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We study rigidity of rational maps that come from Newton’s 
root finding method for polynomials of arbitrary degrees. We 
establish dynamical rigidity of these maps: each point in the 
Julia set of a Newton map is either rigid (i.e. its orbit can be 
distinguished in combinatorial terms from all other orbits), or 
the orbit of this point eventually lands in the filled-in Julia 
set of a polynomial-like restriction of the original map. As 
a corollary, we show that the Julia sets of Newton maps in 
many non-trivial cases are locally connected; in particular, 
every cubic Newton map without Siegel points has locally 
connected Julia set.
In the parameter space of Newton maps of arbitrary degree we 
obtain the following rigidity result: any two combinatorially 
equivalent Newton maps are quasiconformally conjugate in 
a neighborhood of their Julia sets provided that they either 
non-renormalizable, or they are both renormalizable “in the 
same way”.
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Our main tool is a generalized renormalization concept called 
“complex box mappings” for which we extend a dynamical 
rigidity result by Kozlovski and van Strien so as to include 
irrationally indifferent and renormalizable situations.

© 2022 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction and main results

1.1. Local connectivity, topological models, and rigidity

We investigate the fine structure in the dynamical systems formed by iteration of 
Newton maps of polynomials: the goal is to show that any two points within any given 
dynamical system can be distinguished in combinatorial terms (“dynamical rigidity”), 
and similarly that any two Newton dynamical systems can be distinguished combina-
torially as well (“parameter rigidity”). Analogous rigidity results are known to be false 
for polynomial dynamics, and our main result is that they hold for the Newton dy-
namics everywhere except when embedded polynomial dynamics interferes (both in the 
dynamical plane and in parameter space). These results are strongest possible: embedded 
non-rigidity of polynomial dynamics makes rigidity in the Newton dynamics impossible.

This research connects to and builds upon a deep body of research on polynomial 
dynamics, initiated by Douady and Hubbard in their seminal Orsay Notes [7] and ex-
tended in celebrated work by Yoccoz [15], McMullen [28], Lyubich and coauthors (see 
e.g. [17,26,12]), van Strien and coauthors ([21], [20]), and numerous others. The goal 
in much of this work is often phrased as showing that polynomial Julia sets are locally 
connected (many of these are, but not all; see for instance Milnor [29]). The importance 
of local connectivity of Julia sets comes from several closely connected aspects: if a Julia 
set is locally connected, then

• it has a simple and satisfactory topological model, for instance in terms of Thurston 
laminations [44,39] or Douady’s pinched disks [6];

• any two points in the Julia set can be distinguished in terms of symbolic dynamics, 
for instance in the complement of pairs of dynamic rays that land at common periodic 
or preperiodic points.

For instance, Yoccoz’ theorem on quadratic polynomials can be phrased as saying that 
all quadratic polynomials that are non-renormalizable and for which both fixed points 
are repelling have locally connected Julia sets, or equivalently that any two points in 
the Julia set can be distinguished in terms of their itineraries with respect to the unique 
fixed point that disconnects the Julia set (usually called the α fixed point).

http://creativecommons.org/licenses/by/4.0/
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Meanwhile, it is known that the Julia set of a polynomial of any degree is locally 
connected, and all its points can be distinguished in terms of symbolic dynamics, when 
the dynamics is not infinitely renormalizable and no periodic points are irrationally 
indifferent [21] (see also [45] for the case when the Julia set is totally disconnected). In 
many cases with irrationally indifferent periodic points, or in the infinitely renormalizable 
setting, the Julia sets are locally connected anyway (compare e.g. [5]); however, there 
are explicitly known examples when local connectivity fails, especially in the presence of 
Cremer points [30, §18] and in certain infinitely renormalizable cases [29].

The research on local connectivity of polynomial Julia sets is among the deepest in all 
of dynamical systems. It has often been thought that the dynamics of rational maps must 
be even more complicated because polynomials have a basin of infinity that provides a 
simple and good coordinate system for the study of the dynamics, in particular through 
dynamic rays and their landing properties. In this paper, we propose a rather opposite 
point of view, at least for the dynamics of rational maps that are Newton maps of 
polynomials, that we phrase as the following principle:

Rational rigidity principle (dynamical version). In the dynamics of any polynomial New-
ton map, the orbit of every point z in the Julia set can be distinguished by symbolic 
dynamics from every other point z′, unless the Newton dynamics is renormalizable and 
admits an embedded polynomial Julia set that fails to be rigid, and that contains the two 
points z and z′.

Here we say that a polynomial Julia set is embedded in the Newton dynamics when 
the latter is renormalizable and a domain of renormalization has a Julia set (called a 
little Julia set) that is quasiconformally conjugate to the given polynomial Julia set.

There is a parallel discussion in parameter space that has also started with the work 
by Douady and Hubbard [7] on the Mandelbrot set: if it is locally connected, then

• it has a simple and satisfactory topological model, for instance in terms of Thurston 
laminations [44,39] and Douady’s pinched disks [6];

• any two parameters in its boundary (the bifurcation locus) have Julia sets that can 
be distinguished in combinatorial terms;

• hyperbolic dynamics is open and dense in the space of quadratic polynomials.

For spaces of polynomial maps beyond quadratic polynomials, local connectivity of 
the connectedness locus is false [22], but is not the right concept (see the discussion 
below); instead the goal is to establish rigidity for instance in the form that any two 
polynomials for which the Julia sets are combinatorially indistinguishable are already 
quasiconformally conjugate. This rigidity conjecture is false in general [14], but it holds 
for instance when the polynomial dynamics is not renormalizable. Again, the study 
of parameter spaces of rational maps seems harder than for polynomials, but still we 
propose an analogous rigidity principle also in parameter space:
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Rational rigidity principle (parameter space version). Any two polynomial Newton maps 
that are combinatorially equivalent are quasiconformally conjugate provided these Newton 
maps are either non-renormalizable, or they are both renormalizable “in the same way”: 
the little Julia sets are hybrid equivalent and embedded into the Newton dynamics in 
combinatorially the same way.

Both versions of our rational rigidity principle, in the dynamical plane and in param-
eter space, can be interpreted as saying that “the Newton dynamics behaves well unless 
embedded polynomial dynamics interferes”, so contrary to frequent belief the dynamics 
of rational maps does not exhibit any additional complications beyond those known from 
polynomials, once a good combinatorial structure is established. This is true at least in 
the case of polynomial Newton maps, which are the first family of rational maps for 
which a good combinatorial structure has been established [23,24].

1.2. Statement of results on rigidity

After this overview, we now provide a more precise statement of results. The Newton 
map of a polynomial p : C → C is defined to be the rational map Np(z) := z−p(z)/p′(z); 
we call such a map a polynomial Newton map.

Our goal is to distinguish all orbits of Np in terms of symbolic dynamics. For poly-
nomials, this issue is closely related to the topology of the Julia set, in the sense that in 
many cases the distinction of all orbits is possible when the Julia set is locally connected. 
In analogy to [37,38], we define the fiber of a point z ∈ Ĉ as the set of points whose 
orbits are combinatorially indistinguishable from that of z; this is a compact connected 
set (see Definition 2.3, and also Section 4 where this notion is discussed specifically for 
Newton maps). We say that the fiber of z is trivial if it consists of z alone. Providing 
sufficient conditions for triviality of fibers is one of the chief goals of this paper, and it 
will imply local connectivity.

The purpose of Newton’s method is to find the roots of p. Each root is an attracting 
fixed point of Np and the points with orbits converging to the roots form the basins of 
roots. The dynamics in the basins is hence well-understood, and it is more interesting 
to look at their complement. This complement consists of the points that are either in 
the Julia set J(Np) of Np, or are contained in Fatou components that eventually have 
period 2 or higher. Every Fatou component of period 1 is the immediate basin of a root 
because every fixed point is either attracting or the repelling fixed point at ∞, and there 
cannot be Herman rings either [40].

Our first main theorem (Theorem A) says that for every polynomial Newton map 
every point that is not attracted to a root can fail to have trivial fiber only if it belongs 
to (or is mapped to) an embedded quasiconformal copy of the filled Julia set of an actual 
polynomial mapping.

Theorem A (Dynamical Rigidity for Newton maps). Let Np be a polynomial Newton map 
of degree d � 2. Then for every point z ∈ Ĉ at least one of the following possibilities 
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holds true:

(B) z belongs to the Basin of attraction of a root of p;
(T) z has Trivial fiber;
(R) z belongs, or is mapped by some finite iterate of Np, to the filled Julia set of Renor-

malizable dynamics (a polynomial-like restriction of Np with connected Julia set).

Theorem A implies the following two corollaries.

Corollary 1.1 (Basins have locally connected boundaries). For every Newton map of de-
gree d � 2, every connected component of the basin of every root has locally connected 
boundary.

Corollary 1.1 was also shown recently by [46] as their main theorem.
For k � 2, let Sk be the set of polynomials f : C → C of degree at most k and with 

connected Julia set such that for each f ∈ Sk

• most of the Fatou components of f are small: for every ε > 0 there exists only finitely 
many Fatou components with spherical diameter exceeding ε;

• if f has Siegel periodic points, then the boundaries of the corresponding Siegel disks 
are Jordan curves.

Moreover, let S be the union of all Sk for all k. (The letter S in the notation stands for
Small Fatou and circular Siegel boundaries.)

The Julia set of a polynomial in Sk need not be locally connected (for instance, it may 
have Cremer points). If the degree of a Newton map is d � 3, then a polynomial-like 
restriction of the map can have up to d − 2 critical points, and if they are in different 
periodic components, then this polynomial-like map can have degree at most 2d−2.

Corollary 1.2 (Local connectivity of Newton Julia sets, general case). Every Newton map 
Np of degree d � 3 has locally connected Julia set provided every polynomial-like restric-
tion of Np straightens to a polynomial in S.

This corollary establishes local connectivity of Julia sets of Newton maps in many non-
trivial cases. For example, S contains all polynomials without bounded Fatou components 
(which includes many examples of polynomials with non-locally connected Julia sets), as 
well as all geometrically finite polynomials. The latter polynomials have locally connected 
Julia sets [43], and thus most of their Fatou components are small by a well-known 
criterion for local connectivity of sets [47]. In particular, this implies that S2 contains all 
quadratic polynomials f without Siegel disks: if the only critical point of f is not in the 
attracting or parabolic basin (i.e. f is not sub-hyperbolic), then the critical point must 
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be in the Julia set, and hence f has no bounded Fatou components at all. Corollary 1.2
combined with the last observation yields

Corollary 1.3 (Local connectivity of cubic Newton maps). The Julia set of every cubic 
Newton map without Siegel disks is locally connected. �

This corollary generalizes a result of Roesch [33] and provides a positive answer to 
Conjecture 8.7 in that paper modulo the Siegel case.

Corollary 1.2 demonstrates the phenomenon of “enhanced connectivity” within New-
ton Julia sets, as was first observed by Roesch: even if non-locally connected polynomial 
Julia sets are embedded in the Newton dynamical plane, the Julia set of the Newton 
map can still be locally connected. (However, this does not imply that the Newton Julia 
set enjoys the advantages usually associated with local connectivity of polynomial Julia 
sets, for instance a satisfactory topological model.)

Remark. It might well be that S contains all polynomials without Siegel disks. Using the 
axiomatic approach towards rigidity from [9] and triviality of fibers proven in [19] it is 
possible to establish this claim partially: most of the Fatou components of polynomials 
without irrationally neutral periodic points are small, and hence such polynomials belong 
to S.

Remark. Many polynomial Julia sets are known to be locally connected, and even have 
all their fibers trivial. The corresponding results can be imported to the Newton dynam-
ics, for example, as follows. Suppose z belongs to some renormalizable polynomial-like 
restriction of Np for which the polynomial Julia set has trivial fiber at the point cor-
responding to z, then the Julia set of Np has trivial fiber at z, and in particular is 
locally connected at z. The idea of proof for this statement is that two points w, w′ in 
a polynomial Julia set are in different fibers if and only if there is a pair of (pre)peri-
odic dynamic rays landing at the same point in the polynomial Julia set that separates 
w from w′. Within the dynamics of Np these rays can be replaced by “bubble rays” 
consisting of sequences of components of root basins that converge to the same landing 
point with the same separation properties (see [23]). Note, however, that it is not clear 
that if a polynomial Julia set is locally connected at some point, then its fiber must be 
trivial, and this point can be separated from every other point in the Julia set; compare 
[37,38].

