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Abstract. Quantitative monitoring can be universal and approximate:
For every finite sequence of observations, the specification provides a
value and the monitor outputs a best-effort approximation of it. The
quality of the approximation may depend on the resources that are avail-
able to the monitor. By taking to the limit the sequences of specification
values and monitor outputs, we obtain precision-resource trade-offs also
for limit monitoring. This paper provides a formal framework for study-
ing such trade-offs using an abstract interpretation for monitors: For
each natural number n, the aggregate semantics of a monitor at time n
is an equivalence relation over all sequences of at most n observations
so that two equivalent sequences are indistinguishable to the monitor
and thus mapped to the same output. This abstract interpretation of
quantitative monitors allows us to measure the number of equivalence
classes (or “resource use”) that is necessary for a certain precision up to
a certain time, or at any time. Our framework offers several insights. For
example, we identify a family of specifications for which any resource-
optimal exact limit monitor is independent of any error permitted over
finite traces. Moreover, we present a specification for which any resource-
optimal approximate limit monitor does not minimize its resource use at
any time.

Keywords: Abstract monitor + Approximate monitoring -
Quantitative monitoring - Monitor resources

1 Introduction

Online monitoring is a runtime verification (RV) technique [11] that, by sacrific-
ing completeness, aims to lighten the burden caused by exhaustive formal meth-
ods. A monitor watches an unbounded sequence f of observations, called trace,
one observation at a time. At each time n > 0, it tries to provide information
about the value assigned to f by the specification. For a boolean specification P,
after each trace prefix s, the monitor may output one of three values: all infinite
extensions of s satisfy P, violate P, or neither [15].

Quantitative specifications [21] generalize their boolean analogs by assigning
each trace f a value from some richer domain. For example, the boolean specifi-
cation Resp assigns true to f iff every observation req in f is eventually followed
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by an observation ack in f, while the quantitative specification MaxRespTime
assigns the least upper bound on the number of observations between each req
and the corresponding ack, or oo if there is no such upper bound.

In the limit monitoring of a quantitative specification & over a trace f, a
limit (e.g., limsup, liminf) of the infinite sequence of monitor outputs should
provide information about the value &(f) assigned to the trace. For example, a
“natural way to monitor” MaxRespTime is to have the monitor output, at each
time, the maximum of (i) the maximal response time so far and (ii) the time
since the least recent pending req, if there is a pending req. The limsup (and
liminf) of this infinite output sequence converges towards MaxRespTime.

In contrast to its boolean analog, the quantitative setting naturally supports
approximation. A monitor has error § > 0 if, for all infinite traces, the limit
of the output sequence is within § of the specification value. In particular, this
leads to precision-resource trade-offs for quantitative monitors: The provisioning
of additional states, registers, or operations may reduce the error, and a larger
error tolerance may enable monitors that use fewer resources.

In this paper, we provide a formal framework for studying such precision-
resource trade-offs for an abstract definition of quantitative monitors. This
abstract framework can be instantiated, for example, by finite-state monitors
or register monitors, where a finite-state monitor remembers a bounded amount
of information about each trace prefix, and a register monitor remembers a
bounded number of integer values [32]. For us, an abstract monitor partitions,
at each time n, all prefixes of length up to n into a finite number of equiva-
lence classes such that if two prefixes s; and sy are equivalent, then the monitor
outputs the same value after observing s; and sy. The number of equivalence
classes introduced at time n provides a natural measure for the resource use of
the abstract monitor after n observations.

In this setting, where the resource use of a monitor is measured, we also want
to measure the precision of a monitor. To define the precision of a monitor after a
finite trace prefix, we need to enrich our definition of quantitative specifications:
We let a quantitative specification assign values not only to infinite traces but
also to finite traces. Indeed, many specification values for infinite traces are
usually defined as limits [37]. For example, what we called above the “natural
way to monitor” MaxRespTime using two counters is, in fact, the usual formal
definition of the quantitative specification MaxRespTime.

Once both specifications and monitors assign values to all finite traces, there
is a natural definition for the precision of a monitor: At each time n, the prompt-
error is the maximal difference between the monitor output and the specification
value over all finite traces of length up to n. Furthermore, the limit-error is the
least upper bound on the difference between the limit of monitor outputs and the
limit of specification values over all infinite traces. Note that if the prompt-error
of a monitor is 0, then so is the limit-error, but not necessarily vice versa. An
exact-value monitor (i.e., a monitor with prompt-error § = 0) implements the
specification as it is defined. In contrast, an approximate monitor (i.e., a monitor
with prompt-error § > 0) of the same specification may use fewer resources.
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An approximate monitor may still achieve limit-error 0, which is a situation of
particular interest that we study.

Given an abstract monitor, one way to obtain a new monitor that uses fewer
resources use is to merge some equivalence classes, and one way to increase
the precision is to split some equivalence classes. However, this naive approach
toward reaching a desired precision or resource use is not always the best. For
an approximate monitor with a given prompt-error and limit-error, the goal
is resource-optimality, i.e., minimizing the resource use as much as the error
threshold allows. We will see that merging the equivalence classes of a given
monitor may not yield a resource-optimal one.

