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Abstract

In this dissertation we study coboundary expansion of simplicial complex with a view of
giving geometric applications.

Our main novel tool is an equivariant version of Gromov’s celebrated Topological Overlap
Theorem. The equivariant topological overlap theorem leads to various geometric appli-
cations including a quantitative non-embeddability result for sufficiently thick buildings
(which partially resolves a conjecture of Tancer and Vorwerk) and an improved lower
bound on the pair-crossing number of (bounded degree) expander graphs. Additionally,
we will give new proofs for several known lower bounds for geometric problems such as
the number of Tverberg partitions or the crossing number of complete bipartite graphs.

For the aforementioned applications one is naturally lead to study expansion properties
of joins of simplicial complexes. In the presence of a special certificate for expansion (as
it is the case, e.g., for spherical buildings), the join of two expanders is an expander. On
the flip-side, we report quite some evidence that coboundary expansion exhibits very
non-product-like behaviour under taking joins. For instance, we exhibit infinite families
of graphs (Gn)n∈N and (Hn)n∈N whose join Gn ∗Hn has expansion of lower order than the
product of the expansion constant of the graphs. Moreover, we show an upper bound of
(d+1)/2d on the normalized coboundary expansion constants for the complete multipartite
complex [n]∗(d+1) (under a mild divisibility condition on n).

Via the probabilistic method the latter result extends to an upper bound of (d+1)/2d+ε on
the coboundary expansion constant of the spherical building associated with PGLd+2(Fq)
for any ε > 0 and sufficiently large q = q(ε). This disproves a conjecture of Lubotzky,
Meshulam and Mozes – in a rather strong sense.

By improving on existing lower bounds we make further progress towards closing the
gap between the known lower and upper bounds on the coboundary expansion constants
of [n]∗(d+1). The best improvements we achieve using computer-aided proofs and flag
algebras. The exact value even for the complete 3-partite 2-dimensional complex [n]∗3

remains unknown but we are happy to conjecture a precise value for every n.

In a loosely structured, last chapter of this thesis we collect further smaller observations
related to expansion. We point out a link between discrete Morse theory and a technique for
showing coboundary expansion, elaborate a bit on the hardness of computing coboundary
expansion constants, propose a new criterion for coboundary expansion (in a very dense
setting) and give one way of making the folklore result that expansion of links is a
necessary condition for a simplicial complex to be an expander precise.
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Chapter 1

Introduction

This thesis fits into the emerging research area of high-dimensional expanders (HDXs)
which is a successful attempt to generalize the well-established theory of expander graphs
to higher dimensions.1

Expander graphs are sparse but highly connected graphs. They can be defined in many
different, (essentially) equivalent ways. Interestingly, for HDXs even the definition is not
obvious at all. Many of the different characterizations of expander graphs have natural
generalizations for higher dimensional simplicial or cellular complexes but it turns out that
these generalizations are (usually) not equivalent anymore, often not even comparable.2
Thus we end up with a whole array of genuinely different notions of HDXs, all with
their own (potential) applications. There might even be further notions of HDXs to be
discovered.

Despite its formative stage the theory of HDXs has already seen striking applications.
One of them is a fully polynomial-time randomized approximation scheme for sampling
and counting matroid basis which was given by Anari, Liu, Gharan and Vinzant in
[7].3 Another very recent breakthrough is the construction of locally testable codes with
constant rate, constant distance and constant locality by Dinur, Evra, Livne, Lubotzky
and Mozes in [31] and independently by Panteleev and Kalachev in [118] who additionally
constructed asymptotically good quantum LDPC.4

All of these major applications solved long-standing open problems. The notion of HDXs
relevant to these results are defined in terms of spectral gaps of combinatorial Laplacians
(which were already introduced by Eckmann in the 1940s [38]) and related operators. A

1We refer the reader to [83, 93, 63] and [94] for two books and two surveys on expander graphs. [95]
is a survey article on HDXs by Lubotzky presented as a plenary talk at the International Congress of
Mathematics 2018.

2As an example, the papers [130] and [56] show non-comparability for the so-called coboundary
expansion constant (which we introduce later in this introduction and more thoroughly in Chapter 3)
and the spectral gap of high-dimensional Laplacians (for a definition see Chapter 2).

3This work is based on a general theory of spectral properties of random walks on simplicial complexes
developed in a series of papers including [74, 33, 30, 114, 75] and [4]. Furthermore, it fostered a whole
line of work of analyzing Markov chains via HDXs. Going beyond matroids there have been applications
to the analysis of the hardcore model, Ising model, planar monomer-dimer systems, sampling (edge)
colorings and many more. See for instance [25, 43, 5, 1, 24, 8] and [16], to name a few.

4A connection between HDXs and computer science was noticed early on in [73] by interpreting
coboundary expansion as a certain property to be testable. The relevance of HDXs to probabilistic
checkable proofs and error correcting codes was revealed in various works such as [33, 32, 30] and [3].

1



1. Introduction

key tool for the proofs are local-to-global arguments which try to boost (easier-to-analyze)
local expansion properties, such as expansion of links in simplicial complexes, to global
ones. This is a truly high-dimensional phenomenon whose study can be traced back to
the work of Garland in the 1970s [51].

In this thesis, we focus on a more combinatorial notion of expansion - coboundary expansion.
This notion of HDXs arose independently in the work of Linial, Meshulam and Wallach
[89, 109] and of Gromov [54], generalizes the edge expansion constant of graphs and
provides a quantitative measure for vanishing cohomology.

To define this notion, consider a pure5 d-dimensional simplicial complex X. We write
X(k) for the set of k-simplices of X. Endow X with the weight function w : X → R≥0
given by

σ 7→ w(σ) = |{τ ∈ X(d) : σ ⊆ τ}|(
d+1
|σ|

)
|X(d)|

.

These weights, often called Garland weights, induce a norm ∥ · ∥ on cochain groups
Ck(X;F2) with coefficients in the finite field F2 with two elements6 by

∥c∥ =
∑

σ∈X(k),c(σ)̸=0
w(σ)

which itself gives rise to a quotient norm ∥[·]∥ on Ck(X;F2)/Bk(X;F2) given by

∥[c]∥ = min{∥c+ b∥ : b ∈ Bk(X;F2)}.

Definition (Coboundary expansion constants7). Let X be a d-dimensional simplicial
complex. Let 0 ≤ k ≤ d− 1. The k-th coboundary expansion constant ηk(X) of X (with
respect to ∥ · ∥-norm and F2-coefficients) is defined as

ηk(X) := min
c∈Ck(X;F2)\Bk(X;F2)

∥δc∥
∥[c]∥ .

Note that ηk(X) > 0 if and only if H̃k(X;F2) = 0. This is why we think of ηk(X) as
quantifying the vanishing of the k-th cohomology group of X with coefficients in F2.

Gromov established a remarkable link between coboundary expansion and the so-called
topological overlap property. We say that a d-dimensional simplicial complex is c-
topologically overlapping for some constant c > 0 if for every continuous map8 f : |X| → Rd

there is p ∈ Rd such that |{σ ∈ X(d) : p ∈ f(σ)}| ≥ c|X(d)|. Informally speaking, Gro-
mov’s celebrated Topological Overlap Theorem states that for any dimension d and vector
of positive real numbers η = (η0, . . . , ηd−1) there is a constant c, depending solely on
d and η, such that if X is a d-dimensional simplicial complex with ηk(X) ≥ ηk for all
0 ≤ k ≤ d − 1 then X is c-topologically overlapping.9 Gromov then shows that the

5A simplicial complex is pure if every (inclusion) maximal simplex has the same size.
6For a definition (co)chain groups and simplicial (co)homology see Section 2.2 below.
7We will give a more general definition for coboundary expansion constants in Chapter 3 including

some motivation.
8Here |X| denotes the geometric realization or polyhedron of X.
9More formally, there is another technical condition requiring some local sparseness of X that we

sweep under the rug here. Moreover, the strong condition of vanishing cohomology can be weakened to
the condition that every coboundary has a small cofilling and that every non-trivial cocycle has large
norm. We refer to [36] for more details and a concise, streamlined proof of Gromov’s Topological Overlap
Theorem as well as Section 2.1-2.5 in [54] for Gromov’s original argument.

2



complete d-dimensional complex Kd
n on n vertices satisfies ηk(Kd

n) ≥ 1 for all n, d ∈ Z>0
and 0 ≤ k ≤ d− 1. In particular, Kd

n is cd-topologically overlapping for some cd > 0. This
is related to a classical problem in discrete geometry – the point selection problem. There
one asks for the optimal constant cd such that for every affine map f : |Kd

n| → Rd there is
a point p ∈ Rd with

|{σ ∈ Kd
n(d) : p ∈ f(σ)}| ≥ cd

(
n

d+ 1

)
+ o(nd+1) as n → +∞.10

The fact that cd > 0 was shown in [18] for d = 2 (showing that c2 = 2/9) and in [12] for
d ≥ 3.

Surprisingly, Gromov’s proof of the Topological Overlap Theorem does not only generalize
results for the point selection problem from affine to continuous maps but his lower bounds
on the overlap constant improved upon previously known estimates in the affine setting.

Linial–Meshulam [89] (for d = 2) and Meshulam–Wallach [109] (for d ≥ 3) also showed that
ηk(Kd

n) ≥ 1 for all k, n ∈ Z>0 and 0 ≤ k ≤ d− 1. They used this for an intricate cocycle
counting argument to determine the exact threshold for the vanishing of H̃d−1(X;F2) where
X is sampled according to the so-called Linial–Meshulam model Xd(n, p). X ∼ Xd(n, p)
is obtained as follows: Start with a complete (d− 1)-skeleton on a vertex set V of size n.
For every subset σ ⊆ V with |σ| = d+ 1 add σ as a d-simplex independently at random
with probability p.11

The works of Gromov, Linial–Meshulam and Meshulam–Wallach indicate that the notion
of coboundary expansion is well-suited for topological applications. A main theme of
the present thesis continues this line of research and provides a general method for the
study of quantitative non-embeddability problems, such as crossing numbers of graphs
and simplicial complexes, from the perspective of coboundary expansion properties of
configuration spaces naturally associated with these types of problems.

Mostly, we will focus on the (pair) crossing number problem. Given a d-dimensional
simplicial complex X and a continuous map f : |X| → R2d we define the independent pair
crossing number ipcr(f) of f as

ipcr(f) := 1
2 |{(σ, τ) ∈ X(d) ×X(d) : σ ∩ τ = ∅, f(σ) ∩ f(τ) ̸= ∅}|,

i.e. as the number of pairs of disjoint d-simplices of X whose images under f intersect.
The independent pair crossing number ipcr(X) of X is defined as

ipcr(X) := min{ipcr(f) : f : |X| → R2d continuous}.

Clearly, ipcr(X) > 0 implies that X is not embeddable to R2d.12 We think of ipcr(X)
as a quantitative measure of non-embeddability for which we would like to prove lower
bounds.

10Usually, this is formulated in the equivalent form that for every set of n points in Rd there is a point
p ∈ Rd which is contained in at least cd

(
n

d+1
)

+ o(nd+1) of the simplices spanned by d+ 1 points in P .
11By now, a much more fine-grained understanding of (topological) properties of the Linial–Meshulam

and related random models of simplicial complexes have been obtained. We refer to [70] and [17] for two
surveys on the study of random simplicial complexes - the former might be slightly outdated in some
places.

12The converse is true for graphs (d = 1) and for d ≥ 3 due to the completeness of the so-called van
Kampen obstruction [47].

3



1. Introduction

The embeddability question is often studied through the framework of configuration spaces
and test maps, which provides a powerful topological toolbox to the study of a variety of
geometric and combinatorical problems (see [107] and [139] for excellent introductions to
the topic). In a nutshell this framework works as follows: One starts by constructing a
configuration space to encode all possible solutions/configurations. A test map from the
configuration space to some test space allows to separate some distinguished configurations
from the others by, e.g., mapping them to zero. Often the configuration and test space
are endowed with a group action of a (finite) group G and the test map is equivariant
with respect to these actions, i.e., it commutes with the group action. One usually seeks
for topological properties of the configuration/test space pair that prohibit the existence
of an equivariant map from the configuration to the test space avoiding zero and whence
guarantee the existence of a configuration with a desired property.

For the problem of embedding a d-dimensional simplicial complex X to R2d a suitable
configuration space is the deleted join X∗2

∆ of X. The join X∗Y of the simplicial complexes
X and Y is the simplicial complex whose simplices are joins σ ⊗ τ of pairs of simplices
σ ∈ X and τ ∈ Y . Thinking of X and Y as abstract simplicial complexes, i.e. as a
downward closed set systems, σ⊗ τ is simply the disjoint union of the sets σ and τ . Then
X∗2

∆ is the subcomplex of X ∗X given by

X∗2
∆ := {σ ⊗ τ : σ, τ ∈ X, σ ∩ τ = ∅}.

The points in the geometric realization of X∗2
∆ can be described as formal convex combi-

nations x = tx1 ⊕ (1 − t)x2 , where t ∈ [0, 1] and x1, x2 ∈ |X| are from disjoint simplices
of X. Here we use the convention that 0x1 ⊕ 1x2 = 0x′

1 ⊕ 1x2 and 1x1 ⊕ 0x2 = 1x1 ⊕ x′
2

for all x1, x
′
1, x2, x

′
2 ∈ |X|.

Note that ν : |X∗2
∆ | → |X∗2

∆ | given by

tx⊕ (1 − t)y 7→ (1 − t)y ⊕ tx

is a simplicial automorphism with ν ◦ ν = id. The map ν induces a free action of the
cyclic group of two elements Z/2 on X∗2

∆ turning it into a free Z/2-complex.13

Now, given a continuous map f : |X| → R2d, we get an induced map F : |X∗2
∆ | → R2d+1

given by

tx⊕ (1 − t)y 7→
(

1 − 2t
tf(x) − (1 − t)f(y)

)
.

Note that Z/2 also acts on R2d+1 by the antipodal map a : R2d+1 → R2d+1 mapping x to
−x. F is equivariant, i.e. F ◦ ν = a ◦ F . Moreover, we have F (tx⊕ (1 − t)y) = 0 if and
only if t = 1/2 and f(x) = f(y). It follows that

ipcr(f) = 1
2 |{σ ⊗ τ ∈ X∗2

∆ (2d+ 1) : 0 ∈ F (σ ⊗ τ)}|.

Furthermore, the existence of an embedding f : X → R2d gives rise to an equivariant map
F : X∗2

∆ →Z/2 R2d+1 whose image avoids 0. A generalization of the classical Borsuk–Ulam
theorem (see for instance [141]) to Z/2-complex/spaces rules out the existence of an

13For more detailed definitions of these notions we refer to Section 2.4.
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equivariant map F : |Y | →Z/2 Rd avoiding 0 if Y is a d-dimensional simplicial complex
with a free Z/2-action and H̃k(Y ;F2) = 0 for all 0 ≤ k ≤ d− 1.14 Our first main result is
a quantitative version of this result for coboundary expanders which can be seen as an
analogue of Gromov’s Topological Overlap Theorem in the setting of free Z/2-complexes
and equivariant maps.

Theorem 1.1 (Quantitative Borsuk–Ulam Theorem). Let d ∈ Z>0 and η = (η0, . . . , ηd−1)
be a vector of positive real numbers. Let Y be a d-dimensional free Z/2-complex such that
ηk(Y ) ≥ ηk for all 0 ≤ k ≤ d− 1. Then for any equivariant map F : |Y | →Z2 Rd we have

|{σ ∈ Y (d) : 0 ∈ F (σ)}| ≥
∏d−1

i=0 ηi

2d
|Y (d)|.

The quantitative Borsuk–Ulam Theorem implies a (non-trivial) lower bound on ipcr(X)
for a d-dimensional simplicial complex X whenever we can prove good lower bounds
for the coboundary expansion constants of X∗2

∆ . In particular, this would show the
non-embeddability of X to R2d. Thus, it is natural to ask for conditions on X which
ensure that X∗2

∆ is a coboundary expander. More specifically, is it possible to bound the
coboundary expansion constants of X∗2

∆ in terms of the coboundary expansion of X? We
are very far from a satisfying answer to this question (and as we will see the answer might
be quite delicate) but for sufficiently thick15 spherical buildings (for a definition of these
complexes see Defintion 5.7) we know how to prove expansion for their deleted join. This
leads us to the following application of Theorem 1.1.

Theorem 1.2 (Quantitative non-embeddability for sufficiently thick spherical buildings).
For every dimension d ∈ N there exists δd > 0 and µd > 0 such that for every d-dimensional
δd-thick spherical building X we have

ipcr(X) ≥ µd ·
(

|X(d)|
2

)
.

Theorem 1.2 makes progress on a conjecture of Tancer and Vorwerk (see [134, Conjecture
8.1]) who conjectured that no d-dimensional 3-thick spherical building embeds to R2d.
Thus, under the stronger assumption of sufficiently large thickness, we can show non-
embeddability of d-dimensional spherical buildings to R2d in a strong quantitative sense.

As another application of Theorem 1.1 we will prove that a bounded degree expander
graph G = (V,E) satisfies ipcr(G) = Ω(|V |2/ log |V |) (see Theorem 5.14 for a more precise
statement clarifying the dependencies of the hidden constants on the edge expansion
constant and maximum degree of G). This improves a previous lower bound due to
Kolman and Matoušek [79, Theorem 2] by a log |V |-factor.

Our proof of Theorem 1.1 is quite robust. In particular, it also works for different choices
of weights instead of the Garland weights. Moreover, we will prove a generalization (see
Theorem 4.1 below) to the setting where Z/p, for some prime p, acts on X freely and on
Rd by orthogonal linear transformations and freely on Rd \ {0}. Such setups naturally
arise in the study of Tverberg-type problems (see [107, 139, 15] for more details). In fact,

14The Borsuk–Ulam Theorem is the case when Y is (an equivariant triangulation of) the d-dimensional
sphere Sd with the antipodal action.

15By definition, we call a d-dimensional simplicial complex X δ-thick for some δ ∈ Z>0 if every
(d− 1)-simplex of X is contained in at least δ d-simplices.
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1. Introduction

as an application we will give a new proof of the lower bound of Vučić and Živaljević
([138, Theorem 1]) on the number of Tverberg partitions in the prime case. We will show:

Theorem 1.3. Let p be a prime. Let N = (d+ 1)(p− 1). Let σN be an N-dimensional
simplex. Then for every continuous map f : |σN | → Rd the number of unordered p-tuples
{F1, . . . , Fp} of pairwise disjoint faces of σN with ⋂p

i=1 f(Fi) ̸= ∅ is at least

1
(p− 1)!

(
p

2

)N/2
.

With Theorem 1.1 in mind (and ignoring the difference between the deleted join and the
join) it is worthwhile to get a good understanding of coboundary expansion properties of
the join X ∗X of a simplicial complex with itself. Using Künneth formula (see, e.g., [61,
Chapter V.]) we see that H̃k(X ∗X;F2) = 0 for all 0 ≤ k ≤ 2d if H̃j(X;F2) = 0 for all
0 ≤ j ≤ d− 1. One could ask for a quantitative version of this result. The proof of such
a result might be quite delicate and a very strong form of it would not further generalize
to arbitrary joins X ∗ Y of simplicial complexes X and Y :

Proposition 1.4. There are positive constants C and η such that there are infinite
families of regular graphs (Gn)n∈N and (Hn)n∈N with the property that for all n ∈ N

(i) η0(Gn) ≥ η,

(ii) η0(Hn) ≥ C log |Gn(1)|
|Gn(1)| ,

(iii) η2(Gn ∗Hn) ≤ 6
|Gn(1)| .

16

In particular,

lim
n→+∞

η2(Gn ∗Hn)
η0(Gn)η0(Hn) = 0.

On the positive side, we are able to establish coboundary expansion for X ∗ X if the
coboundary expansion of X comes with a special certificate which we call a random
abstract cone. Such a certificate is, for instance, available for spherical buildings.

An initial motivation for proving a quantitative Borsuk–Ulam type theorem such as
Theorem 1.1 was to have a new approach to tackle various old conjectures on crossing
numbers of graphs. Arguably the most prominent (and oldest) of these conjectures is
Turán’s brick factory problem (see for instance [13] or [126, Ch. 1]) which asks to determine
the crossing number cr(Km,n) of a complete bipartite graph Km,n.17 It is conjectured that
cr(Km,n) = Zm,n where

Zm,n :=
⌊
m− 1

2

⌋ ⌊
m

2

⌋ ⌊
n− 1

2

⌋ ⌊
n

2

⌋
.

16Here we think of Gn as a 1-dimensional simplicial complex. Hence, |Gn(1)| is the number of edges
of Gn.

17The crossing number cr(G) of a graph is the smallest number of edge crossings of any drawing
of G in the plane. Clearly, ipcr(G) ≤ cr(G) for all graphs G and it is a major open conjecture that
ipcr(G) = cr(G) (see [117, 126]).
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This is also known as Zarankiewicz’ conjecture. A construction attributed to Zarankiewicz
shows that cr(Km,n) ≤ Zm,n. Even the asymptotics of cr(Km,n) for m,n → +∞ is not
fully understood.

Note that (Km,n)∗2
∆ = [m]∗2

∆ ∗ [n]∗2
∆ .18 Thus, for large m and n, (Km,n)∗2

∆ is roughly equal
to the complete 4-partite 3-dimensional complex Λ3

m,m,n,n := [m] ∗ [m] ∗ [n] ∗ [n], in the
sense that they only differ by a negligable number of simplices. What is more, it is
not too difficult to show that ηk(Λ3

m,m,n,n) = ηk((Km,n)∗2
∆ ) + o(1) as m,n → +∞ (cf.

Proposition 5.2). In particular, Theorem 1.1 implies

cr(Km,n) ≥ ipcr(Km,n) ≥
η0(Λ3

m,m,n,n)η1(Λ3
m,m,n,n)η2(Λ3

m,m,n,n)
16 (1 − o(1))m2n2

as m,n → +∞ which would prove an asymptotic version Zarakiewicz’ conjecture if we
could show that ηk(Λ3

m,m,n,n) ≥ 1 for all k ∈ {0, 1, 2}. Unfortunately, at least for k = 2,
this fails to be true.

Theorem 1.5. Let d ∈ N be a dimension, n0, n1, . . . , nd ≥ 2 integers. Write Λd
n0,n1,...,nd

=
[n0] ∗ · · · ∗ [nd] for the complete (d+ 1)-partite complex with parts of size n0, n1, . . . , nd−1
and nd. If 2d divides ni for all 0 ≤ i ≤ d, then

ηd−1(Λd
n0,n1,...,nd

) ≤ d+ 1
2d

.

We will write Λd
n for Λd

n0,...,nd
if n0 = n1 = · · · = nd = n. The proof of Theorem 1.5

generalizes to give us upper bounds on ηk(Λd
n) for k < d− 1 which are exponentially small

in d for constant codimension d− k (see Proposition 7.8). Additionally, we will make a
precise conjecture for the value of η1(Λ2

n) for all n ∈ Z>0.

A key ingredient for the constructive proof of Theorem 1.5 is an interesting family of d-
coboundaries with some extra algebraic structure (related to the sum complexes studied in
[88]). We can obtain such a family of d-coboundaries for any (d+ 1)-partite d-dimensional
complex. This allows us, using the probablistic method, to show an upper bound on the
(d− 1)-th expansion constant of the spherical building Ad(Fq) associated with GLd+2(Fq)
for sufficiently large q. More precisely, given a prime power q, Ad(Fq) is the simplicial
complex with vertices the non-trivial, proper subspaces of Fd+2

q , a (d + 2)-dimensional
vector space over the finite field Fq with q elements, and k-simplices corresponding to
chains {0} ≠ U0 ⊊ U1 ⊊ · · · ⊊ Uk ⊊ Fd+2

q of subspaces. In particular, A1(Fq) is the points
vs. lines graph of the Desarguesian projective plane of order q for which it is known that
η0(A1(Fq)) ≥ 1 − 2√

q

q+1 (see [93, Section 8.3]). It was conjectured by Lubotzky, Meshulam
and Mozes [98, Conjecture 5.1] that this extends to higher dimensions in the sense that
ηd−1(Ad(Fq)) = 1 + o(1) as q → +∞. We disprove this conjecture in a rather strong sense
for all d ≥ 2.

Theorem 1.6. For any dimension d and ε > 0 there is Q = Q(d, ε) ∈ Z>0 such that for
all prime powers q ≥ Q we have

ηd−1(Ad(Fq)) ≤ d+ 1
2d

+ ε.

18For n ∈ Z>0 we write [n] for the set {1, . . . , n} which we also think of as 0-dimensional simplicial
complex of n discrete points.
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1. Introduction

We will further close the gap between the known lower and upper bounds for ηd−1(Λd
n)

by also improving upon previously known lower bounds. Due to a recursive bound on
ηd−1(Λd

n) in terms on ηd−2(Λd−1
n ) we focus on improving the lower bound for η1(Λ2

n). Using
a computer-aided proof, we will show

Proposition 1.7. For all n ∈ Z>0 we have η1(Λ2
n) ≥ 0.67159.

One should compare this to the previously known lower bound η1(Λ2
n) ≥ 3/5 and the

upper bound η1(Λ2
n) ≤ 3/4 from Theorem 1.5 (if 4 divides n). The exact value of η1(Λ2

n)
remains elusive.

In an attempt to circumvent the obstacle of Λd
n not having optimal coboundary expansion 1

and thus preventing us from a direct application of the quantitative Borsuk–Ulam theorem
to prove Zarankiewicz’ conjecture (up to lower order terms), we study the coboundary
expansion constant ζd−1(Λd

n) of Λd
n with respect to integer coefficients and (normalized)

ℓ2
2-norm (see Section 3.1 for a discussion of coboundary expansion constants with respect

to various coefficients and size functions/norms). We will show that for sufficiently large
n we have ζd−1(Λd

n) > ηd−1(Λd
n). We came short to show that ζd−1(Λd

n) = 1 but working
within the setting of integer coefficients and (weighted) ℓ2

2-norm, we can recover Kleitman’s
4/5 bound [78] on the crossing number of complete bipartite graphs (up to lower order
terms). More precisely, we will give a new proof of the following result

Proposition 1.8.

lim
m,n→+∞

cr(Km,n)
Zm,n

≥ 4
5 .

19

Part of the proof of Proposition 1.8 is to show that ζ2(Λ3
m,m,n,n) ≥ 4/5.20 We conjecture

that in fact ζ2(Λ3
m,m,n,n) = 1 for all m,n ∈ Z>0 which would imply

lim
m,n→+∞

cr(Km,n)
Zm,n

= 1

and thus prove an asymptotic version of Zarankiewicz’ conjecture.

1.1 Structure of Thesis
The remaining chapters of this thesis are structured as follows:

The next chapter gives some basic definitions regarding simplicial complexes and coho-
mology, etc.

In Chapter 3 we give a careful introduction to the notion of coboundary expansion.
Moreover, we introduce the random cofilling technique, which is arguably the only known

19To be a bit more precise here, for every fixed n ∈ N, we consider the function m 7→ φn(m) := cr(Km,n)
Zm,n

.
One can show that φn converges pointwise to a function φ∞(m) = limn→+∞ φ(m). Furthermore,
it is another easy exercise to show that limm→+∞ φ∞(m) exists. We write limm,n→+∞

cr(Km,n)
Zm,n

for
limm→+∞ φ∞(m).

20Strictly speaking, we show something a bit weaker, namely a lower bound of 4/5 on the 2nd expansion
constant of Λm,m,n,n with respect to some weighted ℓ2

2-norm and integer coefficients. See Section 5.5 for
the full proof of Proposition 1.8.
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1.1. Structure of Thesis

technique to prove lower bounds on coboundary expansion constants. We illustrate this
technique by some examples.

In Chapter 4 we show our quantitative version of the Borsuk–Ulam Theorem.

We use this theorem in Chapter 5 to harvest some geometric applications such as the
quantitative non-embeddability result for spherical buildings, lower bounds on (pair)
crossing number of complete bipartite graphs and on the number of Tverberg partitions.

Chapter 6 is devoted to the study of expansion properties of the join of two simplicial
complexes in general.

In Chapter 7 we provide upper bounds on coboundary expansion constants of (d + 1)-
partite d-dimensional simplicial complexes. In particular, we prove the upper bounds as
claimed in Theorem 1.5 and Theorem 1.6.

In Chapter 8 we focus on lower bounds on expansion constants of Λd
n. We will see that

ζd−1(Λd
n) > ηd−1(Λd

n) for d ≥ 2 and sufficiently large n. Moreover, we make further
progress on closing the gap between the known lower and upper bounds for ηd−1(Λd

n) by
improving upon existing lower bounds.

Chapter 9 of this thesis is a loose collection of various further observations related to
expansion.

We close with a brief summary and an outlook in Chapter 10.
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Chapter 2

Preliminaries

This chapter gives some basic definitions such as the definition of simplicial complexes
and simplicial cohomology. While everything in this chapter is completely standard,
introducing the material in some detail allows us to fix some notation which we can use
throughout the thesis. The expert reader might want to skip this chapter on a first read
and return to it if necessary. Our discussion here is mainly based on the respective parts
in [107] and [110].

2.1 Simplicial Complexes and More General Cell
Complexes

An abstract simplicial complex X is a downward closed set system X ⊆ 2V for some
vertex set V . That is, if σ ∈ X and τ ⊆ σ then τ ∈ X. In particular, if X is non-empty
then the empty set ∅ is in X. Elements of X are called simplices. The dimension dim σ
of a simplex σ ∈ X is dim σ = |σ| − 1 and we will call σ a k-simplex if dim σ = k.
As usual, we use vertices, edges, triangles and tetrahedra as synonyms for 0-,1-,2- and
3-simplices, respectively. We write X(k) for the set of k-simplices and X(k) = ⋃

−1≤i≤k X(i)
for k-skeleton of X. A simplicial complex X is s-partite for some s ∈ Z>0 if there is a
labelling λ : X(0) → [s] of the vertices of X such that |σ ∩ λ−1({i})| ≤ 1 for all σ ∈ X
and i ∈ [s]. All simplicial complexes considered in this thesis are finite, i.e. they have
finitely many simplices or equivalently |X(0)| < ∞. The dimension dimX of a simplicial
complex X is the maximal dimension of a simplex in X. A simplicial complex X is pure if
every simplex is contained in a simplex of dimension dimX. A simplicial map f : X → Y
between abstract simplicial complexes is a map f : X(0) → Y (0) such that f(σ) ∈ Y for
all σ ∈ X.

To be able to talk about continuous maps from an abstract simplicial complex to Rd (or
some other topological space), we need the notion of a geometric realization or polyhedron
of X. To this end, let us first define geometric simplicial complexes.

A geometric simplex σ in Rd is the convex hull of finitely many affinely independent
points A ⊆ Rd. Elements in A are the vertices of σ. The dimension dim σ of a simplex is
dim σ = |A| − 1 and we call σ a k-simplex if dim σ = k. The convex hull of a subset of A
is called a face of σ.

A geometric simplicial complex ∆ is a family of geometric simplices in Rd such that

11



2. Preliminaries

(i) Every face of a simplex in ∆ is also a simplex in ∆.

(ii) If σ, τ ∈ ∆ then the intersection σ ∩ τ is a face of σ and of τ .

The polyhedron |∆| of ∆ is the union of all geometric simplices in ∆ considered as a
topological space endowed with the subspace topology of Rd. The vertex set V (∆) of ∆
is the union of all vertices of simplices in ∆.

Every geometric simplicial complex has an associated abstract simplicial complex X(∆) ⊆
2V (∆) where σ ⊆ V (∆) is in X(∆) if σ is the vertex set of some simplex in ∆.

A geometric realization of an abstract simplicial complex X is a geometric simplicial
complex ∆ with X = X(∆).

It turns out that the polyhedron of any two geometric realizations of X are homeomorphic.
We write |X| for this topological space and call it the polyhedron or geometric realization
of X.

A simplicial map f : X → Y induces a continuous map |f | : |X| → |Y | which maps vertices
in |X| to vertices of |Y | according to f and for a point x = ∑k

i=0 λivi ∈ X with vertices
vi ∈ X and λi ≥ 0, ∑k

i=0 λi = 1 we have |f |(x) = ∑k
i=0 λif(vi).

A subdivision ∆′ of a geometric simplicial complex ∆ is a geometric simplicial complex
such that |∆′| and |∆| are homeomorphic, every simplex σ ∈ ∆′ is contained in some
simplex τ ∈ ∆ and every τ ∈ ∆ is the union of finitely many simplices in ∆′.

A subdivision X ′ of an abstract simplicial complex X is an abstract simplicial complex
associated with a subdivision of a geometric realization of X.

Using the geometric realization we can talk about continuous maps f : |X| → Rd from a
simplicial complex X to Rd.

A map f : |X| → Rd is simplexwise affine if it restricts to an affine map on each simplex
in X. More generally, a map f : |X| → Rd is piecewise linear (a PL map) if there is a
subdivision X ′ of X such that the map f : |X ′| → Rd is simplexwise affine.

We will almost always use simplicial complexes as a combinatorial description of topological
spaces except in Chapter 4 where we also encounter CW complexes.

Write Bd for the closed d-dimensional unit ball in Rd. A d-cell is a topological space
homeomorphic to Bd. An open d-cell is a topological space homeomorphic to the interior
of Bd.

A (finite) CW-complex is a topological space X together with a finite collection (σα, fα)α∈A
where

(i) σα ⊆ X is a dα-dimensional open cell,

(ii) X is the disjoint union of the σα’s, i.e. X = ⋃
α∈A σα and σα ∩ σ′

α = ∅ for all
α, α′ ∈ A with α ̸= α′,

(iii) fα : Bdα → X is a continuous map such that fα|Int(Bdα ) is a homeomorphism and
such that fα maps ∂Bdα to a union of open cells each of dimension less than dα.

12
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The maps fα are called attaching maps. A CW complex is regular if every attaching map
is a homeomorphism.

Note that a d-dimensional geometric simplex is a d-cell. Thus, by gluing geometric
simplices together along their boundary, we see that the polyhedron |∆| of a geometric
simplicial complex ∆ has the structure of a regular CW complex. Furthermore, if X
is a regular CW complex, we can triangulate its cells to obtain a simplicial complex
refining the CW complex structure. To be a bit more precise, here is a specific way to
achieve this: Given a (finite) partially ordered set (P ,≺) the order complex ∆(P) of P
is the simplicial complex with vertices the elements in P and k-simplices {v0, . . . , vk}
corresponding to chains v0 ≺ v1 ≺ · · · ≺ vk in P. Given a regular CW complex X with
cell structure (σα, fα)α∈A we get a partially ordered set (P(X),⊆) consisting of the closed
cells σα ordered by inclusion. One can check that the regularity of X implies that the
order complex ∆(P(X)), which is a generalized barycentric subdivision, is a simplicial
complex with |∆(P(X))| homeomorphic to X (cf. [101, Ch. III, Theorem 1.7]).

2.2 Chains and Cochains, Simplicial Homology and
Cohomology

Let X be a simplicial complex. Let σ ∈ X. Two orderings of the vertices of σ are
equivalent if they differ by a permutation with even sign. This defines an equivalence
relation on all possible orderings of the vertices of σ with precisely two equivalence classes
if dim σ > 0. An orientation of σ is a choice of such an equivalence class. An oriented
simplex is a simplex σ together with an orientation. We write Xk for the set of oriented
k-simplices of X. Given an oriented simplex σ we write −σ for the oriented simplex with
the opposite orientation which we understand to be equal to σ if dim σ ∈ {−1, 0}.

It is convenient to fix an orientation for each k-simplex according to a linear ordering
< on the vertices of X. Given such an ordering and a k-simplex σ = {v0, . . . , vk} with
v0 < v1, · · · < vk we give σ the orientation represented by the ordering (v0, . . . , vk) and
write [v0, . . . , vk] for the corresponding oriented simplex. Sometimes it will be convenient
to ease the notation and write v0v1 . . . vk instead of [v0, . . . , vk].

Let σ = {v0, . . . , vk} ∈ X(k) with v0 < · · · < vk. For τ ∈ X(k − 1) define the oriented
incidence number [σ : τ ] by

[σ : τ ] =

(−1)j if τ ⊆ σ, τ = σ \ {vj},
0 otherwise.

Let A be an abelian group. Later on, we will mostly work with A = Z or A = Fp, (the
additive group of) the field with p elements for some prime (power) p. Let −1 ≤ k ≤ dimX.
The kth chain group of X with coefficients in A is the abelian group Ck(X;A) of all
formal sums c = ∑

σ∈Xk
aσσ modulo the relation that σ + (−σ) = 0. Equivalently, it is

the abelian group of all formal sums c = ∑
σ∈X(k) aσσ where we fixed an orientation for

every k-simplex σ. Elements in Ck(X;A) are called k-chains.

There is a boundary map ∂k : Ck(X;A) → Ck−1(X;A) which is determined by

∂k(aσ[v0, . . . , vk]) =
k∑

i=0
((−1)iaσ)[v0, . . . , v̂i, . . . , vk],
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where v̂i indicates that the vertex vi is omitted. One checks that ∂k ◦ ∂k+1 = 0 for all
0 ≤ k ≤ d − 1. In particular, the image of ∂k+1 is contained in the kernel of ∂k, i.e.
Im(∂k+1) ⊆ ker(∂k).
We call Zk(X;A) := ker ∂k the group of k-cycles and Bk(X;A) := Im∂k+1 the group of
k-boundaries. In particular, Bk(X;A) is a subgroup of Zk(X;A) and we can define the
k-th homology group H̃k(X;A) of X with coefficients in A as the quotient H̃k(X;A) :=
Zk(X;A)/Bk(X;A).
For an oriented simplex σ and a ∈ A define the elementary cochain a1σ as the function
a1σ : Xk → A with a1σ(σ) = a, a1σ(−σ) = −a and a1σ(τ) = 0 for τ ∈ Xk \ {σ,−σ}.
Then we define the k-th cochain group Ck(X;A) of X with coefficients in A as the abelian
group of all formal sums ∑σ∈X(k) aσ1σ with aσ ∈ A where we assume that we fixed an
orientation for every k-simplex.
There is a coboundary map δk : Ck(X;A) → Ck+1(X;A) given on elementary cochains
a1σ by

δk(a1σ) =
∑

τ∈X(k+1)
[τ : σ]a1τ .

Bk(X;A) := Imδk−1 is the group of k-coboundaries of X and Zk(X;A) := ker δk is the
group of k-cocycles of X. One checks that δk ◦ δk−1 = 0 and, hence, we can define the
k-th cohomology group H̃k(X;A) of X with coefficients in A as the quotient H̃k(X;A) :=
Zk(X;A)/Bk(X;A).
Assume now that A is a ring with 1. Then by evaluating cochains on chains, we get a
pairing ⟨·, ·⟩ : Ck(X;A)×Ck(X;A) → A. More precisely, for a cochain φ = ∑

σ∈X(k) aσ1σ ∈
Ck(X;A) and a chain ψ = ∑

σ∈X(k) bσσ ∈ Ck(X;A) we define ⟨φ, ψ⟩ := ∑
σ∈X(k) aσbσ.

We have, essentially by definition, that ⟨δφ, ψ⟩ = ⟨φ, ∂ψ⟩ for all φ ∈ Ck(X;A) and
ψ ∈ Ck+1(X;A).
If A = F is a field, this pairing gives us the following nice characterization of coboundaries.

Lemma 2.1. Let F be a field. Let c ∈ Ck(X;F). Then the following are equivalent:

(i) c ∈ Bk(X;F).

(ii) ⟨c, z⟩ = 0 for all cycle z ∈ Zk(X;F).

(iii) ⟨c, z⟩ = 0 for z ∈ Z where Z ⊆ Zk(X;F) is a generating set.

The proof of Lemma 2.1 is an easy exercise in linear algebra which we leave to the reader.
Let X and Y be simplicial complexes. Let f : X → Y be a simplicial map. Let A be an
abelian group. f induces a map f ∗ : Ck(Y ;A) → Ck(X;A) given by

(f ∗c)([v0, . . . , vk]) =

c([f(v0), . . . , f(vk)]) if {f(v0), . . . , f(vk)} ∈ Y (k),
0 otherwise.

Here we think of cochains as functions on oriented simplices. Note that δf ∗c = f ∗δc for
all c ∈ Ck(Y ;A). Applying this to the inclusion map i : X → Y of a subcomplex X ⊆ Y ,
we see that the restriction of a coboundary to a subcomplex is a coboundary.
Similarly, we get an induced map f∗ : Ck(X;A) → Ck(Y ;A) which for [v0, . . . , vk] ∈ Xk

and a ∈ A is given by f∗(a[v0, . . . , vk]) = a[f(v0), . . . , f(vk)] which we understand to be
equal to 0 if {f(v0), . . . , f(vk)} /∈ Y (k).
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2.3 Links and Localization
Let X be a simplicial complex. Let σ ∈ X. The link Xσ of X at σ is the simplicial
complex Xσ = {τ ∈ X : σ ∩ τ = ∅, τ ∪ σ ∈ X}. We think of Xσ as a local view of X
around σ. Note that X∅ = X.

Assume we fixed an ordering < of the vertices. Let σ = [v0, . . . , vk] ∈ Xk with v0 < · · · < vk.
Given an oriented simplex τ = [u0, . . . , ul] ∈ (Xσ)l we let σ ∪ τ ∈ Xk+l be the oriented
simplex [v0, . . . , vk, u0, . . . , ul]. With this notation we can define the localization cσ of
c ∈ Ck(X;A) as the cochain cσ ∈ Ck−|σ|(Xσ;A) given by cσ(τ ) = c(σ ∪ τ ) for all oriented
simplices τ ∈ (Xσ)k−|σ|.

2.4 G-Spaces and G-Complexes
Let G be a finite group with identity element e. A group action of G or G-action on a
topological space X is a family Φ = (φg)g∈G of homeomorphisms φg : X → X such that
φe = id and φg ◦ φh = φgh for all g, h ∈ G. (X,Φ) is called a G-space.

Let (X,Φ) and (Y,Ψ) be G-spaces. A map f : X → Y is called G-equivariant or a G-map
or (if the group G is understood) equivariant if f ◦ φg = ψg ◦ f for all g ∈ G. We write
f : X →G Y to indicate that f is a G-equivariant map.

A G-space (X,Φ) is free if φg(x) ̸= x for all x ∈ X, g ∈ G \ {e}. For x ∈ X the set
Gx = {φg(x) : g ∈ G} is called the orbit of x under the action of G. A G-action is
fixed-point free if |Gx| ≥ 2 for all x ∈ X.

A simplicial G-complex (X,Φ) is a simplicial complex X together with a family Φ =
(φg)g∈G of simplicial maps such that (|X|, (|φg|)g∈G) is a G-space. The notion of a free
or fixed-point free G-spaces naturally extends to simplicial G-complexes. For an abelian
group A the maps (φg)∗ : Ck(X;A) → Ck(X;A) and (φg)∗ : Ck(X;A) → Ck(X;A) give
rise to an induced G-action on (co)chains. We will write g.c and h.c̃ instead of (φg)∗c and
(φh)∗c̃.

In this thesis we will only consider group actions by the cyclic group Z/p of order p for
some prime p. In this case the group action of Z/p on X is determined by the action
ν : X → X of a generator of Z/p. We will sometimes write (X, ν) in this case.

2.5 Expansion for Graphs and the Cheeger
Inequality

Let G = (V,E) be a (simple, undirected) graph on n vertices. For v ∈ V we write deg(v)
for its vertex degree, i.e. the number of edges incident to v. Write A = (Au,v)u,v∈V ∈ RV ×V

for the adjacency matrix of G. That is Au,v = 1 if uv ∈ E and 0 otherwise. Let D ∈ RV ×V

be the diagonal matrix with diagonal entries Dv,v = deg(v). The normalized Laplacian
L of G is defined as L(G) := I − D−1/2AD−1/2.1 Note that L(G) is symmetric and
positive semi-definite. Thus, L(G) has real eigenvalues 0 ≤ λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G).
Moreover, the vector v0 = D1/2

1 satisfies L(G)v0 = 0. Hence, λ1(G) = 0. It is not difficult
1Strictly speaking, this is not well-defined if G has isolated vertices, i.e. vertices with deg(v) = 0. In

that case, we define D−1/2
v,v = 0 for all vertices v with deg(v) = 0.
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to see that the multiplicity of 0 as an eigenvalue is the number of connected components
of G. Thus, λ2(G) > 0 if and only if G is connected. Hence, λ2(G), sometimes called the
spectral gap of G, is a measure of the connectivity of G.

A more combinatorial way of measuring the connectivity is in terms of the (normalized)
Cheeger constant η0(G), which is sometimes also called (normalized) edge expansion
constant. To define η0(G) let us introduce the volume vol(S) of a set of vertices S ⊆ V as
vol(S) := 1

2|E|
∑

v∈S deg(v). For S ∈ V let E(S, V \S) = {e ∈ E : |S∩e| = |(V \S)∩e| = 1}
be the set of edges in the cut induced by S. Then, we define

η0(G) := min
∅̸=S⊊V

|E(S, V \ S)|
|E| min{vol(S), vol(V \ S)} .

Note that η0(G) > 0 if and only if G is connected.

We remark that in the literature the Cheeger constant is often defined as

h0(G) := min
∅̸=S⊊V

|E(S, V \ S)|
min{|S|, |V \ S|}

and mostly studied for d-regular graphs. For d-regular graphs we have

h0(G) = d

2η0(G).

Define a family of graphs (Gn)n∈N to be a family of edge expander graphs if there is η > 0
such that η0(Gn) ≥ η for all n ∈ N. Similarly, say that (Gn)n∈N is a family of spectral
expander graphs if there is λ > 0 such that λ2(Gn) ≥ λ for all n ∈ N.

It turns out that a family of graphs is a family of edge expander graphs if and only if it is
a family of spectral expander graphs. This follows from the so-called discrete Cheeger
inequality due to Dodziuk [34] and independently due to Alon and Milman [6]. The
Cheeger inequality for graphs translates an analogous result of Cheeger [23] for Laplacians
defined on Riemannian manifolds to a discrete setting.

Theorem 2.2 (Discrete Cheeger inequality, see, e.g., [26] or [63, Section 4.4]). Let
G = (V,E) be a graph. Then

λ2(G) ≤ η0(G) ≤
√

8λ2(G).

In view of the discrete Cheeger inequality, we have two equivalent ways of describing
families of expander graphs: in terms of the spectral gap of the Laplacian and in terms of
the edge expansion constant. While computing the edge expansion constant is known to
be NP-hard (see [71, Theorem 2]), λ2(G) can be efficiently computed (up to a prescribed
error). This is why even the inequality λ2(G) ≤ η0(G), which is considered as the easy
part of Theorem 2.2, is relevant in practice. Indeed, many known construction of infinite
families of constant-degree expander graphs (see, e.g., [50, 92, 105, 106, 124]) establish
the expansion properties of the constructed graphs by analyzing the eigenvalues of their
Laplacians.

Expander graphs have been extensively studied since their existence was shown by Barzdin
and Kolmogorov [80] and Pinsker [119] around 1970. The theory of expander graphs gave
rise to a deep interplay between (pure) mathematics and (theoretical) computer science.
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We do not touch any further on this theory here and refer the reader to the surveys and
books [63, 83, 94, 93]. Here is a word of warning regarding higher dimensions: Both the
spectral gap of combinatorial Laplacians and the edge expansion constant of graphs have a
natural analogue for higher-dimensional simplicial complexes, but there is no analogue of
the Cheeger inequality in higher dimensions. There is even a fairly simple reason why one
should not expect such an inequality in dimension ≥ 2. The spectral gap of Laplacians
for X can be thought of as a quantitative measure for vanishing cohomology H̃k(X;R),
while the analogue of the edge expansion constant measures the vanishing of H̃k(X;F2).
While, by the universal coefficient theorem (see, e.g., [59, Section 3.A]), H̃k(X;F2) = 0
implies that H̃k(X;R) = 0, the converse does not hold (consider, e.g., a triangulation of
the projective plane RP 2). This rules out an analogue of the easy part λ2(G) ≤ η0(G) of
the Cheeger inequality. In fact, one can rule out such an analogue even if one assumes
that H̃k(X;F2) = 0. For the other part of the Cheeger inequality one can construct an
infinite family of simplicial complexes such that the spectral gap of the higher-dimensional
Laplacian goes to zero much faster than the analogue of the edge expansion constant. We
refer to [56, 130] for a detailed discussion.

We discuss the generalization of the edge expansion constant in length in Section 3.1.
Higher-dimensional Laplacians have lead to various combinatorial applications. We will
not use higher-dimensional Laplacians for any of the results in this thesis but for some
remarks it will be helpful to refer to them. This is why, we briefly define them here and
refer to [38, 64, 37, 82, 49, 51] and references therein for more background and some
applications.

Let X be a d-dimensional simplicial complex. Assume that X is endowed with a weight
function w : X → R≥0. We can define a weighted inner product ⟨·, ·⟩w on cochains
Ck(X;R) by

⟨f, g⟩w =
∑

σ∈Xk

w(σ)f(σ)g(σ).

Write δ∗
k : Ck+1(X;R) → Ck(X;R) for the adjoint of the coboundary map δk. That

is δ∗
k is defined through the relation ⟨δkf, g⟩w = ⟨f, δ∗

kg⟩w for all f ∈ Ck(X;R) and
g ∈ Ck+1(X;R). Then, we can define the kth up-Laplacian Lup

k of X by Lup
k := δ∗

kδk. By
definition Lup

k is self-adjoint (with respect to ⟨·, ·⟩w) and positive semidefinite. Moreover,
Bk(X;R) ⊆ ker Lup

k = Zk(X;R) and every f ∈ Bk(X;R) is a trivial eigenvector of Lup
k .

All other non-trivial eigenvalues are coming from the restriction of Lup
k to Bk(X;R)⊥, the

orthogonal complement of Bk(X;R) with respect to ⟨·, ·⟩w. Write λ(k)(X) for the smallest
non-trivial eigenvalue of Lup

k , i.e. by the variational characterization of eigenvectors we
have

λ(k)(X) = min
f∈Bk(X;R)⊥,f ̸=0

⟨f,Lup
k f⟩w

⟨f, f⟩w

.

Note that λ(k)(X) > 0 if and only if H̃k(X;R) = 0.

It is not difficult to check that for a graph G = (V,E) (thought of as 1-dimensional
simplicial complex), we have that L(G) = Lup

0 if we choose w : G → R≥0 to be given by
w(v) = deg(v) for v ∈ V and w(e) = 1 for e ∈ E.
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Chapter 3

Basics on Coboundary Expansion

This chapter serves two purposes:

(i) introducing the main notion used in this thesis: coboundary expansion,

(ii) elaborating on the random cofilling technique1, which is arguably the only known
technique to establish coboundary expansion.

3.1 Normed Cochain Groups and Coboundary
Expansion

As mentioned in the introduction the notion of coboundary expansion was introduced
(without calling it coboundary expansion) in the inspiring works by Gromov in [54]
and independently by Linial–Meshulam in [89] as well as Meshulam–Wallach in [109].
The term coboundary expansion was later coined in [35]. Aforementioned applications
of coboundary expansion are deep and, at first, it is not clear at all why coboundary
expansion is useful to tackle these problems.

In retrospect, coboundary expansion can be seen as a natural generalization of edge
expansion of graphs. Although historically incorrect, we use this point of view as an a
posteriori motivation for the definition of coboundary expansion.

Recall from the introduction that given a (simple, undirected) graph G = (V,E) and
S ⊆ V we write

E(S, V \ S) = {e ∈ E : |e ∩ S| = |e ∩ (V \ S)| = 1}

for the cut induced by S. Note that G is connected if and only if |E(S, V \ S)| > 0 for all
∅ ≠ S ⊊ V . In fact, given ∅ ≠ S ⊊ V , |E(S, V \ S)| is the number of edges that have to

1This averaging technique was introduced by Gromov in [54] to show coboundary expansion for
the complete complex, complete multipartite complexes and spherical buildings among others. Linial,
Meshulam and Wallach gave essentially the same argument to establish coboundary expansion for the
complete complex in their early work on coboundary expansion (see [89] and [109]). Gromov (as well as
Guth in the survey [57] on Gromov’s work on waist inequalities) remarks that the technique goes back
to Federer’s and Fleming’s work in geometric measure theory (see [42] and [41]). The random cofilling
technique was further elaborated on in [35, 98, 85, 76].
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be removed from G such that S and V \ S belong to two different connected components.
Moreover, if S ⊆ V is small, we should not expect too many edges going out of S. Thus,
the Cheeger constant

h0(G) = min
∅̸=S⊊V

|E(S, V \ S)|
min{|S|, |V \ S|}

is a natural way to quantify the (robustness of) connectedness G.

There is an interpretation of h0(G) in terms of cohomology groups, which leads to the
generalization to higher dimensions. For this purpose we think of G as a 1-dimensional
simplicial complex. Then subsets S ⊆ V are in one-to-one correspondence with cochains
1S ∈ C0(G;F2) where 1S is the characteristic function of S, i.e. for v ∈ V

1S(v) :=

1 if v ∈ S,
0 otherwise.

Similarly, subsets F ⊆ E are in one-to-one correspondence with cochains 1F ∈ C1(G;F2)
by thinking of their characteristic functions 1F as F2-valued. Note that

δ1S = 1E(S,V \S)

for all S ⊆ V .

Write | · | for the Hamming norm on Ck(G;F2). That is |c| := |{σ ∈ G(k) : c(σ) ̸= 0}| for
c ∈ Ck(G;F2), −1 ≤ k ≤ 1.

Note that B0(G;F2) = {0,1} is the space of constant functions. Hence, 1S and 1V \S

differ by a coboundary.

