ΨTi

)
)

⊂ Ω ∩
{
x ∈ R

2 : dist(x, Iv(t)) > r̂
}

for all t ∈ [0, T ], it suffices to establish (198) within Ω ∩ ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\

⋃
c∈C Br̂

(
Tc(t)

)
or

Ω ∩ Br̂(Tc(t)) for all i ∈ I, all c ∈ C and all t ∈ [0, T ].
Step 1: (Estimate near the interface but away from contact points) Fix a two-phase interface i ∈ I.

As a consequence of the two identities in (191), we may compute

∂tηbulk + (v · ∇)ηbulk = −
(
∂tζi + (v · ∇)ζi

)
+ ηbulk(v · ∇)ζi (199)

in Ω ∩ ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\

⋃
c∈C Br̂

(
Tc(t)

)
for all t ∈ [0, T ]. Recall that the signed distance to the

two-phase interface Ti ⊂ Iv is transported to first order by the fluid velocity v, and that the profile ζ
from (176) is quadratic around the origin. Hence, by the chain rule and the definition (177) we obtain

∣
∣∂tζi + (v · ∇)ζi

∣
∣ ≤ C dist2(·, Iv) in Ω ∩ ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
(200)

for all t ∈ [0, T ]. Since we also have the coercivity estimate (169) for the bulk cutoff at our disposal, we
may thus upgrade (199) to (198) in Ω ∩ ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\

⋃
c∈C Br̂

(
Tc(t)

)
for all t ∈ [0, T ].

Step 2: (Estimate near contact points, part I) Fix c ∈ C, and denote by i ∈ I the unique two-phase
interface such that i ∼ c. This step is devoted to the proof of (198) in the wedge Ω ∩ Br̂(Tc(t)) ∩ W c

Ti
(t)

containing the interface Ti(t) ⊂ Iv(t), t ∈ [0, T ]. Because of (192), (193) and (197) we have

∂tηbulk + (v · ∇)ηbulk = −
(
∂tζi + (v · ∇)ζi

)
+ ηbulk(v · ∇)ζi (201)

in Ω∩Br̂(Tc(t))∩W c
Ti

(t) for all t ∈ [0, T ]. Due to Definition 17 of the admissible localization radius rc and
r̂ ≤ rc by Lemma 26, it holds Br̂(Tc(t))∩W c

Ti
(t) ⊂ ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
for all t ∈ [0, T ]. In particular,

the estimate (200) is applicable in Ω ∩ Br̂(Tc(t)) ∩ W c
Ti

(t) for all t ∈ [0, T ]. Hence, the estimate (200) in
combination with the coercivity estimate (169) for the bulk cutoff allow to deduce (198) from (201) in
Ω ∩ Br̂(Tc(t)) ∩ W c

Ti
(t) for all t ∈ [0, T ].

Step 3: (Estimate near contact points, part II) Fix a contact point c ∈ C. The goal of this step is to
prove (198) in the wedges Ω ∩ Br̂(Tc(t)) ∩ W±,c

∂Ω (t) containing the boundary ∂Ω for all t ∈ [0, T ]. To this
end, it follows from (195) and (197) that

∂tηbulk + (v · ∇)ηbulk = −
(
∂tζc + (v · ∇)ζc

)
+ ηbulk(v · ∇)ζc (202)

in Ω ∩ Br̂(Tc(t)) ∩ W±,c
∂Ω (t) for all t ∈ [0, T ]. Note that because of (176) one can view the profile ζc

from (178) as a smooth function of the contact point Tc. Performing a slight yet convenient abuse of
notation Tc(t) = {c(t)}, we obtain as a consequence of d

dtc(t) = v(c(t), t) and an application of the chain
rule that ∂tζc(·, t) +

(
v(c(t), t) · ∇

)
ζc(·, t) = 0 at c(t) for all t ∈ [0, T ]. Furthermore, proceeding similarly

as done in the proof of [12, Lemma 11], we can also deduce that ∂tζc(·, t) +
(
v(c(t), t) · ∇

)
ζc(·, t) = 0 in

Ω ∩ Br̂(Tc(t)) for all t ∈ [0, T ]. By the regularity of the fluid velocity v, this in turn implies by adding
zero (and exploiting the quadratic behaviour of the profile ζ from (176) around the origin) that

∣
∣∂tζc + (v · ∇)ζc

∣
∣ ≤ C dist2(·, Tc) in Ω ∩ Br̂(Tc(t)) (203)
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for all t ∈ [0, T ]. Since r̂ ≤ rc by Lemma 26, we can infer from Definition 17 of the admissible localization
radius rc that dist(·, Tc) is dominated by dist(·, Iv) in Br̂(Tc(t)) ∩

(
W±,c

∂Ω (t) ∪ W c
Ω±

v
(t)

)
for all t ∈ [0, T ].

Hence, we deduce from (203) that
∣
∣∂tζc + (v · ∇)ζc

∣
∣ ≤ C dist2(·, Iv) in Ω ∩ Br̂(Tc(t)) ∩

(
W±,c

∂Ω (t) ∪ W c
Ω±

v
(t)

)
(204)

for all t ∈ [0, T ]. Inserting the estimate (204) and the coercivity estimate (169) for the bulk cutoff
into (202) thus yields (198) in Ω ∩ Br̂(Tc(t)) ∩ W±,c

∂Ω (t) for all t ∈ [0, T ].
Step 4: (Estimate near contact points, part III) Fix c ∈ C, and denote by i ∈ I the unique two-phase

interface such that i ∼ c. We aim to verify (198) in the interpolation wedges Ω ∩ Br̂(Tc(t)) ∩ W c
Ω±

v
(t) for

all t ∈ [0, T ]. To this end, we may employ (192), (194) and (197) to argue that

∂tηbulk + (v · ∇)ηbulk

= −λ±
c

{(
∂tζi + (v · ∇)ζi

)
− ηbulk(v · ∇)ζi

}

− (1−λ±
c )