The limit-error of a monitor is bounded by its prompt-error. We also inves-
tigate the case where we require a certain limit-error while leaving the prompt-
error potentially unbounded. We will see that allowing arbitrary prompt-error
may not permit the monitor to save resources if the desired limit-error is fixed.
We say that such specifications have resource-intensive limit behavior. In fact,
MaxRespTime displays resource-intensive limit behavior. Other examples include
a subclass of reversible specifications. Reversibility is a notion from automata the-
ory characterized by the specification being realizable with a finite-state automa-
ton that is both forward and backward deterministic. A similar notion, gener-
alized to the quantitative setting, can be introduced in our framework, allowing
an abstract monitor to process an infinite trace in a two-way fashion.

Overview. Section 2 formalizes the framework of abstract monitors and pro-
vides insights on relations between basic notions such as resource use and preci-
sion.

Section 3 focuses on monitoring with bounded error over finite traces. First,
in Subsect. 3.1, we show that the exact-value monitor over finite traces is unique
and resource-optimal for every specification. Additionally, for resource-optimal
approximate monitors, we prove: (i) they are not unique in Subsect. 3.1, (ii) they
do not necessarily follow the structure of the exact-value monitor in Subsect. 3.2,
and (iii) they do not necessarily minimize their resource use at each time in Sub-
sect. 3.2. Then, in Subsect. 3.3, we study precision-resource trade-off suitability:
We exhibit (i) a specification for which we can arbitrarily improve the resource
use by damaging precision, and (ii) another for which we arbitrarily improve the
precision by damaging the resource use.

Section 4 focuses on monitoring without error on infinite traces. In partic-
ular, in Subsect. 4.1 we provide a condition for identifying specifications with
resource-intensive limit behavior, for which having zero limit-error prevents the
trade-off between resource use and error on finite traces. This condition cap-
tures two paradigmatic specifications: (i) maximal response-time and (ii) aver-
age response-time. Finally, in Subsect. 4.2 we investigate reversible specifications,
which can be implemented in a manner both forward and backward determinis-
tic. A subclass of reversible specifications have resource-intensive limit behavior,
which we demonstrate through the average ping specification.

Section 5 concludes the paper and addresses future research directions our
framework offers.
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Related Work. In the boolean setting, several notions of monitorability have
been proposed over the years [15,30,34]. Much of the theoretical efforts have
focused on regular specifications [2,14,46], although some proposed more expres-
sive models [9,12,26]. We refer the reader to [10] for coverage of these and more.

Verification of quantitative specifications [21,41] have received significant
attention, especially in the probabilistic setting [17,20,33]. In the context of RV,
the literature on specifications with quantitative aspects features primarily met-
ric temporal logic and signal temporal logic [38,40,43-45]. Other efforts include
processing data streams with a focus on deciding their properties at runtime [5, 6|
and an extension of weighted automata with monitor counters [22]. None of these
works focus on monitoring quantitative specifications with approximate verdicts
or the relation between monitorability and monitor resources.

Approximate methods have been used in verification for many years [25,39].
Beyond the boolean setting, such approaches have appeared in the context
of sensor networks for approximating aggregate functions in a distributed set-
ting [24,49,50], in approximate determinization or minimization of quantitative
models of computation [7,16,35], and also in online algorithms [3].

To the best of our knowledge, the use of approximate methods in monitoring
mainly concentrates on the specification rather than taking approximateness as
a monitor feature and studying the quality of monitor verdicts. In predictive or
assumption-based monitoring [23,54] and for monitoring hyperproperties [51], an
over-approximation of the system under observation is used as an assumption
to limit the set of possible traces [36]. Similarly, in runtime quantitative verifi-
cation [18,47], the underlying probabilistic model of the system is approximated
and continually updated. For monitoring under partial observability, [4] describes
an approach to approximate the given specification for minimizing the number
of undetected violations. In the branching-time setting, [1] uses a monitorable
under- or over-approximation of the given specification to construct an “optimal”
monitor. Nonetheless, a form of distributed and approximate limit monitoring
for spatial specifications was studied in [8]. None of these works consider approx-
imateness as a monitor property to study the relation between monitor resources
and the quality of its verdicts.

Recently, [32] introduced a concrete monitor model with integer-valued reg-
isters and studied their resource needs. This model was later used for limit mon-
itoring of statistical indicators of traces under probabilistic assumptions [31]. A
general framework for approximate limit monitoring of quantitative specifica-
tions was proposed in [37]. However, that framework focuses exclusively on limit
behaviors and on specific monitor models such as finite automata and register
machines, thus allowing only limited precision-cost analyses. The main innova-
tions of the present work over previous work are twofold. First, we abstract the
monitor model and its resource use away from specific machine models. Second,
by introducing prompt-errors, we study the resource use of monitors over time
and relate this to the monitoring precision over time. This more nuanced frame-
work enables a more fine-grained analysis and comparison of different monitors
for the same specification concerning their precision and resource use.
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2 Definitional Framework

Let ¥ = {a,b,...} be a finite alphabet of observations. A trace is finite or
infinite sequence of observations, which we respectively denote by s,r,t € X*
and f,g € X*. Given two traces s € X* and w € X* U X“, we denote by s < w
(resp. s = w) that s is a strict (resp. non-strict) prefix of w. For n € N we define
ysn ={se X*||s| <n} where |s| refers to the length of s. Given a € X and
s € X*, we denote by |s|, the number of occurrences of a in s.

We denote by N the set of non-negative integers and by R the set of real
numbers. We also consider N = NU {+o0o} and R = RU {—o0, +00}.