For c ∈ C0(G;F2) write [c] for its equivalence class in C0(G;F2)/B0(G;F2). Write

|[c]| = min
b∈B0(G;F2)

|c+ b|

for the quotient norm on C0(G;F2)/B0(G;F2) induced by | · |. The following table
summarizes the correspondence of various terms in graph theoretical language and in
cohomological language:

graph language cohomological language
S ⊆ V 1S ∈ C0(G;F2)
F ⊆ E 1F ∈ C1(G;F2)
E(S, V \ S) δ1S

{∅, V } B0(G;F2)
min{|S|, |V \ S|} |[1S]|.

We observe that
h0(G) = min

c∈C0(G;F2)\B0(G;F2)

|δc|
|[c]| .

With this point of view, we can think of h0(G) as quantifying the vanishing of H̃0(G;F2).
Indeed, h0(G) > 0 if and only if G is connected if and only if H̃0(G;F2) = 0.

Moreover, this equivalent definition of h0(G) is very flexible. We can replace
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3.1. Normed Cochain Groups and Coboundary Expansion

• G by a d-dimensional simplicial complex X,

• F2 by some abelian group A,

• C0(G;F2) \B0(G;F2) by Ck(X;A) \Bk(X;A),

• | · | by some different way of measuring the size of cochains.

This flexibility allows us to define a notion which quantifies the vanishing of H̃k(X;A).
To make this more precise, we start with the notion of a size function on cochains.

Definition 3.1 (Size function on cochains). Let X be a d-dimensional simplicial complex.
Let A be an abelian group. Let 0 ≤ k ≤ d. A size function | · | on Ck(X;A) is a function
| · | : Ck(X;A) → R≥0 of the form

|c| =
∑

σ∈X(k)
w(σ)|c(σ)|A,

where w : X(k) → R≥0 are non-negative weights on X(k) and | · |A : A → R≥0 is a non-
negative function on A with |0|A = 0 and |a|A = | − a|A for all a ∈ A.
A size function | · | is coboundary separating if |c| > 0 for all c ∈ Ck(X;A) \Bk(X;A).
A size function | · | is positive on coboundaries if |b| = 0 for b ∈ Bk(X;A) implies b = 0.
A size function | · | satisfies the triangle inequality if for all c, c′ ∈ Ck(X;A) we have

|c+ c′| ≤ |c| + |c′|.

A size function | · | is a norm if it satisfies the triangle inequality and for c ∈ Ck(X;A) we
have |c| = 0 if and only if c = 0.

The reader might be confused at this point why we do not simply define a size function to
be a norm (according to our definition). In fact, any norm is automatically coboundary
separating and positive on coboundaries. But, as we will see later on, this would be
too restrictive for some of the applications. We will encounter various size functions
which do not satisfy the triangle inequality, are not coboundary separating or positive on
coboundaries. It feels convenient to introduce some additional technicalities at this point
in order to fit all examples of size functions and variants of coboundary expansion used
throughout this thesis into one single definition. We hope that the examples at the end of
this section already help to give an idea why size functions which are not norms could be
useful.
We are ready to give the main definition in this thesis.

Definition 3.2 (Coboundary expansion constants). Let X be a d-dimensional simplicial
complex. Let 0 ≤ k ≤ d − 1. Let A be an abelian group. Let | · | be a size function on
Ck(X;A) and Ck+1(X;A). For c ∈ Ck(X;A) let |[c]| := minb∈Bk(X;A) |c − b|. Let η ≥ 0.
We say X is η-coboundary expanding with respect to A-coefficients and | · | if

|δc| ≥ η|[c]|

holds for all c ∈ Ck(X;A).

We define the kth coboundary expansion constant η|·|
k (X;A) of X with respect to A-

coefficients and | · | by

η
|·|
k (X;A) := sup{η ≥ 0 : X is η-expanding with respect to A-coefficients and | · |}.
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We should remark that many authors use the term ’coboundary expansion’ exclusively
for the case A = F2. We prefer to take a more general approach here emphasizing the
flexibility of the notion. As we will see later on that changing the size function and
coefficients even within the same problem can lead to additional insights.

Before giving examples with various commonly used choices for A and | · |, let us show
that η|·|

k (X;A) quantifies the vanishing of H̃k(X;A) (at least when | · | is a norm).

Lemma 3.3. Let X be a d-dimensional simplicial complex. Let 0 ≤ k ≤ d. Let A be an
abelian group and | · | a size function on Cj(X;A) for j ∈ {k, k + 1}.

(i) If | · | is coboundary separating on Ck(X;A), then η|·|
k (X;A) > 0 implies H̃k(X;A) =

0.

(ii) If | · | is positive on coboundaries on Ck+1(X;A), then H̃k(X;A) = 0 implies
η

|·|
k (X;A) > 0.

Proof. For (i) let c ∈ Zk(X;A) be a cocycle. We have

0 = |δc| ≥ η
|·|
k (X;A)|[c]|.

Since we assume that η|·|
k (X;A) > 0 we must have |[c]| = 0. But | · | is coboundary

separating, hence c ∈ Bk(X;A). Thus, Zk(X;A) = Bk(X;A) and H̃k(X;A) = 0.

For (ii) note that if η|·|
k (X;A) = 0, then there is c ∈ Ck(X;A) \ Bk(X;A) such that

|δc| = 0 while |[c]| > 0. Since | · | is positive on coboundaries, we get δc = 0. But then
c ∈ Zk(X;A) \Bk(X;A) showing that H̃k(X;A) ̸= 0.

The following examples (also see Figure 3.1) show that, in general, we cannot (fully)
remove the additional assumption in (i) and (ii) in the previous lemma.

Figure 3.1: An illustration that in general η|·|
k (X;A) > 0 is not equivalent to H̃k(X;A) = 0

Example 3.4. For both examples we let A = F2 with the Hamming norm | · |A. In (i) we
have two disjoint copies of a complete graph. So, the 0th-cohomology does not vanish.
But choosing weights to be constant 1 on KU and 0 on KV makes this graph an expander.
In (ii) we have a complete tripartite graph which is connected and, hence, has vanishing
0th-cohomology. Choose the weights to be equal to 1 on the black vertices and edges and
0 on the gray vertices and edges. With respect to these weights the size of the coboundary
of 1U is 0 but |[1U ]| > 0. Hence, the expansion constant (with respect to this weighted
Hamming norm) is 0.
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3.1.1 Examples of Frequently Used Choices for Weights w and
| · |A on A

We will mostly work with the abelian group A = F2, the finite field with two elements.
Sometimes we will also consider A = Fq, the finite field with q elements for some prime
power q, A = Z or A = R.
We endow finite fields with the Hamming norm | · |H , i.e. |x|H = 1 for x ∈ Fq \ {0} and
|0|H = 0. On Z and R we usually use the squared ℓ2

2-norm | · |22, i.e. |x|22 = |x|2 for x ∈ R.
In terms of weights w on a simplicial complex X we will mainly use three choices for w:
the Hamming weights wH , the normalized Hamming weights w̄H and the Garland weights
wG.
The weight wH is simply the constant 1 function, i.e. wH(σ) = 1 for all σ ∈ X. The
normalized Hamming weights are given by w̄H(σ) = 1

|X(k)| for σ ∈ X(k).
Recall from the introduction that for a pure d-dimensional simplicial complex X, the
Garland weights wG : X → R≥0 are given by

wG(σ) := |τ ∈ X(d) : σ ⊆ τ |(
d+1
|σ|

)
|X(d)|

for σ ∈ X.
Note that wG(σ) ∈ [0, 1] for all σ ∈ X and that ∑σ∈X(k) wG(σ) = 1 for all −1 ≤ k ≤ d.
Thus, for each −1 ≤ k ≤ d, we can think of wG as a probability distribution on X(k). In
fact, for σ ∈ X(k), wG(σ) is the probability that the following random process ends up at
σ: Sample τ ∈ X(d) uniformly at random. Then in each step remove a single vertex from
τ uniformly at random until there are k + 1 vertices left.
The main advantage of working with Garland weights over (normalized) Hamming weights
is that it allows to directly compare coboundary expansion constants of complexes of
various sizes and with very different, non-constant degrees of simplices. In fact, in
dimension d ≥ 2 it is not obvious at all how to construct d-dimensional simplicial
complexes such that every i-simplex is contained in the same number of j-simplices for
all 0 ≤ i < j ≤ d, let alone if one asks for additional expansion properties (see [22] for an
attempt in this direction). It turns out that Garland weights often take care of potential
issues arising from different degrees in an almost magical, automatic way.
For a more exotic choice of weights, which will be relevant for our result on the number of
Tverberg partitions, consider the following weights on Λd

n: Write Λd
n = U0 ∗ U1 ∗ · · · ∗ Ud

with U0 = U1 = · · · = Ud = [n]. For σ ∈ Λd
n we call

I = {i ∈ {0, . . . , d} : Ui ∩ σ ̸= ∅}

the type of σ. Now, define a weight function w− : Λd
n → R≥0 by

σ 7→ w−(σ) :=


1

n|σ| if σ has type {0, 1, . . . , |σ|},
0 otherwise.

In words, w− gives weight 1/nk+1 to the k-simplex σ if it is contained in U0∗U1∗· · ·∗Uk ⊆ Λd
n

and weight 0 otherwise.
It will be convenient to introduce special notation for coboundary expansion constants
with respect to frequently used coefficients and size functions:
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• We will write ηk(X) for the kth coboundary expansion constant of X with respect
to F2-coefficients and the size function induced by Garland weights wG on X and
the Hamming norm on F2.

• We will write hk(X) for the kth coboundary expansion constant of X with respect
to F2-coefficients and the size function induced by the Hamming weights wH on X
and the Hamming norm on F2.

• We will write h̄k(X) for the kth coboundary expansion constant of X with respect
to F2-coefficients and the size function induced by the normalized Hamming weights
wH on X and the Hamming norm on F2.

• We will write ζk(X) for the kth coboundary expansion constant of X with respect
to Z-coefficients and the size function induced by Garland weights wG on X and
the ℓ2

2-norm on Z.

3.1.2 Further Remarks and Generalizations
Note that for the definition of the coboundary expansion constants η|·|

k (X;A) we only
need the structure of the cochain complex together with a way of measuring the size
of cochains. As such, the definition of coboundary expansion constants immediately
extends to (finite) cellular or polyhedral complexes. We will not make use of any such
generalization except in Section 9.1, where we will consider the coboundary expansion
constants hk(Qd) with respect to F2-coefficients and Hamming weights of the d-dimensional
hypercube Qd thought of as a cubical complex.

Let w : X → R>0 be a strictly positive weight function on a d-dimensional simplicial
complex X. Let 0 ≤ k ≤ d− 1. Let Lup

k (X) = δ∗
kδk be the up-Laplacian where δ∗

k is the
adjoint of δk with respect to the inner product ⟨·, ·⟩w on Ck(X;R) induced by w. Let | · |
be the size function on Ck(X;R) induced by the weights w and the squared ℓ2-norm | · |22
on R. Using the variational characterization of eigenvalues, it is not difficult to see that
the smallest non-trivial eigenvalue λ(k)(X) of Lup

k (X) satisfies λ(k)(X) = η
|·|
k (X;R).

3.1.3 Minimal Cochains and Cofillings
For future reference, we introduce the notion of minimal cochains and minimal cofillings.

Definition 3.5. Let X be a d-dimensional simplicial complex with the size function | · |
induced by some weights w : X → R≥0 and a weight function | · |A on the abelian group A.
Let 0 ≤ k ≤ d. We say that c ∈ Ck(X;A) is minimal (with respect to | · |) if |c| ≤ |c− δa|
for all a ∈ Ck−1(X;A).

Given b ∈ Bk(X;A) we say that c ∈ Ck−1(X;A) is a cofilling of b if δc = b. A cofilling c
of b ∈ Bk(X;A) is a minimal cofilling if |c′| ≥ |c| for any other cofilling c′ of b.

We will use the following property of minimal cochains several times later on.

Lemma 3.6. Let X ⊆ Y be d-dimensional simplicial complexes with inclusion map
i : X → Y . Let w : Y → R≥0 be a weight function. Endow X with weights obtained by
restricing w to X. Let A be an abelian group with weight function | · |A. Write | · |X and
| · |Y for the induced size functions on cochains of X and Y , respectively. Let 0 ≤ k ≤ d.
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Given c ∈ Ck(X;A) write c̄ for the extension by 0 of c to Y , i.e. i∗c̄ = c and c̄(σ) = 0 for
all σ ∈ Y (k) \X(k). Assume c is minimal with respect to | · |X . Then c̄ is minimal with
respect to | · |Y .

Proof. Given minimal c ∈ Ck(X;A) and a ∈ Ck(Y ;A) we compute

|c̄+ δa|Y ≥ |i∗(c̄+ δY a)|X = |c+ δXi
∗a|X ≥ |c|X = |c̄|Y ,

where we used the minimality of c for the second last step.

3.2 The Random Cofilling Technique
In this section we introduce the random cofilling technique for showing coboundary
expansion in an abstract setting. We will encounter such averaging arguments over and
over again throughout this thesis. To help the reader get more acquainted with this type
of arguments, we will illustrate the technique in proofs of the following two propositions.

Proposition 3.7. Let d ≥ 1 be a dimension. Let n ≥ d + 1. Then the complete
d-dimensional complex Kd

n on n vertices is 1-coboundary expanding with respect to Z-
coefficients and ℓ2

2-norm. More precisely, we have

ζd−1(Kd
n) ≥ n

n− d
.

Proposition 3.8. Let d ≥ 1 be a dimension. The 0th coboundary expansion constant
η0(Λd

n) of the d-dimensional complete (d+ 1)-partite complex Λd
n satisfies

η0(Λd
n) ≥ 1.

Proposition 3.7 seems new but the argument of Gromov [54] and Linial–Meshulam–
Wallach [89, 109] for coboundary expansion ≥ 1 with respect to F2-coefficients and
Garland weighted Hamming norm carries over to the setting with respect to Z-coefficients
and ℓ2

2-norm without any difficulties.

Proposition 3.8 shows that the (normalized) edge expansion constant of the complete
multipartite graph (with equally sized parts) is at least 1. This is a well-known fact
and a simple exercise using explicit formulas for the size of a cut induced by a subset of
vertices. We will give an alternative proof using the random abstract cofilling technique.
This allows us to illustrate the technique in a simple setting. Moreover, having a random
abstract cofilling as a certificate for η0(Λd

n) ≥ 1 will be useful for proving lower bounds on
ηk(Λd

n) for k ≥ 1 later on (see Proposition 6.16).

Our discussion and notation for the abstract setting of the random cofilling technique
loosely follows [85].

3.2.1 The Averaging Trick – Exemplified by a Proof of
Proposition 3.7

Let X be a d-dimensional simplicial complex. Let A be an abelian group. Let | · | be a
size function on Ck(X;A) and Ck+1(X;A). Given c ∈ Ck(X;A) it is a priori not clear at
all how to find a ∈ Ck−1(X;A) such that |c− δa| is small compared to |δc|.
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3. Basics on Coboundary Expansion

Here is a simple yet powerful idea for a possible approach to this problem: Instead of
exhibiting one single ’good’ choice for a ∈ Ck−1(X;A), one constructs a whole family
(a(s))s∈S of (k − 1)-cochains and averages |c− δa(s)| over some distribution µ on S. The
hope is that many complicated terms cancel out and the average Es∼µ|c− δa(s)| becomes
easy (or at least easier) to analyze and to compare to |δc|. Since

|[c]| ≤ min
s∈S

|c− δa(s)| ≤ Es∼µ|c− δa(s)|,

we get η|·|
k (X;A) ≥ 1/M for some M > 0, if for any c ∈ Ck(X;A) we can construct a

family (a(s))s∈S of (k − 1)-cochains with

Es∼µ|c− δa(s)| ≤ M |δc|.

In practice, it is sometimes easier to think about different cofillings of δc rather than
trying to construct various choices for a ∈ Ck−1(X;A) to make c− δa small. In this case,
the following easy lemma comes in handy:

Lemma 3.9. Let X be a d-dimensional simplicial complex. Let 0 ≤ k ≤ d − 1. Let A
be an abelian group and | · | a size function on Ck(X;A) and Ck+1(X;A). Let η > 0.
Assume that H̃k(X;A) = 0 and that for every b ∈ Bk+1(X;A) there is c ∈ Ck(X;A) with
δc = b and

|c| ≤ 1
η

|b|.

Then η
|·|
k (X;A) ≥ η.

Proof. Let c ∈ Ck(X;A) be minimal. Let b = δc. By assumption there is c′ ∈ Ck(X;A)
with δc′ = b and |c′| ≤ 1

η
|b|. But then δ(c−c′) = 0 and since we assume that H̃k(X;A) = 0

we get c − c′ = δa for some a ∈ Ck−1(X;A). We conclude that |[c]| = |[c′]| ≤ 1
η
|δc|, as

desired.

It is an easy consequence of Lemma 3.3 (i) that if | · | is coboundary separating, then
the reverse implication in Lemma 3.9 is also true. Moreover, if | · | satisfies the triangle
inequality, then one can show that η|·|

k (X;A) ≥ η is equivalent to the fact that for every
b ∈ Bk+1(X;A) there is c ∈ Ck(X;A) with

|c| ≤ 1
η

|b|.

and that for every c ∈ Ck(X;A) we have that |δc| = 0 implies |[c]| = 0.

It is convenient to introduce the following terminology.

Definition 3.10 (Cofilling inequality). Let X be a d-dimensional simplicial complex.
Let 0 ≤ k ≤ d− 1. Let A be an abelian group and | · | a size function on Ck(X;A) and
Ck+1(X;A). We say that X satisfies a cofilling inequality in dimension k+1 with cofilling
constant L if for every b ∈ Bk+1(X;A) there is c ∈ Ck(X;A) with δc = b and such that

|c| ≤ L|b|.

We illustrate the averaging trick by giving a proof of Proposition 3.7.
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3.2. The Random Cofilling Technique

Proof of Proposition 3.7. Kd
n is the d-skeleton of the (n− 1)-dimensional simplex σn−1 on

n vertices. Since σn−1 is contractible and the (d− 1)-th cohomology group only depends
on the d-skeleton, we get that

H̃d−1(Kd
n;Z) ∼= H̃d−1(σn−1;Z) = 0.

Thus, according to Lemma 3.9, it suffices to show a cofilling inequality with cofilling
constant 1 − d/n. To this end, let b = δc ∈ Bd(Kd

n;Z) for some c ∈ Cd−1(Kd
n;Z). Given a

vertex v ∈ Kd
n(0) let c(v) ∈ Cd−1(Kd

n;Z) be given by

c(v) := bv,

where, by slight abuse of notation, we consider the localization bv as a cochain on Kd
n

instead of a cochain on the link (Kd
n)v by extending bv by 0 on Kd

n(d− 1) \ (Kd
n)v(d− 1).

We claim that δc(v) = b for all v ∈ Kd
n(0).

Figure 3.2: An illustration that δc(v) = b for d = 2: We distinguish two cases. On the
left we consider a triangle τ = xyz with v = x ∈ τ . By coning from v the value of b gets
pushed to the opposite edge yz. On the right we assume that τ = xyz and v /∈ τ we note
that since b is a coboundary, b evaluates to zero on the boundary of the tetrahedron vxyz.
Thus, b(τ) = b(vyz) − b(vxz) + b(vxy) = (δbv)(xyz).

To see this (for an illustration for d = 2 see Figure 3.2), let σ ∈ Kd
n(d). If v ∈ σ, then

δc(v)(σ) = b(σ) is immediate by construction. If v /∈ σ, then δc(v)(σ) = b(σ) follows from
the fact that, as a coboundary, b evaluates to 0 on cycles which in particular means that

⟨b, ∂([v, σ])⟩ = 0.

Thus, we have found a family (c(v))v∈Kd
n(0) of cofillings for b.

Let us compute the expected size of c(v). For this purpose, write | · |22 for the (unweighted)
ℓ2

2-norm on Ck(Kd
n;Z), i.e.

|a|22 =
∑

σ∈Kd
n(k)

|a(σ)|2

for any a ∈ Ck(Kd
n;Z). We get by double counting (every d-simplex has d+ 1 vertices):

|[c]|22 ≤ 1
n

∑
v∈Kd

n(0)
|c(v)|22 = 1

n

∑
v∈Kd

n(0)
|bv|22 = d+ 1

n
|b|22.
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3. Basics on Coboundary Expansion

Using that Garland weights are uniform on Kd
n, we deduce that

ζd−1(Kd
n) ≥ n

d+ 1
|Kd

n(d− 1)|
|Kd

n(d)| = n

d+ 1

(
n
d

)
(

n
d+1

) = n

n− d
,

as desired.

3.2.2 Random Abstract Cofilling
Sometimes, as for the complete complex, it is not too difficult to come up with an ad-hoc
construction for a family (c(s))s∈S of cofillings of a given coboundary b. Inspired by
the discussions in [85, Section 2.2] and in [76, Section 2], we outline a more systematic
approach for finding families of cofillings, which we call random abstract cofilling. This
approach allows to establish coboundary expansion in the presence of small fillings of
cycles and an automorphism group acting transitively on the top dimensional faces.
A key insight leading towards random abstract cofilling is that the vanishing of H̃k(X;A)
is implied by the existence of a cochain homotopy between the identity and 0-map on
Ck(X;A).

Lemma 3.11. Let X be a d-dimensional simplicial complex. Let 0 ≤ k ≤ d− 1. Let A
be an abelian group. Assume there is a cochain homotopy between the identity and 0-map
on Ck(X;A), i.e. for i ∈ {k, k + 1} there are

Ti : C i(X;A) → C i−1(X;A)

such that for all c ∈ Ck(X;A) it holds that

c = δTkc+ Tk+1δc.

Then H̃k(X;A) = 0.
If A is a field or A = Z, the converse is also true. That is H̃k(X;A) = 0 implies the
existence of a cochain homotopy between the identity and 0-map on Ck(X;A).

Proof. First let Ti : C i(X;A) → C i−1(X;A), i ∈ {k, k + 1}, be a cochain homotopy
between the identity and 0-map on Ck(X;A). Let c ∈ Ck(X;A) with δc = 0. Then by
assumption we get

c = δTkc+ Tk+1δc = δTkc,

i.e. c is a coboundary with cofilling Tkc. Hence, Zk(X;A) = Bk(X;A) and H̃k(X;A) = 0.
Now assume that A is a field or A = Z and that H̃k(X;A) = 0. Thus, the (co)chain
complex

· · · → Ck−1(X;A) δ−→ Ck(X;A) δ−→ Ck+1(X;A) → . . .

is exact at Ck(X;A). This implies that there is a short exact sequence (SES)

0 → Bk(X;A) i−→ Ck(X;A) δ−→ Bk+1(X;A) → 0,

where i : Bk(X;A) → Ck(X;A) denotes the inclusion map. By the assumption on A this
SES is split2 and there are homomorphisms

r : Ck(X;A) → Bk(X;A) and s : Bk+1(X;A) → Ck(X;A)
2If A is a field then we are considering a SES of vector spaces which is always split. If A = Z, we see

that Bk+1(X;A) is a free abelian group which implies that the SES is split.
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3.2. The Random Cofilling Technique

such that r ◦ i = idBk(X;A) and δ ◦ s = idBk+1(X;A).

By the first isomorphism theorem applied to δ : Ck−1(X;A) → Ck(X;A) we get an
induced isomorphism

δ̄ : Ck−1(X;A)/Zk−1(X;A) → Bk(X;A).

In particular, if A = Z we get that Ck−1(X;A)/Zk−1(X;A) is a free abelian group and
for A = Z or a field the following SES is split

0 → Zk−1(X;A) i−→ Ck−1(X;A) π−→ Ck−1(X;A)/Zk−1(X;A) → 0.

Here i denotes the inclusion map and π the quotient map. In particular, there is
t : Ck−1(X;A)/Zk−1(X;A) → Ck−1(X;A) with π ◦ t = idCk−1(X;A)/Zk−1(X;A).

The choice of A allows to extend s : Bk+1(X;A) → Ck(X;A) to a homomorphism

Tk+1 : Ck+1(X;A) → Ck(X;A).

Also, define Tk : Ck(X;A) → Ck−1(X;A) by

Tk := t ◦ δ̄−1 ◦ r.

We claim that c = δTkc+Tk+1δc for any c ∈ Ck(X;A). This is essentially by construction,
since by properties of SESs we have

c = (i ◦ r)(c) + (s ◦ δ)(c)

for all c ∈ Ck(X;A) and that δ ◦ t ◦ δ̄−1 = i : Bk(X;A) → Ck(X;A). This finishes the
proof.

Usually we are interested in lower bounds on η
|·|
k (X;A) for all 0 ≤ k ≤ d− 1. Thus, we

would like to find (families of) homomorphisms

Tj : Cj(X;A) → Cj−1(X;A)

for all 0 ≤ j ≤ d such that
c = δTkc+ Tk+1δc

for all c ∈ Ck(X;A), 0 ≤ k ≤ d− 1.

Often it easier to construct homotopies between the identity and 0-map on chain groups
Ck(X;A) and then dualize them to Ck(X;A). More precisely, we would like to find
homomorphisms Si : Ci(X;A) → Ci+1(X;A) for −1 ≤ i ≤ d − 1 such that for all
c ∈ Ck(X;A), 0 ≤ k ≤ d− 1 we have

c = ∂Skc+ Sk−1∂c.

Then, if A is a ring with 1, we can use the pairing between chains and cochains to define
Tk : Ck(X;A) → Ck−1(X;A) through the identity

⟨Tkc, a⟩ = ⟨c, Sk−1a⟩

for all c ∈ Ck(X;A) and a ∈ Ck−1(X;A).
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The advantage of working on chain groups is that it allows for an inductive, bottom-up
construction as follows:

Assume H̃k(X;A) = 0 for all −1 ≤ k ≤ d − 1. Define S−1 : C−1(X;A) → C0(X;A)
by setting S−1∅ to be any chain c in C0(X;A) with ∂c = ∅. Such a chain exists since
H̃−1(X;A) = 0 implies that X is non-empty and we could choose c = v for some vertex
v ∈ X(0).

Next assume that by induction Si : Ci(X;A) → Ci+1(X;A) is already constructed for
−1 ≤ i ≤ k − 1 such that

∂Sic+ Si−1∂c = c

for all c ∈ Ci(X;A).3

Given σ ∈ X(k) we would like to define Skσ ∈ Ck+1(X;A) such that

∂Skσ = σ − Sk−1∂σ.

But
∂(σ − Sk−1∂σ) = ∂σ − ∂Sk−1∂σ = ∂σ − (∂σ − Sk−2∂(∂σ)) = 0,

so σ−Sk−1∂σ ∈ Zk(X;A). Since we assume that H̃k(X;A) = 0 there is Skσ ∈ Ck+1(X;A)
with ∂Skσ = σ − Sk−1∂σ, as desired.

Let Tk : Ck(X;A) → Ck−1(X;A) and Tk+1 : Ck+1(X;A) → Ck(X;A) with

c = δTkc+ Tk+1δc

for all c ∈ Ck(X;A). Then for any c ∈ Ck(X;A), Tk+1δc = c− δTkc is a cofilling of the
coboundary δc ∈ Bk+1(X;A). A priori it is not clear how to choose Tk+1 and Tk such
|Tk+1δc| is small compared to |δc|. What is more, there is no good reason why there should
be a single choice for Tk+1 and Tk that simultaneously works well for all c ∈ Ck(X;A).
But again, we can try to use the averaging trick and consider families (T (ω)

k , T
(ω)
k+1)ω∈Ω of

cochain homotopies between the identity and 0-map on Ck(X;A) parametrized by some
probability space (Ω,B, µ). As we already observed, we get for all c ∈ Ck(X;A) that

|[c]| ≤ Eω∼µ|T (ω)
k+1δc|.

The hope is that this expected value is easier to analyze and to compare to |δc|.

Let us introduce some terminology.

Definition 3.12 ((Random) abstract cone and (random) abstract cofilling). Let X be a
d-dimensional simplicial complex. Let A be an abelian group.

An abstract cone (Sk)−2≤k≤d−1 for X is a family of homomorphisms

Sk : Ck(X;A) → Ck+1(X;A)

such that
c = ∂Skc+ Sk−1∂c

3Note that we can make sense of this equation even for i = −1. Indeed, C−2(X;A) is 0 and, hence,
there is a unique homomorphism S−2 : C−2(X;A) → C−1(X;A). Therefore, for i = −1, the equation
reduces to ∂S−1c = c for all c ∈ C−1(X;A) which holds by the choice of S−1∅.
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for all −1 ≤ k ≤ d− 1 and c ∈ Ck(X;A).

An abstract cofilling (Tk)−1≤k≤d for X is a family of homomorphisms

Tk : Ck(X;A) → Ck−1(X;A)

such that
c = δTkc+ Tk+1δc

for all −1 ≤ k ≤ d− 1 and c ∈ Ck(X;A).

If A is a ring with 1, we say that an abstract cofilling (Tk)−1≤k≤d for X is dual to the
abstract cone (Sk)−2≤k≤d−1 for X if Tk is the dual map of Sk−1 with respect to the pairing
⟨·, ·⟩ between chain and cochains for all −1 ≤ k ≤ d− 1.

Given a probability space (Ω,B, µ) a random abstract cone S for X parametrized by
(Ω,B, µ) is a collection S = (S(ω)

k )ω∈Ω,−2≤k≤d−1 of homomorphisms such that for every
ω ∈ Ω the family (S(ω)

k )−2≤k≤d−1 is an abstract cone for X.

Analogically, a random abstract cofilling T for X parametrized by (Ω,B, µ) is a collection
T = (T (ω)

k )ω∈Ω,−1≤k≤d of homomorphisms such that for every ω ∈ Ω the family (T (ω)
k )−1≤k≤d

is an abstract cofilling for X.

We say that a random abstract cofilling T = (T (ω)
k )ω∈Ω,−1≤k≤d is dual to the abstract

random cone S = (S(ω)
k )−2≤k≤d−1 if for every ω ∈ Ω the abstract cofilling (T (ω)

k )−1≤k≤d is
dual to the abstract cone (S(ω)

k )−2≤k≤d−1.

In the presence of a group of automorphisms G acting simplicially on X, we can use the
induced action of G on chains to define an action of G on abstract cones. This allows
us to turn a single abstract cone into a random abstract cone for X parametrized by
(G,B, µ) for some measure µ on G. More precisely, given an abstract cone (Sk)−2≤k≤d−1
for X and g ∈ G we define another abstract cone (g.Sk)−2≤k≤d−1 by

g.Sk : Ck(X;A) → Ck+1(X;A)
c 7→ (g.Sk)(c) := g.(Sk(g−1.c)).

Since G acts simplicially, the action of G on chain groups commutes with taking bound-
aries. It follows that (g.Sk)−2≤k≤d−1 is indeed an abstract cone. Moreover, after short
contemplation, we see that (gh).Sk = g.(h.Sk) for all g, h ∈ G, i.e. that we get a group
action of G on the set of abstract cones.

We close this subsection by showing a fairly generic lower bound on coboundary expansion
constants in terms of properties of a random cofilling under some mild assumption on A
and the size function | · |. The reader should compare this result to [85, Theorem 2.5] and
[76, Theorem 30].

Proposition 3.13. Let X be a d-dimensional simplicial complex. Let A be a ring with
1. Let 0 ≤ k ≤ d − 1. Let (Ω,B, µ) be a finite probability space. Let | · | be a size
function on Ck(X;A) induced by a weight function | · |A : A → R≥0 with |0|A = 0, |1|A = 1,
|a + a′|A ≤ |a|A + |a′|A and |a · a′|A ≤ |a|A · |a′|A for all a, a′ ∈ A and strictly positive
weights w : X → R>0 on X.

Let S = (S(ω)
k ) be a random abstract cone for X parametrized by (Ω,B, µ) with dual

random abstract cofilling T = (T (ω)
k ).
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For τ ∈ X(k + 1) let

λ(τ) := 1
w(τ)Eω∼µ|T (ω)

k+11τ | = 1
w(τ)

∑
ω∈Ω

∑
σ∈X(k)

µ(ω)w(σ)|⟨1τ , S
(ω)
k σ⟩|A.

Then
η

|·|
k (X;A) ≥ 1

maxτ∈X(k+1) λ(τ) .

Moreover, if G is a group of automorphisms which acts simplicially on X and transitively on
X(d) and w : X → R≥0 are the Garland weights, then for any abstract cone (Sk)−2≤k≤d−1
for X we have

η
|·|
k (X;A) ≥ 1(

d+1
k+2

)
Sizek((Sj)−2≤j≤d−1)

,

where
Sizek((Sj)−2≤j≤d−1) := max

σ∈X(k)

∑
τ∈X(k+1)

|⟨1τ , Skσ⟩|A.

Before we dive into the proof of this proposition, let us shed some light on the complicated
looking quantity λ(τ). Specializing to w(σ) = 1

|X(dim σ)| for σ ∈ X, A = F2, | · |A the
Hamming norm and µ the uniform distribution on Ω, we get

λ(τ) = |X(k + 1)|
|Ω|∥X(k)| |{(ω, σ) ∈ Ω ×X(k) : τ ∈ supp(S(ω)

k σ)}|.

Now, recall that S(ω)
k σ is a filling of σ + S

(ω)
k−1∂σ. Thus, in order to get λ(τ) small for all

τ ∈ X(k + 1), we would need many small, well-distributed cycles inside of X.

Proof of Proposition 3.13. Let c ∈ Ck(X;A). For ω ∈ Ω let c(ω) := T
(ω)
k+1δc. Since T is a

random abstract cofilling, we have that for all ω ∈ Ω

c = c(ω) + δT
(ω)
k c

and, hence, [c] = [c(ω)] ∈ Ck(X;A)/Bk(X;A).

We estimate using the properties of | · |A that

|[c]| ≤ Eω∼µ|c(ω)|
=
∑
ω∈Ω

∑
σ∈X(k)

µ(ω)w(σ)|⟨T (ω)
k+1δc, σ⟩|A

=
∑
ω∈Ω

∑
σ∈X(k)

µ(ω)w(σ)|⟨δc, S(ω)
k σ⟩|A

≤
∑
ω∈Ω

∑
σ∈X(k)

µ(ω)w(σ)
∑

τ∈X(k+1)
|δc(τ)|A · |⟨1τ , S

(ω)
k σ⟩|A

=
∑

τ∈X(k+1)
w(τ)|δc(τ)|Aλ(τ)

≤ |δc| max
τ∈X(k+1)

λ(τ),

as desired.
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For the second part we let Ω = G with the uniform distribution µ and S
(g)
k = g.Sk for

g ∈ G, −2 ≤ k ≤ d− 1. According to the first part it remains to show that for this choice
of random abstract cone/cofilling we have for all τ ∈ X(k + 1) that

λ(τ) ≤
(
d+ 1
k + 2

)
Sizek((Sj)−2≤j≤d−1).

To this end, let τ ∈ X(k + 1). Write Gτ := {g ∈ G : g.τ = τ} for the stabilizer of τ under
the action of G. Let R be a set of representatives of the cosets G/Gτ . Since we assume
that G acts transitively on X(d), we get⋃

g∈R

{g.σ : σ ∈ X(d), τ ⊆ σ} = X(d).

Indeed, fix ρ0 ∈ X(d) with τ ⊆ ρ0. Since G acts transitively on X(d), for any given
ρ ∈ X(d) there is g ∈ G such that g.ρ0 = ρ. Let r ∈ R be the representative of gGτ . So
r = gh for some h ∈ Gτ . Let ρ′

0 := h−1.ρ0. Then ρ′
0 ∈ X(d) with τ ⊆ ρ′

0 and
r.ρ′

0 = (gh).(h−1.ρ0) = g.ρ0 = ρ.

It follows that
|X(d)| ≤ |G|

|Gτ |
|{σ ∈ X(d) : τ ⊆ σ}|.

By the definition of Garland weights this implies

|Gτ | ≤ w(τ)
(
d+ 1
k + 2

)
|G|.

Further note that for g ∈ G, τ ∈ X(k + 1) and σ ∈ X(k) we have
τ ∈ supp((g.Sk)σ) if and only if
τ ∈ supp(g.(Sk(g−1.σ))) if and only if
g−1.τ ∈ supp(Sk(g−1.σ)).

Moreover, the Garland weights are invariant under the action of G, i.e. w(σ) = w(g.σ)
for all g ∈ G and σ ∈ X.
With all these we estimate

λ(τ) = 1
w(τ)

1
|G|

∑
g∈G

∑
σ∈X(k)

w(σ)|⟨1τ , S
(g)
k σ⟩|A

= 1
w(τ)

1
|G|

∑
g∈G

∑
σ∈X(k)

w(σ)|⟨1g−1.τ , Sk(g−1.σ)⟩|A

= 1
w(τ)

1
|G|

∑
g∈G

∑
σ∈X(k)

w(σ)|⟨1g−1.τ , Sk(σ)⟩|A

≤ 1
w(τ)

1
|G|

∑
g∈G

∑
σ∈X(k)

w(σ)
∑

ρ∈X(k+1)
|⟨1ρ, Skσ⟩|A|⟨1g−1.τ , ρ⟩|A

≤ 1
w(τ)

|Gτ |
|G|

∑
σ∈X(k)

w(σ)
∑

ρ∈X(k+1)
|⟨1ρ, Skσ⟩|A

≤
(
d+ 1
k + 2

)
Sizek((Sj)−2≤j≤d−1)

∑
σ∈X(k)

w(σ)

=
(
d+ 1
k + 2

)
Sizek((Sj)−2≤j≤d−1),
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3. Basics on Coboundary Expansion

which finishes the proof of the second part of the proposition.

It is important to observe that, in principle, one can relax the assumptions in Proposi-
tion 3.13. First, notice that to define c(ω) as T (ω)

k+1δc we only need to know the value of
T

(ω)
k+1 on Bk+1(X;A). Moreover, since we assume that

c = δT
(ω)
k c+ T

(ω)
k+1δc,

T
(ω)
k+1δc is already determined on Bk+1(X;A) once we fix T

(ω)
k . Of course, trying to use

the generic bound involving λ(τ), we would need to know T
(ω)
k+1 on all of Ck+1(X;A) in

order to be able to understand its dual map S
(ω)
k . But it could very well be that there

are other means to analyze the expected value Eω∼µ|c− δT
(ω)
k |. We will encounter such

a situation, for instance, when we show a lower bound on ηk(G ∗ G) for the join of an
expander graph G with itself.

What is more, in order to define c(ω) as c− δT
(ω)
k c, we do not need (T (ω)

k , T
(ω)
k+1) to form

a cochain homotopy between the identity and 0-map on Ck(X;A). In fact, we do not
even need that T (ω)

k : Ck(X;A) → Ck(X;A) is a homomorphism - any map would work.
But then, it becomes less clear how to analyze Eω∼µ|c(ω)|. Also, in view of Lemma 3.11
it seems reasonable to work with cochain homotopies between the identity and 0-map
on Ck(X;A) since they witness the vanishing of H̃k(X;A), a property we would like to
quantify by giving a lower bound on η

|·|
k (X;A). Working on chain groups is especially

appealing since we can construct chain homotopies inductively in a bottom-up fashion.
This becomes particularly useful if there is an apparent family of small cycles and a
group of automorphisms acting transitively on the top dimensional faces. Sometimes such
a family of small cycles is witnessed by a nested family of (small) subcomplexes with
vanishing cohomology as the following lemma shows:

Lemma 3.14. Let X be a d-dimensional simplicial complex. Let A be an abelian group.
Let (Bτ )τ∈X(d−1) be a family of subcomplexes of X such that

(i) τ ∈ Bτ for all τ ∈ X,

(ii) Bτ ⊆ Bτ ′ whenever τ, τ ′ ∈ X with τ ⊆ τ ′, and

(iii) H̃j(Bτ ;A) = 0 for all τ ∈ X and −1 ≤ j ≤ dim τ .

Then there is an abstract cone S = (Sk)−2≤k≤d−1 for X with supp(Skσ) ⊆ Bσ for all
σ ∈ X(k) and −1 ≤ k ≤ d− 1.

Proof. We construct the abstract cone S by induction on k. For S−1 we note that by
assumption H̃−1(B∅;A) = 0, hence B∅ is non-empty and we can define S−1∅ := v for some
vertex v ∈ B∅.

Now assume that Sj : Cj(X;A) → Cj+1(X;A) has already been constructed for −1 ≤ j ≤
k − 1 such that supp(Sjσ) ⊆ Bσ for all σ ∈ X(j) and such that Sj−1∂c+ ∂Sjc = c for all
c ∈ Cj(X;A). Let σ ∈ X(k). Note that by the induction hypothesis ∂(σ − Sk−1∂σ) = 0.
Using property (ii) of the family (Bτ )τ∈X(d−1) of subcomplexes, we see that supp(σ −
Sk−1∂σ) ⊆ Bσ, i.e. we can think of σ − Sk−1∂σ as a cycle in Bσ. But by assumption
H̃k(Bσ;A) = 0. Hence, there is c ∈ Ck+1(Bσ;A) with ∂c = σ − Sk−1∂σ. Define Skσ := c̄
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3.2. The Random Cofilling Technique

to be the extension of c by 0 to X. We have Sk−1∂σ + ∂Skσ = σ and supp(Skσ) ⊆ Bσ by
construction. This finishes the proof.

A family of subcomplexes as in Lemma 3.14 is at the heart of the definition of so-called
building-like complexes in [98]. In particular, if X is a spherical building (see Definition 5.7
below) then it is not difficult to exhibit a family of subcomplexes as in Lemma 3.14 using
the apartments in X.

3.2.3 A Lower Bound on η0(Λd
n) - Proof of Proposition 3.8

Write Λd
n = U0 ∗ · · · ∗ Ud with U0 = · · · = Ud = [n]. We would like to exhibit many chain

maps Sk : Ck(Λd
n;F2) → Ck+1(Λd

n;F2), k ∈ {−1, 0} such that

∂S0c+ S−1∂c = c

for all c ∈ C0(Λd
n;F2). As discussed above, we could first define S−1 by S−1∅ := u for

some vertex u ∈ Λd
n(0). Then given u′ ∈ Λd

n(0) we have to define S0u
′ to be a filling of

u+ u′. If u and u′ are from different parts (i.e. u ∈ Ui, u
′ ∈ Uj for some i ≠ j), then we

can set S0u
′ = uu′. If u, u′ ∈ Ui, we could choose a third vertex v ∈ Uj for some j ̸= i

and set S0u
′ = uv + u′v.

Note that defining S0 in this way, it depends on the ordered pair (u, v) of two vertices
from two different parts in Λd

n. As we will shortly see, averaging over all possible ordered
pairs will give the desired bound on η0(Λd

n).

To see this, we introduce the following notation. Let

Ω :=
⊔

0≤i,j≤d,i ̸=j

Ui × Uj

and write µ for the uniform distribution on Ω. Let u ∈ Ui, v ∈ Uj, i ≠ j. Let ω = (u, v) ∈ Ω
and define

S
(ω)
−1 : C−1(Λd

n;F2) → C0(Λd
n;F2)

∅ 7→ u

and

S
(ω)
0 : C0(Λd

n;F2) → C1(Λd
n;F2)

u′ 7→

uu′ if u′ /∈ Ui,
uv + u′v if u′ ∈ Ui.

By our discussion above, S := (S(ω)
−1 , S

(ω)
0 )ω∈Ω is a random abstract cone in dimension 0

for Λd
n. Write T = (T (ω)

0 , T
(ω)
1 )ω∈Ω for the dual random abstract cofilling.

For the analysis of Eω∼µ|T (ω)
1 δc| for some c ∈ C0(Λd

n;F2) we will make use of the following
negative type inequality.

Lemma 3.15. Let x1, . . . , xk, y1, . . . , yk ∈ R. Then∑
1≤i<j≤k

(xj − xi)2 +
∑

1≤i<j≤k

(yj − yi)2 ≤
∑

1≤i,j≤k

(yj − xi)2.
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3. Basics on Coboundary Expansion

Consequently, if we write Λ1
n = U ∗ V with U = {u1, . . . , un} and V = {v1, . . . , vn}, then

for all c ∈ C0(Λ1
n;F2) we have∑

uu′∈(U
2)

|c(u) + c(u′)| +
∑

vv′∈(V
2)

|c(v) + c(v′)| ≤
∑

u∈U,v∈V

|c(u) + c(v)|.

Proof. The second part follows from the first by setting k = n, xi = c(ui) ∈ {0, 1} ⊆ R
and yi = c(vi) ∈ {0, 1} ⊆ R, 1 ≤ i ≤ n.

For the first part, a straightforward computation gives that

∑
1≤i,j≤k

(yj − xi)2 −
∑

1≤i<j≤k

(xj − xi)2 −
∑

1≤i<j≤k

(yj − yi)2 =
 k∑

i=1
xi −

k∑
j=1

yj

2

≥ 0,

as desired.

Now, given ω = (u, v) ∈ Ω with u ∈ Ui, v ∈ Uj, i ̸= j and c ∈ C0(Λ2
n;F2) we have

(T (ω)
1 δc)(u′) = ⟨δc, S(ω)

0 u′⟩ =

δc(uu′) if u′ /∈ Ui,
c(u) + c(u′) if u′ ∈ Ui.

In particular, T (ω)
1 δc is independent of v. Using this, we compute for c ∈ C0(Λd

n;F2) that

|[c]| ≤ Eω∼µ|T (ω)
1 δc|

= 2
(d+ 1)n |δc| + 2

(d+ 1)n

d∑
i=0

∑
uu′∈(Ui

2 )
|c(u) + c(u′)|

= 2
(d+ 1)n |δc| + 2

(d+ 1)n
1
d

∑
0≤i<j≤d

 ∑
uu′∈(Ui

2 )
|c(u) + c(u′)| +

∑
uu′∈(Uj

2 )
|c(u) + c(u′)|

 .
Applying the negative-type inequality from Lemma 3.15 to the second term, we deduce

|[c]| ≤ 2
(d+ 1)n |δc| + 2

d(d+ 1)n
∑

0≤i<j≤d

∑
u∈Ui,u′∈Uj

|c(u) + c(u′)|

= 2
(d+ 1)n

(
1 + 1

d

)
|δc|

= 2
dn

|δc|.

Rearranging and normalizing finishes the proof of Proposition 3.8.
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Chapter 4

A Quantitative Borsuk–Ulam Theorem

In this chapter, we prove the quantitative version of the Borsuk–Ulam Theorem (Theo-
rem 1.1). In fact, we will prove the following more general result.

Theorem 4.1. Let p be a prime. Let G = Z/p. Let X be a d-dimensional simplicial
complex with a free G-action. Fix a G-action on Rd by orthogonal maps which is free on
Rd \ {0}. Assume that there are positive constants ηk > 0 such that η∥·∥

k (X;Fp) ≥ ηk > 0
for all 0 ≤ k ≤ d − 1 where ∥ · ∥ is a size function induced by the Hamming norm on
Fp and some Z/p-invariant weight function w on X. Assume that H̃k(X;Fp) = 0 for all
0 ≤ k ≤ d− 1.1 Then for every equivariant continuous map F : |X| →G Rd we have

∥{σ ∈ X(d) : 0 ∈ F (σ)}∥ ≥ ∥1X(0)∥
1

2d/2pd/2

d−1∏
k=0

ηk.

The case G = Z/2 already appeared in [140] where we also mentioned its generalization
Theorem 4.1. The results in this chapter are joint work with Uli Wagner.

Our proof of Theorem 4.1 combines the idea of using approximation by piecewise-linear
maps in general position and algebraic intersection numbers, as in the streamlined proof of
Gromov’s topological overlap theorem in [36], together with the idea of using a special Z/p-
invariant cell structure on spheres. For Z/2 this cell structure is given by the hemispheres
and was used in Walker’s proof of the Borsuk–Ulam theorem for Z/2-spaces in [141].

4.1 A Special Z/p-invariant Cell Structure for Sd

Given a map F : |X| → Rd from a finite simplicial complex X to Rd, using compactness,
we can replace Rd by a closed ball Bd = B(0, R) of radius R centered at the origin such
that the image F (|X|) is contained in the interior of Bd. Below we will make use of special
triangulations of Bd which, restricted to the boundary sphere Sd−1 = ∂Bd, refine a special
Z/p-invariant regular CW-complex structure on Sd−1. For Z/2 this structure is quite

1Recall that by Lemma 3.3 (i) H̃k(X;Fp) = 0 follows automatically from η
∥·∥
k (X;Fp) > 0 if ∥ · ∥ is

coboundary separating on Ck(X;Fp).
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4. A Quantitative Borsuk–Ulam Theorem

apparent and given by the hemisphere. For Z/p our discussion is a slight generalization
of [131, Section V.5].2

To define such a structure, write ν for a generator of Z/p and, by abuse of notation, we
also write ν : Rd → Rd for the orthogonal transformation of the action of ν on Rd. It is
not difficult to see that Z/p acts freely on Sd−1 ⊆ Rd if and only if ν has no fixed point
(cf. [107, Observation 6.1.3]), i.e. if ν(x) ̸= x for all x ∈ Sd−1.

Now, if p = 2, then ν ◦ ν = id. In particular, all eigenvalues of ν are in {−1, 1}. But, since
we assume that ν acts freely on Rd \ {0}, all eigenvalues of ν are equal to −1. Thus, there
is a orthogonal basis of Rd such that with respect to this basis ν is given as the antipodal
map x 7→ −x. It follows that without loss of generality we can assume that ν is the usual
antipodal map on Rd. For such ν a Z/2-invariant, regular CW structure on Sd−1 is given
by the hemisphere. More precisely, such a structure has two cells in each dimension and
is inductively obtained by decomposing a k-dimensional sphere into a (k− 1)-dimensional
equitorial sphere with two k-dimensional cells (upper and lower hemisphere) attached.
We illustrate this cell structure for Sd, d ∈ {0, 1, 2}, in Figure 4.1.

Figure 4.1: A Z/2-invariant cell structure for Sd, d ∈ {0, 1, 2} with 2 cells in each
dimension. For d = 1 we attach two semicircle σ−

1 and σ+
1 to the two points σ−

0 and σ+
0 .

For d = 2 we start with the cell structure for S1 and attach two hemispheres σ−
2 and σ+

2
along this S1.

We can be a bit more explicit. Consider the unit sphere Sd ⊆ Rd+1. For 0 ≤ k ≤ d let
Sk ⊆ Sd be given by

Sk = {(x0, . . . , xd) ∈ Sd : xj = 0 for j > k}.

For 0 ≤ k ≤ d let

τ (k) := {(x0, . . . , xd) ∈ Sd : xk ≥ 0, xj = 0 for j > k}.

Note that fk : Bk → τ (k) given by

x = (x0, . . . , xk−1) 7→ (x0, . . . , x1, . . . , xk−1,
√

1 − |x|2, 0, . . . , 0)

is a homeomorphism. Note that τ (k) ∩ ντ (k) = Sk−1 for all 1 ≤ k ≤ d. It follows that
the cells {τ (k) : 0 ≤ k ≤ d} ∪ {ντ (k) : 0 ≤ k ≤ d} together with the attaching maps fk

2We thank Ian Leary and especially Neil Strickland for their answers to our question on MathOverflow
[65] regarding a special Z/p-invariant cell structure on Sd. They greatly helped us to clarify how to
describe such a structure and pointed us to Steenrod’s lectures [131].
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4.1. A Special Z/p-invariant Cell Structure for Sd

and ν ◦ fk, 0 ≤ k ≤ d form a Z/2-invariant regular CW-structure on Sd. Thinking of
the cells as chains in Ck(Sd;F2) we have ∂ek = ek−1 + νek−1 for all 1 ≤ k ≤ d. Moreover,
ed + νed = 1.

To generalize this to free Z/p-actions on Sd for a prime p > 2, we first note that in this
case, we must have that d is odd. This follows for instance from the fact that if a finite
group G acts freely on Sd then |G| must divide the Euler characteristic which for even
dimensional spheres S2m is 2.

So, let d = 2m + 1, m ∈ Z≥0, be odd and think of Sd ⊆ Cm+1. By the representation
theory of Z/p (see, e.g., [128, Chapter V]) we can without loss of generality assume that
the action of the generator ν is given by ν.(z0, . . . , zm) = (λ0z0, . . . , λmzm) where λj is a
primitive p-th root of unity, i.e. λj = e

2πsj i

p for some sj ∈ {1, . . . , p− 1}.

There is a nested sequence of odd dimensional spheres S1 ⊆ S3 ⊆ · · · ⊆ S2m+1 given
by S2k+1 = {(z0, . . . , zm) ∈ S2m+1 : zj = 0 for j > k}. Note that each of these spheres
is invariant under the Z/p-action. We can construct an equivariant cell decomposition
of S2m+1 with p cells in each dimension inductively by constructing cell decomposition
of S2k+1 for all 0 ≤ k ≤ m. To pass from a decomposition of S2k−1 to S2k+1 we pick a
2k-dimensional cell τ (2k) in S2k+1 whose boundary is S2k−1 such that the complement of
the orbit of τ (2k) under Z/p is the disjoint union of p (2k + 1)-dimensional (open) cells.
Let us make this more precise. To this end, define for 0 ≤ k ≤ m the sets

τ (2k) := {(z0, . . . , zm) ∈ S2m+1 : zj = 0 if j > k, zk ∈ [0, 1]}

and

τ (2k+1) := {(z0, . . . , zm) ∈ S2m+1 : zj = 0 if j > k, zk = reiθ with r ∈ [0, 1], θ ∈ [0, 2π/p]}.

Note that τ (0) = {(1, 0, . . . , 0)} ⊆ S2m+1. For k ≥ 1 we have:

Claim 4.2. τ (2k) is homeomorphic to B2k whose boundary is S2k−1.

Proof. Thinking of B2k as the unit ball in Ck we see that the map f2k : B2k → τ (2k) given
by z 7→ (z,

√
1 − |z|2, 0, . . . , 0) is a homeomorphism. The second part follows from the

fact that f2k(z) = (z, 0, . . . , 0) for z ∈ B2k with |z| = 1.