{(
∂tζc + (v · ∇)ζc

)
− ηbulk(v · ∇)ζc

}

+
(
∂tλ

±
c + (v · ∇)λ±

c

)
(ζc − ζi)

(205)

in Ω ∩ Br̂(Tc(t)) ∩ W c
Ω±

v
(t) for all t ∈ [0, T ]. Due to Definition 17 of the admissible localization radius rc

and r̂ ≤ rc by Lemma 26, it holds Br̂(Tc(t)) ∩ W c
Ω±

v
(t) ⊂ ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
for all t ∈ [0, T ]. The

estimates (200) and (169) therefore imply that the first term on the right hand side of (205) is of required
order. For the second term on the right hand side of (205), we may instead rely on the estimates (204)
and (169).

Note that in view of the definitions (176)–(178), the auxiliary cutoffs ζi and ζc are compatible to
second order in the sense that |ζi − ζc| ≤ C dist2(·, Tc) in Ω ∩ Br̂(Tc(t)) ∩ W c

Ω±
v
(t) for all t ∈ [0, T ]. Recall

from the previous step that dist(·, Tc) is dominated by dist(·, Iv) in Br̂(Tc(t)) ∩
(
W±,c

∂Ω (t) ∪ W c
Ω±

v
(t)

)
for

all t ∈ [0, T ]. Hence,

|ζi − ζc| ≤ C dist2(·, Iv) (206)

in Ω ∩ Br̂(Tc(t)) ∩ W c
Ω±

v
(t) for all t ∈ [0, T ]. In particular, together with (156) the bound (206) allows to

upgrade (205) to the desired estimate (198) in Ω ∩ Br̂(Tc(t)) ∩ W c
Ω±

v
(t) for all t ∈ [0, T ].

Step 5: (Conclusion) Recall from Definition 17 of the admissible localization radius rc that for all
t ∈ [0, T ] the set Ω ∩ Brc

(Tc(t)) is decomposed by means of the five pairwise disjoint open wedges
W±,c

∂Ω (t),W c
Ti

(t),W c
Ω±

v
(t) ⊂ R

2. Hence, the previous three steps entail the validity of (198) in Ω∩Brc
(Tc(t))

for all t ∈ [0, T ]. In particular, based on the discussion at the beginning of this proof and the argument
in the vicinity of the interface but away from contact points (see Step 1 ), we may conclude the proof of
Lemma 26. �

6.2. Proof of Proposition 7

All ingredients are in place to proceed with the proof of the main result of this section, i.e., that the
vector field ξ of Construction 27 gives rise to a boundary adapted extension of the interface unit normal
for two-phase fluid flow in the sense of Definition 2 with respect to (χv, v).

Proof of (16a). This is an easy consequence of the lower bound in the coercivity estimate (169) for
the bulk cutoff, the definition (197) of the global vector field ξ, the fact that the local vector fields
(ξn)n∈{1,...,N} as provided by Proposition 15 and Proposition 16 are of unit length, and the triangle
inequality in form of |ξ| = |

∑N
n=1 ηnξn| ≤

∑N
n=1 ηn|ξn| =

∑N
n=1 ηn = 1 − ηbulk in Ω × [0, T ]. �
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Proof of (16b). By definition (197) of the candidate extension ξ and the localization properties (171)–
(175) of the partition of unity (η1, . . . , ηN ) from Lemma 26, it suffices to verify (16b) in terms of ξ = ηcξ

c

in the associated region Br̂(Tc(t)) ∩ ∂Ω for all contact points c ∈ C and all t ∈ [0, T ]. However, this in
turn is an immediate consequence of Proposition 16. �
Proof of (16c). For a proof of (16c), we start computing based on the definition (197) of the global vector
field ξ that ∇·ξ =

∑N
n=1 ηn∇·ξn +

∑N
n=1(ξ

n ·∇)ηn. As a consequence of the corresponding local versions
of (16c) from Proposition 15 and Proposition 16, and the fact that (η1, . . . , ηn) is a partition of unity
along the interface Iv by Lemma 26 we obtain

∑N
n=1 ηn∇·ξn = −HIv

along Iv ∩Ω. Moreover, by adding
zero and subsequently relying on the definition (197) of the global vector field ξ, the localization proper-
ties (171)–(175) of the partition of unity (η1, . . . , ηN ) from Lemma 26, the compatibility estimate (115)
and the estimates (169) and (170) for the bulk cutoff we may infer that

N∑

n=1

(ξn · ∇)ηn = −(ξ · ∇)ηbulk −
N∑

n=1

((ξ − ξn) · ∇)ηn

= −(ξ · ∇)ηbulk + ηbulk

N∑

n=1

(ξn · ∇)ηn

+
∑

i∈I

∑

c∈C,i∼c

ηc

(
(ξi−ξc) · ∇ηi) +

∑

c∈C

∑

i∈I,i∼c

ηi

(
(ξc−ξi) · ∇ηc)

= O(1 ∧ dist(·, Iv)) in Ω × [0, T ].