A binary relation ~ over X* is an equivalence relation when it is reflexive,
symmetric, and transitive. For a given equivalence relation ~ over X* and a
finite trace s € X*, we denote by [s]. the equivalence class of ~ in which
s belongs. When ~ is clear from the context, we write [s] instead. A right-
monotonic relation ~ over X* fulfills s; ~ so = s17 ~ sor for all sq, s9,7 € X%,

We use O and ¢ to denote the linear temporal logic (LTL) operators always
and eventually, respectively. See [48] for interpretation of LTL operators on infi-
nite traces, and [19,27,29] on finite traces.

2.1 Quantitative Specifications

A limit-measure is a function from R to R. Given an infinite sequence of real
numbers x = z1xs..., we define liminf(z) = lim, 4 inf{x; | ¢ > n} and
lim sup(z) = limp,, 400 SUp{z; | ¢ > n}. Whenever liminf(z) = limsup(z) for a
given sequence x, we simply write lim(z). A value function w: X* — R associates
a value to each finite trace.

Definition 1 (specification). A specification extends a value function by
constraining its limit behavior. Syntactically, it is a tuple ¢ = (m,£) where

m: X" — R is a value function and £ is a limit-measure. Semantically, it is
a function defined by [P]|(s) = n(s) when s € X* and [P|(f) = ¢(n(f)) when
f e X¥, where w(f) = (7(s;))ien is a sequence over the prefives s; < f of
increasing length 1.

Together with a given specification @, we define the right-monotonic equiv-
alence relation ~% as follows. For all si,s9 € X* we have s ~} s iff
m(s1r) = m(s2r) holds for all r € X*.

We define below the discounted response specification. Throughout the
section, we will use this specification as a running example.

Ezample 2. Let X = {req, ack,other} and consider the LTL response speci-
fication P = O(req — Qack). Let 0 < A < 1 be a discount factor. We define
DiscResp(s) = 1if s € P, and DiscResp(s) = A" otherwise, where n = |s|—|r| and
r < s is the longest prefix of s with r € P. We define $pg = (DiscResp, lim sup),
the discounted response specification. Intuitively, ®pr assigns each finite trace a
value that shows how close the system behaves to P such that, at the limit, it
denotes whether the infinite behavior satisfies P or not.
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Now, take two traces s, € X*. We claim that s ~j__ r iff either (i) both
traces have no pending request or (ii) both have a request pending for the same
number of steps. First, we assume s ~3 7 holds and note that we must have
Ppr(st) = Ppr(rt) for every t € X*. Then, we eliminate the cases other than (i)
and (ii) as follows. If, w.l.o.g., s € P and r ¢ P, then &pr(r) < Ppr(s) = 1, thus
s g, T 1f, w.lo.g., s has a request pending for ¢ steps and r for j > i steps,
then $pr(r) = M < ' = Ppg(s), thus s <5 7. The other direction is similar.

2.2 Abstract Monitors
We are now ready to present our abstract definition of quantitative monitors.

Definition 3 (monitor). A monitor M = (~,v) is a tuple consisting of a
right-monotonic equivalence relation ~ on X* and a function v: (X*/ ~) — R.
Let 8gn, 0lim € R be error thresholds. We say that M is a (8gn, 61im )-monitor for
a given specification ® = (mw,0) iff

— |7 (s) = y([s])| < dan for all s € X*, and
= 6w (f)) = Ly (D) < Ot for all f € X«

where y([f]) = (v([s:]))ien s a sequence over the prefizes s; < f of increasing
length i. We say that M has a prompt-error of dg, and a limit-error of Oy, -

We conveniently write M(s) = v([s]) when s € X* and M(f) = £(v([f]))
when f e Xv.

Observe that, for every specification, there is an obvious monitor that imi-
tates exactly the specification, which we define as follows.

Definition 4 (exact-value monitor). Let & = (r,{) be a specification. The
exact-value monitor of @ is defined as Mg = (~%, s — m(s)).

A monitor for a given specification is approzimate when it differs from the
specification’s exact-value monitor. Below we demonstrate the exact-value mon-
itor and an approximate monitor for the discounted response specification.

Ezxample 5. Recall from Example 2 the discounted response specification @pg.
Clearly, its exact-value monitor is Mgy, = (~,.» Yopr) Where Yap, ([s]) = Ppr(s)
for all s € X*. Let us define another monitor M = (~,~) such that s ~ r iff
either s, € P or s, ¢ P for every s,r € X*; and v([s]) = 1 if s € P, and
~v([s]) = 0if s ¢ P. Note that for every f € X* we have f € P iff infinitely many
prefixes of f belong to P, therefore M has no limit-error. However, it yields a
prompt-error of A since it immediately outputs 0 instead of discounting on finite
traces. Hence, M is a (A, 0)-monitor for @pg.

Next, we prove that our definition constrains monitors not to make two equiv-
alent traces too distant.

Proposition 6. Let M = (~,7) be a (6gn, Onm)-monitor for the specification
& = (m,0). For all s1,82 € X*, if 51 ~ sa, then |D(s1) — D(s2)| < 28an.

Proof. By definition of M we have that —dg, < 7(s1) — v([s1]) < dan as well
as 0an > —m(s2) + v([s2]) > —dgin. If 51 ~ so then v([s1]) = v([s2]) and thus
—25ﬁn S 7T(81) — 71'(82) S 2(5fm O
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2.3 Resource Use of Abstract Monitors

As we demonstrated above, quantitative monitors may have different degrees of
precision. A natural question is whether monitors with different error thresholds
use a different amount of resources. To answer this question in its generality, we
consider the following model-oblivious notions of resource use.