It may come as a surprise that for local connectivity of Newton maps, the only poten-
tial issue might be Siegel disks, not Cremer points or infinite renormalizability. If there 
existed a polynomial with non-locally connected Siegel disk boundary, then it would be 
possible to construct a Newton map with non-locally connected Julia set by embedding 
the Julia set of that polynomial, in agreement with our rigidity principle. However, it is 
conjectured that Siegel disks of polynomials always have locally connected boundaries 
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(see, for example, [3,31,41,48,49], for some partial results on this conjecture). We view 
this as a strong hint that perhaps all polynomial Newton maps have locally connected 
Julia sets.

Remark. The degree of a Newton map Np is always equal to the number of distinct roots 
of p (ignoring multiplicities). It is well known that if Np has degree d = 2, then the Julia 
set J(Np) is a quasi-circle through ∞ (in particular, it is a straight line if p has degree 
2 as well), and the two complementary domains are the basins of the two roots. This 
case is trivial, and the case d = 1 is even more trivial, so they are excluded from our 
discussions and we assume d � 3.

Our second main result (Theorem B) is a parameter space counterpart to Theorem A. 
We say that two Newton maps are combinatorially equivalent if their Newton graphs
coincide (see Definition 6.6 for details); an equivalent way of saying this is that all the 
components of the basins of the roots are connected to each other in the same way (some 
examples of Newton dynamical planes are shown in Fig. 1).

Theorem B (Parameter rigidity for Newton maps). If two polynomial Newton maps are 
combinatorially equivalent, then they are quasiconformally conjugate in a neighborhood 
of the Julia set provided

(1) either they are both non-renormalizable,
(2) or they are both renormalizable, and there is a bijection between their domains of 

renormalization that respects hybrid equivalence between the little Julia sets as well 
as their combinatorial position.

The domain of this quasiconformal conjugation can be chosen to include all Fatou com-
ponents not in the basin of the roots, and its antiholomorphic derivative vanishes on 
those Fatou components as well as on the entire Julia set.

Moreover, if these Newton maps are normalized so that they attracting-critically-finite 
(as defined below), then they are even affine conjugate.

The conditions in the renormalizable case mean the following: the renormalizable 
“little Julia sets” should correspond to the same polynomial dynamics (up to a quasi-
conformal conjugation that is conformal on the filled-in Julia set of the polynomials), 
and they should be connected to the Newton graph at the same combinatorial position. 
This will be made precise in Section 6.

Finally, a Newton map is called attracting-critically-finite if the orbit of every critical 
point in the basin of a root is eventually fixed; this can be accomplished by a routine 
quasiconformal surgery on a compact subset of the basins of the roots (see Section 4).
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Fig. 1. The dynamical planes of various Newton maps (of degree 6 (top), 4 (bottom left), and 3 (bottom 
right)); the basins of different roots are shown in different colors. Different Newton maps can often be 
distinguished combinatorially in terms of the combinatorial structure of touching components of the basins 
of roots. Renormalizable parts of the dynamical plane are shown in black. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

1.3. Complex box mappings

One of our key tools is a generalized renormalization concept that we use under 
the name of complex box mappings. In holomorphic dynamics, such mappings arise as 
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first return maps to a well-chosen domain V, which is typically a finite collection of 
disjoint open topological disks. Complex box mappings are natural generalizations of 
polynomial-like maps to the case when V is allowed to have more than one connected 
component and the domain of the map is allowed to have several, or even infinitely 
many components (see Fig. 6). In the early 90s, Lyubich [25] suggested to use complex 
box mappings (in his terminology, generalized polynomial-like maps) to study maps that 
are not renormalizable in the classical Doaudy–Hubbard sense (that is, do not admit 
polynomial-like restrictions with connected Julia set) as instances of renormalizable maps 
in a generalized sense: in these instances, the map admits a non-trivial restriction that has 
the form of a complex box mapping. This idea of generalized renormalization turned out 
to be extremely fruitful (see e.g. [4, Section 1.1] and the references therein for a historical 
account). In our paper, we use a slightly more general, and hence more flexible definition 
of complex box mappings due to Kozlovski and van Strien [21]; see Definition 3.1 in 
Section 3. We also prefer to keep the term “box mapping” to emphasize that in many 
cases the most essential part of the dynamics of a rational map can be “boxed” into a 
box mapping and understood separately using already existing results on box mappings, 
as we will do in the case of Newton maps.

For any point z in the domain of a box mapping F , the fiber fib(z) is the component 
containing z of the set of points that have the same symbolic dynamics as z with respect 
to the connected components for the domain of definition of F : that is, fib(z) consists of 
points with the same itinerary through all these components. Again, a precise definition 
will come later (Section 3). Kozlovski and van Strien give sufficient conditions for box 
mappings to have all their fibers trivial (in different language; see [21, Theorem 1.4 (1)]
and [4, Theorem 6.1 (1)]). Our third main result (Theorem C) is an upgrade to their 
theorem: our result applies to all box mappings and provides sufficient conditions for 
most individual fibers to be trivial. Similarly as for polynomial-like maps, some points 
can only be iterated finitely many times; we say that such points escape (from the box 
mapping). There also might be components of the domain of a box mapping without 
escaping points; we call them (NE) components (components with No Escape). For a 
cycle of such components, the orbits of all points on this cycle remain there forever.

Theorem C (Generalized rigidity for complex box mappings). Consider an arbitrary box 
mapping and an arbitrary non-escaping point z. Then at least one of the following cases 
occurs:

(T) z has Trivial fiber;
(R) z belongs, or is mapped by some finite iterate, to the filled Julia set of Renor-

malizable dynamics (a polynomial-like restriction of the given box mapping with 
connected Julia set);

(CB) the orbit of z Converges to the Boundary of the domain of definition of the box 
mapping.
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(NE) (No Escape:) the domain of the box mapping contains a periodic component that 
maps surjectively to itself by some iterate of the box mapping, and z eventually 
maps to such a component (so the fiber of z is equal to the closure of its compo-
nent).

Observe that the first two possibilities here exactly match the two possibilities in 
Theorem A for points not in basins of the roots. The last case does not naturally arise 
in many cases where box mappings are extracted from dynamical systems on Ĉ and 
is admitted by the fairly general definition of box mappings (see Definition 3.1). We 
will provide a definition of “dynamically natural” box mappings in Definition 3.9. The 
concept of renormalization for box mappings will be discussed in Section 3.

Earlier work on Newton’s method. Newton’s method as a dynamical system has been 
studied by various people for a long time, in many cases with a focus on the cubic 
case. For cubic Newton maps there is a single free critical point and the parameter 
space is complex one-dimensional, like the well-studied case of the dynamics of quadratic 
polynomials and the Mandelbrot set. In particular, we would like to mention the classical 
work by Tan Lei [42] with a combinatorial study of the Newton parameter space, with 
a recent refinement by Roesch, Wang, and Yin in [34]. In [33], Roesch has shown that 
the Newton map of a cubic polynomial has locally connected Julia set in many cases, 
even when it is renormalizable and the embedded polynomial Julia set is not locally 
connected. In [1], Aspenberg and Roesch showed that a large class of renormalizable 
cubic polynomials with one fixed critical point and the other cubic polynomial having 
two fixed critical points are uniquely mateable, and the resulting matings are (cubic) 
Newton maps; their result implies parameter rigidity for cubic Newton maps.

There are two recent manuscripts that study Newton’s method of arbitrary degrees 
in a similar spirit as we do here. The main result of Wang, Yin, and Zeng [46] is that 
immediate basins have locally connected boundaries. Roesch, Yin, and Zeng show in 
[36] that all non-renormalizable Newton maps are rigid (in parameter space). Both are 
corollaries of our results: the first is Corollary 1.2, and the second is Theorem B in the 
special case of non-renormalizability.

Notation. In order to lighten notation, we write fk for the k-fold iterate of a map f , that 
is fk := f◦k = f ◦ . . . ◦ f︸ ︷︷ ︸

k times

.

We will also write Crit(f) for the set of critical points of a map f and orb(z) :={
fk(z) : k � 0

}
for the orbit of a point z under the dynamics of f . The ω-limit set of 

orb(z) is defined as

ω(z) :=
⋂
n∈N

{fk(z) : k > n} .

Note that orb(z) = orb(z) ∪ ω(z).
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A set X is nice if the orbit of the boundary of X does not intersect the interior of X, 
i.e. fk(∂X) ∩ X̊ = ∅ for all k � 0 [27, §31].

A component of a set X is a connected component of X. A critical component of X
is a connected component containing a critical point.

The Lebesgue measure in C will be denoted as meas(·).
By the diameter of a set X we will usually understand Euclidean or spherical diameter, 

depending whether X lies in C or Ĉ; we will denote it as diamX.
An annulus is a doubly-connected domain in Ĉ; we will write mod(B) for the modulus 

of an annulus B.

2. On general puzzles

In this preparatory section we start with some general discussion and fix terminology 
concerning puzzles. The results of this section will be used as a toolbox in the proofs of 
our main results (Theorems A, B, and C).

2.1. Puzzle pieces, fibers, and the Markov property

Let g : U → V be a holomorphic map between two open sets U ⊆ V ⊂ Ĉ so that 
connected components of U resp. V have disjoint closures; we do not require that the 
components of U or V be simply connected. Further assume that g has only finitely many 
critical points. We describe a setting of puzzles in the spirit of the well known Yoccoz 
puzzles, adapted to the needs of our Newton dynamics. Suppose that there exists a nested 
sequence (Sn)∞n=0 of open sets such that V = S0 ⊃ U = S1 ⊃ S2 . . . , every component 
of Sn+1 is either compactly contained in or coincides with the corresponding component 
of Sn and for every n � 0 the restriction g : Sn+1 → Sn is a proper map. Further assume 
that the closure of each Sn can be represented as a (not necessarily finite) union of closed 
topological disks P i

n (i runs over some finite or countable index set In) that can only 
intersect along their boundaries (see Fig. 2). We call each P i

n a puzzle piece of depth n. 
The union of all puzzle pieces of depth n comprises the puzzle partition (of Sn) of depth 
n. An open puzzle piece of depth n is the interior P̊ i

n of a puzzle piece of depth n. We 
will call the topological graph Γn :=

⋃
i∈In

∂P i
n the puzzle boundary of depth n: vertices

of this graph are either points on ∂Sn where at least two puzzle pieces meet, or points 
in Sn where at least three puzzle pieces meet (note here that ∂Sn ⊂ Γn for every n); an 
edge of Γn is a vertex-free set homeomorphic to an interval that connects two vertices. 
For simplicity we assume that all edges in all Γn are smooth and the boundary of each 
puzzle piece contains finitely many vertices. In general, every puzzle piece of depth n
shares an edge with one or several further puzzle piece of the same depth n, and hence 
every component of Sn contains many puzzle pieces of depth n. We allow the special 
case that a component of Sn consists of a single puzzle piece, say Y ; in this case the 
definition of edges and vertices does not apply, and we choose an arbitrary point on ∂Y
as a vertex and let the rest of ∂Y be an edge that connects the vertex to itself.
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Fig. 2. An schematic picture of general puzzles. The puzzle partition of depth 0 consists of 2 puzzle pieces, 
both are connected components of S0; the puzzle partition of depth 1 consists of 5 puzzle pieces (filled in 
green). The red dots indicate vertices on the puzzle boundaries.

Remark. The previous paragraph describes, in fairly large generality, a construction that 
includes not only the setting of the well known Yoccoz puzzles (where each Sn consists 
of finitely many puzzle pieces), but it also caters for two settings that will be speci-
fied in the upcoming sections. First, we will be interested in puzzles for complex box 
mappings (see Definition 3.1). In that case, g will be a box mapping, where each Sn

will be a (possibly infinite) union of open topological disks with disjoint closures; the 
closure of each of the disks will serve as a puzzle piece of depth n. In other words, for 
a box mapping and for any given n the set of puzzle pieces of depth n equals the set 
of closures of the connected components of Sn; see Definition 3.2 for details. For the 
second time the construction in the previous paragraph will be specified for polynomial 
Newton maps Np (see Section 4). There g will stand for a particularly chosen iterate 
of the Newton map, while Sn will be the Riemann sphere minus finitely many suitably 
chosen closed topological disks bounded by equipotentials in the respective basins of 
roots of p; each of these removed disks is a neighborhood of either a root of p or an 
iterated preimage of such a root for a bounded number of iterations (see Definition 4.4
for details).

Definition 2.1 (Markov property). The union of all puzzle pieces of all depths has the 
Markov property if:

(1) any two puzzle pieces are either nested or have disjoint interiors; in the former case 
the puzzle piece of bigger depth is contained in the puzzle piece of a smaller depth;

(2) the image of each puzzle piece P i
n of depth n > 0 is a puzzle piece P j

n−1 of depth 
n − 1, and the restriction g : P i

n → P j
n−1 is a branched covering.