In summary, we thus obtain (16c). �
Proof of (16d). For a proof of (16d), we start estimating based on the definition (197) of the global vector
field ξ as well as the corresponding local versions of (16d) from Proposition 15 and Proposition 16

∂tξ =
N∑

n=1

ηn∂tξ
n +

N∑

n=1

ξn∂tηn

= −
N∑

n=1

ηn(v · ∇)ξn +
N∑

n=1

ξn∂tηn

−
N∑

n=1

ηn(Id−ξn ⊗ ξn)(∇v)Tξn + O(1 ∧ dist(·, Iv)) in Ω × [0, T ]. (207)

Adding zero twice and applying the product rule, we may further rewrite based on the definition (197) of
the candidate extension ξ and the localization properties (171)–(175) of the partition of unity (η1, . . . , ηN )
from Lemma 26

−
N∑

n=1

ηn(v · ∇)ξn +
N∑

n=1

ξn∂tηn

= −(v · ∇)ξ +
N∑

n=1

ξn
(
∂tηn + (v · ∇)ηn

)

= −(v · ∇)ξ − ξ
(
∂tηbulk + (v · ∇)ηbulk

)
+

N∑

n=1

(ξn−ξ)
(
∂tηn + (v · ∇)ηn

)

= −(v · ∇)ξ − ξ
(
∂tηbulk + (v · ∇)ηbulk

)
+ ηbulk

N∑

n=1

ξn
(
∂tηn + (v · ∇)ηn

)

+
∑

i∈I

∑

c∈C,i∼c

ηc(ξi−ξc)
(
∂tηi+(v · ∇)ηi

)
+

∑

c∈C

∑

i∈I,i∼c

ηi(ξc−ξi)
(
∂tηc+(v · ∇)ηc

)
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in Ω × [0, T ]. Hence, estimating based on the compatibility estimate (115) as well as the estimates (169)
and (198) for the bulk cutoff yields the bound

−
N∑

n=1

ηn(v · ∇)ξn +
N∑

n=1

ξn∂tηn = −(v · ∇)ξ + O(1 ∧ dist(·, Iv)) in Ω × [0, T ]. (208)

Adding zero twice and making use of the definition (197) of the candidate extension ξ together with
the localization properties (171)–(175) of the partition of unity (η1, . . . , ηN ) from Lemma 26, we next
compute

1suppηn
ξn ⊗ ξn

= 1suppηn
ξ ⊗ ξ + 1suppηn

(ξn−ξ) ⊗ ξn + 1suppηn
ξ ⊗ (ξn−ξ)

= 1suppηn
ξ ⊗ ξ

+ 1suppηn
ηbulkξ

n ⊗ ξn + 1suppηn
ηbulkξ ⊗ ξn

+ 1n=i∈I1suppηi

∑

c∈C,i∼c

ηc(ξi−ξc) ⊗ ξi + 1n=c∈C1suppηc

∑

i∈I,i∼c

ηi(ξc−ξi) ⊗ ξc

+ 1n=i∈I1suppηi

∑

c∈C,i∼c

ηcξ ⊗ (ξi−ξc) + 1n=c∈C1suppηc

∑

i∈I,i∼c

ηiξ ⊗ (ξc−ξi) (209)

in Ω × [0, T ]. Relying on the same ingredients as for the previous computation we also have

−
N∑

n=1

ηn(∇v)Tξn = −(∇v)Tξ −
N∑

n=1

ηn(∇v)T(ξn−ξ) + ηbulk(∇v)Tξ

= −(∇v)Tξ + ηbulk(∇v)Tξ − ηbulk

N∑

n=1

ηn(∇v)Tξn

−
∑

i∈I

∑

c∈C,i∼c

ηiηc(∇v)T(ξi−ξc) −
∑

c∈C

∑

i∈I,i∼c

ηcηi(∇v)T(ξc−ξi)

in Ω × [0, T ]. The compatibility estimate (115) as well as the estimates (169) and (198) therefore imply
in view of the previous two displays that

−
N∑

n=1

ηn(Id−ξn ⊗ ξn)(∇v)Tξn

= −(Id−ξ ⊗ ξ)(∇v)Tξ + O(1 ∧ dist(·, Iv)) in Ω × [0, T ].

(210)

The combination of the bounds (207)–(210) now immediately entails the desired estimate (16d) on the
time evolution of the global vector field ξ. �

Proof of (16e). We get as a consequence of the product rule and inserting the local versions of (16e) from
Proposition 15 and Proposition 16

ξ · ∂tξ =
N∑

n=1

ηnξ · ∂tξ
n +

N∑

n=1

(ξ · ξn)∂tηn

= −
N∑

n=1

ηnξn · (v · ∇)ξn +
N∑

n=1

ηn(ξ−ξn) · ∂tξ
n

+
N∑

n=1

(ξ · ξn)∂tηn + O(dist(·, Iv)2 ∧ 1) in Ω × [0, T ].
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Adding zero to produce the left hand sides of the local versions of (16d) from Proposition 15 and Propo-
sition 16 further updates the previous display to

ξ · ∂tξ = −
N∑

n=1

ηnξ · (v · ∇)ξn +
N∑

n=1

(ξ · ξn)∂tηn

−
N∑

n=1

ηn(ξ−ξn) · (Id − ξn ⊗ ξn)(∇v)Tξn

+
N∑

n=1

ηn(ξ−ξn) ·
(
∂tξ

n+(v · ∇)ξn+(Id − ξn ⊗ ξn)(∇v)Tξn
)

+ O(dist(·, Iv)2 ∧ 1) in Ω × [0, T ].

We then continue with adding zeros to obtain

ξ · ∂tξ = −ξ · (v · ∇)ξ

+
N∑

n=1

(
ξ · (ξn−ξ)

)(
∂tηn+(v · ∇)ηn

)
− |ξ|2

(
∂tηbulk+(v · ∇)ηbulk

)

−
N∑

n=1

ηn(ξ−ξn) · (ξ ⊗ ξ − ξn ⊗ ξn)(∇v)Tξn

−
N∑

n=1

ηn(ξ−ξn) · (Id − ξ ⊗ ξ)(∇v)T(ξn − ξ)

+
N∑

n=1

ηn(ξ−ξn) ·
(
∂tξ

n+(v · ∇)ξn+(Id − ξn ⊗ ξn)(∇v)Tξn
)

+ O(dist(·, Iv)2 ∧ 1) in Ω × [0, T ].

