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Abstract
We study the BCS energy gap � in the high–density limit and derive an asymptotic formula,
which strongly depends on the strength of the interaction potential V on the Fermi surface.
In combination with the recent result by one of us (Math. Phys. Anal. Geom. 25, 3, 2022)
on the critical temperature Tc at high densities, we prove the universality of the ratio of the
energy gap and the critical temperature.
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1 Introduction andMain Results

The Bardeen–Cooper–Schrieffer (BCS) theory [2] (see [11] for a review of recent rigorous
mathematical work) has been an important theory of superconductivity since its conception.
More recently, it has also gained attraction for describing the phenomenon of superfluidity
in ultra cold fermionic gases, see [3, 4] for reviews. In either context, BCS theory is often
formulated in terms of the BCS gap equation (at zero temperature)

�(p) = − 1

(2π)3/2

∫

R3

V̂ (p − q)
�(q)

E�,μ(q)
dq, (1)

where E�,μ(p) = √
(p2 − μ)2 + |�(p)|2. At finite temperature T > 0 one replaces E�,μ

by E�,μ/ tanh(E�,μ/2T ). The function � is interpreted as the order parameter describing
the Cooper pairs (paired fermions). The interaction is local and given by the potential V ,
which we will assume to be satisfying V ∈ L1(R3), in which case it has a Fourier transform
given by (FV )(p) := V̂ (p) := (2π)−3/2

∫
R3 V (x)e−ip·x dx .
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The chemical potentialμ controls the density of the fermions, andwe investigate the high–
density limit, i.e. μ → ∞, here. Recently this limit was studied by one of us [14], where an
asymptotic formula for the critical temperature Tc was found. For temperatures T below the
critical temperature, T < Tc, the gap equation at temperature T (Eq. (1) with E�,μ replaced
as prescribed) admits a non–trivial solution, for T ≥ Tc it does not. The critical temperature
may equivalently be characterized by the existence of a negative eigenvalue of a certain linear
operator, see [12]. Physically, a system at temperature T is superconducting/fluid if T < Tc,
if T ≥ Tc it is not.

In this paper we study the energy gap (at zero temperature)

� = inf
p
E�,μ(p) = inf

p

√
(p2 − μ)2 + |�(p)|2 . (2)

The function E�,μ has the interpretation of the dispersion relation for the corresponding
BCS Hamiltonian, and so� is indeed an energy gap (see Appendix A in [12]). We show that,
in the high–density limit, μ → ∞, the ratio of the energy gap and the critical temperature
tends to a universal constant independent of the interaction potential,

�

Tc
≈ π

eγ
, (3)

where γ ≈ 0.577 denotes the Euler–Mascheroni constant. This universality is well–known
in the physics literature, see, e.g., [7], and was rigorously verified in the weak–coupling limit
by Hainzl and Seiringer [9] and in the low–density limit, μ → 0, by one of us [17] building
on a work by Hainzl and Seiringer [8]. The general strategy for proving the universality in
these limits has been to establish sufficiently good asymptotic formulas for both, Tc and �,
and compare them afterwards.

Theweak–coupling limit is studied in [6, 9],where one considers a potentialλV forV fixed
and a small coupling constant λ → 0. In this limit, Hainzl and Seiringer [9] have shown that
the critical temperature and energy gap satisfies Tc ∼ A exp(−B/λ) and � ∼ C exp(−B/λ)

respectively for explicit constants A, B,C > 0 depending on the interaction potential V and
the chemical potentialμ. This limit exhibits the same universality and the ratioC/A = πe−γ

is independent of the interaction potential V and the chemical potential μ.
The low–density limit μ → 0 is studied in [8, 17]. In this limit Hainzl and Seiringer [8]

have shown that the critical temperature satisfies Tc ∼ μA exp(−B/
√

μ) and one of us [17]
has shown that the energy gap satisfies � ∼ μC exp(−B/

√
μ), for some (different) explicit

constants A, B,C > 0 depending on the interaction potential V . Also in this limit we have
the same universality and the ratio C/A = πe−γ is independent of the interaction potential
V . These results together with the present paper thus show that the universality (3) holds in
both, the low– and high–density limit, as well as in the weak–coupling limit.

To show the universality, we prove in Theorem 3 an asymptotic formula for the energy gap
� in the high–density limit, similar to the corresponding formula for the critical temperature
given in Theorem 7 in [14]. This formula, as well as the one given in Theorem 3, depends
strongly on the strength of the interaction potential V on the Fermi sphere {p2 = μ}, which
becomes weak due to the decay of V̂ in momentum space. Together with the formula for the
critical temperature [14] we prove the universality (3) in Corollary 5. All proofs are given in
Sect. 2. We now introduce some technical constructions and give the precise statements of
our results.
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1.1 Preliminaries

We will work with the formulation of BCS theory of [6, 8, 9, 11, 12, 14, 17]. There one
considers minimizers of the BCS functional (at zero temperature)

F(α) = 1

2

∫

R3

|p2 − μ|
(
1 −

√
1 − 4|α̂(p)|2

)
dp +

∫

R3

V (x)|α(x)|2 dx . (4)

If α is a minimizer of this, then � = −2V̂α satisfies the BCS gap Eq. (1). As discussed
in [9] the minimizer α is in general not necessarily unique, hence also � and � are not
necessarily unique. However, since we will assume that the interaction V has non–positive
Fourier transform, α and thus � is unique (see Lemma 2 in [9]).

A crucial role for the investigation of the energy gap (2) in the high–density limit is played
by the (rescaled) operator Vμ : L2(S2) → L2(S2) measuring the strength of the interaction
potential V̂ on the Fermi surface. It is defined as

(Vμu
)
(p) = 1

(2π)3/2

∫

S2

V̂ (
√

μ(p − q))u(q) dω(q) , (5)

where dω denotes the uniform (Lebesgue) measure on the unit sphere S
2. The pointwise

evaluation of V̂ (and in particular on a codim−1 submanifold) is well defined since V ∈
L1(R3). The condition that V ∈ L1(R3) could potentially be relaxed, see [5] and Remark 9
in [14]. The lowest eigenvalue of Vμ, which we denote by

eμ = inf specVμ

will be of particular importance. Note, that Vμ is a trace–class operator (see the argument
above Equation (3.2) in [6]) with

tr(Vμ) = 1

2π2

∫

R3

V (x)dx =
√

2

π
V̂ (0) .

We will assume that V̂ (0) < 0 in which case eμ < 0. This corresponds to an attractive
interaction between (some) electrons on the Fermi sphere.

In this work, we restrict ourselves to the special case of radial potentials V , where the
spectrum of Vμ can be determined more explicitly (see, e.g., Sect. 2.1 in [6]). Indeed, for
radial V , the eigenfunctions ofVμ are spherical harmonics and the corresponding eigenvalues
are

1

2π2

∫

R3

V (x)
(
j	(

√
μ|x |))2 dx . (6)

The lowest eigenvalue eμ is thus given by

eμ = 1

2π2 inf
	∈N0

∫

R3

V (x)
(
j	(

√
μ|x |))2 dx .