Equivalently, the Markov property can be stated in terms of puzzles: the union of all 
puzzle pieces of all depths has the Markov property if g(Γn ∩ Sn+1) ⊂ Γn for all n � 0. 
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(Note that for puzzles coming from box mappings this condition is automatically satisfied 
since Γn ∩ Sn+1 = ∅, see Definition 3.2.)

We will say that g is a holomorphic map with well-defined Markov partition if g : U →
V , with U ⊆ V ⊂ Ĉ, is a holomorphic map as described at the beginning of the section 
and for which there exists a nested sequence of open sets V = S0 ⊃ U = S1 ⊃ . . . with 
a well-defined puzzle partition into puzzle pieces the union of which has the Markov 
property.

For a holomorphic map g with a well-defined Markov partition, each puzzle piece Pn

of depth n is a nice set: the orbit of the boundary of Pn does not intersect the interior of 
Pn. This follows from the conditions g(Γn ∩ Sn+1) ⊂ Γn and Sn ⊃ Sn+1 (n = 0, 1, . . .).

Remark. Alternatively, one can define puzzle pieces as pull-backs of a certain initial set 
that is nice. The components of this initial set are declared to be the puzzle pieces of zero 
depth, and puzzle pieces of depth n are components of the n-fold pull-back of components 
of the initial set.

Remark. An important example of a nice set, apart from individual puzzle pieces, is a 
union of puzzle pieces of the same depth. On the other hand, if P and Q are puzzle 
pieces such that P̊ ∩ Q̊ = ∅ and gk(P ) � Q for some k � 0, then P ∪Q is not a nice set.

Definition 2.2 (Puzzle piece centered at a point). Given a point x ∈ Sn, define Pn(x) to 
be the union of all puzzle pieces of depth n containing x.

From the definition above it is clear that if x is not on the boundary of any puzzle 
piece of depth n (equivalently, if x /∈ Γn), then Pn(x) is the unique puzzle piece of depth 
n containing the point x. Otherwise, Pn(x) is a union of puzzle pieces with x in their 
common boundary. Note that these sets do not form a Markov partition: it may be that 
Pn(x) and Pn(y) are different with intersecting interiors if x or y are in Γn. However, it 
is still true that the restriction g : Pn(x) → Pn−1 (g(x)) is a branched covering.

Let us spell out an elementary argument that will be used several times below without 
explicit mention. If x is a point that does not belong to the puzzle boundary of any depth, 
then every point on the orbit of x also does not belong to the puzzle boundary of any 
depth, and hence Pn(gk(x)) is a puzzle piece (of depth n) for all n and k (as long as x
can be iterated k times).

We say that a point x ∈ U escapes if x ∈ Sn \ Sn+1 for some n � 0. Thus the set of 
non-escaping points of g (the non-escaping set of g) is precisely 

⋂∞
n=0 Sn; this is the set 

of points that can be iterated infinitely often.

Definition 2.3 (Fiber, trivial fiber). For a non-escaping point x, the set

fib(x) :=
⋂

Pn(x)

n�0
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is called the fiber of x (with respect to the partition of Sn). We say that x has trivial 
fiber if fib(x) = {x}.

The Markov property of puzzle partitions is a powerful combinatorial property al-
lowing us to study maps from the point of view of symbolic dynamics. We define the 
itinerary at level n of a point x as the sequence 

(
Pn(gi(x))

)∞
i=0. Two points have the same 

itinerary if their itineraries at all levels coincide. In particular, the fiber fib(x) consists 
of all points that have the same itineraries at all levels. In other words, fib(x) consists 
of all points that are dynamically indistinguishable with respect to our puzzle partition. 
Hence, if the fiber is trivial, then the dynamics of g at x is rigid: there is no point other 
than x with the same itinerary as x.

We will also say that the fiber fib(x) is periodic if x has periodic itinerary; this property 
is independent of a particular choice of a point in the fiber.

A point x is called combinatorially recurrent if x does not belong to the puzzle bound-
ary of any depth and the orbit of g(x) under g intersects P̊n(x) for every n. This implies 
that the orbit of g(x) intersects every P̊n(x) infinitely often: if this was not true, then 
for some n there was a largest k with gk(x) ∈ P̊n(x), so gk(x) ∈ P̊m(x) for all m � n; 
hence gk(x) ∈ fib(x). But then gj(x) and gk+j(x) are in the same fiber for every j � 0, 
so gjk(x) ∈ fib(x) for all j.

2.2. The first return construction

In many instances, while working with puzzle pieces one can control critical orbits 
by considering the first moment these orbits enter a given collection of puzzle pieces. 
The first lemma in this subsection, although fairly easy, provides a first example of this 
strategy and is the basis for many constructions of partial maps that we will later work 
with.

Lemma 2.4 (First entry maps have uniformly bounded degrees). For every holomorphic 
map g with well-defined Markov partition there is a constant D ∈ N with the following 
property: for every puzzle piece Y of any depth n and for every point z that does not 
belong to the puzzle boundary of any depth, if k � 1 is the least index so that gk(z) ∈ Y , 
then the map gk : Pn+k(z) → Pn(gk(z)) = Y has degree bounded by D (independent of n
and k).

Proof. Consider the sequence of puzzle pieces 
(
Pn+k−i(gi(z))

)k−1
i=0 . We claim that these k

puzzle pieces have disjoint interiors. If not, then by the Markov property (Definition 2.1) 
we have Pn+k−i(gi(z)) ⊂ Pn+k−j(gj(z)) for some i < j < k and gk−j(Pn+k−j(gj(z))) =
Pn(gk(z)) = Y , hence gk−j(Pn+k−i(gi(z))) ⊂ Y , so gk−j+i(z) ∈ Y in contradiction to 
minimality of k (see Fig. 3).
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Fig. 3. An illustration on how to conclude contradiction to minimality of k in the proof of Lemma 2.4.

In particular, each critical point of g can lie in the interior of at most one puzzle piece 
in this sequence. Therefore, the claim follows with D equal to the product of the degrees 
of all critical points of g. �

In the coming sections we will use the notions of first return map and first entry map
as follows. For an open set W ⊂ U , following [20] we define

L(W ) := {z ∈ U : ∃n � 1 : gn(z) ∈ W} and R(W ) := L(W ) ∩W.

Whenever the set W is understood, we will drop it from the notation and simply write 
L and R. We define the first entry map (to W ) as the map E : L → W via E(z) :=
gn(z) for the smallest possible n, and in particular the first return map R : R → W as 
R := E|L∩W . Finally, we define the first landing map L : L∪W → W via L = id on W
and L = E on L\W ; we will write L̂(W ) = L∪W for the domain of the first landing 
map to W .

Remark. The first return map construction is a key tool that we will use in order to 
produce box mappings (see Definition 3.1).

Lemma 2.5 (First return, entry and landing maps to a nice set). Let g : U → V be 
a holomorphic map with well-defined Markov partition, and let W ⊂ U be a nice set 
consisting of the interiors of puzzle pieces. Then the first entry map E : L → W , the 
first return map R : R → W , and the first landing map L : L̂ → W have the following 
properties.:

(1) L and R are disjoint unions of interiors of puzzle pieces, and hence are open;
(2) for every component Y ′ of L there is a component W ′ of W and an integer n so that 

E|Y ′ = gn|Y ′ , and E : Y ′ → W ′ is a proper map. The same property follows for R
and L by restriction.
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(3) the local degrees of the maps R, E, and L are bounded in terms of g : U → V . 
Moreover, if Crit(g) ⊂ W , then Crit(R), Crit(E) and Crit(L) are contained in 
Crit(g);

(4) every g-orbit that intersects W infinitely often lands in the set {z ∈ R : Rn(z) ∈
R for all n � 0} (the non-escaping set of R).

Remark. If the set W in the lemma above does not satisfy the condition Crit(g) ⊂ W , 
then it might happen that the first return map to W , as well as the first entry and 
landing maps, have infinitely many critical points, even though by hypothesis g does 
not.

Proof. For given z ∈ L, let n be minimal such that gn(z) ∈ W ; let W ′ be the component 
of W containing gn(z), and let k > 0 be the depth of W ′. Then by the Markov property 
gn maps P̊n+k(z) onto W ′. If z ∈ R\W ′, then P̊n+k(z) ⊂ R because W is a nice 
set. If z ∈ L\(R\W ′), then P̊n+k(z) ⊂ L by the definition of the domain of a first 
entry map and the Markov property. Hence, it follows that P̊n+k(z) ⊂ L; moreover, 
∂Pn+k(z) ∩ L = ∅. Therefore, every component of L, and thus of R ⊂ L, is the interior 
of a puzzle piece of the original map g, and by the Markov property, they are disjoint. 
This establishes property (1). Observe that some components of R might coincide with 
some components of W .

Property (2) follows directly from (1) by choosing the least n for every z; therefore 
E restricted to a component Y ′ of L is a proper map gn : Y ′ → W ′ from Y ′ onto a 
component W ′ of W . Similarly for R and L by restriction.

For property (3), observe that by construction every g-orbit of a component of R, 
resp. L, can intersect every critical point of g at most once until it reaches W (compare 
the proof of Lemma 2.4). This implies the first claim. Since, by hypothesis, all critical 
points of g are already in W , we conclude that every critical point of R, resp. E and L, 
must be a critical point of g. The claim follows.

Finally, suppose that orb(z) intersects W infinitely often. Then for every x ∈ orb(z) ∩
W there is a minimal s > 0 such that gs(x) ∈ W . By construction of R it follows that 
x ∈ R, and R restricted to the component of R containing x is equal to gs. Hence, 
orb(z) ∩W lies in the non-escaping set of R (equivalently, orb(z) ∩ (W \ R) = ∅), and 
property (4) follows. �

We say that a puzzle piece Pn of depth n is weakly protected by a puzzle piece Pm, 
necessarily of depth m < n, if Pn ⊂ P̊m. If m = n − 1, then we say that Pn is protected. 
The following lemmas guarantee compact containment of pullbacks of certain weakly 
protected puzzle pieces.

Lemma 2.6 (First return to weakly protected puzzle piece). Let g be a holomorphic map 
with well-defined Markov partition, and z be a point that does not belong to the puzzle 
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boundary of any depth. Suppose that there exists a depth n and an integer k � 1 so that 
Pn+k(z) is weakly protected by Pn(z) and one of the following is true:

(1) the orbit of g(z) never enters Pn(z);
(2) the orbit of g(z) intersects Pn(z) and k is minimal so that gk(z) ∈ P̊n(z).

Then every connected component of R
(
P̊n+k(z)

)
is compactly contained in P̊n+k(z).

Proof. By Lemma 2.5, the closure of any component of the domain of the first return 
map to P̊n+k(z) is a puzzle piece of depth at least n + k + 1. Let Y ⊂ Pn+k(z) be one of 
these puzzle pieces, say at depth n +k+l with l � 1. By construction, gl : Y → Pn+k(z) is 
a (branched) covering. Let us show that Y ⊂ P̊n+k(z). The argument is slightly different 
in cases (1) and (2).

If the orbit of g(z) never enters Pn(z), then for every s ∈ {1, . . . , k} the puzzle piece 
Pn+k−s (gs(z)) = gs (Pn+k(z)) is disjoint from P̊n(z). The same is true for gs(Y ) because 
Y ⊂ Pn+k(z); hence l � k + 1. Since Pn+k(z) is weakly protected by Pn(z) and gl(Y ) =
Pn+k(z), by pulling back Pn(z) we conclude that Y is weakly protected by the puzzle 
piece of depth n + l. Since l � k + 1, this puzzle piece lies in Pn+k(z). Therefore, 
Y ⊂ P̊n+k(z).

If the orbit of g(z) intersects Pn(z) and k is the first time this orbit enters P̊n(z), 
then the puzzle pieces (Pn+k−i(gi(z)))k−1

i=0 have disjoint interiors. Therefore, l � k. As-
sume that Y is not contained in P̊n+k(z). Then ∂gk(Y ) intersects ∂gk (Pn+k(z)) =
∂Pn(gk(z)) = ∂Pn(z) at some point w ∈ ∂(gk(Y )) ∩ ∂Pn(z). Since puzzle pieces are nice 
sets, i.e. gm(∂Pn(z)) ∩ P̊n(z) = ∅ for all m � 0, we have in particular gl−k(w) /∈ P̊n(z). 
But gl−k(w) ∈ ∂gl−k(gk(Y )) = ∂gl(Y ) = ∂Pn+k(z) ⊂ P̊n(z), a contradiction. �
Remark. It is possible to show that if Pn is protected, then every component of the first 
return domain to P̊n is compactly contained in P̊n, see [27, §31].