(211)

As it is by now routine, we may employ the localization properties (171)–(175) of the partition of unity
(η1, . . . , ηN ) from Lemma 26 and the estimates (169) and (198) for the bulk cutoff to reduce the task of
estimating the right hand side terms of (211) to an application of the compatibility estimates (115)–(116).
More precisely, we obtain by straightforward applications of these two ingredients that

N∑

n=1

(
ξ · (ξ−ξn)

)(
∂tηn+(v · ∇)ηn

)

=
∑

i∈I

∑

c∈C,i∼c

η2
c

(
(ξc−ξi) · (ξc−ξi)

)(
∂tηi+(v · ∇)ηi

)

+
∑

c∈C

∑

i∈I,i∼c

ηcηi

(
(ξc − ξi) · (ξi−ξc)

)(
∂tηc+(v · ∇)ηc

)

+
∑

i∈I

∑

c∈C,i∼c

η2
c

(
ξi · (ξc−ξi)

)(
∂tηi+(v · ∇)ηi

)

+
∑

c∈C

∑

i∈I,i∼c

ηcηi

(
ξi · (ξi−ξc)

)(
∂tηc+(v · ∇)ηc

)

+
∑

i∈I

∑

c∈C,i∼c

ηiηc

(
ξi · (ξc−ξi)

)(
∂tηi+(v · ∇)ηi

)

+
∑

c∈C

∑

i∈I,i∼c

η2
i

(
ξi · (ξi−ξc)

)(
∂tηc+(v · ∇)ηc

)

+ O(dist(·, Iv)2 ∧ 1) in Ω × [0, T ], (212)



   93 Page 52 of 60 S. Hensel and A. Marveggio JMFM

N∑

n=1

ηn(ξ−ξn) · (Id − ξ ⊗ ξ)(∇v)T(ξ−ξn)

=
∑

i∈I

∑

c∈C,i∼c

ηiη
2
c (ξc−ξi) · (Id − ξ ⊗ ξ)(∇v)T(ξc−ξi)

+
∑

c∈C

∑

i∈I,i∼c

ηcη
2
i (ξi−ξc) · (Id − ξ ⊗ ξ)(∇v)T(ξi−ξc)

+ O(dist(·, Iv)2 ∧ 1) in Ω × [0, T ], (213)
N∑

n=1

ηn(ξ−ξn) ·
(
∂tξ

n+(v · ∇)ξn+(Id − ξn ⊗ ξn)(∇v)Tξn
)

=
∑

i∈I

∑

c∈C
ηiηc(ξc−ξi) ·

(
∂tξ

i+(v · ∇)ξi+(Id − ξi ⊗ ξi)(∇v)Tξi
)

+
∑

c∈C

∑

i∈I,i∼c

ηcηi(ξi−ξc) ·
(
∂tξ

c+(v · ∇)ξc+(Id − ξc ⊗ ξc)(∇v)Tξc
)

+ O(dist(·, Iv)2 ∧ 1) in Ω × [0, T ], (214)

and finally
N∑

n=1

ηn(ξ−ξn) · (ξ ⊗ ξ − ξn ⊗ ξn)(∇v)Tξn

=
∑

i∈I

∑

c∈C,i∼c

ηc(ξc−ξi) · (ξ ⊗ ξ − ξi ⊗ ξi)(∇v)Tξi

+
∑

c∈C

∑

i∈I,i∼c

ηi(ξi−ξc) · (ξ ⊗ ξ − ξc ⊗ ξc)(∇v)Tξc

+ O(dist(·, Iv)2 ∧ 1) in Ω × [0, T ]. (215)

We then exploit the compatibility estimates (115) and (116) for an estimate of (212), the compatibility
estimate (115) for an estimate of (213), the local versions of (16d) from Proposition 15 and Proposition 16
in combination with the compatibility estimate (115) for an estimate of (214), and finally (209) together
with the estimate for the bulk cutoff (169) and the compatibility estimate (115) to estimate (215). In
summary, using also the bound on the advection derivative (198) as well as the coercivity estimate (169),
we may upgrade (211) to the desired estimate (16e). �

7. Existence of Transported Weights: Proof of Lemma 8

We decompose the argument for the construction of a transported weight ϑ in the sense of Definition 3
in several steps.

Step 1: (Choice of suitable profiles) Let ϑ̄ : R → R be chosen such that it represents a smooth truncation
of the identity in the sense that ϑ̄(r) = r for |r| ≤ 1

2 , ϑ̄(r) = −1 for r ≤ −1, ϑ̄(r) = 1 for r ≥ 1, 0 ≤ ϑ̄′ ≤ 2
as well as |ϑ̄′′| ≤ C.