Here, j	 denotes the spherical Bessel function of order 	 ∈ N0. Additionally, in case that
V̂ ≤ 0, we have, by the Perron–Frobenius theorem, that the minimal eigenvalue is attained
for the constant eigenfunction (i.e. with 	 = 0). Thus
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eμ = 1

2π2

∫
R3

V (x)

(
sin(

√
μ|x |)√

μ|x |
)2

dx . (7)

For further discussions of the radiality assumption on V , see Remark 8 in [14].
In order to obtain an asymptotic formula for the energy gap that is valid up to second order

(see [9, 14]), we define the operator W(κ)
μ on u ∈ L2(S2) via its quadratic form

〈
u
∣∣W(κ)

μ

∣∣u〉 = √
μ

∞∫

0

d|p|
⎛
⎜⎝ |p|2

||p|2 − 1|

⎡
⎢⎣
∫

S2

dω(p)
(|ϕ̂(

√
μp)|2 − |ϕ̂(

√
μp/|p|)|2)

⎤
⎥⎦

+ |p|2
|p|2 + κ2

∫

S2

dω(p)|ϕ̂(
√

μp/|p|)|2
⎞
⎟⎠ (8)

for any fixed κ ≥ 0 (cf. Eq. (10) in [14] resp. Equation (13) in [9] for an analogous defini-
tion with κ = 0). Here ϕ̂(p) = (2π)−3/2

∫
S2

V̂ (p − √
μq)u(q)dω(q), and (|p|, ω(p)) ∈

(0,∞)×S
2 denote spherical coordinates for p ∈ R

3. To see that this operator is well–defined
note that the map |p| 
→ ∫

S2
dω(p)|ϕ̂(p)|2 is Lipschitz continuous for any u ∈ L2(S2) since

V ∈ L1(R3). Hence the radial integral in Eq. (8) is well defined for |p| ∼ 1. We will further
assume that V ∈ L3/2(R3), in which case the integral is well–defined for large |p| as well.We
formulate our result in Theorem 3 only for κ = 0, but the case of a positive parameter κ > 0
is crucial in the proof of this statement. For example, κ > 0 ensures that the second term
in the decomposition of the Birman–Schwinger operator associated with E�,μ + V is small
(cf. Eq. (14)). Whenever it does not lead to confusion, we will refer to some κ-dependent
quantity at κ = 0 by simply dropping the (κ)-superscript.

We now define the operator

B(κ)
μ = π

2

(
Vμ − W(κ)

μ

)
, (9)

which captures the strength of the interaction potential near the Fermi surface to second order
and denote its lowest eigenvalue by

b(κ)
μ = inf specB(κ)

μ . (10)

The factor π/2 is introduced in Eq. (9) since for this scaling, the eigenvalue b(κ)
μ has the

interpretation of an effective scattering length in the case of small μ (see Proposition 1 in
[9]). Moreover, it was shown during the proof of Theorem 7 in [14] that if eμ < 0 then also

b(κ)
μ < 0 for μ large enough. This will also follow from Eq. (29) in the proof below.

1.2 Results

The following definition characterizes the class of interaction potentials for which our asymp-
totic formula will hold.

Definition 1 (Admissible potentials) Let V ∈ L1(R3) ∩ L3/2(R3) be a radial real–valued
function with non–positive Fourier transform V̂ ≤ 0 and V̂ (0) < 0. Denote

s∗± := sup
{
s ≥ 0 : | · |−sV± ∈ L1(R3)

}
, s∗ := min{s∗+, s∗−} , (11)

where V± = max{±V , 0} are the positive and negative parts of V .We say that V is admissible
if the following is satisfied:
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(a) There exists a > 0 such that

sup

⎧⎪⎨
⎪⎩r ≥ 0 : lim

ε→0

1

εr

∫

Bε

V±(x) dx = 0

⎫⎪⎬
⎪⎭ = sup

⎧⎪⎨
⎪⎩r ≥ 0 : lim

ε→0

1

εr

∫

Bε

V±|∗Ba (x) dx = 0

⎫⎪⎬
⎪⎭,

where V±|∗Ba denotes the symmetric decreasing rearrangement of V±|Ba , the restriction
of V± to the ball of radius a around 0,

(b) if | · |−2V /∈ L1(R3), we have s∗ = s∗− < s∗+, and
(c) | · |V ∈ L2(R3) and s∗ > 7/5.

As discussed around Eq. (4), the definiteness of the Fourier transform is needed for ensur-
ing uniqueness of the energy gap �. Intuitively, the other criteria may be though as follows:
Assumption (a) captures that the strongest singularity of V near the origin is in fact at the ori-
gin, assumption (b) captures that V is predominantly attractive, and assumption (c) captures
that V is slightly less divergent at the origin, than allowed by the L3/2(R3)-assumption. In
view of assumption (a), we remark that it is natural that the system is sensitive to the short
range behavior of the interaction potential, since the interparticle distance as the physically
relevant length scale that depends on the particle density tends to zero in the high–density
limit. Furthermore, note that for V ∈ L1(R3) ∩ L3/2(R3), the condition | · |V ∈ L2(R3) is
mainly about regularity away from zero and infinity.

The most important examples of allowed interaction potentials include the cases of attrac-
tive Gaussian, Lorentzian and Yukawa potentials, also discussed in [16]. That is

VGauss(x) = −(2π)−3/2e−x2/2 , VLorentz(x) = − 1

π2(1 + x2)2
, VYukawa(x) = − 1

4π |x | e
−|x | .

Remark 2 The proof of our main result formulated in Theorem 3 works without change if
we assume | · |V ∈ Lr (R3) for some 2 ≥ r > f (s∗) instead of | · |V ∈ L2(R3), where f
is some complicated (explicit) expression, see the proof of Proposition 14. We do not state
the theorem with this slight generalization for simplicity. We will however give the proof
under this more general assumption for the purpose of illuminating where the assumption
on r = 2 comes from. Additionally, to further illuminate where the conditions are used, all
propositions and lemmas are stated with only the conditions needed on V for that specific
statement. (Beyond the conditions that V ∈ L1(R3) ∩ L3/2(R3) is real–valued, radial and
has V̂ ≤ 0, V̂ (0) < 0, which is always assumed.)

We can now state our main result for admissible interaction potentials.

