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ABSTRACT
We consider a gas of N bosons with interactions in the mean-field scaling regime. We review the proof of an asymptotic expansion of its
low-energy spectrum, eigenstates, and dynamics, which provides corrections to Bogoliubov theory to all orders in 1/N. This is based on joint
works with Petrat, Pickl, Seiringer, and Soffer. In addition, we derive a full asymptotic expansion of the ground state one-body reduced density
matrix.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0089983

I. INTRODUCTION AND MAIN RESULTS

A. Introduction
Since the first experimental realization of Bose–Einstein condensation (BEC) in 1995, the experimental, theoretical, and mathematical

investigation of systems of interacting bosons at low temperatures has become a very active field of research. In a typical experiment, the
bosons are initially caught in an external trap. This situation is mathematically described by the N-body Hamiltonian

Htrap
N =

N

∑
j=1
(−Δj + V trap

(xj)) + ∑
1≤i<j≤N

vN(xi − xj) (1.1)

for some confining potential V trap and for some two-body interaction vN , acting on the Hilbert space of square integrable, permutation
symmetric functions on RdN ,

H
N
sym ∶=

N
⊗
sym

H, H ∶= L2
(Rd
).

The Bose gas is then cooled down to a low-energy eigenstate of Htrap
N or to a superposition of such states. For simplicity, let us assume that the

gas is prepared in the ground state Ψtrap
N of Htrap

N , i.e.,

E
trap
N = inf σ(Htrap

N ), Htrap
N Ψtrap

N = E
trap
N Ψtrap

N . (1.2)

Subsequently, the trap is switched off and the Bose gas propagates freely. Mathematically, this is described by the N-body Schrödinger equation
with initial datum Ψtrap

N ,
i∂tΨN(t) = HNΨN(t), ΨN(0) = Ψtrap

N , (1.3)
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with the N-body Hamiltonian

HN =
N

∑
j=1
(−Δj) + ∑

1≤i<j≤N
vN(xi − xj). (1.4)

Given that the number of particles in such a gas is usually large, an exact (analytical or numerical) analysis of the system in the presence of
interactions is, in general, impossible; an exception is the explicitly solvable Lieb–Liniger model, which describes a one-dimensional gas with
delta interactions. Over the last two decades, there have been many works in the mathematical physics community devoted to a rigorous
derivation of suitable approximations of the statical and dynamical properties of the gas for large N. These questions have been studied for
different classes of interactions vN , in particular, for the so-called mean-field (or Hartree) regime,

vN = λNv, λN ∶=
1

N − 1
, (1.5)

describing the situation of weak and long-range interactions.
In this note, we consider interactions of the form (1.5). We present an asymptotic expansion of the low-energy spectrum and eigenstates

of Htrap
N and of the dynamics (1.3), which makes the model fully computationally accessible to any order in 1/N. This review is based on Ref. 1

(in collaboration with Petrat and Seiringer) and Ref. 2 (in collaboration with Petrat, Pickl, and Soffer).

B. Model and main results
We consider a system of N interacting bosons in Rd, d ≥ 1, which are described by the N-body Hamiltonian (1.1) with interactions (1.5).

We impose the following assumptions on the interaction vN and the external potential V trap:

Assumption 1. Define vN as in (1.5).

(a) Let v : Rd
→ R be bounded with v(−x) = v(x) and v ≢ 0.

(b) Assume that v is of positive type, i.e., that it has a non-negative Fourier transform.

Assumption 2. Let V trap : Rd
→ R be measurable, locally bounded, and non-negative, and let V trap

(x) tend to infinity as ∣x∣ → ∞.

Our first main result concerns the ground state Ψtrap
N of Htrap

N : We construct a norm approximation of Ψtrap
N and of its energy E

trap
N to any

order in 1/N.

Theorem 1. Let a ∈ N0, let Assumptions 1 and 2 be satisfied, and choose N sufficiently large. Then, there exists a constant C(a) such that

∥Ψtrap
N −

a

∑
ℓ=0

λ
ℓ
2

Nψ
trap
N,ℓ ∥

HN

≤ C(a)λ
a+1

2
N (1.6)

and

∣E
trap
N −Netrap

H −
a

∑
ℓ=0

λℓN Etrap
ℓ ∣ ≤ C(a)λa+1

N . (1.7)

The coefficients ψtrap
N,ℓ ∈ H

N
sym of expansion (1.6) and the coefficients etrap

H , Etrap
ℓ ∈ R of expansion (1.7) are given in (2.46), (2.4), and (2.47),

respectively.

Our result extends to the low-energy excitation spectrum of Htrap
N and to a certain class of unbounded interaction potentials v, including

the repulsive three-dimensional Coulomb potential (see Sec. II E). To leading order (a = 0), the statements (1.6) and (1.7) have been proven
(for bounded interactions) by Seiringer on the torus3 and by Grech and Seiringer in the inhomogeneous setting.4 For our class of unbounded
interactions, the leading order approximation was obtained by Lewin, Nam, Serfaty, and Solovej.5 The higher orders in (1.6) and (1.7) were, to
the best of our knowledge, first rigorously derived in Ref. 1. Another approach was proposed by Pizzo in Refs. 6–8, who considers a Bose gas
on a torus and constructs an expansion for the ground state, based on a multi-scale analysis in the number of excitations, around a product
state using Feshbach maps. As a consequence of the norm approximation (1.6), one can derive an expansion of the ground state one-body
reduced density matrix,

γtrap,(1)
N ∶= TrHN−1 ∣Ψtrap

N ⟩⟨Ψ
trap
N ∣, (1.8)

in trace norm (see Sec. II D for a proof of this statement).
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Corollary 1.1. Let a ∈ N0, and let Assumptions 1 and 2 be satisfied. Denote by γtrap,(1)
N the one-body reduced density matrix of Ψtrap

N . Then,
there exists a constant C(a) > 0 such that

Tr∣γtrap,(1)
N −

a

∑
ℓ=0

λℓNγ
trap
1,ℓ ∣ ≤ C(a)λa+1

N (1.9)

for sufficiently large N, where the coefficients γtrap
1,ℓ ∈ L(H) are defined in (2.50).

Theorem 1 and Corollary 1.1 determine the ground state Ψtrap
N of Htrap

N to arbitrary precision. Now, we remove the confining potential
V trap and take Ψtrap

N as initial datum for the time evolution (1.3). Since an eigenstate of Htrap
N is not necessarily an eigenstate of HN , this leads

to some non-trivial dynamics, for which we provide an approximation in norm to any order in 1/N in our second main result.

Theorem 2. Let a ∈ N0, t ∈ R, let Assumption 1a hold, and denote by ΨN(t) the solution of (1.3). Then, there exists a constant C(a) > 0
such that

∥ΨN(t) −
a

∑
ℓ=0

λ
ℓ
2

NψN,ℓ(t)∥
HN

≤ eC(a)tλ
a+1

2
N (1.10)

for sufficiently large N, where the coefficients ψN,ℓ(t) are defined in (3.19).

Note that for the dynamical result, we do not require the interaction potential to be of positive type. Finally, we derive from expansion
(1.10) a trace norm approximation of the time-evolved one-body reduced density matrix

γ(1)N (t) ∶= TrHN−1 ∣ΨN(t)⟩⟨ΨN(t)∣ (1.11)

to arbitrary precision.

Corollary 1.2. Let a ∈ N0, t ∈ R, and let Assumption 1a be satisfied. Then, there exists a constant C(a) such that

Tr∣γ(1)N (t) −
a

∑
ℓ=0

λℓNγ1,ℓ(t)∣ ≤ eC(a)tλa+1
N (1.12)

for sufficiently large N, where the coefficients γ1,ℓ(t) ∈ L(H) are defined in (3.26).

Below, we will provide and explain the explicit formulas for the coefficients in Theorems 1 and 2 and in Corollaries 1.1 and 1.2. Note that
etrap

H , Etrap
ℓ , γtrap

1,ℓ , and γ1,ℓ(t) are completely independent of N. The N-body wave functions ψtrap
N,ℓ and ψN,ℓ(t) naturally depend on N; however,

this N-dependence is trivial in a sense to be made precise below. In particular, the computational effort to obtain physical quantities, such as
expectation values of bounded operators with respect to the (time-evolved) N-body state, does not scale with N.