2.3. Some standard pullback and Koebe-type lemmas

In Subsection 2.4 we will show that certain fibers are trivial. This, as well as many 
other constructions later in the paper, will be done by controlling moduli of annuli 
under pullbacks. In the present subsection, we collect some of the standard results in 
this direction.

Lemma 2.7 (Annulus pull-back under branched covering). Let f : Y ′ → Y be a branched 
covering of degree at most D between two closed topological disks. Suppose Y2 ⊂ Y1 ⊂ Y

are two further closed topological disks so that A := Y̊1 \ Y2 ⊂ Y is an annulus with 
mod(A) = μ > 0. Moreover, assume that Y ′

1 and Y ′
2 are preimage components of Y1, 

resp. Y2 under f such that Y ′
1 ⊃ Y ′

2 . Set A′ := Y̊ ′
1 \ Y ′

2 . Then mod(A′) � μ/D2.
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Fig. 4. An illustration for Lemma 2.9.

Proof. The branched cover f : Y ′ → Y has at most D − 1 critical points. Hence the 
annulus A has a parallel sub-annulus B of modulus μ/D that avoids all critical values 
(recall that B is a parallel sub-annulus of an annulus A if a biholomorphic map that 
uniformizes A to a round annulus A0 sends B to a concentric round sub-annulus B0 of 
A0). Then all f -preimages of B are annuli that map to B by unbranched covering maps 
of degrees at most D. One of them, say B′, is an essential sub-annulus in A′, and thus 
mod(A′) � mod(B′) � μ/D2. �
Remark. In fact, in the previous lemma one can prove the stronger bound mod(A′) �
μ/D, see [18, Lemma 4.5].

An open topological disk U in C is said to have η-bounded geometry [20] if it contains a 
Euclidean disk of radius η ·diamU . The lemma above together with the Koebe Distortion 
Theorem implies the following fact that gives control over geometric shapes of disks under 
pullbacks (see, for example, [20, Fact 6.2]).

Lemma 2.8 (Easy geometry control). Let f : U ′ → V ′ be a branched covering of degree at 
most D between open topological disks, and suppose V ⊂ V ′ is a topological disk that has 
η-bounded geometry and mod(V ′ \ V ) � δ > 0. Let U be a component of f−1(V ). Then 
U has η′ = η′(η, δ, D)-bounded geometry. �
Remark. Let U ⊂ C be an open topological disk, and x ∈ U be a point. Denote by R(x)
the radius of the smallest Euclidean disk centered at x that contains U , and by r(x) the 
radius of the largest Euclidean disk centered at x that is contained in U . We say that U
has C-bounded shape with respect to x if R(x)/r(x) � C [27, §4]. More generally, U has 
C-bounded shape if this is so with respect to some point in U . It is straightforward to 
see that U has η-bounded geometry if and only if it has 1/η-bounded shape.

Another application of the Koebe Theorem is the following.

Lemma 2.9 (Easy diameter control). Let f : U → V be a branched covering of degree at 
most D between two open topological disks. Suppose B ⊂ B′ ⊂ V is a pair of open round 
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disks of radii 0 < r < r′ and so that mod(V \ B′) = δ′ > 0, mod(B′ \ B) = δ > 0. Let 
Y ′ be a component of f−1(B′) and Y be a component of f−1(B) such that Y ⊂ Y ′ (see 
Fig. 4). Then there exists C = C(r, r′, δ, δ′, D) > 0 such that

C · diamY ′ � diam Y � C−1 · diamY ′.

Proof. The proof follows from [21, Lemma 11.2]. �
2.4. Triviality of fibers of points accumulating on periodic fibers

In this subsection we prove that fibers are trivial if they accumulate at periodic fibers 
under iteration. To do this, we need a refinement of Lemma 2.4 in order to gain some 
additional control on the degree of the first entry map to the union of puzzle pieces that 
contains all critical puzzle pieces.

We will say that a fiber is critical if it contains a critical point.

Lemma 2.10 (First entry to union of critical puzzle pieces has uniformly bounded degree). 
Let (xi)i∈I be a finite set of points with distinct fibers that includes all critical fibers of 
g. Suppose that there exists a depth m � 0 so that all puzzle pieces Pm(xi) of depth m
are pairwise disjoint, and an integer s > 0 so that all (P̊m(xi) \ Pm+s(xi))i∈I are non-
degenerate annuli. Then there is a constant μ > 0 with the following property: for every 
y ∈ U for which there exists a k � 0 so that gk(y) ∈

⋃
i Pm+s(xi), let k = k(y) be minimal 

with this property; then there exists an essential open annulus A ⊆ P̊m+k(y) \Pm+s+k(y)
such that mod(A) � μ.

Proof. Consider an arbitrary y′ ∈ U for which there exists a k′ � s so that gk′(y′) ∈⋃
i Pm+s(xi), and suppose again that k′ is minimal with this property, and that y′ is not 

on the boundary of a puzzle at any depth. To fix notation, suppose that x0 is a point in 
(xi)i∈I with gk

′(y′) ∈ Pm+s(x0).
We claim that then the set P̊m+k′(y′) \Pm+s+k′(y′) contains an annulus that separates 

Pm+s+k′(y′) from ∂Pm+k′(y′) and that has modulus bounded below.
We have Pm+s(gk

′(y′)) = Pm+s(x0) and hence P̊m(gk′(y′)) \Pm+s(gk
′(y′)) = P̊m(x0) \

Pm+s(x0), and by hypothesis this is a non-degenerate annulus of some modulus, say 
μ(x0) > 0.

Now we take a preimage of this annulus under gk′ . The map gk
′ sends P̊m+k′(y′) to 

the puzzle piece P̊m(gk′(y′)) = P̊m(x0) at depth m, and this is a branched cover of degree 
bounded in terms of m and k′ � s and the degrees of the critical points of g.

Therefore,

g−k′
(
P̊m(gk

′
(y′)) \ Pm+s(gk

′
(y′))

)
∩ P̊m+k′(y′)

will in general not be an annulus, but an open disk with several closed disks removed. 
However, it does contain an annulus that separates Pm+s+k′(y′) from ∂Pm+k′(y′), and 
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that is an essential annulus with modulus bounded below in terms of μ(x0), m, s and 
the degrees of the critical points of g. Since there are only finitely many xi, this modulus 
is bounded below by a number μ > 0 that depends on g, s, m and the set {xi}, but not 
on y′.

Now consider a point y for which there exists a minimal k = k(y) as required in the 
lemma, and so that y is not on the puzzle boundary at any depth. If k � s, then y is 
one of the y′ discussed earlier.

The proof for the case k > s is similar to Lemma 2.4. Again, consider the “orbit 
of puzzle pieces” (Pm+k−t (gt(y)))kt=0. For t < k, the point gt(y) does not visit any 
critical puzzle piece of depth m + s. Since for t < k − s, the depth of the surrounding 
pieces Pm+k−t (gt(y)) exceeds m + s, the entire pieces Pm+k−t (gt(y)) are non-critical. 
Therefore, the map

gk−s : P̊m+k(y) → P̊m+s(gk−s(y))

is biholomorphic. In particular, P̊m+k(y) \ Pm+s+k(y) is conformally equivalent to

P̊m+s(gk−s(y)) \ Pm+2s(gk−s(y)) .

The claim now follows from the first part, applied to y′ = gk−s(y) and k′ = s. �
Lemma 2.11 (Accumulation at periodic fiber implies trivial fiber). Let g be a holomorphic 
map with well-defined Markov partition. Suppose that z is a non-escaping point of g so 
that the ω-limit set of z intersects the fiber fib(y) of some periodic point y but the orbit 
of z is disjoint from fib(y). Assume additionally that fib(y), as well as all those critical 
fibers of g that intersect ω(z), are contained in the interiors of the corresponding puzzle 
pieces of any depth. Then fib(z) = {z}.

Proof. Our proof goes along the lines of the proof of [35, Lemma 3], except for the final 
step where Lemma 2.10 will provide us with the suitable annuli to pull back.

The proof itself may look a bit technical in notation, but the underlying idea is simple: 
as long as the orbit of z stays sufficiently close to fib(y), that is in some fixed puzzle piece 
Pn0(y) that contains no further critical points other than those are already in fib(y), the 
puzzle pieces along this orbit are mapped forward injectively. When the orbit leaves 
Pn0(y) and later returns back (z accumulates on fib(y) by hypothesis), it does so with 
uniformly bounded degree by Lemma 2.4. This allows us, by pulling back suitable annuli 
(given by Lemma 2.10), to conclude that fib(z) = {z}, whether or not the fiber of y is 
trivial.

Up to passing to an iterate of g, assume that y is a fixed point, and let us adopt the 
notation f for this iterate of g; thus fk(Pn+k(y)) = Pn(y) for all n and k.

Let (cfi)i∈I be the set of all critical fibers of f , different from fib(y), that intersect 
ω(z) (if the fiber of y is not critical, then this is just the set of all critical fibers of f
that intersect ω(z); here I is some finite index set, which in the simplest case might be 
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empty). For every critical fiber cfi pick a critical point ci ∈ cfi representing this fiber 
(this choice might not be unique). Let us choose n0 so that Pn0(y) ∩ Crit(f) ⊂ fib(y)
and Pn0(ci) ∩ Crit(f) ⊂ cfi for every i ∈ I; this is possible by definition of a fiber. By 
increasing n0 if necessary, we also assume that orb(z) does not intersect any critical 
puzzle piece of depth n0 except those around ci, i ∈ I and, possibly, y. Up to an index 
shift, assume n0 = 0. Further on, fix a depth s > 0 such that all the annuli P̊0(y) \Ps(y)
and P̊0(ci) \ Ps(ci) are non-degenerate. The depth s exists by the assumption of the 
lemma: all the fibers fib(y) and cfi are contained in the interiors of the corresponding 
puzzle pieces of any depth. Define P := Ps(y) 

i∈I Ps(ci); this is the union of the puzzle 
pieces of depth s containing y and all critical fibers on which the orbit of z accumulates.

For given n, let kn be the smallest integer such that fkn(z) ∈ Pn(y); such an index 
exists because z accumulates on fib(y). However, since the orbit of z never enters fib(y)
by hypothesis, there exists a smallest integer mn > n such that fkn(z) /∈ Pmn

(y), hence 
fkn(z) ∈ Pmn−1(y) \ Pmn

(y). Finally, let ln � 0 be minimal so that fkn+mn+ln(z) ∈ P; 
again, such an index exists because z accumulates on fib(y), critical fibers fib(ci), i ∈ I, 
and by the choice of what we call the zero depth puzzle pieces. However, it might happen 
that fkn+mn+ln(z) lands not in Ps(y) but in a critical puzzle piece in P; denote by 
c = c(n) the point from the set {y} ∪

⋃
i∈I{ci} such that fkn+mn+ln(z) ∈ Ps(c) (see 

Fig. 5 for a schematic drawing of the puzzle pieces involved).
We claim that there exists an essential open sub-annulus

An ⊂ P̊kn+mn+ln(z) \ Pkn+mn+ln+s(z)

such that

mod(An) � μ

D2 , (2.1)

where D is given by Lemma 2.4 and μ is given by Lemma 2.10, and hence the factor μ/D2

is independent of z and n. We will do this in three steps; since we are pulling back, they 
come in reverse order. The third step is fkn : Pkn+mn+ln(z) → Pmn+ln(fkn(z)) controlled 
by Lemma 2.4; the second step is a sequence of mn conformal iterates to Pln(fkn+mn(z)); 
and in the first step this puzzle piece is sent by f ln to P0(fkn+mn+ln(z)), controlled by 
Lemma 2.10 again. These three steps are illustrated in Fig. 5 (left, center, and right); 
the annuli we are pulling back are contained in the shaded rings.

Step 1. Since ln was chosen to be minimal so that fkn+mn+ln(z) ∈ P, and c is such 
that fkn+mn+ln(z) ∈ Ps(c) ⊂ P, Lemma 2.10 guarantees that there exists an essential 
open sub-annulus

A′′
n ⊂ P̊ln

(
fkn+mn(z)

)
\ Pln+s

(
fkn+mn(z)

)
such that
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Fig. 5. Puzzle pieces of various depths involved in the proof of Lemma 2.11. Observe that the fiber fib(y)
may or may not belong to some of the puzzle pieces in the sequence 

(
Pmn−i

(
fkn+i (z)

))mn−1

i=1
; the picture 

shows the case when it never happens. Moreover, the first landing of the orbit of z after the time kn + mn

to the union P = Ps(y) ∪ ⋃
j Ps(cj) may or may not be in the puzzle piece Ps(y); the picture shows the 

case when the orbit of z lands in some other puzzle piece Ps(c) ∈ P.

mod(A′′
n) � μ, (2.2)

where μ does not depend on z and n. (Strictly speaking, in order to apply Lemma 2.10, 
we have to enlarge P so that it would contain all critical puzzle pieces of depth s; but 
since, by construction, the orbit of z visits only those critical puzzles already in P, this 
enlargement of P does not alter the conclusion.)