Definition 7 (resource use). Let M = (~,) be a monitor. We consider two
notions of resource use for M defined as functions from N to N. We define step-
wise resource use as r,(M) = | X" /~| — |X<"/~|, and total resource use as

R (M) =321 ri(M) = [X=7/~|.

Given two monitors M; and My, we compare their resource use as follows.
We write r(M7) < r(Msz) when there exists ng € N such that for every n > ng
we have r,(M;) < r,(Mz). In particular, when it holds for ny = 1, we write
r(Mp) < r(Myz). We define R(M;) < R(M3) and R(M;) < R(M3) similarly.
Figure 1 shows how these notions relate. Moreover, definitions of r(M;j) o< r(Ms)
and R(M;) x R(Mz) for «x € {<, <K, >,>,>, >} are as expected.

The monitor Mi uses at most as many resources as Mo when we have
r(M;) < r(Ms). If we further have r,(M;) < r,(My) for some n > 1, then
M uses fewer resources than Ms. We similarly define the cases for using at
least as many and more resources.

Given a specification @ and a (Jgn, O1im )-monitor M for @, we say that M
is resource-optimal for @ when for every (gy, 1im)-monitor M’ for @ we have
r(M) < r(M’), i.e., M uses at most as many resources as any other monitor
M’ with the same error thresholds.

Ezample 8. Recall from Examples 2 and 5 the discounted response specifica-
tion PpR, its exact-value monitor Mg, and the (A, 0)-monitor M. We claim
that M uses fewer resources than Mg,,. To show this, we first point out that
ro(M) = ri(M) = 1andr,(M) =0 for every n > 2. However, r,,(Mgy,) > 1
for every n > 0 because at each step the trace req™ is not equivalent to any
shorter trace. Therefore, while Mg, is an infinite-state monitor, M is a finite-
state monitor, and r(M) < r(Magg,).

Finally, we conclude the description of our framework by proving the implica-
tions in Fig. 1 to establish how different ways to compare resource use of monitors
relate as well as a refinement property for resource-optimal monitors.

Proposition 9. For every monitor My and Ma the implications in Fig. 1 hold.

R(M)) €« R(Mz) =— R(M1) < R(M2>)

/ /

r(Mp) € r(Mz) =——= r(Mi) <r(My)

Fig. 1. Implications between the comparisons of resource use.
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Proposition 10. Let @ be a specification and gy, Oim be two error thresholds.
Given (Ofin, Olim )-monitors My = (~1,71) and Mg = (~a,72) for @. If ~1 C ~y
and My is resource-optimal, then ~1 = ~go. Thus, Ms is also resource-optimal.

We remark that our definitional framework can be instantiated by existing
monitor models, e.g., finite state automata [15] or register monitors [32,37].
More concretely, let us consider the discounted response specification @pr from
Example 2. Its exact-value monitor Mg, from Example 5 can be implemented
by a register monitor that stores the value n in its single register while checking
for the LTL specification P using its finite-state memory. On the other hand,
the monitor M from Example 5 can be implemented by a finite state machine.

3 Approximate Prompt Monitoring

The original purpose of a monitor is to provide continuous feedback about the
system status with respect to the specification [13,30]. Focusing only on limit
monitoring may allow an unbounded prompt-error and thus fail to fulfill this
task. In this section, we consider prompt monitoring, i.e., the case where the
monitor performs bounded prompt-error. First, we remark that considering a
bounded prompt-error implicitly bounds the limit-error by definition.

Fact 11. Let & be a specification and 6ay,0iim € R be error thresholds. If M
is a (Oan, Om )-monitor for @, then it is also a (Ogn,x)-monitor for & where
xr = min{5ﬁn, 6lim}~

3.1 Uniqueness of Resource-Optimal Prompt Monitors

The exact-value monitor is arguably the most natural monitor for a given spec-
ification. In fact, it is the unique error-free monitor that is resource-optimal.

Theorem 12. Let & be a specification, and 6 € R be an error threshold. Then,
Mg is the unique resource-optimal (0, 8)-monitor for .

Proof. Let @ = (m,£). Consider M = (~,~) as a resource-optimal (0, d)-monitor
for @. We get ~ C ~7% thanks to the following implications.

1~ 8y = Vr e X, sir~ sor (right-monotonicity)
= Vr e X", y([s17]) = v([s27]) (definition)
= Vr e X" n(s1r) = n(s2r) (prompt-error 0)
= $1 ~5 S2 (definition)

On the one hand, we have that ~ = ~% by Proposition 10. On the other hand,
we have that y([s]) = m(s) for all s € X* since the prompt-error threshold is 0.
As a direct consequence, M = Mg. O
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@ = (m,lim) where:

0 ifs=¢
3z ifs=a
5z ifs=b
TS Tx ifs=c

10z if s € YaX™
10z +y ifse Xpx”
10z + 2y if s € XeX™

Fig. 2. A specification @ over X = {a, b, c} where z > 0 and y < z, and two resource-
optimal (z, y)-monitors for @ shown on top of the exact-value monitor M. As indicated
by the output values on the dotted and dashed rectangles, the approximate monitors
merge some equivalence classes of Mg to save resources at the cost of losing precision.