As expected we have for k ≥ 0 that

Claim 4.3. τ (2k+1) is homeomorphic to B2k+1. Moreover, the boundary sphere of τ (2k+1)

is the union of τ (2k) and νjτ (2k) where j is such that λj
k = e

2πi
p .

Proof. Again we think of B2k as the unit ball in Ck. We think of B2k+1 as the unit ball in
Ck ⊕R, i.e. B2k+1 = {(z, t) ∈ Ck ⊕R : |z|2 + t2 ≤ 1}. To see that τ (2k+1) is homeomorphic
to B2k+1 we will exhibit two surjective continuous maps g1 : B2k × [0, 1] → τ (2k+1) and
g2 : B2k × [0, 1] → B2k+1 such that g1(z, t) = g1(z′, t′) if and only if g2(z, t) = g2(z′, t′) for
all (z, t), (z′, t′) ∈ B2k × [0, 1]. From this it follows that the quotient space B2k × [0, 1]/ ∼
where (z, t) ∼ (z′, t′) if g1(z, t) = g1(z′, t′) is both homeomorphic to τ (2k+1) and B2k+1 and
that there is a homeomorphism f2k+1 : B2k+1 → τ (2k+1) such that g1 = f2k+1 ◦ g2.
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Define g1 by g1(z, t) := (z,
√

1 − |z|2e
2πti

p ) and g2 by g2(z, t) := (z,
√

1 − |z|2(2t− 1)). One
readily checks that g1 and g2 are indeed onto and that g1(z, t) = g1(z′, t′) if and only if
z = z′ and t = t′ or |z| = 1 if and only if g2(z, t) = g2(z′, t′).

For the second part first note that |g2(z, t)| = 1 if and only if |z| = 1 or t ∈ {0, 1}. From
this the second part follows from the definition of g1.

Consider the cells C = {νiτ (j) : 0 ≤ i ≤ p − 1, 0 ≤ j ≤ 2m + 1}. Note that for each
0 ≤ k ≤ m the cells {νiτ (2k+1) : 0 ≤ i ≤ p − 1} have pairwise disjoint interior and that
S2k+1 = ⋃p−1

i=0 ν
iτ (2k+1). It follows that the cells C together with the attaching maps νi ◦fj ,

0 ≤ i ≤ p − 1, 0 ≤ j ≤ 2m + 1, define a Z/p-invariant regular CW complex structure
on S2m+1. Here fj is defined as in the proofs of Claim 4.2 and Claim 4.3, respectively.
Thinking of τ (j) as a chain in Cj(S2m+1;Fp) we see that ∂τ (2k) = ∑p−1

i=0 ν
iτ (2k−1) for all

1 ≤ k ≤ m and that ∂τ (2k+1) = νjkτ (2k) − τ (2k) for all 0 ≤ k ≤ m, where 1 ≤ jk ≤ p− 1 is
such that λjk

k = e
2πi

p .

4.2 Approximation by a Piecewise-Linear Map
The first step in the proof of Theorem 4.1 is a (fairly standard) limiting argument which
allows us to replace arbitrary continuous maps by piecewise-linear maps in general position.
First note that by compactness we can assume that F (|X|) is contained in the interior
of the closed ball Bd = B(0, R) for some sufficiently large R. We endow the boundary
sphere Sd of Bd with an equivariant cell structure as defined in the previous section.
Write τ (k)

j = νjτ (k), 0 ≤ j ≤ p − 1, 0 ≤ k ≤ d − 1 for the p cells in each dimension k in
this decomposition. We get an induced cell structure on Bd by adding the origin as an
additional 0-cell and cone every cell τ (k)

j with 0. That is, we add all cells of the form
σ

(k+1)
j := 0 ∗ τ k

j for 0 ≤ k ≤ d− 1 and 0 ≤ j ≤ p− 1. We call a triangulation T of Bd good
if it is invariant under the Z/p-action and if it refines the cell structure on Bd given by
the cells

{0} ∪ {τ (k)
j : 0 ≤ j ≤ p− 1, 0 ≤ k ≤ d− 1} ∪ {σ(k)

j : 0 ≤ j ≤ p− 1, 1 ≤ k ≤ d}.

Note that since the cell structure of Sd we start with is regular, the induced cell structure
on Bd is regular as well. Thus, there is always a refinement which is a (Z/p-invariant)
triangulation. Below we will only work with good triangulations of Bd.

Let Y be a simplicial complex. Recall that a map f : |Y | → Rd is piecewise-linear (PL) if
there is a subdivision Y ′ of Y such that the restriction of f to every simplex of Y ′ is an
affine map.

Two affine spaces A1, A2 ⊆ Rd are in general position if

dim(A1 ∩ A2) = max{−1, dim(A1) + dim(A2) − d}.

Note this amounts to say that the d− dim(A1) equations defining A1 are independent of
the d− dim(A2) equations defining A2. We stress that if A1, A2 are in general position
with max{−1, dim(A1) + dim(A2) − d} = −1 then A1 ∩ A2 = ∅. We say that a set of
points S ⊆ Rd is in general position if for any two disjoint subsets S1, S2 ⊆ S the affine
hulls aff(S1) and aff(S2) are in general position. A simplexwise affine map f : Y → Rd is
in general position if it is injective on the vertices of Y and {f(v) : v ∈ Y (0)} ⊆ Rd is in
general position.
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Let T be a triangulation of Bd = B(0, R). Let f : |Y | → Rd be a piecewise-linear map
which is simplexwise affine on the subdivision Y ′ and for which f(|Y |) is contained in the
interior of Bd. We say that f is in general position with respect to T if f as a simplexwise
affine map f : Y ′ → Rd is in general position and if for all σ ∈ Y ′ and τ ∈ T we have
dim(Aff(f(σ) ∩ τ)) ≤ max{−1, dim σ + dim τ − d}.

In order to avoid any confusion we will write dist(a, b) for the Euclidean distance of two
points a, b ∈ Rd.

With all these we have

Lemma 4.4. Let X be a d-dimensional simplicial complex with a free Z/p-action. Let
f : |X| →Z/p Rd be an equivariant, continuous map such that f(|X|) is contained in the
interior of Bd = B(0, R). Let T be a good triangulation of Bd. Then for any ε > 0 there
is an equivariant PL-map g : |X| →Z/p Rd which is in general position with respect to T
and such that dist(f(x), g(x)) ≤ ε for all x ∈ |X|.

Proof. It follows from an equivariant version of the classical simplicial approximation
theorem (see [19, I, Exercise 6])) that there is an equivariant PL-map g̃ : |X| →Z/p Rd

such that dist(g̃(x), f(x)) ≤ ε/2 for all x ∈ |X|. The map g̃ might not be in general
position with respect to T yet. In order to fix this, let X ′ be a subdivision of X on
which g̃ is simplexwise affine. Since X is a free Z/p-complex, the vertex set X ′(0) of X ′

decomposes into a partion X ′(0) = V0 ⊔V1 ⊔· · ·⊔Vp−1 such that each Vi contains precisely
one vertex from each Z/p-orbit. We can assume that Vi = νiV0 for all 0 ≤ i ≤ p − 1
where ν is (the action of) a generator of Z/p. For each v ∈ V0 pick a vector εv in
Bd

ε/2(0) = {x ∈ Rd : dist(x, 0) ≤ ε/2} uniformly at random. Let g : |X ′| →Z/p Rd be the
simplexwise affine map given by g(νjv) = g̃(νjv) + νjεv for v ∈ V0 and 0 ≤ j ≤ p − 1.
Since Z/p acts freely, we can assume (after passing to the barycentric subdivision of X ′,
cf. [19, III, Proposition 1.1]) that σ ∩ νjσ = ∅ for all σ ∈ X ′ and 0 ≤ j ≤ p − 1. This
implies that with probability 1, the map g is in general position with respect to T . By
construction we have dist(g(v), g̃(v)) ≤ ε/2 for all v ∈ X ′(0). Moreover, using that both
g and g̃ are simplexwise affine on X ′, the triangle inequality gives that for x ∈ X

dist(f(x), g(x)) ≤ dist(f(x), g̃(x)) + dist(g̃(x), g(x)) ≤ ε/2 + ε/2 = ε,

as desired.

Combining Lemma 4.4 with the following lemma, we can reduce the proof of Theorem 4.1
to the case of PL maps which are in general position with respect to a good triangulation
T .

Lemma 4.5. Let X be a d-dimensional free Z/p-complex. Let F : |X| →Z/p Rd be
an equivariant map. Assume that Fn : |X| →Z/p Rd is a sequence of equivariant maps
converging uniformly to F , i.e. limn→+∞ supx∈|X| dist(F (x), Fn(x)) = 0. Let ∥ · ∥ be a size
function Cd(X;Fp) induced by the Hamming norm on Fp and some weight function w on
X. Let S = {σ ∈ X(d) : 0 ∈ F (σ)} and Sn = {σ ∈ X(d) : 0 ∈ Fn(σ)}. If there is µ > 0
such that ∥1Sn∥ ≥ µ for all n ∈ Z>0 then ∥1S∥ ≥ µ.

Proof. By compactness the infimum in

ρ := inf{dist(F (x), 0) : σ ∈ X(d) \ S, x ∈ σ}
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is attained and ρ > 0. There is n ∈ Z>0 such that dist(Fn(x), F (x)) < ρ for all
x ∈ |X|. Assume σ ∈ Sn and let x ∈ σ with Fn(x) = 0. We get that dist(F (x), 0) =
dist(F (x), Fn(x)) < ρ. By choice of ρ this implies that σ ∈ S. We conclude that Sn ⊆ S
and the lemma follows from the monotonicity of ∥ · ∥.

4.3 Algebraic Intersection Numbers
The advantage of working with PL maps in general position with respect to a good
triangulation of Bd is that it allows to define algebraic intersection numbers. Here we
only define these intersection numbers, which can be seen as a special case of Lefschetz
intersection theory, and state some basic results we will need. We refer the reader to [103,
Section 2.2] and references therein for a detailed review on intersection numbers.

Given a (geometric) k-simplex σ ⊆ Rd specifying an orientation for σ amounts to choosing
an ordered basis of the linear space L(σ) parallel to the k-dimensional affine space spanned
by σ. If σ = conv(v0, . . . , vk) and the vertices are ordered as v0 < · · · < vk we will always
choose (v1 − v0, . . . , vk − v0) as an ordered bases for L(σ) and write [v0, . . . , vk] for the
oriented simplex σ with this orientation. Let σ, τ ⊆ Rd be two oriented simplices in
general position by which we mean that the vertices of σ and τ are pairwise distinct and
that the union of the vertices is a set of points in Rd in general position as defined in the
previous section. If dim σ + dim τ = d we have that σ ∩ τ is empty or a single point. Let
(b1, . . . , bdim σ) and (b̃1, . . . , b̃dim τ ) be ordered basis of L(σ) and L(τ ) corresponding to the
choosen orientation of σ and τ . By general position B = (b1, . . . , bdim σ, b̃1, . . . , b̃dim τ ) is
an ordered basis of Rd. If σ ∩ τ = ∅, we define the intersection number σ • τ of σ and τ
to be 0. If σ ∩ τ ̸= ∅ we define σ • τ to be the sign of detB, where we think of B as a
matrix with the basis vectors as columns. That is, σ • τ ∈ {−1, 1} and the sign depends
on whether B has the same or opposite orientation as Rd (with the orientation determined
by the standard basis vectors (e1, . . . , ed)).

We can extend this to k-dimensional PL chains in Rd which are formal linear combinations
c = ∑

j∈J ajσj for some finite index set J and oriented k-simplices σj with aj ∈ Z. Consider
a k-dimensional PL chain c = ∑

i∈I aiσi and a (d−k)-dimensional PL chain c′ = ∑
j∈J bjτj

such that σi and τj are in general position for all i ∈ I and j ∈ J . Then we define the
intersection number c • c′ of c and c′ by c • c′ := ∑

i∈I,j∈J aibj(σi • τj) ∈ Z.

Given a PL map F : |X| →Z/p Rd in general position with respect to a good trinagulation
T of Bd, we can define an intersection homomorphism F ⋔ : Ck(T ;Z) → Cd−k(X;Z) as
follows: Let X ′ be a subdivision of X such that F : |X ′| →Z/p Rd is simplexwise affine.
Fix an ordering of the vertices of X ′. By general position we have that F is injective
on X ′(0) and thus, the ordering on X ′(0) induces an ordering on F (X ′(0)). Given an
oriented k-simplex τ = [v0, . . . , vk], i.e. with v0 < v1 < · · · < vk according to the chosen
ordering < on X ′(0), we give F (τ) there orientation of [F (v0), . . . , F (vk)]. Any oriented
simplex σ ∈ Xk is the formal sum σ = τ1 + · · · + τl of some oriented simplices τi ∈ X ′

k. We
get a k-dimensional PL chain F♯(σ) = ∑l

i=1 F (τi) in Rd. For c ∈ Ck(T ;Z) we can use this
to define F ⋔(c) ∈ Cd−k(X;Z) to be given by F ⋔(c)(σ) := (−1)kc • F♯(σ) for all σ ∈ Xd−k.

For any prime p we can consider F ⋔ as a homomorphism F ⋔ : Ck(T ;Fp) → Cd−k(X;Fp)
by reducing mod p. In particular, for p = 2 the definition of F ⋔ greatly simplifies since
we do not have to take care of orientations. In that case we have by general position for
τ ∈ T (k) and σ ∈ X(d− k) that σ ∩ F−1(τ) is a set of finitely many points and we can
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define τ • F (σ) := |σ ∩ F−1(τ)| mod 2. This extends to the intersection homomoprhism
F ⋔ : Ck(T ;F2) → Cd−k(X;F2) as

F ⋔(c)(σ) =
∑

τ∈T (k),c(τ)=1
|σ ∩ F−1(τ)| mod 2

for c ∈ Ck(T ;F2) and σ ∈ X(d− k). We will need the following property of F ⋔ which is
a consequence of Lemma 28 in [103].

Lemma 4.6. For all 0 ≤ k ≤ d and c ∈ Ck(X;Z) we have δF ⋔(c) = F ⋔(∂c).

4.4 Pagodas and the Proof of Theorem 4.1
From our discussion in the previous sections, we see that it suffices to prove Theorem 4.1
for PL maps F : |X| →Z/p Rd such that F (|X|) is contained in the interior of Bd = B(0, R)
and such that F is in general position with respect to a good triangulation T of Bd.

Fix such a map F : |X| →Z/p Rd. Consider (co)chain groups with respect to Fp-coefficients.
In particular, we think of F ⋔ as a homomorphism F ⋔ : Ck(T ;Fp) → Cd−k(X;Fp). Note
that

{σ ∈ X(d) : F ⋔(0)(σ) ̸= 0} ⊆ {σ ∈ X(d) : 0 ∈ F (σ)}.
Hence, by monotonicity of ∥ · ∥, it suffices to give a lower bound on ∥F ⋔(0)∥.

As before write ν : |X| → |X| for the action of a generator of Z/p. We also write ν for
the induced action on (co)chains

We need the notion of a pagoda. For the definition of a pagoda we distinguish the case
p = 2 and p ≥ 3, the former being somewhat a bit easier.

If p = 2, a pagoda for F is a sequence of cochains (b(d), a(d−1), b(d−1), . . . , a(0), b(0)) such
that

(i) b(d) = F ⋔(0) (where 0 is the vertex in T corresponding to the origin in Bd),

(ii) b(k), a(k) ∈ Ck(X;F2) for all 0 ≤ k ≤ d− 1,

(iii) b(k) = a(k) + νa(k) for all 0 ≤ k ≤ d− 1, and

(iv) b(k) = δa(k−1) for all 1 ≤ k ≤ d.

For a prime p ≥ 3 the definition of a pagoda for F is slightly more involved. Recall that
in this case d = 2(m+ 1) must be even and we can assume that ν acts on Rd ∼= Cm+1 by
ν.(z0, . . . , zm) = (λ0z0, . . . , λmzm) for some primitive pth roots of unity λj = e2πnji/p with
0 < nj ≤ p− 1, 0 ≤ j ≤ m.

Let s = ∑p−1
i=0 ν

i which we think of as an element of the group ring Fp[Z/p] acting on
(co)chain groups. For 0 ≤ j ≤ m let kj such that λkj

j = e2πi/p and let tj = νkj − id ∈
Fp[Z/p].

For p ≥ 3, a pagoda for F is a sequence of chains (b(d), a(d−1), b(d−1), . . . , a(0), b(0)) such
that

(i) b(d) = F ⋔(0),
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(ii) b(k), a(k) ∈ Ck(X;F2) for all 0 ≤ k ≤ d− 1,

(iii) b(k) = sa(k) if 0 ≤ k ≤ d − 1 is even and b(k) = tla
(k) if k = 2l + 1 is odd for some

0 ≤ l ≤ m, and

(iv) b(k) = δa(k−1) for all 1 ≤ k ≤ d.

Note that we recover the definition of a pagoda for F for p = 2 if we set s = tl = id + ν
for all l. To simplify our arguments below we will only prove the case p ≥ 3. The case
p = 2 can be proven similarly by setting s = tl = id + ν. In fact, the proof p = 2 simplifies
a bit, since we can ignore signs and we do not have to distinguish between odd and even
dimensional cochains. We refer the reader to [140] where only the simpler case p = 2 is
discussed.

We can always pullback the special cell decomposition of a good triangulation using F ⋔

to construct a pagoda. We illustrate such a pagoda for a Z/2-equivariant PL map from
the octahedron Λ2

2 to B2 in Figure 4.2. More generally, we have:

Lemma 4.7. There exists a pagoda for F with b(0) = 1X(0) ∈ B0(X;Fp).

Proof. By abuse of notation, we write τ
(k)
j and σ

(l)
j for the chains in T refining the

corresponding cells in the special cell decomposition of Bd.

Define b(d) := F ⋔(0) and for 0 ≤ k ≤ d− 1 define a(k) := (−1)kF ⋔(σ(d−k)
0 ) and

b(k) :=

tla(k) if k = 2l + 1 is odd
sa(k) if k is even.

Since the image of F is contained in the interior of T , we have F ⋔(τ (k)
j ) = 0 for all

0 ≤ k ≤ d− 1 and 0 ≤ j ≤ p− 1.

We compute using Lemma 4.6 that

δa(d−1) = (−1)d−1δF ⋔(σ(1)
0 ) = −F ⋔(∂σ(1)

0 ) = F ⋔(0) − F ⋔(τ (0)
0 ) = F ⋔(0) = b(d).

Similarly, for 1 ≤ k ≤ d− 1 we get

δa(k−1) = (−1)k−1δF ⋔(σ(d−k+1)
0 )

= (−1)k−1(F ⋔(∂σ(d−k+1)
0 )

= (−1)k−1(F ⋔(τ (d−k)
0 ) − F ⋔(0 ∗ ∂τ (d−k)

0 )
= (−1)kF ⋔(0 ∗ ∂τ (d−k)

0 ).

If k is even, the right handside is equal to

(−1)kF ⋔(0 ∗ s · τ (d−k−1)
0 ) = (−1)ks · F ⋔(σ(d−k)

0 ) = s · a(k) = b(k)

and if k = 2l + 1 is odd, it is equal to

(−1)kF ⋔(0 ∗ tl · τ (d−k−1)
0 ) = (−1)ktl · F ⋔(σ(d−k)

0 ) = tl · a(k) = b(k).

Finally, b(0) = s · a(0) = s · F ⋔(σ(d)
0 ) = 1X(0) since every vertex of X gets mapped to the

interior of a unique d-simplex in T .
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Figure 4.2: We illustrate the pagoda for an equivariant PL map F : X →Z/2 Bd in general
position with respect to a good triangulation T where X = Λ2

2 is an octahedron. In blue
we show the image of X under F . At the top left, we have that F ⋔(0) are the two triangles
u+v−w+ and u−v+w− marked in red. At the top right, we depict b(1) = F ⋔(τ−

1 ) + F ⋔(τ+
1 )

in red and the chain τ−
1 + τ+

1 in green. We see that the support of b(1) consists of all edges
in F (X) that the green line intersects an odd number of times. Finally, at the bottom we
have b(0) = 1X(0) = F ⋔(1T (2)).
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Lemma 4.8. Every pagoda for F satisfies b(0) = 1X(0).

Proof. Let (b(d)
∗ , a

(d−1)
∗ , . . . , a

(0)
∗ , b

(0)
∗ ) be the pagoda constructed in the proof of Lemma 4.7.

Let (b(d), a(d−1), . . . , a(0), b(0)) be another pagoda for F .

We will argue by induction on 0 ≤ k ≤ d that b(k) − b
(k)
∗ is the coboundary of a (k − 1)-

cochain of the form s · c for some c ∈ Ck−1(X;Fp) if k is even and of the form tl · c with
c ∈ Ck−1(X;Fp) if k = 2l+1 is odd. From this we easily conclude the lemma since s ·c = 0
for all c ∈ C−1(X;Fp) and, hence, we must have b(0) − b

(0)
∗ = 0 and b(0) = b

(0)
∗ = 1X(0).

First note that δ(a(d−1) − a
(d−1)
∗ ) = b(d) − b(d) = 0. Since H̃d−1(X;Fp) = 0 there is

c(d−2) ∈ Cd−2(X;Fp) with δc(d−2) = a(d−1) − a
(d−1)
∗ . It follows that

b(d−1) − b(d−1)
∗ = tma

(d−1) − tma
(d−1)
∗ = δ(tm · c(d−2)).

For the inductive step let 0 ≤ k ≤ d− 2. First assume that k = 2l is even and that by the
induction hypothesis b(k+1)−b(k+1)

∗ = δ(tl·c(k)). It follows that a(k)−a(k)
∗ −tl·c(k) is a cocycle

and since H̃k(X;Fp) = 0 it is also a coboundary. Thus, there is c(k−1) ∈ Ck−1(X;Fp) with
δc(k−1) = a(k) − a

(k)
∗ − tlc

(k). We conclude

b(k) − b(k)
∗ = s · (a(k) − a(k)

∗ ) = s · (δc(k−1) + tlc
(k)) = δ(s · c(k−1)),

where we used that s · tl = 0.

Similarly, if k = 2l+1 is odd, we can assume by induction that b(k+1)−b(k+1)
∗ = δ(s·c(k)) for

some c(k) ∈ Ck(X;Fp). Then a(k) −a
(k)
∗ −s ·c(k) is a cocycle and again since H̃k(X;Fp) = 0

there is some c(k−1) ∈ Ck−1(X;Fp) with δc(k−1) = a(k) − a
(k)
∗ − sc(k). We conclude

b(k) − b(k)
∗ = tl · (a(k) − a(k)

∗ ) = tl(δc(k−1) + s · c(k)) = δ(tl · c(k−1))

where we used that tl · s = 0. This finishes the proof.

We are ready to wrap-up the proof of Theorem 4.1 by inductively constructing a pagoda
for F choosing minimal cofillings along the way. Coboundary expansion then guarantees
that F ⋔(0) is large. For the details:

Proof of Theorem 4.1. We will define a(k) ∈ Ck(X;Fp) inductively, b(k) is then determined
by condition (iii) in the definition of a pagoda.

To start with, recall that b(d) = F ⋔(0) is a coboundary and we choose a(d−1) ∈ Cd−1(X;Fp)
to be a minimal cofilling of b(d).

Let 0 ≤ k ≤ d − 1 and assume a(k) is already constructed. If k = 2l + 1 is odd, we set
b(k) = tl · a(k) and for k = 2l even, we set b(k) = s · a(k). We claim that b(k) is a cocycle.
Indeed, if k = d− 1 we have

δb(d−1) = tl · δa(d−1) = tl · b(d) = 0,

since νb(d) = b(d). If k = 2l + 1 < d− 1 is odd we have

δb(k) = tl · δa(k) = tl · b(k+1) = tl · s · a(k+1) = 0,
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since tl · s = 0. If k = 2l is even, we have

δb(k) = s · δa(k) = s · b(k+1) = s · tl · a(k+1) = 0,

since s · tl = 0. Since H̃k(X;Fp) = 0, b(k) is a coboundary and we choose a(k−1) to be a
minimal cofilling of b(k).

By construction we have ∥b(k)∥ ≥ η
∥·∥
k−1(X;Fp)∥a(k−1)∥ for all 1 ≤ k ≤ d. By the Z/p-

invariance of ∥ · ∥ and the triangle inequality we have ∥b(k)∥ ≤ 2∥a(k)∥ if 0 ≤ k ≤ d − 1
is odd and ∥b(k)∥ ≤ p∥a(k)∥ if 0 ≤ k ≤ d − 1 is even. Moreover, by Lemma 4.8 we have
b(0) = 1X(0). Combining all these we estimate

∥1X(0)∥ = ∥b(0)∥ ≤ p∥a(0)∥ ≤ p

η
∥·∥
0 (X;Fp)

∥b(1)∥ ≤ · · · ≤ 2d/2pd/2∏d−1
i=0 η

∥·∥
i (X;Fp)

∥b(d)∥,

as desired.

4.5 Remarks on the Assumptions of Theorem 4.1
Being a coboundary expander is a very strong condition. It would be interesting to
weaken this assumption for the quantitative Borsuk–Ulam theorem. In fact, for Gromov’s
topological overlap theorem we do not need that X is a coboundary expander. It suffices
for X to be a so-called cosystolic expander. A d-dimensional simplicial complex X is
a (η, θ)-cosystolic expander if for every 0 ≤ k ≤ d − 1 and β ∈ Bk+1(X;F2) there is
α ∈ Ck(X;F2) with δα = β and ∥α∥ ≤ 1

η
∥β∥ and if for all z ∈ Zk(X;F2) \Bk(X;F2) we

have ∥z∥ ≥ θ.

The following example shows that cosystolic expansion is not suitable to give a quantitative
Borsuk–Ulam theorem.

Example 4.9. Let G be a connected graph. Let X = G ⊔G be the disjoint union of two
copies of G. We turn X into a free Z/2-complex by considering the Z/2-action which
interchanges the two copies of G in X. Note that X is a (η0(G), 1/2)-cosystolic expander.
Indeed, every connected component of X has expansion η0(G) and contains half of the
vertices. But the map f : |X| →Z/2 R which maps one copy of G in X to +1 and the
other copy of G to −1 is an equivariant map with 0 /∈ f(X).

On the other hand, if G = (V,E) is a graph with a free Z/2-action ν such that every
subset S ⊂ V of vertices with precisely one vertex of each ν-orbit is expanding then
|E ∩ f−1(0)| has to be large for every equivariant map f : G →Z/2 R. This is a much
weaker condition than G to be an expander graph. It would be interesting to find such
weaker conditions in higher dimensions too.
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Chapter 5

Applications of Equivariant Overlap
Theorem

In this chapter, we harvest some applications of our quantitative Borsuk–Ulam theorem.
The quantitative non-embeddability result for sufficiently spherical building already
appears in [140]. Some of the other applications have been mentioned there but here we
work out the details for the first time. The results in this chapter are joint work with Uli
Wagner.

5.1 Expansion of Join Versus Expansion of Deleted
Join

For the applications of the equivariant topological overlap theorem to quantitative non-
embeddability results of simplicial complexes it will often be more convenient/easier to
establish lower bounds on the coboundary expansion constants of the join X∗2 and then
relate the coboundary expansion constants of the deleted join X∗2

∆ to the ones of X∗2.
The purpose of this section is to make such a relationship precise in a general context
such that we can use it later on in a blackbox fashion.

In fact, sometimes giving lower bounds on the coboundary expansion constants of the
deleted join is more than we need. If we know (by other means) that H̃k(X∗2

∆ ;F2) = 0
for all 0 ≤ k ≤ 2 dimX, we can bound ipcr(X) more directly in terms of the coboundary
expansion constants of the join X∗2 and an error term (see Lemma 5.1 in Section 5.1.1).
If we do not know that X∗2

∆ has vanishing cohomology, we would still expect (at least for
large complexes) that X∗2

∆ and X∗2 have comparable coboundary expansion constants.
We will give one way of making this precise and quantitative in Section 5.1.2.

5.1.1 H̃k(X∗2
∆ ;F2) = 0 and Sum of Squared Degree Error Term

Lemma 5.1. Let Y be a d-dimensional simplicial complex with a Z/2-action ν : Y → Y .
Let Y0 ⊆ Y be an invariant (i.e. ν(Y0) ⊆ Y0) d-dimensional subcomplex such that the
restriction of ν to Y0 turns Y0 into a free Z/2-complex. Assume Y0(0) = Y (0) and
H̃k(Y0;F2) = 0 for all 0 ≤ k ≤ d − 1. Let w : Y → R≥0 be a weight function on Y
with induced weighted Hamming norm ∥ · ∥. Let w∗ : Y0 → R≥0 be the restriction of
w to X inducing the weighted Hamming norm ∥ · ∥∗. Then for every equivariant map
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F : |Y0| →Z/2 Rd we have

∥{σ ∈ Y0(d) : 0 ∈ F (σ)}∥∗ ≥
∥1Y (0)∥

2d

(
d−1∏
i=0

η
∥·∥
i (Y ;F2)

)
−

d−1∑
k=0

∥1∆(d−k)∥
2k

k−1∏
i=0

η
∥·∥
d−1−i(Y ;F2)

where ∆(j) := {σ ∈ Y (j) \ Y0(j) : τ ⊆ σ for some τ ∈ Y0(j − 1)}.

Proof. As in the proof of the equivariant overlap theorem (Theorem 4.1) it suffices to give
a lower bound on the norm of b(d) = F ⋔(0) ∈ Bd(Y0;F2) for any PL-map F : |Y0| →Z/2 Rd

which is in general position with respect to a sufficiently fine triangulation of a ball
containing the image of |Y0| under F .

In fact, it suffices to construct a pagoda (b(d), a(d−1), b(d−1), . . . , a(0), b(0)) for F such that
∥b(k)∥∗ ≥ η

∥·∥
k−1(Y ;F2)∥a(k−1)∥ − ∥1∆(k)∥ for all 1 ≤ k ≤ d.

We can construct such a pagoda recursively as follows: Assume that b(k) ∈ Bk(Y0;F2) has
been constructed. Then b(k) = δc(k−1) for some c(k−1) ∈ Ck−1(Y0;F2). Let b̃(k) := δc̄(k−1) ∈
Bk(Y ;F2), where c̄(k−1) is the extension by 0 of c(k−1) to Y . Let ã(k−1) be a minimal
cofilling of b̃(k). In particular, ∥b̃(k)∥ ≥ η

∥·∥
k−1(Y ;F2)∥ã(k−1)∥. Note that every k-simplex

in the support of b̃(k) which is not in Y0 must have a (k − 1)-face which is in Y0. Thus,
∥b̃(k)∥ ≤ ∥1∆(k)∥ + ∥b(k)∥∗.

Now let a(k−1) ∈ Ck−1(Y0;F2) be the restriction of ã(k−1) to Y0. Then δa(k−1) = b(k) and
combining the two inequalities above, we obtain

∥b(k)∥∗ ≥ η
∥·∥
k−1(Y ;F2)∥a(k−1)∥ − ∥1∆(k)∥,

as desired.

5.1.2 Quantitative Relationship of Expansion Constants of Join
and Deleted Join

The purpose of this section is to establish a simple quantitative but rather general
relationship between expansion constants of the join and the deleted join. In specific
settings, one can most likely obtain better bounds by carrying out estimates in a more
situation-taylored way but our result here will suffice for our purpose and hopefully keeps
the technicalities at a reasonable level.

Proposition 5.2. Let X be a d-dimensional simplicial complex. Let J = X∗2 and
J∆ = X∗2

∆ . Let w : J → R≥0 be a weight function. Let | · | be the induced weighted
Hamming norm on Ck(J ;F2), 0 ≤ k ≤ 2d. Write w∗ for the restriction of w to J∆ and
| · |∗ for the induced weighted Hamming norm on Ck(J∆;F2). Let 0 ≤ k ≤ 2d and assume
that there is α > 0 such that for all σ ∈ J∆(k) we have∑

τ∈J(k+1)\J∆(k+1)
σ⊆τ

w(τ) ≤ αw∗(σ).

Then η
|·|∗
k (J∆;F2) ≥ η

|·|
k (J ;F2) − α.

Proof. For j ∈ {k, k + 1}, let ∆(j) = J(j) \ J∆(j).
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Let c ∈ Ck(J∆;F2) be minimal. Write c̄ ∈ Ck(J ;F2) for the extension by 0 of c to J , i.e.
c̄(σ) = c(σ) for σ ∈ J∆(k) and c̄(σ) = 0 for σ ∈ ∆(k). By Lemma 3.6 c̄ is minimal. It
follows that |δc̄| ≥ η

|·|
k (J ;F2)|c|∗.

We have |δc̄| = |δc|∗ + |(δc̄)|∆(k+1) |. Note that for every τ ∈ ∆(k + 1) with δc̄(τ ) = 1 there
must be σ ∈ J∆(k) with c(σ) = 1. It follows that

|(δc̄)|∆(k+1) | ≤
∑

σ∈J∆(k),c(σ)=1

∑
τ∈∆(k+1),σ⊆τ

w(τ) ≤
∑

σ∈J∆(k),c(σ)=1
αw∗(σ) = α|c|∗.

We conclude
η

|·|
k (J ;F2)|c|∗ ≤ |δc̄| ≤ |δc|∗ + α|c|∗,

which shows η|·|∗
k (J∆;F2) ≥ η

|·|
k (J ;F2) − α, as desired.

We will see that for the Garland weights w = wG, we can choose α in the previous lemma
arbitarily small provided that X is sufficiently thick.

Definition 5.3. Let X be a d-dimensional simplicial complex. The thickness δ(X) of X
is defined by

min
σ∈X(d−1)

|Xσ(0)|.

We say that X is δ-thick for some δ > 0 if δ(X) ≥ δ.

For the remaining part of this section, we write w for the Garland weights on a simplicial
complex X and wσ for the Garland weights on the link Xσ at σ ∈ X.

By definition, if X is δ-thick, then for all σ ∈ X(d− 1) and v ∈ Xσ(0), we have

wσ(v) = 1
|Xσ(0)| ≤ 1

δ
.

For our estimates below, we will need such a bound for all −1 ≤ k ≤ d− 1, σ ∈ X(k) and
v ∈ Xσ(0). Fortunately, δ-thickness implies such bounds, as the following lemma shows.

Lemma 5.4. Let X be a d-dimensional, δ-thick simplicial complex. Then

(i) for any σ ∈ X(k),−1 ≤ k ≤ d − 1 the link Xσ is a (d − |σ|)-dimensional, δ-thick
simplicial complex.

(ii) for every v ∈ X(0) we have w(v) ≤ 1
δ
.

(iii) for every σ ∈ X(k), −1 ≤ k ≤ d− 1 and v ∈ Xσ(0) we have wσ(v) ≤ 1
δ
.

Proof. For (i) we simply observe that for τ ∈ Xσ(d− |σ| − 1) we have

|(Xσ)τ (0)| = |Xσ∪τ (0)| ≥ δ,

since X is δ-thick. For (ii) we first note that since X is δ-thick

δ|X(d− 1)| ≤
∑

σ∈X(d−1)
|Xσ(0)| = (d+ 1)|X(d)|.
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5. Applications of Equivariant Overlap Theorem

Then for v ∈ X(0) we compute

w(v) = |Xv(d− 1)|
(d+ 1)|X(d)| ≤ |Xv(d− 1)|

δ|X(d− 1)| ≤ 1
δ
,

where we used Xv(d− 1) ⊆ X(d− 1) for the last inequality.

(iii) follows from combining (i) and (ii).

Let us give some intuition on the condition that wσ(u) ≤ ε for some ε > 0. To this end,
we first note that for σ ∈ X(k), u ∈ Xσ(0) we have

w(σ) = 1
k + 2

∑
v∈Xσ(0)

w(σ ⊔ v) and wσ(u) = w(σ ⊔ u)
(k + 2)w(σ) .

Thus, the condition wσ(u) ≤ ε for some ε > 0 is equivalent to 1
k+2w(σ ⊔ u) ≤ εw(σ). This

is to say, that every (k + 1)-simplex containing σ contributes only a small fraction to the
weight of σ.

The following consequence of δ-thickness shows that working with Garland weights, we
can apply Proposition 5.2 to δ-thick complexes with α = 1

δ
(k + 1)(k + 2).

Lemma 5.5. Let X be a d-dimensional simplicial complex which is δ-thick for some
δ > 0. Then for all 0 ≤ k ≤ 2d and τ ∈ X∗2

∆ (k) we have
∑

σ∈X∗2(k+1)\X∗2
∆ (k+1),τ⊆σ

w(σ) ≤ 1
δ

(k + 1)(k + 2)w∗(τ).

For the proof of Lemma 5.5 we need the following identities.

Claim 5.6. Let X be a d-dimensional simplicial complex. For −1 ≤ i, j ≤ d let

ci,j =

(
d+1
i+1

)(
d+1
j+1

)
(

2d+2
i+j+2

) .

Then:

(i) For all σ, τ ∈ X we have for σ ⊗ τ ∈ X∗2 that

w(σ ⊗ τ) = c|σ|−1,|τ |−1w(σ)w(τ).

(ii) For all −1 ≤ i, j ≤ d we have
ci,j = cj,i.

(iii) For all −1 ≤ i ≤ d, 0 ≤ j ≤ d we have

ci,j

ci,j−1
= d+ 1 − j

j + 1
i+ j + 2

2d− i− j + 1 .

Also, if σ ∈ X and v ∈ Xσ(0) we have

w(σ ⊔ v) = wσ(v)(|σ| + 1).
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5.2. Quantitative Non-Embeddability of Spherical Buildings

The proof of this claim is a straightforward computation which we omit. We turn to the
proof of Lemma 5.5.

Proof of Lemma 5.5. Let ∆(k) = X∗2(k) \ X∗2
∆ (k). Let τ = τ ′ ⊗ τ ′′ ∈ X∗2

∆ (k) with
τ ′, τ ′′ ∈ X, τ ′ ∩ τ ′′ = ∅. It will be convenient to extend the weight function w to arbitrary
subsets of X∗2(0) and set w(s) = 0 for s ⊆ X∗2(0) if s /∈ X∗2. Similarly, for u ∈ X(0) we
interpret wσ(u) as 0 if u is not a vertex of Xσ. Write τ ′ = {v0, . . . vl} (we allow l = −1 if
τ ′ = ∅) and τ ′′ = {vl+1, . . . , vk}. Using the identities in Claim 5.6 and Lemma 5.4 (iii),
we compute

∑
σ∈∆(k+1),τ⊆σ

w(σ) =
l∑

i=0
w(τ ′ ⊗ (τ ′′ ∪ vi)) +

k∑
i=l+1

w((τ ′ ∪ vi) ⊗ τ ′′)

=
l∑

i=0
cl,k−lw(τ ′)wτ ′′(vi)w(τ ′′)(|τ ′′| + 1)

+
k∑

i=l+1
cl+1,k−l−1wτ ′(vi)w(τ ′)(|τ ′| + 1)w(τ ′′)

≤ 1
δ

((|τ ′′| + 1)cl,k−l(l + 1) + (|τ ′| + 1)cl+1,k−l−1(k − l))w(τ ′)w(τ ′′)

= 1
δ

(l + 1)(k − l + 1)cl,k−l + (l + 2)(k − l)cl+1,k−l−1

cl,k−l−1
w∗(τ)

= 1
δ

(
(l + 1)(k + 2)(d− k + l + 1) + (k + 2)(d− l)(k − l)

2d− k + 1

)
w∗(τ)

≤ 1
δ

k + 2
2d− k + 1 ((k + 1)(d− k + l + 1 + (d− l))w∗(τ)

= 1
δ

(k + 2)(k + 1)w∗(τ)

This finishes the proof.

5.2 Quantitative Non-Embeddability of Spherical
Buildings

We give a very brief introduction to spherical buildings. Buildings are highly symmetric
(combinatorial) structures that have been extensively studied since their introduction by
Jacques Tits in the 1960s. We will only need very few basic facts and refer the interested
reader to the books [2], [52] or [135].

We start with the definition of a (spherical) building.

Definition 5.7 (Building). A d-dimensional (thick) building X is a d-dimensional simpli-
cial complex X for which there is a family A of subcomplexes, called apartments, such
that

(i) X is pure and every σ ∈ X(d− 1) is contained in at least three d-simplices.

(ii) Any two simplices of X are contained in a common apartment A ∈ A.

(iii) Any (d− 1)-simplex in an apartment A is incident to precisely two d-simplices of A.
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5. Applications of Equivariant Overlap Theorem

(iv) For any two d-simplices σ, σ′ in an apartment A there is a sequence of d-simplices
σ0, . . . , σn ∈ A such that σ = σ0, σ

′ = σn and |σi ∩ σi+1| = d for all 0 ≤ i ≤ n− 1.

(v) If σ, τ ∈ X are contained in apartments A,A′ ∈ A then there is a simplicial
isomorphism ϕ : A → A′ which fixes σ and τ pointwise.

A building is called spherical if every apartment is finite.

It turns out that for a given building X there is a Coxeter system (W,S) such that every
apartment A is isomorphic to the Coxeter complex associated with (W,S).1 In particular,
every apartment of X has the same number of d-simplices, namely |A(d)| = |W |. We
will denote this number by wd(X) and call it the width of X. Elaborating on the work
of Gromov in [54] the following lower bound on the coboundary expansion constants of
spherical buildings was shown in [98].

Theorem 5.8 (Expansion spherical buildings (Corollary 3.6 in [98])). Let X be a d-
dimensional spherical building. Then for any 0 ≤ k ≤ d− 1 we have

ηk(X) ≥ 1(
d+1
k+2

)2
wd(X)

.

It is not hard to see that the join X∗2 of a d-dimensional spherical building X with itself
is a (2d+ 1)-dimensional spherical building with width w2d+1(X∗2) = wd(X)2. Indeed, if
A is an apartment structure on X then the family of subcomplexes

A∗2 = {A ∗ A′ ⊆ X∗2 : A,A′ ∈ A}

of X∗2 forms an apartment structure on X∗2. We immediately deduce

Corollary 5.9 (Expansion join spherical buildings). Let X be a d-dimensional spherical
building. Then for all 0 ≤ k ≤ 2d we have

ηk(X∗2) ≥ 1(
2d+2
k+2

)2
wd(X)2

.

We are ready to prove the following slightly refined version of Theorem 1.2 from the
introduction.

Theorem 5.10 (Quantitative non-embeddability spherical buildings). Let X be a d-
dimensional building such that δ(X) > (k + 2)(k + 1)

(
2d+2
k+2

)2
wd(X)2 for all 0 ≤ k ≤ 2d.

Then

pcr(X) ≥

 1
22d+1

2d∏
k=0

 1(
2d+2
k+2

)2
wd(X)2

− (k + 2)(k + 1) 1
δ(X)


(|X(d)|

2

)
.

1It is not important here what these are exactly. Let us just mention that a Coxeter system (W,S) is
a group W with a generating set S satisfying special types of relations. The associated Coxeter complex
(W,S) is a triangulation of a (|S| − 1)-dimensional sphere if W is finite and reflects the group structure
of W geometrically.
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5.3. Number of Tverberg Partitions

Proof. We apply the quantitative Borsuk–Ulam theorem (Theorem 4.1) to X∗2
∆ where we

use the norm on cochains obtained by restricting the Garland weights on X∗2 to X∗2
∆ .

Then the result follows by plugging-in the bounds from Corollary 5.9, Lemma 5.5 and
Proposition 5.2.

We remark that there is some constant wd such that wd(X) ≤ wd for all d-dimensional
spherical buildings. Thus, if one wished, one could make the assumption on the thickness
of X in the previous theorem not to depend on wd(X).

5.3 Number of Tverberg Partitions
A classical result in discrete geometry is Tverberg’s theorem which says that any set
of (d + 1)(r − 1) + 1 points in Rd can be partitioned into r pairwise disjoint subsets
with intersecting convex hulls. We will call any such partition a Tverberg partition. A
topological version, which implies Tverberg’s theorem, holds when r is a prime power.

Theorem 5.11 (Topological Tverberg theorem). Let p be a prime, k ∈ Z>0. Let r = pk.
Let d ∈ Z>0. Let N = (d + 1)(r − 1). Then for every continuous map f : |σN | → Rd.
there are r pairwise disjoint faces F1, . . . , Fp ∈ σN such that ⋂r

i=1 f(Fi) ̸= ∅.

Theorem 5.11 was first proven by Bárány, Shlosman and Szűcs in 1981 [11] for r prime
and by Özaydin in 1987 in the unpublished manuscript [115] for the prime power case.
The topological Tverberg theorem fails to hold when r is not a prime power. First
counterexamples were constructed by Frick [48] heavily relying on the machinery introduced
by Mabillard and Wagner [102, 103] and using an observation which was independently
observed by Gromov in [54, p.445]. See [15] for a general survey on the topological
Tverberg story.

We call faces {F1, . . . , Fp} as in the conclusion of the topological Tverberg theorem a
Tverberg partition.

While the Tverberg theorem guarantees the existence of at least one Tverberg partition, it
is natural to ask whether there is a lower bound on the number of Tverberg partitions. A
long-standing conjecture due to Sierksma [129] states that for a set of (r − 1)(d+ 1) + 1
points in general position in Rd there are at least ((r − 1)!)d Tverberg partitions.2

Using our equivariant topological overlap theorem (Theorem 4.1) we can recover the
following lower bound on the number of Tverberg partititions in the topological setting
due to Vućic and Živaljević (see [138, Theorem 1] or [107, Theorem 6.5.1] as well as [60,
Theorem 2] for an extension to the prime power case).

Theorem 5.12. Let p be a prime. Let N = (d+ 1)(p− 1). Let σN be an N -dimensional
simplex. Then for every continuous map f : |σN | → Rd the number of unordered p-tuples
{F1, . . . , Fp} of pairwise disjoint faces of σN with ⋂p

i=1 f(Fi) ̸= ∅ is at least

1
(p− 1)!

(
p

2

)N/2
.

2This number is an upper bound attained by the configuration of (d + 1) clusters of r − 1 points
around the vertices of a d-simplex σ in Rd and a point at the barycenter of σ.
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For the proof of Theorem 5.12 we encode Tverberg partitions into the configuration
space/test map paradigm. Once we establish coboundary expansion of the configuration
space, we can apply the equivariant topological overlap theorem to deduce the claimed
lower bound on the number of Tverberg partitions.

A natural candidate for the configuration space is the p-fold deleted join X = (σN )∗p
∆(2) of

σN . X is the subcomplex of the p-fold join (σN )∗p consisting of all simplices σ1 ⊗σ2 ⊗ . . . σp

with σ1, . . . , σp ∈ σN pairwise disjoint. Note that ordered partitions (F1, . . . , Fp) of
[N + 1] are in 1-to-1 correspondence with maximal simplices of X making X a suitable
configuration space. Moreover, every continuous map f : |σN | → Rd induces a map
f ∗p : |X| → Rp(d+1) given by

t1x1 ⊕ · · · ⊕ tpxp 7→ f ∗p(t1x1 ⊕ · · · ⊕ tpxp) := (t1, f(x1), t2, f(x2), . . . , tp, f(xp)).

Here and from now on, we will think of Rp(d+1) = Rd+1 ⊕ . . .Rd+1 as a direct sum of p
copies of Rd+1.

Now, (ordered) Tverberg partitions correspond to maximal simplices of X whose image
under f ∗p intersects the thin diagonal D := {(x, . . . , x) ∈ Rp(d+1) : x ∈ Rd+1}. Thus, if we
denote by D⊥ the orthogonal complement of D and by π : Rp(d+1) → D⊥ the orthogonal
projection onto D⊥, we get a test map F : |X| → D⊥, F = π ◦ f ∗p, such that maximal
simplices of X containing 0 in their image are in 1-to-1 correspondence with ordered
Tverberg partitions (of f).

Z/p acts on X and on Rp(d+1) by cyclically shifting coordinates. More precisely, if ν is a
generator of Z/p, ν acts on X by

t1x1 ⊕ . . . tpxp 7→ t2x2 ⊕ . . . tpxp ⊕ t1x1

and on Rp(d+1) by
(x1, . . . , xp) 7→ (x2, . . . , xp, x1).

The action Rp(d+1) restricts to an action (by orthogonal linear maps) on the (p− 1)(d+ 1)-
dimensional space D⊥ which is free on D⊥ \ {0}. The action on X is free. Moreover,
F : |X| → D⊥ is Z/p-equivariant.

Thus, we are precisely in the setting where we could apply the equivariant overlap theorem
provided X is a coboundary expander with respect to Fp-coefficients and a Z/p-invariant
size function. This is precisely what we will establish in the remaining part of this section.

To this end, we first observe that

X = (σN)∗p
∆ = ({·}∗(N+1))∗p

∆ = ({·}∗p
∆ )∗(N+1) = [p]∗(N+1)

is the complete (N + 1)-partite N -dimensional complex with parts of size p. Writing X
as [p]∗(N+1) the Z/p-action on X is given by a cyclic shift on each copy of [p].

Write X = U0 ∗ · · · ∗ UN with Ui = [p]. Consider the weight function w : X → R≥0 given
by

σ 7→ w(σ) =


1

p|σ| if σ ⊆ U0 ∗ · · · ∗ Udim σ ⊆ X

0 otherwise.
Write ∥ · ∥ for the induced weighted Hamming norm on cochain groups of X with respect
to Fp-coefficients.

With the notation above we have
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5.3. Number of Tverberg Partitions

Lemma 5.13. For all 0 ≤ k ≤ N we have η∥·∥
k (X;Fp) ≥ 1.

Before we prove this lemma, let us first show how it helps us to prove Theorem 5.12.

Proof of Theorem 5.12. Write Sf (d, p) for the number of (unordered) Tverberg partitions
of f : σN → Rd. With the notation introduced above we have that ∥ · ∥ is the normalized
Hamming on X(N). It follows that

Sf (d, p) ≥ |X(N)|
p! ∥{σ ∈ X(N) : 0 ∈ F (σ)}∥ = pN

(p− 1)!∥{σ ∈ X(N) : 0 ∈ F (σ)}∥.

Plugging the inequality η∥·∥
k (X;Fp) ≥ 1 into the lower bound of the equivariant overlap

theorem (Theorem 4.1), we get

∥{σ ∈ X(N) : 0 ∈ F (σ)}∥ ≥ ∥1X(0)∥
1

2⌈(N+1)/2⌉p⌊(N+1)/2⌋ = 1
2⌈(N+1)/2⌉p⌊(N+1)/2⌋ .

Combining these altogether gives

Sf (d, p) ≥ 1
(p− 1)!

(
p

2

)⌈N/2⌉
,

as desired.

It remains to prove Lemma 5.13.

Proof of Lemma 5.13. We use a random cofilling argument. Given 0 ≤ k ≤ N and
β ∈ Bk+1(X;Fp) and u ∈ Uk+1 we will construct α(u) ∈ Ck(X;Fp) with δα(u) = β such
that

1
n

∑
u∈Uk+1

∥α(u)∥ = ∥β∥.

Since H̃k(X;Fp) = 0 for all 0 ≤ k ≤ N this would finish the proof according to Lemma 3.9.

To define α(u) ∈ Ck(X;Fp) note that Xu = Xu′ ∼= [p]∗N for all u, u′ ∈ Ui, 0 ≤ i ≤ N + 1.
Let u, u′ ∈ Ui with u ̸= u′. For an oriented simplex τ = [v0, . . . , vk] we write τ \ vi for the
oriented simplex (−1)i[v0, . . . , v̂i, . . . , vk], where v̂i indicates that the vertex vi is omitted.

Since localizing along a cycle commutes with taking coboundaries, the localization βu −βu′

is a coboundary, i.e. βu − βu′ ∈ Bk(Xu;Fp). Let α(u,u′) ∈ Ck−1(Xu;Fp) be a cofilling of
βu′ − βu. Now, define α(u) ∈ Ck(X;Fp) by

a(u)(σ) =


0 if u ∈ σ,

bu(σ) if σ ∩ Ui = ∅,
a(u,u′)(σ \ u′) if σ ∩ Ui = {u′}, u ̸= u′.

It is straightforward to check that α(u) is indeed a cofilling of β, i.e. δα(u) = β (cf.
Section 8.1).
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5. Applications of Equivariant Overlap Theorem

To finish the proof we estimate

∥[α(u)]∥ ≤ 1
p

∑
u∈Uk+1

∥α(u)∥

= 1
p

∑
u∈Uk+1

∑
σ∈U0∗···∗Uk

1
pk+1 |α(u)(σ)|

= 1
pk+2

∑
u∈Uk+1

∑
σ∈U0∗···∗Uk

|β(σ ⊔ u)|

= ∥β∥.

5.4 Pair-Crossing Number of Bounded Degree
Expander Graphs

A classical result on crossing numbers (see, e.g., [116]) asserts that for any graph G = (V,E)

cr(G) ≥ Ω(b(G)2) −O(ssqd(G)).

Here b(G) denotes the bisection width of G which is the smallest number |E(S, V \ S)|
for all subsets S ⊆ V with min{|S|, |V \ S|} ≥ 1

3 |V | and ssqd(G) = ∑
v∈V deg(v)2 is the

sum of squared vertex degrees. Note that b(G) ≥ h0(G)
3 |V |. In particular, for a bounded

degree expander graph cr(G) = Ω(h0(G)2|V |2). The usual proof starts with an optimal
drawing of G in the plane and replaces every crossing with a new vertex of degree 4.
Then a seperator theorem is applied to the resulting planar graph. This approach fails
terribly for the pair-crossing number since there is almost no control about the total
number of crossings. For the pair-crossing number the best lower bound in the literature,
we were able to find, is due to Kolman and Matoušek ([79, Theorem 2]) who show that
pcr(G) ≥ Ω

(
b(G)2

log(|V |)2

)
−O(ssqd(G)). Using the quantitative Borsuk–Ulam theorem, we

could get rid of the factor log |V |2-factor if we could show a constant lower bound on
ηk(G∗2

∆ ) for all 0 ≤ k ≤ 2. Unfortunately, we only know how to obtain such a bound for
k = 0 and k = 1 which allows us to remove one of the log |V |-factors and to show the
following result.