For each two-phase interface i ∈ I present in the interface Iv of the strong solution, we then define an
auxiliary weight

ϑ̄i(x, t) := −ϑ̄
( sdist(x, Ti(t))

δr̂

)
, (x, t) ∈ im(ΨTi

) (216)

where the change of variables ΨTi
and the associated signed distance sdist(·, Ti) are the ones from Defini-

tion 13 of the admissible localization radius ri. Moreover, r̂ represents the localization scale of Lemma 26
and δ ∈ (0, 1] denotes a constant to be chosen in the course of the proof.
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Recalling also from Definition 17 of the admissible localization radii (rc)c∈C the definition of the change
of variables Ψ∂Ω with associated signed distance sdist(·, ∂Ω) we define another two auxiliary weights by
means of

ϑ̄±
∂Ω(x, t) := ∓ϑ̄

( sdist(x, ∂Ω)
δr̂

)
,

(x, t) ∈
⋃

t′∈[0,T ]

(
Ω±

v (t′) ∩ Ψ∂Ω

(
∂Ω×(−2r̂, 2r̂)

))
×{t′}. (217)

Step 2: (Construction of the transported weight) Away from contact points and the interface but in
the vicinity of the domain boundary, we introduce the following notational shorthand

Ur̂(t) :=
⋃

i∈I
ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
∪

⋃

c∈C
Br̂

(
Tc(t)

)
, t ∈ [0, T ], (218)

and then define

ϑ(x, t) := ϑ̄±
∂Ω(x, t),

(x, t) ∈
⋃

t′∈[0,T ]

(
Ω±

v (t′) ∩ Ψ∂Ω

(
∂Ω×[−r̂, r̂]

)
\ Ur̂(t′)

)
×{t′}. (219)

Fix next a two-phase interface i ∈ I. Away from contact points but in the vicinity of the interface,
we then define

ϑ(x, t) := ϑ̄i(x, t),

(x, t) ∈
⋃

t′∈[0,T ]

(
Ω ∩ ΨTi

(
Ti(t′)×{t′}×[−r̂, r̂]

)
\

⋃

c∈C
Br̂

(
Tc(t′)

)
)

×{t′}. (220)

Let now a contact point c ∈ C be fixed, and denote by i ∈ I the unique two-phase interface with i ∼ c.
Recall from Definition 17 of the admissible localization radius rc that for all t ∈ [0, T ] we decomposed
Ω∩Brc

(Tc(t)) by means of five pairwise disjoint open wedges W±,c
∂Ω (t),W c

Ti
(t),W c

Ω±
v
(t) ⊂ R

2. In the wedge
W c

Ti
containing the two-phase interface Ti ⊂ Iv, we still define

ϑ(x, t) := ϑ̄i(x, t), (x, t) ∈
⋃

t′∈[0,T ]

(
Ω ∩ Br̂

(
Tc(t′)

)
∩ W c

Ti
(t′)

)
×{t′}. (221)

In the wedges W±,c
∂Ω containing the domain boundary ∂Ω, we instead set

ϑ(x, t) := ϑ̄±
∂Ω(x, t), (x, t) ∈

⋃

t′∈[0,T ]

(
Ω ∩ Br̂

(
Tc(t′)

)
∩ W±,c

∂Ω (t′)
)
×{t′}. (222)

In the interpolation wedges W c
Ω±

v
, we make use of the interpolation parameter λ±

c of Lemma 24 to
interpolate between the two constructions near the interface (221) and near the domain boundary (222).
Recall in this context the convention that λ±

c (·, t) was set equal to one on
(
∂W c

Ω±
v
(t) ∩ ∂W c

Ti
(t)

)
\ Tc(t)

and set equal to zero on
(
∂W c

Ω±
v
(t) ∩ ∂W±,c

∂Ω (t)
)

\ Tc(t) for all t ∈ [0, T ]. With this notation in place, we
define on the interpolation wedges

ϑ(x, t) := λ±
c (x, t)ϑ̄i(x, t) + (1−λ±

c (x, t))ϑ̄±
∂Ω(x, t),

(x, t) ∈
⋃

t′∈[0,T ]

(
Ω ∩ Br̂

(
Tc(t′)

)
∩ W c

Ω±
v
(t′)

)
×{t′}. (223)

Finally, choosing δ small enough in the definition (216) of the auxiliary weights (ϑi)i∈I and recalling
the localization properties (179)–(181) of the scale r̂, it is safe to define in the space-time domain not
captured by the definitions (219)–(223)
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ϑ(x, t) := ∓1,

(x, t) ∈
⋃

t′∈[0,T ]

(
Ω±

v (t′) \
(
Ur̂(t′) ∪ Ψ∂Ω(∂Ω×[−r̂, r̂])

))
×{t′}. (224)

Recall for this definition also the notation (218).
Step 3: (Regularity and coercivity) The validity of the asserted sign conditions in Definition 3 are

immediate from (219)–(224). Since the first-order derivatives of the interpolation parameter λ±
c feature

controlled blow-up (154), it is also a direct consequence of the definitions (219)–(224) that ϑ ∈ W 1,∞
x,t (Ω×

[0, T ]) as asserted.
In view of the definition (224) of the weight in the bulk it suffices to establish (27) in the regions

Ω∩Ψ∂Ω

(
∂Ω×[−r̂, r̂]

)
\Ur̂(t), Ω∩ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\
⋃

c∈C Br̂

(
Tc(t)

)
and Ω∩Br̂(Tc(t)) for all i ∈ I,

all c ∈ C and all t ∈ [0, T ]. However, in these regions the asserted estimate (27) is immediately implied
by the properties of the truncation of unity ϑ̄ from Step 1 of this proof and the definitions (219)–(223).

Step 4: (Advection equation) Because of the definition (224) of the weight ϑ in the bulk, it suffices to
establish (28) in the regions Ω ∩ Ψ∂Ω

(
∂Ω×[−r̂, r̂]

)
\ Ur̂(t), Ω ∩ ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\

⋃
c∈C Br̂

(
Tc(t)

)

and Ω ∩ Br̂(Tc(t)) for all i ∈ I, all c ∈ C and all t ∈ [0, T ].
Observe first that it follows from the definitions (217), (219) and (222) as well as the boundary

condition for the fluid velocity (v · n∂Ω)|∂Ω = 0 that

∂tϑ + (v · ∇)ϑ = 0 along ∂Ω \
⋃

c∈C
Tc(t) (225)

for all t ∈ [0, T ]. By a Lipschitz estimate together with the coercivity estimate (27), the desired esti-
mate (28) follows in Ω ∩ Ψ∂Ω

(
∂Ω×[−r̂, r̂]

)
\ Ur̂(t) for all t ∈ [0, T ].