Unfortunately, the uniqueness of resource-optimal monitors does not neces-
sarily hold once we allow erroneous monitor verdicts. For instance, Fig. 2 shows
on the left a specification @ parameterized by = and y, together with its exact-
value monitor Mg on the right. In addition, the figure highlights two ways to
make ~g coarser to obtain distinct resource-optimal (z,y)-monitors for @.

Proposition 13. For all x > 0 and y < x there exists a specification @ that
admits multiple resource-optimal (x,y)-monitors.

3.2 Structure of Resource-Optimal Prompt Monitors

Regardless of the uniqueness, one can ask whether making ~g¢ coarser always
yields a resource-optimal approximate monitor. Here, we answer this question
negatively. In particular, Fig. 3 shows on the left a specification ¢ and on the
right a resource-optimal (1, 0)-monitor M = (~, ) for ¢ with ab = ba, although
ab ~% ba.

Proposition 14. There exists a (1,0)-monitor M = (~,7) for some specifi-
cation @ such that for every other (1,0)-monitor M' = (~',~") we have that
~g C ~ implies r(M) < v(M).

@ = (m,lim) where:
b
0 ifs-- (O—®
3 ifs=c¢ a (a c,a D)
6 ifs=aors=ca
9 ifs=bors=cb —’@si-r@ c DE
N ad
12 if s = cab ) b P
c,
14 ifs=abor s=ba b
OZn0)
a

16 if s = cba
19  otherwise

Fig. 3. A specification for which no (1, 0)-monitor that Mg refines is resource-optimal,
and the witnessing resource-optimal approximate monitor that splits an equivalence
class of the specification.
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é@b\bé); bg; b()

n=1)_r(a"~1p)
2

Fig. 4. A resource-optimal (1,1)-monitor for the specification @ of Proposition 15 that
never minimizes its step-wise resource use r, (black). Attempting to minimize r, at
each step n results in taking o™ and b"™ as equivalent, but breaking the equivalence at
step n + 1 as the prompt-error bound would be violated otherwise (gray).

We established that the structure of the exact-value monitor does not nec-
essarily provide insights into finding a resource-optimal approximate monitor.
In fact, as we demonstrate in Fig.4, there exist a specification such that its
resource-optimal (1,1)-monitor M never minimizes the resource use r;(M).

Proposition 15. There exists a specification @ admitting a (1,1)-monitor M =
(~,7) such that for all equivalence relations = over X* and n € N we have that
| XS0/~ is strictly greater than

. Vr € X* i sir & sar
mm{ ‘Egn/%| Vs1,80 € XSM 15 R §q = A |B(s1) _gp(:}92)| <21 }

Proof. Let @ = (m,limsup) be a specification from X = {a, b} to N where 7 is
defined as follows.

8|s if s € b*

8|s| — 16k +4 if s € (bta™)* for some k > 1
8|s| — 16k +2 if s € (btat)*bT for some k > 1
8|s| — 2 ifseat

8|s| — 16k + 10 if s € (atbt)* for some k > 1
8|s| — 16k —4 if s € (atbT)*a™ for some k > 1

Let n € N. The key argument is that it is beneficial to put a™ and 0™ in the same
equivalence class for minimizing r,, since |®(a™) — $(b™)| = 2 and since no other
trace in X" admits a value close to either ®(a™) or &(b"). However, once we
consider traces of length n+ 1, we introduce several values close to $(a™) as well
as @(b™), but not both at the same time. Therefore, to minimize the resource
use r,+1 while maintaining the prompt-error bound of 1, it becomes beneficial
to put a™ and b" in distinct equivalence classes. a

3.3 Unbounded Precision-Resource Trade-Offs for Prompt Monitors

In this subsection, we exhibit specifications admitting an infinite sequence of
monitors that trade precision and resource use. First, we investigate the mazimal
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response-time specification by demonstrating how a monitor can save more and
more resources by increasing both its prompt- and limit-error.

Ezample 16. Let X = {req, ack,other} and consider the usual LTL response
specification P = O(req — Qack). We define CurResp(s) = 0 if s € P, and
CurResp(s) = |s| — |r| otherwise, where r < s is the longest prefix with r € P.
Now, let MaxResp(s) = sup, <, CurResp(r) and define #ygr = (MaxResp, lim),
which we call the mazimal response-time specification. Note that CurResp out-
puts the current response-time for a finite trace, and MaxResp outputs the max-
imum response-time so far.

Consider the monitor M = (~, ) that counts the response time when there
is an open req, but only stores an approximation of the maximum when an
ack occurs. More explicitly, let ~ and 7 be such that we have the following:
M(s) =5k +2if s € P, where k € N satisfies 5k < MaxResp(s) < 5(k +1); and
M(s) = max{M(r), CurResp(s)} otherwise, where r < s is the longest prefix
with r € P. We claim that M is a (2,2)-monitor for #yr. First, observe that
whenever there is no pending request, i.e., s € P, the monitor has a prompt-error
of at most 2 by construction. Indeed, MaxResp(s) € {5k+i | i € {0,1,2,3,4}}.In
the case of a pending request, i.e., s ¢ P, there is a prompt-error only when the
monitor’s approximation of the maximum-so-far is not replaced by the current
response time. Again, by construction, we can bound this error by 2. Intuitively,
M achieves this approximation by merging in ~ some equivalence classes of ~}
where there are no pending requests. One can thus verify that r(M) < r(Mg,)-

The construction described in Example 16 can be generalized to identify a
precision-resource trade-off with an infinite hierarchy of approximate monitors.