Theorem 5.14. Let G = (V,E) be a connected graph such that H̃k(G∗2
∆ ;F2) = 0 for

0 ≤ k ≤ 2. Let ∆ be the maximum vertex degree of a vertex in G. Then

ipcr(G) ≥ Ω
(
h0(G)3

∆3
|E|2

log |V |

)
−O(ssqd(G)).

The reader might object that our lower bound on ipcr(G) in Theorem 5.14 requires much
stronger assumptions than the bound on pcr(G) due to Kolman and Matoušek or the
classical bound on cr(G). We would like to remark that assuming that G is connected is
not a severe restriction. Indeed, we have the following lemma:

Lemma (Lemma 5 in [79]). Let G be a graph on n vertices with bisection with b(G).
Then G contains a subgraph on at least 2

3n vertices with edge expansion constant h0(G) at
least b(G)

n
.
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The assumption that H̃k(G∗2
∆ ;F2) = 0 for 0 ≤ k ≤ 2, which we impose in order to be able

to apply the equivariant topological overlap theorem as well as Lemma 5.1, seems more
restrictive and harder to check. In Section 5.4.2 below we will give sufficient (geometric)
conditions on G which guarantee H̃k(G∗2

∆ ;F2) = 0 for 0 ≤ k ≤ 2. In particular, G∗2
∆ has

vanishing cohomology for sufficiently good expander graphs.

5.4.1 Proof of Theorem 5.14
The strategy of the proof of Theorem 5.14 is as follows: We first establish lower bounds on
the coboundary expansion constants of G∗2 with respect to F2-coefficients and a suitably
weighted Hamming norm. Then, we will make use of Lemma 5.1 to get lower bounds on
ipcr(G). Since G∗2 contains a complete bipartite graph the bound on η

|·|
0 (G∗2;F2) will be

straightforward. For lower bounds η|·|
k (G∗2;F2), k ∈ {1, 2}, we will use a random cofilling

argument. For k = 1 this is fairly straightforward, for k = 2 we will make use of the
notion of a low congestion embedding of Kn to G, which was already used in the proof of
the lower bound on pcr(G) by Kolman and Matoušek.
Let us fix some notation. Let X = G∗2 and n = |V |.
It will be convenient to distinguish the two copies of G in X and write X = GL ∗ GR

with GL = (VL, EL) and GR = (VR, ER) being two distinguished copies of G = (V,E). In
particular, X(0) = VL ⊔ VR.
We endow X with the weight function w : X → R≥0 which is equal to 1/|X(k)| on X(k)
for k ∈ {0, 2, 3} and given by

w(e) =


1

n2 if e = x⊗ y for x ∈ VL, y ∈ VR

0 otherwise

on X(2). Write ∥ ·∥ for the induced weighted Hamming norm on Ck(X;F2), i.e. ∥ ·∥ is the
normalized Hamming norm on Ck(X;F2) for k ∈ {0, 2, 3} and ∥c∥ = 1

n2
∑

x∈VL,y∈VR
c(x⊗y)

for c ∈ C1(X;F2). We write | · | for the (unnormalized) Hamming norm.
For the rest of this section, we consider coboundary expansion of X with respect to
F2-coefficients and size function ∥ · ∥.

A lower bound on η
∥·∥
0 (X;F2)

Lemma 5.15. η∥·∥
0 (X;F2) ≥ 1.

Proof. By the choice of weights w : X → R≥0, η∥·∥
0 (X;F2) is simply the normalized edge

expansion constant of a complete bipartite graph Kn,n. It is well-known (and a special
case of Proposition 3.8) that this constant is at least 1.

A lower bound on η
∥·∥
1 (X;F2)

Lemma 5.16. η∥·∥
1 (X;F2) ≥ h0(G)

2∆ .

Proof. For (u, v) ∈ VL × VR define S(u,v) : C0(X;F2) → C1(X;F2) by

x 7→

u⊗ x if x ∈ VR

(u+ x) ⊗ v ifx ∈ VL.
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Let T (u,v) : C1(X;F2) → C0(X;F2) be the dual map of S(u,v).

Now, given c ∈ C1(X;F2) and (u, v) ∈ VL × VR let c(u,v) := c+ δT (u,v)c. By interchanging
the role of GL and GR we can assume that ∥(δc)|VL∗ER

∥ ≤ 1
2∥δc∥. Given x ∈ VL, y ∈ VR

we have

c(u,v)(x⊗ y) = c(x⊗ y) + ⟨δT (u,v)c, x⊗ y⟩
= c(x⊗ y) + ⟨c, S(u,v)x+ S(u,v)y⟩
= c(x⊗ y) + c(u⊗ v) + c(x⊗ v) + c(u⊗ y)
= δKVR

(cx + cu)(vy),

which we understand as 0 if v = y. Thus, by averaging over (u, v) ∈ VL × VR,

∥[c]∥ ≤ 1
n2

∑
(u,v)∈VL×VR

∥c(u,v)∥ = 4
n4

∑
uu′∈(VL

2 )

∑
vv′∈(VR

2 )
|δKVR

(cu + cu′)(vv′)|.

Expansion of G implies that |δKVR
a| ≤ n

h0(G) |δGR
a| for all a ∈ C0(GR;F2). Hence,

∥[c]∥ ≤ 4
n3h0(G)

∑
uu′∈(VL

2 )

∑
e∈ER

|δGR
(cu + cu′)(e)|.

Note that δGR
(cu + cu′)(e) = δc(u ⊗ e) + δc(u′ ⊗ e). Combining this with the triangle

inequality, we get
∥[c]∥ ≤ 4(n− 1)

n3h0(G) |X(2)|∥(δc)|VL∗ER
∥.

Using the assumption ∥(δc)|VL∗ER
∥ ≤ 1

2∥δc∥ and that |X(2)| = 2|V ||E| ≤ ∆n2 we conclude

∥[c]∥ ≤ 2∆
h0(G)∥δc∥,

as desired.

A lower bound on η
∥·∥
2 (X;F2) Our lower bound on η∥·∥

2 (X;F2) depends on the conges-
tion of an embedding of Kn to G. Given graphs G and H, an embedding of H to G is a
pair (f, φ) where f : V (H) → V (G) is an injective map and φ maps edges e = uv ∈ E(H)
to a path φ(e) connecting f(u) and f(v). The congestion cong(f, φ) of an embedding
(f, φ) is

cong(f, φ) := max
e∈E(G)

|{k ∈ E(H) : e ∈ φ(k)}|,

i.e. the maximum number of paths passing through an edge e of G. We write cong(H;G)
for the minimum congestion of all embeddings (f, φ) of H to G. If G is a graph on n
vertices, we write cong(G) instead of cong(Kn;G). We will show that

Lemma 5.17. η∥·∥
2 (X;F2) ≥ |V |

|E|

(
1

h0(G) +
(

2∆
h0(G) + 1

)
cong(G)

|V |

)−1
= Ω

(
h0(G)2

∆2 log |V |

)
.

For the proof of Lemma 5.17 we need the following result

Theorem 5.18 (Theorem 4 in [79]). Let G be a connected graph on n vertices. Then

cong(G) = O(h0(G)−1n log n).
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Proof of Lemma 5.17. Note that an embedding of Kn to G amounts to choosing a path
γ(x,y) connecting x with y for any pair of vertices x, y ∈ V . Let us fix such a collection
(γ(x,y))xy∈(V

2) of paths coming from a low congestion embedding of Kn to G, i.e. such that
every edge of G appears in at most O(h0(G)−1n log n) of the paths.

We will also think of γ(x,y) as a 1-chain. Moreover, we extend the collection of paths by
(γ(x,x))x∈V which we interpret as the empty path or zero chain in C1(G;F2).

With these notations we can construct a random abstract cone parametrized by VL × VR.
For (u, v) ∈ VL × VR define S(u,v) : C1(X;F2) → C2(X;F2) by

{x, y} 7→


u⊗ xy if xy ∈ GR,

xy ⊗ v if xy ∈ GL,

γ(u,x) ⊗ (v + y) if x ∈ VL, y ∈ VR.

Let T (u,v) : C2(X;F2) → C1(X;F2) be the dual of S(u,v). Given c ∈ C2(X;F2) let
c(u,v) := c+ δT (u,v)c.

For τ = xy ⊗ z ∈ EL ⊗ VR we have

c(u,v)(τ) = c(τ) + ⟨c, S(u,v)(xy + y ⊗ z + x⊗ z)⟩
= ⟨c, (γ(u,x) + γ(u,y) + xy) ⊗ (v + z)⟩
= δKVR

(
cγ(u,x)+γ(u,y)+xy

)
(vz).

For τ = z ⊗ xy ∈ VL ⊗ ER we compute

c(u,v)(τ) = c(τ) + ⟨c, S(u,v)(xy + z ⊗ y + z ⊗ x)⟩
= c(z ⊗ xy) + c(u⊗ xy) + ⟨c, γ(u,z) ⊗ (v + y)⟩ + ⟨c, γ(u,z) ⊗ (v + x)⟩
= ⟨δc, γ(u,z) ⊗ xy⟩.

Using these, we estimate

∥[c]∥ ≤ 1
n2

∑
(u,v)∈VL×VR

∥c(u,v)∥

= 1
n2

∑
(u,v)∈VL×VR

∑
xy∈EL

∑
z∈VR

1
2|E||V |

|δKVR

(
cγ(u,x)+γ(u,y)+xy

)
(vz)|

+ 1
n2

∑
(u,v)∈VL×VR

∑
z∈VL

∑
xy∈ER

1
2|E||V |

|⟨δc, γ(u,z) ⊗ xy⟩|.

Using the triangle inequality we see that the second summand is at most

cong(G)
n|E||V |

|δc| = |E| cong(G)
n|V |

∥δc∥.

For the first summand we use expansion of GR to bound it by

1
n|E||V |h0(G)

∑
u∈VL

∑
xy∈EL

∑
vv′∈ER

|⟨δc, (γ(u,x) + γ(u,y) + xy) ⊗ vv′⟩|.

61



5. Applications of Equivariant Overlap Theorem

Using the triangle inequality this can in turn be upper bound by
1

|E||V |h0(G) |δc| + 1
n|E||V |h0(G)

∑
u∈VL

∑
∈VL

deg(x)
∑

vv′∈ER

|⟨δc, γ(u,x) ⊗ vv′⟩|

≤ |E|
|V |h0(G)∥δc∥ + 2∆|E| cong(G)

n|V |h0(G) ∥δc∥.

Overall we get

η
∥·∥
2 (X;F2) ≥ |V |

|E|

(
1

h0(G) +
(

2∆
h0(G) + 1

)
cong(G)

|V |

)−1

= Ω
 2

∆

(
1

h0(G) +
(

2∆
h0(G) + 1

)
log |V |
h0(G)

)−1


= Ω
(

h0(G)2

∆2 log |V |

)
,

where we used that |E| ≤ ∆|V |
2 and cong(G) = O(h0(G)−1n log n) for the second step.

Putting everything together We would like to apply Lemma 5.1 with Y = G∗2 and
Y0 = G∗2

∆ with the weighted Hamming norm ∥ · ∥ as defined above. Plugging in the lower
bounds on η

∥·∥
k (X;F2) from Lemma 5.15, Lemma 5.16 and Lemma 5.17 to the bound in

Lemma 5.1, we see that the following lemma would finish the proof of Theorem 5.14.

Lemma 5.19. For every 1 ≤ k ≤ 3 we have

|E|2∥1∆(k)∥ = O(ssqd(G)).

where ∆(k) = {σ ∈ X(k) \G∗2
∆ (k) : τ ⊆ σ for some τ ∈ G∗2

∆ (k − 1)}.

Proof. We first note that by Cauchy–Schwarz inequality

|E|2 =
(

1
2
∑
v∈V

deg(v)
)2

≤ 1
4 |V | ssqd(G).

For k = 1 we observe that there are |V | edges in X which are not in G∗2
∆ . It follows

|E|2∥1∆(1)∥ = |E|2

|V |
= O(ssqd(G)),

where we used that |E|2 = O(|V | ssqd(G))), as shown above.
For k = 2 note that triangles in ∆(2) are of the form e⊗ x or x⊗ e for some edge e ∈ E
and x ∈ e. It follows that

|E|2∥1∆(1)∥ = 4|E|3

2|E||V |
= 2|E|2

|V |
= O(ssqd(G)),

where we again used that |E|2 = O(|V | ssqd(G))).
Finally for k = 3, we note that every σ ∈ ∆(3) is of the form σ = e⊗ e′ for some e, e′ ∈ E
with |e ∩ e′| = 1. It follows that

|E|2∥1∆(3)∥ = |1∆(3)| ≤
∑
v∈V

deg(v)(deg(v) − 1) = O(ssqd(G)),

which finishes the proof of the lemma and, hence, the proof of Theorem 5.14.
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5.4.2 Sufficient Conditions for H̃k(G∗2
∆ ;F2) = 0

Let G = (V,E) be a connected graph. We will give sufficient conditions for H̃k(G∗2
∆ ;F2) = 0

for all 0 ≤ k ≤ 2. For k = 0 we have the following lemma whose proof is straightforward
and we omit.

Lemma 5.20. Let G be a connected graph. Then H̃0(G∗2
∆ ;F2) = 0 if and only if G is not

a single vertex.

For k = 1 and k = 2 the following simple but general observation will be useful.

Lemma 5.21. Let X ⊆ Y be simplicial complexes with inclusion map i : X → Y . Let
A be an abelian group. If H̃k(Y ;A) = 0 and every k-cocycle in X can be extended to
a k-cocycle in Y (i.e. for all z ∈ Zk(X;A) there is z̃ ∈ Zk(Y ;A) with i∗z̃ = z) then
H̃k(X;A) = 0.

Proof. Let z ∈ Zk(X;A). By assumption there is z̃ ∈ Ck(Y ;A) with i∗z̃ = z. H̃k(Y ;A) =
0 implies that z̃ = δã for some ã ∈ Ck−1(Y ;A). Let a := i∗ã ∈ Ck−1(X;A). Then
δa = δi∗ã = i∗δã = i∗z̃ = z. This shows that z ∈ Bk(X;A), hence Zk(X;A) = Bk(X;A)
and H̃k(X;A) = 0, as desired.

The following notation will be convenient: Write G∗2 = GL ∗ GR with GL = (VL, EL)
and GR = (VR, ER) being two distinguished copies of G. Write ν : G∗2 → G∗2 for the
Z/2-action on G∗2. Given σ ∈ G∗2 write σ̄ for the image of σ under ν. For x, y ∈ V write
x ∼ y if xy ∈ E and NG(x) = {y ∈ V : y ∼ x} for the set of neighbours of x in G.

Lemma 5.22. Let G = (V,E) be a connected graph with at least two vertices. If there is
v0 ∈ V with deg(v0) ≥ 3, then H̃1(G∗2

∆ ;F2) = 0.

Proof. According to Lemma 5.21 it suffices to show that every z ∈ Z1(G∗2
∆ ;F2) can be

extended to a cocycle z̃ in G∗2. So, given x ∈ VL, we would like to define z̃(x⊗ x̄) such
that δz̃(τ) = 0 for all τ ∈ G∗2(2) \G∗2

∆ (2).

Given x ∈ VL let u ∼ x be a neighbour of x and define z̃(x⊗ x̄) := z(xu) + z(u⊗ x̄). Note
that it suffices to check that z̃ is independent of the choice of neighbour u of x and that
z(ux) + z(x ⊗ v̄) + z(v̄x̄) + z(u ⊗ x̄) = 0 for all u ∼ x, v ∼ x, x ∈ VL. This amounts to
show that ⟨z, a⟩ = 0 for all cycles a ∈ Zk(G∗2

∆ ;F2) of the form a = ux+ xv+ v⊗ x̄+ v⊗ x̄
and a = ux+ x⊗ v̄ + v̄x̄+ u⊗ x̄ for any ux, vx ∈ EL. For this, it suffices to show that
each such cycle is a boundary in G∗2

∆ .

It is probably more instructive to look at Figure 5.1 instead of trying to digest the formulas
that follow for the sake of completness.

First assume that a is of the form a = ux+ xv+ v⊗ x̄+ u⊗ x̄. If deg(x) ≥ 3 we can pick
w ∼ x with w ̸= u,w ̸= v. Then c := ux⊗ w̄ + xv ⊗ w̄ + v ⊗ x̄w̄ + u⊗ x̄w̄ ∈ C2(G∗2

∆ ;F2)
is a filling of a. If deg(x) = 2, let γ = (y0, y1, . . . yl, yl+1) a sequence of vertices such
that (y0, . . . , yl) is a path in G from v to v0 with deg(v0) ≥ 3, yl+1 ∼ v0, yl+1 ≠ yl−1. By
interchanging the roles of u and v, if necessary, we can assume that x /∈ {y1, . . . , yl}. We
can argue by induction on l. By adding ∂(xu⊗ v̄ + u⊗ x̄v̄ + y1v ⊗ x̄+ y1 ⊗ v̄x) to a we
reduce to a path of length l − 1 if l > 0 and to the previous situation where deg x ≥ 3 if
l = 0.
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To see that a = ux+ x ⊗ v̄ + v̄x̄+ u ⊗ x̄ is a boundary in G∗2
∆ for any ux, vx ∈ EL, we

distinguish two cases: If u ̸= v we have ∂X(ux⊗ v̄ + u⊗ v̄x̄) = z. If u = v, at least one of
x and u must have another neighbour. We can assume that w ∼ x, x ̸= u. By adding
∂(wx⊗ ū+ w ∗ x̄ū) to a we reduce to a situation we already dealt with.

Figure 5.1: A cycle vx+ v ⊗ x̄+ u⊗ x̄+ ux as in (i) is a boundary in the deleted join
if x has a third neighbour w. A filling is obtained by coning over w̄. To see that in (ii)
the cycle vx+ vx̄+ x̄u+ ux is a boundary in the deleted join, we add the boundary of
u⊗ x̄v̄+ ux⊗ v̄ leaving us to find a filling of the cycle xv+ v⊗ x̄+ x̄v̄+ x⊗ v̄. By adding
the boundary of vy1 ⊗ x̄+ y1 ⊗ x̄v̄ we then reduce to the cycle xv + vy1 + y1 ⊗ v̄ + x⊗ v̄.
By going along a path from v to a vertex v0 with degree at least 3 we reduce end up in a
situation as in (i). In (iii) we easily fill the cycle ux+ xv̄ + v̄x̄+ x̄u by ux⊗ v̄ + u⊗ v̄x̄ if
u ̸= v or reduce to a situation as in (ii) by adding a boundary wx⊗ ū+ w ∗ x̄ū.

Let us remark that it is not difficult to show that if G is a connceted graph which is not
a single vertex then H̃1(G∗2

∆ ;F2) = 0 implies that G has a vertex of degree at least 3, i.e.
that the converse of Lemma 5.22 is true in this case.
Similar to the case k = 1 and under the mild assumption that G has minimum vertex
degree at least 3, we can deduce H̃2(G∗2

∆ ;F2) = 0 by showing that a certain (small) set of
(short) cycles in G∗2

∆ are boundaries. We have:

Lemma 5.23. Let G = (V,E) be a connected graph with minimum vertex degree at least
3. Then H̃2(G∗2

∆ ;F2) = 0 if and only if the following two types of 2-cycles are boundaries
in G∗2

∆ :

(i) ∂G∗2((ax+ xb) ∗ (c̄x̄+ x̄d̄)) for every x ∈ V and pairwise distinct a, b, c, d ∈ NG(x)
and
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(ii) ∂G∗2(ay∗(ȳc̄+ȳx̄)+yx∗(c̄ȳ+ȳx̄+x̄d̄)+bx∗(ȳx̄+x̄d̄)) for all xy ∈ E, a, c ∈ NG(y)\{x},
a ̸= c, b, d ∈ NG(x) \ {y}, b ̸= d.

Figure 5.2: Assume that c can be extended to a cocycle c̃ in G∗2. By adding a coboundary
of some edges of the form xx̄ we can assume that c̃(vxx ∗ x̄) = 0 for some fixed neighbour
vx of x. This determines the value of c̃(x ⊗ x̄ū) if u ̸= vx. But this forces the value of
c̃(ux⊗ x̄) for a neighbour u of x, u ̸= vx. Finally, this also determines c̃(x⊗ x̄v̄x).

Figure 5.3: Three cases to be distinguished.

Proof of Lemma 5.23. If H̃2(G∗2
∆ ;F2) = 0 then every 2-cycle is a boundary in G∗2

∆ . For
the converse direction, we show that if all the 2-cycles as in (i) and (ii) are boundaries in
G∗2

∆ , then every c ∈ Z2(G∗2
∆ ;F2) can be extended to a cocycle in G∗2 (which will finish

the proof by Lemma 5.21).

To this end, let c ∈ Z2(G∗2
∆ ;F2) and for every x ∈ V let vx ∈ NG(x) be a fixed neighbour

of x in G. We can assume that if xy ∈ E then x ̸= vy or y ̸= vx. Define c̃ ∈ C2(G∗2;F2)
with supp(c̃) ⊆ G∗2(2) \G∗2

∆ (2) as follows (see also Figure 5.2):

(i) For every x ∈ V define c̃(xvx ∗ x̄) = 0

(ii) For u ∈ NG(x), u ̸= vx define c̃(x⊗ x̄ū) = c(xvx ⊗ ū) + c(vx ⊗ ūx̄).

(iii) For u ∈ NG(x), u ̸= vx, pick a ∈ NG(x), a /∈ {vx, u} and define

c̃(ux⊗ x̄) = c̃(x⊗ x̄ā) + c(xu⊗ ā) + c(u⊗ x̄ā).

(iv) For x ∈ V define c̃(x⊗ x̄v̄x) = c̃(vxx⊗ v̄x) + c̃(xvx ⊗ x̄) + c̃(vx ⊗ v̄xx̄).
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It remains to check that c̃ is well-defined, i.e. that in (iii) c̃(ux⊗ x̄) does not depend on
the choice of a and that for every xy ∈ E with y ̸= vx we have

c̃(x⊗ x̄ȳ) + c̃(y ⊗ x̄ȳ) + c̃(xy ⊗ x̄) + c̃(xy ⊗ ȳ) = 0.

For any other σ ∈ G∗2(3) \G∗2
∆ (3) we have δG∗2 c̃(σ) = 0 by construction.

To see that in (iii) the value of c̃(ux⊗ x̄) does not depend on the choice of a let x ∈ V
and u, vx, a, a

′ ∈ NK(x) pairwise distinct neighbours. We compute

c̃(x⊗ x̄ā) + c(xu⊗ ā) + c(u⊗ x̄ā) + c̃(x⊗ x̄ā′) + c(xu⊗ ā′) + c(u⊗ x̄ā′)
= c(xvx ⊗ ā) + c(vx ⊗ āx̄) + c(xu⊗ ā) + c(u⊗ x̄ā)
+ c(xvx ⊗ ā′) + c(vx ⊗ ā′x̄) + c(xu⊗ ā′) + c(u⊗ x̄ā′)
= ⟨c, ∂G∗2(ux+ vxx) ⊗ (āx̄+ ā′x̄)⟩.

But by assumption ∂G∗2(ux + vxx) ⊗ (āx̄ + ā′x̄) = ∂G∗2
∆
b for some b ∈ C3(G∗2

∆ ;F2). But
then

⟨c, ∂G∗2
∆
b⟩ = ⟨δXc, b⟩ = 0,

as desired.

It remains to check that for every xy ∈ E with y ̸= vx we have

c̃(xx̄⊗ ȳ) + c̃(yx̄⊗ ȳ) + c̃(xy ⊗ x̄) + c̃(xy ⊗ ȳ) = 0.

To this end, fix xy ∈ E with y ̸= vx. We distinguish three cases as depicted in Figure 5.3.
In (a) we assume that vy /∈ {x, vx}. Let ax ∈ NG(y) \ {vy, x}, ay ∈ NG(x) \ {vx, y}. We
compute

c̃(xx̄⊗ ȳ) + c̃(y ⊗ x̄ȳ) + c̃(xy ⊗ x̄) + c̃(xy ⊗ ȳ)
= c(xvx ⊗ ȳ) + c(vx ⊗ x̄ȳ) + c(vyy ⊗ x̄) + c(vy ⊗ x̄ȳ)
+ c̃(x⊗ x̄āy) + c(xy ⊗ āy) + c(y ⊗ x̄āy)
+ c̃(y ⊗ ȳāx) + c(xy ⊗ āx) + c(x⊗ ȳāx)
= c(xvx ⊗ ȳ) + c(vx ⊗ x̄ȳ) + c(vyy ⊗ x̄) + c(vy ⊗ x̄ȳ)
+ c(xvx ⊗ āy) + c(vx ⊗ x̄āy) + c(xy ⊗ āy) + c(y ⊗ x̄āy)
+ c(yvy ⊗ āx) + c(vy ⊗ ȳāx) + c(xy ⊗ āx) + c(xȳāx)
= ⟨c, ∂G∗2(vyy ⊗ (ȳāx + ȳx̄) + xy ⊗ (ȳāx + x̄ȳ + āyx̄) + vxx⊗ (x̄ȳ + x̄āy)⟩
= 0,

since ∂G∗2 (vyy ⊗ (ȳāx + ȳx̄) + xy ⊗ (ȳāx + x̄ȳ + āyx̄) + vxx⊗ (x̄ȳ + x̄āy)) is a boundary
in G∗2

∆ by assumption.

In (b) we have x = vy and thus c̃(xx̄ ⊗ ȳ) + c̃(y ⊗ x̄ȳ) + c̃(xy ⊗ x̄) + c̃(xy ⊗ ȳ) = 0 by
construction.

For (c) we see that eventhough vx = vy the same computation as in (a) goes through.

Under the following conditions on G the assumption of the previous lemma hold:

Lemma 5.24. Let G = (V,E) be a connected graph.
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(i) Let x ∈ V , a, b, c, d ∈ NG(x) pairwise distinct. Assume there are vertex disjoint
paths γab connecting a with b and γcd connecting c with d which do not pass through
x. Then ∂G∗2((ax+ xb) ∗ (c̄x̄+ x̄d̄)) is a boundary in G∗2

∆ .

(ii) Let xy ∈ E, a ̸= c ∈ NG(y) \ {x}, b ̸= d ∈ NK(x) \ {y}. Assume there are vertex
disjoint paths γab connecting a with b and γcd connecting c with d which do not pass
through x and y, then ∂G∗2(ay ∗ (ȳc̄+ ȳx̄+ ȳx̄) + yx ∗ (c̄ȳ + x̄d̄) + bx ∗ (ȳx̄+ x̄d̄)) is
a boundary in G∗2

∆ .

Proof of Lemma 5.24. For (i) let α = (γab + ax+ xb) ∗ (γ̄cd + c̄x̄+ x̄d̄). Notice that α is
the join of two cycles and, hence, ∂G∗2α = 0. We deduce that

∂G∗2((ax+ xb) ∗ (c̄x̄+ x̄d̄)) = ∂G∗2(γab ∗ (c̄x̄+ x̄d̄+ γ̄cd) + (ax+ xb) ∗ γ̄cd).

Since γab and γcd are vertex disjoint and do not pass through x, we have γab ∗ (c̄x̄+ x̄d̄+
γ̄cd) + (ax+ xb) ∗ γ̄cd ∈ C3(G∗2

∆ ;F2), showing that (ax+ xb) ∗ (c̄x̄+ x̄d̄) ∈ B2(G∗2
∆ ;F2), as

desired.

The argument for (ii) is similar and omitted.

The conditions on G in Lemma 5.24 are related to 2-linkedness of a graph:

Definition 5.25. Let k > 0 be a positive integer. A graph G is k-linked if G has at least
2k vertices and for every sequence (s1, . . . , sk, t1, . . . , tk) of 2k pairwise distinct vertices
there are k vertex-disjoint paths γ1, . . . , γk such that γi connects si with ti.

In this language, we see that if G is a graph such that G\e is 2-linked for every edge e then
G satisfies the conditions of Lemma 5.24. 2-linkedness is related to vertex connectivity.
Recall that a graph G is k-vertex-connected if it has more than k vertices and remains
connected after removing fewer than k vertices. Jung shows in [69]

Theorem 5.26 (Satz 2 in [69]). Let G = (V,E) be a 4-vertex-connected (in the sense of
vertex-connectivity) graph. Then G is 2-linked if and only if G is non-planar or maximal
planar (i.e. if 3|V | − 6 = |E|). In particular, if G is 6-connected then G is 2-linked.

As a consequence of Jung’s result it is not difficult to show that:

Corollary 5.27. Let G be a 6-vertex-connected, d-regular graph on n vertices. Then
H̃2(G∗2

∆ ) = 0.

We close this section with the remark that vertex connectivity can be related to expansion
properties of graphs. Here is a fairly old result in this direction due to Fiedler:

Theorem (4.1 in [44]). Let G be a graph which is not a complete graph. Let λ2(G) the
second smallest eigenvalue of its Laplacian. If λ2(G) ≥ k for some k ∈ Z>0 then G is
k-connected.
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5.4.3 A different approach without assuming H̃k(G∗2
∆ ;F2) = 0

We briefly outline a different approach to relate coboundary expansion of G∗2
∆ to coboundary

expansion of G∗2 without a priori assuming that H̃k(G∗2
∆ ;F2) = 0 for all k ∈ {0, 1, 2}. We

assume that we work with a weighted Hamming norm ∥ · ∥ on G∗2
∆ where the weights

are obtained by restricting the Garland weights or normalized Hamming norm on G∗2 to
G∗2

∆ . Write δG for the minimum vertex degree of G. Then for k = 0 and k = 1, we can
use Proposition 5.2 to get η∥·∥

k (G∗2
∆ ;F2) ≥ η

∥·∥
k (G∗2;F2) − C

δG
where C > 0 is an absolute

constant C > 0.

For k = 2 we can use the local-to-global criterion of Evra–Kaufman (see [40, Theorem 5])
or an ad-hoc argument to show expansion for small cochains in G∗2 provided that G is a
sufficiently good expander. That is to say, if η0(G) is sufficiently large, then there are
constants µ, η > 0 (solely depending on the expansion of G) such that ∥δc∥ ≥ η∥[c]∥ for
all cochains c ∈ C2(G∗2;F2) with ∥[c]∥ ≤ µ. Let c ∈ C2(G∗2

∆ ;F2) be minimal. As before
write c̄ ∈ C2(G∗2;F2) for the extension by 0 of c to G∗2. We distinguish two cases. If
∥c∥ ≤ µ, we get

∥δc∥ ≥
(
η − C

δG

)
∥c∥

for some constant C > 0 and for ∥c∥ ≥ µ we get

∥δc∥ ≥
(

C ′

log |V |
− ssqd(G)

µ|E|2

)
∥c∥.

Unfortunately, the proofs using local-to-global arguments for expansion of small 2-cochains
in G∗2

∆ require quite strong expansion of G and result in very small constants µ and η. To
be a bit more precise, let us state one of the results, we know how to prove.

Proposition. Let G = (V,E) be a connected d-regular graph. Let

ϕ(G) = min
∅̸=S⊊V

|E(S, V \ S)|
d

|V | |S||V \ S|
.3

Let δ ∈ (0, 1) and assume that ϕ(G) ≥ 1 − δ. Let ε, ε̃ ∈ (0, 1) and 0 ≤ µ ≤ 1/2. Assume
that c ∈ C2(G∗2;F2) is minimal with ∥c∥ ≤ µ. Then

|δc| ≥ d|c|
(

3
5(1 − δ) − 1 +

(
ε

2(1 − δ
1
5 −

(
δ

2(1 − ε) + 3εε̃
(1 − ε)2

))(
2 −

(
δ + 3µ

ε̃2

)))
.

In particular, for δ = 1/1000, ε = 9/10, ε̃ = 1/54000 and µ = 1
972000000000 we get

|δc| ≥ 152209
2000000d|c|.

In particular, in order to get a positive lower bound on η
∥·∥
2 (G∗2

∆ ;F2), we would need ϕ(G)
quite close to 1 (and δG and |E| to be sufficiently large).

3Note that for a d-regular graph G, η0(G) ≥ ϕ(G).
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5.5 Crossing Number of Km,n

As mentioned in the introduction, an initial motivation to prove Theorem 4.1 was to have a
(new) tool to attack various old conjectures regarding crossing numbers of various families
of graphs. Recall Zarankiewicz’ conjecture claims that the crossing number cr(Km,n) of
the complete bipartite graph Km,n (when we write Km,n, we assume that m ≤ n) is

cr(Km,n) = Zm,n,

where for m,n ≥ 1,

Zm,n :=
⌊
m

2

⌋ ⌊
m− 1

2

⌋ ⌊
n

2

⌋ ⌊
n− 1

2

⌋
∼ m2n2

16 .

A classical construction due to Zarankiewicz (see Figure 5.4) shows that cr(Km,n) ≤ Zm,n.
But even the asymptotics of cr(Km,n) as m,n → +∞ remains not fully understood. Note

Figure 5.4: We show Zarakiewicz’ construction for a drawing f of Km,n with cr(f) = Zm,n

for (m,n) ∈ {(3, 3), (7, 9)}. The m vertices of one part are placed on a horizontal axis,
the n vertices of the other are placed on a vertical axis, such that roughly half of the
vertices of each part end up on one side of axis. Then, the edges are drawn using straight
segments.

that (Km,n)∗2
∆ = [m]∗2

∆ ∗ [n]∗2
∆ which for large m and n we think of to be roughly equal to

Λ3
m,m,n,n = [m]∗2 ∗ [n]∗2. Theorem 4.1 (in combination with Proposition 5.2) would imply

the asymptotic version of Zarankiewicz’ conjecture

cr(Km,n) ≥ ipcr(Km,n) ≥ 1
16(1 + o(1))m2n2, as m,n → +∞,

if we could show that ηk(Λ3
m,m,n,n) ≥ 1 for all 0 ≤ k ≤ 2. But, unfortunately, as we will

see in Theorem 7.7, this does not hold (at least for k = 2).
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Due to the flexibility of the equivariant overlap theorem, we would still get the asymptotic
version of Zarankiewicz’ conjecture if we could show η

∥·∥
k (Λ3

m,m,n,n;F2) ≥ 1 with respect to
some weighted Hamming norm ∥ · ∥ such that ∥ · ∥ is invariant under the Z/2-action, is
equal to the normalized Hamming norm on Λ3

m,m,n,n(3) and such that ∥1Λ3
m,m,n,n(0)∥ = 1.

Unfortunately, we do not know how to prove such a result.
But using an interesting combination of expansion with respect to Z-coefficients and
F2-coefficients we can show that:

Proposition 5.28. We have for m ≤ n that

cr(Km,n) ≥ 4
5

1
16m

2n2 − 3
10mn

2 − 254016(mn2 +m2n2 − 2mn).

In particular,
lim

m,n→+∞

cr(Km,n)
Zm,n

≥ 4
5 .

It is important to note that the lower bound in Proposition 5.28 is on cr(Km,n) and not
on ipcr(Km,n). In fact, a starting point of the proof is the observation that an optimal
drawing f : |Km,n| → R2 of Km,n achieving cr(Km,n) can be assumed to have the following
properties (see for instance [132, Section 1]):

(i) f is piecewise-linear in general position,

(ii) no two edges which share an endpoint have another common point except this
endpoint, and

(iii) any two edges cross at most once.

We call a drawing satisfying (i)-(iii) a good drawing. It follows from properties (i)-(iii)
that b := F ⋔(0) ∈ B3(Km,n

∗2
∆ ;Z) is {−1, 0,+}-valued where F : Km,n

∗2
∆ →Z/2 R3 is the

equivariant map induced by f . We have b(e⊗e′) ∈ {−1,+1} if and only if the edges e and
e′ cross (for the drawing f). Moreover, the value of b(e⊗ e′) then depends on the ’sign’ of
the crossing of e and e′. In particular, for such f , we have |b|22 = 2 cr(Km,n) where | · |22
denotes the squared ℓ2-norm. Then, we will use expansion with respect to Z-coefficients
in dimension 2 and expansion with respect to F2-coefficients to deduce the lower bound
as claimed.
Before we add the details to this outline, let us compare the bound in Proposition 5.28 to
existing bounds in the literature. An old bound from 1970 due to Kleitman [78] is that

cr(Km,n) ≥ 4
5Zm,n

for all m ≥ 5. This was the state-of-the-art until in 2003 Nahas (see [111]) gave a tiny
improvement on Kleitman’s bound showing that for sufficiently large m and n

cr(Km,n) ≥)1
5m(m− 1)

⌊
n

2

⌋ ⌊
n− 1

2

⌋
+ 9.9 × 10−6m2n2.

Using semidefinite programming techniques de Klerk et al. were able to improve the
asymptotic bound in a series of works [28, 29] to

lim
n→+∞

cr(Km,n)
Zm,n

≥ 0.8594 m

m− 1 ,
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whenever m ≥ 9. In a recent preprint [20] Brosch and Polak show that the constant
0.8594 can be improved to 0.8878 if m ≥ 13. Furthermore, it was already announced in
2013 [113] by Norin and Zwols that the constant could be further improved to 0.905 using
flag algebra techniques. As far as we know this work has not been published (yet).

In view of these results we see that Proposition 5.28 recovers Kleitman’s bound asymptot-
ically.

5.5.1 Setting-up the Stage
For the proof of Proposition 5.28 we will need the following notation. Assume 3 ≤ m ≤ n
are fixed. Let X := (Km,n)∗2

∆ and Y = K∗2
m,n. We will write Y = A ∗ B ∗ C ∗ D with

A = C = [m] and B = D = [n]. We will establish expansion properties for Y and then
use the fact that |Y (k) \ X(k)|/|Y (k)| = o(1) for m,n → +∞ for all k ∈ {0, 1, 2, 3} to
get good bounds for the expansion constants of X as well. In order to pass from Y to
X we will make use of the fact that H̃k(X;Z) = 0 for all 0 ≤ k ≤ 2. Indeed, note that
X = (Km,n)∗2

∆
∼= [m]∗2

∆ ∗ [n]∗2
∆ is the join of two connected graphs (here we need that

n ≥ m ≥ 3), hence the vanishing of the cohomology groups of X follows from the Künneth
theorem.

We will consider expansion of Y with respect to integer coefficients in dimension 2 to 3
and with respect to F2-coefficients in dimension 0 to 1 and 1 to 2. We will also make use
of two different weight functions w1, w2 : Y → R≥0 given as follows:

• w1(σ) = w2(σ) = 1
m2n2 for σ ∈ Y (3).

• w1(τ) = 1
2m2n

for τ ∈ Y (2) with τ ∈ A ∗ B ∗ C ⊔ A ∗ C ∗D and 0 otherwise while
w2(τ) = 1

2mn2 for τ ∈ Y (2) with τ ∈ A ∗B ∗D ⊔ B ∗ C ∗D and 0 otherwise.

• w1(e) = 1
m2 for e ∈ Y (1) with e ∈ A ∗ C and 0 otherwise while w2(e) = 1

n2 for
e ∈ Y (1) with e ⊆ B ∗D and 0 otherwise.

• w1(x) = 1
2m

for x ∈ A ⊔ C and 0 elsewhere while w2(x) = 1
2n

for x ∈ B ⊔D and 0
elsewhere.

We endow X with the weights obtained by restricting the weights wi on Y to X. We
will denote them by wi as well. We write ∥ · ∥i, i ∈ {1, 2}, for the induced weighted
Hamming norm on cochain groups Ck(Y ;F2) (or Ck(X;F2)) and | · |2i , i ∈ {1, 2}, for the
size function on Ck(Y ;Z) (or Ck(X;Z)) induced by the weights wi and the ℓ2

2-norm on
Z. Note that the weights wi are invariant under the Z/2-action on X (or Y ) hence the
induced norms are Z/2-invariant as well.

Having all these notations at hand, we will state a couple of lemmata in the next subsection
which establish the required expansion properties of Y and will help us to pass from Y
to X. Then, we will first see how the lemmata help to prove Proposition 5.28 before we
close the section with the proofs of the lemmata and some remarks.

5.5.2 A Bunch of Lemmata
We are able to show the following expansion properties for Y :

Lemma 5.29. For i ∈ {1, 2} we have η∥·∥i

0 (Y ;F2) ≥ 1.
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Lemma 5.30. For i ∈ {1, 2} we have η∥·∥i

1 (Y ;F2) ≥ 1.

Lemma 5.31. For any f ∈ C2(Y ;Z) we have |δf |21 ≥ 4
5 min{|[f ]|21, |[f ]|22}.

To relate expansion properties of X with those of Y the following two lemmata will be
useful:

Lemma 5.32. For k ∈ {1, 2, 3} let ∆(k) = {σ ∈ Y (k) : there exists τ ∈ X(k−1), τ ⊆ σ}.
Then,

(i) ∥1∆(1)∥1 ≤ 1/m and ∥1∆(1)∥2 ≤ 1/n.

(ii) ∥1∆(2)∥1 ≤ 1/m and ∥1∆(2)∥2 ≤ 1/n.

(iii) |1∆(3)|21 ≤ m+n−2
mn

.

Lemma 5.33. Let b ∈ B3(X;Z) with b(σ) ∈ {−1, 0, 1} for all σ ∈ X(3). Then there is
b̃ ∈ B3(Y ;Z) such that |b̃|21 ≤ |b|21 + 254016m+n−2

mn
and such that the restriction of b̃ to X

is equal to b.

5.5.3 Proof of Proposition 5.28 Assuming the Lemmata
We show how the lemmata can be put together to prove Proposition 5.28.

Proof of Proposition 5.28. Let f : |Km,n| → R2 be a good drawing of Km,n achieving
cr(Km,n). As above write Y = K∗2

m,n for the join and X = (Km,n)∗2
∆ for the deleted join

of Km,n with itself. Let i : X → Y be the inclusion map. Write F : X →Z/2 R3 for
the induced equivariant map. Let b(3) := F ⋔(0) ∈ B3(X;Z). As discussed above b(3)

is {−1, 0, 1}-valued with 2 cr(Km,n) = |b(3)|21. Let b̄(3) ∈ B3(X;F2) the reduction of b(3)

modulo 2. Note that ∥b̄(3)∥1 = |b(3)|21.

Next we construct a pagoda for b̄(3). To this end, let b̃(3) ∈ B3(X;Z) such that b̃(3) restricts
to b(3) on X and such that |b̃(3)|21 ≤ |b(3)|21 + 254016m+n−2

mn
. According to Lemma 5.33 we

can always find such a b̃(3).

By Lemma 5.31 there is ã(2) ∈ B2(Y ;Z) with δã(2) = b̃(3) and such that |b̃(3)|21 ≥
4/5 min{|ã(2)|21, |ã(2)|22}. Upon interchanging the roles of m and n we can assume that
min{|ã(2)|21, |ã(2)|22} = |ã(2)|21.

Let ā(2) = i∗ã(2) mod 2 ∈ C2(X;F2). Note that |ã(2)|21 ≥ ∥ā(2)∥1.

Let b(2) = ā(2) + νā(2), where ν is the Z/2-action on X. As in the proof of the equivariant
overlap theorem we have δb(2) = 0 and since H̃2(X;F2) = 0 there is c(1) ∈ C1(X;F2) with
δc(1) = b(2).

Let b̃(2) = δc̄(1) where c̄(1) denotes the extension by 0 of c(1) to C1(Y ;F2). By Lemma 5.32
(ii) we have ∥b̃(2)∥1 ≤ ∥b(2)∥1 + 1/m.

According to Lemma 5.30 there is a cofilling ã(1) ∈ C1(Y ;F2) of b̃(2) such that ∥b̃(2)∥1 ≥
∥ã(1)∥.

Let a(1) = i∗ã(1) ∈ C1(X;F2) and b(1) = a(1) +νa(1). Then δb(1) = 0 and since H̃1(X;F2) =
0 we find c(0) ∈ C0(X;F2) with δc(0) = b(1). Let b̃(1) = δc̄(0). By Lemma 5.32 (i) we have
∥b̃(1)∥1 ≤ ∥b(1)∥ + 1/m.
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Lemma 5.29 implies that there is a cofilling ã(0) of b̃(0) with ∥b̃(0)∥1 ≥ ∥ã(0)∥1. Let
a(0) = i∗ã(0) and b(0) = a(0) + νa(0).
We have constructed a pagoda (b̄(3), ā(2), b(2), a(1), b(1), a(0), b(0)) for b̄(3). In particular, by
Lemma 4.8, we must have b(0) = 1X(0).
Putting all the estimates together, we conclude

2 cr(Km,n)
m2n2 + 254016m+ n− 2

mn
≥ |b(3)|21 ≥= 1

10 − 3
5m,

finishing the proof after rearranging.

5.5.4 Proofs of the Lemmata

Proof of Lemma 5.29. We simply note that by definition of the weights wi we have
η

∥·∥1
0 (Y ;F2) = η0(Km,m) and η∥·∥2

0 (Y ;F2) = η0(Kn,n). It is a well-known fact (and a special
case of Proposition 3.8) that η0(Kn,n) ≥ 1 for all n ∈ Z>0.

Proof of Lemma 5.30. For the proof we will never use that m ≤ n. Thus, upon interchan-
ing the roles of m and n, it suffices to consider the norm ∥ · ∥1. We will use a random
cofilling argument. To this end, let γ ∈ C1(Y ;F2) be minimal. Let β := δγ ∈ B2(Y ;F2).
Interchanging the roles of B and D we can assume that

1
m2n

∑
a∈A,b∈B,c∈C

|β(abc)| ≤ 1
2∥β∥1 (5.1)

Fix a0 ∈ A. For b ∈ B define S(b) : C0(Y ;F2) → C1(Y ;F2) by

S(b)x :=

bx if x ∈ A ⊔ C ⊔D

a0b+ a0x if x ∈ B.

Let T (b) : C1(Y ;F2) → C0(Y ;F2) be the dual map of S(b). For b ∈ B let γ(b) := γ+ δT (b)γ.
We compute for a ∈ A and c ∈ C that

γ(b)(ac) = γ(ac) + ⟨δT (b)γ, ac⟩
= γ(ac) + ⟨γ, S(b)c+ S(b)a⟩
= γ(ac) + γ(bc) + γ(ab)
= β(abc).

If follows that

∥γ∥1 ≤ min
b∈B

∥γ(b)∥1

≤ 1
n

∑
b∈B

∥γ(b)∥1

= 1
m2n

∑
b∈B

∑
a∈A,c∈C

|γ(b)(ac)|

= 1
m2n

∑
a∈A,b∈B,c∈C

|β(abc)|

≤ ∥β∥1,

where we used the assumption (5.1) for the last inequality.
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For the proof of Lemma 5.31 we will need the following inequality.

Claim 5.34. Let β ∈ B3(Y ;Z). Then

1
m

∑
xx′∈(A

2)⊔(C
2)

|βx′ − βx|2 + 1
n

∑
xx′∈(B

2)⊔(D
2)

|βx′ − βx|2 ≤ 3m2n2|β|21.

Proof. This is a special case of Lemma 8.4 below.

Proof of Lemma 5.31. We use a random cofilling argument. Let β ∈ B3(Y ;Z). As before
we will not use the assumption m ≤ n. Thus, upon changing m with n, we can assume
by Claim 5.34 that

1
m

 ∑
aa′∈(A

2)
|βa′ − βa|2 +

∑
cc′∈(C

2)
|βc′ − βc|2

 ≤ 3
2m

2n2|β|21. (5.2)

Given aa′ ∈
(

A
2

)
and c ∈ C let γ(a,a′,c) be a cofilling of βa′ − βa ∈ B2(B ∗ C ∗D;Z) such

that
γ(a,a′,c)(bd) = β(abcd) − β(a′bcd)

for all b ∈ B, d ∈ D. Such a cofilling always exists. Indeed, we could choose γ(a,a′,c) =
γ − δγ̄c for any cofilling γ of βa′ − βa.

Similarly, for cc′ ∈
(

C
2

)
and a ∈ A let γ(c,c′,a) be a cofilling of βc′ − βc ∈ B2(A ∗B ∗D;Z)

such that
γ(c,c′,a)(bd) = β(abcd) − β(abc′d)

for all b ∈ B, d ∈ D.

Now let (a, c, ε) ∈ A× C × {−,+}. If ε = − define γ(a,c,ε) ∈ C2(Y ;Z) by

γ(a,c,−)(τ) =

β(aτ) if τ ∈ B ∗ C ∗D
γ(a,a′,c)(xy) if τ = a′xy ∈ A ∗ (B ∗ C ⊔ B ∗D ⊔ C ∗D).

Similarly, if ε = + define γ(a,c,ε) ∈ C2(X;Z) by

γ(a,c,+)(τ) =


β(a′b′cd′) if τ = a′b′d′ ∈ A ∗B ∗D
γ(c,c′,a)(xy) if τ = xyc′ ∈ A ∗B ∗ C,
γ(c,c′,a)(xy) if τ = xc′y ∈ A ∗ C ∗D or τ = xc′y ∈ B ∗ C ∗D.

It is straightforward to check that δγ(a,c,ε) = β for all a ∈ A, c ∈ C, ε ∈ {−,+}.
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Averaging over all choices of a ∈ A, c ∈ C, ε ∈ {−,+} gives

min
a∈A,c∈C,ε∈{−,+}

|γ(a,c,ε)|22 ≤ 1
2m2

∑
a∈A,c∈C

∑
b′∈B,c′∈C,d′∈D

1
2mn2 |γ(a,c,+)(b′c′d′)|2

+ 1
2m2

∑
a∈A,c∈C

∑
a′∈A,b′∈B,d′∈D

1
2mn2 |γ(a,c,+)(a′b′d′)|2

+ 1
2m2

∑
a∈A,c∈C

∑
b′∈B,c′∈C,d′∈D

1
2mn2 |γ(a,c,−)(b′c′d′)|2

+ 1
2m2

∑
a∈A,c∈C

∑
a′∈A,b′∈B,d′∈D

1
2mn2 |γ(a,c,−)(a′b′d′)|2

= 1
2 |b|21 + 1

2m3n2

∑
aa′∈(A

2)
|βa′ − βa|2 + 1

2m3n2

∑
cc′∈(C

2)
|βc′ − βc|2

≤ 1
2 |b|21 + 3

4 |b|21

= 5
4 |b|21.

Here we used (5.1) for the last inequality. This finishes the proof.

Proof of Lemma 5.32. The inequalities easily follows from the defnition of ∥ · ∥i and | · |2i
observing that

∆(1) = {{a, νa} : a ∈ A} ∪ {{b, νb} : b ∈ B},
∆(2) = {{a, b, νa} : a ∈ A, b ∈ B} ∪ {{a, b, νb} : a ∈ A, b ∈ B}

∪ {{νc, c, d} : c ∈ C, d ∈ D} ∪ {{νd, c, d} : c ∈ D, d ∈ D}, and
∆(3) = {{a, b, νa′, νb} : a, a′ ∈ A, a ̸= a′, b ∈ B}

∪ {{a, b, νa, νb′} : a ∈ A, b, b′ ∈ B, b ̸= b′}.

Proof of Lemma 5.33. Fix pairwise distinct vertices a0, a1, a2 ∈ A and b0, b1, b2 ∈ B.
Given σ ∈ X let

Aσ := (A ∩ σ) ∪ (A ∩ νσ) ∪ {a0, a1, a2} and Bσ = (B ∩ σ) ∪ (B ∩ νσ) ∪ {b0, b1, b2}.

Let Σσ := (Aσ ∗Bσ)∗2
∆ ⊆ X. Note that Σσ

∼= (K|Aσ |,|Bσ |)∗2
∆ satisfies H̃k(Σσ;Z) = 0 for all

0 ≤ k ≤ 2, since min{|A|σ, |B|σ} ≥ 3.

Also if τ ⊆ σ ∈ X we clearly have Στ ⊆ Σσ. Thus, we can apply Lemma 3.14 to get an
abstract cone (Sk)−2≤k≤2 for X such that supp(Skσ) ⊆ Bσ for all σ ∈ X(k),−1 ≤ k ≤ 2.
Let T3 : C3(X;Z) → C2(X;Z) be the dual map of S2.

Now, let β ∈ B3(X;Z) with β(σ) ∈ {−1, 0,+1} for all σ ∈ X(3). Since (Sk)−2≤k≤2 is an
abstract cone, γ := T3β ∈ C2(X;Z) is a cofilling of β. Moreover, for τ ∈ X(2) we have

|γ(τ)| = |⟨T3β, τ⟩| = |⟨β, S2τ⟩| ≤ |Bτ (3)|,
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5. Applications of Equivariant Overlap Theorem

where we used that β only takes values in {−1, 0, 1}. Note that |Bτ (3)| ≤ 252 for all
τ ∈ X(2). Let γ̄ ∈ C2(Y ;Z) be the extension by 0 of γ to Y and let b̃ := δγ̄ ∈ B3(Y ;Z).

Let ∆(3) = {σ ∈ Y (3) : there is τ ∈ X(2), τ ⊆ σ}. Note that if σ ∈ ∆(3) then σ has
precisely two of its boundary triangles in X. It follows that for such σ we have

|β̃(σ)|2 ≤ 4|Bτ (3)|2 ≤ 254016.

We conclude that

|b̃|11 = |β|21 + |b̃|∆(3) |
2
1

≤ |β|21 + 254016|1∆(3)|21

≤ |β|21 + 254016m+ n− 2
mn

,

where we used Lemma 5.32 (iii) for the last inequality.

5.5.5 Further Discussion and Remarks
For n ∈ Z>0 let Kn,n,n be the complete tripartite graph with equally sized parts of size n.
It was shown in [53] that cr(Kn,n,n) ≤ An where

An := 3
((⌊

n

2

⌋ ⌊
n− 1

2

⌋)2
+
⌊
n

2

⌋ ⌊
n− 1

2

⌋ ⌊
n2

2

⌋)
.