Fix next a two-phase interface i ∈ I. We then claim that
∣
∣∂tϑ̄i + (v · ∇)ϑ̄i

∣
∣ ≤ C dist(·, Iv) in Ω ∩ ΨTi(t)

(
Ti(t)×[−r̂, r̂]

)
(226)

for all t ∈ [0, T ]. Indeed, one only needs to recall that the signed distance to the two-phase inter-
face Ti ⊂ Iv is transported by the fluid velocity v to first order in the distance to the interface. In
particular, combining (226) with the definition (220) and the coercivity estimate (27) entails (28) in
Ω ∩ ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\

⋃
c∈C Br̂

(
Tc(t)

)
for all t ∈ [0, T ].

Let now a contact point c ∈ C be given, and let i ∈ I be the unique two-phase interface such that i ∼ c.
The desired estimate (28) follows immediately from (226) and (221) in the wedge Ω ∩ Br̂

(
Tc(t)

)
∩ W c

Ti
(t)

for all t ∈ [0, T ]. For the wedges containing the domain boundary ∂Ω, the estimate (28) in form of
∣
∣∂tϑ̄

±
∂Ω + (v · ∇)ϑ̄±

∂Ω

∣
∣ ≤ C dist(·, ∂Ω) in Ω ∩ Br̂

(
Tc(t)

)
∩

(
W c

Ω±
v
(t) ∪ W±,c

∂Ω (t)
)

(227)

for all t ∈ [0, T ], is satisfied because of the analogue of (225) and a Lipschitz estimate. Finally, in the
interpolation wedges one may estimate

|∂tϑ+(v · ∇)ϑ| ≤ |ϑ̄i − ϑ̄±
∂Ω||∂tλ

±
c +(v · ∇)λ±

c |
+ λ±

c |∂tϑ̄i+(v · ∇)ϑ̄i| + (1−λ±
c )|∂tϑ̄

±
∂Ω+(v · ∇)ϑ̄±

∂Ω|.

The desired bound thus follows from the estimate (156) for the advective derivative of the interpolation
parameter λ±

c , the estimates (226) and (227), and the fact that the auxiliary weights from (216) and (217)
are compatible in the sense

|ϑ̄i − ϑ̄±
∂Ω| ≤ C(dist(·, ∂Ω) ∧ dist(·, Iv))

in Ω ∩ Br̂

(
Tc(t)) ∩ W c

Ω±
v
(t) for all t ∈ [0, T ]. This concludes the proof of Lemma 8. �
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Appendix A. Existence of Varifold Solutions to two-phase Fluid Flow With Surface Tension

The aim of this Appendix is to give a sketch of a proof regarding existence of varifold solutions to two-
phase fluid flow with surface tension and with ninety degree contact angle (see Definition 11). Note that
this is not treated by the work of Abels [1] in which the existence of a varifold solution in the presence
of surface tension is only established in a full space setting. However, in principle it still suggests itself
to follow, where possible, the structure of the proof for the case of an unbounded domain by Abels [1].
In this regard, we first discuss two tools which are needed due to the different setting of the present
work, i.e., geometric evolution with a ninety degree contact angle condition and the associated boundary
conditions for the solenoidal fluid velocity. These tools concern an existence result for weak solutions
to the required transport equation (for sufficiently regular transport velocities) and elliptic regularity
estimates for the Helmholtz decomposition associated with the bounded and smooth domain Ω. In a
second step, we present the corresponding approximate problem, focusing again on the key steps of the
proof which differ with respect to the case of an unbounded domain studied by Abels [1]. Note that
analogous to the existence theory of [1], we will assume some regularity for the geometry of the initial
data and, for simplicity, that the densities of the two fluids coincide and are normalized to 1.

Transport equation. In order to construct approximate solutions of the two-phase flow with surface
tension and with ninety degree contact angle, one first needs an existence result for weak solutions to the
transport equation in a bounded domain. In particular, it suffices to motivate the validity of [1, Lemma
2.3, Ω ≡ R

d] in case of a smooth and bounded domain Ω ⊂ R
d, d ∈ {2, 3}.

To this aim, let the open subset Ω+
0 ⊂ Ω be subject to the regularity conditions in Definition 9,

let χ0 := χΩ+
0

∈ BV(Ω; {0, 1}), let T ∈ (0,∞), and consider a sufficiently regular fluid velocity v ∈
C([0, T ];C2

b (Ω))∩C(Ω×[0, T ]) such that div v = 0 in Ω and (n∂Ω·v)|∂Ω = 0. Consider any C([0, T ];C2
b (Rd))

http://creativecommons.org/licenses/by/4.0/
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extension of v which we denote by ṽ. Then, a solution χ̃ to the transport equation associated with ṽ can
be constructed on R

d by the usual method of characteristics (see, e.g., [1, Proof of Lemma 2.3]). The
associated flow map is a C1-diffeomorphism at any time t ∈ [0, T ]. However, note that it maps ∂Ω onto
itself, due to v|∂Ω = ṽ|∂Ω being tangential along ∂Ω. Moreover, since the flow map is a global diffeomor-
phism (and since continuous images of connected sets are connected), it also maps Ω onto itself. Then,
one can conclude by means of the same computations as in the proof of [1, Lemma 2.3] — using in the
process the fact that div v = 0 in Ω — that the restriction χ := χ̃|Ω×[0,T ] ∈ L∞(0, T ; BV(Ω; {0, 1})) is a
weak solution of the transport equation associated with v in the sense of