Finally, let us remark that all constants C(a) grow rapidly in a. Hence, all statements are to be read as asymptotic expansions: given any
order a of the approximation, one can choose N sufficiently large such that the estimates are meaningful, but we cannot simultaneously send
a to infinity.

To prove the above results, we first remove the particles in the condensate from the description and focus only on the excitations from
the condensate. Mathematically, this is done by conjugating the N-body Hamiltonians with a unitary map that maps from the N-body Hilbert
space into a truncated Fock space, whose elements describe the excitations. The resulting operator is then expanded in the parameter λ1/2

N ,
which (formally) leads to a series of the form

H = H0 +∑
j≥1
λ

j
2
NHj,

where the leading order term H0 is the well-known Bogoliubov Hamiltonian. Formally, our results can be obtained by perturbation
theory around H0 to any order; however, the rigorous proofs are much more involved, mainly since all operators are unbounded and
non-commutative.

This Review is organized as follows: In Sec. II, we explain the results from Ref. 1 concerning the low-energy spectrum and eigenstates
and give a proof of Corollary 1.1. Section III contains the results for the dynamics obtained in Ref. 2.

We use the following notations:

● The notation A ≲ B indicates that there exists a constant C > 0 such that A ≤ CB.
● For k ≥ 1 and xj ∈ Rd, we abbreviate x(k)

∶= (x1, ..., xk) and dx(k)
∶= dx1 ⋅ ⋅ ⋅ dxk.

● We use the notation a♯1 ∶= a† and a♯−1 ∶= a.
● Multi-indices are denoted as j = ( j1, ..., jn) with ∣ j∣ ∶= j1 + ⋅ ⋅ ⋅ + jn.
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II. LOW-ENERGY SPECTRUM AND EIGENSTATES
In this section, we consider the Hamiltonian Htrap

N from (1.1) and explain the asymptotic expansion of its ground state Ψtrap
N , the ground

state energy E
trap
N , and the corresponding reduced density matrix γtrap,(1)

N . To keep the notation simple, we drop the superscripttrap.

A. Framework

1. Condensate
It is well known (see, e.g., Refs. 3–5 and 9) that the N-body ground state ΨN exhibits (complete asymptotic) BEC in the minimizer φ ∈ H

of the Hartree energy functional EH,

EH[ϕ] ∶= ∫
Rd

(∣∇ϕ(x)∣2 + V(x)∣ϕ(x)∣2)dx +
1
2∫

R2d

v(x − y)∣ϕ(x)∣2∣ϕ(y)∣2dxdy. (2.1)

For potentials v and V satisfying Assumptions 1 and 2, the minimizer φ of EH is unique, strictly positive, and solves the stationary Hartree
equation

hφ ∶= (−Δ + V + v ∗ φ2
− μH)φ = 0 (2.2)

with the Lagrange parameter μH ∶= ⟨φ, (−Δ + V + v ∗ φ2
)φ⟩ ∈ R. We denote by pφ and qφ the projector onto φ and its orthogonal complement,

i.e.,
pφ ∶= ∣φ⟩⟨φ∣, qφ ∶= 𝟙 − pφ. (2.3)

The minimum of EH is given as

eH ∶= EH[φ] = ⟨φ,(−Δ + V +
1
2
v ∗ φ2

)φ⟩. (2.4)

Heuristically, (complete asymptotic) BEC in the state φ means that N − o(N) particles occupy the condensate state φ. Mathematically, this is
reflected by the fact that the N-body wave function is determined by the one-body state φ in the sense of reduced densities, i.e.,

lim
N→∞

Tr ∣γ(1)N − ∣φ⟩⟨φ∣∣ = 0. (2.5)

The condensate determines the leading order of the ground state energy, namely,

EN = NeH +O(1). (2.6)

2. Excitations
The errors in (2.5) and (2.6) are caused by O(1) particles that are excited from the condensate due to the inter-particle interactions. To

describe these excitations, we decompose ΨN as

ΨN =
N

∑
k=0

φ⊗(N−k)
⊗

s
χ(k), χ(k) ∈

k
⊗
sym

H�φ, (2.7)

with ⊗ s being the symmetric tensor product and where H�φ ∶= {ϕ ∈ H : ⟨ϕ,φ⟩H = 0} denotes the orthogonal complement of φ in H.5 The
excitations

χ≤N ∶= (χ
(k)
)

N

k=0
(2.8)

form a vector in the truncated (excitation) Fock space over H�φ,

F ≤N
�φ =

N
⊕
k=0

k
⊗
sym

H�φ ⊂ F�φ =
∞
⊕
k≥0
⊕
sym

H�φ ⊂ F =⊕
k≥0

k
⊗
sym

H, (2.9)

which is a subspace of the Fock space F over H. The creation/annihilation operators a†/a on F are defined in the usual way, and we denote
the second quantization in F of an operator T on H by dΓ(T). The number operator on F�φ is given by
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N�φ ∶=dΓ(qφ). (2.10)

The relation between ΨN and the corresponding excitation vector χ≤N is given by the unitary map

UN,φ : HN
→ F ≤N

�φ , Ψ↦ UN,φΨ = χ≤N , (2.11)

whose action is explicitly known [see Ref. 5 (Proposition 4.2)]. Conjugating HN with UN,φ yields the operator

H≤N ∶= UN,φ(HN −NeH)U
∗
N,φ (2.12)

on F ≤N
�φ , whose ground state is given by χ≤N . Hence, the ground state energy of H≤N ,

E≤N ∶= inf σ(H≤N) = ⟨χ≤N ,H≤Nχ≤N⟩F ≤N
�φ
= EN −NeH, (2.13)

is precisely the O(1)-term in (2.6).

3. Excitation Hamiltonian
Making use of the explicit form of UN,φ [Ref. 5 (Proposition 4.2)], we can express H≤N as

H≤N = K0 + (
N −N�φ

N − 1
)K1 + (K2

√
(N −N�φ)(N −N�φ − 1)

N − 1
+

√
(N −N�φ)(N −N�φ − 1)

N − 1
K∗2 )

+(K3

√
N −N�φ
N − 1

+

√
N −N�φ
N − 1

K∗3 ) +
1

N − 1
K4 (2.14)

as an operator on F ≤N
�φ , where we used the shorthand notation

K0 ∶=dΓ(h), K1 ∶= dΓ(K1), K4 ∶= dΓ(K4), (2.15a)

K2 ∶=
1
2 ∫

dx1dx2 K2(x1, x2)a†
x1 a†

x2 , (2.15b)

K3 ∶= ∫ dx(3) K3(x1, x2; x3)a†
x1 a†

x2 ax3 (2.15c)

for h as in (2.2) and where

K1 : H�φ → H�φ, K1 ∶= qφKqφ, (2.16a)

K2 ∈ H�φ ⊗H�φ, K2(x1, x2) ∶= (q
φ
1 qφ2 K)(x1, x2), (2.16b)

K3 : H�φ → H�φ ⊗H�φ, (K3ψ)(x1, x2) ∶= qφ1 qφ2 W(x1, x2)φ(x1)(q
φ
2ψ)(x2), (2.16c)

K4 : H�φ ⊗H�φ → H�φ ⊗H�φ, (K4ψ)(x1, x2) ∶= qφ1 qφ2 W(x1, x2)(q
φ
1 qφ2ψ)(x1, x2). (2.16d)

Here, K(x1, x2) is defined as

K(x1; x2) ∶= v(x1 − x2)φ(x1)φ(x2), (2.17)

K is the operator with kernel K(x1, x2), and W is the multiplication operator defined by

W(x1, x2) ∶= v(x1 − x2) − (v ∗ φ2
)(x1) − (v ∗ φ2

)(x2) + ⟨φ, v ∗ φ2φ⟩. (2.18)

By construction, H≤N is explicitly N-dependent. To extract its contributions to each order in λN , we first extend H≤N trivially to an
operator on F�φ,