Theorem 3 Let V be an admissible potential. Then the energy gap � is positive and satisfies

lim
μ→∞

(
log

μ

�
+ π

2
√

μbμ

)
= 2 − log(8) . (12)

In other words,

� = μ
(
8 e−2 + o(1)

)
exp

(
π

2
√

μbμ

)

in the limit μ → ∞. Similarly as for the critical temperature [14], this asymptotic formula
is completely analogous to the weak–coupling case [9] (replace V → λV and take the limit
λ → 0) but we have coupling parameter λ = 1 here. This similarity is not entirely surprising.
From a physical perspective, only those fermions with momenta close to the Fermi surface
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{p2 = μ} contribute to the superconductivity/fluidity. Thus, by the decay of the interaction
V̂ in Fourier space, the high–density limit, μ → ∞, is effectively a weak–coupling limit.

In order to deduce universality as in Eq. (3) in the high–density limit, we show that every
admissible potential in the sense of Definition 1 satisfies the imposed conditions for the proof
of an analogous formula for the critical temperature. These conditions were formulated in
Definition 5 in [14].

Proposition 4 Every admissible potential satisfies the conditions of Definition 5 in [14].

Proof By comparing the two definitions, the statement is trivial apart from the following two
points. First, the additional requirement

∫
R3

V (x)
|x |2 dx < 0 from Definition 5 in [14] in the case

| · |−2V ∈ L1(R3) is automatically fulfilled, since

−�p
V̂

| · |2 (p) = V̂ (p) ≤ 0 .

That is, the radial function V̂
|·|2 is subharmonic and approaches 0 as |p| → ∞ (by the

Riemann–Lebesgue Lemma), and thus by the maximum principle assumes a strictly negative
value at 0. Second, since V̂ ≤ 0 and by application of the Perron–Frobenius Theorem, the
constant spherical harmonic is the unique normalized ground state of Vμ and thus condition
(d) from Definition 5 in [14] can be dropped. �

Therefore, by means of Theorem 7 in [14], the critical temperature Tc satisfies

Tc = μ

(
8

π
eγ−2 + o(1)

)
exp

(
π

2
√

μbμ

)

for any admissible potential. Here γ ≈ 0.577 is the Euler–Mascheroni constant. Together
with Theorem 3, this immediately proves the following.

Corollary 5 Let V be an admissible potential. Then

lim
μ→∞

�

Tc
= π

eγ
≈ 1.764 .

This universality of the ratio between the energy gap and the critical temperature is well
known in the physics literature (see, e.g., [7]) and has been previously established rigorously
in the weak–coupling and low–density limits (see [9] resp. [17]).

2 Proofs

As in the analysis of the critical temperature [14] we introduce the parameter κ > 0. We
have the following comparison of b(κ)

μ with the κ = 0 quantity.

Lemma 6 [14, Lemma 15] Let V be admissible and κ > 0. In the limit of high density,
μ → ∞, we have

π

2
√

μbμ

= π

2
√

μb(κ)
μ

+ κ
π

2
+ o(1) .

Proof This is immediate from Lemma 15 in [14] by invoking Proposition 4. �
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Now, one important ingredient in our proof is the asymptotic behavior of

m(κ)
μ (�) = 1

4π

∫

R3

(
1

E�,μ(p)
− 1

p2 + κ2μ

)
dp

for fixedκ > 0 (recall that E�,μ(p) = √(p2 − μ)2 + |�(p)|2). This is similar to the strategy
for the weak–coupling, low–density, and high–density limits of the critical temperature (see
[8, 9, 14]), and for the weak–coupling and low–density limits of the energy gap (see [9, 17]).

Lemma 7 Let V be admissible and κ > 0. In the limit of high density, μ → ∞, we have

� = �(
√

μ)(1 + o(1)) ,

m(κ)
μ (�) = √

μ

(
log

μ

�(
√

μ)
− 2 + κ

π

2
+ log(8) + o(1)

)
,

m(κ)
μ (�)√

μ
= − π

2
√

μb(κ)
μ

+ o(1) .

These three asymptotic equalities are proven in Propositions 10, 14, and 15 respectively.

Proof of Theorem 3 By Lemmas 7 and 6 we get

lim
μ→∞

(
log

μ

�
+ π

2
√

μbμ

)
= lim

μ→∞

(
log

μ

�(
√

μ)
+ π

2
√

μbμ

)

= lim
μ→∞

(
log

μ

�(
√

μ)
+ π

2
√

μb(κ)
μ

)
+ κ

π

2

= lim
μ→∞

(
log

μ

�(
√

μ)
− m(κ)

μ (�)√
μ

)
+ κ

π

2

= 2 − κ
π

2
+ log(8) + κ

π

2
= 2 − log(8) ,

which yields (12) and we have proven Theorem 3. �
The rest of this paper is devoted to the proof of Lemma 7.

2.1 Proof of Lemma 7

As remarked, a key idea is to study the integral m(κ)
μ (�). As in [9, 17] we first need some

control of� in the formof a Lipschitz–like bound (given in Lemma9) and a bound controlling
�(p) in terms of�(

√
μq) forq ∈ S

2 (given inEquation (22)). First,we recall someproperties
(from [9]) of the minimizer α of the BCS functional at zero temperature

F(α) = 1

2

∫

R3

|p2 − μ|
(
1 −

√
1 − 4|α̂(p)|2

)
dp +

∫

R3

V (x)|α(x)|2 dx . (13)

In [9, Lemma 2] it is shown that for potentials V with non–positive Fourier transform there
exists a unique minimizer α with (strictly) positive Fourier transform. Moreover, for radial
V the BCS functional is invariant under rotations. Hence α and thus also � = −2V̂α are
radial functions. Therefore, with a slight abuse of notation, we will write �(|p|) and mean
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�(p) for some (any) vector p. (In general for any radial function f , we will write f (|p|) for
the value of f (p).) Additionally, since V̂ ≤ 0 we have that � ≥ 0. In fact, by the BCS gap
equation (1), we even have � > 0, see Lemma 2 in [9]. Now, we give some a priori bounds
on the minimizer α. The proofs of Lemmas 8 and 9 are given in Sect. 2.2.

Lemma 8 Let α be the minimizer of the BCS functional (13). Then for large μ

‖α‖L2 ≤ Cμ7/20 and ‖α‖H1 ≤ Cμ3/4.

These estimates on the minimizer α now translate to bounds on � = −2V̂α.

Lemma 9 Suppose V ∈ Lr (R3) for some 6/5 ≤ r ≤ 2. Define δr = 3
4 − 6

5r . Then for
sufficiently large μ we have

‖�‖L∞ ≤ Cμ
24−5r
20r = Cμ

1
2−δr .

Similarly, if | · |V ∈ Lr (R3) then

|�(p) − �(q)| ≤ Cμ
24−5r
20r ||p| − |q|| = Cμ

1
2−δr ||p| − |q||

for all p, q. In particular, if r > 8/5 then δr > 0 and thus 1/2 − δr < 1/2.

We will use the first bound as ‖�‖L∞ ≤ Cμ11/20 = o(μ) for r = 3/2, and the second
bound as |�(p) − �(q)| ≤ Cμ7/20||p| − |q|| for r = 2.