It is conjectured that cr(Kn,n,n) = An. Using similar arguments as for Km,n we were able
to show that4

lim
n→+∞

cr(Kn,n,n)
An

≥ 2
3 ,

recovering a bound proven in [53, Theorem 1.2]. Since we were not able to improve
upon existing bounds in the literature and the argument for Kn,n,n is significantly more
technical than for Km,n, we refrain from giving a proof here.

Note that any improvement on the constant 4/5 in Lemma 5.31 would immediately lead
to an improvement on the bound in Proposition 5.28. We are happy to conjecture that

Conjecture 5.35. Let m,n ∈ Z>0.

• (Weak form) For all c ∈ C2(K∗2
m,n;Z) we have |δc|21 ≥ min{|[c]|21, |[c]|22}.

• (Strong form) ζ2(Λ3
m,m,n,n) ≥ 1.

Note that both forms of Conjecture 5.35 imply an asymptotic version of Zarankiewicz’
conjecture, namely that limm,n→+∞

cr(Km,n)
Zm,n

= 1.

4To show the existence of the limit is a not too difficult exercise.
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Chapter 6

Expansion of Joins

In this chapter, we give a general discussion on expansion of joins.

On the one hand, we give examples showing that under taking joins coboundary expansion
(with respect to F2-coefficients and Garland weighted Hamming norm) does not behave
as well as one might naively expect.

More precisely, in Section 6.1 we exhibit two infinite families (Gn)n∈N and (Hn)n∈N of
connected graphs for which η2(Gn ∗Hn) is of lower order than η0(Gn)η0(Hn) as n → +∞.

As another example illustrating the difficulty of analyzing expansion of properties of joins,
we show in Section 6.2 that minimality of cochains is not always preserved under taking
joins.

Contrasting these negative results, we give a join construction for random abstract
cones in Section 6.3. This allows us to establish coboundary expansion for X ∗ Y if the
coboundary expansion of X and Y is certified by a random abstract cone. We illustrate
the construction by proving a lower bound on ηk(Λd

n).

6.1 Non Product-Like Behaviour for Expansion
Constants under Taking Joins

The goal of this section is to show

Proposition 6.1. There are positive constants C and η such that there are infinite
families of regular graphs (Gn)n∈N and (Hn)n∈N with the property that for all n ∈ N

(i) η0(Gn) ≥ η,

(ii) η0(Hn) ≥ C log |Gn(1)|
|Gn(1)| ,

(iii) η2(Gn ∗Hn) ≤ 6
|Gn(1)| .

In particular,

lim
n→+∞

η2(Gn ∗Hn)
η0(Gn)η0(Hn) = 0.
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6. Expansion of Joins

Let us first describe the two families (Gn)n∈N and (Hn)n∈N we will use for the proof of
Proposition 6.1.
We choose (Gn = (Vn, En))n∈N to be any infinite family of d-regular graphs for a sufficiently
large but fixed d such that η0(Gn) ≥ η for some η > 0 and all n ∈ N and such that the
girth1 g(Gn) of Gn is at least c log |Vn| for some c > 0 and all n ∈ N. Such families of
expander graphs are known to exist. For instance we could work with the Ramanujan
graphs constructed by Luboztky, Phillips and Sarnak.

Theorem 6.2. Let p ≡ 1 mod 4 be a prime. Then there is an infinite family of (p+ 1)-
regular graphs (Gn = (Vn, En))n∈N such that

(i) η0(Gn) ≥ 1 − 2√
p

p+1 for all n ∈ N and

(ii) g(Gn) > logp(|Vn|) for all n ∈ N.

Proof. This is an immediate consequence of Theorem 3.4 and Theorem 4.1 in [92] combined
with the Cheeger inequality (see Theorem 2.2).

Assume we have fixed a family (Gn = (Vn, En))n∈N with the desired properties as listed
above. Let An := C1(Gn;F2)/B1(Gn;F2) and

Hn := Cay(An, {[1e] : e ∈ En})

be the Cayley graph of An with generating set {[1e] : e ∈ En}. In other words, Hn is the
graph with vertex set An and edges {[c], [c′]} whenever [c+ c′] = [1e] ∈ An for some edge
e ∈ En.
Now, Proposition 6.1 will be an immediate consequence of the following two lemmata.

Lemma 6.3. Let (Gn = (Vn, En))n∈N and Hn as described above. Then for sufficiently
large n, we have

η2(Gn ∗Hn) ≤ 6
|En|

.

Lemma 6.4. Let (Gn = (Vn, En))n∈N and Hn as described above. Then there is a constant
s > 0, such that for sufficiently large n we have

η0(Hn) ≥ s
log |En|

|En|
.

We start with the proof of Lemma 6.3. To this end, let Xn = Gn ∗ Hn and write
Xn(0) = V (Gn) ⊔ V (Hn). For v ∈ V (Hn) = An let a(v) ∈ C1(Gn;F2) be a minimal
representative of v ∈ An. For e = {u, v} ∈ E(Hn) let a(e) ∈ C0(G;F2) be minimal such
that a(u) + a(v) + δa(e) ∈ C1(Gn;F2) is minimal. Here we consider minimality with respect
to Garland weighted Hamming norm which we denote by ∥ · ∥. Furthermore, we will write
| · | (unnormalized) Hamming norm on cochain groups.
Define c(n) ∈ C2(Xn;F2) by

c(n) :=
∑

v∈V (Hn)
a(v) ⊗ 1v +

∑
e∈E(Hn)

a(e) ⊗ 1e.

We claim that
1The girth g(H) of a graph H is the length of a smallest cycle in H.
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6.1. Non Product-Like Behaviour for Expansion Constants under Taking Joins

Claim 6.5. ∥δc(n)∥ = 1
|En| for all n ∈ N.

and

Claim 6.6. ∥[c(n)]∥ ≥ 1/6 for sufficiently large n provided that (Gn)n∈N is a family of
d-regular graphs for sufficiently large d.

Note that these two claims immediately imply Lemma 6.3.

Proof of Claim 6.5. We compute

∥δc(n)∥ = 1
|E(Gn)|

1
|E(Hn)|

∑
f=xy∈E(Gn)

∑
e=uv∈E(Hn)

|c(n)
u (f) + c(n)

v (f) + ce(u) + ce(v)|

= 1
|E(Gn)|

1
|E(Hn)|

∑
uv∈E(Hn)

|a(u) + a(v) + δa(uv)|

= 1
|E(Gn)|

1
|E(Hn)|

∑
uv∈E(Hn)

|[1uv]|

= 1
|E(Gn)| .

Here we used the definition of c(n) and that 1uv is a minimal representative of [1uv] ∈ An

since a single edge cannot form a coboundary/cut in Gn due to its expansion properties.

The proof of Claim 6.6 requires a bit more work. First let s ∈ C1(Xn;F2) such that
c̃(n) := c(n) + δs is minimal. Write s′ for the restriction of s to C1(Gn;F2) ⊆ C1(Xn;F2).
We get that

∥[c(n)]∥ = ∥c̃(n)∥

≥ 1
2|E(Gn)||V (Hn)|

∑
xy∈E(Gn)

∑
v∈V (Hn)

|c̃(n)
v (xy)|

= 1
2|E(Gn)||V (Hn)|

∑
xy∈E(Gn)

∑
v∈V (Hn)

|c(n)
v (xy) + s′(xy) + δsv(xy)|

≥ 1
2|V (Hn)|

∑
v∈V (Hn)

∥[a(v) + s′]∥

= 1
2|V (Hn)|

∑
v∈V (Hn)

∥[a(v)]∥.

Thus, it remains to show that on average a minimal 1-cochain c ∈ C1(Gn;F2) contains a
constant fraction of the edges of Gn.

This can be fairly easily shown using a probabilistic argument. Indeed, by using a Chernoff
bound, it was shown in [85, Claim 5.2] that

Claim 6.7. Consider the probability space of 1-cochains c in C1(Gn;F2) of the form

c =
∑

e∈E(Gn)
Xe1e

79



6. Expansion of Joins

where the Xe are independent {0, 1}-valued random variables with P(Xe = 0) = 1/2 and
P(Xe = 1) = 1/2. Then

P

∥[c]∥ < 1/2
1 − 20

√
2
d

 < 0.8|Vn|.

Using Claim 6.7 we can finish the proof of Claim 6.6

Proof of Claim 6.6. Claim 6.7 implies that there are at least 2|En|(1 − 0.8|Vn|) cochains
c ∈ C1(G;F2) with

∥[c]∥ ≥ 1
2

1 − 20
√

2
d


These cochains give rise to at least 2|En|−|Vn|+1(1 − 0.8|Vn|) different equivalence classes in
An. It follows c(n) ∈ C2(Xn;F2) satisfies

∥[c(n)]∥ ≥ 1
2|V (Hn)|

∑
v∈V (Hn)

∥[a(v)]∥

≥ 1
4

1 − 20
√

2
d

 (1 − 0.8|Vn|) ≥ 1
6 ,

for sufficiently large d and n.

For the proof of the lower bound on η0(Hn) we use the Cheeger inequality and the fact
that the eigenvalues and eigenvectors of the normalized Laplacian of Cayley graphs of
abelian groups can be described in terms of the characters of the group.

Given a group A and a symmetric2, generating3 set S ⊆ A the Cayley graph Cay(A, S)
of A with generating set S is the graph with vertex set A and edges {a, a′} whenever
aa′−1 ∈ S.

A character χ of A is a group homomoprhism χ : A → C× from A to the multiplicative
group of complex numbers.

Interestingly, the eigenvectors of the normalized Laplacian of the Cayley graph of an
abelian group are precisely given by the characters and, hence, independent of the
generating set. More precisely, we have

Proposition 6.8 (see [90] or [10, Corollary 3.2]). Let A be an abelian group and S ⊆ A a
symmetric, generating set. Let Γ = Cay(A, S) be the Cayley graph of A with generating set
S. Let χ : A → C× be a character. Then χ is an eigenvector of the normalized Laplacian
of Γ with eigenvalue

1 − 1
|S|

∑
s∈S

χ(s).

The characters of Fk
2 are easy to describe.

2A subset S ⊆ A is symmetric if s ∈ S if and only if s−1 ∈ S.
3A subset S ⊆ A is generating if every element a ∈ A can be written as a finite product of elements

in S.
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6.2. Join of Minimal Cochains Not Necessarily Minimal

Lemma 6.9 (see, e.g.,[128, Chapter V]). Let A = Fk
2 for some positive integer k. Then

for every x ∈ A the function χx : A → C× given by

y 7→ χx(y) := (−1)⟨x,y⟩

where
⟨x, y⟩ =

k∑
i=1

xiyi

is a character of A.

We are ready to prove Lemma 6.4:

Proof of Lemma 6.4. Recall that An = C1(Gn;F2)/B1(Gn;F2). Thus, characters of An

are in one-to-one correspondence with characters of C1(Gn;F2) which contain B1(Gn;F2)
in their kernel. By Lemma 6.9 these are precisely the characters χx for some x ∈ C1(Gn;F2)
for which ⟨x, b⟩ = 0 for all b ∈ B1(Gn;F2). But by Lemma 2.1 these are precisely the
cycles Z1(Gn;F2).
Note that given x ∈ An and e ∈ En we have χx(1e) = 1 if x(e) = 0 and χx(1e) = −1 if
x(e) = 1. It follows that the eigenvalue of the normalized Laplacian of Hn corresponding
to the character χx for x ∈ Z1(Gn;F2) is given by

1 − 1
|En|

∑
e∈En

χx(1e) = 1 − 1
|En|

(−|x| + |En| − |x|) = 2|x|
|En|

.

Since we have chosen Gn to have logarithmic girth (g(Gn) ≥ C log |Vn| for some constant
C > 0), we have that |x| ≥ C log |Vn| for all x ∈ Z1(Gn;F2), x ̸= 0. Thus, every non-trivial
eigenvalue of the normalized Laplacian of Gn is at least 2C log |Vn|/|En|. An application
of the Cheeger inequality (Theorem 2.2) finishes the proof.

Proof of Proposition 6.1. Proposition 6.1 immediately follows by combining Lemma 6.3
and Lemma 6.4.

The above example is very unbalanced in the sense that we consider joins G ∗H where H
is exponentially larger than G. It would be interesting to construct examples for which G
and H are of comparable size or even examples with G = H. Furthermore, Proposition 6.1
rules out the existence of an universal constant C > 0 such that η2(G∗H) ≥ Cη0(G)η0(H)
for any two (connected) graphs G and H. But, for instance, we have not ruled out the
possibility that η2(G ∗H) ≥ C(η0(G)η0(H))2 for some constant C > 0.

6.2 Join of Minimal Cochains Not Necessarily
Minimal

Throughout this section we consider cochains with respect to F2-coefficients. We endow
cochain groups with the Hamming norm | · |.
Let X and Y be simplicial complexes. For cochains c ∈ C i(X;F2) and c′ ∈ Cj(Y ;F2) we
write c⊗c′ for their join which is the cochain in C i+j+1(X ∗Y ;F2) given by (c⊗c′)(σ⊗τ ) =
c(σ)c′(τ) for σ ∈ X(j), τ ∈ Y (j) and (c⊗ c′)(ρ) = 0 for any other (i+ j + 1)-simplex in
X ∗ Y . Given minimal cochains c ∈ C i(X;F2), c′ ∈ Cj(Y ;F2), it is natural to think that
the join c⊗ c′ ∈ C i+j+1(X ∗ Y ;F2) is minimal. This is not the case in general.
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6. Expansion of Joins

Proposition 6.10. For every m ∈ Z>0 there is c ∈ C1(K5m;F2) such that c ⊗ c ∈
C3(K∗2

5m;F2) satisfies |[c⊗ c]| < |[c]|2.

For the proof of Proposition 6.10 we will first show the case m = 1 and then use a blow-up
construction to deduce the general case m ≥ 2. For m = 1 we have the following lemma:

Lemma 6.11. Let 1 ∈ C1(K5;F2) be the all-one cochain, i.e. the cochain with 1(e) = 1
for all e ∈ K5(1). Then |[1]| = 4 while 1 ⊗ 1 ∈ C3(K∗2

5 ;F2) satsifies

|[1 ⊗ 1]| = 14 < 16 = |[1]|2.

Proof. Note that every cochain in [1] ∈ C1(K5;F2)/B1(K5;F2) is the complement of a
cut from which we easily see that |[1]| = 4.

Next we will define a cochain c ∈ C3(K∗2
5 ;F2) with |c| = 14 and c ∈ [1 ⊗ 1]. To this

end, we let U = {u0, . . . , u4} and V = {v0, . . . , v4}. Write KU and KV for the complete
graph with vertex set U and V , respectively. Let X = KU ∗ KV

∼= K∗2
5 . Now define

c ∈ C3(X;F2) to be the cochain with support

supp(c) = {u0u1 ⊗ v1v2, u0u2 ⊗ v0v1, u0u2 ⊗ v3v4, u0u3 ⊗ v0v4, u0u3 ⊗ v1v3, u0u4 ⊗ v2v4,

u1u2 ⊗ v0v2, u1u3 ⊗ v2v3, u1u4 ⊗ v0v3, u1u4 ⊗ v1v4, u2u3 ⊗ v0v3, u2u3 ⊗ v1v4,

u2u4 ⊗ v2v3, u3u4 ⊗ v0v2}.

We have |c| = 14. Hence, it remains to show that c ∈ [1 ⊗ 1], i.e. c + 1 = δa for some
a ∈ C2(X;F2) (here 1 is the constant 1 cochain in C3(X;F2)). By Lemma 2.1 this
amounts to show that ⟨c+ 1, z⟩ = 0 for a generating set of cycles z ∈ Z3(X;F2). Note
that Z3(X;F2) = Z1(KU ;F2) ⊗ Z1(KV ;F2) and that the space of cycles Z1(Kn;F2) of
a complete graph Kn is generated by cycles of length 3. Thus, it suffices to show that
⟨c+ 1, z ⊗ z′⟩ = 0 for cycles z ∈ Z1(KU ;F2), z′ ∈ Z1(KV ;F2) of length 3. Localizing, this
is equivalent to ⟨cz + 1, z′⟩ = 0 for all cycles z ∈ Z1(KU ;F2), z′ ∈ Z1(KV ;F2) of length 3.
This amounts to show that cz is the complement of a cut/coboundary in KV for every
cycle z ∈ Z1(KU ;F2) of length 3. In Figure 6.1 we depict the support of cz in blue for
every such cycle z. We see that cz is indeed the complement of a cut.

As mentioned for k ≥ 2 we use a blow-up construction. Given a simplicial complex X
and m ∈ Z>0 we write X̂(m) for the simplicial complex with vertex set X(0) × [m] and
k-simplices {(v0, i0), . . . , (vk, ik)} for {v0, . . . , vk} ∈ X(k) and i0, . . . , ik ∈ [m]. Note that
there is a projection π : X̂(m) → X given by {(v0, i0), . . . , (vk, ik)} 7→ {v0, . . . , vk}. Given
c ∈ Ck(X;F2) we let ĉ(m) := π∗c. Note that K̂n

(m) ∼= (Λn−1
m )(1) ⊆ Kmn.

Given simplicial complexes X ⊆ Y and c ∈ Ck(X;F2) we write c̄Y for the extension of c
to Y by 0. Usually Y is understood from the context and we will write c̄ instead of c̄Y .
The following fact was shown in [84, Theorem 6.3]:

Lemma 6.12. Let m,n ∈ Z>0. Let X := K̂n

(m)
⊆ Y := Kmn. If c ∈ C1(Kn;F2) is

minimal then ĉ(m) ∈ C1(Y ;F2) is minimal.

With these preparations we can finish the proof of Proposition 6.10.
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6.2. Join of Minimal Cochains Not Necessarily Minimal

Figure 6.1: For every triple of pairwise distinct vertices x, y, z ∈ U we show the support
of cxy + cxz + cyz in blue. We see that all these cochains are complements of cuts.

Proof of Proposition 6.10. Fix m ∈ Z>0. Let X = K̂5 ∗K5
(m) ∼= K̂5

(m)
∗ K̂5

(m) which
we think of as a subcomplex of Y = K5m ∗ K5m. Let c ∈ C1(K5;F2) be a minimal
representative of [1]. By Lemma 6.12 cm := ĉ(m) ∈ C1(K5m;F2) is minimal. Note that
|cm| = m2|c|. Let a ∈ C3(K∗2

5 ;F2) such that γ := c ⊗ c + δa is minimal. Note that
δY â(m) = δX â(m). Indeed, every σ ∈ Y (3) \ X(3) has all, two or none of its boundary
triangles in X. If it has two of its boundary triangle in X, â(m) has the same value on
both of them. It follows that γ̂(m) = cm ⊗ cm + δY â(m). We conclude

|[cm ⊗ cm]| ≤ |γ̂(m)| = m4|γ| < m4|c|2 = |cm|2,

as desired.

It would be interesting to strengthen the above construction by giving an affirmative
answer to the following question: Are there infinite families of simplicial complexes
(Xn)n∈N, (Yn)n∈N and cochains cn ∈ C i(Xn;F2), c′

n ∈ Cj(Yn;F2) for which

lim
n→+∞

|[cn ⊗ c′
n]|

|[cn]||[c′
n]| = 0?
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6. Expansion of Joins

6.3 Joining Random Abstract Cones
In this section we give a join construction for random abstract cones. We will illustrate
the construction by proving a lower bound on ηk(Λd

n).

6.3.1 Joining Abstract Cones
Let X be a dX-dimensional, Y a dY -dimensional simplicial complex. Let J = X ∗ Y be
the join of X and Y . Let A be an abelian group. Let (SX

k )−2≤k≤dX−1 be an abstract
cone for X and (SY

k )−2≤k≤dY −1 an abstract cone for Y . For −2 ≤ k ≤ dX + dY define
SJ

k : Ck(J ;A) → Ck+1(J ;A) by

σ ⊗ τ 7→

SX
dim σσ ⊗ τ, if dim σ < dX ,

(−1)|σ|(σ − SX
dim σ−1∂σ) ⊗ SY

dim ττ if dim σ = dX .

We call (SJ
k )−2≤k≤dX+dY

the join of (SX
k )−2≤k≤dX−1 and (SY

k )−2≤k≤dX−1. As the reader
might have expected, we have

Lemma 6.13. (SJ
k )−2≤k≤dX+dY

is an abstract cone for J .

Proof. The proof is a straightforward computation. Notice that it is enough to show that
for basic simplices σ ⊗ τ ∈ J(k) with σ ∈ X, τ ∈ Y we have

∂SJ
k (σ ⊗ τ) + SJ

k−1∂(σ ⊗ τ) = σ ⊗ τ.

Throughout the proof we will frequently use that for all σ ∈ X, τ ∈ Y ,

∂(σ ⊗ τ) = ∂σ ⊗ τ + (−1)|σ|σ ⊗ ∂τ.

Let σ ∈ X(i) for some −1 ≤ i ≤ dX and τ ∈ Y (j) for some −1 ≤ j ≤ dY . Let
k = i+ j + 1 = dim(σ ⊗ τ ). We distinguish two cases. First assume that i = dim σ < dX .
Then we compute

∂SJ
k (σ ⊗ τ) + SJ

k−1∂(σ ⊗ τ) = ∂(SX
i σ ⊗ τ) + SJ

k−1(∂σ ⊗ τ + (−1)|σ|σ ⊗ ∂τ)
= ∂SX

i σ ⊗ τ + (−1)|σ|+1SX
i σ ⊗ ∂τ

+ SX
i−1∂σ ⊗ τ + (−1)|σ|SX

i σ ⊗ ∂τ

= (∂SX
i σ + SX

i−1∂σ) ⊗ τ

= σ ⊗ τ,

where we used that (SX
k )−2≤k≤dX−1 is an abstract cone for the last equality.

Now assume that dim σ = dX . We have

∂SJ
k (σ ⊗ τ) = ∂

(
(−1)|σ|(σ − SX

i−1∂σ) ⊗ SY
j τ
)

= (−1)|σ|∂σ ⊗ SY
j τ + σ ⊗ ∂SY

j τ

+ (−1)|σ|+1∂SX
i−1∂σ ⊗ SY

j τ − SX
j−1∂σ ⊗ ∂SY

j τ

= (σ − SX
i−1∂σ) ⊗ ∂SY

j τ,

where we used that ∂SX
i−1∂σ = ∂σ since (SX

k )−2≤k≤dX−1 is an abstract cone for X.
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Furthermore,

SJ
k−1∂(σ ⊗ τ) = SJ

k−1(∂σ ⊗ τ) + (−1)|σ|SJ
k−1(σ ⊗ ∂τ)

= SX
i−1∂σ ⊗ τ + (σ − SX

i−1∂σ) ⊗ SY
j−1∂τ.

Combinining these two, we deduce

∂SJ
k (σ ⊗ τ) + SJ

k−1∂(σ ⊗ τ) =
(
σ − SX

i−1∂σ
)

⊗
(
∂SY

j τ + SY
j−1∂τ

)
+ SX

i−1∂σ ⊗ τ

= (σ − SX
i−1∂σ) ⊗ τ + SX

i−1∂σ ⊗ τ

= σ ⊗ τ,

where we used that (SY
k )−2≤k≤dY −1 is an abstract cone for Y .

6.3.2 Analysis for Join of Random Abstract Cones
Using the join construction for abstract cones, we can join random abstract cones for
two simplicial complexes X and Y to obtain a random abstract cone for the join X ∗ Y .
Using Proposition 3.13, this gives a way to bound the coboundary expansion constants of
X ∗ Y in terms of the lower bounds of the coboundary expansion constants of X and Y
obtained through the random abstract cones.

For completeness, we give the technical details: Let X and Y be simplicial complexes of
dimension dX and dY , respectively. Let wX : X → R>0 and wY : Y → R>0 be positive
weight functions. Furthermore, we assume that there is a constant CX > 0 such that for
all σ ∈ X(dX − 1) we have ∑

τ∈X(dX),σ⊆τ

wX(τ) ≤ CXwX(σ).

Note that if wX are the Garland weights, we can choose CX = dX + 1 and the inequality
becomes an equality.

Let J = X ∗ Y be the join of X and Y . Let dJ = dim J . We endow J with the weight
function wJ given by wJ(σ ⊗ τ) = ci,jwX(σ)wY (τ) for all σ ∈ X(i) and τ ∈ Y (j) where
for −1 ≤ i ≤ dX and −1 ≤ j ≤ dY we let

ci,j :=

(
dX+1
i+1

)(
dY +1
j+1

)
(

dX+dY +2
i+j+2

) .

Note that wJ are the Garland weights if wX and wY are the Garland weights. This
motivates the somewhat cumbersome normalizing factor ci,j.

Let Z be a simplicial complex endowed with a weight function wZ : Z → R≥0. Let
f : Z(j) → R be a function. Eventhough wZ might not induce a probability measure on
Z(j), it will be convenient to write Eσ∈Z(j)f(σ) for ∑σ∈Z(j) wZ(σ)f(σ).

Let A be a ring with 1 endowed with a norm | · |A. We write | · | for the size function on
cochain groups induced by | · |A and a fixed weight function on a simplicial complex.

Let (ΩX ,BX , µX) and (ΩY ,BY , µY ) be two finite probability spaces such that there are
random abstract cones SX = (S(ω)

X,k)−2≤k≤dX−1,ω∈ΩX
for X and SY = (S(ω)

Y,k)−2≤k≤dY −1,ω∈ΩY

for Y .
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Write (ΩJ ,BJ , µJ) for the product probability space of (ΩX ,BX , µX) and (ΩY ,BY , µY ).
For ω = (ω′, ω′′) ∈ ΩJ = ΩX × ΩY the join of the abstract cones (S(ω′)

X,k )−2≤k≤dX−1

and (S(ω′′)
Y,k )−2≤k≤dY −1 defines an abstract cone (S(ω)

J,k )−2≤k≤dJ −1 for J . Write SJ =
(S(ω)

J,k )−2≤k≤dJ −1,ω∈ΩJ
for the resulting random abstract cone.

Write TX = (T (ω)
X,k)−1≤k≤dX ,ω∈ΩX

,TY = (T (ω)
Y,k )−1≤k≤dY ,ω∈ΩY

and TJ = (T (ω)
J,k )−1≤k≤dJ ,ω∈ΩJ

for
random abstract cofillings dual to SX , SY and SJ , respectively.
For −1 ≤ i ≤ dX − 1 let

λi(X) := max
τ∈X(i+1)

1
wX(τ)Eω∼ΩX

|T (ω)
X,i+11τ |

and for −1 ≤ j ≤ dY − 1 let

λj(Y ) := max
τ∈Y (j+1)

1
wY (τ)Eω∼ΩY

|T (ω)
Y,j+11τ |.

We extend this definition and set λ−2(X) := 0, λ−2(Y ) := 0. For 0 ≤ i ≤ dX , 0 ≤ j ≤ dY

let

λi,j(J) =


(i+1)(dX+dY −i−j+1)

(dX−i+1)(i+j+2) λi−1(X) if i < dX

(dX+1)(dY −j+1)
dX+j+2 λi−1(X) + j+1

dX+j+2(λj−1(Y ) + CXλi−1(X)λj−1(Y )) if i = dX

.

We have:

Proposition 6.14. With the assumptions and notation above, we have for 0 ≤ k ≤ dJ − 1
that

ηk(J) ≥ 1
λk(J) ,

where
λk(J) := max

i+j=k
λi,j(J).

Proof. By Proposition 3.13 it suffices to show that for all σ ⊗ τ ∈ J(k), 0 ≤ k ≤ dJ − 1,
we have

λ(σ ⊗ τ) := 1
wJ(σ ⊗ τ)Eω∼µJ

|T (ω)
J,k+11σ⊗τ | ≤ λk(J).

To this end, fix 0 ≤ k ≤ dJ − 1 and σ⊗ τ ∈ J(k) with dim σ = i, dim τ = j (i+ j = k− 1).
We distinguish the two cases (i) dim σ < dX and (ii) dim σ = dX .
For (i) we first note that for ρ ∈ J(k)

⟨T (ω)
J,k+11σ⊗τ , ρ⟩ = ⟨1σ⊗τ , S

(ω)
J,k ρ⟩

can only be non-zero if ρ = σ′ ⊗ τ ′ with σ′ ∈ X(i− 1). It follows that

λ(σ ⊗ τ) = 1
wJ(σ ⊗ τ)Eω∼µj

Eσ∼J(k)|⟨1σ⊗τ , S
(ω)
J,k+11ρ⟩|A

= ci−1,j

ci,jwX(σ)wY (τ)E(ω′,ω′′)∼µJ
Eσ′∼X(i−1)Eτ ′∼Y (j)|⟨1σ, S

(ω′)
X,i−1σ

′⟩ · ⟨1τ , τ
′⟩|A

≤ ci−1,j

ci,jwX(σ)Eω′∼µX
Eσ′∼X(i−1)|⟨1σ, S

(ω′)
X,i−1σ

′⟩|A

≤ ci−1,j

ci,j

λi−1(X)

= (i+ 1)(dJ − i− j)
(dX − i+ 1)(i+ j + 2)λi−1(X).
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For the second case (ii), dim σ = dX , we note that ρ = σ′ ⊗ τ ′ ∈ J(k) can only be in the
support of T (ω)

J,k+11σ⊗τ if dim σ′ = i− 1 and dim τ ′ = j or if dim σ′ = i and dim τ ′ = j − 1.
By the previous estimate, those simplices ρ with dim σ′ = i− 1 contribute at most

(dX + 1)(dY − j + 1)
dX + j + 2 λdX−1(X)

to λ(σ ⊗ τ).

For the second type of simplices ρ (those with dim σ′ = dX) we estimate using the triangle
inequality of | · |A that

ci,j−1

wJ(σ ⊗ τ)Eσ′∼X(dX)
τ ′∼Y (j−1)

E(ω′,ω′′)∼µJ
|⟨1σ⊗τ , (−1)dX+1(σ′ − S

(ω′)
X,dX−1∂σ

′) ⊗ S
(ω′′)
Y,j−1τ

′⟩|A

≤ ci,j−1

ci,jwX(σ)wY (τ)Eσ′∼X(dX)
τ ′∼Y (j−1)

E(ω′,ω′′)∼µJ
|⟨1σ⊗τ , σ

′ ⊗ S
(ω′′)
Y,j−1τ

′⟩|A

+ ci,j−1

ci,jwX(σ)wY (τ)Eσ′∼X(dX)
τ ′∼Y (j−1)

∑
α∈∂σ′

E(ω′,ω′′)∼µJ
|⟨1σ, S

(ω′)
X,dX−1α⟩|A · |⟨1τ , S

(ω′′)
Y,j−1τ

′⟩|A.

The first summand is at most
ci,j−1

ci,j

λj−1(Y ) = j + 1
dX + j + 2λj−1(Y ),

which follows from the estimates for the case (i) interchanging the roles of X and Y .

Using that for α ∈ X(dX − 1) we have∑
β∈X(dX),α⊆β

wX(β) ≤ CXwX(α),

we see that the second summand is at most

ci,j−1

ci,j

(
CX

wX(σ)Eα∼X(dX−1)
ω′∼µX

|⟨1σ, S
(ω′)
X,dX−1α⟩|A

)(
1

wY (τ)Eτ ′∼Y (j−1)
ω′′∼µY

|⟨1τ , S
(ω′′)
Y,j−1τ

′⟩|A
)

≤ ci,j−1

ci,j

CXλi−1(X)λj−1(Y )

= j + 1
dX + j + 2λi−1(X)λj−1(Y ).

In total, we conclude that

λ(σ ⊗ τ) ≤ (dX + 1)(dY − j + 1)
dX + j + 2 λdX−1(X) + j + 1

dX + j + 2 (λj−1(Y ) + λi−1(X)λj−1(Y )) .

Comparing the obtained upper bounds on λ(σ ⊗ τ) with the definition of λk(J) and
λi,j(J), we see that this finishes the proof.

We close this section by elaborating on how the second part of Proposition 3.13 is useful
for the join construction as well. This part of Proposition 3.13 gives a lower bound
on coboundary expansion constants in terms of the size of an abstract cone under the
additional assumption that there is a group of automorphisms acting transitively on the
top-dimensional faces.

87



6. Expansion of Joins

Recall that given a dZ-dimensional simplicial complex Z and an abstract cone SZ =
(Sk)−2≤k≤dZ−1 for Z, the size sizek(SZ), −1 ≤ k ≤ dZ − 1, is defined as

sizek(SZ) = max
σ∈Z(k)

∑
τ∈X(k+1)

|⟨1τ , Skσ⟩|A.

Now, let X and Y be simplicial complexes of dimension dX and dY , respectively. Assume
that G is a group acting by automorphisms on X, H is a group acting by automorphisms
on Y . Then, G×H acts on J = X ∗ Y by

σ ⊗ τ 7→ (g, h).(σ ⊗ τ) := (g.σ) ⊗ (h.τ)

for every σ ⊗ τ ∈ J, (g, h) ∈ G×H. Note that if the action of G is transitive on X(dX)
and the action of H is transitive on Y (dY ), then G×H acts transtively on J(dim J).

Thus, we could use the second part of Proposition 3.13 to give a lower bound on coboundary
expansion constants of J . Fortunately, given an abstract cone SX = (SX

k )−2≤k≤dX−1 for
X and an abstract cone SY = (SY

k )−2≤k≤dY −1 for Y , it is straightforward to give an upper
bound on the size of the join SJ = (SJ

k )−2,≤k≤dX+dY
of SX and SY in terms of the size of

SX and SY . We have

Lemma 6.15. Let X be a dX-dimensional simplicial complex, Y be a dY -dimensional
simplicial complex. Let J = X ∗ Y . Let SX = (SX

k )−2≤k≤dX−1 be an abstract cone for X
and SY = (SY

k )−2≤k≤dY −1 be an abstract cone for Y . Let SJ = (SJ
k )−2,≤k≤dX+dY

be the
join of SX and SY . Let −1 ≤ k ≤ dX + dY . If k < dX then

Sizek(SJ) ≤ max
−1≤i≤k

Sizei(SX).

If k ≥ dX then

Sizek(SJ) ≤ max{ max
k−dY −1≤i≤dX−1

Sizei(SX), Sizek−1−dX
(SY )(1 + (dX + 1))SizedX−1(SX)}.

Proof. The proof is straightforward from the definitions.

6.3.3 A Lower Bound on ηk(Λd
n) via Joining Abstract Cones

Using the join construction of random abstract cones we will show that

Proposition 6.16. Let n ∈ N. Let d ≥ 1 be a dimension. Let 0 ≤ k ≤ d− 1. Then

ηk(Λd
n) ≥ k + 2(

(d− k)
k−1∑
i=0

2i
(

n−1
n

)i (k+2
i+1)

(d+1
i+1)

+ 2k+1
(

n−1
n

)k (k+2
k )

(d+1
k )

) .

In particular,
η0(Λd

n) ≥ 1

and
ηd−1(Λd

n) ≥ d+ 1
3 · 2d−1 − 1

for all d ≥ 1.
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A slightly weaker lower bound as stated in Proposition 6.16 appeared in [98, Theorem 3.3]
and for the special case k = d − 1 also in [35, Proposition 5.7]. It turns out that both
arguments can lead to the bound stated here by a bit more careful analysis. Both
arguments use the averaging trick. In [35] an ad-hoc construction of many different
cofillings is given and combined with an induction on d for fixed codimension d− k. The
argument in [98] uses a random abstract cone which can be seen as an iterated join of
abstract cones (S(u)

−1 )u∈[n] on [n] given by S(u)
−1 ∅ = u for each copy of [n] in Λd

n = [n]∗(d+1).

We use a blend of the two arguments: The random abstract cone obtained as a join of
abstract cones on [n] together with an induction on d for fixed codimension d− k.

We start with the following lemma.

Lemma 6.17. Let d ≥ 2 be a dimension. Let 1 ≤ k ≤ d−1. Assume there is a probability
space (Ω,B, µ) and a random abstract cone (S(ω)

k−1, S
(ω)
k−2)ω∈Ω in dimension k − 1 for Λd−1

n

with dual random abstract cofilling (T (ω)
k , T

(ω)
k−1) such that for all c ∈ Ck−1(Λd−1

n ;F2) we
have

Eω∼µ|T (ω)
k δc| ≤ Lk−1,d−1(n)|δc|

for some positive constant Lk−1,d−1(n) > 0.

Then there is a probability space (Ω̃, B̃, µ̃) and a random abstract cone (S(ω)
k , S

(ω)
k−1)ω∈Ω̃

in dimension k for Λd
n with dual random abstract cofilling (T (ω)

k+1, T
(ω)
k ) such that for all

c ∈ Ck(Λd
n;F2) we have

Eω∼µ̃|T (ω)
k+1δc| ≤ Lk,d(n)|δc|

where
Lk,d(n) = 1

n

k + 2
d+ 1(1 + 2(n− 1)Lk−1,d−1(n)).

Proof. Write Λd
n as Λd

n = U0 ∗ · · · ∗ Ud with Ui = [n] for 0 ≤ i ≤ d. Let U = U0 and
Y = U1 ∗ · · · ∗ Ud.

We think of the random abstract cone (S(ω)
k−1, S

(ω)
k−2)ω∈Ω in dimension k − 1 for Λd−1

n as
being defined on Y .

For u ∈ U let S(u)
−1 : C−1(U ;F2) → C0(U ;F2) be given by ∅ 7→ S

(u)
−1 ∅ := u. Endow U with

the uniform distribution ν.

Note that the data (S(u)
−1 )u∈U and (S(ω)

k−1, S
(ω)
k−2)ω∈Ω suffices to use the join construction for

abstract cones to define a random abstract cone in dimension k for Λd
n. More precisely,

let Ω̃ = U × Ω endowed with the product measure µ̃ = ν ⊗ µ. Let ω̃ = (u, ω) ∈ Ω̃. For
j ∈ {k − 1, k} let

S
(ω̃)
j : Cj(Λd

n;F2) → Cj+1(Λd
n;F2)

σ 7→

u⊗ σ, if σ ∩ U = ∅,
(u+ u′) ⊗ S

(ω)
j−1(σ \ {u′}) if σ ∩ U = {u′}.

By Lemma 6.13 (S(ω̃)
k , S

(ω̃)
k−1)ω̃∈Ω̃ is a random abstract cone in dimension k for Λd

n. Write
(T (ω̃)

k+1, T
(ω̃)
k )ω̃∈Ω̃ for the dual random abstract cofilling.
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Given c ∈ Ck(Λd
n;F2), let b = δc. We estimate

Eω̃∼µ̃|T (ω̃)
k+1b| = 1

n

∑
u∈U

∑
ω∈Ω

µ({ω})
∑

σ∈Λd
n(k)

|⟨T (ω̃)
k+1b, σ⟩|

= 1
n

∑
u∈U

∑
ω∈Ω

µ({ω})
∑

σ∈Λd
n(k)

|⟨b, S(ω̃)
k σ⟩|

= 1
n

∑
u∈U

∑
ω∈Ω

µ({ω})
∑

σ∈Λd
n(k),σ∩U=∅

|⟨b, u⊗ σ⟩|

+ 1
n

∑
u∈U

∑
ω∈Ω

µ({ω})
∑

u′∈U

∑
σ′∈Y (k−2)

|⟨b, (u+ u′) ⊗ S
(ω)
k−2σ

′⟩|

= 1
n

|b|
C0(U ;F2)⊗Ck−1(Y ;F2)

| + 2
n

∑
uu′∈(U

2)
Eω∼µ|T (ω)

k−1(bu + bu′)|

≤ 1
n

|b|
C0(U ;F2)⊗Ck−1(Y ;F2)

| + 2
n

∑
uu′∈(U

2)
Lk−1,d−1(n)|bu + bu′ |

≤ 1
n

(1 + 2(n− 1)Lk−1,d−1(n))|b|
C0(U ;F2)⊗Ck−1(Y ;F2)

|.

Note that (by double counting)
d∑

i=0

∑
u∈Ui

|bu| = (k + 2)|b|,

Thus, if we additionally average over the choice (U, Y ) with U = Ui, Y = (Λd
n)u for some

u ∈ Ui over i ∈ {0, . . . , d}, we obtain the bound as claimed.

We are ready to give a proof of Proposition 6.16.

Proof of Proposition 6.16. Note that the Garland weights on Λd
n are uniform. Thus,

ηk(Λd
n) = |Λd

n(k)|
|Λd

n(k + 1)|hk(Λd
n) = 1

n

k + 2
d− k

hk(Λd
n).

For integers k, d with 0 ≤ k ≤ d− 1 recursively define Lk,d(n) by

L0,d(n) := 2
dn

for all d ≥ 1

and
Lk,d(n) := 1

n

k + 2
d+ 1(1 + 2(n− 1)Lk−1,d−1(n)).

Combining Lemma 6.17 with Proposition 3.8 we deduce that

hk(Λd
n) ≥ 1

Lk,d(n)
or equivalently

ηk(Λd
n) ≥ 1

nLk,d(n)
k + 2
d− k

.

Solving the recursion for Lk,d(n) leads to the lower bound on ηk(Λd
n) as claimed in the

proposition. We omit this step here and leave it to the reader as a straightforward
exercise.
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Chapter 7

Upper Bounds on Expansion Constants
of Partite Complexes

In this chapter, we prove various upper bounds on coboundary expansion constants
of (d + 1)-partite d-dimensional complexes. At the heart of the proofs is an explicit
construction (which we give in the next section) of exponentially many d-coboundaries in
Λd

n1,...,nd
with some additional algebraic structure (closely related to sum complexes as

studied in [88]). Using a probabilistic argument we make use of these coboundaries to
prove Theorem 1.6 in Section 7.2. In Section 7.3 we prove Theorem 1.5 as well as more
refined upper bounds on η1(Λ2

n). Furthermore, using a product construction, we can also
get upper bounds on ηk(Λd

n) for 0 < k < d − 1 which for constant codimension d − k
are exponentially small in d (see Proposition 7.8). Part of the results in this chapter are
already discussed in [140].

7.1 A Wealth of Coboundaries
The following proposition provides us with a wealth of coboundaries.

Proposition 7.1. Let d ∈ Z>0 be a dimension. Let n0, n1, . . . , nd ∈ Z with ni ≥ 2 for all
0 ≤ i ≤ d. Let X = Λd

n0,...,nd
. Given φ : X(0) → Fd

2 define cφ ∈ Cd(X;F2) by

cφ({v0, . . . , vd}) :=

1 if ∑d
i=0 φ(vi) = 0 ∈ Fd

2,

0 otherwise .

Then cφ is a coboundary, i.e. cφ ∈ Bd(X;F2).

For the proof of Proposition 7.1 we will make use of the characterization of coboundaries
given in Lemma 2.1. In view of this lemma, the following basis for Zd(Λd

n0,...,nd
;F2) will

be useful.

Lemma 7.2. Let Λd
n0,...,nd

= U0∗U1∗· · ·∗Ud with |Ui| = ni. Given pairwise distinct vertices
u+

i , u
−
i ∈ Ui, 0 ≤ i ≤ d, let ♢d((u+

i , u
−
i )0≤i≤d) := {u+

0 , u
−
0 }∗ · · ·∗{u+

d , u
−
d } be the octahedral

sphere spanned by the vertices u+
0 , u

−
0 , . . . , u

+
d , u

−
d . We will think of ♢d((u+

i , u
−
i )0≤i≤d)(d)

as a chain in Cd(Λd
n0,...,nd

;F2). Then for any fixed u+
i ∈ Ui, 0 ≤ i ≤ d the set

{♢d((u+
i , u

−
i )0≤i≤d)(d) ∈ Cd(Λd

n0,...,nd
;F2) : u−

i ∈ Ui \ {u+
i }, 0 ≤ i ≤ d}
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is a basis for Zd(Λd
n0,...,nd

;F2).

Proof. Fix u+
i ∈ Ui, 0 ≤ i ≤ d and let

Z = {♢d((u+
i , u

−
i )0≤i≤d)(d) ∈ Cd(Λd

n0,...,nd
;F2) : u−

i ∈ Ui \ {u+
i }, 0 ≤ i ≤ d}.

Clearly, every z ∈ Z is a cycle.

Note that for any choice of u−
i ∈ Ui \ {u+

i }, 0 ≤ i ≤ d, there is precisely one z ∈ Z
which contains {u−

0 , . . . , u
−
d } in its support. This implies that the cycles in Z are linearly

independent.

Note that |Z| = ∏d
i=0(ni − 1).

On the other hand, since H̃k(Λd
n0,...,nd

;F2) = 0 for all −1 ≤ k ≤ d − 1, we get by the
rank–nullity theorem that

dimZd(Λd
n0,...,nd

;F2) =
d+1∑
i=0

(−1)i dimCd−i(Λd
n0,...,nd

;F2)

=
d+1∑
i=0

(−1)i
∑

0≤i0<···<id−i≤d

d−i∏
l=0

nil

=
d∏

i=0
(ni − 1).

Thus, Z generates all of Zd(Λd
n0,...,nd

;F2).

We are ready to prove Proposition 7.1.

Proof of Proposition 7.1. Write X = U0 ∗ · · · ∗ Ud with Ui = [ni]. By Lemma 2.1 and
Lemma 7.2 it suffices to check that for every collection of pairs {u+

i , u
−
i } ∈

(
Ui

2

)
, 0 ≤ i ≤ d,

the crosspolytope ♢d = {u+
0 , u

−
0 } ∗ · · · ∗ {u+

d , u
−
d } contains an even number of d-simplices

from cφ.

So let us fix a choice of pairs {u+
i , u

−
i } ∈

(
Ui

2

)
, 0 ≤ i ≤ d, and consider the corresponding

crosspolytope ♢d = {u+
0 , u

−
0 } ∗ · · · ∗ {u+

d , u
−
d }. First we reduce to the case when

φ(u+
0 ) = φ(u+

1 ) = · · · = φ(u+
d ) = 0.

If ♢d does not contain a d-simplex from cφ, we are done. Otherwise we can assume (after
relabeling the vertices in ♢d) that

d∑
i=0

φ(u+
i ) = 0.

Now consider φ̃ : X(0) → Fd
2 given by

φ̃(ui) = φ(ui) + φ(u+
i )

for any ui ∈ Ui, 0 ≤ i ≤ d. Since ∑d
i=0 φ(u+

i ) = 0 we have cφ̃ = cφ. Moreover φ̃(u+
i ) = 0

for all 0 ≤ i ≤ d by construction. So we are left with the case when φ(u+
i ) = 0 for all
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0 ≤ i ≤ d. In this case, there is a one-to-one correspondence between d-simplices in ♢d

from cφ and vectors (α0, . . . , αd) ∈ Fd+1
2 for which

d∑
i=0

αiφ(u−
i ) = 0.

The number of such vectors equals 2dim ker A where A ∈ Fd×(d+1)
2 is the matrix with columns

φ(u−
0 ), . . . , φ(u−

d ). Note that dim kerA ≥ 1 (we consider linear dependencies of d + 1
vectors in the d-dimensional vector space Fd

2), hence 2dim ker A is even. This finishes the
proof.

7.2 Upper Bound for Spherical Building Ad(Fq)
In this subsection we prove Theorem 1.6 which we restate here for easier reference.

Theorem. For any dimension d and ε > 0 there is Q = Q(d, ε) ∈ Z>0 such that for all
prime powers q ≥ Q we have

ηd−1(Ad(Fq)) ≤ d+ 1
2d

+ ε.

Recall that for a prime power q and a dimension d, Ad(Fq) is the d-dimensional simpli-
cial complex with vertex set the non-trivial, proper subspaces of Fd+2

q and k-simplices
corresponding to chains of subspaces {0} ̸= U0 ⊊ U1 ⊊ · · · ⊊ Uk ⊊ Fd+2

q .

Let us start by collecting a few very basic combinatorial properties of Ad(Fq). Note that
every (d − 1)-simplex of Ad(Fq) is contained in precisely (1 + q) of the d-simplices of
Ad(Fq) ((1 + q) is the number of 1-dimensional subspaces of a 2-dimensional vector space
over Fq). In particular,

|Ad(Fq)(d− 1)| = d+ 1
q + 1 |Ad(Fq)(d)|.

On the other |Ad(Fq)(d)| = [d+ 2]q! where for k ≥ 1 we let [k]q! = [k]q · [k − 1]q · · · · · [1]q
with [j]q = ∑j−1

i=0 q
i. It follows that |Ad(Fq)(d− 1)| is a polynomial in q with leading term

(d+ 1)q
d(d+3)

2 . Hence, for sufficiently large q (q ≥ (d+ 2)! suffices) we have

|Ad(Fq)(d− 1)| ≤ 2(d+ 1)q
d(d+3)

2 .

Clearly, the map λ : Ad(Fq)(0) → {1, 2, . . . , d + 1} given by U 7→ λ(U) := dim(U) is a
labeling of the vertices of Ad(Fq) showing that Ad(Fq) is (d+ 1)-partite. This gives rise
to an embedding ι : Ad(Fq) → Λd

n0,...,nd
where nk = [d+2]q !

[k+1]q ![d+1−k]q ! is the number of k + 1
dimensional subspaces of Fd+2

q .

Outline of proof of Theorem 1.6 We first observe that since the restriction of a
coboundary to a subcomplex is a coboundary, Proposition 7.1 also provides a wealth of
coboundaries in Ad(Fq).
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Corollary 7.3. Let φ : Ad(Fq)(0) → Fd
2. Let cφ ∈ Cd(Ad(Fq);F2) be given by

cφ({u0, . . . , ud}) =

1 if ∑d
i=0 φ(ui) = 0 ∈ Fd

2,

0 otherwise .

Then cφ is a coboundary, i.e. cφ ∈ Bd(Ad(Fq);F2).

Now the idea is to pick φ uniformly at random and consider cφ. That is for every vertex
v ∈ Ad(Fq)(0) we choose φ(v) ∈ Fd

2 independently and uniformly at random. It will turn
out that as q → +∞, with positive probability, there is some coboundary b = cφ for
which every (d− 1)-simplex in Ad(Fq) is contained in at most q+1

2d + o(q) d-simplices of b.
Writing | · | for the Hamming norm of cochains, we see that every cofilling c of b must
satisfy (

q + 1
2d

+ o(q)
)

|c| ≥ |b|

giving us a cochain c ∈ Cd−1(Ad(Fq);F2) for which

|δc|
|[c]| ≤

(
q + 1

2d
+ o(q)

)
.

Normalizing we get

ηd−1(Ad(Fq)) ≤ d+ 1
q + 1

(
q + 1

2d
+ o(q)

)
= d+ 1

2d
+ o(1)

as q → +∞.

Proof of Theorem 1.6 We add some more details to the proof outline above. To
this end, let (Ω,B,P) be the probability space with Ω = (Fd

2)Ad(Fq)(0), i.e. Ω is the set
of maps φ : Ad(Fq)(0) → Fd

2, B = 2Ω and P the uniform distribution. For ω ∈ Ω we let
b(ω) := cω ∈ Bd(Ad(Fq);F2) as defined in Corollary 7.3. For τ ∈ Ad(Fq)(d) let b(τ) : Ω → R
be given by

b(τ)(ω) :=

1 if b(ω)(τ) = 1,
0 otherwise .

For σ ∈ Ad(Fq))(d− 1) let d(σ) : Ω → R be given by

d(σ)(ω) :=
∑

τ∈Ad(Fq)(d),σ⊆τ

b(τ)(ω),

i.e. d(σ)(ω) is the number of d-simplices incident to τ which are contained in b(ω). We
have

Lemma 7.4. (i) P(b(τ) = 1) = E[b(τ)] = 1
2d for all τ ∈ Ad(Fq)(d).

(ii) E[d(σ)] = q+1
2d for all σ ∈ Ad(Fq)(d− 1).

Proof. (i) follows from the fact that for any fixed a0, a1, . . . , ad−1 ∈ Fd
2 the equation

a0 + a1 + · · · + ad−1 + x = 0 has precisely one solution for x. (ii) then follows from (i) by
linearity of expectation using that every (d− 1)-simplex of Ad(Fq) is contained in exactly
q + 1 d-simplices.
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The following observation is crucial as it will allow us to use Hoeffding’s inequality for
d(σ).

Lemma 7.5. Fix σ ∈ Ad(Fq)(d− 1). Let τ1, . . . , τq+1 be the q + 1 d-simplices incident to
σ. Then the random variables b(τ1), . . . , b(τq+1) are independent.

Proof. Let σ = {v0, . . . vd−1}. When randomly picking φ : Ad(Fq)(0) → Fd
2 we can think

that the values of φ on the vertices of σ have already been picked. Then the value of b(τi)

solely depends on the choice of φ on the remaining vertex v ∈ τi \ σ. These choices are
independent.

Recall Hoeffding’s inequality

Theorem 7.6 (Hoeffding’s inequality, [62, Theorem 1] ). Let X1, . . . , Xn be {0, 1}-valued
independent identically distributed (i.i.d.) random variables with p = EXi. Then for any
t ≥ 0 we have

P
(

n∑
i=1

Xi ≥ (p+ t)n
)

≤ e−2t2n.

By Lemma 7.4 (i) and Lemma 7.5 d(σ) is a sum of {0, 1}-valued i.i.d. random variables
with success probability p = 1

2d . Thus we can apply Hoeffding’s inequality to d(σ) with

n = q + 1, p = 1
2d
, t =

√√√√(d(d+ 3) + 2) log q
4(q + 1)

and combine it with a union bound over all (d − 1)-simplices σ ∈ Ad(Fq)(d − 1) to get
(for q ≥ (d+ 2)!) that

P
(

∃σ ∈ Ad(Fq)(d− 1) with d(σ) ≥
( 1

2d
+ t

)
(q + 1)

)
≤ |Ad(Fq)(d− 1)|e−2t2(q+1)

≤ 2(d+ 1)q
d(d+3)

2 e−( d(d+3)
2 +1) log q

= 2(d+ 1)
q

.