H ∶= H≤N ⊕ c, (2.19)
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where the direct sum is with respect to the decomposition F = F ≤N
⊕F <N . The constant c in (2.19) will later be chosen conveniently

(see Sec. II C). Similarly, we extend χ≤N to a vector χ ∈ F�φ as

χ ∶= χ≤N ⊕ 0 (2.20)

and denote the corresponding projectors on F�φ by

P ∶= ∣χ⟩⟨χ∣, Q ∶= 𝟙 − P. (2.21)

A (formal) expansion of H in powers of λ1/2
N yields

H = H0 +∑
j≥1
λ

j
2
NHj, (2.22)

where

H0 ∶= K0 +K1 +K2 +K∗2 , (2.23a)

H1 ∶= K3 +K∗3 , (2.23b)

H2 ∶= −(N�φ − 1)K1 − (K2(N�φ −
1
2
) + h.c.) +K4, (2.23c)

H2j−1 ∶= cj−1(K3(N �φ − 1)j−1
+ h.c.), (2.23d)

H2j ∶=

j

∑
ν=0

dj,ν(K2(N �φ − 1)ν + h.c.) (2.23e)

for j ≥ 2, with Kj as in (2.15). The coefficients cj and dj,ν are given as

c(ℓ)0 ∶= 1, c(ℓ)j ∶=
(ℓ − 1

2)(ℓ +
1
2)(ℓ +

3
2) ⋅ ⋅ ⋅ (ℓ + j − 3

2)

j!
, cj ∶= c(0)j (j ≥ 1), (2.24a)

dj,ν ∶=
ν
∑
ℓ=0

c(0)ℓ c(0)ν−ℓc(ℓ)j−ν (j ≥ ν ≥ 0). (2.24b)

4. Bogoliubov approximation
The leading order term H0 in (2.22) is the well-known Bogoliubov Hamiltonian. We denote the unique ground state of H0 and the

ground state energy by
E0 ∶= inf σ(H0), H0χ0 = E0χ0, (2.25)

and the corresponding projectors are defined as
P0 ∶= ∣χ0⟩⟨χ0∣, Q0 ∶= 𝟙 − P0. (2.26)

It is well known3–5 that the ground state χ≤N of H≤N and the ground state energy E≤N converge to χ0 and E0, respectively, i.e.,

lim
N→∞

E≤N = E0, lim
N→∞
∥χ≤N − χ0∥F ≤N

�φ
= 0. (2.27)

Consequently, E0 gives the next-to-leading order term in (1.7); analogously, the leading order contribution in (1.6) is given by
ψN,0 = U

∗
N,φ χ0∣F ≤N

�φ
.

The Bogoliubov Hamiltonian H0 is a very useful approximation of H because it is much simpler than the full problem: it is quadratic in
the number of creation/annihilation operators and can be diagonalized by Bogoliubov transformations.

Let us briefly recall the concept of Bogoliubov transformations. For F = f ⊕ Jg ∈ H⊕H, where J : H→ H denotes complex conjugation,
one defines the generalized creation and annihilation operators A(F) and A†

(F) as

A(F) = a( f ) + a†
(g), A†

(F) = A(JF) = a†
( f ) + a(g) (2.28)

for J =
⎛

⎝

0 J
J 0

⎞

⎠
. An operator V on H⊕H such that F ↦ A(VF) has the same properties as F ↦ A(F), i.e., A†

(VF) = A(VJF) and

[A(VF1), A†
(VF2)] = [A(F1), A†

(F2)], is called a (bosonic) Bogoliubov map and can be written in block form as
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V ∶=
⎛
⎜
⎝

U V

V U

⎞
⎟
⎠

, U, V : H�φ → H�φ. (2.29)

If V is Hilbert–Schmidt, the Bogoliubov map V can be unitarily implemented on F, i.e., there exists a unitary transformation UV : F→ F
(called a Bogoliubov transformation) such that UVA(F)U∗V = A(VF) for all F ∈ H⊕H. This implies the transformation rule

UV a( f )U∗V = a(U f ) + a†
(Vf ), UV a†

( f )U∗V = a†
(U f ) + a(Vf ). (2.30)

A normalized state ϕ ∈ F�φ that can be written as
ϕ = UV∣Ω⟩ (2.31)

for some Bogoliubov map V is called a quasi-free state. Quasi-free states have a finite expectation value of the number operator and satisfy
Wick’s rule, i.e.,

⟨ϕ, a♯( f1) ⋅ ⋅ ⋅ a♯( f2n−1)ϕ⟩F�φ = 0, (2.32a)

⟨ϕ, a♯( f1) ⋅ ⋅ ⋅ a♯( f2n)ϕ⟩F�φ = ∑σ∈P2n

n

∏
j=1
⟨ϕ, a♯( fσ(2j−1))a♯( fσ(2j))ϕ⟩F�φ (2.32b)

for a♯ ∈ {a†, a}, n ∈ N, and f1, ..., f2n ∈ H�φ. Here, P2n denotes the set of pairings

P2n ∶= {σ ∈ S2n : σ(2a − 1) < min{σ(2a), σ(2a + 1)} ∀a ∈ {1, 2, ..., 2n}}, (2.33)

for S2n the symmetric group on the set {1, 2, ..., 2n}. In particular, the ground state χ0 of H0 is a quasi-free state,

χ0 = U
∗
V 0 ∣Ω⟩, (2.34)

where UV0 is the Bogoliubov transformation that diagonalizes H0.

B. Expansion of the ground state

To prove Theorem 1, we show that the projector P from (2.21) admits a series expansion in powers of λ1/2
N in the following sense:

Proposition 2.1. Let Assumptions 1 and 2 hold, let A ∈ L(F�φ) be a bounded operator on F�φ, and let a ∈ N0. Then, there exists some
constant C(a) such that

∣TrAP −
a

∑
ℓ=0

λ
ℓ
2

N TrAPℓ∣ ≤ C(a)λ
a+1

2
N ∥A∥op (2.35)

for sufficiently large N, where ∥ ⋅ ∥op denotes the operator norm. The coefficients Pℓ are defined as

Pℓ ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

P0 i f ℓ = 0,

−
ℓ

∑
ν=1
∑
j∈Nν

∣j∣=ℓ

∑
k∈Nν+1

0
∣k∣=ν

Ok1Hj1Ok2Hj2 ⋅ ⋅ ⋅OkνHjνOkν+1 i f ℓ ≥ 1, (2.36)

with P0 as in (2.26) and Hj as in (2.23) and where we abbreviated

Ok ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−P0 k = 0,
Q0

(E0 −H0)
k k > 0.

(2.37)

The growth of the constant C(a) in the order a of the approximation can be estimated as

C(a) ≤ C(a + 1)(a+6)2

,

which we expect to be far from optimal. By means of Bogoliubov transformations, the operators Pℓ can be brought into a more explicit form.
For example, the first order correction P1 is given by
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P1 = U∗V 0(UV0O1U∗V 0)(UV0H1U∗V 0)∣Ω⟩⟨χ0∣ + h.c., (2.38)

where UV0 is the Bogoliubov transformation diagonalizing H0 such that χ0 = U
∗
V 0 ∣Ω⟩. To simplify (2.38), one notes that UV0H1U∗V 0 ∣Ω⟩ is a

superposition of one- and three-particle states and that UV0O
(0)
1 U∗V 0 is particle-number preserving. Hence, P1 can be expressed as

P1 = U∗V 0(∫ dxΘ1(x)a†
x ∣Ω⟩ + ∫ dx(3)Θ3(x(3))a†

x1 a†
x2 a†

x3 ∣Ω⟩)⟨χ0∣ + h.c., (2.39)

where the functions Θ1 and Θ3 can be retrieved by diagonalizing H0 and computing the Bogoliubov transformation of H1 under UV0 .
From Proposition 2.1, we deduce three consequences.