Armed with these a priori bounds on �, we can now prove the asymptotic formulas in
Lemma 7 and start with the first one.

Proposition 10 Suppose | · |V ∈ Lr (R3) for r > 8/5. Then � = �(
√

μ)(1 + o(1)).

Proof Clearly� = inf
√|p2 − μ|2 + |�(p)|2 ≤ �(

√
μ). Take now p ∈ R

3 with |p2−μ| ≤
� ≤ �(

√
μ). Then

|�(p) − �(
√

μ)| ≤ Cμ1/2−δr ||p| − √
μ| ≤ Cμ1/2−δr

�(
√

μ)

|p| + √
μ

≤ Cμ−δr �(
√

μ)

where δr > 0 by assumption. Hence, �(p) = �(
√

μ)(1 + o(1)) for any such p and we
conclude the desired. �

The proofs of the second and third equality (Propositions 14 and 15, respectively) heavily
use Lemmas 11 and 12, which we import from [14]. Lemma 11 provides an upper bound for
integrals of the potential against spherical Bessel functions j	, uniformly in 	 ∈ N0. These
naturally arise by the spherical symmetry of V (cf.Eq. (6)).

Lemma 11 ([14, Lemma 12]) Let V ∈ L1(R3) ∩ L3/2(R3) and assume that s∗ > 1, with s∗
as in Definition 1. Set

β∗ =
{

s∗
2 for s∗ ∈ (1, 5/3]
min

(
4s∗−4
9s∗−7 + 1

2 ,
19
22

)
for s∗ > 5/3 .

Note that β∗ depends continuously on s∗ and is (strictly) monotonically increasing (between
1 and 2), and β∗ ≤ min(s∗, 2)/2 for any s∗ > 1. Then for any δ > 0 there exists an ε0 > 0
such that for all ε ∈ [0, ε0] we have

lim sup
μ→∞

μβ∗−δ sup
	∈N0

∫

R3

dx |V (x)|| j	(√μ|x |)|2−ε = 0 .
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Lemma 12 gives a lower bound on the quantity eμ that measures the strength of the
interaction potential on the Fermi surface (see Eq. (7)).

Lemma 12 ([14, Lemma 13]) Let V be an admissible potential (cf. Definition 1). Then for
any δ > 0 there exists cδ > 0 such that

lim inf
μ→∞ |μmin(s∗+δ,2)/2 eμ| ≥ cδ .

Proof This is immediate from Lemma 13 in [14] by invoking Proposition 4. �

An upper bound is trivially obtained as |eμ| ≤ Cδμ
−min(s∗−δ,2)/2 for any δ > 0 by

definition of s∗ in Eq. (11) (see also Eq. (21)). Note that both, upper and lower bound, remain
true if we replace the exponent with min(s∗, 2)/2 ± δ, i.e. cδμ

−min(s∗,2)/2−δ ≤ |eμ| ≤
Cδμ

−min(s∗,2)/2+δ . This is the formulation we will use.
Beside these two Lemmas, we will use the following observation: It can easily be checked

(see Lemma 3 in [9]) that the operator E�,μ(p) + V (x) has 0 as its lowest eigenvalue, and
that α is the (unique) eigenvector with this eigenvalue. By employing the Birman–Schwinger
principle (see [6, 11, 12]), this is equivalent to the fact that the Birman–Schwinger operator

B�,μ = V 1/2 1

E�,μ

|V |1/2

has −1 as its lowest eigenvalue with V 1/2α being the corresponding (unique) eigenvector.
Here we used the notation V (x)1/2 = sgn(V (x))|V (x)|1/2. In the following we need a
convenient decomposition of B�,μ in a dominant singular term and other error terms. For
this purpose we letFμ : L1(R3) → L2(S2) denote the (rescaled) Fourier transform restricted
to S

2 with (
Fμψ

)
(p) = 1

(2π)3/2

∫
R3

e−i
√

μp·xψ(x)dx ,

which is well-defined by the Riemann–Lebesgue Lemma. Now, we decompose the Birman–
Schwinger operator as

B�,μ = m(κ)
μ (�) V 1/2Fμ

†Fμ|V |1/2 + V 1/2M (κ)
�,μ|V |1/2 , (14)

whereM (κ)
�,μ is such that this holds. For thefirst term, note thatV 1/2Fμ

†Fμ|V |1/2 is isospectral
to Vμ = FμVFμ

†. In fact, the spectra agree at first except possibly at 0, but 0 is in both
spectra as the operators are compact on an infinite dimensional space. This first term in the
decomposition (14) will be the dominant term, which is how the third equality in Lemma 7
will arise.

Analogously to the proof of Lemma 14 in [14] and the proof of Theorem 1 in [9], we
further decompose

V 1/2M (κ)
�,μ|V |1/2 = V 1/2 1

p2 + κ2μ
|V |1/2 + A(κ)

�,μ =: L(κ)
μ + A(κ)

�,μ , (15)

where now A(κ)
�,μ is such that this holds. In [14, Eq. (29)] it was shown that

∥∥∥L(κ)
μ

∥∥∥
op

≤ C μ1/2

∞∫

0

dp
p2

p2 + κ2 sup
	∈N0

∫

R3

dx |V (x)| | j	(√μp|x |)|2,
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which may be bounded by μ−β∗+1/2+δ for any δ > 0 by means of Lemma 11. We continue
with a bound on the operator norm of A(κ)

�,μ by estimating the matrix elements 〈 f |A(κ)
�,μ|g〉

for functions f , g ∈ L2(R3). This computation is analogous to the computation in the proof
of Theorem 2 in [14]. We give it here for completeness.

Note that, since V is radial, it is enough to restrict to functions of definite angular momen-
tum. That is, with a slight abuse of notation, functions of the form f (x) = Ym

	 (x̂) f (|x |),
where Ym

	 denotes the spherical harmonics and we write x̂ = x/|x |. The operator A(κ)
�,μ

is indeed block–diagonal in the angular momentum as will follow from the computations
below. Since functions of definite angular momentum span L2(R3) [13, Sects. 17.6–17.7]
it is thus enough to bound 〈 f |A(κ)

�,μ|g〉 for f , g of the form f (x) = Ym
	 (x̂) f (|x |),

g(x) = Ym′
	′ (x̂)g(|x |).

Now, A(κ)
�,μ has integral kernel

A(κ)
�,μ(x, y) = CV 1/2(x)|V (y)|1/2

∫

R3

(
1

E�,μ(p)
− 1

p2 + κ2μ

)(
eip·(x−y) − ei

√
μ p̂·(x−y)

)
dp .