Step 2. We claim that there exists an open essential sub-annulus

A′
n ⊂ P̊mn+ln

(
fkn(z)

)
\ Pmn+ln+s

(
fkn(z)

)
such that A′

n is a conformal copy of A′′
n, and hence

mod(A′
n) = mod(A′′

n). (2.3)

We argue as follows. The puzzle pieces around y are, as always, nested like P0(y) ⊃
P1(y) ⊃ P2(y) ⊃ . . . , and since y is a fixed point, each one is the image of the next 
one under f . Since fkn(z) ∈ Pmn−1(y) \ Pmn

(y), all the points fkn(z), fkn+1(z), . . . , 



K. Drach, D. Schleicher / Advances in Mathematics 408 (2022) 108591 23
fkn+mn(z) are in P0(y) \ Pmn
(y). But by construction all critical points in P0(y) are 

already in fib(y) and hence in Pmn
(y). Therefore, for i ∈ {0, 1, . . . , mn − 1}, the puzzle 

pieces of depth mn − i around fkn+i(z) do not contain critical points. Together, this 
shows that the map fmn : Pmn

(
fkn(z)

)
→ P0

(
fkn+mn(z)

)
has degree 1, and the same 

is true for its restriction fmn : Pmn+ln

(
fkn(z)

)
→ Pln

(
fkn+mn(z)

)
, and hence the claim 

in Step 2 follows with A′
n as the conformal pull-back of A′′

n under this restricted map.

Step 3. Similarly to Step 1, since kn is the first iterate so that fkn(z) ∈ Pn(y), the 
map fkn : Pkn+n(z) → Pn(y) has degree at most D by Lemma 2.4. The same is then 
true for its restriction

fkn : Pkn+mn+ln(z) → Pmn+ln

(
fkn(z)

)
.

We will construct an annulus An in order to apply Lemma 2.7 as follows: let Y1 and Y2
be the closed disks such that A′

n = Y̊1 \ Y2, pick two more disks Y ′
1 ⊂ Pkn+mn+ln(z)

and Y ′
2 ⊃ Pkn+mn+ln+s(z) such that Y ′

2 ⊂ Y ′
1 and fkn(Y ′

i ) = Yi for i = 1, 2, and set 
An := Y̊ ′

1 \ Y ′
2 . Then An is an essential sub-annulus in P̊kn+mn+ln(z) \ Pkn+mn+ln+s(z). 

Then by Lemma 2.7,

mod(An) � mod(A′
n)

D2 . (2.4)

Combining (2.2), (2.3) and (2.4) we obtain (2.1).
This argument can be carried out for infinitely many n: we choose a sequence nj so 

that once Anj−1 is fixed, the value of nj is chosen so that Pknj
+mnj

+lnj
(z) is contained 

in the bounded component of C \ Anj−1 . This way, we obtain infinitely many disjoint 
annuli with moduli bounded below that all separate z from all previous annuli, and using 
the standard Grötzsch inequality this implies that the fiber of z is trivial. �
Corollary 2.12 (Accumulation at periodic fiber implies trivial fiber, revisited). Under the 
hypothesis of Lemma 2.11, there exist an increasing sequence of integers (νj)j�0 and two 
puzzle pieces Ps, P0 with P̊s ⊂ P0 such that gνj (z) ∈ P̊s for every j � 0 and the degrees 
of the maps gνj : P̊νj

(z) → P̊0 are uniformly bounded.

Proof. The claim follows from the proof of Lemma 2.11 with (νj) a subsequence of 
(knj

+mnj
+ lnj

) (in the notation of the lemma) chosen so that the corresponding iterate 
of z lands in the same puzzle piece Ps ⊂ P0 for all j. Clearly, such a subsequence exists 
because we have a finite choice of “target” puzzle pieces. �
3. Complex box mappings and rigidity (Theorem C)

In this section we review the notion of complex box mappings, as introduced in [21], 
and prove a generalized version of triviality of fibers for such mappings (Theorem C). 
This result is of interest in its own right, and it is a key ingredient in the proof of our 
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Fig. 6. An example of a box mapping F : U → V. The components of U are shaded in gray, there might be 
infinitely many of those; the components of V are drawn with thick black boundary. The critical points of 
F are marked with a cross.

Dynamical Rigidity for Newton maps (Theorem A). In what follows, we use definitions 
and results from [21], clarified and spelled out in [4].

Definition 3.1 (Complex box mapping). A holomorphic map F : U → V between two open 
sets U ⊂ V ⊂ Ĉ is a complex box mapping if the following holds:

(1) F has finitely many critical points;
(2) V is the union of finitely many open Jordan disks with disjoint closures, while U is 

the union of finitely or infinitely many open Jordan disks;
(3) every component W of V is either a component of U , or W ∩U is a union of Jordan 

disks with pairwise disjoint closures, each of which is compactly contained in W ;
(4) for every component U of U the image F (U) is a component of V, and the restriction 

F : U → F (U) is a proper map.

Following Douady and Hubbard [8], a proper holomorphic map f : U → V of de-
gree d � 2 between two open topological disks U and V with U ⊂ V ⊂ C is called a 
polynomial-like map. By the straightening theorem, such a polynomial-like map is hybrid 
equivalent to a polynomial of degree d, and this polynomial is unique (up to affine conju-
gation) if the filled Julia set K(f) :=

⋂
n�1 f

−n(V ) is connected. Moreover, connectivity 
of K(f) is equivalent to the condition that all critical points of f are contained in K(f).

If both V and U are connected, then the box mapping F : U → V is a polynomial-like 
map (in the sense of Douady–Hubbard). When V is connected and U has only finitely 
many components, and all of these are compactly contained in V, then the corresponding 
box mapping is a generalized polynomial-like map in the sense of Lyubich [25]. (There 
many related notions in the literature, see e.g. [13,2]; see also [4, Sections 1-2] for some 
further references on the notion.) For general box mappings, however, U is allowed to 
have infinitely many components, and in many applications this is important. Such 
generality in the definition of a box mapping results in phenomena that do not occur for 
polynomial-like maps. For example, a box mapping might have wandering domains, or 
it might have a non-escaping set that is all of U (see [4, Section 3]).
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Definition 3.2 (Puzzle piece of box mapping). For a box mapping F : U → V and n � 0, 
we define a puzzle piece of depth n to be the closure of a component of F−n(V). A puzzle 
piece is called critical if it contains at least one critical point.

Remark. We keep our convention for puzzle pieces to be closed sets, following Yoccoz 
and Hubbard [15]. This is in contrast to [21,4], where puzzle pieces are defined to be open 
sets. The transition between the two conventions is straightforward: a puzzle piece in the 
sense of the cited papers is the interior of a puzzle piece in the sense of Definition 3.2, 
and vice versa, the closure of a puzzle pieces in the sense of [21,4] is a puzzle piece in 
our sense.

The set K(F ) := {z ∈ U : Fn(z) ∈ U for all n � 0} is the non-escaping set of the box 
mapping F : U → V.

The following lemma describes an easy way how to construct a box mapping using the 
first return construction. Recall that a set is nice if the forward orbit of its boundary does 
not intersect its interior. By the Markov property, every union of puzzle pieces of the 
same depth is a nice set in this sense. However, a union of puzzle pieces not necessarily 
of the same depth might or might not be nice.

Lemma 3.3 (Simple construction of box mappings). Let g : U → V be a holomorphic map 
with well-defined Markov partition as in Section 2, and let W be a disjoint union of the 
interiors of finitely many puzzle pieces. Suppose W is nice. Let V be the union of W and 
all the components of L(W ) that intersect Crit(g), and let F : R(V) → V be the first 
return map to V. Then F is a complex box mapping and Crit(F ) ⊂ Crit(g).

Proof. Let us show that F satisfies Definition 3.1. First notice that V is a nice open set. 
Indeed, by definition of L(W ) the orbit of the boundary of a component of V \W maps 
over the boundary of some component of W without intersecting other components 
of V \ W ; the claim then follows because W is nice by hypothesis. Since V is nice, 
we can apply Lemma 2.5, and the properties (2), (3), and (4) of Definition 3.1 follow 
automatically by that lemma.

In order to see that F has only finitely many critical points (property (1) of Defini-
tion 3.1), and those critical points are among the critical points of g, let us pick a critical 
component of R(V) for F , say Y , and assume F |Y = gk|Y for some k � 1. Since F is 
the first return map to V, each critical point of g can be seen at most once in the se-
quence Y, g(Y ), . . . , gk−1(Y ) of open puzzle pieces (see Lemma 2.4). Since Y is a critical 
component for F , there exists m ∈ {0, . . . , k− 1} so that gm(Y ) contains a critical point 
of g; call this point c. The g-orbit of c intersects W and hence c belongs to L(W ). By 
definition of V, this implies gm(Y ) ⊂ V and thus m = 0. We conclude that each critical 
point of F is a critical point of g. �
Definition 3.4 (Box renormalizable box mappings). We call a complex box mapping 
F : U → V box renormalizable around a critical point c ∈ U if there exists a puzzle 
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piece W at some depth containing c, and an integer s � 1 such that F sk(c′) ∈ W̊ for 
every critical point c′ ∈ W and every k � 0; the minimal such s is called the period of the 
renormalization. The non-escaping set of this box renormalization is defined analogously 
as 

{
z ∈ U : F sk(z) ∈ W̊ for all k � 0

}
. In this situation we call c a box renormalizable 

critical point.
A complex box mapping F : U → V is called box renormalizable if it is box renormal-

izable around at least one critical point in U , and non-box renormalizable otherwise.

Definition 3.5 (Renormalizable box mappings). We call a box mapping F : U → V renor-
malizable around a critical point c ∈ U if there exists a puzzle pieces W and an integer 
s � 1 such that F is box renormalizable around c with period s in the sense of Def-
inition 3.4, and such that there exists a puzzle piece Y ⊂ W̊ with F s(Y ) = W , and 
F sk(c′) ∈ Y̊ for all critical points c′ in Y̊ , and for all k � 0.

When we speak of renormalizable box mappings, we mean Definition 3.5 unless ex-
plicitly speaking of “box renormalization”.

Remark. In the case that a puzzle piece W0 contains several critical points among which 
some have their entire F s-orbits in W0 and others do not, then one can shrink W0 to 
a puzzle piece W of greater depth that contains only those critical points that do not 
escape, and then F is renormalizable around these critical points.

Remark. Let us clarify the difference between these two definitions. If W is a puzzle 
piece of some depth n so that F is box renormalizable around c with period s, and Y is 
the puzzle piece of depth n +s containing c, then either Y = W or Y ⊂ W̊ by the puzzle 
set-up. Both cases are allowed for box renormalization according to [21, Definition 1.3]. 
In the second case, the restriction F s : Y̊ → W̊ is a polynomial-like map in the sense 
of Douady–Hubbard. It follows that all critical points c′ ∈ Y have F sk(c′) ∈ Y̊ for all 
k � 1, and hence the filled Julia set of the renormalization around c is connected by the 
standard theory of polynomial-like maps mentioned above.

If Y = W , then F s : Y̊ → W̊ is a proper self-map of a disk without escaping points 
(hence an (NE) component), and thus the non-escaping set of F s, restricted to Y , is 
equal to Y . This is a situation that may occur for box renormalizable maps, but it is 
not included in Definition 3.5. It does not occur in a number of interesting cases arising 
from dynamics on Ĉ. We will thus introduce, in Definition 3.9, the notion of dynamically 
natural box mappings for which this is excluded.

The following lemma relates fibers of renormalizable critical points to little filled Julia 
sets of the corresponding renormalizations.

Lemma 3.6 (Renormalizable fibers equal little filled Julia sets). If c is a renormalizable 
critical point of a complex box mapping F , and 	 := F s : Y̊ → W̊ is the corresponding 
polynomial-like renormalization of F , then the filled Julia set of 	 is equal to fib(c).
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Proof. Since by our definition of renormalization the filled Julia set K(	) of 	 is con-
nected (see the remark above), K(	) is equal to the nested intersection of open disks 
	−n(W̊ ). As Y ⊂ W̊ , the same is true for the closures of these disks. Each of these closed 
disks is a puzzle piece of F because 	 is a restriction of F and Y , W are puzzle pieces 
of F . Hence fib(c), as a nested intersection of all puzzle pieces containing c ∈ K(	), is 
equal to K(	). �
Lemma 3.7 (Fibers contained in puzzle interior). Consider a box mapping F : U → V and 
a non-escaping point z. If the orbit of z does not eventually land in an (NE) component, 
then the fiber of z is contained in the interior of every puzzle piece it is contained in.