∫ T

0

∫

Ω

χ (∂tϕ + v · ∇ϕ) dxdt +
∫

Ω

χ0ϕ(x, 0)dx = 0 (228)

for any ϕ ∈ C1
c ([0, T );C(Ω)) ∩ Cc([0, T );C1(Ω)). Moreover, we have

‖χ‖L∞(0,T ;BV (Ω)) � M
(
‖v‖C([0,T ];C2

b (Ω))
)

‖χ0‖BV (Ω) , (229)

d
dt

|∇χ(·, t)| (Ω) = −
〈
Hχ(·,t), v(·, t)

〉
for all t ∈ (0, T ) (230)

for some continuous function M . Note that the latter holds because the 90 degree contact angle condition
is preserved by sufficiently regular transport velocities (see, e.g., the remark after Definition 10).

Helmholtz decomposition associated with bounded domains. We recall properties of the Helmholtz
projection PΩ associated with the smooth bounded domain Ω, referring the reader to [21, Corollaries
7.4.4-5] (see also [30]).

Define Wp(Ω) := {g ∈ W 1,p(Ω;Rd) : div g = 0, (g · n∂Ω)|∂Ω = 0}. Given f ∈ W 1,p(Ω;Rd), 2 ≤ p < ∞,
there are unique functions φ ∈ W 2,p(Ω) and w ∈ Wp(Ω) such that f = ∇φ + w. The bounded linear
operator PΩ ∈ B(W 1,p(Ω;Rd),Wp(Ω)) defined by PΩf := w is a projection, which is the Helmholtz
projection associated with the smooth bounded domain Ω. Moreover, if f ∈ W 2,p(Ω;Rd) it holds φ ∈
W 3,p(Ω) and

‖PΩf‖W 2,p(Ω;Rd) ≤ C‖f‖W 2,p(Ω;Rd), (231)

and if f ∈ W k,2(Ω;Rd), k ≥ 2, then φ ∈ W k,2(Ω) and

‖PΩf‖W k,2(Ω;Rd) ≤ C‖f‖W k,2(Ω;Rd). (232)

This follows from existence and regularity theory of the associated Neumann problem (see for the case
p > 2 the result of [21, Corollary 7.4.5])

Δφ = div f in Ω,

(n∂Ω · ∇)φ = f · n∂Ω on ∂Ω.

Solutions to approximate two-phase fluid flow. In order to formulate the approximate equations, let ψ
be a standard mollifier, for every k ∈ N we denote by ψk := kdψ(k·) its usual rescaling, and by PΩ the
Helmholtz projection associated with the smooth domain Ω. Moreover, let Ψk· = PΩ(Ψk ∗ ·). Consider
the initial data v0 ∈ L2(Ω) with div v0 = 0 and (n∂Ω · v0)|∂Ω = 0, and let χ0 := χΩ+

0
∈ BV(Ω; {0, 1}),

where Ω+
0 ⊂ Ω is subject to the regularity conditions in Definition 9. Let μ, σ > 0. Then, we consider an

approximate two-phase flow on (0, Tw), Tw ∈ (0,∞). This is a pair (vk, χk) consisting on one side of a
fluid velocity field vk ∈ L∞([0, Tw];L2(Ω)) ∩ L2([0, Tw];W2(Ω)) solving

∫

Ω

vk(·, T ) · η(·, T ) dx −
∫

Ω

v0 · η(·, 0) dx −
∫ T

0

∫

Ω

vk · ∂tη dxdt

−
∫ T

0

∫

Ω

Ψkvk ⊗ ψk ∗ vk : ∇(ψk ∗ η) dxdt +
∫ T

0

∫

Ω

μ(∇vk + ∇vT
k ) : ∇η dxdt

= σ

∫ T

0

∫

∂∗{χk=1}∩Ω

Hχk
· Ψkη dS dt (233)
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for a.e. T ∈ [0, Tw) and every η ∈ C∞([0, Tw);C1(Ω;Rd) ∩
⋂

p≥2 W 2,p(Ω;Rd)) with div η = 0 and (n∂Ω ·
η)∂Ω = 0, and on the other side an evolving phase indicator χk ∈ L∞([0, Tw]; BV(Ω; {0, 1})) which is the
unique weak solution — in the sense of (228) — to the transport equation

∂tχk + (Ψkvk) · ∇χk = 0 in (0, Tw) × Ω,

χk|t=0 = χ0 in Ω.

The existence of approximate solutions (vk, χk) satisfying the energy equality

1
2
‖vk(·, T )‖2

L2(Ω) + σ|∇χk(·, T )|(Ω) +
μ

2
‖∇vk‖2

L2(Ω×(0,T ))

=
1
2
‖v0‖2

L2(Ω) + σ|∇χ0|(Ω), T ∈ (0, Tw), (234)

and satisfying

the map (0, Tw) � t �→ |∇χk(·, t)|(Ω) is absolutely continuous, (235)

can then be proved by means of a fixed-point argument as done in [1, Proof of Theorem 4.2], relying in
the process on the above two ingredients corresponding to the different setting of the present work: the
existence result for weak solutions to the transport Eq. (228) with sufficiently regular transport velocity,
and the elliptic regularity estimates (232) for the Helmholtz projection associated with Ω. In particular,
one obtains uniform bounds

sup
k∈N

sup
t∈(0,Tw)