Thus, by the radiality of V we get

〈
f
∣∣A(κ)

�,μ

∣∣g〉 = C

∞∫

0

d|x | |x |2V 1/2(|x |) f (|x |)
∞∫

0

d|y| |y|2|V (|y|)|1/2g(|y|)

×
∫ ∞

0
d|p| |p|2

(
1

E�,μ(|p|) − 1

|p|2 + κ2μ

)∫

S2

dω( p̂)

×
∫

S2

dω(x̂)
∫
S2

dω(ŷ) Ym
	 (x̂)Ym′

	′ (ŷ)
(
e−ip·(x−y) − e−i

√
μ p̂·(x−y)

)
.

(16)

Now, using the plane–wave expansion eip·x = 4π
∑∞

	=0
∑	

m=−	 i
	 j	(|p||x |)Ym

	 ( p̂)Ym
	 (x̂),

the spherical integrations in x̂ and ŷ may be evaluated as

16π2(−i)	+	′ (
j	(|p||x |) j	′(|p||y|) − j	(

√
μ|x |) j	′(

√
μ|y|)) Ym

	 ( p̂)Ym′
	′ ( p̂)

using the orthogonality of the spherical harmonics. The spherical p̂-integral of this gives a
factor δ		′δmm′ again by orthogonality of the spherical harmonics. (This shows that A(κ)

�,μ is
block–diagonal in the angular momentum as claimed.) We may thus restrict to the case of
	 = 	′ and m = m′. Hereinafter, we will write x , y, and p instead of |x |, |y|, and |p|.

Recall the following bounds on spherical Bessel functions

sup
	∈N0

sup
x≥0

| j	(x)| ≤ 1 , sup
	∈N0

sup
x≥0

| j ′	(x)| ≤ 1 , sup
	∈N0

sup
x≥0

x5/6| j	(x)| ≤ C ,

where the first one is elementary, the second one follows from [1, Eq. 10.1.20], and the third
one may be found in [15, Eq. 1] (see also Proposition 16 in [14]). Adding ± j	(px) j	(

√
μy)

and using these bounds we may estimate for any 0 < ε < 5/11∣∣ j	(px) j	(py) − j	(
√

μx) j	(
√

μy)
∣∣

≤ C |p − √
μ|ε (p−ε + (

√
μ)−ε

) (| j	(px)|1−11ε/5 + | j	(√μx)|1−11ε/5
)

×
(
| j	(py)|1−11ε/5 + | j	(√μy)|1−11ε/5

)
.

(17)
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The radial p–integral in Eq. (16) is then (a constant times)
∞∫

0

dp

(
1

E�,μ(p)
− 1

p2 + κ2μ

) (
j	(px) j	(py) − j	(

√
μx) j	(

√
μy)

)
. (18)

Using Eq. (17) and changing the integration variable p → √
μp we get

|(18)| ≤ Cμ1/2

∞∫

0

dp p2

∣∣∣∣∣∣
1√

(p2 − 1)2 + |�(
√

μp)/μ|2
− 1

p2 + κ2

∣∣∣∣∣∣ |p − 1|ε
(

1

pε
+ 1

)

×
(
| j	(√μpx)|1−11ε/5 + | j	(√μx)|1−11ε/5

) (
| j	(√μpy)|1−11ε/5 + | j	(√μy)|1−11ε/5

)
.

Plugging this into Eq. (16) and using Hölder’s inequality for the x- and y-integrations we
thus get∣∣〈 f ∣∣A(κ)

�,μ

∣∣g〉∣∣

≤ Cμ1/2

∞∫

0

dp p2

∣∣∣∣∣∣
1√

(p2 − 1)2 + |�(
√

μp)/μ|2
− 1

p2 + κ2

∣∣∣∣∣∣ |p − 1|ε
(

1

pε
+ 1

)

×
∫

R3

dx |V (x)|
(
| j	(√μp|x |)|2−22ε/5 + | j	(√μ|x |)|2−22ε/5

)
‖ f ‖L2 ‖g‖L2 ,

where we changed back to x denoting a vector in R
3. By Lemma 11 we may bound the

x-integral by μ−β∗+δ(1 + p−β∗+δ) for any δ > 0. Also, ‖�‖L∞ = o(μ) by Proposition 9.
Hence the p-integral will be finite uniformly in μ for μ large enough. We conclude that∥∥∥A(κ)

�,μ

∥∥∥
op

≤ Cμ−β∗+1/2+δ

for any δ > 0 and for μ large enough. Combining this with the bound on ‖L(κ)
μ ‖op from

above, we get

lim sup
μ→∞

μβ∗−1/2−δ
∥∥∥V 1/2M (κ)

�,μ|V |1/2
∥∥∥
op

= 0 (19)

for any δ > 0. Also, since V 1/2F†
μFμ|V |1/2 is isospectral to Vμ, so its eigenvalues are given

by Eq. (6), one can easily see, using Lemma 11 again, that

lim sup
μ→∞

μβ∗−δ
∥∥V 1/2F†

μFμ|V |1/2∥∥
op

= 0 , (20)

for any δ > 0. Finally, by definition of s∗ (see Eq. (11)), we get for any δ > 0 that

lim sup
μ→∞

μmin(s∗,2)/2−δ

∫

R3

|V (x)|
(
sin(

√
μ|x |)√

μ|x |
)2

dx = 0 . (21)

As the last ingredient we need the following Lemma, which provides a bound controlling
�(p) in terms of �(

√
μ). Its proof is given in Sect. 2.2.

Lemma 13 Suppose s∗ > 1 and let u(p) = (4π)−1/2 be the constant function on the sphere
S
2 and let

ϕ̂(p) = √
4πFVF†

μu(p) = 1

(2π)3/2

∫

S2

V̂ (p − √
μq) dω(q) ,
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where F denotes the usual Fourier transform. Then

�(p) = f (μ)
[
ϕ̂(p) + ημ(p)

]
,

for some function f (μ). The function ημ satisfies

lim sup
μ→∞

μβ∗+min(s∗,2)/4−1/2−δ
∥∥ημ

∥∥
L∞ = 0 and lim sup

μ→∞
μβ∗+min(s∗,2)/2−1/2−δ

∣∣ημ(
√

μ)
∣∣ = 0

for any δ > 0.

Note that ϕ̂(
√

μ) = √
4πFμVF†

μu(1) = eμ. Now, combining this with Lemmas 11 and
12, we see that �(

√
μ) = f (μ)eμ(1 + o(1)), from which we conclude that

�(p) = ϕ̂(p) + ημ(p)

eμ + ημ(
√

μ)
�(

√
μ) =

[
1 + ϕ̂(p) − ϕ̂(

√
μ)

eμ

+ ημ(p)

eμ

]
(1 + o(1))�(

√
μ) .

Now, it is an easy computation to see |ϕ̂(p)− ϕ̂(q)| ≤ Cμ−1/2|p−q| for all p, q ∈ R
3. Thus

|�(p)| ≤ C
(
1 + μmin(s∗,2)/2−1/2+δ|p − √

μ| + μmin(s∗,2)/4−β∗+1/2+δ
)

�(
√

μ) (22)

for any δ > 0, again by means of Lemmas 11 and 12, assuming that V is admissible. So, we
get the desired control on �(p) in terms of �(

√
μ).