1. Ground state wave function
As an immediate consequence of Proposition 2.1, we find that

Tr ∣P −
a

∑
ℓ=0

λ
ℓ
2

NPℓ∣ ≤ C(a)λ
a+1

2
N . (2.40)

Since P = ∣χ⟩⟨χ∣ is a rank one projector, expansion (2.40) implies an expansion of the excitation wave function χ,

∥χ −
a

∑
ℓ=0

λ
ℓ
2

Nχℓ∥
F

≤ C(a)λ
a+1

2
N (2.41)

[see Ref. 1 (Appendix B) for a proof of this statement in a general Hilbert space setting]. The coefficients of the expansion are given by

χℓ ∶=
ℓ

∑
j=0
αj χ̃ℓ−j (ℓ ≥ 1), (2.42)

where

χ̃ℓ ∶=
ℓ

∑
ν=1
∑
j∈Nν

∣j∣=ℓ

Pj1 ⋅ ⋅ ⋅ Pjν χ0 (ℓ ≥ 1), (2.43)

with Pℓ as in (2.36) and χ0 as in (2.25), and for n ≥ 1,

α0 ∶= 1, α2n−1 ∶= 0, α2n ∶= −
1
2 ∑j∈N4

0
j1 ,j2<2n
∣j∣=2n

αj1αj2 ⟨̃χj3 , χ̃j4⟩. (2.44)

For example,

χ1 =
Q0

E0 −H0
H1χ0 = U

∗
V 0(∫ dxΘ1(x)a†

x ∣Ω⟩ + ∫ dx(3)Θ3(x(3))a†
x1 a†

x2 a†
x3 ∣Ω⟩) (2.45)

for Θ1 and Θ3 as in (2.39). Finally, the coefficients ψN,ℓ in expansion (1.6) of the N-body ground state ΨN (Theorem 1) are constructed from
this by inserting (2.42) into (2.7), i.e.,

ψN,ℓ ∶=
N

∑
k=0

φ⊗(N−k)
⊗s(χℓ)

(k). (2.46)

The functions ψN,ℓ depend on N by construction. However, this N-dependence is trivial, since it comes only from the splitting into condensate
φ and excitations χ. The coefficients χℓ in expansion (1.6) of the excitations χ are completely independent of N.

2. Ground state energy
Another consequence of Proposition 2.1 is expansion (1.7) of the ground state energy EN (Theorem 1). The coefficients Eℓ in (1.7) are

given as

Eℓ ∶=
2ℓ

∑
ν=1
∑
j∈Nν

∣j∣=2ℓ

∑
m∈Nν−1

0
∣m∣=ν−1

1
κ(m)

TrP0Hj1Om1 ⋅ ⋅ ⋅Hjν−1Omν−1Hjν (2.47)
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for P0 as in (2.26), Hj as in (2.23), Om as in (2.37) and where

κ(m) ∶= 1 + ∣{μ : mμ = 0}∣ ∈ {1, ..., ν − 1} (2.48)

is the number of operators P0 within the trace. This confirms the predictions of (formal) Rayleigh–Schrödinger perturbation theory. For
example, the first coefficient in (2.47) simplifies to

E1 = ⟨χ0,H2χ0⟩ + ⟨χ0,H1
Q0

E0 −H0
H1χ0⟩. (2.49)

3. Ground state reduced density

Finally, Proposition 2.1 implies an asymptotic expansion of the one-body reduced density γ(1)N of ΨN (Corollary 1.1). The coefficients in
(1.9) are given by the trace class operators with kernels

γ1,0(x; y) ∶= φ(x)φ(y), (2.50a)

γ1,ℓ(x; y) ∶=
ℓ−1

∑
n=0

ℓ−n−1

∑
k=0

c̃ℓ−n−1,k(φ(x)TrP2n+1a†
y(N �φ − 1)k

+ φ(y)TrP2n+1(N �φ − 1)kax)

+
ℓ−1

∑
n=0

c̃ℓ−n−1(TrP2na†
y ax − φ(x)φ(y)TrP2nN�φ )), (2.50b)

with
c̃ℓ ∶= (−1)ℓc(3/2)ℓ , c̃ℓ,k ∶= c̃ℓ−kc(0)k (2.51)

for c(n)j as in (2.24a). For example, the leading order is γ1,0 = pφ, which recovers the well-known fact that the ground state exhibits BEC with
optimal rate. The first correction to this is given by

γ1,1(x; y) = φ(x)TrP1a†
y + φ(y)TrP1ax

+ TrP0a†
y ax − φ(x)φ(y)TrP0N�φ.

(2.52)

For the ground state of a homogeneous Bose gas on the torus, γ1,1 was recently derived in Ref. 10 using different methods. In that case, the
first line in (2.52) vanishes by translation invariance. We prove Corollary 1.1 in Sec. II D.

C. Strategy of proof
The first step is to express P and P0 as contour integrals around the resolvents of H and H0, respectively, i.e.,

P = 1
2πi ∮γ

1
z −H

dz, P0 =
1

2πi ∮γ
1

z −H0
dz. (2.53)

The contour γ is chosen such that its length is O(1) and that it encloses both the ground state energy E≤N of H≤N and the Bogoliubov ground
state energy E0 but leaves the remaining spectra of H and H0 outside. Since E≤N converges to E0 as N →∞ by (2.27), such a contour exists
if the constant c in H = H≤N ⊕ c from (2.19) is chosen a finite distance away from the spectrum of H0. This implies that H has precisely one
(infinitely degenerate) additional eigenvalue c compared to H≤N . For simplicity, we place c at some finite distance below E0 (see Fig. 1).

The next step is to expand H as11

H =
a

∑
j=0
λ

j
2
NHj + λ

a+1
2

N Ra, (2.54)

with Hj as in (2.23). The remainders Ra, which are essentially the remainders of the Taylor series expansion of the square roots in (2.14), can
be bounded above by powers of the number operator. Making use of expansion (2.54), we expand the resolvent of H around the resolvent of
H0 and integrate along the contour γ, which finally yields

P =
a

∑
ℓ=0

λ
ℓ
2

NPℓ + λ
a+1

2
N (BP(a) + BQ(a)) (2.55)

for Pℓ as in (2.36) and where
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FIG. 1. Low-energy spectra of H0 (drawn in black) and H (drawn in gray). The additional eigenvalue c of H is placed a finite distance below E0. For sufficiently large N, the
contour γ around E0 encloses the ground state energy E≤N of H≤N .

BP(a) =
a

∑
ν=0

a−ν
∑
m=1

∑
j∈Nm

∣j∣=a−ν

1
2πi∮γ

P
z −H<

Rν
1

z −H0
Hj1

1
z −H0

⋅ ⋅ ⋅Hjm

1
z −H0

dz (2.56)

and

BQ(a) =
a

∑
ν=0

a−ν
∑
m=1

∑
j∈Nm

∣j∣=a−ν

m

∑
ℓ=0

∑
k∈{0,1}m+1

∣k∣=ℓ

1
2πi∮γ

Q
z −H<

Rν
Ik1

z −H0
Hj1 ⋅ ⋅ ⋅Hjm

Ikm+1

z −H0
dz (2.57)

for Ik = P0 if k = 0 and Ik = Q0 if k = 1. To control the error terms, we estimate the operators Hj and Rν in terms of powers of (N�φ + 1),
prove a uniform bound on moments of the number operator with respect to χ, i.e.,

⟨χ, (N �φ + 1)bχ⟩ ≤ C(b), (2.58)

and control alternating products of number operators and resolvents of H0 by means of the estimate

∥(N �φ + 1)b+1 1
z −H0

ϕ∥ ≤ C(b)∥(N �φ + 1)bϕ∥. (2.59)

To derive expansion (2.61) of the ground state energy, we observe that

TrHP = 1
2πi

Tr∮
γ

H
z −H

dz = E0 +
1

2πi
Tr∮

γ

z − E0

z −H
dz (2.60)

and derive from this the expansion

TrHP = E0 +
a

∑
ℓ=1

λ
ℓ
2

N

ℓ

∑
ν=1
∑
j∈Nν

∣j∣=ℓ

Tr
1

2πi∮γ
1

z −H0
Hj1

1
z −H0

⋅ ⋅ ⋅Hjν
z − E0

z −H0
dz +O(λ

a+1
2

N ). (2.61)

All half-integer powers of λN in (2.61) vanish by parity, which can be seen by conjugating with the unitary map UP acting as UPa†
( f )

UP = −a†
( f ) [recall from (2.23) that Hj contains an even/odd number of creation/annihilation operators for j even/odd]. After some lengthy

computations, this yields (2.47).