‖vk(·, t)‖2
L2(Ω) + sup

k∈N

‖∇vk‖2
L2(Ω×(0,Tw)) < ∞, (236)

sup
k∈N

sup
t∈(0,Tw)

|∇χk(·, t)|(Ω) < ∞. (237)

Limit passage in the approximation scheme to a varifold solution. As for the passage to the limit, we
only discuss the surface tension term on the right hand side of the approximate problem (233) as well
as the validity of the energy inequality (41). The other terms as well as the passage to the limit in the
transport equation can be treated as in [1]. First, we define a varifold Vk ∈ M((0, Tw) × Ω × S

d−1) by

Vk := L1�(0, Tw) ⊗ (Vk(t))t∈(0,Tw) , (238)

where

Vk(t) := |∇χk(·, t)|�Ω ⊗
(
δ ∇χk(·,t)

|∇χk(·,t)|

)
x∈Ω

∈ M(Ω×S
d−1) for any t ∈ (0, Tw).

Since χk ∈ L∞([0, Tw]; BV(Ω; {0, 1})) is uniformly bounded in the sense of (237), there then exists
χ ∈ L∞([0, Tw]; BV(Ω; {0, 1})) such that, up to taking a subsequence,

χk ⇀∗ χ in L∞(Ω×(0, Tw)), (239)

∇χk ⇀∗ ∇χ in L∞([0, Tw];M(Ω)). (240)

Moreover, we have supk ‖Vk‖M < ∞ due to (237) and the definition of Vk. In particular, there exists
V ∈ M((0, Tw) × Ω × S

d−1) such that, up to taking a subsequence,

Vk ⇀∗ V in M((0, Tw) × Ω × S
d−1). (241)

Note that the compatibility condition (42) then simply follows from exploiting (240) and (241). As a
preparation for the remaining arguments, note also that thanks to the condition (235) a careful inspection
of the argument of [16, Lemma 2] reveals that one may disintegrate the limit varifold V in form of

V = L1�(0, Tw) ⊗ (Vt)t∈(0,Tw) , Vt ∈ M(Ω×S
d−1), t ∈ (0, Tw), (242)

and that the limit interface energy satisfies

|Vt|Sd−1(Ω) ≤ lim inf
k

|∇χk(·, t)|(Ω) for a.e. t ∈ [0, Tw). (243)
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For any η ∈ C∞([0, Tw);C1(Ω;Rd) ∩
⋂

p≥2 W 2,p(Ω;Rd)) such that div η = 0 and (η · n∂Ω)|∂Ω = 0, we
discuss the limit of

∫ T

0

∫

Ω

(
Id− ∇χk

|∇χk| ⊗ ∇χk

|∇χk|

)
: ∇(Ψkη) d|∇χk|dt for k → ∞,

for almost every T ∈ [0, Tw). By adding a zero, we obtain
∫ T

0

∫

Ω

(
Id− ∇χk

|∇χk| ⊗ ∇χk

|∇χk|

)
: ∇(Ψkη − η) d|∇χk|dt

+
∫ T

0

∫

Ω×Sd−1
(Id−s ⊗ s) : ∇η dVk(t, x, s) ,

where the second term converges to
∫ T

0

∫
Ω×Sd−1 (Id−s ⊗ s) : ∇η dVt(x, s) for k → ∞ for any η ∈

C∞
0 ([0, Tw);C1(Ω;Rd) ∩

⋂
p≥2 W 2,p(Ω;Rd)). Indeed, the latter guarantees (Id−s ⊗ s) : ∇η ∈ C0((0, Tw)

×Ω×S
d−1) so that one may use (241) for such η. However, the additional support assumption on the

time variable can be removed by means of a standard truncation argument relying on the disintegration
formulas (238) and (242), respectively, and the uniform bound supk ‖Vk‖M < ∞. As for the first term,
we exploit the regularity properties of the Helmholtz projection. More precisely, we may estimate for any
p > 3 based on (231) and the Sobolev embedding W 1,p(Ω) ↪→ C(Ω), d ∈ {2, 3},

∣
∣
∣
∣
∣

∫ T

0

∫

Ω

(
Id− ∇χk

|∇χk| ⊗ ∇χk

|∇χk|

)
: ∇(Ψkη − η) d|∇χk|dt

∣
∣
∣
∣
∣

≤ C

∫ T

0

‖∇(Ψkη − η)‖C(Ω;Rd×d) dt

≤ C

∫ T

0

‖∇PΩ(ψk ∗ η − η)‖C(Ω;Rd×d) dt

≤ C

∫ T

0

‖ψk ∗ η − η‖W 2,p(Ω;Rd) dt.

The right hand side obviously goes to zero by letting k → ∞. In summary, we obtain as desired
∫ T

0

∫

Ω

(
Id− ∇χk

|∇χk| ⊗ ∇χk

|∇χk|

)
: ∇(Ψkη) d|∇χk|dt

→
∫ T

0

∫

Ω×Sd−1
(Id−s ⊗ s) : ∇η dVt(x, s) for k → ∞,

for almost every T ∈ [0, Tw) and all η ∈ C∞([0, Tw);C1(Ω;Rd) ∩
⋂

p≥2 W 2,p(Ω;Rd)) such that div η = 0
and (η · n∂Ω)|∂Ω = 0.

At last, we comment how to recover the energy inequality (41).
This can be obtained from combining the energy equality (234) with the lower-semicontinuity prop-

erty (243) and the convergence properties of vk to its limit v (i.e., up to a subsequence, vk ⇀ v in
L2(0, Tw;H1(Ω)) and vk ⇀∗ v in L∞(0, Tw;L2(Ω)) due to the uniform bound (236)).
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