The bound on ημ(
√

μ) is effectively a bound on
〈
u
∣∣F†

μV M (κ)
�,μVFμ

∣∣u〉. (This will be clear
from the proof.) For sufficiently large μ we have∣∣∣

〈
u
∣∣∣F†

μV M (κ)
�,μVFμ

∣∣∣u
〉∣∣∣ ≤ Cδμ

−β∗−min(s∗,2)/2+1/2+δ (23)

for any δ > 0. This will be of importance in the perturbation argument in Proposition 15.
We are now able to prove the second and third equality in Lemma 7.

Proposition 14 Let V be an admissible potential. Then we have

m(κ)
μ (�) = √

μ

(
log

μ

�(
√

μ)
− 2 + κ

π

2
+ log(8) + o(1)

)

in the limit μ → ∞.

Proof Computing the angular integral, and substituting s = ± p2−μ
μ

we get

m(κ)
μ (�) =

√
μ

2

[ 1∫

0

( √
1 − s − 1√

s2 + x−(s)2
+

√
1 + s − 1√

s2 + x+(s)2
−

√
1 − s

1 − s + κ2 −
√
1 + s

1 + s + κ2

)
ds

+
1∫

0

(
1√

s2 + x+(s)2
+ 1√

s2 + x−(s)2

)
ds

+
∞∫

1

( √
1 + s√

s2 + x+(s)2
−

√
1 + s

1 + s + κ2

)
ds

]
,

where x±(s) = �(
√

μ
√
1±s)

μ
. Now, using dominated convergence and ‖�‖L∞ = o(μ), it is

easy to see that the first and last integrals converge to

1∫

0

(√
1 − s − 1

s
+

√
1 + s − 1

s
−

√
1 − s

1 − s + κ2 −
√
1 + s

1 + s + κ2

)
ds
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and
∞∫

1

(√
1 + s

s
−

√
1 + s

1 + s + κ2

)
ds ,

respectively, in the limit μ → ∞. For the middle integral we claim that

1∫

0

(
1√

s2 + x±(s)2
− 1√

s2 + x±(0)2

)
ds → 0 as μ → ∞ . (24)

As in [9, 17] this is where we need both the Lipschitz–like bound on � (Lemma 9) and the
bound controlling �(p) in terms of �(

√
μ) (Eq. (22)). In terms of x±, Lemma 9 reads

|x±(s) − x±(0)| ≤ Cμ−δr s . (25)

In terms of x±, Eq. (22) reads

x±(s) ≤ C(1 + μmin(s∗,2)/2+δs + μmin(s∗,2)/4−β∗+1/2+δ)x±(0) . (26)

Now, the integrand in Eq. (24) is bounded by

|x±(s)2 − x±(0)2|√
s2 + x±(s)2

√
s2 + x±(0)2

(√
s2 + x±(s)2 +√s2 + x±(0)2

) .

We introduce a cutoff ρ ∈ (0, 1) and compute the integrals
∫ 1
ρ
and

∫ ρ

0 . For the first integral
we have

1∫

ρ

|x±(s)2 − x±(0)2|√
s2 + x±(s)2

√
s2 + x±(0)2

(√
s2 + x±(s)2 +√s2 + x±(0)2

) ds

≤ Cμ−δr

∫ 1

ρ

1

s

x±(s) + x±(0)√
s2 + x±(s)2 +√s2 + x±(0)2

ds

≤ Cμ−δr | log ρ| .
which vanishes for any ρ � exp

(−μδr
)
, in particular for ρ = μ−N for suitable N > 0,

which we choose here. For the second integral we have

ρ∫

0

|x±(s)2 − x±(0)2|√
s2 + x±(s)2

√
s2 + x±(0)2

(√
s2 + x±(s)2 +√s2 + x±(0)2

) ds

≤ C

ρ∫

0

μ−δr
(
1 + μmin(s∗,2)/4−β∗+1/2+δ + μmin(s∗,2)/2+δs

) x±(0)√
x±(0)2 + s2

(
s +√x±(0)2 + s2

) ds

≤ Cμmin(s∗,2)/4−β∗−δr+1/2+δ

ρ∫

0

x±(0)√
x±(0)2 + s2

(
s +√x±(0)2 + s2

) ds

≤ Cμmin(s∗,2)/4−β∗−δr+1/2+δ .

Note that for r = 2, we have δr=2 = 3/20 and thus β∗ − min(s∗, 2)/4 − 1/2 + 3/20 > 0
for any s∗ > 7/5 (see Remark 2). Also, optimizing this expression in the allowed r ’s gives
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the assumption r > f (s∗) given in Remark 2. Therefore, also this second integral vanishes
as desired by choosing 0 < δ < β∗ − min(s∗, 2)/4 − 7/20. We conclude that

m(κ)
μ (�) =

√
μ

2

[ 1∫

0

(√
1 − s − 1

s
+

√
1 + s − 1

s
−

√
1 − s

1 − s + κ2 −
√
1 + s

1 + s + κ2

)
ds

+
1∫

0

2√
s2 +

(
�(

√
μ)

μ

)2 ds +
∫ ∞

1

(√
1 + s

s
−

√
1 + s

1 + s + κ2

)
ds + o(1)

]
.

This may be computed (perhaps most easily by adding and subtracting the corresponding
integral with κ = 0) as

m(κ)
μ = √

μ

(
log

μ

�(
√

μ)
− 2 + log(8) + κ

π

2
+ o(1)

)
.

�
We conclude by showing the third equality of Lemma 7.

Proposition 15 Let V be an admissible potential. Then

m(κ)
μ (�)√

μ
= − π

2
√

μb(κ)
μ

+ o(1) .

Proof Recall that, by the Birman–Schwinger principle the lowest eigenvalue of B�,μ is −1.
Using the decomposition in Eq. (14) and the bound in Eq. (19) we get that

−1 = lim
μ→∞m(κ)

μ (�) inf spec
(
V 1/2Fμ

†Fμ|V |1/2) = lim
μ→∞m(κ)

μ (�)eμ .

Now, since s∗ > 7/5 we have that |√μeμ| ≤ Cμ−2/5 by Lemma 11 (recall Eqs. (6) and
(21)). Thus, by Proposition 14 we conclude that �(

√
μ) is exponentially small (in some

positive power of μ) as μ → ∞.
To obtain the next order in the expansion of mμ(�), we note that 1+ V 1/2M (κ)

�,μ|V |1/2 is
invertible for μ large enough by means of Equation (19). We can thus factorize the Birman–
Schwinger operator (14) as

1 + B�,μ =
(
1 + V 1/2M (κ)

�,μ|V |1/2
)(

1 + m(κ)
μ (�)

1 + V 1/2M (κ)
�,μ|V |1/2

V 1/2F†
μFμ|V |1/2

)
.