D. Proof of corollary 1.1

To prove Corollary 1.1, one first observes that γ(1)N can be decomposed as

γ(1)N = pφ +
1
√

N
(∣φ⟩⟨βχ ∣ + ∣βχ⟩⟨φ∣) +

1
N
(γχ − pφ TrPN�φ), (2.62)

where γχ denotes the one-body reduced density matrix of χ with kernel γχ(x; y) = ⟨χ, a†
y axχ⟩ and where βχ : Rd

→ C is defined as
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βχ(x) ∶= TrP
√

1 −
N�φ

N
ax (2.63)

[see Ref. 2 (Sec. 3.5)]. Next, one expands the N-dependent expressions in (2.62) in powers of λ1/2
N and estimates the remainders using

(a generalized version of) Proposition 2.1. We will show this for a = 1; the higher orders follow similarly using estimates from Ref. 1.
For A ∈ L(H), (2.62) yields

∣TrAγ(1)N − Tr Aγ1,0 − λN Tr Aγ1,1∣ ≤ ∣TrPa†
(Aφ)

√
N −N�φ

N
− λN TrP1a†

(Aφ)∣ (2.64a)

+∣TrP
√

N −N�φ
N

a(Aφ) − λN TrP1a(Aφ)∣ (2.64b)

+∣
1
N

Tr dΓ(A)P − λN Tr dΓ(A)P0∣ (2.64c)

+∣⟨φ, Aφ⟩∣∣
1
N

TrPN�φ − λN TrP0N�φ∣. (2.64d)

In the first line, we expand
√

N −N�φ/N = λ1/2
N + λ

3/2
N R, where R is a function of N�φ such that ∥Rϕ∥ ≲ ∥(N�φ + 1)ϕ∥ for any ϕ ∈ F

[see Ref. 2, Sec. 5H, Eq. (5-64b)]. By parity,

TrP0a†
(Aφ)R = TrP0a†

(Aφ) = 0, (2.65)

and hence,

(2.64a) ≤ λ
1
2
N ∣TrPa†

(Aφ) − Tr (P0 + λ
1
2
NP1)a†

(Aφ)∣

+λ
3
2
N ∣TrPa†

(Aφ)R − TrP0a†
(Aφ)R∣ . (2.66)

Since

∥a†
(Aφ)Rϕ∥ ≤ ∥A∥op∥(N �φ + 1)

3
2 ϕ∥, ∥a†

(Aφ)ϕ∥ ≤ ∥A∥op∥(N �φ + 1)
1
2 ϕ∥, (2.67)

one shows as in the proof of [Ref. 1 (Theorem 1)] that (2.66) ≲ λ2
N∥A∥op. The estimate of (2.64b) works analogously. For the third line

in (2.64), one notes that ∣1/N − λN ∣ ≲ λ2
N and that TrP1dΓ(A) = 0 by parity, and hence,

(2.64c) ≲ λ2
N ∣Tr Aγχ ∣ + λN ∣Tr (P − P0 − λ

1
2
NP1)dΓ(A)∣ ≲ λ2

N∥A∥op (2.68)

as above, where we used that ∥dΓ(A)ϕ∥ ≤ ∥A∥op∥(N�φ + 1)ϕ∥ for any ϕ ∈ F. Analogously, we derive the bound (2.64d) ≲ λ2
N∥A∥op, making

use of the fact that finite moments of N�φ with respect to χ0 and χ are bounded uniformly in N Ref. 1 [Lemmas 4.7(d) and 5.6(a)]. This
concludes the proof of Corollary 1.1 by duality of compact and trace class operators. ◻

E. Extensions
The results proven in Ref. 1 are more general than what we have presented so far. In this section, we briefly comment on some extensions

of Theorem 1.

1. Unbounded interaction potentials
One extension concerns unbounded interaction potentials, including the three-dimensional repulsive Coulomb potential. In fact, we can

replace Assumption 1 by the following assumption:

Assumption 1’. Let v : Rd
→ R be measurable with v(−x) = v(x) and v ≢ 0, and assume that there exists a constant C > 0 such that in the

sense of operators on Q(−Δ) = H1
(Rd
),

∣v∣2 ≤ C(1 − Δ). (2.69)

In addition, assume that v is of positive type.
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In this situation, we require one additional assumption, ensuring that the N-body state exhibits complete BEC with not too many particles
outside the condensate.

Assumption 3. Assume that there exist constants C1 ≥ 0, 0 < C2 ≤ 1, and a function ε : N→ R+0 with

lim
N→∞

N−
1
3 ε(N) ≤ C1

such that

HN −NeH ≥ C2

N

∑
j=1

hj − ε(N) (2.70)

in the sense of operators on D(HN).

Under these more general assumptions, several new issues arise, at the core of which is the problem that dΓ(v) cannot be bounded by
powers of N�φ + 1 alone. This affects the Proof of Proposition 2.1 at multiple points; most notably, it becomes considerably more difficult to
obtain the uniform bound on moments of the number operator (2.58).

2. Excited states
The analysis in Ref. 1 extends to the low-energy eigenstates of HN , i.e., it includes all eigenstates with an energy of order one above

the ground state energy. In this situation, the expansion must be done more carefully, since the excited eigenvalues E(n)0 > E0 of H0 can be
degenerate, and the degeneracy of eigenvalues of H≤N may change in the limit N →∞. For instance, an eigenvalue E(n)0 of H0 could be twice
degenerate, with two distinct eigenvalues E(n1)

≤N ≠ E(n2)
≤N of H≤N such that

lim
N→∞

E(n1)
≤N = E(n)0 = lim

N→∞
E(n2)
≤N .

In this case, we expand the projector

P(n) = 1
2πi ∮γ(n)

1
z −H

dz (2.71)

around

P(n)0 =
1

2πi ∮γ(n)

1
z −H0

dz, (2.72)

where γ(n) is a O(1) contour around E(n)0 with a finite distance to the remaining spectrum of H0. Since γ(n) encloses both poles E(n1)
≤N and E(n2)

≤N

of (z −H)−1, the contour integral (2.71) gives precisely the sum of the two spectral projectors of H corresponding to E(n1)
≤N and E(n2)

≤N .
In Ref. 1, we show that there is a constant C(a, n), which, in particular, depends on ∣E(n)0 ∣, such that

∣TrAP(n) −
a

∑
ℓ=0

λ
ℓ
2

N TrAP(n)ℓ ∣ ≤ C(a, n)λ
a+1

2
N ∥A∥op (2.73)

for sufficiently large N. The coefficients P(n)ℓ are defined analogously to Pℓ from (2.36) but with P0 replaced by P(n)0 . Note that the statement
is non-trivial only for states with an energy of order one above the ground state energy because the constant C(a, n) depends on ∣E0∣.

To state the generalization of expansion (1.7) to the low-energy spectrum of HN , we need some more notation. We denote by

EN ≡ E
(0)
N < E

(1)
N < ⋅ ⋅ ⋅ < E

(ν)
N < ⋅ ⋅ ⋅

the eigenvalues of HN and by δ(ν)N the degeneracy of E
(ν)
N (we follow the convention of counting eigenvalues without multiplicity). Given an

eigenvalue E(n)0 of H0, we collect the indices ν of the eigenvalues E
(ν)
N that converge to NeH + E(n)0 for some given n in the index set

ι(n) ∶= {ν ∈ N0 : lim
N→∞
(E
(ν)
N −NeH) = E(n)0 }. (2.74)

The generalization of (1.7) to excited eigenvalues E
(n)
N is then given by
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RRRRRRRRRRR

∑
ν∈ι(n)

δ(ν)N E
(ν)
N − δ(n)0 NeH −

a

∑
ℓ=0

λℓN E(n)ℓ

RRRRRRRRRRR

≤ C(a, n)λa+1
N , (2.75)

where δ(n)0 denotes the degeneracy of E(n)0 and where E(n)ℓ is defined as in (2.47) but with P0 replaced by P(n)0 . The constant C(a, n) depends
on ∣E(n)0 ∣.