For the last inequality we used that |Ad(Fq)(d−1)| ≤ 2(d+1)q
d(d+3)

2 whenever q ≥ (d+2)!.
In particular, for q ≥ (d+ 2)! there is some ω ∈ Ω such that for all σ ∈ Ad(Fq)(d− 1) it
holds that

d(σ)(ω) ≤ q + 1
2d

+ (q + 1)

√√√√(d(d+ 3) + 2) log q
4(q + 1) = q + 1

2d
+ 1

2
√

(d(d+ 3) + 2)(q + 1) log q.

As we noticed earlier, this implies that every c ∈ Cd−1(Ad(Fq);F2) with δc = b(ω) must
satisfy (

q + 1
2d

+ 1
2
√

(d(d+ 3) + 2)(q + 1) log q
)

|c| ≥ |b(ω)|.

It follows that

ηd−1(Ad(Fq)) ≤ d+ 1
2d

+
(d+ 1)

√
(d(d+ 3) + 2)(q + 1) log q

2(q + 1) .
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Since

lim
q→+∞

(d+ 1)
√

(d(d+ 3) + 2)(q + 1) log q
2(q + 1) = 0

this finishes the proof of Theorem 1.6.

Some remarks regarding Theorem 1.6. We conclude this section with two remarks
regarding our upper bound on ηd−1(Ad(Fq)).

(i) The proof of Theorem 1.6 carries over to arbitrary infinite families (Xn)n∈N of
(d+ 1)-partite d-dimensional simplicial complex for which every (d− 1)-simplex of
Xn is contained in (roughly) q(n) d-simplices for a sequence of positive integers q(n)
which grows to infinity sufficiently fast.

(ii) The simplicial complexes Ad(Fq) show up as the (vertex) links of so-called Ramanujan
complexes [100]. As an application of the necessity of expansion of links, we can
use Theorem 1.6 to get an upper bound on the top-dimensional cofilling constants
of Ramanujan complexes (see Section 9.4 below).

7.3 Upper Bound for Complete Multipartite
Complexes

7.3.1 Upper Bound on ηd−1(Λd
n0,n1,...,nd

)
Let d ∈ N be a dimension, n0, n1, . . . , nd ≥ 2 integers. We will write Λd

n0,n1,...,nd
as

Λd
n0,n1,...,nd

= V0 ∗ V1 ∗ · · · ∗ Vd with Vi = [ni], 0 ≤ i ≤ d. We write | · | for the Hamming
norm on cochains and ∥ · ∥ for the Garland weighted Hamming norm on cochains. In this
subsection we prove the following slightly refined version of Theorem 1.5.

Theorem 7.7. If 2d divides ni for all 0 ≤ i ≤ d, then

ηd−1(Λd
n0,n1,...,nd

) ≤ d+ 1
2d

.

Moreover, let ε > 0. If min{n0, . . . , nd} ≥ 2d + d+1
ε

, then

ηd−1(Λd
n0,n1,...,nd

) ≤ d+ 1
2d

+ ε.

Proof. Let X = Λd
n0,n1,...,nd

. Write ni = li2d + ri with 0 ≤ ri < 2d, li ∈ Z≥0, 0 ≤ i ≤ d.
Partition Vi = ⊔2d

j=1 Vij as equally as possible, i.e. such that ||Vij| − |Vij′ || ≤ 1 for all
j, j′ ∈ {1, . . . , 2d}. Let ψ : [2d] → Fd

2 be a bijection. Define φ : X(0) → Fd
2 by φ(v) := ψ(j)

for v ∈ Vij, 1 ≤ j ≤ 2d, 0 ≤ i ≤ d. Let b = cφ ∈ Bd(X;F2) as defined in Proposition 7.1.

Given σ ∈ X(d− 1) there is a unique i ∈ {0, 1, . . . , d} for which σ ∩ Vi = ∅. We call this i
the type of σ.

First assume that ri = 0 for all 0 ≤ i ≤ d, i.e. that 2d divides ni for all 0 ≤ i ≤ d.
Consider c ∈ Cd−1(X;F2) with δc = b. Decompose c = ∑d

i=0 c
(i) where the support of c(i)
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is given by the (d− 1)-simplices of type i in the support of c. Since 2d divides ni, every
(d− 1)-simplex of type i is contained in exactly li d-simplices in the support of b. Hence,

d∑
i=0

li|c(i)| ≥ |b|.

Note that a (d− 1)-simplex σ of type i has Garland weight w(σ) = ni

(d+1)|X(d)| . It follows
that

∥c∥ =
d∑

i=0

ni

(d+ 1)|X(d)| |c
(i)|

= 2d

(d+ 1)|X(d)|

d∑
i=0

li|c(i)|

≥ 2d

(d+ 1)|X(d)| |b|

= 2d

d+ 1∥b∥.

This shows that
ηd−1(Λd

n0,...,nd
) ≤ d+ 1

2d
,

whenever 2d divides all ni, 0 ≤ i ≤ d.

If not all the ni’s are divisible by 2d, we still have that every (d− 1)-simplex σ of type i
is contained in at most li + 1 d-simplices from b. Thus, every cofilling c ∈ Cd−1(X;F2) of
b must satisfy

d∑
i=0

(li + 1)|c(i)| ≥ |b|,

where again we decompose c = ∑d
i=0 c

(i) according to the type of (d− 1)-simplices. Note
that

ni

li + 1 = 2dli + ri

li + 1 ≥ 2d li
li + 1 .

Let lmin = min0≤i≤d
li

li+1 . Then

∥c∥ = 1
(d+ 1)|X(d)|

d∑
i=0

ni|c(i)|

≥ 1
(d+ 1)|X(d)|

d∑
i=0

2d li
li + 1(li + 1)|c(i)|

≥ 2dlmin

(d+ 1)|X(d)|

d∑
i=0

(li + 1)|c(i)|

≥ 2dlmin

d+ 1 ∥b∥.

Now assume that min0≤i≤d ni ≥ 2d + d+1
ε

. Then for any 0 ≤ i ≤ d we have

li =
⌊
ni

2d

⌋
≥ ni

2d
− 1 ≥ d+ 1

2dε
.

97



7. Upper Bounds on Expansion Constants of Partite Complexes

It follows that
lmin ≥ 1 − 1

1 + d+1
2dε

.

Therefore
ηd−1(Λd

n0,...,nd
) ≤ d+ 1

2d

1
lmin

≤ d+ 1
2d

1 + d+1
2dε

d+1
2dε

= d+ 1
2d

+ ε,

as desired.

7.3.2 Upper Bound on ηk(Λd
n)

By taking products, we can extend the construction yielding the upper bound on ηd−1(Λd
n)

to give the following upper bound on ηk(Λd
n).

Proposition 7.8. Let l, n ∈ Z>0, d1, . . . , dl ∈ Z≥0. Let d = (∑l
i=1 di) + l − 1 and

k = (∑l
i=1 di) − 1. If 2max1≤i≤l di divides n then

ηk(Λd
n) ≤ k + 2

d− k

l∑
i=1

1
2di
.

In particular, for every d ∈ Z≥0 and 0 ≤ k < d− 1 we have

ηk(Λd
n) ≤ k + 2

2⌊(k+1)/(d−k)⌋

whenever n is divisible by 2⌈(k+1)/(d−k)⌉.

We remark that it is not difficult to further extend the above results to an upper bound

ηk(Λd
n0,...,nd

) ≤ k + 2
d− k

l∑
i=1

1
2di

provided that 2di divides nki+s for 0 ≤ s ≤ di where ki = ∑i−1
t=1(dt + 1). Moreover, for

every ε > 0 there is nε ∈ Z>0 such that if min{n0, . . . , nd} ≥ nε then

ηk(Λd
n0,...,nd

) ≤ k + 2
d− k

l∑
i=1

1
2di

+ ε.

The proof of these slight extensions do not really need any new idea but require some
additional technicalities which we prefer to omit.

Proof of Proposition 7.8. For 1 ≤ i ≤ l write n as n = 2diri for some ri ∈ Z>0. Let
b(i) ∈ Bdi(Λdi

n ;F2) be a coboundary as constructed in the proof of Theorem 7.7 witnessing
that ηdi−1(Λdi

n ) ≤ (di + 1)/2di . Let c(i) ∈ Cdi−1(Λdi
n ;F2) be a minimal cofilling of b(i).

Think of Λd
n as Λd

n = Λd1
n ∗ Λd2

n ∗ · · · ∗ Λdl
n . With this decomposition we consider c =

c(1) ⊗ c(2) ⊗ . . . ⊗ c(l) ∈ Ck(Λd
n;F2). Let b = δc. Recall that b(i) has the property that

every (di − 1)-simplex in Λdi
n is contained in at most ri simplices of the support of b(i).

Consequently, every k-simplex σ ∈ Λd
n is contained in at most

l∑
i=1

ri = n
l∑

i=1

1
2di
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simplices in the support of b. It follows that

|b| ≤ n

(
l∑

i=1

1
2di

)
|[c]|.

Since |Λd
n(j)| =

(
d+1
j+1

)
nj+1 for all 0 ≤ j ≤ d, we easily deduce by normalizing that

ηk(Λd
n) ≤ |Λd

n(k)|
|Λd

n(k + 1)|n
l∑

i=1

1
2di

= k + 2
d− k

l∑
i=1

1
2di
,

as desired. The second part follows from the first by writing

k + 1 = s(d− k) + r

with integers s ≥ 0 and 0 ≤ r < d− k and setting l = d− k, di = s+ 1 for 1 ≤ i ≤ r and
di = s for r < i ≤ d− k. This gives

ηk(Λd
n) ≤ k + 2

d− k

(
r

2s+1 + d− k − r

2s

)
≤ k + 2

2⌊(k+1)/(d−k)⌋

and finishes the proof.

7.3.3 Refined Upper Bound for Λ2
n

For Λ2
n we have the following refined upper bound on η1(Λ2

n) which we conjecture to be
the exact value.

Proposition 7.9. Let n ∈ Z>0.

• If n ≡ 0 mod 4, then
η1(Λ2

n) ≤ 3
4 .

• If n ≡ 1 mod 4, then

η1(Λ2
n) ≤ 3n3 + 9

4n3 − 3n2 + 3n.

• If n ≡ 2 mod 4 and n ̸= 2,1 then

η1(Λ2
n) ≤ 3n3 + 24

4n3 − 2n2 + 4n.

• If n ≡ 3 mod 4, then

η1(Λ2
n) ≤ 3n3 + 3

4n3 − 3n2 + n
.

We remark that for 1 ≤ n ≤ 5 the exact values of η1(Λ2
n) are

η1(Λ2
1) = 3, η1(Λ2

2) = 1, η1(Λ2
3) = 1, η1(Λ2

4) = 3/4 and η1(Λ2
5) = 48/55,

1It is known that η1([2]∗3) = 1 (see [35, Proposition 5.5]).
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matching the upper bounds of the proposition.2

For the proof of Proposition 7.9 we will consider b = cφ for a specific choice of φ : Λ2
n(0) →

F2
2, for which |φ−1(x) − φ−1(y)| ≤ 1 for all x, y ∈ F2

2. We will explicitly write down a
minimal cofilling of such a b which gives the desired upper bound. The minimality of
these cofillings we check with the help of a computer. The following lemma, which might
be of independent interest, allows us to reduce the number of cases to a feasible amount.

Lemma 7.10 (Minimality for product-like cochains). Write Λ2
n = U0 ∗ U1 ∗ U2 with

U0 = U1 = U2 = [n]. For i ∈ {0, 1, 2} let Ui = ⊔li
s=1 U

(i)
s be a partition of Ui. Let

c ∈ C1(Λ2
n;F2) such that the restriction c|

U
(i)
s ∗U

(j)
t

is constant for all 0 ≤ i < j ≤ 2 and
1 ≤ s ≤ li, 1 ≤ t ≤ lj. Then the following are equivalent:

(i) c is minimal, i.e. |c+ δa| ≥ |c| for all a ∈ C0(Λ2
n;F2).

(ii) For all S ⊆ Λ2
n(0), |supp(c) ∩ supp(δ1S)| ≤ |supp(δ1S)|

2 .

(iii) For all S ⊆ X(0) with S ∩ U (i)
s ∈ {∅, U (i)

s } for all 0 ≤ i ≤ 2, 1 ≤ s ≤ li,

|supp(c) ∩ supp(δ1S)| ≤ |supp(δ1S)|
2 .

The proof of this lemma is inspired by the proof of Theorem 6.3 in [84] where a similar
result for the complete 2-dimensional complex is proven.

Proof. To ease notation let X = Λ2
n. We will write δS instead of δ1S for S ⊆ X(0) as

well as c ∩ δS instead of supp(c) ∩ supp(δ1S).

The equivalence of (i) and (ii) holds for any c ∈ C1(X;F2) and easily follows from the
observation that |c+ δa| = |c| + |δa| − 2|c ∩ δa|.

(ii) cleary implies (iii). For the converse implication we argue that given c ∈ C1(X;F2)
with |c ∩ δS| > |δS|

2 for some S ⊆ X(0), there is also S̃ ⊆ X(0) with S̃ ∩ U (i)
s ∈ {∅, U (i)

s }
for all 0 ≤ i ≤ 2, 1 ≤ s ≤ li and |c ∩ δS̃| > |δS̃|

2 . Assume, by contradiction, this is not
the case for some c ∈ C1(X;F2). Then there is some S ⊆ X(0) with |c ∩ δS| > |δS|

2 such
that the condition S ∩ U (i)

s ∈ {∅, U (i)
s } is violated for the fewest number of 0 ≤ i ≤ 2 and

1 ≤ s ≤ li among all S ′ ⊆ X(0) with |c∩ δS ′| > |δS′|
2 . After relabeling we can without loss

of generality assume that ∅ ̸= S ∩ U
(0)
1 ⊊ U

(0)
1 . Let A = S ∩ U

(0)
1 and B = U

(0)
1 \ A. Let

S− = S \A and S+ = S ⊔B. Note that S− and S+ violate fewer of the conditions on the
intersection with U (i)

s than S. Thus, showing that |δS− ∩c| > 1
2 |δS−| or |δS+ ∩c| > 1

2 |δS+|
would contradict the choice of S and finish the proof of the lemma.

To see that this is indeed the case, fix u ∈ U
(0)
1 and let

β = |{s ∈ S ∩ (U1 ⊔ U2) : c(us) = 1}|

and
γ = |{s ∈ (X(0) \ S) ∩ (U1 ⊔ U2) : c(us) = 1}|.

2For n = 1 and n = 3 these bounds can be checked by hand. The case n = 2 is part of [35, Proposition
5.5]. For n = 4 the random cofilling argument (carrying lower order terms in n along) as in Proposition 8.6
yields a lower bound of 3/4 matching the upper bound of Theorem 7.7. For n = 5 we run an exhaustive
search on a computer for a stronger upper bound after reducing to a feasible amount of cases.
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Note that

|δS− ∩ c| = |δS ∩ c| − (γ − β)|A|, and
|δS+ ∩ c| = |δS ∩ c| + (γ − β)|B|.

This implies
|δS ∩ c| = (1 − λ)|δS− ∩ c| + λ|δS+ ∩ c|

with λ = |A|
|A|+|B| . Now let si = |S ∩ Ui| for i ∈ {0, 1, 2}. Define the function φ : R → R by

s 7→ φ(s) := s(2n− s1 − s2) + s1(2n− s− s2) + s2(2n− s− s1).

Note that φ is affine and hence concave. Moreover,

|δS| = φ(s0), |δS−| = φ(s0 − |A|) and |δS+| = φ(s0 + |B|).

Now assume, by contradiction, that both |δS− ∩ c| ≤ 1
2 |δS−| and |δS+ ∩ c| ≤ 1

2 |δS+|.
Then

|δS ∩ c| = (1 − λ)|δS− ∩ c| + λ|δS+ ∩ c|

≤ (1 − λ) |δS−|
2 + λ

|δS+|
2

= 1
2 ((1 − λ)φ(s0 − |A|) + λφ(s0 + |B|))

≤ 1
2φ((1 − λ)(s0 − |A|) + λ(s0 + |B|))

= 1
2φ

(
s0 − |A| · |B|

|A| + |B|
+ |B| · |A|

|A| + |B|

)

= 1
2 |δS|,

where we used concavity of φ for the second inequality. We obtained a contradiction to
our assumption that |δS ∩ c| > 1

2 |δS|. This finishes the proof.

Another ingredient for the proof of Proposition 7.9 is a particular cofilling of the coboundary
b ∈ B2(Λ2

4;F2) showing that η1(Λ2
4) ≤ 3/4.

Lemma 7.11. Let Λ2
4 = U ∗ V ∗ W with U = {u0, u1, u2, u3}, V = {v0, v1, v2, v3} and

W = {w0, w1, w2, w3}. Let ψ : {0, 1, 2, 3} → F2
2 be given by

ψ(0) = (0, 0), ψ(1) = (1, 0), ψ(2) = (0, 1) and ψ(3) = (1, 1).

Let b ∈ B2(Λ2
4;F2) be given by3

b({ui, vj, wk}) =

1 if ψ(i) + ψ(j) + ψ(k) = 0 ∈ F2
2

0 otherwise.

Let c ∈ C1(Λ2
4;F2) be given by

supp c = {u0v0, u0v3, u0w1, u0v2, u1v0, u1v2, u1w0, u1w2,

u2v0, u2v1, u2w0, u2w1, v0w3, v1w2, v2w1, v3w0}.

Then δc = b.
3Note that b is indeed a coboundary since b = cφ for φ : Λ2

4(0) → F2
2 given by φ(xi) = ψ(i) for

x ∈ {u, v, w} and cφ as in Proposition 7.1.
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Proof. Instead of tediously checking that δc = b let us describe how one would come up
with c in the first place. To this end, we first note that c|V ∗W

= bu3 . Thus, if we define
c̃ ∈ C1(Λ2

4;F2) to be equal to bu3 on V ∗W and to be 0 on edges containing u3, we already
achieved that δc̃(τ ) = b for all triangles τ containing u3. In order to extend c̃ to a cofilling
of b we would need to satisfy

b(uivjwk) ?!= δc̃(uivjwk) = b(u3vjwk) + c̃(uiwk) + c̃(uivj),

or equivalently that (δc̃ui
)(vjwk) = (bui

+ bu3)(vjwk). This amounts to choose c̃ui
as a

cofilling of bui
+ bu3 ∈ B1(V ∗W ;F2).

In Figure 7.1 we depict bui
+ bu3 and cui

for i ∈ {0, 1, 2}. We see that cui
is indeed a

cofilling of bui
+ bu3 for i ∈ {0, 1, 2} and conclude δc = b, as desired.

Figure 7.1: The top row shows bui
for i ∈ {0, 1, 2, 3}. The bottom row shows bui

+ bu3 for
i ∈ {0, 1, 2}. We marked the vertices in the support of cui

in blue. We note that for each
i ∈ {0, 1, 2} the vertices in cui

induce the cut bui
+ bu3

We are ready to give a proof of Proposition 7.9.

Proof of Proposition 7.9. Write n = 4k + l with l ∈ {0, 1, 2, 3}. If l = 0, we already know
from Theorem 7.7 that η1(Λ2

n) ≤ 3
4 . So we can assume that l ∈ {1, 2, 3}.

Write Λ2
n = U ∗ V ∗ W with U = V = W = [n]. Partition U = ⊔3

i=0 Ui, V = ⊔3
i=0 Vi

and W = ⊔3
i=0 Wi such that |Ui| = |Vi| = k for 0 ≤ i ≤ 3 − l, |Ui| = |Vi| = k + 1 for

3 − l < i ≤ 3 and 1 ≤ l ≤ 3 and |W0| = k + 1, |W1| = |W2| = |W3| = k if l = 1,
|W0| = |W1| = k + 1, |W2| = |W3| = k if l = 2 and |W0| = |W2| = |W3| = k + 1, |W1| = k
if l = 3.

Label the vertices of Λ2
4 as in Lemma 7.11. Let f : Λ2

n(0) → Λ2
4 be such that f(u) = ui

for all u ∈ Ui, f(v) = vi for all v ∈ Vi and f(w) = wi for all w ∈ Wi, 0 ≤ i ≤ 3. Let
f : Λ2

n → Λ2
4 be the induced simplicial map. Let b0 ∈ B2(Λ2

4;F2) and c0 ∈ C1(Λ2
4;F2)

be the cochains as considered in Lemma 7.11. Let b := f ∗b0 and c := f ∗c0. Clearly,
δc = b ∈ B2(Λ2

n;F2).
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Using that

|b| = |U0| · (|V0| · |W0| + |V1| · |W1| + |V2| · |W2| + |V3| · |W3|)
+ |U1| · (|V0| · |W1| + |V1| · |W0| + |V2| · |W3| + |V3| · |W2|)
+ |U2| · (|V0| · |W2| + |V1| · |W3| + |V2| · |W0| + |V3| · |W1|)
+ |U3| · (|V0| · |W3| + |V1| · |W2| + |V2| · |W1| + |V3| · |W0|)

and

|c| = |U0| · (|V0| + |V3| + |W1| + |W2|)
+ |U1| · (|V0| + |V2| + |W0| + |W2|)
+ |U2| · (|V0| + |V1| + |W0| + |W1|)
+ |V0| · |W3| + |V1| · |W2| + |V2| · |W1| + |V3| · |W0|

one can check that 3
n

|b|
|c| would give the upper bound on η1(Λ2

n) as claimed in the statement
of the proposition. Thus, it remains to show that c is minimal.

By construction c has product-like structure. Therefore, by Lemma 7.10, it suffices to
show that for all S ⊆ Λ2

n(0) with S ∩Xj ∈ {∅, Xj} for all 0 ≤ j ≤ 3 and X ∈ {U, V,W},
it holds that |c ∩ δS| ≤ |δS|

2 .

This amounts to show that |c ∩ δf ∗S| ≤ |δf∗S|
2 for all S ⊆ Λ2

4(0).

For fixed l ∈ {1, 2, 3} and fixed S ⊆ Λ2
4(0) we can think of |δf ∗S| − 2|c ∩ δf ∗S| as a

polynomial pS,l(k) in k (recall that k is such that n = 4k + l). Note that pS,l has degree
at most 2 and is thus determined by the values at three different k’s. Since δf ∗S = f ∗δS
for each l, we only have to consider 211 choices for S ⊆ Λ2

4(0) and check whether pS,l(k)
is non-negative for all k ∈ Z≥0. It turns out that all pS,l have non-negative coefficients,
from which pS,l(k) ≥ 0 for all k ∈ R≥0 immediately follows. This can be readily verified
by using a short computer script.4

7.3.4 Blow-Up Construction for Λ2
n

In the proof of the upper bounds on η1(Λ2
n) there is a blow-up construction lurking

in the background which is worth elaborating on. In fact, the blow-up construction is
independent of coefficients and will also be helpful to prove our upper bound on ζ1(Λ2

n) in
the next subsection.

Given a simplicial complex X on vertex set V = X(0) and t ∈ Z>0 we define the t-fold
blow-up X{t} of X to be the simplicial complex X{t} with vertex set V × [t] such that
{(v0, i0), . . . , (vk, ik)} is a k-simplex of X{t} if and only if {v0, . . . , vk} ∈ X(k). Note that
there is a projection map π : X{t} → X which maps a k-simplex {(v0, i0), . . . , (vk, ik)} to
{v0, . . . vk}. This allows to pullback a cochain c ∈ Ck(X;A) (for some abelian group A)
to a cochain c{t} = π∗c ∈ Ck(X{t};A). We will call c{t} the blow-up of c.

Note that for n, t ∈ Z>0 we have (Λd
n){t} ∼= Λd

tn. Moreover, in dimension d = 2, blow-up of
cochains preserves minimality. More precisely:

Proposition 7.12. (i) Let c ∈ C1(Λ2
n;Z). Then c is minimal (with respect to ℓ2

2-norm)
if and only if c{t} ∈ C1(Λ2

tn;Z) is minimal.
4Our Python code, which we used for this, will be made available via the library of IST Austria.
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(ii) Let c ∈ C1(Λ2
n;F2). Then c is minimal (with respect to Hamming norm) if and only

if c{t} ∈ C1(Λ2
tn;F2) is minimal.

The following corollary is immediate but still worth stating separately. It says that the
blow-up construction allows to transfer an upper bound on the coboundary expansion
constant of Λ2

n to arbitrarily large complexes.

Corollary 7.13. For every k, n ∈ Z>0 we have η1(Λ2
kn) ≤ η1(Λ2

n) and ζ1(Λ2
kn) ≤ ζ1(Λ2

n).

Blow-Up and Minimality over Z

We show part (i) of Proposition 7.12.

Let X = Λ2
n and X̂ = X{t} = Λ2

tn. Write X̂(0) = X × [t].

First assume that c ∈ C1(X;Z) is not minimal. Then there is a ∈ C0(X;Z) with
|c− δa|2 < |c|2. But then

|c{t}|2 = t2|c|2 > t2|c− δa|2 = |(c− δa){t}|2 = |c{t} − δa{t}|2,

showing that the blow-up c{t} ∈ C1(X̂;Z) of c is not minimal.

For the converse we need the following lemma:

Lemma 7.14. Let c ∈ C1(Λ2
n;Z). Then the following are equivalent

(i) c is minimal with respect to the ℓ2
2-norm | · |2.

(ii) |⟨c, δa⟩| ≤ 1
2 |δa|2 for all a ∈ C0(Λ2

n;Z).

(iii) |⟨c, δa⟩| ≤ 1
2 |δa|2 for all a ∈ C0(Λ2

n;Z) with a(u) ∈ {0, 1} for all u ∈ Λ2
n(0).

Proof. The equivalence of (i) and (ii) follows from expanding the inequality |c+δa|2 ≥ |c|2,
which holds for all a ∈ C0(Λ2

n;Z) if c is minimal, in terms of inner products.

Clearly (ii) implies (iii). For the reverse implication let a ∈ C0(Λ2
n;Z) be arbitrary.

Decompose a = a+ + a− where a+(u) = max{0, a(u)} and a−(u) = − min{0, a(u)} for all
u ∈ Λ2

n(0). Since (x− y)2 ≥ x2 + y2 for real numbers x, y ∈ R with xy ≥ 0 we have

|δa(e)|2 ≥ |δa+(e)|2 + |δa−(e)|2

for all e ∈ Λ2
n(1).

Let l+ = maxu∈Λ2
n(0) a+(u) and l− = maxu∈Λ2

n(0) a−(u) For ε ∈ {−,+} and 1 ≤ i ≤ lε let
a(i)

ε ∈ C0(Λ2
n;Z) be given by

a(i)
ε (u) =

1 if aε(u) ≥ i,

0 otherwise .
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We have a = ∑l+
i=1 a

(i)
+ −∑l−

j=1 a
(j)
− by construction. We estimate assuming (iii)

|⟨c, δa⟩| = |⟨c, δ

 l+∑
i=1

a
(i)
+ −

l−∑
j=1

a
(j)
−

⟩|

≤
l+∑

i=1
|⟨c, δa(i)

+ ⟩| +
l−∑

j=1
|⟨c, δa(j)

− ⟩|

≤ 1
2

l+∑
i=1

|δa(i)
+ |2 + 1

2

l−∑
j=1

|δa(j)
− |2

= 1
2

∑
xy∈Λ2

n(1)
(|a+(x) − a+(y)| + |a−(x) − a−(y)|)

≤ 1
2
(
|δa+|2 + |δa−|2

)
≤ 1

2 |δa|2,

where we used the triangle inequality for the first inequality, (iii) for the second, that
|x| ≤ x2 for all x ∈ Z for the third, and |δa+(e)|2 + |δa−(e)|2 ≤ |δa(e)|2 for all e ∈ Λ2

n(1)
for the last inequality.

Write X as X = V0 ∗ V1 ∗ V2 with V0 = V1 = V2 = [n]. Let c ∈ C1(X;Z) be a minimal
cochain. Let ĉ ∈ C1(X̂;Z) the blow-up of c. Assume that ĉ is not minimal. By Lemma 7.14
there is S ⊆ X̂(0) such that

|⟨c, δ1S⟩| > |δ1S|2

2 .

We will argue that we can choose S to be of the form S = S ′ × [t] for some S ′ ⊆ X(0).
This will give us the desired contradiction, since for S of such form the minimality of c
implies that

|⟨ĉ, δ1S⟩| = t2|⟨c, δ1S′⟩| ≤ t2
|δ1S′ |2

2 = |δ1S|2

2 .

So, let a ∈ C0(X̂;Z) with a(u) ∈ {0, 1} for all u ∈ X̂ such that |⟨ĉ, δa⟩| > |δa|2
2 . Assume

there is a vertex v (which without loss of generality we can assume to be in V0) such that

∅ ̸= ({v} × [t]) ∩ supp(a) ⊊ {v} × [t].

Let A = {v} × [t] ∩ supp(a), B = {v} × [t] \A, a− = a− 1A and a+ = a+ 1B. Note that
⟨ĉ, δ1A⟩ = |A|⟨c, δ1v⟩ while ⟨ĉ, δ1B⟩ = |B|⟨c, δ1v⟩. Let α = |A|⟨c, δX1v⟩, β = |B|⟨c, δX1v⟩,
and

λ = α

α + β
= |A|

|A| + |B|
.

Note that λ ∈ [0, 1]. We have that

(1 − λ)⟨ĉ, δa−⟩ + λ⟨ĉ, δa+⟩ = ⟨ĉ, δa⟩.

Assume that |⟨ĉ, δa−⟩| ≤ |δa−|2
2 and |⟨ĉ, δa+⟩| ≤ |δa+|2

2 . Note that for {0, 1}-valued cochains
a ∈ C0(X;Z) |δa|2 only depends on ai = |supp(a) ∩ Vi| for i ∈ {0, 1, 2}. Moreover |δa|2 is
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an affine function a0 7→ φ(a0) in a0 if a1 and a2 are fixed. We deduce that

|⟨ĉ, δa⟩| ≤ (1 − λ)|⟨ĉ, δa−⟩| + λ|⟨ĉ, δa+⟩|

≤ (1 − λ) |δa−|2

2 + λ
|δa+|2

2
= 1

2(1 − λ)φ(a0 − |A|) + 1
2λφ(a0 + |B|)

= 1
2

|B|
|A| + |B|

φ(a0 − |A|) + 1
2

|A|
|A| + |B|

φ(a0 + |B|)

≤ 1
2φ

(
|B|

|A| + |B|
(a0 − |A|) + |A|

|A| + |B|
(a0 + |B|)

)

= 1
2φ(a0)

= |δa|2

2 .

For the last inequality we used that, as an affine function, φ is concave.

We obtained a contradiction to our assumption that |⟨ĉ, δa⟩| > |δa|2
2 . Thus, we must have

|⟨ĉ, δa−⟩| > |δa−|2
2 or |⟨ĉ, δa+⟩| > |δa+|2

2 . But a− and a+ are both {0, 1}-valued 0-cochains
for which there are fewer vertices v with

∅ ̸= ({v} × [t]) ∩ supp(a) ⊊ {v} × [t]

than for a.

Proceeding by induction, we can obtain a cochain a′ for which |⟨ĉ, δa′⟩| > |δa′|2
2 such that

a′ is of the form a′ = 1S for some S = S ′ × [t] with S ⊆ X(0).

Blow-Up and Minimality over F2

For part (ii) of Proposition 7.12 we observe that the blow-up c{t} of a cochain c ∈ C1(Λ2
n;F2)

is product-like (in the sense of Lemma 7.10). Since

t2|c+ δa| = |(c+ δa){t}| = |c{t} + δa{t}|

part(ii) is a special case of Lemma 7.10.

7.3.5 Upper Bound on ζd−1(Λd
n)

We have the following upper bound on ζd−1(Λd
n).

Proposition 7.15. (i) For all n ≥ 2 we have ζ1(Λ2
n) ≤ 1.

(ii) If d ≥ 3 and d+ 1 divides n then ζd−1(Λd
n) ≤ 1.

Proof. For (i) we distinguish two cases depending on the parity of n. First assume that
n = 2k is even. Using the blow-up construction (Corollary 7.13) it suffices to consider the
case n = 2. Write Λ2

2 as Λ2
2 = {u0, u1} ∗ {v0, v1} ∗ {w0, w1}. Let f ∈ C1(Λ2

2;Z) be given by
f([u0, v0]) = 1, f([v0, w0]) = f([u1, w0]) = −1 and f(e) = 0 for all other (oriented) edges.

Note that δf = 1[u0,v0,w1] +1[u1,v1,w0]. Moreover, f is minimal. Indeed, there is no cofilling
of δf with fewer than three edges in its support since the triangles in the support of δf
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are antipodal triangles in the octahedron Λ2
2 (see Figure 7.2 for an illustration of f and

δf). It follows that

ζ1(Λ2
2) ≤ 3

2
|δf |2

|f |2
= 1,

as desired.

Next we assume that n = 2k+ 1 is odd with k ∈ Z>0. Write Λ2
n as Λ2

n = U0 ∗U1 ∗U2 with
Ui = {u(i)

−k, u
(i)
−k+1, . . . , u

(i)
−1, u

(i)
0 , u

(i)
1 , . . . , u

(i)
k }, i ∈ {0, 1, 2}.

Define a ∈ C1(Λ2
n;Z) by

a([u(i)
s , u

(j)
t ]) =


1 if s > 0, t > 0 and t ≥ k + s+ 1,
−1 if s > 0, t < 0 and s ≥ k + t+ 1,
0 otherwise.

for all s, t ∈ {−k,−k + 1, . . . ,−1, 0, 1, . . . , k} and 0 ≤ i < j ≤ 2. See Figure 7.2 for a
drawing of a for n = 5.

We claim that a is minimal. By Lemma 7.14 it suffices to check that

|⟨a, δ1S⟩| ≤ |δ1S|2

2

for all S ⊆ Λ2
n(0). Recall that ⟨a, δ1S⟩ = ⟨∂a,1S⟩. Observe that b := ∂a is given by

∂a(u(i)
j ) = 2j for all −k ≤ j ≤ k and 0 ≤ i ≤ 2.

Fix S ⊆ Λ2
n(0). Note that |δ1S|2 does only depend on si := |S ∩ Ui|, 0 ≤ i ≤ 2. In fact

|δ1S|2 = 2n(s0+s1+s2)−2(s0s1+s0s2+s1s2). Now, for i ∈ {0, 1, 2} let s̃i = min{si, k+1}
and note that

|⟨∂a,1S⟩| ≤
2∑

i=

s̃i−1∑
l=0

2(k − l) −
2∑

i=0

si−s̃i∑
l=1

2l

= n(s̃0 + s̃1 + s̃2) −
2∑

i=0
s̃2

i −
2∑

i=0
ti(ti + 1),

where ti = min{0, si − s̃i}.

We compute that

ns̃i − s̃2
i − (si − s̃i)(si − s̃i + 1) = nsi − s2

i − (n+ 1)(si − s̃i) + 2s̃i(si − s̃i) ≤ nsi − s2
i ,

since s̃i ≤ si and s̃i ≤ k + 1 = n+1
2 . It follows that

|⟨∂a,1S⟩| ≤ n(s0 +s1 +s2)−(s2
0 +s2

1 +s2
2) ≤ n(s0 +s1 +s2)−(s0s1 +s0s2 +s1s2) = |δ1S|2

2 ,

where we used that xy + xz + yz ≤ x2 + y2 + z2 for all x, y, z ∈ R. This finishes the proof
of the minimality of a.

We compute

|a|2 = | supp(a)| = 6
k∑

i=1
i = 6k(k + 1)

2 = 3n− 1
2

n+ 1
2 = 3(n2 − 1)

4 .
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To find the value of |δa|2 we first note that the edges in the support of a form a triangle-free
graph. Also, by the choice of signs δa(τ) = 0 for any triangle τ for which two of its
boundary edges are in the support of a. Thus δa takes values in {−1, 0, 1} and |δa|2 is
the number of triangles in Λ2

n that have exactly one boundary edge in the support of a.
We conclude

|δa|2 = 6
k∑

i=1

i∑
j=1

(n− i− (k − j + 1)) = n(n2 − 1)
4 ,

where the last equality follows by some straightforward computation.

Overall we conclude that

ζ1(Λ2
n) ≤ 3

n

|δa|2

|a|2
= 3
n

n(n2 − 1)
4

4
3(n2 − 1) = 1.

This finishes the proof of part (i). For (ii) we use the construction in the proof of Claim 3.4
in [98] where it was shown that ηd−1(Λd

n) ≤ 1 whenever d+ 1 divides n. We assume that
d + 1 divides n. Write Λd

n as Λd
n = V1 ∗ · · · ∗ Vd+1. For 1 ≤ i ≤ d + 1 partition Vi into

Vi = Vi,1 ⊔ Vi,2 ⊔ · · · ⊔ Vi,d+1 such that |Vi,j| = |Vi,j′ | for all 1 ≤ j, j′ ≤ d + 1. Consider
f ∈ Cd−1(Λd

n;Z) be given by

f =
∑

1≤i1<···<id≤d+1

∑
π∈Sd

sgn(π)1Vi1,π(1)×···×Vid,π(d) ,

where sgn(π) denotes the sign of the permutation π. Note that δf is {−1, 0, 1}-valued and
σ = [v0, . . . , vd], with vi ∈ Vi, is in the support of δf if and only if there is a permutation
π ∈ Sd+1 such that vi ∈ Vi,π(i) for all 1 ≤ i ≤ d+1. It follows that |δf |2 =

(
n

d+1

)d+1
(d+1)!.

Also, note that every (d− 1)-simplex in Λd
n is contained in n

d+1 d-simplices of the support
of δf . Thus, we must have |[f ]|2 ≥

(
d+1

n

)
|δf |2 = |f |2. It follows that f is minimal and

ζd−1(Λd
n) ≤ d+ 1

n

|δf |2

|f |2
= 1,

as desired.
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Figure 7.2: On the left we illustrate an example of f ∈ C1(Λ2
2;Z) showing ζ1(Λ2

2) ≤ 1. The
blue triangles are the triangles in the support of δf . The blue edges are in the support
of f . The arrow on the edge indicates the sign of its value in {−1, 1}. On the right we
illustrate the example of a cochain a ∈ C1(Λ2

5;Z) showing ζ1(Λ2
5) ≤ 1. Marked edges

indicate that an edge is in the support of a and the arrow shows its sign.
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Chapter 8

Lower Bounds on Expansion Constants
of Λdn0,...,nd

In this chapter, we give recursive lower bounds on ζd−1(Λd
n0,...,nd

) and ηd−1(Λd
n0,...,nd

) in
terms of ζd−2(Λd−1

n1,...,nd
) and ηd−2(Λd−1

n1,...,nd
), respectively. We will see that for d > 1 (and

sufficiently large ni), ζd−1(Λd
n0,...,nd

) > ηd−1(Λd
n0,...,nd

).

The proof of the recursive lower bound for ηd−1(Λd
n0,...,nd

) allows to recover the bound on
ηd−1(Λd

n) proven in Proposition 6.16 and is a minor recast of said argument. In fact, the
bound is already contained in the proof of Proposition 5.7 in [35].

Furthermore, any improvement on a lower bound η1(Λ2
n) would automatically give improved

lower bounds on ηd−1(Λd
n) for any d ≥ 1 as well. We will discuss various approaches

leading to such improvements in Section 8.4.

To the best of our knowledge, all results in this chapter, except the recursive lower bound
for ηd−1(Λd

n0,...,nd
), are new.

Throughout this chapter, we will write Λd
n0,...,nd

as Λd
n0,...,nd

= U0 ∗ U1 ∗ · · · ∗ Ud with
Ui = [ni] for positive integers ni and 0 ≤ i ≤ d.

8.1 Cofilling for b ∈ Bd(Λd
n0,...,nd

;A) by Coning from a
Vertex

As for Kd
n there is a fairly natural ad-hoc way of defining a cofilling for b ∈ Bd(Λd

n0,...,nd
;A)

by ’coning’ from a vertex. For better illustration, let us first consider the case d = 2 and
n0 = n1 = n2 = n. Write Λ2

n = U ∗ V ∗W with U = V = W = [n]. Given b ∈ B2(Λ2
n;A)

and u ∈ U we could attempt to construct a cofilling a(u) ∈ C1(Λ2
n;A) of b by defining

a(u) to be equal to bu on V ∗ W and a(u)(e) = 0 if u ∈ e. This already achieves that
δa(u)(τ) = b(τ) for all triangles τ containing u. In order to correct the remaining values,
we note that we would like to satisfy

b(u′v′w) ?!= δa(u)(u′v′w′) = b(uv′w′) − a(u)(u′w′) + a(u)(u′v′) = b(uv′w′) − δa
(u)
u′ (v′w′).

In other words, we would need to choose a(u)
u′ to be a cofilling of bu − bu′ . Fortunately,

bu − bu′ is indeed a coboundary in (Λ2
n)u.
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Let us generalize this to arbitary dimension d and parts of not necessarily equal size. To
this end, let X := Λd

n0,...,nd
. For an oriented simplex τ = [v0, . . . , vk] we write τ \ vi for the

oriented simplex (−1)i[v0, . . . , v̂i, . . . , vk], where v̂i indicates that the vertex vi is omitted.
Now, let A an abelian group and let b ∈ Bd(X;A). Since the localization of a coboundary
along a cycle is a coboundary, bu − bu′ is a (d − 1)-coboundary in Xu for all u, u′ ∈ Ui,
0 ≤ i ≤ d.

For 0 ≤ i ≤ d and uu′ ∈
(

Ui

2

)
let a(u,u′) ∈ Cd−2(Xu;A) be a cofilling of bu − bu′ ∈

Bd−1(Xu;A).

For u ∈ Ui, 0 ≤ i ≤ d, let a(u) ∈ Cd−1(X;A) be given by

a(u)(σ) =


0 if u ∈ σ,

bu(σ) if σ ∩ Ui = ∅,
a(u,u′)(σ \ u′) if σ ∩ Ui = {u′}, u ̸= u′.

We have:

Lemma 8.1. With the notations above we have δa(u) = b for all u ∈ Ui, 0 ≤ i ≤ d.

Proof. Let σ = [u0, . . . , ud] be an oriented d-simplex with ui ∈ Ui. If u ∈ σ, then
δa(u)(σ) = b(σ) is immediate. Otherwise, we compute, carefully keeping track of signs,

δa(u)(σ) =
d∑

k=0
(−1)ka(u)([u0, . . . , ûk, . . . , ud])

=
∑

0≤k<i

(−1)ka(u,ui)([u0, . . . , ûk, . . . , ud] \ ui) + (−1)ibu([u0, . . . , ûi, . . . , ud])

+
∑

k<i≤d

(−1)ka(u,ui)([u0, . . . , ûk, . . . , ud] \ ui)

= (−1)ibu([u0, . . . , ûi, . . . , ud])
+

∑
0≤k<i

(−1)k+i−1a(u,ui)([u0, . . . , ûk, . . . , ûi, . . . , ud])

+
∑

i<k≤d

(−1)k+ia(u,ui)([u0, . . . , ûi, . . . , ûk, . . . , ud])

= (−1)ibu([u0, . . . , ûi, . . . , ud]) + (−1)i−1δa(u,ui)([u0, . . . , ûi, . . . ud])
= (−1)ibu([u0, . . . , ûi, . . . , ud]) + (−1)i−1bu([u0, . . . , ûi, . . . ud])
− (−1)i−1bui

([u0, . . . , ûi, . . . ud])
= (−1)ibui

([u0, . . . , ûi, . . . ud]))
= b(σ).

In what follows, we will call a(u) a cone for b based at u. Note that a(u) depends on
the particular choice of cofillings a(u,u′) of bu − bu′ for u′ ∈ Ui \ u. Often we will make
additional assumptions on these cofillings, e.g., that they are as small as possible with
respect to some size function.
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8.2 Recursive Lower Bound on ζd−1(Λd
n0,...,nd

)

We show the following recursive lower bound on ζd−1(Λd
n0,...,nd

).

Proposition 8.2. For d ∈ Z>0 let

ζd−1 := inf{ζd−1(Λd
n0,...,nd

) : n0, . . . , nd ∈ Z>0}.

Then
ζd−1 ≥ d+ 1

1 + 2d2

(d+1)ζd−2

.

In particular, since ζ0(Λ1
m,n) ≥ 1 for all m,n ∈ Z>0 we get for all n0, . . . , nd ∈ Z>0 that

ζd−1(Λd
n0,...,nd

) ≥ (d+ 1)2

2d+2 − d− 3 .

Comparing Proposition 8.2 with Proposition 7.7, we see that (for all ni, 0 ≤ i ≤ d,
sufficiently large ) Λd

n0,...,nd
has strictly better expansion with respect to integer coeffi-

cients and ℓ2
2-norm than with respect to F2-coefficients and Hamming norm, i.e. that

ζd−1(Λd
n0,...,nd

) > ηd−1(Λd
n0,...,nd

) for all d ≥ 2 and min0≤i≤d ni sufficiently large. It would
be interesting to know whether the exponential decay in d is an artifact of the proof
method or an actual structural property of Λd

n0,...,nd
which is also present in the setting

with Z-coefficients. Is there a lower bound on ζd−1(Λd
n0,...,nd

) which does not decay to 0
exponentially fast in d or which is even independent of d? So far, we have not excluded
the possibility of ηd−1(Λd

n0,...,nd
) ≥ 1 which for d = 3 would imply an asymptotic ver-

sion of Zarankiewicz’ conjecture on the crossing number of complete partite graphs (cf.
Conjecture 5.35 in Section 5.5).

For the sake of completeness, let us establish the base case ζ0(Λ1
m,n) ≥ 1:

Lemma 8.3. For all m,n ∈ Z>0 we have ζ0(Λ1
m,n) ≥ 1.

Proof. Write X := Λ1
m,n as Λ1

m,n = U ∗ V with U = [m], V = [n]. Write ⟨·, ·⟩w for
the weighted inner product on cochains induced by Garland weights. That is, given
f, g ∈ Ck(X;Z) we have ⟨f, g⟩w = ∑

σ∈X(k) w(σ)f(σ)g(σ) where w : X → R≥0 are the
Garland weights. Write ∥·∥2 for the induced ℓ2

2-norm, i.e. ∥f∥2 = ⟨f, f⟩w for f ∈ Ck(X;Z).
Note that f ∈ C0(X;Z) is minimal (with respect to ∥ · ∥2) if and only if |⟨f,1⟩w| ≤ 1/2.
Moreover, since f is integer valued, we have |⟨f,1⟩w| ≤ ∥f∥2. We compute that

∥δf∥ = 1
mn

∑
u∈U,v∈V

(f(v) − f(u))2

= 1
n

∑
v∈V

f(v)2 + 1
m

∑
u∈U

f(u)2 − 8
(

1
2m

∑
u∈U

f(u)
)(

1
2n

∑
v∈V

f(v)
)

≥ 2∥f∥2 − 2⟨f,1⟩2
w

≥ 2∥f∥2 − |⟨f,1⟩w|
≥ ∥f∥2,

where we used that ab ≤ (a+ b)2/4 for all real numbers a, b ∈ R for the first inequality,
minimality of f for the second, and |⟨f,1⟩w| ≤ ∥f∥2 for the last inequality.
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Another key ingredient for the proof of Proposition 8.2 is the following lemma:

Lemma 8.4. Let d ∈ Z≥0. Let X = Λd
n0,...,nd

. Then, for every b ∈ Bd(X;Z) we have

d∑
i=0

1
ni

∑
uu′∈(Ui

2 )
|bu′ − bu|2 ≤ d|b|2.

Before we give the somewhat technical proof of Lemma 8.4, let us first prove Proposition 8.2
using this lemma.

Proof of Proposition 8.2. Let X = Λd
n0,...,nd

. Write | · |2 for the ℓ2
2-norm and ∥ · ∥2 for the

Garland weighted ℓ2
2-norm. Since H̃d−1(X;Z) = 0 it suffices, by Lemma 3.9, to prove a

cofilling inequality. To this end, let b ∈ Bd(X;Z). By Lemma 8.4 there is i ∈ {0, . . . , d}
with

1
ni

∑
uu′∈(Ui

2 )
|bu′ − bu|2 ≤ d

d+ 1 |b|2

or, equivalently,
1
ni

∑
uu′∈(Ui

2 )
∥bu′ − bu∥2 ≤ d

d+ 1ni∥b∥2.

For u ∈ Ui let a(u) be a cone for b based at u such that a(u,u′) in the definition of a(u) is a
minimal cofilling of bu − bu′ with respect to the Garland weighted ℓ2

2-norm ∥ · ∥2 on Xu.
In particular, we have

∥a(u,u′)∥2 ≤ 1
ζd−2

∥bu − bu′∥2.

Averaging over all u ∈ Ui, we estimate

min
u∈Ui

∥a(u)∥2 ≤ 1
ni

∑
u∈Ui

∥a(u)∥2

= 1
d+ 1∥b∥2 + 2

n2
i

d

d+ 1
∑

uu′∈(Ui
2 )

∥a(u,u′)∥2

≤ 1
d+ 1∥b∥2 + 2d

(d+ 1)ζd−2n2
i

∑
uu′∈(Ui

2 )
∥bu − bu′∥2

≤

 1
d+ 1 + 2

ζd−2

(
d

d+ 1

)2
 ∥b∥2.

Since b ∈ Bd(X;Z) was arbitrary, we conclude

ζd−1 ≥ d+ 1
1 + 2d2

(d+1)ζd−2

,

proving the first part. Solving this recurrence with ζ0(Λ1
m,n) ≥ 1 (which holds by

Lemma 8.3) gives the second part.
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It remains to prove Lemma 8.4. For this, we need some preparation. Let X = Λd
n0,...,nd

=
U0 ∗ · · · ∗ Ud and Y = Λr

m0,...,mr
= V0 ∗ · · · ∗ Vr with Vi = [mi], 0 ≤ i ≤ r for positive

integers m0, . . . ,mr and r ∈ Z≥0. For I ⊆ {0, . . . , d} we let XI := X{ui:i∈I} where ui ∈ Ui

for i ∈ I. In other words, XI is the link of X at some simplex σ ∈ X with one vertex
from each Ui with i ∈ I. For I ⊆ {0, . . . , d} write Ic := {0, . . . , d} \ I for the complement
of I. For f ∈ Cd(X;R) let fI ∈ Cd−|I|(XI ;R) be given by fI := ∑

σ∈XIc (|I|−1) fσ (as usual
fσ denotes the localization of f at σ). Moreover, for f ∈ Cr(Y ;R) we write Z(f) for

Z(f) :=
r∑

i=0

∑
viv′

i∈(Vi
2 )

|⟨f, z(viv′
i)i∈{0,...,r}⟩|2,

where z(viv′
i)i∈{0,...,r} = ⊗i∈{0,...,r}(v′

i − vi) ∈ Zr(Y ;R) is the fundamental cycle of the
octahedral sphere {v0, v

′
0} ∗ · · · ∗ {vr, v

′
r}. We extend this definition to r = −1 in which

case Y is the empty simplicial complex with the single (−1)-simplex ∅. So f ∈ C−1({∅};R)
is a constant function f = α1∅ and we define Z(f) := α2.

With all these notations we have

Claim 8.5. Let f ∈ Cd(X;R), g ∈ Cd−1(X;R) then

n0 · n1 · · · · · nd|f − δg|2 =
∑

I⊆{0,...,d}
Z((f − δg)I).

Moreover, for b ∈ Bd(X;R) we have

n0 · n1 · · · · · nd|b|2 =
∑

I⊆{0,...d},I ̸=∅
Z(bI).

Proof. We argue by induction on d. We will use the fact that for a 0-cochain h ∈ C0(KU ;R)
on the complete graph KU with n vertices we have

|δh|2 = n|h|2 −
(∑

u∈U

h(u)
)2

. (8.1)

The base case d = 0 is essentially this identity. Indeed, for f ∈ C0([n0];R) and g = α1∅ ∈
C−1([n0];R) we have

Z((f − δg)∅) =
∑

uu′∈([n0]
2 )

|(f − δg)(u′) − (f − δg)(u)|2

and

Z((f − δg){0}) =
 ∑

u∈[n0]
(f − δg)(u)

2

.

For the inductive step, using (8.1), we compute for f ∈ Cd(X;R) and g ∈ Cd−1(X;R)
that

|f − δg|2 =
d∑

i=0

∑
ui∈Ui

f([u0, . . . , ud]) −
d∑

j=0
(−1)jg([u0, . . . , ûj, . . . , ud])

2

= 1
n0

∑
u0u′

0∈(U0
2 )

|fu′
0

− fu0 − (δgu′
0

− δgu0)|2 + 1
n0

|(f − δg){0}|2. (8.2)
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Note that for I ⊆ {u1, . . . , ud} we have∑
u0u′

0∈(U0
2 )
Z((fu′

0
− fu0 − δ(gu′

0
− gu0))I) = Z((f − δg)I)

and
Z
((

(f − δg){0}
)

I

)
= Z

(
(f − δg)I∪{0}

)
.

Using these and applying the induction hypothesis in (8.2), we get

n0 · · · · · nd|f − δg|2 =
∑

u0u′
0∈(U0

2 )

∑
I⊆{u1,...,ud}

Z((fu′
0

− fu0 − δ(gu′
0

− gu0))I)

+
∑

I⊆{u1,...,ud}
Z
((

(f − δg){0}
)

I

)
=

∑
I⊆{u0,...,ud},u0 /∈I

Z((f − δg)I) +
∑

I⊆{u0,...,ud},u0∈I

Z((f − δg)I)

=
∑

I⊆{u0,...,ud}
Z((f − δg)I),

as desired.

The second part follows from the fact that for b ∈ Bd(X;R) we have ⟨b, z⟩ = 0 for all
z ∈ Zd(X;R) and, hence, Z(b∅) = 0.

We conclude this section with the proof of Lemma 8.4.