Because B�,μ has −1 as its lowest eigenvalue by the Birman–Schwinger principle, we
conclude that, for μ large enough, the self–adjoint operator

T�,μ := m(κ)
μ (�)Fμ|V |1/2 1

1 + V 1/2M (κ)
�,μ|V |1/2

V 1/2F†
μ

acting on L2(S2) has −1 as its lowest eigenvalue since it is isospectral to the right–most
operator above. (This follows from the fact that for operators A, B the operators AB and BA
have the same spectrum apart from possibly at 0. See also the argument around Eq. (33) in
[14] as well as around Eqs. (30) and (47) in [9].)
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To leading order T�,μ is proportional to Vμ. Since the constant function u(p) = (4π)−1/2

on S
2 is the unique eigenvector of Vμ with lowest eigenvalue, this is true also for T�,μ

whenever μ is large enough.
To find the lowest eigenvalue (which is −1) we expand the geometric series to first order

and employ first order perturbation theory. This is completely analogous to the arguments in
[9] and Eq. (34) in [14]. We obtain

1√
μ
m(κ)

μ (�) = −1

μ1/2eμ − μ1/2
〈
u
∣∣FμV M (κ)

�,μVF†
μ

∣∣u〉+ O(μ−3β∗+3/2+δ)
(27)

for any δ > 0 (recall Eqs. (19), (20) and (23)). The error term in Eq. (27) is twofold. The
first part comes from the expansion of the geometric series. The second part comes from first
order perturbation theory using the bounds

|√μeμ| ≥ cδμ
−min(s∗,2)/2+1/2−δ and

∣∣μ1/2〈u∣∣FμV M (κ)
�,μVF†

μ

∣∣u〉∣∣ ≤ Cδμ
−β∗−min(s∗,2)/2+1+δ

for any δ > 0 from Lemma 12 and Eq. (23). The error from the series expansion
is of order O(μ−3β∗+3/2+δ) and the error from the perturbation argument is of order
O(μ−2β∗−min(s∗,2)/2+3/2+δ) and is hence dominated by the expansion of the geometric series,
since β∗ ≤ min(s∗, 2)/2.

Now, we need to show that FμV M (κ)
�,μVF†

μ is close toW(κ)
μ , when evaluated in 〈u|· · ·|u〉.

Therefore, considering their difference, we split the involved radial p-integral according to
|p| ≤ μN and |p| > μN for some large N > 0. The second part is clearly bounded by,
e.g., Cμ−N/2. For the first part, we have �(p) ≤ CμN�(

√
μ) by Eq. (22). Using this

in combination with the fact that �(
√

μ) is exponentially small, we find, by dominated
convergence and Lipschitz continuity of the involved angular integrals (cf. Eq. (35) in [9]
and Eq. (36) in [14]), that this part is bounded by CDμ−D for any D > 0. Since N > 0 was
arbitrary, we conclude that

∣∣〈u∣∣FμV M (κ)
�,μVF†

μ − W(κ)
μ

∣∣u〉∣∣ ≤ CDμ−D (28)

for any D > 0. Thus, by combining Eq. (23) and (28) (recall Eqs. (9) and 10) we get
∣∣〈u∣∣W(κ)

μ

∣∣u〉∣∣ ≤ Cδμ
−β∗−min(s∗,2)/2+1/2+δ (29)

for any δ > 0. (In particular b(κ)
μ < 0 for large μ. This was also shown in [14].)

In particular, combining Eqs. (27), (28) and (29), we get again by a perturbation theory
argument that

1√
μ
m(κ)

μ (�) = − π

2
√

μb(κ)
μ

+ O(μ−3β∗+min(s∗,2)+1/2+δ) ,

for any δ > 0. Since 3β∗ − min(s∗, 2) − 1/2 > 0 we conclude the desired. �

2.2 Proofs of Auxiliary Lemmas

In this Subsection, we prove the auxiliary Lemmas 8, 9, and 13.

Proof of Lemma 8 First we show

‖α‖2H1 ≤ C ‖α‖2L2 + Cμ3/2. (30)
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Since V ∈ L3/2(R3) we have by Sobolev’s inequality [18, Thm. 8.3] inf spec
(
p2

2 + V
)

>

−∞. Thus, using
√
1 − 4x2 ≤ 1 − 2x2 and α̂ ≤ 1/2 we get

F(α) = 1

2

∫

R3

|p2 − μ|
(
1 −

√
1 − 4α̂(p)2

)
dp +

∫

R3

V (x)|α(x)|2 dx

≥
∫

R3

(p2 − μ)α̂(p)2 dp +
∫

R3

V (x)|α(x)|2 dx

=
〈
α

∣∣∣∣ p
2

2
+ V

∣∣∣∣α
〉
+
∫

R3

(
p2

2
− μ

)
α̂(p)2 dp

≥ 1

4
‖α‖2H1 − C ‖α‖2L2 +

∫

R3

(
p2

4
− μ − 1

4

)
α̂(p)2 dp

≥ 1

4
‖α‖2H1 − C ‖α‖2L2 − 1

4

∫

R3

[
p2

4
− μ − 1

4

]
−
dp

≥ 1

4
‖α‖2H1 − C ‖α‖2L2 − Cμ3/2 ,

which gives the desired. Now we show that

∥∥α̂1{|p|<t}
∥∥
L2 ≤ C

∥∥α̂1{|p|>t}
∥∥
L2 + μ

3
2 δ−1 ‖α‖H1 ,

for t = μδ and 0 < δ < 1/2.
To see this, we split the integrals in the functionalF according to small or largemomentum

p and compute

F(α) = 1

2

∫

R3

|p2 − μ|
(
1 −

√
1 − 4α̂(p)2

)
dp +

∫

R3

V (x)|α(x)|2 dx

≥
∫

|p|<t

|p2 − μ|α̂(p)2 dp +
∫

|p|>t

|p2 − μ|α̂(p)2 dp

+ 1

(2π)3/2

∫∫

R3×R3

α̂(p)V̂ (p − q)α̂(q) dp dq

≥ μ
∥∥α̂1{|p|<t}

∥∥2
L2 −

∥∥∥p2α̂1{|p|<t}
∥∥∥2
L2

+
〈
α̂1{|p|>t}

∣∣∣p2 + V
∣∣∣α̂1{|p|>t}

〉
− μ

∥∥α̂1{|p|>t}
∥∥2
L2

+ 1

(2π)3/2

⎡
⎢⎣
∫∫

|p|,|q|<t

α̂(p)V̂ (p − q)α̂(q) dp dq + 2
∫∫

|p|<t,|q|>t

α̂(p)V̂ (p − q)α̂(q) dp dq

⎤
⎥⎦ .