Theorem 17. For all 6 € N, there exists a (8,0)-monitor Ms for the maximal
response-time specification. Furthermore, r(M;) < r(M;) for alli > j, and My
is the exact-value monitor.

Proof. Let ®Pyr = (MaxResp, lim) be the maximal response-time specification
as introduced in Example 16. Let 6 € N and s € X*. If s does not have a
pending request, we define Ms(s) = k(20 + 1) 4+ ¢ where k € N satisfies k(20 +
1) < MaxResp(s) < (k + 1)(20 + 1). Otherwise, if s has a pending request,
we define M;(s) = max{M;(r), CurResp(s)} where r < s is the longest prefix
with no pending request. We construct the (d,d)-monitor M; for dyr as in
Example 16. In particular, M is the exact-value monitor. Indeed, § = 0 implies
M;(s) = k = MaxResp(s) when s does not have a pending request, and otherwise
Ms(s) = sup,<, CurResp(r) = MaxResp(s) by definition. For all i > j, the
monitor M; partitions the traces with no pending requests into sets of cardinality
2i + 1 while M; does so using sets of cardinality 2j + 1. Then, the equivalence
relation used by M; is coarser than that of M;, and thus r(M;) <r(M;). O

Note that, except M, the monitors given by Theorem 17 have non-zero limit-
error. We explore in Sect. 4 the specifications for which having fewer resources
than the exact-value monitor forces a non-zero limit-error. Moreover, we show
in Example 25 that the maximal response-time is one of these specifications.
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Next, we investigate the server/client specification by demonstrating how a
monitor can be more and more precise by increasing its resource use.

Ezxample 18. Consider a server that receives requests and issues acknowledg-
ments. The number of simultaneous requests the system can handle is deter-
mined at runtime through a preprocessing computation. We describe a speci-
fication that, at its core, requires that every request is acknowledged and the
server never has more open requests than it can handle. In particular, until the
server is turned off, the specification assigns a value to each finite trace, denoting
the likelihood and criticality of a potential immediate violation.

Let X = {req,ack,other,off} be an alphabet, A € (0,1) be a discount
factor, and A > 0 be an integer denoting the request threshold. For every s € X*
we denote by NumReq(s) the number of pending requests in s. We define the
server/client specification Psc = (m,lim) where 7 is defined as follows.

— m(s) =0 if s contains an occurrence of off,
— 7(s) = NumReq(s)Al*l if NumReq(r) < A for all 7 < s, and otherwise
— 7(s) = NumReq(r)AI"l where 7 < s is the shortest with NumReq(r) > A.

Theorem 19. For every positive integer A and real number 0 < § < A, there
exists a (0,9)-monitor Mgy for the server/client specification Psc. Furthermore,
M uses finitely many resources.

Proof. Let A and § be as above, and consider the set X we define as follows:
X ={s € Y| sup,, cx-{m(sr1)} — inf,,ex-{m(sr2)} > &}. Note that X is
finite. On the one hand, only a finite number of prefixes of a trace admitting an
occurrence of off can belong to X since § > 0 and by definition of @s¢. On the
other hand, only a finite number of prefixes of a trace in which no off occurs can
belong to X since the discounting forces the value of @sc to converge to 0. We
construct M, such that, if the trace belongs to X, it outputs the value given by
the specification, otherwise it outputs the value of the shortest prefix that does
not belong to X. In other words, M does not distinguish traces with the same
prefix not belonging to X and thus admits at most 2|X| equivalence classes. O

4 Approximate Limit Monitoring

In contrast to Sect.3 where we tackle the limit monitoring problem indirectly
with a bounded prompt-error, here we bound the limit-error directly and allow
arbitrary prompt-error.

Ezample 20. Let & = (w,liminf) be a specification over X = {safe, danger,
off} such that 7(s) = 2!" if s does not contain off, where r is the longest suffix
of s of the form safe*, and 7(s) = |S|qanger Otherwise. Intuitively, ¢ assigns each
trace a confidence value while the system is on and how many times the system
was in danger otherwise. We describe an approximate monitor with unbounded
prompt-error and bounded but non-zero limit-error.



212 T. A. Henzinger et al.

Let ~ be a right-monotonic equivalence relation and v an output function
such that M = (~,~) satisfies the following: M(s) = oo when s has no off
and ends with safe, M(s) = 0 when s has no off and ends with danger, and
M(s) = 9k + 4 otherwise, where k € N satisfies 9k < |s|qanger < 9(k + 1).
Notice that the monitor partitions N into intervals and takes traces with a “close
enough” number of danger’s equivalent — as in Example 16. It is easy to see that
M is a (00,4)-monitor for .

At its core, the limit-error threshold of a monitor is a theoretical guarantee
since we cannot compute arbitrary limit-measures at runtime. Then, as a start-
ing point, we insist that the monitor has zero limit-error, which is a reasonable
requirement given that we allow unbounded prompt-error. In this case, the mon-
itoring is still potentially approximate since we allow any error on finite traces.
To talk about specifications for which saving resources by allowing prompt-error
is not possible, we define the following notion.

Definition 21 (resource-intensive limit behavior). A specification ¢ has
resource-intensive limit behavior iff its exact-value monitor Mg is a resource-
optimal (9,0)-monitor for any § > 0.