Proof of Lemma 8.4. For b ∈ Bd(X;R) we compute using Claim 8.5 that

d∑
i=0

 ∏
j∈{0,...,d}\{i}

ni

 ∑
uu′∈(Ui

2 )
|bu′ − bu|2 =

d∑
i=0

∑
uu′∈(Ui

2 )

∑
I⊆{0,...d}\{i}

I ̸=∅

Z((bu′ − bu)I)

=
d∑

i=0

∑
I⊆{0,...d}\{i}

I ̸=∅

Z(bI)

=
∑

I⊆{0,...d}\{i}
I ̸=∅,|I|≤d

(d+ 1 − |I|)Z(bI)

≤ d
∑

I⊆{0,...d}
I ̸=∅

Z(bI)

= d|b|2
(

d∏
i=0

ni

)
.

Dividing both sides by ∏d
i=0 ni finishes the proof.

8.3 Recursive Lower Bound on ηd−1(Λd
n0,...,nd

)

For ηd−1(Λd
n0,...,nd

) we have a similar recursive bound:
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Proposition 8.6. For d ∈ Z>0 let

ηd−1 := inf{ηd−1(Λd
n0,...,nd

) : n0, . . . , nd ∈ Z>0}.

Then, we have for d ≥ 2

ηd−1 ≥ d+ 1
1 + 2d

ηd−2

.

In particular,
ηd−1 ≥ d+ 1

2d−2
(
1 + 3

η1

)
− 1

.

and using that η0(Λ1
m,n) ≥ 1 we get

ηd−1 ≥ d+ 1
3 · 2d−1 − 1 .

For the sake of completeness, let us first show the case d = 0 which asks to show that the
complete bipartite graph has edge expansion at least 1 with respect to Garland weighted
Hamming norm.

Lemma 8.7. Let m,n ∈ Z>0. Then η0(Λ1
m,n) ≥ 1.

Proof. Write X := Λ1
m,n as X = U ∗ V with U = [m] and V = [n]. Write ∥ · ∥ for the

Garland weighted Hamming norm. Let S ⊆ U, T ⊆ V and c = 1S + 1T ∈ C0(X;F2).
Assume c is minimal with respect to ∥ · ∥, i.e. that ∥c∥ ≤ 1/2. We compute

∥δc∥ = 1
mn

(|S|(n− |T |) + |T |(m− |S|))

= 2∥c∥ − 8
(

|S|
2m

)
·
(

|T |
2n

)

≥ 2∥c∥ − 2
(

|S|
2m + |T |

2n

)2

= 2∥c∥ − 2∥c∥2

≥ ∥c∥,

where we used that 4ab ≤ (a + b)2 for all real numbers a, b ∈ R for the first inequality
and minimality of c for the second inequality.

Proof of Proposition 8.6. Let X = Λd
n0,...,nd

. Write | · | for the Hamming norm and ∥ · ∥ for
the Garland weighted Hamming norm. Since H̃d−1(X;F2) = 0 it suffices, by Lemma 3.9,
to prove a cofilling inequality. To this end, let b ∈ Bd(X;F2). We proceed as in the proof
of Proposition 8.2 except that for F2-coefficients we do not have Lemma 8.4 at our hands.
Instead, we will use the inequality

d∑
i=0

1
ni

∑
uu′∈(Ui

2 )
|bu + bu′ | ≤ (d+ 1)|b|, (8.3)
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which holds for all b ∈ Bd(X;F2) and follows by an application of the triangle inequality.
In particular, (8.3) implies that there is i ∈ {0, . . . , d} such that

1
ni

∑
uu′∈(Ui

2 )
|bu + bu′ | ≤ |b| (8.4)

or equivalently, that
1
ni

∑
uu′∈(Ui

2 )
∥bu + bu′∥ ≤ ni∥b∥.

Now, for u ∈ Ui let a(u) ∈ Cd−1(X;F2) be a cone for b based at u such that a(u,u′)

is a minimal cofilling (with respect to the Garland weighted Hamming norm ∥ · ∥) of
bu + bu′ ∈ Bd−1(Xu;F2) for all uu′ ∈

(
Ui

2

)
. In particular,

∥a(u,u′)∥ ≤ 1
ηd−2

∥bu + bu′∥.

Averaging over u ∈ Ui, we estimate

min
u∈Ui

∥a(u)∥ ≤ 1
ni

∑
u∈Ui

∥a(u)∥

= 1
d+ 1∥b∥ + 2

n2
i

d

d+ 1
∑

uu′∈(Ui
2 )

∥a(u,u′)∥

≤ 1
d+ 1∥b∥ + 2d

(d+ 1)ηd−2n2
i

∑
uu′∈(Ui

2 )
∥bu + bu′∥

≤ 1
d+ 1

(
1 + 2d

ηd−2

)
∥b∥,

where we used expansion of Xu for the first inequality and (8.4) for the second inequality.
Since b ∈ Bd(X;F2) was arbitrary, we get

ηd−1 ≥ d+ 1
1 + 2d

ηd−2

.

This shows the first part. The other parts easily follow from solving the recursion using
η0(Λ1

m,n) ≥ 1 (which holds by Lemma 8.7).

8.4 Improved Lower Bound on η1(Λ2
n)

Note that Proposition 8.6 implies that η1(Λ2
n) ≥ 3/5. In this section, we will improve

upon this bound.

Without using a computer we are able to show the following lower bound:

Proposition 8.8. For all n ∈ Z>0 we have η1(Λ2
n) ≥ 0.6358.

Relying on the computational power of a computer, we can further improve this to:

Proposition 8.9. For all n ∈ Z>0 we have η1(Λ2
n) ≥ 0.67159.
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The proof of Proposition 8.9 shows that for sufficiently small or sufficiently large cochains
we do have normalized expansion at least 3/4. More precisely

Corollary 8.10. Let c ∈ C1(Λ2
n;F2) be minimal. Write ∥ · ∥ for the normalized Hamming

norm. If 0 < ∥c∥ ≤ 13/124 or ∥c∥ ≥ 1/3 then

∥δc∥
∥c∥

≥ 3/4.

A common feature of the proofs of Proposition 8.8 and Proposition 8.9 is that they deal
with cochains of small and large norm separately. This dichotomy between small and
large cochains has occurred before, e.g. in [72, 97, 96].

We will start our argument by improving upon the 3/5-bound for large cochains. We
achieve this by a variation of the analysis of the random cofilling argument showing
η1(Λ2

n) ≥ 3/5.

Using ideas from [97] and [108], we then give a local-to-global argument to improve upon
the 3/5-bound for small cochains.

Before combining these two into a proof of Proposition 8.8, it will be helpful to establish
the existence of limn→+∞ η1(Λ2

n).

Using a computer we can further improve upon the expansion of small cochains in two
ways: (i) by replacing the application of the triangle inequality in the random cofilling
argument giving the 3/5-lower bound with a stronger bound and (ii) by using a flag
algebra approach inspired by [86], where flag algebras are used to show good expansion
properties for small cochains in the complete 2-dimensional complex K2

n.

Throughout this section the following notation will be useful. We write | · | for the
Hamming norm of cochains on Λ2

n and ∥ · ∥ for the normalized Hamming norm. Moreover,
for 0 ≤ α ≤ 1/2 we let

η(α) := lim inf
n→+∞

min{∥δc∥ : c ∈ C1(Λ2
n;F2), ∥[c]∥ ≥ α}.

8.4.1 Expansion of Large Cochains
We revisit the random cofilling argument. To this end, let b ∈ B2(Λ2

n;F2), b = δa
for some a ∈ C1(Λ2

n;F2). For u ∈ U0 let a(u) be a cone for b based at u such that
a(u,u′) ∈ C0((Λ2

n)u;F2) is a minimal cofilling (with respect to the Hamming norm) of
bu + bu′ ∈ B1((Λ2

n)u;F2) for all u′ ∈ U0 \ {u}.

Averaging over u ∈ U0 we get as before

n|[a]| ≤
∑

u∈U0

|a(u)|

= |b| + 2
∑

uu′∈(U0
2 )

|a(u,u′)|

≤ |b| + 4
n

∑
uu′∈(U0

2 )
|bu + bu′ |,

where we used that h0(Kn,n) ≥ n
2 for the last step.
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Now, instead of applying the triangle inequality to the last term, we can also rewrite it as
∑

uu′∈(U0
2 )

|bu + bu′ | =
∑

e∈U1∗U2

|be|(n− |be|).

Indeed, for uu′ ∈
(

U0
2

)
, |bu + bu′ | counts the edges e ∈ U1 ∗ U2 such that precisely one of

the triangles u⊗ e and u′ ⊗ e is in the support of b. On the other hand |be|(n− |be|), for
e ∈ U1 ∗ U2, counts the number of pairs of triangles sharing the edge e and with precisely
one of the triangles in the support of b. Thus, the identity above holds by double counting.

Further note that, by the Cauchy–Schwarz inequality, we have

|b|2 =
 ∑

e∈U1∗U2

|be|

2

≤ n2 ∑
e∈U1∗U2

|be|2.

Using these, we get
∑

uu′∈(U0
2 )

|bu + bu′ | =
∑

e∈U1∗U2

|be|(n− |be|)

= n|b| −
∑

e∈U1∗U2

|be|2

≤ n|b| − 1
n2 |b|2

= n(1 − ∥b∥)|b|.

We deduce that
∥b∥ ≥ 3

5 − 4∥b∥
∥[a]∥.

In particular, if ∥[a]∥ ≥ α we get that

∥b∥(5 − 4∥b∥) ≥ 3α.

This implies that
−4η(α)2 + 5η(α) − 3α ≥ 0.

Solving this for η(α) we conclude

Lemma 8.11. For any 0 ≤ α ≤ 1
2 we have

η(α) ≥ 5
8 − 1

8
√

25 − 48α.

In particular, for α ≥ 1/3 we have η(α) ≥ 3
4α.

We find it interesting to observe that 1/3 is precisely the density of the cochain which
shows η1(Λ2

n) ≤ 3/4 for n divisible by 4 (cf. Theorem 7.7).
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8.4.2 Expansion for Small Cochains – an Upper Bound First
Before we give lower bounds on η(α) for small α, it is worthwhile to give an upper bound
on η(α) we can compare our lower bounds to. Interestingly, we will be able to match
our upper bound with a lower bound on η(α) of the same order for α → 0. We should
remark that our construction here is a simple extension of a construction for the complete
2-dimensional simplicial complex K2

n given in [108].

Lemma 8.12. For α ∈ [0, 2/9] we have

η(α) ≤ 3
4α

(
1 +

√
1 − 4α

)
= 3

2α − 3
2α

2 − 3
2α

3 +O(α4)

as α → 0.

Proof. Let σ = 1
2

(
1 −

√
1 − 4α

)
. Since α ≤ 2/9 we get σ ≤ 1/3. For i ∈ {0, 1, 2}

partition Ui = U
(0)
i ⊔ U

(1)
i ⊔ U

(2)
i with |U (0)

i | = σ and |U (1)
i | = |U (2)

i | = 1−σ
2 n.1 Let

c ∈ C1(Λ2
n;F2) be the cochain with support being all edges in U (0)

i ∗U (1)
j for i, j ∈ {0, 1, 2},

i ̸= j. Note that
∥c∥ = 1

3n2 · 6σ1 − σ

2 n2 = σ(1 − σ) = α

while

∥δc∥ = 1
n3 6

(1 − σ

2

)2
σn3 = 3

2(1 − σ)2σn3 = 3
2(1 − σ)∥c∥ = 3

4α
(
1 +

√
1 − 4α

)
.

This gives the desired bound if we can show that c is minimal. To this end, we observe
that if c′ ∈ C1(Λ2

n;F2) satisfies δc′ = δc then every triangle in the support of δc must have
at least one of its boundary edges in the support of c′. But every edge in Λ2

n is contained
in at most 1−σ

2 n triangles of δc. Thus, |c′| ≥ |δc| 2n
1−σ

= |c|, showing minimality of c.

8.4.3 A Local-to-Global Argument for Expansion of Small
Cochains

Inspired by some arguments in [97, 108], we give a lower bound on η(α) for small α.

Let c ∈ C1(Λ2
n;F2). For i ∈ {0, 1, 2, 3} write ti for the number of triangles in Λ2

n with
precisely i of their boundary edges in c. We have the following simple claim.

Claim 8.13. (i) |δc| = t1 + t3.

(ii) n|c| = t1 + 2t2 + 3t3.

(iii) ∑x∈Λ2
n(0) |δ(Λ2

n)x
cx| = 2t1 + 2t2.

Proof. (i) is by definition of the coboundary map. (ii) follows from the fact that every
edge is contained in precisely n triangles. For (iii) we note that an edge e = yz ∈ (Λ2

n)x

contributes to |δ(Λ2
n)x
cx| if and only if precisely one of the edges xy and xz is in the support

of c. Depending on the value of c(yz) this means that the triangle xyz has 1 or 2 of its
boundary edges in c. Moreover, every such triangle gets counted twice.

1Strictly speaking we should take divisibility issues into account here. If necessary, we should
approximate σ with a rational number q and then choose an infinite sequence of positive integers nk

such that σnk and 1−σ
2 nk are both integers. This can be all worked out but for the sake of a simpler

presentation we sweep these technicalities under the rug.
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Subtracting part (ii) from part (iii) in the previous claim, we deduce

|δc| ≥
∑

x∈Λ2
n(0)

|δ(Λ2
n)x
cx| − n|c|.

Since every vertex link (Λ2
n)x is a complete bipartite graph, we can decompose cx = cL

x +cR
x

where the support of cL
x and cR

x are contained in different parts of (Λ2
n)x. With this, we

can rewrite

|δc| ≥
∑

x∈Λ2
n(0)

|δ(Λ2
n)x
cx| − n|c|

=
∑

x∈Λ2
n(0)

(
|cL

x |(n− |cR
x |) + |cR

x |(n− |cL
x |)
)

− n|c|

= n|c| − 2
∑

x∈Λ2
n(0)

|cR
x ||cL

x |

≥ n|c| − 1
2

∑
x∈Λ2

n(0)
|cx|2,

where we used that ab ≤ (a+ b)2/4 for all real numbers a, b for the last inequality.

Thinking of c as a graph, we see that ∑x∈Λ2
n(0) |cx|2 is the sum of its squared vertex

degrees.

We would like to find strong upper bounds on ∑x∈Λ2
n(0) |cx|2 for small minimal cochains c.

For the bound we will give below, we will not use the full strength of minimality but we
will only use the fact that if c is minimal then |cx| ≤ n for all x ∈ Λ2

n(0) (otherwise we
would have |c+ δ1x| < |c|). Moreover, we will give an upper bound on ∑v∈K3n(0) |cv|2 for
any cochain c ∈ C1(K3n;F2) with |cv| ≤ n for all v ∈ K3n(0). We use the same argument
as in Lemma 10 in [108] with different parameters. For the sake of completeness we give
the full argument here. It would be interesting to exploit more of the structure of minimal
cochains and the fact that we are considering cochains in Λ2

n rather than in K3n.

Lemma 8.14. Let G = (V,E) be a graph with |V | = 3n, |E| = 3αn2 for some α ∈ [0, 1/6]
and such that deg(v) ≤ n for all v ∈ V . Then, as n → +∞, we have∑

v∈V

deg(v)2 ≤ (σ + σ2 − σ3 + o(1))n3,

where σ = 1 −
√

1 − 6α.

Proof. Given G = (V,E) as in the assumption, we can turn G into a specific form using a
sequence of transformations which do not change the number of edges and do not decrease
the sum of squared degrees. The sum of squared degrees for graphs in this specific form
will be easy to analyze.

To start with, we number the vertices v1, . . . , v3n such that d1 ≥ · · · ≥ d3n where we let
di := deg(vi). Note that if di ≥ dj then (di + 1)2 + (dj − 1)2 > d2

i + d2
j . Thus, if we change

our graph such that di increases by 1 and dj decreases by 1 while all other vertex degrees
remain fixed, we do not change the number of edges but increase the sum of squared
degrees.

The ordering of the vertices induces an orientiation of the edges. If e = {vi, vj} is an edge
with i < j then we call vi the left end of e and vj the right end of j.
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We claim that we can transform G without changing its number of edges and without
decreasing the sum of its squared degrees into a graph with the following three properties

(i) If k is such that d1 = d2 = · · · = dk = n while dk+1 < n then we can assume that
all left ends of all edges are among v1, . . . , vk+1.

(ii) v1, . . . , vk form a clique, i.e. {vi, vj} ∈ E for all 1 ≤ i < j ≤ k.

(iii) The right neighbours of each vi, 1 ≤ i ≤ k, form a contiguous interval vi+1, . . . , vn+1.

If (i) does not hold, there is an edge {vi, vj} with i > k + 1. We can replace this edge
with {vk+1, vj} without decreasing the sum of squared degree. This possibly increases k
but it also increases ∑k+1

i=1 di which is a bounded function. So after finitely many steps we
must satisfy (i).

Then since we assume α ≤ 1/6 < 1/3 we have k < n. Now suppose 1 ≤ i < j ≤ k
with {vi, vj} /∈ E. Since di = dj = n, vi and vj are incident to at least two vertices
among vk+2, . . . , v3n. In particular, there are l,m ≥ k + 2, l ̸= m, such that {vi, vl} ∈ E,
{vj, vm} ∈ E. By (i) we have {vl, vm} /∈ E. Thus, we can delete the edges {vi, vl} and
{vj, vm} and add the edges {vi, vj} and {vl, vm}. This does not change the sum of squared
degrees or the number of edges but increases the number of edges on {v1, . . . , vk}. Then
transformations to achieve (i) do not affect the number of edges in {v1, . . . , vk}. Thus,
after finitely many steps we can achieve both (i) and (ii).

Finally, if vi, 1 ≤ i ≤ k, is connected to vl+1 but not to vl for some l > k, then we can
replace the edge {vi, vl+1} with {vi, vl}. This also achieves (iii) after finitely many steps.

It remains to analyze the sum of squared degrees for graphs satisfying (i), (ii) and (iii).
Note that such a graph is such that v1, . . . , vk is connected to the first n vertices and
there are no other edges except possible some edges incident to vk+1. Thus,

3n2α = |E| = kn−
(
k

2

)
+O(n).

Let k = σn. Then, the above equation gives σ = 1 −
√

1 − 6α+ o(1). Finally, we estimate∑
v∈V

deg(v)2 ≤ kn2+(n−k)k2+O(n2) = σn3+(1−σ)σ2n3+O(n2) = (σ+σ2−σ3+o(1))n3,

as desired.

Plugging this into the bound

|δc| ≥ n|c| − 1
2

∑
x∈Λ2

n(0)
|cx|2

one easily deduces the following corollary.

Corollary 8.15. Let α ∈ [0, 1/6]. Let σ = 1 −
√

1 − 6α. Then, for any ε > 0 there
is some positive integer N such that for all n ≥ N and c ∈ C1(Λ2

n;F2) minimal with
∥c∥ ≥ α, we have

∥δc∥ ≥ 3
(

1 − 1
6α(σ + σ2 − σ3 + ε)

)
∥c∥.
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Moreover,

η(α) ≥ 3α − 1
2(σ + σ2 − σ3) = 1

2(1 −
√

1 − 6α)(1 − 6α) = 3
2α − 27

4 α
2 − 27

4 α
3 +O(α4),

as α → 0.

8.4.4 Existence of limn→+∞ η1(Λ2
n) and Relation to η(α)

Before we give the proof of Proposition 8.8, it is worth to take a small detour and show that
the limit limn→+∞ η1(Λ2

n) exists. This might seem obvious but requires some argument.
Moreover, we will clarify the relation of limn→+∞ η1(Λ2

n) and η(α).

Regarding the existence of the limit limn→+∞ η1(Λ2
n) we will show something slightly

stronger:

Proposition 8.16. Let 0 < η < 1. Then the following are equivalent

(i) There exists n0 ∈ Z>0 such that η1(Λ2
n0) < η.

(ii) lim supn→+∞ η1(Λ2
n) < η.

(iii) lim infn→+∞ η1(Λ2
n) < η.

In particular, the limit
η∞ := lim

n→+∞
η1(Λ2

n)

exists and we have η1(Λ2
n) ≥ η∞ for all n.

For the proof of Proposition 8.16 we will use Corollary 7.13 and the following lemma:

Lemma 8.17. There is a constant C > 0 such that for sufficiently large n we have

|η1(Λ2
n+1) − η1(Λ2

n)| ≤ C

n
.

Before proving Lemma 8.17, let us show how it helps to prove Proposition 8.16.

Proof of Proposition 8.16 assuming Lemma 8.17. (ii) ⇒ (iii) and (iii) ⇒ (i) are easy.
For the implication (i) ⇒ (ii) we assume that η1(Λ2

n0) < η for some n0 ∈ Z>0 and η ∈ (0, 1).
Let δ > 0 such that η1(Λ2

n0) < η− δ. By Corollary 7.13 we get η1(Λ2
kn0) ≤ η1(Λ2

n0) ≤ η− δ
for all positive integers k. Let M > 0 such that the conclusion of Lemma 8.17 holds for
all n ≥ M . Let n ∈ Z with n ≥ M + n0. Write n = kn0 + r for non-negative integers k
and r with 0 ≤ r ≤ n0 − 1. Using Lemma 8.17 we get

η1(Λ2
n) ≤ η1(Λ2

kn0) + Cr

kn0
≤ η − δ + 2Cn0

n
.

This implies that η1(Λ2
n) ≤ η − δ/2 for all n > max{M + n0,

4Cn0
δ

}. In particular

lim sup
n→+∞

η1(Λ2
n) < η,

as desired.
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To see the second part, let η := lim infn→+∞ η1(Λ2
n). Then using the implication (iii) ⇒ (i)

we get that for any ε > 0 the inequality

lim sup
n→+∞

η1(Λ2
n) < lim inf

n→+∞
η1(Λ2

n) + ε

holds. By letting ε tend to 0 this implies that

lim sup
n→+∞

η1(Λ2
n) ≤ lim inf

n→+∞
η1(Λ2

n)

and shows the existence of η∞ = limn→+∞ η1(Λ2
n). The fact that η1(Λ2

n) ≥ η∞ for all
n ∈ Z>0 now follows from the impliciation (i) ⇒ (ii).

It remains to show Lemma 8.17. We will make use of the following claim which asserts
that the density of a minimal cochain achieving η1(Λ2

n) is strictly bounded away from 0.

Claim 8.18. There is µ > 0 such that for all sufficiently large n ∈ Z>0 we have that if
c ∈ C1(Λ2

n;F2) is a minimal cochain with η1(Λ2
n) = ∥δc∥

∥c∥ then ∥c∥ ≥ µ.

Proof. This is an immediate consequence of Corollary 8.15 and Theorem 7.7.

We are ready to give a proof of Lemma 8.17.

Proof of Lemma 8.17. Fix an inclusion i : Λ2
n → Λ2

n+1. First let c ∈ C1(Λ2
n;F2) be minimal

with η1(Λ2
n) = ∥δc∥

∥c∥ . Let c̄ ∈ C1(Λ2
n+1;F2) be the extension by 0 of c to Λ2

n+1. By Lemma 3.6
c̄ is minimal. Moreover, note that |δc̄| ≤ |δc|+|c|. Indeed, every triangle in the coboundary
of c̄ is in Λ2

n or it must contain a vertex from Λ2
n+1(0) \ Λ2

n(0) and an edge from the
support of c. But every edge in Λ2

n is contained in precisely one triangle with a vertex
from Λ2

n+1(0) \ Λ2
n(0). It follows that

|δc| ≥ |δc̄| − |c| ≥
(
n+ 1

3 η1(Λ2
n+1) − 1

)
|c|.

Normalizing gives

η1(Λ2
n) ≥ n+ 1

n
η1(Λ2

n+1) − 3
n

≥ η1(Λ2
n+1) − 3

n
,

or equivalently

η1(Λ2
n) − η1(Λ2

n+1) ≥ − 3
n
.

For a reverse inequality let c ∈ C1(Λ2
n+1;F2) be minimal with η1(Λ2

n+1) = ∥δc∥
∥c∥ . Let

c̃ = i∗c ∈ C1(Λ2
n;F2) be the restriction of c to Λ2

n. Let a ∈ C0(Λ2
n;F2) such that

|[c̃]| = |c̃+ δa|. Let ā ∈ C0(Λ2
n+1;F2) be the extension by 0 of a to Λ2

n+1. By minimality
of c we get

|c| ≤ |c+ δā| = |c̃+ δa| + |(c+ δā)|Λ2
n+1\Λ2

n
| ≤ |[c̃]| + 6(n+ 1),
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where we used that |Λ2
n+1(1) \ Λ2

n(1)| = 6n+ 3 ≤ 6(n+ 1) for the last inequality. It follows
that

η1(Λ2
n) ≤ 3

n

|δc̃|
|[c̃]|

≤ 3
n

|δc|
|[c̃]|

≤ n+ 1
n

η1(Λ2
n+1)

|c|
|[c̃]|

≤ n+ 1
n

η1(Λ2
n+1)

|c|
|c| − 6(n+ 1) .

Claim 8.18 implies that |c| ≥ 3µ(n+ 1)2 for some positive constant µ > 0 if n ≥ N0 for
some N0 ∈ Z>0. Plugging this into above inequality, we get

η1(Λ2
n) ≤ n+ 1

n
η1(Λ2

n+1)
1

1 − 2
µ(n+1)

≤ η1(Λ2
n+1) +

(
1 + 4

µ

)
1
n
,

provided that n+ 1 > max{ 2
µ
, N0}.

We have shown that for sufficiently large n

− 3
n

≤ η1(Λ2
n) − η1(Λ2

n+1) ≤
(

1 + 4
µ

)
1
n
.

This finishes the proof.

After the existence of η∞ := limn→+∞ η1(Λ2
n) being established, we can observe a simple

relationship between η∞ and η(α).

Lemma 8.19. Let λ ∈ (0, 1). Then η∞ ≥ λ if and only if η(α) ≥ λα for all α ∈ (0, 1/2].
Moreover,

η∞ = inf
0<α≤1/2

η(α)
α

.

Proof. First assume that η(α) ≥ λα for all α > 0. We will show that this implies
η1(Λ2

n) ≥ λ for all positive integers n and, hence, η∞ ≥ λ as well. Let c ∈ C1(Λ2
n;F2) be

minimal with ∥δc∥
∥c∥ = η1(Λ2

n). Let α = ∥c∥. Via a blow-up construction as in Section 7.3.4 we
get a sequence c(k) ∈ C1(Λ2

nk;F2) of minimal cochains with ∥c(k)∥ = α and ∥δc(k)∥ = ∥δc∥.
We deduce that

η1(Λ2
n) = ∥δc(k)∥

∥c(k)∥
≥ η(α)

α
≥ λ.

Conversely, if η∞ ≥ λ then by Proposition 8.16 η1(Λ2
n) ≥ λ for all positive integers n.

Now consider a sequence of minimal cochains c(nk) ∈ C1(Λ2
nk

;F2) such that ∥c(nk)∥ ≥ α

and such that limk→+∞ ∥δc(nk)∥ = η(α). We deduce

η(α) = lim
k→+∞

∥δc(nk)∥ ≥ λ lim inf
k→+∞

∥c(nk)∥ ≥ λα,

as desired.

The second part of the lemma follows easily from the first part.
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8.4.5 Proof of Proposition 8.8
Let us put the pieces above together to show Proposition 8.8.

Proof of Proposition 8.8. By Lemma 8.19 it suffices to show that η(α) ≥ 0.6358α for all
α ∈ (0, 1/2]. Consider the functions

f : (0, 1/2] → R

α 7→ 5 −
√

25 − 48α
8α

and

g : (0, 1/6] → R

α 7→ 1
2α(1 −

√
1 − 6α)(1 − 6α).

Lemma 8.11 and Corollary 8.15 imply that η(α)/α ≥ f(α) for α ∈ (0, 1/2] and η(α)/α ≥
g(α) for α ∈ (0, 1/6].

Note that f is monotonically increasing on (0, 1/2], while g is monotonically decreasing
on (0, 1/6]. Numerically solving the equation f(α) = g(α) suggests a root at α ≈ 0.1109.
Computing f(0.1109) and g(0.1109) and using the monotonicity of f and g, we get
g(α) ≥ 0.6358 for all 0 < α ≤ 0.1109 and f(α) ≥ 0.6358 for all 0.1109 ≤ α ≤ 1/2. This
finishes the proof.

8.4.6 An Improved Triangle Inequality
Revisiting the random cofilling argument showing η1(Λ2

n) ≥ 3/5, it is natural to ask to
which extent each estimate is tight. In particular, the inequality

2∑
i=0

∑
uu′∈(Ui

2 )
|bu + bu′ | ≤ 3(n− 1)|b|

for b ∈ B2(Λ2
n;F2) seems wasteful since it is merely an application of the triangle inequality

and does not make use of any properties of coboundaries.

For n = 5 we were able to tighten above inequality. With the help of a computer we can
show

Lemma 8.20. For any b ∈ B2(Λ2
5;F2) it holds that

2∑
i=0

∑
uu′∈(Ui

2 )
|bu + bu′ | ≤ 336

31 |b|.

Note that an application of the triangle inequality would only give an upper bound of
12|b| on the right hand side. Since the restriction of a coboundary to a subcomplex is a
coboundary, we can use Lemma 8.20 and averaging over subcomplexes Λ2

5 ⊆ Λ2
n to get an

improved triangle inequality for all n ≥ 5.
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Corollary 8.21. Let n ≥ 5. Then for any b ∈ B2(Λ2
n;F2) it holds that

2∑
i=0

∑
uu′∈(Ui

2 )
|bu + bu′ | ≤ 84

31(n− 1)|b|.

Moreover, η1(Λ2
n) ≥ 93/143.

As mentioned the proof of Lemma 8.20 is computer-aided. We give the reduction to a
feasible set of cases. Then we wrote a piece of C++ code that checks this remaining set
of cases.2

Proof of Lemma 8.20. Fix b ∈ B2(Λ2
5;F2). As in the proof of Lemma 8.11 we write

2∑
i=0

∑
uu′∈(Ui

2 )
|bu + bu′ | =

2∑
i=0

∑
e∈Λ2

5(1),e∩Ui=∅
|be|(5 − |be|)

= 15|b| −
∑

e∈Λ2
5(1)

|be|2

≤
(

15 − 3
25 |b|

)
|b|.

If |b| ≥ 35 this gives

2∑
i=0

∑
uu′∈(Ui

2 )
|bu + bu′ | ≤

(
15 − 3

25 · 35
)

|b| = 10.8|b| < 336
31 |b|.

For |b| ≤ 34 a computer comes into play. |b| ≤ 34 implies that there is a vertex u ∈ Λ2
5(0)

for which |bu| ≤ 6. Also, bu + bu′ ∈ B1(K5,5;F2) for all uu′ ∈
(

Ui

2

)
. Thus, once we fix

bu0 with |bu0 | ≤ 6, there are only 512 choices for each of the remaining four bu with
u ∈ U0 \ {u0}. Thus, for each subgraph of K5,5 (up to isomorphism) with at most 6 edges
we have to test no more than

(
515
4

)
= 2896986240 ≈ 2.9 · 109 cases. This is feasible. In

Figure 8.1 and Figure 8.2 we give for each subgraph G of K5,5 with at most 6 edges the
smallest value of α for which

2∑
i=0

∑
uu′∈(Ui

2 )
|bu + bu′ | ≤ α|b|

for all b ∈ B2(Λ2
5;F2) with the support of bu0 being isomorphic to G and |bu0 | = minu∈U0 |bu|.

These values have been computed using some C++ code. We see that all α satisfy α ≤ 336
31

and thus this verifies the claimed bound.

Proof of Corollary 8.21. Fix b ∈ B2(Λ2
n;F2). Write X for the family of subcomplexes of

Λ2
n given by

X = {V0 ∗ V1 ∗ V2 ⊆ Λ2
n : Vi ⊆ Ui, |Vi| = 5}.

Given X ∈ X and i ∈ {0, 1, 2} let Xi := X(0) ∩ Ui. Also, we write bX for the restriction
of b to X.

2This code will be made available via the library of IST Austria.
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Recall that the expression ∑2
i=0

∑
uu′∈(Ui

2 ) |bu + bu′ | counts the number of pairs of triangles
sharing an edge and with precisely one of them in the support of b. Note that any pair of
triangles sharing an edge is contained in

(
n−2

3

)(
n−1

4

)2
of the subcomplexes in X . Similarly,

any triangle in Λ2
n is in

(
n−1

4

)4
of the subcomplexes in X . It follows that

2∑
i=0

∑
uu′∈(Ui

2 )
|bu + bu′ | = 1(

n−2
3

)(
n−1

4

)2
∑

X∈X

2∑
i=0

∑
vv′∈(Xi

2 )
|bX

v + bX
v′ |

≤ 1(
n−2

3

)(
n−1

4

)2
336
31

∑
X∈X

|bX |

= 336
31

(
n−1

4

)3

(
n−2

3

)(
n−1

4

)2 |b|

= 84
31(n− 1)|b|,

where we used Lemma 8.20 for the inequality. This proves the first part. The lower
bound η1(Λ2

n) ≥ 93/143 now follows by plugging this improved triangle inequality into
the random cofilling argument giving the 3/5-bound.

8.4.7 Expansion for Small Cochains Using Flag Algebras
In this subsection, we use flag algebras to show

Lemma 8.22. For all α ∈ [0, 1/2] we have η(α) ≥ 31
37α(1 − α).

Flag algebras, which were introduce in Razborov’s seminal paper [121], provide a framework
to tackle problems in (asymptotic) extremal combinatorics. Its strength stems from
providing a systematic way to generate bounds on parameters in extremal combinatorics
by computer-assisted, semi-automated proofs.

A typical application of flag algebras is to bound densities of (induced) subgraphs in
graphs not containing any subgraph isomorphic to a graph in a family of forbidden
graphs. These are very classical problems in extremal graph theory going back to Mantel’s
theorem [104] stating that a triangle-free graph on n vertices has at most n2/4 edges and
its generalization due to Turán [136] saying that a Kr+1-free graph on n vertices has at
most

(
1 − 1

r

)
n2

2 edges.

A much harder problem of this type is the Erdős pentagon problem which asks whether
any graph on 5n vertices with no triangle contains at most n5 pentagons (i.e. 5-cycles).
This question was asked by Erdős in 1984 [39] and remained open until around 2012 an
affirmative answer was given in [55] and independently in [58] heavily relying on flag
algebras. Later in [87] a complete characterization of all extremal examples of triangle-free
graphs on n vertices maximizing the number of 5-cycles for all n (not necessarily divisible
by 5) was given.

Another striking application of flag algebras is the precise description of the (asymptoti-
cally) minimal possible density gr(ρ) of copies of Kr in a graph with given edge density
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Figure 8.1: The figure shows subgraphs of K5,5 with at most 6 edges (up to isomorphism).
The value above each graph indicates the maximal ratio of ∑2

i=0
∑

uu′∈(Ui
2 ) |bu + bu′ |/|b|

over all b ∈ B2(Λ2
5;F2) for which bu0 is the given subgraph and |bu0 | = minu∈U0 |bu|.
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Figure 8.2: The figure shows the remaining subgraphs of K5,5 with at most 6 edges
(up to isomorphism). The value above each graph indicates the maximal ratio of∑2

i=0
∑

uu′∈(Ui
2 ) |bu + bu′ |/|b| over all b ∈ B2(Λ2

5;F2) for which bu0 is the given subgraph
and |bu0 | = minu∈U0 |bu|.

ρ ∈ [0, 1] for all values of ρ. This is due to Razborov in [122] for r = 3, Nikiforov in [112]
for r = 4 and Reiher in [123] for r > 4.

Flag algebras have also occurred in the context of coboundary expansion (with respect to
F2-coefficients) in [86]. There, the authors use them to prove good expansion properties for
small 1-cochains in the complete 2-dimensional complex K2

n.3 The goal of this subsection
is to translate (some of) the ideas in [86] to the setting of Λ2

n leading to a proof of
Lemma 8.22.

Beside the paper [86] the resources [121] and [27] helped us to gain some acquaintance
with flag algebras. Our discussion below draws from all these sources. Currently, our
arguments do not need the full machinery of the flag algebra toolbox and we will only
introduce the concepts relevant for our proofs here.

The main idea is as follows: Let α ∈ (0, 1/2]. Consider a family of minimal 1-cochains
ck ∈ C1(Λ2

nk
;F2), for some sequence (nk)k∈N with nk → +∞, with ∥ck∥ ≥ α and

limk→+∞ ∥δck∥ = η(α). We will think of ck as a subgraph of the 1-skeleton of Λ2
nk

. It
will be convenient to write (Gk)k∈N instead of (ck)k∈N. Given another (tripartite) graph
H let p(H;Gk) be the probability that a randomly choosen subgraph Gk with |V (H)|
vertices is isomorphic to H. By compactness there is a subsequence (Gkl

)l∈N such that
the limit ϕα(H) := liml→+∞ p(H;Gkl

) exists for all (tripartite) graphs H. Note that
ϕα(H) ≥ 0 for all (tripartite) graphs. Intuitively speaking, we have ϕα( ) ≥ α and

η(α) = ϕα( )+ϕα( ). We can extend ϕα linearly to all formal linear combinations
of (tripartite) graphs. The values of ϕα for different graphs and their linear combinations
are highly correlated. In fact, we will derive various inequalities of the form 0 ≤ ϕα(F )
for some linear combination of graphs F . Using linear programming, we will find linear
combinations with non-negative coefficients of such inequalities leading to lower bounds
on η(α) in terms on α.

Before we can write down such inequalities, we should take a bit more care introducing
our formalism. For instance, it will be useful to consider tripartite graphs up to reordering
the vertices in each part. That is, we consider the three parts of a tripartite graph as

3This is relevant to the point selection problem mentioned in the introduction and lead to an
improvement on c3 as defined in the introduction.
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distinguishable but the vertices within each part as indistinguishable. Such technicalities
and the fact that the cofilling argument showing optimal expansion η1(K2

n) ≥ 1 is much
simpler than the cofilling argument showing η1(Λ2

n) ≥ 3/5 give rise to more complicated
formulas here compared to the arguments in [86]. The reader might find it helpful to have
a look at [86] in parallel or prior to reading this section.

After all these remarks let us finally get our hands dirty: We write F for the set of
3-partite graphs up to reordering the vertices in each part.

Given (l1, l2, l3) ∈ Z3
≥0 we write F(l1,l2,l3) for the set of 3-partite graphs with parts of

sizes equal to l1, l2 and l3, respectively. Notice that, since we consider the parts as
distinguishable, we have that, for instance, F(1,2,1) ̸= F(2,1,1).

The next line shows the eight flags in F(1,1,1):

, , , , , , , ,

and we have the following twenty flags in F(2,1,1):

, , , , , , , , , ,

, , , , , , , , , .

Given F ∈ F(l1,l2,l3) write V (F ) = V1(F ) ⊔ V2(F ) ⊔ V3(F ) for the vertex set of F with
|Vi(F )| = li, 1 ≤ i ≤ 3. Given S ⊆ V (F ) we write F [S] for the subgraph of F induced by
S.

We call σ ∈ F(k1,k2,k3) a type of size (k1, k2, k3). We write ∅ for the unique type of size
(0, 0, 0).

Let σ be a type of size (k1, k2, k3). Let l1, l2, l3 ∈ Z with li ≥ ki for 1 ≤ i ≤ 3. Let
F ∈ F(l1,l2,l3). An embedding of σ to F is a triple θ = (θ1, θ2, θ3) of maps θi : [ki] → Vi(F )
such that F [⊔3

i=1 θi([ki])] is isomorphic to σ (where again we consider the parts as
distinguishable). Given a type σ, F ∈ F and an embedding θ : σ → F we call (F, θ) a
σ-flag of size (l1, l2, l3) where li = |Vi(F )|. Thus, a σ-flag is nothing else than a 3-partite
graph containing a labelled copy of σ. It is natural to define that σ-flags (F, θ) and (F ′, θ′)
are isomorphic if for 1 ≤ i ≤ 3 there are bijections ρi : Vi(F ) → Vi(F ′) that induce a
graph isomorphism between F and F ′ which is label preserving, i.e. θ′

i = ρi ◦ θi. We write
Fσ for the set of σ-flags. For (l1, l2, l3) ∈ Z3

≥0 we let Fσ
(l1,l2,l3) = Fσ ∩ F(l1,l2,l3).

Let σ be a type of size (s1, s2, s3). Let F1, . . . , Ft, (G, θ) be σ-flags, Fi ∈ Fσ

(l(i)
1 ,l

(i)
2 ,l

(i)
3 )

,
1 ≤ i ≤ t, and G ∈ Fσ

(k1,k2,k3), say. We say that F1, . . . , Ft fit into G if for all 1 ≤ i ≤ 3 we
have

ki − si ≥
t∑

j=1
(l(j)

i − si).

This allows us to define the key quantity p(F1, . . . , Ft;G) as the probability that if we pick
pairwise disjoint U (1)

i , . . . U
(t)
i ⊆ Vi(G) \ Imθi of sizes |U (j)

i | = lji − si, 1 ≤ j ≤ t, uniformly
at random the induced σ-flag G[⊔3

i=1(U
(j)
i ∪ Imθi)] is isomorphic to Fj for all 1 ≤ j ≤ t.

Notice that the sampling process in the definition of p(F ;G) can be replaced by a two
step sampling process as follows: First sample a σ-flag H inside G and then inside H
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sample F . This holds in general and leads to the following chain rule which can be proven
by applying the total law of probability.

Lemma (Chain rule, see Lemma 2.3 in [121]). Let σ be a type of size (s1, s2, s3), Fi ∈
Fσ

(l(i)
1 ,l

(i)
2 ,l

(i)
3 )

, 1 ≤ i ≤ t, G ∈ Fσ
(k1,k2,k3), (l̃1, l̃2, l̃3) with l̃i ≤ ki, 1 ≤ i ≤ 3, such that for all

i ∈ {1, 2, 3} we have

l̃i − si ≥
s∑

j=1
(l(j)

i − si) (i.e. F1, . . . , Fs fit into (l̃1, l̃2, l̃3) − flags)

and

ki − si ≥ (l̃i − si) +
t∑

j=s+1
(l(j)

i − si) (i.e. F̃ , Fs+1, . . . , Ft fit into G for all F̃ ∈ Fσ
(l̃1,l̃2,l̃3)).

Then
p(F1, . . . , Ft;G) =

∑
F̃ ∈Fσ

(l̃1,l̃2,l̃3)

p(F1, . . . , Fs; F̃ )p(F̃ , Fs+1, . . . , Ft;G).

In particular, if s = t and

l̃i − si ≥
t∑

j=1
(l(j)

i − si)

for i ∈ {1, 2, 3} then

p(F1, . . . , Ft;G) =
∑

F̃ ∈Fσ
(l̃1,l̃2,l̃3)

p(F1, . . . , Ft; F̃ )p(F̃ ;G).

In general it is not true that p(F1, F2;G) and p(F1;G)p(F2;G) are equal. But if V1(G), V2(G)
and V3(G) are all very large then sampling subsets of a fixed small size in Vi(G) are likely
to be disjoint. Thus, we expect p(F1, F2;G) and p(F1;G)p(F2;G) to be equal ’in the limit’
when the size of G tends to infinity. For a more precise general statement we have

Lemma (Almost product, see Lemma 2.3 in [121]). For 1 ≤ i ≤ t let Fi ∈ Fσ

(l(i)
1 ,l

(i)
2 ,l

(i)
3 )

,
G ∈ Fσ

(k1,k2,k3). Assume that F1, . . . , Ft fit into G. Then

|p(F1, . . . , Ft;G) −
t∏

j=1
p(Fj;G)| ≤

3∑
i=1

(∑t
j=1 l

(j)
i

)2

ki

.

This suggest that there might be some limiting object where we end up with an actual
product. This is what we will define now. Note that for a fixed σ-flag G we can think
of p(·;G) as a function on Fσ (where we define p(F ;G) = 0 if F does not fit into G). It
seems natural to enrich the structure a bit and consider RFσ as the real linear space
spanned by elements in Fσ for a type σ of size (s1, s2, s3). We can extend p(·;G) to RFσ

linearly. Let Kσ ⊆ RFσ be the subspaces spanned by elements of the form

F̃ −
∑

F ∈Fσ
(l1,l2,l3)

p(F̃ , F )F

with F̃ ∈ Fσ
(k1,k2,k3) such that si ≤ ki ≤ li for all i ∈ {1, 2, 3}. Notice that by the chain

rule p(H;G) = 0 for all H ∈ Kσ, G ∈ Fσ. Let us define Aσ = RFσ/Kσ. We can endow
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Aσ with a product which will turn it into a commutative associative algebra. To this
end, let us first define a bilinear map · : RFσ × RFσ → Aσ. Given F1 ∈ Fσ

(l1,l2,l3) and
F2 ∈ Fσ

(l′1,l′2,l′3) choose (k1, k2, k3) ∈ Z3
>0 such that ki − si ≥ (li − si) + (l′i − si). Then define

F1 · F2 =
∑

F ∈Fσ
(k1,k2,k3)

p(F1, F2;F )F

and extend it bilinearly to RFσ × RFσ. We have the following important lemma.

Lemma (see Lemma 2.4 in [121]). (i) · is well-defined, i.e. F1 · F2 is independent of
the choice of (k1, k2, k3).

(ii) For any f ∈ Kσ and g ∈ RFσ we have f · g ∈ Kσ. Moreover, · induces a symmetric
bilinear map Aσ × Aσ → Aσ.

(iii) · turns Aσ into a commutative associative algebra.

Aσ is called the flag algebra (of type σ). We will write Aσ
(l1,l2,l3) for the projection of the

subspace Fσ
(l1,l2,l3) in Fσ to Aσ.

We can use the almost product behaviour of p(·, G) to construct homomorphisms Aσ → R.
To this end, we will say that a sequence of σ-flags (Gk)k∈N of sizes (l(k)

1 , l
(k)
2 , l

(k)
3 ) is increasing

if the sizes (l(k)
i )k∈N is a strictly increasing sequence of i ∈ {1, 2, 3}. A convergent sequence

of σ-flags is an increasing sequence (Gk)k∈N of σ-flags such that

ϕ(F ) = lim
k→∞

p(F,Gk)

exists for all F ∈ Fσ. Notice that by compactness every increasing sequence of σ-flags
contains a convergent subsequence. We will extend ϕ linearly to RFσ. Notice that by
the chain rule ϕ(K) = 0 for all K ∈ Kσ. Thus we obtain an induced map ϕ : Aσ → R.
The almost product behaviour of p(·, G) implies that ϕ is an algebra homomorphism. In
particular ϕ(f · g) = ϕ(f)ϕ(g) for all f, g ∈ Aσ. We call such ϕ a limit functional. Clearly
ϕ(F ) ≥ 0 for all σ-flags F . We say that ψ ∈ Hom(Aσ,R) is positive if ψ(F ) ≥ 0 for all
σ-flags F . We write Hom+(Aσ,R) for the set of positive homomorphisms. It turns out
that the positive homomorphisms are precisely the limit functionals.

Theorem (Theorem 3.3 in [121]). Every limit functional is a positive homomorphism.
Conversely, every positive homomorphism is a limit functional for some convergent
sequences of flags.

Given f ∈ Aσ let us write f ⪰σ 0 if ϕ(f) ≥ 0 for all ϕ ∈ Hom+(Aσ,R). It will be
convenient to extend this notation as follows. Given Gσ ⊆ Fσ let us write ΦGσ ⊆
Hom+(Aσ,R) for the limit functionals that can be obtained from convergent sequences
contained in Gσ. We write f ⪰Gσ

σ 0 if ϕ(f) ≥ 0 for all ϕ ∈ ΦGσ .

We can consider c ∈ C1(Λ2
n;F2) as an element of F(n,n,n) ⊆ F . With this identification

and given α ∈ (0, 1/2], we write Gα ⊆ F for the set of minimal cochains with normalized
Hamming norm at least α. Similarly, for a type σ we write Gσ

α ⊆ Fσ for the set of σ-flags
corresponding to minimal cochains with norm at least α. Note that G∅

α = Gα.

We are interested in finding inequalities of the form f ⪰Gα

∅ 0. It is often easier to find valid
inequalities f ⪰σ 0 for non-empty type σ. This will induce a valid inequality [[f ]]σ ⪰∅ 0
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for some [[f ]]σ ∈ A∅ via the so-called downward operator, which is a linear operator
[[·]]σ : Aσ → A∅. In order to define [[·]]σ first note that given a σ-flag (F, θ) we can easily
obtain a ∅-flag ↓F by simply forgetting about the embedding θ. For a σ-flag F with σ a
type of size (s1, s2, s3) let qσ(F ) be the probability that injective maps θi : [si] → Vi(F )
picked uniformly at random induce a σ-flag (↓F, (θ1, θ2, θ3)) which is isomorphic to F .
Then define [[F ]]σ = qσ(F ) ↓F . This can be extend to a linear map RFσ → A∅. One
can show that [[Kσ]]σ ⊆ K∅. So in fact we obtain a linear operator [[·]]σ : Aσ → A∅. A
key property of [[·]]σ is that if f ∈ Aσ with f ⪰σ 0 then [[f ]]σ ⪰∅ 0. Also, if f ⪰Gσ

α
σ 0 then

[[f ]]σ ⪰Gα

∅ 0.

Proof of η(α) ≥ 3
5α

Proposition 6.16 shows, as a special case, that there is a random abstract cone certifying
that η1(Λ2

n) ≥ 3/5. For illustrative purposes, we reformulate this random abstract cone
argument into the language of flag algebras and show that η(α) ≥ 3

5α.

First note that by definition

α ⪯Gα

∅
1
3

 + +

 . (8.5)

Next let us recall part of the random abstract cone argument. Write Λ2
n as Λ2

n = U ∗V ∗W
with U = V = W = [n]. Then spelling out the recursive construction in Proposition 6.16,
we see that for (u, v) ∈ U × V the chain map S

(u,v)
0 : C0(Λ2

n;F2) → C1(Λ2
n;F2) is given by

y 7→

uy if y ∈ V ⊔W

uv + yv if y ∈ U.

Write T (u,v)
1 for the dual map of S(u,v)

0 . Let c ∈ C1(Λ2
n;F2) and γ(u,v) = T

(u,v)
1 c ∈ C0(Λ2

n;F2).
By definition we have

γ(u,v)(y) =

c(uy) if y ∈ V ⊔W

c(uv) + c(yv) if y ∈ U
.

If we assume now that c is minimal, we get that ∥c + δγ(u,v)∥ ≥ ∥c∥. If c(uv) = 0 this
translates into the following inequality for the flag σ =

0 ⪯Gσ
α

σ − + − + − + −

+ − + − + − + −

+ − + − .
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Similarly, if c(uv) = 1 this translates into an inequality for the flag σ =

0 ⪯Gσ
α

σ − + − + − + −

+ − + − + − + −

+ − + − .

Applying the averaging operator to these inequalities gives

0 ⪯Gα

∅
1
2 − 1

2 − 1
2 + 1

2 − 1
2 + 1

2

− 1
2 + 1

2 − + 1
2 − +

− + 1
2 − 1

2 + 1
2 − 1

2 , (8.6)

and

0 ⪯Gα

∅
1
4 − 1

2 + 1
4 − + 1

2 − 1
2 + 1

2 − 1
2

+ 1
2 − + 1

2 − + 1
2 − 1

2 + 1
2 − 1

2

+ − . (8.7)

If we replace the role of (u, v) ∈ U × V by a pair (w, u) ∈ W × U , we symmetrically get
the following two inequalities:

0 ⪯Gα

∅
1
2 − 1

2 − 1
2 + 1

2 − 1
2 + 1

2

− 1
2 + 1

2 − + 1
2 − +

− + 1
2 − 1

2 + 1
2 − 1

2 , (8.8)

and

0 ⪯Gα

∅
1
4 − 1

2 + 1
4 − + 1

2 − 1
2 + 1

2 − 1
2

+ 1
2 − + 1

2 − + 1
2 − 1

2 + 1
2 − 1

2

+ − . (8.9)
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Recall that for the proof of the existence of a random abstract cone certificate for
η0(Λd

n) ≥ 1 we used an inequality of negative type (Lemma 3.15). This enters into the
proof of Proposition 6.16 as the base case of an induction. Spelling it out for Λ2

n, it boils
down to the inequality∑

vv′∈(V
2)

|c(uv) + c(u′v) + c(u′v′) + c(uv′)| +
∑

ww′∈(W
2 )

|c(uw) + c(u′w) + c(u′w′) + c(uw′)|

≤
∑

v∈V,w∈W

|c(uv) + c(u′v) + c(u′w) + c(uw)|,

which holds for all c ∈ C1(Λ2
n;F2) and uu′ ∈

(
U
2

)
. It is a consequence of Lemma 3.15

applied to the cochain cu + c′
u ∈ C0(V ∗W ;F2). In terms of flags this inequality translates

into the following inequality

0 ⪯Gα

∅ 2

 + + + + + + +



−

 + + +

 . (8.10)

Now the idea is to find the largest λ > 0 for which there are λ1, λ2, λ3, λ4, λ5 ∈ R≥0 such
that

λ(8.5)+λ1(8.6)+λ2(8.7)+λ3(8.8)+λ4(8.12)+λ5(8.10) ⪯Gα

∅ + + + .

Note that this a linear optimization problem. Any feasible solution λ would show that
η(α) ≥ λα. To actually be able to feed this into a computer, we can represent all elements
from A∅ appearing in the inequalities above as linear combinations by flags in F(2,2,2).
This gives us vectors in R|F(2,2,2)|. Then, using that ϕ(F ) ≥ 0 for all F ∈ F and limit
functionals ϕ, we see that an inequality of the form A ⪯Gα

∅ A′ holds for the elements
from A∅ represented by A = ∑

σ∈F(2,2,2)
λσσ and A′ = ∑

σ∈F(2,2,2)
λ′

σ if λσ ≤ λ′
σ for all

σ ∈ F(2,2,2).