3. Expectation values of unbounded operators
Finally Ref. 1 yields an asymptotic expansion of expectation values of self-adjoint m-body operators A(m), which are relatively bounded

with respect to∑m
j=1(−Δj + V(xj)), i.e.,

∥A(m)ψ∥Hm ≤ C

XXXXXXXXXXX

m

∑
j=1
(−Δj + V(xj) + 1)ψ

XXXXXXXXXXXHm

for ψ ∈ D
⎛

⎝

m

∑
j=1
(−Δj + V(xj))

⎞

⎠
. (2.76)

For A (m)N , the symmetrized version of A(m),

A (m)N ∶= (
N
m
)
−1

∑
1≤j1<⋅⋅⋅<jm≤N

A(m)j1 ,...,jm
, (2.77)

we prove that there exists a constant C(m, a) such that

∣⟨ΨN ,A (m)N ΨN⟩ −
a

∑
ℓ=0

λ
ℓ
2

N Tr((UN,φA (m)N U
∗
N,φ ⊕ 0)P(n)ℓ )∣ ≤ C(m, a)λ

a+2
2

N (2.78)

for sufficiently large N. The statement extends to excited states as explained in Sec. II E 2.
The rate in (2.78) is by a factor λ1/2

N better than the error estimate in Proposition 2.1. To see this, one considers the operator

A(m)red = UN,φ (A (m)N − ⟨φ⊗N ,A (m)N φ⊗N
⟩)U

∗
N,φ ⊕ 0,

where we have subtracted the condensate expectation value of A (m)N (which is of order one). Because of this subtraction, one can show that
A(m)red satisfies the estimate

∥A(m)red ϕ∥F�φ ≲ λ
1
2
N , Φ ∈ {χ, χ0}, (2.79)

and Proposition 2.1 for A(m)red concludes the proof.

III. DYNAMICS
In the remaining part of this Review, we study the dynamics generated by the Hamiltonian HN from (1.4) and explain expansions (1.10)

and (1.12) of the time-evolved N-body wave function ΨN and of the reduced one-body density γ(1)N . We use the superscripttrap wherever it
applies.

A. Framework
We study the solutions ΨN(t) of the time-dependent N-body Schrödinger equation (1.3) generated by the Hamiltonian HN from (1.4),

which describes a system of N interacting bosons without an external trapping potential. As the initial state, we take

ΨN(0) = Ψtrap
N ,

where Ψtrap
N is the ground state of Htrap

N .

1. Condensate
As explained above, Ψtrap

N exhibits BEC in the Hartree minimizer φtrap, and it is well known that this property is preserved by the time
evolution. More precisely,

Tr∣γ(1)N (t) − ∣φ(t)⟩⟨φ(t)∣∣ ≤
C(t)

N
(3.1)

J. Math. Phys. 63, 061102 (2022); doi: 10.1063/5.0089983 63, 061102-13

© Author(s) 2022

https://scitation.org/journal/jmp


Journal of
Mathematical Physics REVIEW scitation.org/journal/jmp

(see, e.g., Refs. 12 and 13), where φ(t) is the solution of the Hartree equation,

i∂tφ(t) = (−Δ + v ∗ ∣φ(t)∣2 − μφ(t))φ(t) =: hφ(t)φ(t), φ(0) = φtrap, (3.2)

with the phase factor μφ(t) = 1
2∫Rd(v ∗ ∣φ(t)∣2)(x)∣φ(t, x)∣2dx. The solution of (3.2) in H1

(Rd
) is unique and exists globally. We define the

projectors pφ(t) and qφ(t) analogously to (2.3).

2. Excitations
Analogously to (2.7), we decompose the time-evolved N-body state ΨN(t) into the condensate φ(t) and excitations χ≤N(t) from the

condensate. The excitation vector χ≤N(t) is an element of the (truncated) excitation Fock space F ≤N
�φ(t) ⊂ F�φ(t) ⊂ F defined analogously to

(2.9). When restricted to the time-dependent excitation Fock space F�φ(t), the number operator N on the (time-independent) Fock space F
counts the number of excitations around the time-evolved condensate φ(t)⊗N . As before, the relation between ΨN(t) and χ≤N(t) is given by
the (now time-dependent) unitary map UN,φ(t) defined analogously to (2.11), namely,

χ≤N(t) = UN,φ(t)ΨN(t). (3.3)

The evolution of the excitations is determined by the Schrödinger equation

i∂tχ≤N(t) = H
φ(t)
≤N χ≤N(t), χ≤N(0) = UN,φtrapΨtrap

N (3.4)

on F ≤N
�φ(t), generated by the excitation Hamiltonian

Hφ(t)
≤N = i(∂tUN,φ(t))U

∗
N,φ(t) + UN,φ(t)HNU

∗
N,φ(t). (3.5)

For convenience, we write Hφ(t)
≤N as restriction to F ≤N

�φ(t) of a Hamiltonian Hφ(t) on F, which can be expressed, analogously to (2.14), in terms

of N, N, and operators Kφ(t)
j , which are defined analogously14 to (2.15). Expanding the N-dependent expressions in a Taylor series yields

(formally) the power series
Hφ(t)

= Hφ(t)
0 +∑

n≥1
λ

n
2
NH

φ(t)
n , (3.6)

with coefficients Hφ(t)
j analogously to (2.23). Note that the operator Hφ(t) preserves the truncation of F ≤N , whereas this property is lost when

truncating the expansion after finitely many terms.

3. Bogoliubov approximation

The leading order Hφ(t)
0 in (3.6) is the time-dependent Bogoliubov Hamiltonian, which generates the Bogoliubov time evolution,

i∂tχ0(t) = H
φ(t)
0 χ0(t), χ0(0) = χ

trap
0 . (3.7)

It is well known that the solution of (3.7) approximates the solution χ≤N(t) of (3.4) to leading order, i.e.,

lim
N→∞
∥χ≤N(t) − χ0(t)∥F ≤N

�φ(t)
= 0 (3.8)

(see, e.g., Refs. 15 and 16). This is a very useful approximation because the time evolution generated by Hφ(t)
0 acts as a Bogoliubov transfor-

mation UV(t,s) on F. This means a huge simplification compared with the full N-body dynamics because it essentially reduces the N-body
problem to the problem of solving a 2 × 2 matrix differential equation: the corresponding Bogoliubov map V(t, s) on H⊕H is determined by
the differential equation

i∂tV(t, s) = A(t)V(t, s), V(s, s) = 𝟙, (3.9)

with

V(t, s) =
⎛
⎜
⎝

Ut,s V t,s

Vt,s U t,s

⎞
⎟
⎠

, A(t) =
⎛
⎜
⎝

hφ(t) + Kφ(t)
1 −Kφ(t)

2

Kφ(t)
2 −(hφ(t) + Kφ(t)

1 )

⎞
⎟
⎠

. (3.10)

Since it is a Bogoliubov transformation, the Bogoliubov time evolution preserves quasi-freeness. Hence, χ0(t) is uniquely determined by its
two-point functions,

J. Math. Phys. 63, 061102 (2022); doi: 10.1063/5.0089983 63, 061102-14

© Author(s) 2022

https://scitation.org/journal/jmp


Journal of
Mathematical Physics REVIEW scitation.org/journal/jmp

γχ0(t)(x, y) = ⟨χ0(t), a†
y axχ0(t)⟩F, αχ0(t)(x, y) = ⟨χ0(t), axayχ0(t)⟩F, (3.11)

which can be computed directly from the two-point functions of χ0(0) as

γχ0(t)(x, y) = (V t,0γT
χ0(0)V

∗
t,0 +Ut,0γχ0(0)U

∗
t,0 − V t,0α∗χ0(0)U

∗
t,0 −Ut,0αχ0(0)V

∗
t,0)(x, y) + (V t,0V∗t,0)(x, y), (3.12a)

αχ0(t)(x, y) = (Ut,0αχ0(0)U
∗
t,0 + V t,0α∗χ0(0)V

∗
t,0 −Ut,0γχ0(0)V

∗
t,0 − V t,0γT

χ0(0)U
∗
t,0)(x, y) + (Ut,0V∗t,0)(x, y). (3.12b)

Alternatively, one obtains γχ0(t) and αχ0(t) by solving the system of differential equations

i∂tγχ0(t) = (h
φ(t)
+ Kφ(t)

1 )γχ0(t) − γχ0(t)(h
φ(t)
+ Kφ(t)

1 ) + Kφ(t)
2 α∗χ0(t) − αχ0(t)(K

φ(t)
2 )

∗
, (3.13a)

i∂tαχ0(t) = (h
φ(t)
+ Kφ(t)

1 )αχ0(t) + αχ0(t)(h
φ(t)
+ Kφ(t)

1 )
T
+ Kφ(t)

2 + Kφ(t)
2 γT

χ0(t) + γχ0(t)K
φ(t)
2 (3.13b)

(see Refs. 16 and 17).