Note that, again by Sobolev’s inequality [18, Thm. 8.3], we have

〈
α̂1{|p|>t}

∣∣p2 + V
∣∣α̂1{|p|>t}

〉 ≥ −C
∥∥α̂1{|p|>t}

∥∥2
L2 .
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Moreover, by application of Young’s inequality [18, Thm. 4.2] we obtain
∫

|p|<t

∫

|q|<t

α̂(p)V̂ (p − q)α̂(q) dp dq ≥ −‖V̂ ‖L3

∥∥α̂1{|p|<t}
∥∥2
L6/5

≥ −C
(
t3
)2·(5/6−1/2) ∥∥α̂1{|p|<t}

∥∥2
L2

= −Cμ2δ
∥∥α̂1{|p|<t}

∥∥2
L2

and ∫

|p|<t

∫

|q|>t

α̂(p)V̂ (p − q)α̂(q) dp dq ≥ − ∥∥α̂1{|p|<t}
∥∥
L1 ‖V̂ ‖L3

∥∥α̂1{|p|>t}
∥∥
L3/2

≥ −Ct3/2 ‖α‖H1

∥∥α̂1{|p|<t}
∥∥
L2

= −Cμ3δ/2 ‖α‖H1

∥∥α̂1{|p|<t}
∥∥
L2 ,

where we used that
∥∥ĝ∥∥L3/2 ≤ C ‖g‖H1 . Thus we arrive at

F(α) ≥ cμ
∥∥α̂1{|p|<t}

∥∥2
L2 − C1μ

3δ/2 ‖α‖H1

∥∥α̂1{|p|<t}
∥∥
L2 − C2μ

∥∥α̂1{|p|>t}
∥∥2
L2 ,

where we absorbed all non–leading terms in these. This is a second degree polynomial in∥∥α̂1{|p|<t}
∥∥
L2 and thus the value of

∥∥α̂1{|p|<t}
∥∥
L2 lies between the roots, i.e.

∥∥α̂1{|p|<t}
∥∥
L2 ≤

C1μ
3δ/2 ‖α‖H1 +

√
C2
1μ

3δ ‖α‖2
H1 + 4c C2μ2

∥∥α̂1{|p|>t}
∥∥2
L2

2cμ

≤ C
∥∥α̂1{|p|>t}

∥∥
L2 + Cμ3δ/2−1 ‖α‖H1 .

From the estimate

∥∥α̂1{|p|>t}
∥∥2
L2 =

∫

|p|>t

α̂(p)2 dp ≤
∫

|p|>t

α̂(p)2
1 + p2

1 + t2
dp ≤ 1

1 + t2
‖α‖2H1 ≤ Cμ−2δ ‖α‖2H1 ,

we conclude that

‖α‖2L2 = ∥∥α̂1{|p|<t}
∥∥2
L2 + ∥∥α̂1{|p|>t}

∥∥2
L2 ≤ C

(
μ−2δ + μ3δ−2) ‖α‖2H1 .

Choosing the optimal δ = 2/5 we get ‖α‖L2 ≤ Cμ−2/5 ‖α‖H1 , which, in combination with
Eq. (30), yields

‖α‖2H1 ≤ Cμ−4/5 ‖α‖2H1 + μ3/2.

Hence ‖α‖H1 ≤ Cμ3/4 and thus also ‖α‖L2 ≤ Cμ−2/5 ‖α‖H1 ≤ Cμ7/20 for sufficiently
large μ. �

We now turn to the proof of Lemma 9.

Proof of Lemma 9 Let t = 5
2 − 3

r . Then we have

‖�‖L∞ ≤ C ‖Vα‖L1 ≤ C ‖V ‖Lr ‖α‖Lr ′ ≤ C ‖α‖tL2 ‖α‖1−t
L6 ≤ Cμ

15−8t
20 = Cμ

24−5r
20r
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by Sobolev’s inequality [18, Thm. 8.3]. For the difference note that �(p) − �(q) is (pro-
portional to) the Fourier transform of V (x)

(
1 − ei(p−q)·x)α(x). Then

∥∥∥V (x)
(
1 − ei(p−q)x

)∥∥∥r
Lr

=
∫

R3

|V (x)|r
∣∣∣1 − ei(p−q)·x

∣∣∣r dx ≤ C
∫

R3

|V (x)|r |p − q|r |x |r dx .

Using radiality of �, the same argument as before gives the desired. �

Finally, we give the proof of Lemma 13.

Proof of Lemma 13 Recall from the factorization of the Birman–Schwinger operator in the
proof of Proposition 15, that the self–adjoint operator

m(κ)
μ (�)Fμ|V |1/2 1

1 + V 1/2M (κ)
�,μ|V |1/2

V 1/2F†
μ

acting on L2(S2) has −1 as its lowest eigenvalue and u(p) = (4π)−1/2 is the unique eigen-
vector with lowest eigenvalue for μ large enough. Hence, one can easily see that

1

1 + V 1/2M (κ)
�,μ|V |1/2

V 1/2F†
μu

is an eigenvector of B�,μ for the lowest eigenvalue and thus proportional to V 1/2α. By
expanding 1

1+x = 1 − x
1+x we conclude that � = f (μ)[ϕ̂ + ημ], where

ημ = −√
4πF|V |1/2 V 1/2M (κ)

�,μ|V |1/2
1 + V 1/2M (κ)

�,μ|V |1/2
V 1/2F†

μu ,

which can be bounded easily as

∥∥ημ

∥∥
L∞ ≤ C ‖V ‖1/2

L1

∥∥∥V 1/2M (κ)
�,μ|V |1/2

∥∥∥
op

∥∥V 1/2F†
μu
∥∥
L2 .

For |p| = √
μ, we first note that ϕ̂(

√
μ) = √

4πFμVF†
μu(1) = eμ. Similarly, since ημ is

radial, we have that

ημ(
√

μ) = 1

4π

∫

S2

ημ(
√

μq) dω(q) = −
〈
u

∣∣∣∣∣Fμ|V |1/2 V 1/2M (κ)
�,μ|V |1/2

1 + V 1/2M (κ)
�,μ|V |1/2

V 1/2F†
μ

∣∣∣∣∣u
〉

and we can thus bound
∣∣ημ(

√
μ)
∣∣ ≤ C

∥∥∥V 1/2M (κ)
�,μ|V |1/2

∥∥∥
op

∥∥|V |1/2F†
μu
∥∥2
L2 .

It remains to check that

∥∥|V |1/2F†
μu
∥∥2
L2 = C

∫

R3

|V (x)|

∣∣∣∣∣∣∣
∫

S2

ei
√

μp·x 1√
4π

dω(p)

∣∣∣∣∣∣∣

2

dx = C
∫

R3

|V (x)|
(
sin

√
μ|x |√

μ|x |
)2

dx .

Now the claim follows by application of Eqs. (19) and (21). �
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