Proof. It suffices to prove that the interior of every puzzle piece around z contains 
another puzzle piece around z at greater depth. To do this, let Wn be the puzzle piece 
of some depth n containing z and for k � n denote by Wn−k = F k(Wn) the puzzle piece 
around F k(z) at depth n − k, so that W0 is a component of U .

If any Wn−k contains a puzzle piece around F k(z) at greater depth than n −k that is a 
proper subset, then this proper subset must be contained in W̊n−k, and the claim follows 
by pull-back to Wn. Otherwise, in particular W0 is not only a component of U but also 
a component of V. As we iterate forward, we cannot keep visiting components of U that 
are also components of V (by finiteness of V this would yield a cycle of (NE)-components 
which is excluded by hypothesis), so we must reach a component of U that is compactly 
contained in its component of V, and the claim follows. �

From Lemma 3.7 it follows that if a box mapping F has no (NE) components, then 
every component of K(F ) is compact. This is of course what is expected in dynamics, 
and it is the case for dynamically natural box mappings (see Definition 3.9).

This is true, in particular, for non-renormalizable box mappings (which are, in turn, 
non-box renormalizable), as well as for the box mappings that we will extract in Section 5
for Newton maps.

We will be using one of the rigidity theorems by Kozlovski and van Strien. This result 
plays a crucial role in their study of rigidity for multicritical complex [21] and real [20]
polynomials (see also [18] for the original proof of the Kahn–Lyubich Covering Lemma, 
a crucial technical ingredient used to obtain the all-important complex bounds in the 
complex case). In order to quote it, we need some additional notation.

For a point x ∈ U , set mF (x) := mod(P̊0(x) \ P1(x)). Define

Kδ(F ) :=
{
y ∈ K(F ) : lim sup

k�0
mF (F k(y)) > δ

}
and Kwell-inside(F ) :=

⋃
δ>0

Kδ(F ).

The set Kwell-inside(F ) is invariant under F and consists of all points in K(F ) whose orbits 
visit from time to time some components of U that are “well inside” the corresponding 
components of V. In other words, a point x ∈ K(F ) fails to lie in Kwell-inside(F ) if 
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the orbit of x converges to the boundary of U in such a way that the modulus of the 
largest annulus within V around the components of U through which the orbit travels 
goes to zero. Clearly, Kwell-inside(F ) does not contain points that are mapped to an (NE)
component.

We have the following rigidity result for complex box mappings, quoted from [4, 
Section 6.1] using the language of fibers:

Theorem 3.8 (Dynamical rigidity for complex box mappings). If F : U → V is a non-
renormalizable complex box mapping without (NE) components, then each point in its 
non-escaping set has trivial fiber or converges to the boundary of U . In particular, each 
point in Kwell-inside(F ) has trivial fiber. �

Now we are able to prove the first of our three main results, Theorem C which claim 
that for any box mapping and an arbitrary point z, at least one of the following holds: 
z has trivial fiber, it is renormalizable, it converges to the boundary, or it lands in an 
(NE) component.

Proof of Theorem C. Let F : U → V be the given box mapping, and z ∈ K(F ) be a 
point in the non-escaping set of F . If the orbit of z lands in one of the (NE) components 
of F , or if it converges to the boundary, then we are in case (NE) or (CB) of the theorem, 
and we are done. Excluding these two possibilities, we will show that either the orbit of 
z lands in a renormalizable fiber (case (R)), or fib(z) is trivial (case (T)).

If F has at least one renormalizable critical point c, and the orbit of z lands in fib(c)
(which is the filled Julia set of the corresponding renormalization by Lemma 3.6), then we 
are in case (R) of the theorem. If the orbit accumulates on fib(c) but does not land there, 
then we are in case (T): since orb(z) and hence ω(z) are disjoint from (NE) components, 
the fiber of each point in ω(z) is contained in the interior of every puzzle piece in which 
it is contained (by Lemma 3.7), so by Lemma 2.11 it follows that fib(z) = {z}.

Otherwise, defining C ⊂ Crit(F ) as the set of all renormalizable critical points, as well 
as those critical points whose orbits land in renormalizable fibers, there is a depth s � 1
such that the orbit of z is disjoint from the set B :=

⋃
c∈C Ps(c). Since orb(z) does not 

converge to the boundary of U , it must have at least one accumulation point x ∈ U such 
that Ps(x) is disjoint from B. By choosing r > s, we can assure that the orbits of the 
critical points in C are disjoint from Pr(x).

Write V := P̊r(x) and construct a box mapping as in Lemma 3.3: define V ′ to be 
the union of V and all the components of L(V ) intersecting Crit(F ), set U ′ := R(V ′), 
and let F ′ : U ′ → V ′ be the first return map to V ′. By Lemma 3.3, F ′ is a complex box 
mapping. Since F ′-puzzle pieces are also F -puzzle pieces, the notions of fiber for F and 
for F ′ coincide for K(F ′).

By Lemma 2.5 (4), since F ′ is a first return map, the F -orbit of z intersects K(F ′). 
Moreover, Crit(F ′) ⊂ Crit(F ) (Lemma 3.3), and the choice of r implies that all the 
critical points of F ′ are non-renormalizable.
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The box mapping F ′ has no (NE) components, it is not renormalizable and has only 
repelling periodic points: the latter property follows because every sufficiently deep puzzle 
piece around a non-repelling periodic point gives rise to a polynomial-like map of degree 
at least 2, and this requires a renormalizable critical point. Hence, by Theorem 3.8, each 
point in K(F ′) either has trivial fiber, or converges to ∂U ′. Since F k(z) ∈ K(F ′) for some 
k, and since we have already excluded case (CB), we conclude that fib(F k(z)) = {F k(z)}, 
and the same is true for z. �

We end this section by quoting some further definitions from [4]. We will use these 
notions in later sections.

For a complex box mapping F : U → V, let A ⊂ K(F ) be a finite set and W be a union 
of finitely many open puzzle pieces of F . We say that W is an open puzzle neighborhood
of A if A ⊂ W and each component of W intersects the set A.

Define Koff-crit(F ) to be the set of all points x ∈ K(F ) such that the orbit of x is 
disjoint from some open puzzle neighborhood of Crit(F ).

Definition 3.9 (Dynamically natural complex box mapping). A complex box mapping 
F : U → V is dynamically natural if it satisfies the following assumptions:

(1) F does not have components of (NE) type;
(2) K(F ) = Kwell-inside(F );
(3) the Lebesgue measure of the set Koff-crit(F ) is zero.

As a heuristic principle, the box mappings that arise naturally as restrictions of some 
globally defined rational maps are dynamically natural in the sense of the definition 
above. This is the case for box mappings constructed for complex polynomials in [21]
and [2]. In Section 5, we show that the box mappings that are induced by the New-
ton dynamics are also dynamically natural. We use this fact in Section 6 to conclude 
parameter rigidity for Newton maps.

Dynamically natural box mappings may have orbits that converge to the boundary, 
i.e. of (CB) type. However, condition (2) imposes a restriction on those orbits: the con-
vergence to the boundary cannot be “sudden”. We encourage the reader to consult [4, 
Section 4.4], where some further motivation of the notion of dynamical naturality is 
given.

4. Puzzles for Newton maps

4.1. Construction of Newton puzzles

The proof of the Dynamical Rigidity for Newton maps (Theorem A) will rely on the 
puzzle construction for Newton maps introduced in [10]. We will review the key steps 
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of this construction, together with some of its properties that we will use in the further 
sections.

In the polynomial case, puzzles were constructed by Branner–Hubbard and Yoccoz 
(with much further work since then) starting with neighborhoods Sn of the filled-in Julia 
set that are bounded by suitably chosen equipotential curves. These are subdivided by 
finitely many pairs of dynamic rays landing at common repelling periodic or preperiodic 
points (for quadratic polynomials, usually at the α-fixed point and its iterated preim-
ages). The closures of complementary components of Sn minus the ray pairs are called 
puzzle pieces of depth n) and they form a Markov partition.

However, for rational maps it is not at all clear how to carry over such a construction; 
in particular, there are no obvious substitutes for the basin of infinity and the Böttcher 
coordinates available in the polynomial case that give rise to good Markov partitions.

A notable exception are Newton maps of polynomials. For these, puzzles with similar 
properties as in the polynomial case have recently been constructed in [10, Theorem B]. 
This result will be one of the main ingredients in the construction leading to our Theo-
rem A.

Theorem 4.1 (Newton puzzles for Newton maps of polynomials). Every Newton map Np

has an iterate g = NM
p for which there exists a finite graph Γ ⊂ Ĉ that is g-invariant 

(except possibly in a Fatou neighborhood of the roots), and so that for every n � 0 the 
complementary components of g−n(Γ) that intersect the Julia set are Jordan disks that 
satisfy the Markov property under g. These disk components define a Newton puzzle 
partition of depth n. �

We will unwrap they key steps in Theorem 4.1, in particular, how we construct Γ. 
But first let us discuss the possible exception to forward invariance of Γ: every root 
has a compact and forward invariant neighborhood within its Fatou component (the 
immediate basin) in which Γ may fail to be invariant.

It turns out that it is much more convenient to work with an important and only 
mildly restricted class of Newton maps:

Definition 4.2 (Attracting-critically-finite Newton maps). A polynomial Newton map is 
called attracting-critically-finite if all critical points that converge to a root actually land 
on the root after finitely many iterations.

Theorem 4.1 can be strengthened for attracting-critically-finite Newton maps: in this 
case, the graph Γ can be chosen to be g-invariant without exception (see [10, Theo-
rem 3.10]).

The reason that attracting-critically-finite Newton maps are no serious restriction is 
that, by the means of a standard quasiconformal surgery, every polynomial p has an 
associated polynomial p̃ so that the associated Newton maps Np and Np̃ are related as 
follows [10, Proposition 2.8]: there exists a quasiconformal homeomorphism τ : Ĉ → Ĉ

with τ(∞) = ∞ such that
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(1) Np̃ is attracting-critically-finite;
(2) deg p � degNp = degNp̃ = deg p̃;
(3) τ conjugates Np and Np̃ in neighborhoods of the Julia sets of Np and Np̃ union all 

Fatou components (if any) that do not belong to the basins of roots; moreover, τ
has non-zero dilatation only in the basin of the roots, but not on the Julia set (if it 
has positive measure) or on Fatou components away from the root basins.

Recall that the immediate basin Uξ of a root ξ is the component of the basin of ξ
that contains ξ. The quasiconformal surgery that turns Np into Np̃ is described in [11]; 
the idea is as follows. For every root ξ, the immediate basin Uξ is simply connected [32], 
and the restriction of Np to Uξ is a proper self-map of some degree k = k(ξ) � 2. The 
quasiconformal surgery consists of replacing a disk neighborhood of the root within Uξ

by a disk with dynamics z �→ zk; the degree of the self-map on Uξ is unchanged by this 
procedure, but afterwards there is a single critical point in Uξ, and it is a fixed point 
(hence a simple root of p̃). The degree of Np will drop if ξ was a multiple root of p. 
Moreover, the dynamics in the preimage components of Uξ is adjusted so as to make 
sure that all critical points in any preimage component coincide and land exactly on the 
root. All this can be accomplished by a quasiconformal surgery within a compact subset 
of finitely many components of the basin.

The condition that Np̃ is attracting-critically-finite assures that the dynamics of Np̃

restricted to the basins of the roots is postcritically finite, while keeping the dynamics 
elsewhere unchanged (there may for instance still be critical points with dense orbits in 
the Julia set). This condition implies that the roots of p̃ are simple, so they are critical 
fixed points of Np̃, and these are the only critical points in the immediate basins (possibly 
of higher multiplicities as critical points, but not as roots). Condition (3) implies that 
the dynamics of fibers of points in the Julia sets are the same, up to quasiconformal 
conjugation; in particular, triviality of fibers is preserved.

It is known that for every immediate basin Uξ the boundary point ∞ is always ac-
cessible through one or several accesses that are invariant up to homotopy; this number 
of invariant accesses equals k(ξ) − 1, i.e. is one less than the degree of Np as a self-map 
of the immediate basin of the root [16, Proposition 6]. For the modified Newton map 
Np̃, the accesses to ∞ are in fact invariant as curves, without need for a homotopy; 
this is the point of the surgery. Since τ must map basins and in particular immediate 
basins to basins and immediate basins, and it is a conjugation in a neighborhood of ∞, 
it must respect accesses to ∞ up to homotopy within immediate basins, and in particu-
lar the circular order at ∞ of these accesses (quasiconformal homeomorphisms preserve 
orientation).