B. Expansion of the dynamics

1. Expansion of the time-evolved wave function
With the formal ansatz

χ≤N(t) ⊕ 0 =
∞
∑
ℓ=0

λ
ℓ
2

Nχℓ(t), (3.14)

the Schrödinger equation (3.4) leads to the set of equations

i∂tχℓ(t) = H
φ(t)
0 χℓ(t) +

ℓ

∑
n=1

Hφ(t)
n χℓ−n(t). (3.15)

Motivated by (3.15), we define iteratively

χℓ(t) := UV(t,0)χℓ(0) − i
ℓ

∑
n=1

t

∫

0

UV(t,s)H
φ(s)
n χℓ−n(s)ds, (3.16)

where UV(t,s) denotes the Bogoliubov time evolution, i.e., the Bogoliubov transformation corresponding to the solution V(t, s) of (3.9). To
prove Theorem 2, we show that these functions χℓ are the coefficients in an asymptotic expansion of χ≤N .

Proposition 3.1. Let Assumption 1a be satisfied, let a ∈ N0, and denote by χ≤N(t) the solution of (3.4). Then, χℓ(t) ∈ F�φ(t) and there exists
a constant C(a) such that

∥χ≤N(t) −
a

∑
ℓ=0

λ
ℓ
2

Nχℓ(t)∥
F ≤N

≤ eC(a)tλ
a+1

2
N (3.17)

for all t ∈ R and sufficiently large N.

The growth of the constant C(a) in a can be estimated as

C(a) ≤ Ca2 ln a. (3.18)

We do not expect this to be optimal, especially since Borel summability was shown for a comparable expansion in Ref. 18. As a consequence
of Proposition 3.1, the coefficients ΨN,ℓ(t) of expansion (1.10) of ΨN(t) are given by

J. Math. Phys. 63, 061102 (2022); doi: 10.1063/5.0089983 63, 061102-15

© Author(s) 2022

https://scitation.org/journal/jmp


Journal of
Mathematical Physics REVIEW scitation.org/journal/jmp

ΨN,ℓ(t) ∶=
N

∑
k=0

φ(t)⊗(N−k)
⊗s(χℓ(t))(k). (3.19)

The higher orders χℓ(t) are completely determined by the solution χ0(t) of the Bogoliubov equation as

χℓ(t) = ∑
0,≤,n≤3ℓ
n+ℓ even

∑
j∈{−1,1}n

∫ dx(n)C( j)
ℓ,n (t; x(n)) a♯j1x1 ⋅ ⋅ ⋅ a♯jnxn χ0(t), (3.20)

where we used the notation
a♯−1

x ∶= ax, a♯1
x ∶= a†

x. (3.21)

The N-independent functions C( j)
ℓ,n are given in terms the matrix entries U t,s and V t,s of the solution V(t, s) of (3.9) and the initial data. For

example,

C
(1)
1,1 (t) = (Ut,0(U trap

0 )
∗
− V t,0(V trap

0 )
∗
)Θtrap

1 , (3.22a)

C
(−1)
1,1 (t) = (Vt,0(U trap

0 )
∗
−U t,0(V trap

0 )
∗
)Θtrap

1 (3.22b)

for Θtrap
1 as in (2.39). Here, U trap

0 and V trap
0 denote the matrix entries of the Bogoliubov map corresponding to the Bogoliubov transformation

Utrap
V 0

that diagonalizes Htrap
0 . The coefficients C( j)

ℓ,n with larger indices are constructed from this in a systematic iterative procedure. Since the
general formula is very long and not particularly insightful, we refrain from stating it here and refer to Ref. 2 [Eq. (5.51)].

The higher orders χℓ(t) satisfy a generalized Wick rule for the “mixed” correlation functions,

⟨a♯1
x1 ⋅ ⋅ ⋅ a

♯n
xn⟩
(t)
ℓ,k
∶= ⟨χℓ(t), a♯1

x1 ⋅ ⋅ ⋅ a
♯n
xnχk(t)⟩. (3.23)

Proposition 3.2 (generalized Wick rule).

● If k + ℓ + n odd,

⟨a♯j1x1 ⋅ ⋅ ⋅ a
♯jn
xn ⟩
(t)

ℓ,k
= 0. (3.24)

● If k + ℓ + n even,

⟨a♯j1x1 ⋅ ⋅ ⋅ a
♯jn
xn ⟩
(t)

ℓ,k
=

n+3(ℓ+k)
∑
b=n
even

∑
m∈{−1,1}b

∑
σ∈Pb

b/2
∏
i=1
∫ dy(b)D(j;m)

ℓ,k,n;b(t; x(n); y(b))⟨a
♯mσ(2i−1)
yσ(2i−1) a

♯mσ(2i)
yσ(2i) ⟩

(t)

0,0
(3.25)

for Pb being the set of pairings defined in (2.33). The functions D
(j;m)
ℓ,k,n;b are determined by the coefficients C from (3.20) [see Ref. 2

(Corollary 3.5) for the precise formula].

2. Expansion of the one-body reduced density matrix

As an application of (3.17), we derive expansion (1.12) of the one-body reduced density matrix. The coefficients γ(1)N,ℓ in (1.12) are given
by the trace class operators with kernels

γ1,0(t; x; y) ∶= φ(t, x)φ(t, y), (3.26a)

γ1,ℓ(t; x; y) ∶=
ℓ

∑
m=1
[
ℓ−m

∑
k=0

2m−1

∑
n=0

c̃ℓ−m,k (φ(t, x)⟨a†
y(N − 1)k

⟩
(t)

n,2m−n−1

+⟨(N − 1)kax⟩
(t)

n,2m−n−1
φ(t, y))

+
2m−2

∑
n=0

c̃ℓ−m(⟨a
†
y ax⟩

(t)

n,2m−n−2
− φ(t, x)φ(t, y)⟨N ⟩(t)n,2m−n−2)], (3.26b)
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with c̃ℓ and c̃ℓ,k as in (2.51) and where we used the notation (3.23). For example, the leading order of the expansion is γ(1)0 (t) = pφ(t), which
recovers (3.1). The next-to-leading order is given by

γ(1)1 (t) = ∣φ(t)⟩⟨β0,1(t)∣ + ∣β0,1(t)⟩⟨φ(t)∣ + γχ0(t) − Tr γχ0(t)p
φ(t), (3.27)

where the function β0,1 : Rd
→ C is the solution of

i∂tβ0,1(t) = (hφ(t) + Kφ(t)
1 )β0,1(t) + Kφ(t)

2 β0,1(t)

+(Kφ(t)
3 )

∗
αχ0(t) + Tr1(K

φ(t)
3 γχ0(t)) + Tr2(K

φ(t)
3 γχ0(t)). (3.28)

Here, γχ0(t) and αχ0(t) are the Bogoliubov two-point functions as in (3.11), and we used the notation Tr1A ∶= ∫ dzA(z, ⋅; z) and Tr2

A ∶= ∫ dzA(⋅, z; z) for an operator A : H→ H2.