We used a Python script4 to check that if we sum up inequalities (8.5)-(8.10) with
coefficients 3/5, 1/10, 1/10, 1/10, 1/10 and 1/10, we have

3
5α ⪯Gα

∅
3
5(8.5) + 1

10 ((8.6) + (8.7) + (8.8) + (8.9) + (8.10))

⪯Gα

∅ + + + .

This shows that η(α) ≥ 3
5α, as desired.

Proof of Lemma 8.22

For the proof of Lemma 8.22 we will include some further inequalities into our linear
optimization problem. For the first one, we notice that since α(1 − α) is an increasing

4This script will be made available via the library of IST Austria.
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function of α on (0, 1/2] we get that

α(1 − α) ⪯Gα

∅
1
3

 + +

 · 1
3

 + +

 . (8.11)

Replacing the role of (u, v) ∈ (U, V ) by (v, w) ∈ (V,W ) in inequality (8.6) we get by
symmetry the following inequality

0 ⪯Gα

∅
1
2 − 1

2 − 1
2 + 1

2 − 1
2 + 1

2 − 1
2 + 1

2

− + 1
2 − + − + 1

2 − 1
2 + 1

2 − 1
2 .

(8.12)

Similarly, by symmetry and interchanging the roles of U, V and W in (8.10) we get the
following two inequalities

0 ⪯Gα

∅ 2

 + + + + + + +



−

 + + +

 (8.13)

and

0 ⪯Gα

∅ 2

 + + + + + + +



−

 + + + + +

 (8.14)

Finally, the improved triangle inequality from Corollary 8.21 translates into the following
inequality of flags:

0 ⪯Gα

∅
56
31

 + + +

− 1
3

 + + +



− 1
3

 + + + + + + +



− 1
3

 + + +


− 1

3

 + + + + + + +

 . (8.15)
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8.4. Improved Lower Bound on η1(Λ2
n)

Using a Python script5, we run a linear optimization problem which shows that if we
take the linear combination of (8.11),(8.6),(8.8),(8.12),(8.10),(8.13),(8.14) and (8.15) with
coefficients 31/37, 31/333, 31/333, 31/333, 217/5328, 217/5328, 217/5328 and 217/888,
respectively, we get

31
37α(1 − α) ⪯Gα

∅
31
37(8.11) + 31

333 ((8.6) + (8.8) + (8.12))

+ 217
5328 (8.10) + (8.13) + (8.14)) + 217

5328(8.15)

⪯Gα

∅ + + + .

This shows η(α) ≥ 31
37α(1 − α), as desired.

8.4.8 Proof of Proposition 8.9 and Corollary 8.10
We can put everything together and prove Proposition 8.9.

Proof of Proposition 8.9. By Lemma 8.19 it suffices to show that η(α) ≥ 0.67159α for all
α ∈ (0, 1/2]. Consider the functions

f : (0, 1/2] → R

α 7→ 5 −
√

25 − 48α
8α

and

h : (0, 1/2] → R

α 7→ 31
37(1 − α).

Lemma 8.11 and Lemma 8.22 imply that η(α)/α ≥ max{f(α), h(α)} for all α ∈ (0, 1/2].

Note that f is monotonically increasing on (0, 1/2], while h is monontonically decreasing
on (0, 1/2]. A numerical solver suggested to us that the equation f(α) = h(α) has a
root for α ≈ 0.19842. One can now check that f(α) ≥ 0.67159 if α > 0.19841 while
h(α) ≥ 0.67159 if α < 0.19842. This finishes the proof.

Finally, we note that Corollary 8.10 follows from the fact f(α) ≥ 3/4 for α ≥ 1/3 and
h(α) ≥ 3/4 for α ≤ 13/124, where f and h are the functions in the proof of Proposition 8.9.

8.4.9 Some Remarks
We close with some remarks how the approaches above might lead to further improvements
on the lower bound on η1(Λ2

n) but also indicate some limitations:

• The upper bound on the sum of squared degrees of a small minimal cochain
c ∈ C1(Λ2

n;F2) (Lemma 8.14) does not use the full strength of the minimality
assumption but only the fact that |cx| ≤ n for all x ∈ Λ2

n(0). Moreover, we do not
5Our Python code will be made available via the library of IST Austria.
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n0,...,nd

exploit the fact that we are considering cochains in Λ2
n rather than K3n. Additionally,

we could try to tighten the estimate

∑
v∈Λ2

n(0)
|cL

v ||cR
v | ≤ 1

4
∑

v∈Λ2
n(0)

|cv|2

by distinguishing ’left’ and ’right’ degrees of vertices.

• So far all inequalities for the flag algebra approach were obtained in a rather ad-
hoc way, partially motivated by the random cofilling argument. There is a more
systematic way of finding inequalities of the form f ∈ Aσ with f ⪰σ 0 as follows:
Fix some (not too large) size (l1, l2, l3) ∈ Z3

≥0. Consider a positive semidefinite
matrix Q : Fσ

(l1,l2,l3) × Fσ
(l1,l2,l3) → R. Then the projection of

f =
∑

F,G∈Fσ
(l1,l2,l3)

F ·Q(F,G) ·G

to Aσ clearly satisfies f ⪰σ 0. This opens the possibility to generate Cauchy–
Schwarz/sum-of-squares type inequalities in an automated way and optimize param-
eters via semi-definite programming. While this could give us further inequalities
within Fσ, it is less clear how to generate such inequalities involving minimality, i.e.
inequalities which only hold for limit functionals of convergent sequences in Gα.

• We have not considered expressions outside of F(2,2,2) yet. But the upper bound
example for small α can be viewed as a blow-up of an example in Λ2

3 and the general
upper bound η∞ ≤ 3/4 stems from blowing-up a cochain in Λ2

4. This suggests that
one should consider expressions inside F(3,3,3) for small cochains or even in F(4,4,4) for
densities close to 1/3 in order to fully capture the upper bound examples. Especially
for F(4,4,4) this might be computationally very challenging due to the size of F(4,4,4).
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Chapter 9

Miscellaneous

In this chapter, we collect a couple of losely connected further ponderings related to
coboundary expansion. Namely,

• we point out a link between discrete Morse theory and abstract cones and use this
to give a new proof that hk(Qd) ≥ 1 for all 0 ≤ k ≤ d − 1 where Qd denotes the
d-dimensional hypercube viewed as a cubical complex,

• we provide a criterion for coboundary expansion (in a very dense regime) using
intersection of links,

• we comment on the (computational) hardness of coboundary expansion constants
(with respect to F2-coefficients),

• we give a thorough proof for the folklore fact that expansion of links is a necessary
condition for expansion of the whole complex.

9.1 Abstract Cones via Discrete Morse Functions
In this section, we describe how given a discrete Morse function on a d-dimensional
simplicial or cellular complex X without critical simplices in dimension 0 ≤ k ≤ d− 1, we
can construct a cone for X. In particular, averaging over many different choices of such
Morse functions one might get a lower bound on the coboundary expansion constants of
X. We illustrate this by showing that hk(Qd) ≥ 1 for all 0 ≤ k ≤ d− 1 where Qd denotes
the d-dimensional hypercube (as a cubical complex). This gives another, arguably more
conceptional proof of Theorem 4.3 in [85].

9.1.1 Primer on Discrete Morse Theory
We give a very brief introduction to Forman’s Discrete Morse Theory. We give the most
basic definitions and state some results (without proofs) which we need. We refer the
reader to [45] and [127] for a thorough treatment as well as [46] for a gentle user’s guide
introduction to the topic.

Definition 9.1 (Discrete Morse function). Let X be a d-dimensional cellular complex. A
function f : X → R is a discrete Morse function if for all σ ∈ X(k), −1 ≤ k ≤ d we have
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9. Miscellaneous

(i) |{τ ∈ X(k + 1) : σ ⊆ τ, f(τ) ≤ f(σ)}| ≤ 1, and

(ii) |{ρ ∈ X(k − 1) : ρ ⊆ σ, f(σ) ≤ f(ρ)}| ≤ 1.

Given a discrete Morse function f , a simplex σ ∈ X(k) is critical if

(i) |{τ ∈ X(k + 1) : σ ⊆ τ, f(τ) ≤ f(σ)}| = 0 and

(ii) |{ρ ∈ X(k − 1) : ρ ⊆ σ, f(σ) ≤ f(ρ)}| = 0.

If σ ∈ X is not critical, we call non-critical.

It is not difficult to see that for a non-critical simplex σ ∈ X(k) of a Morse function f we
cannot have both

|{τ ∈ X(k+1) : σ ⊆ τ, f(τ) ≤ f(σ)}| = 1 and |{ρ ∈ X(k−1) : σ ⊆ τ, f(σ) ≤ f(ρ)}| = 1.

Thus, every Morse function induces a partial on the cells of X such that σ ∈ X(k) is
matched with τ ∈ X(k + 1) whenever f(σ) ≥ f(τ ) and such that the unmatched cells are
precisely the critical cells. Using this, we can define the gradient vector field Vf of f as a
map between chain groups Vf : C∗(X;Z) → C∗+1(X;Z) by

σ 7→ Vf (σ) =

−⟨σ, ∂τ⟩τ if τ ∈ X(dim σ + 1) with f(σ) ≥ f(τ)
0 otherwise.

As in the smooth setting, the gradient vector field Vf contains all the relevant information.

More generally, we define a discrete vector field V on X as a partial matching of the
Hasse diagram of X. In other words, V is a collection of pairs (σ, τ ) such that σ ⊆ τ with
dim σ = dim τ − 1 and such that every cell appears in at most one pair. As for partial
matchings coming from a discrete Morse function, we can also think of V as map between
chain groups.

Given a discrete vector field V , we call a sequence of (σ0, τ0, σ1, τ1, . . . , τr, σr+1) a V -path
of length r if there is k such that

(i) dim σi = k for all 0 ≤ i ≤ r + 1 and dim τi = k + 1 for all 0 ≤ i ≤ r,

(ii) σi ⊆ τi for all 0 ≤ i ≤ r,

(iii) σi+1 ⊆ τi and σi+1 ̸= σi for all 0 ≤ i ≤ r, and

(iv) (σi, τi) ∈ V for all 0 ≤ i ≤ r.

A V -path is a non-trivial, closed V -path if r ≥ 0 and σ0 = σr+1. There is a nice criteria
for a discrete vector field V to be the gradient vector field of a discrete Morse function.

Theorem 9.2 (Theorem 3.5 in [46]). Let X be a cell complex. Let V be a discrete vector
field on X. Then V is the gradient vector field Vf of a discrete Morse function f on X if
and only if there is no non-trivial, closed V -path.
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9.1. Abstract Cones via Discrete Morse Functions

Every gradient vector field V induces a gradient flow Φ: C∗(X;Z) → C∗(X;Z) given by
Φ := id + ∂ ◦ V + V ◦ ∂.

It turns out that Φ stabilizes, i.e. for sufficiently large N we have Φ∞ := ΦN = ΦN+1,
where ΦN = ΦN−1 ◦ Φ with Φ0 = id.

Write CΦ
k for the Φ-invariant k-chains, i.e. for those c ∈ Ck(X;Z) with Φ(c) = c. Note

that since ∂ ◦ Φ = Φ ◦ ∂, ∂ maps Φ-invariant k-chains to Φ-invariant k-chains and CΦ
∗

forms a sub(chain)complex of C∗(X;Z), which is often called the Morse complex of X
associated with f . Moreover, Φ∞ induces a map Φ∞ : C∗(X;Z) → CΦ

∗ .

The Morse complex can also be described in terms of the critical simplices as follows:
Let Mk ⊆ Ck(X;Z) be the span of critical simplices. Then Φ∞ restricts to a map
Φ∞ : Mk → CΦ

k . Let πM : Ck(X;Z) → Mk be given by

c =
∑

σ∈X(k)
cσσ 7→

∑
σ∈X(k),σ critical

cσσ.

It turns out that restricting πM to CΦ
k gives an inverse to Φ∞:

Theorem 9.3 (Theorem 8.2 in [45]). Φ∞ : Mk → CΦ
k is an isomorphism with inverse

πM : CΦ
k → Mk.

In particular, this shows that if f does not have any critical cells in dimension k,
Φ∞ : Ck(X;Z) → Ck(X;Z) is the zero map.

Moreover, it is not too difficult to show (see [45, Theorem 7.3]) that the map L : C∗(X;Z) →
C∗+1(X;Z) given by L = −V (id+Φ+ · · ·+ΦN ) satisfies id− ι◦Φ∞ = ∂ ◦L+L◦∂, where
ι : CΦ

∗ → C∗(X;Z) denotes the inclusion map. This implies that H∗(CΦ
∗ ) ∼= H̃∗(X;Z). It

also shows that if f does not have any critical cells in dimension k, then (Lk, Lk−1) is an
abstract cone in dimension k for X.

Now, we could try to exhibit many different Morse functions on X without critical
simplices and try to average over the induced abstract cones. We illustrate this idea in the
next subsection by proving a lower bound on the coboundary expansion constants for the
hypercube thought of as a cell complex. We would like to point out that there are many
different families of simplicial complexes for which the vanishing of their (co)homology
groups can be proven by constructing Morse functions without critical simplices. This
includes, among others, all shellable complexes. As elaborated above the random abstract
cofilling technique to prove lower bounds on coboundary expansion constants only works
well if there is a large collection of well-distributed cycles. Even if such a collection of
cycles is not available, it might still be interesting to try to use Morse functions with a
small number of critical simplices to simplify a given cell complex X to a complex X ′ with
comparable expansion constants and then use a different argument to show expansion for
X ′.

9.1.2 Discrete Morse Matchings on Qd

Let Qd be the d-dimensional hypercube given as a (cubical) cell complex. Cells of
dimension at least 0 in Qd can be described as vectors x = (x1, . . . , xd) ∈ {0, 1, ∗}d

such that the number of xi’s with xi = ∗ is the dimension of the cell x. We add the
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empty cell ∅ to Qd. With this description of the cells and k ≥ 1 the boundary operator
∂ : Ck(Qd;F2) → Ck−1(Qd;F2) is given by

x 7→ ∂x =
∑

i∈[d],xi=∗
(x1, . . . , xi−1, 0, xi+1, . . . , xd) + (x1, . . . , xi−1, 1, xi+1, . . . , xd),

i.e. the occurrence of every ∗ in x is replaced by 1 or 0.

Fix a vertex x(0) ∈ Qd(0) and a permutation π ∈ Sd. Define a matching Mx(0),π on Qd

as follows: Match x(0) with the empty cell ∅. Given x = (x1, . . . , xd) ∈ Qd \ {x(0), ∅}
let i = min{k : xπ(k) ̸= x

(0)
π(k)}. Match x with y = (y1, . . . , yd) where yπ(j) = xπ(j) for

j ∈ [d], j ̸= i and yπ(i) being the unique element in {0, 1, ∗} \ {x(0)
π(i), xπ(i)}. Write V (x(0),π)

for the discrete vector field induced by Mx(0),π. We have

Lemma 9.4. For every π ∈ Sd and x(0) ∈ Qd(0) the vector field V (x(0),π) is the gradient
vector field of a discrete Morse function.

Proof. We show that there is no non-trivial, closed V (x(0),π)-path. For given x ∈ Qd \ ∅,
we let i(x) := min{k : xπ(k) ̸= x

(0)
π(k)} and s(x) := min{k : xπ(k) = ∗}. Here, we

understand min ∅ to be equal to +∞, so that i(x), s(x) ∈ [d] ∪ {+∞}. We extend
the natural linear order on [d] to [d] ∪ {+∞} by saying that i < +∞ for all i ∈ [d].
Write ≺ for the induced lexicographic ordering on ([d] ∪ {+∞}) × ([d] ∪ {+∞}), i.e.
(i, j) ≺ (i′, j′) if i < i′ or i = i′ and j < j′. Now given a V (x(0),π)-path (x0, x1, . . . , xr+1)
we note that (i(x0), s(x0)) ≻ (i(x1), s(x1)) ≻ · · · ≻ (i(xr+1), s(xr+1)) which implies that
(x0, x1, . . . , xr+1) cannot be a non-trivial, closed path.

Note that V (x(0),π) does not have any critical simplices and, hence, induces an abstract
cone (S(x(0),π)

k )−2≤k≤d−1. Endow Ω := Qd(0) × Sd with the uniform distribution such that
we get a random abstract cone (S(ω)

k )ω∈Ω,−2≤k≤d−1 parametrized by Ω. We claim that this
random abstract cone is a certificate for (unnormalized) expansion 1 for Qd.

Proposition 9.5. For all d ≥ 1 and 0 ≤ k ≤ d− 1 we have hk(Qd) ≥ 1.

Proof. Fix a dimension d ≥ 1 and 0 ≤ k ≤ d− 1. Let c ∈ Ck(Qd;F2). As in the proof of
Proposition 3.13 we have

|[c]| ≤
∑

τ∈Qd(k+1)
|δc(τ)|λ(τ)

where λ(τ) = 1
d!2d

∑
π∈Sd,x(0)∈Qd(0)

∑
σ∈Qd(k) |⟨1τ , S

(x(0),π)
k σ⟩|.

By symmetry λ := λ(τ) is independent of τ ∈ Qd(k + 1). Hence,

λ|Qd(k + 1)| = 1
d!2d

∑
π∈Sd,x(0)∈Qd(0)

∑
σ∈Qd(k)

|S(x(0),π)
k σ|.

By symmetry Θk := ∑
σ∈Qd(k) |S(x(0),π)

k σ| is independent of (x(0), π) ∈ Ω. It follows that

hk(Qd) ≥ |Qd(k + 1)|
Θk

.
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9.2. Double-Link Criterion for Coboundary Expansion

It remains to compute Θk = ∑
σ∈Qd(k) |S(x(0),π)

k σ| for some π ∈ Sd and x(0) ∈ Qd(0). Let us
choose π := id and x(0) := (0, . . . , 0) the zero vector. To ease notation, write V := V (x(0),π)

and Sk := S
(x(0),π)
k . Let x = (x1, . . . , xd) ∈ Qd(k). Let

e(x) := min{i ∈ [d] : xi = 1} and s(x) := min{i ∈ [d] : xi = ∗}.

We set min ∅ = +∞ with the relation l < +∞ for all l ∈ [d].

Note that V (x) = 0 if s(x) < e(x) and V (x) = (x1, . . . , xe(x)−1, ∗, xe(x)+1, . . . , xd) if
e(x) < s(x). Using this, we easily compute the discrete gradient flow Φ = id + ∂V + V ∂
to be given by

Φ(x) = (x1, . . . , xe(x)−1, 0, xe(x)+1, . . . xd)
if e(x) < s(x). If x ∈ Qd with s(x) < e(x) let j = min{l ∈ [d] : l > s(x), xl ̸= 0}. Then

Φ(x) =

0 if xj = ∗
(x1, . . . , xs(x)−1, 0, . . . , xj−1, ∗, xj+1, . . . , xd) if xj = 1.

From this, we easily compute that |Skx| = |{j ∈ [d] : j < s(x), xj = 1}|. We conclude
that

Θ0 =
∑

x∈Qd(0)
|S0x| =

d∑
i=0

i

(
d

i

)
= d2d−1 = |Qd(1)|

and for k ≥ 1 that

Θk =
∑

x∈Qd(k)
|Skx| =

d−k+1∑
i=1

(
d− i

k − 1

)
2d−i−k+1

i−1∑
s=0

s

(
i− 1
s

)
= 2d−k−1

(
d

k + 1

)
= |Qd(k + 1)|.

Plugging these into hk(Qd) ≥ |Qd(k+1)|
Θk

we get hk(Qd) ≥ 1, as desired.

9.2 Double-Link Criterion for Coboundary
Expansion

In this section, we present a simple criterion, which we call the double-link criterion, for
coboundary expansion by considering intersections of vertex links. In its current version,
the criterion requires very dense complexes and, hence, has very limited applications.

Our starting point for finding our double-link criterion was to come up with a simple way
to distinguish two different random models for 2-dimensional simplicial complexes with
complete 1-skeleton: complexes according to the Linial–Meshulam model X2(n, 1/2) (see
[89, 109]) and a random construction due to Gundert and Wagner which we will denote
by Y 2

GW (n, 1/2) (see [56]).

X ∼ X2(n, 1/2) is obtained from a complete 1-skeleton on n vertices by adding each
possible triangle independently with probability 1/2.

Y ∼ Y 2
GW (n, 1/2) is obtained as follows: Pick c ∈ C1(K2

n;F2) to be a random cochain with
density 1/2, i.e. every edge of the underlying graph of K2

n is picked independently with
probability 1/2 to be in the support of c. We can think of c to be a random Erdős–Rényi
graph c ∼ G(n, 1/2). Define Yc to be the simplicial complex on vertex set [n] with
complete 1-skeleton and triangles K2

n(2) \ supp(δK2
n
c) and set Y = Yc.
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It is not too difficult to see that for every vertex u ∈ X(0) or v ∈ Y (0) the vertex link
Xu or Yv is a random Erdős–Rényi Xu, Yv ∼ G(n − 1, 1/2). In particular, with high
probability, all vertex links are good expander. Garland’s method then implies that
the up-Laplacian of both X and Y has a good spectral gap. On the other hand, while
X ∼ X2(n, 1/2) is a good coboundary expander (constant expansion with high probability
with respect to normalized Hamming norm), we have that δYcc = 0 by construction while
∥[c]∥ ≥ 1

2 − ε with high probability for any ε > 0. In particular, H̃1(Y ;F2) ̸= 0. This
example also shows that it is not sufficient to consider (vertex) links in order to find a
criterion for coboundary expansion. We refer the reader to [56] for a complete discussion
of all these results.

It is natural to ask for a structure within Y ∼ Y 2
GW (n, 1/2) which detects that Y is not

a coboundary expander. It turns out that by looking at intersections of two different
vertex links, we can distinguish X ∼ X2(n, 1/2) from Y ∼ Y 2

GW (n, 1/2). Indeed, fix
X ∼ X2(n, 1/2) and Y ∼ Y 2

GW (n, 1/2). For u, v ∈ X(0), u ̸= v it is easy to see that
Xu ∩Xv ∼ G(n− 2, 1/4) is a random Erdős-Rényi graph on n− 2 vertices with density
1/4.

The situation for u, v ∈ Y (0), u ̸= v is very different. Let c ∈ C1(Y ;F2) be the 1-cochain
defining Y . Given a vertex x in Yu ∩ Yv we call c(ux) + c(vx) ∈ F2 its type. Notice that
there can only be an edge between x and y in Yu ∩ Yv if x and y have the same type. In
that case there will be an edge with probability 1/2 (there is exactly one remaining choice
for the value c(xy) such that both vxy and uxy are in Y (2)). It follows that Yu ∩ Yv is a
disjoint union of two Erdős-Rényi graphs with density 1/2, one on the set of type 0 vertices
and one on the set of type 1 vertices. Since types of vertices in Yu ∩ Yv are independent
and take only two distinct values with probability 1/2 we expect these two graphs to
be of roughly equal size. Notice that Yu ∩ Yv is not connected (see Figure 9.1). We can
turn this observation into a quantitative statement. For this, it is important to note that
given a d-dimensional simplicial complex X, u, v ∈ X(0), u ≠ v, c ∈ Cd−1(X;F2) and
a (d − 1)-simplex σ ∈ Xu ∩ Xv with δXu∩Xv(cu + cv)(σ) = 1, then precisely one of the
d-simplices σ ⊔ {u} and σ ⊔ {v} is in the support of δc.

Now, assume for a moment that X has a complete (d − 1)-skeleton, i.e. X ⊆ Y with
X(d−1) = Y (d−1) and Y = Kd

n for some n, and that δXu∩Xv(cu + cv)(σ) is large compared
to δYu∩Yv(cu + cv). Then it would suffice to give a lower bound on the number of pairs
of d-simplices (σ, σ′) in Y with σ ∩ σ′ ∈ Y (d − 1) and precisely one of σ and σ′ in the
support of δY c. The number of such pairs can be interpreted as the cut induced by δY c
thought of as a subset of vertices in the graph ΓY = (V (ΓY ), E(ΓY )) with vertex set
V (ΓY ) = Y (d) and edges {σ, σ′} if σ ∩ σ′ ∈ Y (d− 1). Thus, expansion properties of ΓY

and Y would finalize this argument and deduce expansion for X. For Y = Kd
n the graph

ΓY is well-known in the literature as the Johnson graph J(n, d+ 1). The eigenvalues of
J(n, d+ 1) are fully understood (see, e.g., [21, Chapter 4]) and using Cheeger’s inequality
(Theorem 2.2) one can show that h0(ΓY ) ≥ n/2. Also, hd−1(K2

n) ≥ n/(d+ 1).

There is nothing special about Y = Kd
n in the above argument. As long as Y (d−1) = X(d−1),

Y and ΓY are expander and δXu∩Xv(cu + cv)(σ) can be compared to δYu∩Yv(cu + cv), the
argument goes through. This suggests to introduce the following terminology: Let X ⊆ Y
be d-simplicial complexes defined on the same vertex set V = X(0) = Y (0). Given
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Figure 9.1: An illustration for Yu ∩ Yv in Y ∼ Y 2
GW (n, 1/2): Edges in the support of c

defining Y are marked black, all other edges are dashed. Triangles in Y are filled in. We
distinguish two types of vertices x ∈ Yu ∩ Yv depending on the value c(ux) + c(vx). We
see that an edge xy cannot end up in Yu ∩ Yv unless x and y have the same type. In this
case, xy will be in Yu ∩ Yv with probability 1/2.

c ∈ Cd−1(X;F2) write c̄ ∈ Cd−1(Y ;F2) for the extension by 0 of c to Y . For uv ∈
(

V
2

)
let

ηuv(X;Y ) := min
c∈Cd−2(Xu∩Xv ;F2)

|δXu∩Xvc|
|δYu∩Yv c̄|

,

where we define the quotient on the right hand side to be +∞ whenever δYu∩Yv c̄ = 0. Let

ηDL(X;Y ) := min
uv∈(V

2)
ηuv(X;Y )

which we call the double-link expansion of X with respect to Y . We write DX :=
maxσ∈X(d−1) |Xσ(0)| for the largest degree of a (d− 1)-simplex in X.

With all these preparations we are ready to show:

Proposition 9.6. Let X ⊆ Y be two d-dimensional simplicial complexes on the same
vertex set V . Assume that X and Y have the same codimension 1 skeleton, i.e. X(d−1) =
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Y (d−1). Then

hd−1(X) ≥ 1
(d+ 1)DX

|Y (d)|
|Y (d− 1)| min{1/2, h̄d−1(Y )}ηDL(X;Y )h0(ΓY ).

Proof. Let c ∈ Cd−1(X;F2) be minimal (with respect to the Hamming norm | · |). From
our discussion above, we get that ∑

uv∈(V
2)

|δXu∩Xv(cu + cv)|

counts the number of pairs {σ, σ′} ∈
(

X(d)
2

)
with precisely one of σ and σ′ in the support

of δc. Note that every σ ∈ supp(δc) gets counted at most DX(d+ 1) times. Using this,
the definition of double-link expansion and the fact that X(d−1) = Y (d−1) we estimate

(d+ 1)DX |δXc| ≥
∑

{u,v}∈(V
2)

|δXu∩Xv(cu + cv)|

≥ ηDL(X;Y )
∑

{u,v}∈(V
2)

|δYu∩Yv(cu + cv)|

= ηDL(X;Y )|EΓY
(supp(δY c̄), V (ΓY ) \ supp(δY c̄))|

≥ ηDL(X;Y )h0(ΓY ) min{|δY c̄|, |1 + δY c̄|}.

We distinguish two cases. If |δY c̄| > 1
2 |Y (d)|, we get

|δXc| ≥ 1
(d+ 1)DX

ηDL(X;Y )h0(ΓY ) |Y (d)|
2

≥ 1
(d+ 1)DX

ηDL(X;Y )h0(ΓY ) |Y (d)|
2|Y (d− 1)| |c|.

If |δY c̄| ≤ 1
2 |Y (d)| we use expansion of Y to deduce

|δXc| ≥ 1
(d+ 1)DX

ηDL(X;Y )h̄d−1(Y ) |Y (d)|
|Y (d− 1)| |[c̄]|

= 1
(d+ 1)DX

ηDL(X;Y )h̄d−1(Y ) |Y (d)|
|Y (d− 1)| |c|,

where we used Lemma 3.6 for the last equality. Combining the two cases gives the lower
bound on hd−1(X) as claimed and finishes the proof.

9.3 Hardness of Computing Coboundary Expansion
Constants

Computing h0(G) for a given graph G = (V,E) is a computationally hard problem,
known to be NP-hard (see, for instance, [71, Theorem 2]). Since eigenvalues can be
computed efficiently (up to a priori fixed accuracy), the Cheeger inequality (Theorem 2.2)
yields an approximation algorithm for h0(G). Unfortunately, the approximation ratio
guaranteed by the Cheeger inequality is fairly poor, especially for small values of h0(G).
Using semidefinite programming approaches a O(

√
log |V |)-approximation algorithm was
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given in [9]. This is the best currently known approximation algorithm and the precise
approximation ratio for h0(G) one could achieve remains unknown. In fact, a variant of
computing h0(G), called the gap-small-set expansion problem1, is intimately related to the
unique games conjecture, one of the major open problems in computational complexity
theory (see [77] and [120] for starting points into this topic).
Intuitively speaking, one should expect that computing hd−1(X) for a d-dimensional
simplicial complexX with d ≥ 2 should be at least as hard as computing the edge expansion
constant h0(G) of graphs. In fact, we are not aware of any known efficient approximation
algorithm for hd−1(X) with a guaranteed, non-trivial approximation ratio. As mentioned
earlier, the Cheeger inequality fails in dimension d ≥ 2 (see [130, 56]). Furthermore, it is
known (see [66]) that even deciding whether a given cochain c ∈ C1(Kn;F2) is minimal
(with respect to the Hamming norm) is NP-complete.
As a tiny step towards a better understanding of the complexity of computing hd−1(X),
we give a simple construction which turns a given graph G and a dimension d into a
d-dimensional simplicial complex X such that hd−1(X) is within a factor d of h0(G). More
precisely, we have:

Proposition 9.7. Let G = (V,E) be a connected graph and d ≥ 2. Let ε > 0. Let N ∈ Z>0
with N ≥ |V |/ε. Let X = Kd−2

N ∗G be the join of G with a complete (d− 2)-dimensional
complex on N vertices. Then

1
d

(1 − ε)h0(G) ≤ hd−1(X) ≤ h0(G).

Proof. For the lower bound we use a random cofilling argument. Using Künneth formula
for the cohomology groups of joins (see [61, Chapter V.]) we have that H̃d−1(X;F2) = 0.
Hence, according to Lemma 3.9, it suffices to show a cofilling inequality. To this end,
let b ∈ Bd(X;F2) with b = δa for some a ∈ Cd−1(X;F2). Write U for the vertices of the
copy of Kd−2

N in X. For s ∈ U define a(s) ∈ Cd−1(X;F2) = Cd−2(Kd−2
N ;F2) ⊗C0(G;F2) ⊕

Cd−3(Kd−2
N ;F2) ⊗ C1(G;F2) by

a(s)(σ ⊗ τ) =


0 if s ∈ σ

b((v ⊔ σ) ⊗ τ) if σ ∈ Kd−2
N (d− 3), τ ∈ E, s /∈ σ

α(s,σ)(τ), if σ ∈ Kd−2
N (d− 2), τ ∈ V, s /∈ σ,

where α(s,σ) is a minimal cofilling of∑
τ⊆s⊔σ,|τ |=d−1

bτ ∈ B1(G;F2).

∑
τ⊆s⊔σ,|τ |=d−1 bτ is indeed a coboundary since it is the localization of the coboundary b

along the cycle ∂(s ⊔ σ) ∈ Zd−2(Kd−2
N ;F2).

Note that δa(s) = b for all s ∈ U , essentially by construction. We estimate

|[a]| ≤ 1
N

∑
s∈U

|a(s)|

= d− 1
N

|b| + 1
N

∑
s∈U,σ∈([N ]\{s}

d−2 )
|a(s,σ)|.

1The gap-small-set expansion problem asks to distinguish whether given a d-regular graph G =
(V,E) and constants δ, η > 0 there is S ⊆ V with |S| = δ|V | and |E(S, V \ S)| ≤ ηd|S| or whether
|E(S, V \ S)| ≥ (1 − η)d|S| for all S ⊆ V with |S| = δ|V |.

149



9. Miscellaneous

Using the expansion of G and the triangle inequality we get

|[a]| ≤ d− 1
N

|b| + d

Nh0(G)
∑

τ∈([N ]
d )

|b∂τ |

≤ d− 1
N

|b| + d(N − d+ 1)
Nh0(G)

∑
σ∈Kd−2

N (d−2)

|bσ|

=
(
d− 1
N

+ d(N − d+ 1)
Nh0(G)

)
|b|.

Thus,
hd−1(Kd−2

N ) ≥ h0(G) N

h0(G)(d− 1) + d(N − d+ 1) ≥ h0(G)
d

(1 − ε),

where we used the assumption N ≥ |V |/ε for the last inequality.

To see the upper bound, fix S ⊆ V achieving h0(G), i.e. 0 < |S| ≤ |V |/2 and |E(S, V \S| =
h0(G)|S|. Fix σ ∈ Kd−2

N (d− 2) and define c := 1σ ⊗ 1S ∈ Cd−1(X;F2). We claim that c
is minimal, which would finish the proof since then

hd−1(X) ≤ |δc|
|[c]| = |δc|

|c|
= |1σ ⊗ δG1S|

|S|
= h0(G).

To see that c is minimal let φ : S → V \ S be an injective function. Fix a vertex
v ∈ Kd−2

N (0) \ σ (we can assume that N ≥ d). Consider the family of cycles (z(s))s∈S ⊆
Zd−1(X;F2) given by z(s) = (∂(σ⊔v))⊗ (s+φ(s)). Note that the cycles z(s) have pairwise
disjoint support. Moreover, for any s ∈ S and a ∈ Cd−2(X;F2) we have

⟨c+ δa, z(s)⟩ = ⟨c, z(s)⟩ ̸= 0.

This implies |[c]| ≥ |S| = |c|, as desired.

9.4 Expansion of Links Is Necessary
Local-to-global argument have been used to show expansion for small cochains with
respect to F2-coefficients (and normalized or Garland weighted Hamming norm) at various
places in the literature (see, for instance, [97, 96, 72] and especially Evra–Kaufman’s
local-to-global criterion [40, Theorem 5]). Common to all these argument is that they
exploit good expansion properties of the links combined with excellent expansion of
various graphs and the fact that the cochains under consideration have small norm.

Having these results in mind, it seems natural to think that expansion of the links is
actually a necessary condition for expansion of the whole complex. We believe that this is
a folklore result known within the community of HDXs but we could not find any formal
argument in the literature. In this section, we would like to fill-in this gap and show the
following:

Proposition 9.8. Let X be a d-dimensional simplicial complex. Let 0 ≤ k ≤ d− 2. Let
v ∈ X(0) and ρ(k)

v := maxσ∈Xv(k) wσ(v) (here we write wσ for the Garland weights on Xσ).
Assume that ηk(X) ≥ 2(k + 2)ρ(k)

v . Then

ηk(Xv) ≥ k + 2
k + 3ηk+1(X).
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Recall from Lemma 5.4 that we always have wσ(v) ≤ 1/δ(X) where δ(X) denotes the
thickness of X. Thus, the assumption ηk(X) ≥ 2(k + 2)ρv is fairly mild.

Working with the Hamming norm, we can also show a result in terms of cofilling constants.
To state such a result, let us introduce the following notation: Given a d-dimensional
simplicial complex X and 1 ≤ k ≤ d let

Lk(X) := max
a∈Ck−1(X;F2)\Zk−1(X;F2)

minz∈Zk−1(X;F2) |a+ z|
|δa|

where | · | is the Hamming norm. In other words, Lk(X) is the smallest number L such
that for all b ∈ Bk(X;F2) there is a ∈ Ck−1(X;F2) with δa = b and |a| ≤ L|b|. We have

Proposition 9.9. Let X be a d-dimensional simplicial complex and 1 ≤ k ≤ d− 1. Let
v ∈ X(0). If Lk(Xv) ≤ 1 then Lk(Xv) ≤ Lk+1(X).

Before we give the proofs of Proposition 9.8 and Proposition 9.9, let us mention two
consequences: Using Proposition 9.8 we see that (at the cost of potentially worse bounds)
for an application of Evra–Kaufman’s local-to-global criterion [40, Theorem 5], it suffices
to give a lower bound on ηk(Xσ) for all σ ∈ X(0) rather than all σ ∈ X.

The upper bound on ηd−2(Ad−1(Fq)) in Theorem 1.6 translates into the lower bound

Ld−1(Ad−1(Fq)) ≥ 2d−1

q + 1(1 − ε)

for any ε > 0 and sufficiently large q ≥ Q(ε). On the other hand there is a positive constant
ηd−1 > 0 independent of q such that ηd−2(Ad−1(Fq)) ≥ ηd−1 (see, e.g., [98, Corollary 3.6]).
Equivalently, we have Ld−1(Ad−1(Fq)) ≤ d+1

ηd−1(q+1) . Now Ad−1(Fq) shows up as the vertex
links of d-dimensional Ramanujan complexes2 and, hence, for large enough q, we can use
Proposition 9.9 with the lower bound on Ld−1(Ad−1(Fq)) to deduce lower bounds on the
cofilling constants of Ramanujan complexes as well.3

9.4.1 Proof of Proposition 9.8
The idea of the proof of Proposition 9.8 is very simple: Given a minimal k-cochain
c ∈ Ck(Xv;F2) with ∥δc∥ = ηk(Xv)∥c∥, the lift c̃ = Ivc ∈ Ck+1(X;F2), given by c̃(σ) = 0
if v /∈ σ and c̃(σ) = c(σ \ {v}) if v ∈ σ, seems a natural candidate for an upper bound on
ηk+1(X) in terms of ηk(Xv). Indeed, using basic properties of the Garland weights one
readily computes that

∥δc̃∥ = ∥IvδXvc∥ = (k + 3)w(v)∥δXvc∥v = (k + 3)w(v)ηk(Xv)∥c∥v = k + 3
k + 2ηk(Xv)∥c̃∥.

2It is not important here what these complexes are exactly. Let us just mention that they are
remarkable families of explicitly constructed simplicial complexes of bounded degree generalizing the
construction of Ramanujan graphs due to Lubotzky, Philipps and Sarnak [92] to higher dimensions
[99, 100]. In particular, they have – in a very precise sense – optimal spectral expansion properties.
Furthermore, they gave rise to infinite families of simplicial complexes of bounded degree with the
topological overlap property [72, 40] and played a guiding role in [31]. They are essentially the only
known family of simplicial complexes of bounded degree exhibiting such strong expansion properties and
are thus extremely relevant for applications.

3Since d-dimensional Ramanujan complexes do not necessarily have vanishing (d− 1)th cohomology,
it is important to work with cofilling constants and Proposition 9.9 rather than coboundary expansion
constants and Proposition 9.8 here.
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Here and throughout the proof of Proposition 9.8 we write ∥ · ∥ for the Garland weighted
Hamming norm on X and ∥ · ∥σ for the Garland weighted Hamming norm on the link Xσ

of X at σ for some σ ∈ X.
Note that the computation above would finish the proof, if we could show that the lift
c̃ = Ivc is minimal in X. This is where the assumption on ηk(X) enters:

Lemma 9.10. Let X be a d-dimensional simplicial complex. Let v ∈ X(0). Let 0 ≤
k ≤ d − 2 and assume that ηk(X) ≥ 2(k + 2)ρ(k)

v , where ρ(k) = maxσ∈Xv(k) wσ(v) . Let
c ∈ Ck(Xv;F2). Then Ivc ∈ Ck+1(X;F2) is minimal.

For the proof of this lemma some notation will be useful: For v ∈ X(0) we write X \ v for
the simplicial complex obtained from X by removing all simplices containing v. We endow
X \ v with the weights obtained by restricting the Garland weights of X to X \ v and ∥ · ∥
for the induced weighted Hamming norm. We write iXv : Xv → X for the inclusion map.
In preparation for the proof of Lemma 9.10 we need the following two claims:

Claim 9.11. Given c ∈ Ck(X \ v;F2) minimal, we have

∥δc∥ ≥
(
ηk(X) − (k + 2)ρ(k)

v

)
∥c∥

where ρ(k)
v = maxσ∈Xv(k) wσ(v)

Claim 9.12. Let b ∈ Bk(X;F2). Then there is a ∈ Ck−1(X;F2) with δa = b and
supp(a) ⊆ X \ v.

Proof of Lemma 9.10 assuming Claim 9.11 and Claim 9.12. Let c ∈ Ck(Xv;F2) be min-
imal. Let c̃ = Ivc ∈ Ck+1(X;F2). We would like to show that ∥c̃ + δa∥ ≥ ∥c̃∥ for all
a ∈ Ck(X;F2). By Claim 9.12 we can assume that supp(a) ⊆ X \ v. Write a′ for the
restriction of a to X \ v. Let s ∈ Ck−1(X \ v;F2) such that a′ + δs is minimal. We
compute using Claim 9.11, the triangle inequality, that ∥Ivu∥ = w(v)(k + 2)∥u∥ for any
u ∈ Ck(Xv;F2) and minimality of c:

∥c̃+ δa∥ = ∥δX\va
′∥ + ∥Iv(c+ i∗Xv

a)∥
≥
(
ηk(X) − (k + 2)ρ(k)

v

)
∥a′ + δs∥ + ∥Iv(c+ i∗Xv

a)∥

=
(
ηk(X) − (k + 2)ρ(k)

v

)
∥a′ + δs∥ + w(v)(k + 2)∥c+ i∗Xv

a∥v

≥
(
ηk(X) − (k + 2)ρ(k)

v

)
∥a′ + δs∥

+ w(v)(k + 2)
(
∥c+ i∗Xv

δs∥v − ∥i∗Xv
(a+ δs)∥v

)
≥
(
ηk(X) − (k + 2)ρ(k)

v

)
∥a′ + δs∥ + w(v)(k + 2)

(
∥c∥v − ∥i∗Xv

(a+ δs)∥v

)
= ∥c̃∥ +

(
ηk(X) − (k + 2)ρ(k)

v

)
∥a′ + δs∥ − ∥Iv(i∗Xv

(a+ δs))∥.

It remains to give an upper bound on ∥Iv(i∗Xv
(a+ δs))∥. For this we simply compute

∥Iv(i∗Xv
(a+ δs))∥ =

∑
σ∈Xv(k),a(σ)+δs(σ)=1

w(σ ∪ v)

= (k + 2)
∑

σ∈Xv(k),a(σ)+δs(σ)=1
wσ(v)w(σ)

≤ (k + 2)ρ(k)
v

∑
σ∈Xv(k),a(σ)+δs(σ)=1

w(σ)

≤ (k + 2)ρ(k)
v ∥a′ + δs∥.
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Plugging this into above estimates we conclude

∥c̃+ δa∥ ≥ ∥c̃∥ +
(
ηk(X) − 2(k + 2)ρ(k)

v

)
∥a′ + δs∥ ≥ ∥c̃∥,

since we assume that ηk(X) ≥ 2(k + 2)ρ(k)
v .

It remains to prove the two claims.

Proof of Claim 9.11. Let ∆ := {σ ∈ X(k + 1) : σ /∈ X \ v}. Write c̄ for the extension of
c by 0 to X. By Lemma 3.6 c̄ is minimal in X. Using expansion of X we get

∥δX\vc∥ = ∥δX c̄∥ − ∥(δX c̄)|∆∥ ≥ ηk(X)∥c∥ − ∥(δX c̄)|∆∥.

Now, observe that

∥(δX c̄)|∆∥ =
∑

σ∈Xv(k),c(σ)=1
w(σ ∪ v)

= (k + 2)
∑

σ∈Xv(k),c(σ)=1
wσ(v)w(σ)

≤ (k + 2)ρ(k)
v

∑
σ∈Xv(k),c(σ)=1

w(σ)

≤ (k + 2)ρ(k)
v ∥c∥.

Plugging this into the previous estimate, we get

∥δX\vc∥ ≥
(
ηk(X) − (k + 2)ρ(k)

v

)
∥c∥,

as desired.

Proof of Claim 9.12. Given a ∈ Ck(X;F2) we simply note that the support of a+ δXIva
is contained in X \ v.

9.4.2 Proof of Proposition 9.9
The proof of Proposition 9.9 is somewhat simpler than the proof of Proposition 9.8.

Proof of Proposition 9.9. Let b ∈ Bk(Xv;F2) with cofilling a ∈ Ck−1(Xv;F2) such that

|a| = min
z∈Zk−1(Xv ;F2)

|a+ z| = Lk(Xv)|b|.

Let b̃ = Ivb = δIva be the lift of a to X. We claim that |Iva| = minz∈Zk(X;F2) |Iva + z|.
This will finish the proof since then

Lk(Xv)|b| = |a| = |Iva| ≤ Lk+1(X)|b̃| = Lk+1(X)|b|.

We finish the proof by showing that |Iva| = minz∈Zk(X;F2) |Iva + z|. To this end, let
z ∈ Zk(X;F2) and note that if σ ∈ supp(Iva+ z) then either v /∈ σ and σ ∈ supp(z|X\v

)
or v ∈ σ and σ \ {v} ∈ supp(Iv(Iva+ z)).
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Note that δXvIvz = z|Xv
. Indeed, we compute for σ ∈ Xv(k) that

0 = δXz(σ ⊔ v) = z(σ) +
∑
u∈σ

z(σ \ {u} ⊔ {v}) = z(σ) +
∑
u∈σ

Ivz(σ \ {u}) = z(σ) + δIvz(σ).

Now let z̃ ∈ Zk−1(Xv;F2) such that |Ivz + z̃| = minz′∈Zk−1(Xv ;F2) |Ivz + z′|.

Using these observations we estimate

|Iva+ z| = |z|X\v
| + |Iv(Iva+ z)|

≥ |z|Xv
| + |a+ Ivz|

= |δXvIvz| + |a+ Ivz|

≥ 1
Lk(Xv) |Ivz + z̃| + |a+ z̃| − |Ivz + z̃|

≥
(

1
Lk(Xv) − 1

)
|Ivz + z̃| + |a|

≥ |a|
= |Iva|,

where we used the assumption Lk(Xv) ≤ 1 for the last inequality.
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Chapter 10

Conclusion

In this dissertation we presented an equivariant version of Gromov’s Topological Overlap
Theorem as a general tool for studying quantitative non-embeddability problems through
the lens of HDXs and gave various applications (Chapter 5). We believe that the results
presented here are only the tip of an iceberg and that there are many further geometric and
topological applications that could come out of a symbiosis of HDXs with the configuration
space/test map framework. For this, it would be desirable to generalize Theorem 4.1
by, e.g., weakening the strong assumption of vanishing cohomology or extending it to
different, not necessarily free group actions. For instance, a quantitative version of the
following theorem due to Volovikov would be interesting as it allows to give a proof of the
topological Tverberg theorem as well as a generalization of Theorem 5.12 for the prime
power case (see [137] and [60, Theorem 2], respectively).

Proposition (Lemma in [137]). Let p be prime. Let G = (Z/p)n be the product of n
copies of the cyclic group Z/p. Assume G acts on the spaces X and Y without fixed
points. If Y is a k-dimensional cohomology sphere over Z/p and H̃j(X;Z/p) = 0 for all
0 ≤ i ≤ k − 1 then there is no G-equivariant map from X to Y .

There are various other topological results which have been used within the configuration
space/test map framework. It would be interesting to attempt to prove quantitative
versions of them which might even lead to new notions of HDXs. In particular, it
would be nice to develop the theory well enough to give an affirmative answer to the
question whether ipcr(X) ≥ c|X(d)|2 for some constant c > 0 where X is a d-dimensional
Ramanujan complex or, more generally, a compact quotient of an affine Bruhat–Tits
building and in particular, show that these complexes do not embed into R2d. This
question was explicitly ask in [54, p. 447] and [95, Section 3].

But even Theorem 4.1 itself might have further applications if one could show sufficiently
good expansion properties of certain simplicial complexes. In particular, it could lead
to first lower bounds on the number of Tverberg partitions for colorful Tverberg-type
problems which do not follow from the so-called constraint method [14] and, hence, for
which Theorem 5.12 is not available to imply quantitative bounds in a blackbox fashion.
One such result in this direction is:

Theorem (Theorem 3.1 in [67], Theorem 2.1 in [68]). Let p be prime. Let r = ps for some
s ∈ Z>0. Let d ≥ 1 be a positive integer. Let N ≥ (r− 1)(d+ 2) and rk+ s ≥ (r− 1)d for
integers k ≥ 0 and 0 ≤ s < r. Let σN be the N-dimensional simplex on N + 1 vertices.
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Then for every continuous map f : |σN | → Rd there are r pairwise disjoint faces σ1, . . . , σr

of σN such that ⋂r
i=1 f(σi) ̸= ∅ and such that dim σi ≤ k+ 1 for 1 ≤ i ≤ s and dim σi ≤ k

for s < i ≤ r.

The proof of this theorem shows vanishing cohomology up to the relevant dimension (by
exhibiting a discrete Morse function without critical simplices of small dimension) for a
suitable configuration space associated with the problem and applies Volovikov’s lemma
above. Thus, at least for the prime case r = p, Theorem 4.1 would give a quantitative
lower bound on the number of r-tuples as in the conclusion of the theorem, provided that
we could show good enough expansion properties for the configuration space in question.
Unfortunately, the lower bounds on the expansion constants we were able to show, do not
lead to any non-trivial lower bound.

Furthermore, it would be interesting to know whether ζ2(Λ3
m,m,n,n) ≥ 1 holds for all

m,n ∈ Z>0. As discussed in Section 5.5, this would imply an asymptotic version
Zarankiewicz’ conjecture. More generally, we conjecture that

Conjecture 10.1. Let d, n0, . . . , nd ∈ Z>0, d ≥ 2. Then

(i) ηd−1(Λd
n0,...,nd

) ≥ d+1
2d .

(ii) ζd−1(Λd
n0,...,nd

) ≥ 1.

For d = 2, we conjecture that the upper bound on η1(Λ2
n) given in Proposition 7.9 is the

true value for all n ∈ Z>0.

It is somewhat surprising that the exact value of ηd−1(X) remains unknown even for the
most basic families of d-dimensional simplicial complexes such as d-dimensional complete
(d+ 1)-partite complexes Λd

n. But even for the complete complex Kd
n the precise value of

ηd−1(Kd
n) is not known for all n. It is known though that ηd−1(Kd

n) ≥ n
n−d

for all n with
equality if d+ 1 divides n (see for instance [109, Section 2]). From this it is not too hard
to deduce that ηd−1(Kd

n) ≤ 1 + o(1) as n → +∞. Furthermore, for d = 2 it was shown in
[84, Theorem 4.2] that η1(K2

n) = n
n−2 if n is not a power of 2. The situation is even less

understood if one asks for a more fine-grained understanding of ηd−1(Kd
n) in terms of the

cofilling profile

ηd−1(α) := lim inf
n→+∞

min{∥δc∥ : c ∈ Cd−1(Kd
n;F2), ∥[c]∥ ≥ α}

for α ∈ (0, 1/2] [108, 86]. This is relevant to the point selection problem mentioned in the
introduction.

We think that there are extremly interesting combinatorial questions surrounding the
problem of finding the exact value of ηk(X). In particular, getting a better understanding
of the structure of minimal cochains seems crucial to make progress on any of these
problems. In view of the fact that checking minimality of cochains is NP-hard even for
c ∈ C1(Kn;F2) this is likely to be a difficult task.

One might wonder whether there are tools in (extremal) combinatorics already available for
tackling such problems. For instance, for showing η1(Λ2

n) ≥ 3/4 we know by Corollary 8.10
that it suffices to consider minimal cochains c ∈ C1(Λ2

n;F2) with 13/124 < ∥c∥ < 1/3. In
particular, we can work in the setting of large dense graphs where Szemerédi’s regularity
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lemma (usually in combination with some counting lemma) has proven to be a powerful
tool (see, for instance, Szemerédi’s original paper [133], the two surveys [125, 81] or
Chapter 9 in [91]). Is it possible to show that η1(Λ2

n) ≥ 3/4 or at least an improved lower
bound using some sort of regularity/counting lemma argument?

Furthermore, we would like to repeat the quest for a better understanding of the expansion
constants ηk(X ∗ Y ) of the join of two simplicial complexes X and Y , especially in the
case X = Y . In view of Proposition 6.1, solving this problem might be quite subtle but
nevertheless we would like to ask whether, given a d-dimensional simplicial complex X, it
is possible to bound the coboundary expansion constants ηk(X∗2), 0 ≤ k ≤ 2d, in terms
of the expansion constants ηj(X), 0 ≤ j ≤ d− 1? A positive answer even for d = 1 and
X = G a bounded degree expander graph on n vertices would be interesting since it would
give that ipcr(G) = Ω(n2).

We have seen that ζd−1(Λd
n) > ηd−1(Λd

n) for all d ≥ 2 and sufficiently large n. Thus, at
least for the iterated join of a discrete set of n points coboundary expansion behaves
better with respect to integer coefficients and ℓ2

2-norm than with respect to F2-coefficients
and Garland weighted Hamming norm. It would be interesting to know whether this is a
more general phenomenon meaning whether under taking joins J = X ∗ Y the constants
ζk(J) behave better than ηk(J). On the one hand, additional tools such as eigenvalues
and eigenspaces of Laplacians and some discrete lattices naturally show up in the study of
expansion constants with respect to integer coefficients and ℓ2

2-norm. On the other hand,
we cannot expect a Cheeger inequality in dimension at least 2 since even qualitatively
vanishing cohomology with respect to R-coefficients does not imply vanishing integer
cohomology.
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