From now on we will assume that our Newton maps are attracting-critically-finite. 
This property allows us to define the basic combinatorial object associated to a Newton 
map, the channel diagram and eventually fibers. By definition (see [16,11] for a detailed 
discussion), the channel diagram is a finite topological graph Δ such that its vertex 
set consists of all fixed points of Np (that is, ∞ and the roots of p), and each edge of 
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Δ is invariant under the dynamics and connects ∞ to some root within the respective 
immediate basin. The union of the interiors of all such fixed rays across all immediate 
basins gives the edge set of Δ.

By construction, the graph Δ is invariant (as a set) under Np; it encodes the mutual 
locations of the immediate basins. The Newton graph at level n (denoted by Δn) is the 
connected component of N−n

p (Δ) containing ∞. Each edge of the Newton graph is an 
iterated preimage of a fixed ray in an immediate basin, and hence the Newton graph 
intersects the Julia set of Np only at ∞ and its iterated preimages, and intersects the 
Fatou set of Np along basins of roots. By construction, Δn ⊂ Δn+1 for all n � 0.

The Newton graph at level n is the foundation for the definition of the puzzle of depth 
n. The construction rests on the following theorem, which is a compilation of two results, 
[11, Theorem 3.4] and [10, Proposition 3.1].

Theorem 4.3 (Connectivity properties of Newton graphs). Let Np be an attracting-
critically-finite Newton map; then

(1) there exists a least integer N so that ΔN contains all poles of Np;
(2) there exists a least integer K > N so that for every component V of Ĉ \ Δ there 

exists a topological circle XV ⊂ ΔK ∩V ∩C that passes through all finite fixed points 
in ∂V , separates ∞ from all critical values of Np in V , and does not contain a point 
on a critical orbit, except the roots (see Fig. 7). �

Finally, we are ready to complete the explanation of Theorem 4.1 and present the 
construction of puzzles that was carried out in [10, Section 3]. Our puzzles will be defined 
for a suitable iterate of the Newton map Np. Let X :=

⋃
V XV , where the union is taken 

over all components V of Ĉ\Δ of the circles described in Theorem 4.3 (2). Since X ⊂ ΔK , 
it follows that NK

p (X) = Δ, and K is minimal with this property.
Define M := N − 1 + K. By Theorem 4.3 (1), M is the smallest index so that ΔM

contains all prepoles of level K (where a point z is called a (pre-)pole of level n > 0 if 
n is minimal such that Nn

p (z) = ∞; with this definition, K equals to the largest level 
of (pre-)poles in X. Indeed, since ∞ ∈ ΔN , every component of N−1

p (ΔN ) contains a 
pole. Hence, ΔN+1 = N−1

p (ΔN ) because ΔN ⊂ ΔN+1 and ΔN contains all the poles. 
Therefore, ΔN+1 contains all the prepoles of level 2. Proceeding inductively, we see that 
ΔM contains all prepoles of level K, and M is the smallest with such property (as N
was also the smallest). Note that X ⊂ ΔM because X ⊂ ΔK and ΔK ⊂ ΔM .

Write g := NM
p for the M -th iterate of Np. This is the iterate for which we construct 

Newton puzzles. Our basis is the Newton graph Δn: the components of Ĉ \ Δn have 
the Markov property (Definition 2.1); this is discussed in [10, Section 3]. However, and 
this is the main technical difficulty, these components do not necessarily have Jordan 
boundaries: some (pre-)poles on the boundary can be accessible in more than one way, 
like the point ∞ for some immediate basins. It turns out that this problem can be 
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Fig. 7. Example of the dynamical plane of a degree 4 Newton map. The thick lines (in white and black) form 
the channel diagram Δ; it connects the roots ξ1, . . . , ξ4 to ∞. The three yellow dots mark the poles, and 
the white cross marks the “free” critical point: in this example, ξ1, ξ2, and ξ4 are simple critical points, 
ξ3 is a critical point of multiplicity two, it is responsible for two accesses to ∞ in Uξ3 , and the remaining 
“free” critical point is renormalizable. The lighter-colored disks around the roots are bounded by suitably 
chosen equipotentials in the basins of roots. The topological circles passing through the roots, each in its 
own connected component of Ĉ \ Δ, are shown in thin lines (black within the light disks around roots and 
their preimages, white otherwise). The set S0 is the complement in Ĉ of the closed light disks. The Newton 
puzzle boundary of depth 0, denoted Γ0, consists of all white lines (the disk boundaries, the rays connecting 
them to ∞, and the topological circles constructed in Theorem 4.3 (2), except the parts within the disks 
around the roots and their preimages).

remedied by adding X to Δ and pulling back; passing to the iterate g is required to 
make the resulting graphs connected and forward invariant. The details are as follows.

Define Δ+
0 := Δ ∪X, and for n > 0 let Δ+

n be the component of N−n
p (Δ+

0 ) containing 
∞; this is in analogy to the construction of Δn. By [10, Lemma 3.6 (3)],

g−1(Δ+
nM ) = N−M

p (Δ+
nM ) = Δ+

(n+1)M for all n � 2. (4.1)

We set Γ′
0 := Δ+

2M , and similarly Γ′
n := Δ+

(n+2)M for all n > 0. In this notation, 
Property (4.1) transforms to

g−1 (Γ′
n) = Γ′

n+1 ⊃ Γ′
n for all n � 0, (4.2)

where the last inclusion follows from [10, Lemma 3.6 (2)].
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In order to construct puzzles, pick an equipotential curve in each of the immediate 
basins of roots, for some value of the potential, and consider the disks around the roots 
bounded by these curves. Define S0 as the unique unbounded component in the com-
plement of the union of these disks and all their pullbacks under Np to the components 
of root basins that intersect Γ′

0 (see Fig. 7). For a given n � 1, inductively define Sn as 
the unbounded component of g−1(Sn−1). Since the roots of p are superattracting fixed 
points of g, we have S0 ⊃ S1 ⊃ . . . ⊃ Sn ⊃ . . .. Moreover, 

⋂
n�0 Sn is the complement of 

the root basins, and hence it contains only those critical points of g that are not mapped 
to the roots of p by some iterate of g (or equivalently, of Np).

Definition 4.4 (Newton puzzles). For a given n � 0, the Newton puzzle of depth n is the 
graph Γn := ∂Sn ∪ (Γ′

n ∩ Sn). The closure of a connected component of Sn \ Γn is a 
Newton puzzle piece of depth n.

The Newton puzzle pieces of depth n provide a tilling of Sn. Theorem 4.1 guarantees 
that these puzzle pieces are closed topological disks with Jordan boundaries, and that 
they have the Markov property in the sense of Definition 2.1 (essentially, this follows 
from (4.2)). (See also [10, Theorem 3.9] for a stronger result.)

4.2. Properties of Newton puzzles

Let us review the properties of Newton puzzles proven in [10]. As mentioned above, 
we will be working with the iterate g of an attracting-critically-finite Newton map Np for 
which we have well-defined puzzle pieces. For simplicity, we will keep calling g a Newton 
map, even though it is an iterate of a Newton map.

It follows directly from the construction that for every puzzle piece Pn of depth n
the “Julia boundary” ∂Pn ∩ J(g) is a finite set consisting of (pre)poles of level at most 
K + (n + 2)M , whereas ∂Pn intersects the Fatou set of g within the basins of the roots, 
and ∂Pn intersects any particular Fatou component along two pieces of fixed or pre-fixed 
internal rays and an arc of some equipotential.

From Definition 2.2 it is clear that if x ∈ J(g) is neither ∞, nor a (pre)pole, then 
Pn(x) is the unique puzzle piece of depth n that contains x. Otherwise, Pn(x) is a finite 
union of puzzle pieces with x as their common boundary point.

The following two lemmas are [10, Theorem 3.9 (4) and (5)].

Lemma 4.5 (Infinity and (pre)poles have trivial fibers). If x is ∞, a pole or a prepole, 
then fib(x) = {x}. �
Lemma 4.6 (Fibers contained in interior). Every x ∈ Ĉ that is not in the basin of a root 
has the property that its fiber is contained in P̊n(x) for every depth n � 0. Stronger yet, 
for every n � 0 there is an m > n so that Pm(x) ⊂ P̊n(x). �
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Here comes a result saying that the only possible obstruction for the fiber of a point 
z to be trivial is when the orbit of z accumulates at some critical fiber that is not pole 
or prepole. The second part of this result is a statement similar to [20, Fact 5.1].

Lemma 4.7 (Avoiding critical points implies trivial fiber and measure zero). Let 
Critnf(g) ⊂ Crit(g) be the set of all critical points that are not (pre-)poles and do not lie 
in the basin of any root.

(1) If z ∈ C is not in the basin of any root and its orbit does not accumulate at a fiber 
of any critical point in Critnf(g), then fib(z) = {z}.

(2) If U is a finite union of puzzle pieces so that Ů ∩ Crit(g) = Critnf(g), and E(U)
is the union of all orbits that avoid Ů and all root basins, then E(U) is a nowhere 
dense compact set of zero Lebesgue measure.

Proof. Step 1: proving assertion (1). Since the orbit of z does not accumulate on critical 
fibers, except, possibly, at critical (pre-)poles, there exists n > 0 such that orb(g(z)) is 
disjoint from the interiors of all puzzle pieces of depth n that contain critical values in 
their interiors. Furthermore, since the fiber of ∞ is trivial (Lemma 4.5), we can enlarge 
n if necessary so that P̊n(∞) contains no critical values.

If z is ∞ or a (pre-)pole, then the claim follows from Lemma 4.5. So we can assume, 
for the rest of the proof of the first assertion, that z is not ∞ or a (pre-)poles.

We first consider the case that there exists a point w ∈ ω(z) that does not belong to 
the puzzle boundary of any depth. In particular, w is neither ∞ nor a (pre-)pole; and w
cannot be in any root basin since z is not. By Lemma 4.6, every k > n has an l > 0 so 
that A := P̊k(w) \Pk+l(w) is a non-degenerate annulus. Fix some k > n. Since the orbit 
of z accumulates at w, there exists an increasing sequence (ki) with gki(z) ∈ P̊k+l(w).

We claim that for all i, the annulus Ai := P̊k+ki
(z) \ Pk+l+ki

(z) is a conformal copy 
of A. Indeed, we can pull back P̊k(w) � gki(z) univalently for ki iterates along the orbit 
from z to gki(z) and obtain P̊k+ki

(z): the only possible obstacle would be a critical value 
in P̊k+ki−j(gj(z)) for j ∈ {1, 2, . . . , ki}, but this would mean that gj(z) was in a puzzle 
piece of depth k + ki − j � k > n with a critical value in its interior, which is excluded 
by hypothesis. We thus have mod(Ai) = mod(A), and the Ai are nested (possibly after 
passing to a subsequence of (ki)); hence, by the Grötzsch inequality, fib(z) = {z}.

We are thus left with the case when ω(z) consists only of points in the puzzle boundary, 
but not in the basin of any root. By construction of puzzles, this means that ω(z) consists 
only of (pre-)poles, and hence contains ∞. Since the fiber of ∞ is trivial (Lemma 4.5), 
we can exclude the case that z is a (pre-)pole itself.

Since the orbit of z accumulates at ∞, and ∞ is a repelling fixed point, there exist 
infinitely many points y ∈ orb(z) such that y ∈ P̊n+2(∞) and g(y) ∈ P̊n+1(∞) \Pn+2(∞). 
Let w ∈ Pn+1(∞) \P̊n+2(∞) be an accumulation point of such g(y)’s. By our assumption 
on ω(z), the point w must be a (pre-)pole. Let Y ⊂ Pn+1(∞) \ P̊n+2(∞) be a puzzle 
piece of depth n + 2 containing w and such that orb(z) intersects Y̊ in an infinite set.
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We claim that B := P̊n(w) \ Y is a non-degenerate annulus. To see this, let W be the 
puzzle piece of depth n +1 such that Y ⊂ W and ∞ ∈ ∂W . From our choice of n it follows 
that Pm+1(∞) ⊂ P̊m(∞) for every m � n: the point ∞ is a repelling fixed point, and 
the set P̊n(∞) lies in the linearizing neighborhood around ∞ as it contains no critical 
values. Therefore, the set Pn(w) is a puzzle piece of depth n (rather than a union of 
puzzle pieces), ∞ ∈ ∂Pn(w), and we have the inclusion Y ⊂ W ⊂ Pn(w). Furthermore, 
∂W ∩ ∂Pn(w) consists of ∞ and two pieces of fixed rays meeting at ∞. But since ∂Y
is disjoint from ∞, and hence cannot contain pieces of fixed rays, it does not intersect 
∂W ∩ ∂Pn(w). Therefore, Y̊ ⊂ Pn(w), and hence the annulus B is non-degenerate. The 
rest of the proof for B is the same as for the annulus A. The first assertion is proven.