C. Strategy of proof
To prove Proposition 3.1, we first show that the functions χℓ(t) defined in (3.16) are elements of F�φ(t) by proving that

⟨χℓ(t), (N + 1)bχℓ(t)⟩F ≲ eC(ℓ,b)t (3.29)

for any b ∈ N0. To this end, we re-write χℓ(t) as

χℓ(t) = UV(t,0)χℓ(0) +
ℓ−1

∑
n=0

ℓ−n

∑
m=1

∑
j∈Nm

∣j∣=ℓ−n

(−i)m
t

∫

0

ds1

s1

∫

0

ds2 ⋅ ⋅ ⋅

sm−1

∫

0

dsm H̃(j1)
t,s1
⋅ ⋅ ⋅ H̃(jm)

t,sm
UV(t,0)χn(0), (3.30)

with
H̃(n)t,s ∶= UV(t,s)H

φ(s)
n U∗V (t,s), (3.31)

bound the operators H̃(n)t,s by powers of (N + 1), and make use of the fact that any finite moment of N with respect to χn(0) is bounded since
χn(0) = χ

trap
n from (2.42). To prove (3.17), we expand Hφ(t) in a Taylor series with remainder analogously to (2.54), prove an estimate the

remainder in terms of N, and make use of (3.29) to close a Gronwall argument for the function χ̃a(t) = χ≤N(t) ⊕ 0 −∑a
ℓ=0λ

ℓ/2
N χℓ(t).

To prove Corollary 1.2, one decomposes γ(1)N (t) analogously to (2.62) and expands it in powers of λ1/2
N , which yields expressions

containing correlation functions of χ≤N ,

⟨a♯1
x1 ⋅ ⋅ ⋅ a

♯n
xn⟩
(t)
N
∶= ⟨χ≤N(t), a♯1

x1 ⋅ ⋅ ⋅ a
♯n
xnχ≤N(t)⟩F ≤N . (3.32)

Finally, we show that, in a suitable sense,

⟨a♯1
x1 ⋅ ⋅ ⋅ a

♯n
xn⟩
(t)
N
=

a

∑
ℓ=0

λ
ℓ
2

N

ℓ

∑
m=0
⟨χm(t), a♯1

x1 ⋅ ⋅ ⋅ a
♯n
xnχℓ−m(t)⟩F +O(λ

a+1
2

N ), (3.33)

where all half-integer powers of λN vanish by the generalized Wick rule (Proposition 3.2).

D. Extensions
The results proven in Ref. 2 are more general than what was stated so far, namely, they admit a larger class of initial data. It is not

necessary to start the time evolution in the ground state Ψtrap
N of the trapped system (or in any low-energy eigenstate of Htrap

N ), but it suffices if
the initial state satisfies the following assumption:

Assumption 4. Let ã ∈ N0. Let ΨN(0) ∈ D(HN), define χ≤N(0) = UN,φ(0)ΨN(0), and assume that there exists a constant C(̃a) > 0 such
that

∥χ≤N(0) −
ã

∑
ℓ=0

λ
ℓ
2

Nχℓ(0)∥
F ≤N

≤ C(̃a) λ
ã+1

2
N , (3.34)
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where the functions χℓ(0) are defined as follows:

● Let ν̃ ∈ N0, let UV0 be a Bogoliubov transformation on F�φ(0), and let { fj}̃
ν
j=1 ⊂ {φ(0)}

� be some orthonormal system. Define

χ0(0) := UV0 a†
( f1) ⋅ ⋅ ⋅ a†

( f ν̃) ∣Ω⟩. (3.35)

● For 1 ≤ ℓ ≤ ã, let

χℓ(0) = ∑
0≤m≤3ℓ
m+ℓ even

m

∑
μ=0
∫ dx(μ)dy(m−μ)ã(ℓ)m,μ(x

(μ); y(m−μ))a†
x1 ⋅ ⋅ ⋅ a

†
xμay1 ⋅ ⋅ ⋅ aym−μ χ0(0), (3.36)

where a(ℓ)n,m,μ(x(μ); y(m−μ)) are the kernels of some N-independent bounded operators.

Moreover, our analysis generalizes to the case where χ0(0) is given as a linear combination of Bogoliubov transformed states with
different particle numbers ν̃. It is clear that this is satisfied by any superposition of low-energy eigenstates of Htrap

N .

E. Related results
We conclude with a brief overview of closely related results in the literature. The first derivation of higher order corrections is due to

Ginibre and Velo,18,19 who consider the classical field limit h → 0 of the dynamics generated by a Hamiltonian on Fock space with coherent
states as initial data. They construct a Dyson expansion of the unitary group W(t, s) in terms of the time evolution generated by the Bogoliubov
Hamiltonian; moreover, they prove that the expansion is Borel summable for bounded interaction potentials.18 The main difference to our
work (apart from the Fock space setting) is that the authors expand the time evolution operator W(t, s) in a perturbation series (and not
the wave function). In contrast, we derive an expansion of the time-evolved wave function for a specific, physically relevant choice of initial
data. This simplifies the approximation since fewer terms are required at a given order of the approximation because the state is expanded
simultaneously with the Hamiltonian.

Another approach to higher order corrections in the mean-field regime in the N-body setting was proposed by Paul and Pulvirenti.20 In
that work, the authors approach the problem from a kinetic theory perspective and consider the dynamics of the reduced density matrices
of the N-body state. Their approach is formally similar to ours, since Bogoliubov theory in the sense of linearization of the Hartree equation
is used for the expansion and an a-dependent but N-independent number of operations is required for the construction. In comparison, the
main advantage of our approach is that the coefficients χℓ in our approximation are completely independent of N.

Finally, a similar result in the N-body setting was obtained in a joint work with Pavlović, Pickl, and Soffer21 In this paper, we expand
the N-body time evolution in a Dyson series comparable to (3.16) but with one crucial difference: instead of using the Bogoliubov time
evolution, the expansion is in terms of an auxiliary time evolution Ũφ(t, s) on HN , whose generator has a quadratic structure comparable to
the Bogoliubov Hamiltonian (sometimes called the particle number preserving Bogoliubov Hamiltonian).

Unfortunately, this auxiliary time evolution Ũφ(t, s) is a rather inaccessible object, which implicitly still depends on N. In particular,
it is not clear to what extent computations are less complex with respect to the time evolution Ũφ(t, s) than with respect to the full
N-body problem. This problem was the original motivation for the work,2 where we modified the construction precisely such as to make the
approximations completely N-independent and accessible to computations. Eventually, this also led to Ref. 1, which was partially intended as
a rigorous motivation of the assumptions on the initial data in Ref. 2.

IV. OPEN PROBLEMS
There are several open questions related to the results presented here. First, it would be interesting to generalize the dynamical analysis

(Theorem 2) to the class of unbounded interaction potentials considered in Sec. II E 1 for the static problem, which, in particular, includes
the Coulomb potential.

In addition, one can attempt to push the analysis to singular interactions of the type

vN,β(x) = N−1+dβv(Nβx), β ∈ [0, 1],

for some bounded and compactly supported interaction potential v, where β is a scaling parameter interpolating from the Hartree (β = 0)
to the Gross–Pitaevskii regime (β = 1). We expect the analysis to become harder with increasing β, mainly because of the emergence of an
N-dependent short-scale correlation structure. Whereas new ideas are needed to cope with the extremely singular Gross–Pitaevskii regime,
we expect our analysis to extend to a certain range of positive β.

Another interesting open problem is proving Borel summability of the asymptotic series in Theorems 1 and 2, at least for bounded
interaction potentials. This property was established in Ref. 18 for the corresponding dynamical problem on Fock space described in
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Sec. III E; hence, we conjecture that it should hold true also in the N-body setting, at least for bounded interaction potentials. As our current
estimates of the growth of the error C(a) in the parameter a are insufficient, new ideas are needed to improve this.

Finally, we expect our asymptotic expansions to be useful in answering various open problems related to the mean-field Bose gas. For
instance, one should be able to derive effective interactions between the quasi-particles as discussed in Ref. 22 and to prove corrections to the
central limit theorem obtained in Ref. 23.
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