First, we identify a sufficient condition for a specification to be resource-
intensive limit behavior. Then, we present reversible specifications and show a
subclass of them that satisfy our condition.

4.1 Specifications with Resource-Intensive Limit Behavior

Let & = (m,{) be a specification and recall the equivalence ~3 that, for every
51,82 € X%, is defined as s; ~% so iff w(s17) = w(sor) holds for all r € X*. To
investigate the limit behavior of a specification, we define the following equiva-
lence relation: for every s1,s2 € X* we have s1 ~4§ so iff {(m(s1f)) = l(m(s2f))
holds for all f € X*. Intuitively, traces with indistinguishable limit behavior are
equivalent according to this relation. As a direct consequence of Fact 11, the
following holds.

Fact 22. For every specification @, we have that ~5 C ~%.

However, the converse does not necessarily hold, as we demonstrate with
Example 23 below. We will show later that, when it holds, the specification has
resource-intensive limit behavior.

Example 23. Recall the discounted response specification @pr in Example 2, and
that for all s,r € X*, we have s ~3__ r iff either (i) both traces have no pending
req or (ii) both have a req pending for the same number of steps.

Let s, € 2*. We claim s ~g__ 7 iff either both traces have a pending request
or both do not. Indeed, if s has a pending request and r does not, then we have
$(s.other?) = 0 but @(r.other”) = 1. For the other direction, simply observe
that if s ~g_ 7 then @(s.other®) = &(r.other®), but the equality does not hold
if s has a pending request and r does not (or vice versa). Having these characteri-
zations at hand, we immediately observe that s ~3 _ rimplies s ~g 7.
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Notice that the approximate monitor M for ®pr we constructed in Example 5
follows exactly the limit behavior of the specification. We were able to take
advantage of the fact that ~g s coarser than ~3  and design M such that it
saves resources by allowing some prompt-error but no limit-error. We generalize
this observation by showing that we could not have designed such a monitor if
these equivalences had overlapped.

Theorem 24. Let ¢ be a specification. If ~5 = ~% then @ has resource-
intensive limit behavior.

Proof. Let M = (~,v) be a resource-optimal (d,0)-monitor for ¢. Suppose
towards contradiction that ~}% = ~§ and Mg is not resource-optimal for @.
In particular ~ # ~%. Since the limit-error threshold is 0, we get ~ C ~% by
the following.

s1~ 89 = Vfe XY Lv(s1f]) = £(v([s2f])) (right-monotonicity)
< Vfe XY Um(s1f)) =L (s2f)) (limit-error 0)
= 31 ~3 S2 (definition)
= 8§51 ~5 8o (hypothesis)

The contradiction is then raised by Proposition 10 implying that ~ =~3%. O

As demonstrated in Example 5 and discussed above, the discounted response
specification does not display resource-intensive limit behavior. We give below
two examples of specifications with resource-intensive limit behavior. Let us start
with the mazimal response-time specification.

Ezxample 25. Consider the maximal response-time specification Pyr =
(MaxResp, lim) from Example 16. We argue that ~3 and ~g  overlap.

Suppose towards contradiction that there exist s,r € 2™ such that s ~g 7
and s %5, . 7. Then, there is t € £* with dyr(st) # @mr(rt). If at least one
of st or rt has no pending request, take the continuation other“ to reach a
contradiction to s ~g . Otherwise, if in both st and r¢ the current response
time is smaller than the maximum among granted requests, then the continuation
ack® yields a contradiction. The same continuation covers the case when both
current response times are greater. Finally, assume w.l.o.g. that the current
response time is smaller than the maximum among granted requests in st and
greater in rt. In this case, ack® yields a contradiction again because their outputs
stay the same as @ur(st) and @vr(rt), respectively. Therefore, we have s ~3 7,
and thus ~3 and ~g  overlap.

Next, we describe the average response-time specification and argue that it
displays resource-intensive limit behavior.

Ezample 26. Let X = {req, ack,other} and consider the usual LTL response
specification P = O(req — Qack). For s € X*, we denote by RespTime(s)
the total number of letters between the matching reqg-ack pairs in s, and by
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NumReq(s) the number of valid req’s in s. For all s € X*, we fix p(s) = 1 if
s € P, and p(s) = 0 otherwise. Then, we define RespTime(s) = > .. 1 — p(r)
and NumReq(s) = |P,| where P; = {r < s |3t € X*, r =t.reqAp(t) = 1} is the
set of valid requests in s. We define the average response-time specification as
Par = (AvgResp, lim inf) where we let AvgResp(s) = %{m for all s € X*.

We claim that ~3, and ~g _overlap. To show this, one can proceed similarly
as in Example 25. The cases with no pending requests are similar. When both
traces have a pending request and their output values differ, extend both with
ack® to get a contradiction.

4.2 Reversible Specifications

The reversible subclass of specifications enjoys the ability to move between
computation steps forward and backward deterministically. Such specifications
received particular interest in the literature since they can be implemented on
hardware without energy dissipation [42,52]. Since it imitates the specification,
the exact-value monitor of a reversible specification can roll back its computa-
tion, if allowed, without needing additional memory. From an automata-theoretic
perspective, reversibility can be seen as the automaton being both forward and
backward deterministic. Algebraically, this is captured by the syntactic monoid
being a group.

Definition 27 (reversible specification). A specification ® is reversible iff
(X )~ -, €) is a group.

First, we describe the average ping specification — a variant of the aver-
age response-time specification where a single ping event captures req and ack
events, and time proceeds through clock tick events. We then show that this
specification is reversible.

Ezample 28. Let ¥ = {ping, tick,other}. Let ValidTick(s) = |s|tick — |7|tick
where r < s is the longest prefix with no ping, and let NumPing(s) = |s|ping- The
average ping specification is defined as ®ap = (AvgPing, liminf) where, for all
s € X*, we let AvgPing(s) = %ﬁ;g if NumPing(s) > 0; and AvgPing(s) = —1
otherwise.

We argue that this specification is reversible. To see why, first observe for
all s,7 € X* that we have s ~j 7 iff (i) NumPing(s) = NumPing(r) and
(ii) ValidTick(s) = ValidTick(r). We particularly show for every s,r,t € X* that
if s g, 7 then st =g  rt, therefore ~3  yields a group. Let s,r € X* be such
that s =3 7 and let t € X" be arbitrary. Suppose the condition (i) above does
not hold. Since the NumPing values increase monotonically with every ping, we
get NumPing(st) — NumPing(rt) = NumPing(s) — NumPing(r), which is non-zero
by supposition. If (ii) does not hold, it does not hold for st and 7t either by a
similar reasoning. Hence we have st »g  7t.

Intuitively, we can backtrack the information on these functions: The value
of NumPing is decremented with each preceding ping, while ValidTick is decre-
mented with each preceding tick until it hits 0. It means that ~g = can be seen
as an automaton that is both forward and backward deterministic.



Abstract Monitors for Quantitative Specifications 215

We identify below a well-behaved subclass of reversible specifications with
resource-intensive limit behavior.

Theorem 29. Let @ be a reversible specification. If for every s,r € X* with
s ~g 1 there exists t € X" with st ~% rt, then ® has resource-intensive limit
behavior.

Proof. We show that the reversibility of @, together with the above assumption,
implies ~}5 = ~g. Note that the inclusion ~}5 C ~g always holds as stated by
Fact 22. Assuming (X*/~%, -, €) is a group, we have s17 ~} sor = s1 ~% s9 for
all s1,s9,7 € . The inclusion ~§ C ~% holds since having s; ~} sy implies
for all r € X* that syr =} sor, which in turn implies s; =% sg by our initial
assumption. Finally, by Theorem 24, we obtain that & has resource-intensive
limit behavior. a

Recall the average ping specification from Example 28. It is reversible, as
discussed earlier, and satisfies the condition in Theorem 29, therefore it has
resource-intensive limit behavior. Finally, we present the maximal ping — a simi-
larly simple variant of the maximal response-time specification. We demonstrate
that this specification is not reversible, although it has resource-intensive limit
behavior.

Ezample 30. Let X = {ping,other} and consider the boolean specifica-
tion P = [OOping. Let CurPing(s) and MaxPing(s) be defined similarly as
for the maximal response-time specification in Example 16. We fix &yp =
(MaxPing,lim) which we call the maximal ping specification. Consider s =
ping.other and 7 = ping.other.other. While s 5 = r, we have sr ~g 7,
therefore ~3 = does not yield a group. Intuitively, this is because we cannot
backtrack the information on the running maximum. However, similarly as for

the maximal-response time specification in Example 16, one can verify that

N* — NUJ
Dyvp Dup
Note that a notion of reversibility exists for abstract monitors as well: A mon-
itor M = (~,7) where ~ yields a group enjoys reversibility. In particular, this
ability allows the monitor to return to a previous computation step without
using additional resources and thus consider a different trace suffix.

5 Conclusion and Future Work

We formalize a framework that supports reasoning about precision-resource
trade-offs for the approximate and exact monitoring of quantitative specifi-
cations. Unlike previous results, which analyze trade-offs for specific machine
models such as register monitors [32,37], the framework presented in this paper
studies for the first time an abstract notion of monitors, independent of the
representation model, and separates the monitor errors on finite traces from
those at the limit. These innovations allow us to design and study monitors
that keep the focus on the resources needed for the approximate monitoring of
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quantitative specifications with a given precision. We provide several examples
of when approximate monitoring can save resources and investigate when it fails
to achieve this goal.

An expected future work is to provide a procedure for constructing a con-
crete (exact or approximate) monitor from an abstract description. Monitors
having finitely many equivalence classes can be naturally mapped to finite-state
automata. For a monitor with infinitely many equivalence classes, the model
must be an infinite-state transition system. Yet, there are different levels of
infinite state space. It can be generated, for example, by a finite collection of
registers [32] or by a pushdown system [28]. Even when two abstract monitors
are mapped to register automata with the same number of registers, they may
differ in the type of operations used or the run-time needed per observation. It
is also worth emphasizing that saving a single register may save infinitely many
resources. Our current results do not provide such performance, so it is a natural
future direction. To this end, we can consider alternative approaches to evaluate
a monitor based on the number of violations of the error-threshold.

Another direction is on the relevance of resources through time. Our notion
of resource use covers the number of equivalence classes added at time n, but an
assumption that the monitor can release resources would trigger more possibili-
ties. We can extend our framework to dynamic abstract monitors in a way that
is related to existing works on dynamic programming for model checking [53].
Intuitively, a dynamic abstract monitor keeps track of the equivalence classes
that can be reused in the future and prunes all the others to reduce resource
use.
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