Step 2: proving assertion (2). Clearly, since Ů is an open set, E(U) is closed and 
hence compact. By the first claim of the lemma, E(U) is totally disconnected and hence 
nowhere dense. It remains to show that it has zero Lebesgue measure.

We can assume that U is composed of puzzle pieces of the same depth. Indeed, if 
U ′ ⊂ U is a union of puzzle pieces of the same depth that satisfies Ů ′∩Crit(g) = Critnf(g), 
then E(U) is a subset of E(U ′). We can further assume that the components of U are of 
depth n, with n having the properties specified in Step 1 of the proof: P̊n(∞) contains 
no critical values and orb(g(z)) is disjoint from all open puzzle pieces of depth n that 
contain at least one critical value.

Let E′(U) be E(U) minus ∞ and all prepoles. Since the difference is countable, it 
does not affect the measure, so we can focus on E′(U). Let z ∈ E′(U) be a Lebesgue 
density point of E′(U).

From the construction in part (A), there exists a point w in a puzzle piece Y of depth 
at least n +2 so that Y ⊂ P̊n(w) and the orbit of z accumulates at w from within Y . Pick 
an ε > 0 large enough so that the open round disk B := B(w, ε) of radius ε centered at 
w intersects ∂Y \ J(g), but small enough so that B ⊂ P̊n(w). Since orb(z) accumulates 
at w, there exists an increasing sequence of integers (nk)k�0 so that gnk(z) ∈ B. Let Dk

be the component of g−nk(B) containing z; by construction, Dk ⊂ P̊n+nk
(z) and the 

map gnk : P̊n+nk
(z) → P̊n(w) is univalent.

Since B intersects the boundary of Y , from the boundary structure of Newton puzzle 
pieces it follows that there exists a point ξ in one of the root basins and a small δ > 0
so that B′ := B(ξ, δ) ⊂ B \ J(g) (see the discussion in the beginning of the current 
subsection). Let D′

k be the component of g−nk(B′) contained in Dk.
By the result in Step 1, diamDk → 0 as k → ∞. By Lemma 2.8, all Dk and D′

k

have uniformly bounded shapes, and by Lemma 2.9, the diameters of Dk and D′
k are 

comparable with the constant independent of k. As k → ∞, it follows that

meas(Dk ∩ J(g))
meas(Dk)

�−→ 1,

because meas(Dk ∩ J(g)) � meas(Dk \ D′
k) < C · meas(Dk) for some constant C < 1

independent of k. This is a contradiction to our choice of z as a density point of E′(U). 
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By the Lebesgue Density Theorem we conclude that E′(U) has measure zero. The second 
assertion follows. �

A critical point c of a Newton map g is called combinatorially periodic if there exists a 
puzzle piece W at some depth containing c, and an integer s > 1 such that gsk(c′) ∈ W̊

for every critical point c′ ∈ W and every k � 0. Combinatorially periodic critical points 
are never mapped to ∞ and do not belong to the basins of roots. Moreover, the following 
lemma shows that all combinatorially periodic critical points are, in fact, renormalizable 
in the sense of Douady–Hubbard: each of them lies in the non-escaping set of a suitable 
polynomial-like restriction (with domain being the interior of a puzzle piece). This lemma 
is a slight modification of [10, Proposition 3.16], and essentially follows from Lemma 4.6.

Lemma 4.8 (Polynomial-like renormalization at combinatorially periodic points). If x
is a combinatorially periodic critical point, then there exists n > 0 and a least k =
k(n) > 0 so that the map gk : P̊n+k(x) → P̊n(x) is a polynomial-like map of degree d � 2
with connected filled Julia set equal to fib(x). Moreover, for sufficiently large n and for 
any two combinatorially periodic points x and x′ as above, either fib(x) = fib(x′) or 
Pn(x) ∩ Pn(x′) = ∅. �

We obtain that in the Newton setting for a critical point to be combinatorially pe-
riodic is equivalent to being renormalizable: the inclusion in one direction is given by 
Lemma 4.8; inclusion in the other direction follows by definition. (Note here that the 
renormalization period k = k(n) from Lemma 4.8 can be larger than the least period 
coming from combinatorial periodicity.) In the sequel, we will use these terms inter-
changeably.

As defined in Section 2, a point x is combinatorially recurrent if the orbit of g(x)
under g intersects every puzzle piece at x (we had shown in Section 2 that this implies 
that the orbit visits every such puzzle piece infinitely often). In this case, we can define 
a strictly increasing sequence (ni) as follows, starting at arbitrary n0 � 0: given ni, let 
ki be minimal so that gki(x) ∈ Pni

(x) and set ni+1 := ni + ki. Then gki sends Pni+1(x)
to Pni

(gki(x)) = Pni
(x).

Every combinatorially periodic (and hence renormalizable, see Lemma 4.8) critical 
point is combinatorially recurrent. In this case, the sequence ki = ni+1 −ni is eventually 
constant. There is a converse to this observation, as follows:

Lemma 4.9 (First return times for the pullback nest). For a given n0 � 0, the sequence 
ki = ni+1 − ni associated to a combinatorially recurrent critical point x via the pull-
back construction above is monotonically increasing. It is bounded (and hence eventually 
constant) if and only if x is renormalizable.

Proof. Monotonicity of ki follows immediately from the definition that ki is minimal so 
that gki(x) ∈ Pni

(x): a larger value of i means a smaller set Pni
(x), and hence it can 

take only longer to return into the smaller set.
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If the sequence (ki) is bounded, and hence eventually constant, then x is combina-
torially periodic with respect to P̊ni

(x) for i large enough. Thus x is renormalizable 
by Lemma 4.8. Conversely, if x is renormalizable, then x is periodic with some period 
k (which is equal to the renormalization period). This implies that eventually ki � k; 
hence the sequence is bounded. �

For combinatorially recurrent critical points that are not renormalizable we can assure 
that the boundaries of the puzzle pieces in the pullback nest constructed above are 
disjoint for all sufficiently large depths, due to the following lemma.

Lemma 4.10 (Non-renormalizable recurrent points are well inside). For every n0 � 0, if x
is a combinatorially recurrent critical point that is non-renormalizable, and (Pni

(x))i�0
is the nest obtained by pulling back Pn0(x) along the orbit of x, then there exists j large 
enough so that Pni+1(x) ⊂ P̊ni

(x) for all i � j.

Proof. The proof is similar to the proof of [11, Proposition 3.10]. First of all, possibly 
by increasing n0 we can assume that ∂Pn0(x) is disjoint from ∞: this is possible since ∞
has trivial fiber (Lemma 4.5), and hence the puzzle pieces containing ∞ cannot intersect 
all elements in the nest (Pni

(x))i�0. Hence we can assume that the boundaries of the 
puzzle pieces in the nest are disjoint from periodic points of g.

Since ∂Pn0(x) contains finitely many (pre-)poles and no periodic points, there exists 
k large enough so that for all (pre-)poles w ∈ ∂Pn0(x) and all r � k we have gr(w) /∈
∂Pn0(x). By Lemma 4.9, the sequence (ki)i�0 of first return times tends to infinity. 
Therefore, there is a minimal j so that kj � k. Let us show that the lemma holds for 
this j. If not, then there exists i � j with ∂Pni+1(x) ∩ ∂Pni

(x) �= ∅. This intersection, by 
construction of puzzle pieces (see the beginning of Subsection 4.2), must contain a (pre-
)pole, say z. Hence ∂Pni

(x) contains the (pre-)poles z and gki(z), and they are distinct 
(there are no periodic points on the boundary). Mapping these two points forward, it 
follows that ∂Pn0 must contain a pair of distinct (pre-)poles w and gki(w). But ki �
kj � k, and this contradicts our choice of k. �
5. Proof of dynamical rigidity for Newton maps (Theorem A)

5.1. Proof of Theorem A

We will prove Theorem A and its corollaries for a given Newton map Np, or rather 
its iterate g = NM

p . Unless mentioned otherwise, every orbit will be understood as an 
orbit under iteration of g, and the same applies to puzzles, fibers and their triviality. It 
will not be a loss of generality to assume that Np is attracting-critically-finite because 
the relevant properties are preserved by the surgery construction.

The overall plan is to extract, in the dynamical plane of g, a box mapping for which 
the non-escaping set “captures” most of the critical orbits that do not belong to the 
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Newton graph at any level; this is done in Lemma 5.1 below. For the points in Ĉ whose 
orbits intersect the non-escaping set of such a box mapping we will be able to conclude 
“rigidity or polynomial-like dynamics” using Theorem C. The remaining points in Ĉ will 
be treated by means of Lemma 4.5 and Lemma 4.7.

Our strategy depends on the following distinction of the critical points

Crit(g) = CritB 
CritI 
CritnR 
CritR : (5.1)

(B) we say that c ∈ CritB if the orbit of c converges to one of the roots of the polynomial 
p (critical points in the Basin of a root);

(I) we say that c ∈ CritI if the orbit of c lands at ∞ (critical points landing at Infinity);
(R) we say that c ∈ CritR if c is combinatorially Recurrent (it may or may not be 

renormalizable);
(nR) we say that c ∈ CritnR if c /∈ CritI 
 CritB 
 CritR (c is combinatorially

non-Recurrent).

Let Critnf(g) be the set of all critical points of g whose orbits do not land at ∞ or at 
a root (the critical points of the original Newton map that are not eventually f ixed), 
hence Critnf(g) = CritnR ∪ CritR. Finally, define CritanR ⊂ CritnR as the set of all critical 
points in CritnR that accumulate at the fiber of at least one critical point in Critnf then 
Crita(g) := CritanR ∪ CritR.

Lemma 5.1 (Newton box mapping). If Critnf(g) �= ∅, then there exists a complex box 
mapping F : U → V with the following properties:

(1) the components of U and V are the interiors of puzzle pieces of g, and for every 
component U of U there exists k � 1 so that F |U = gk|U ;

(2) every g-orbit that accumulates at some point in V intersects K(F );
(3) Crit(F ) ⊂ Critnf(g) ⊂ V and Crita(g) ⊂ Crit(F ) ∩K(F );
(4) every critical component of U contains exactly one critical fiber.

Moreover, F is dynamically natural in the sense of Definition 3.9.

Proof. Step 1: construction of a box mapping. By finiteness of critical points, there exists 
a depth s > 0 so that Ps(c) ∩ Crit(g) ⊂ fib(c) for every c ∈ Critnf(g). In this proof 
we assume that the critical puzzle pieces are chosen of depth at least s. In particular, 
this assumption guarantees that the interiors of these puzzle pieces do not intersect 
CritB ∪ CritI .

By passing to an iterate of g (and keeping the notation for simplicity), and pos-
sibly increasing s, we can assume that for every renormalizable critical point c, if 
gk : P̊s+k(c) → P̊s(c) is the corresponding polynomial-like restriction (with non-escaping 
set equal to fib(c)), then P̊s+k(c) is a component of the first return domain R(P̊s(c)). 
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Such an iterate exists by Lemma 4.8. By passing to an iterate we do not change the 
number of renormalizable fibers.

We construct open sets W and W0, . . . , Wm for m � | CritR |, using induction over 
the set CritR and starting with W0 := ∅ (if CritR = ∅, then m = 0 and W = W0 = ∅). 
Set W0 := ∅.

For the inductive step, assume that for some k � 1 critical points c1, . . . , ck−1 ∈ CritR
are chosen, and we have constructed a set Wk−1. If Wk−1 intersects the orbits of all 
critical points in CritR, then the induction is complete with m = k − 1. Otherwise, 
choose another critical point ck ∈ CritR so that its orbit does not intersect Wk−1. 
Choose a puzzle piece Wk with ck ∈ W̊k and of depth no less than Wk−1 (at least s). Let 
Xk ⊂ C be the union of those components in L(W̊k) that contain a critical point. Since 
Wk has depth at least s, all critical points of g in W̊k are in the same fiber, so there is a 
single component of W̊k ∩Xk and its closure is a single critical puzzle piece, say W ∗

k . (In 
particular, this means that all critical points in fib(ck) are combinatorially recurrent.)

We claim that we can choose Wk to be of sufficiently large depth so that W ∗
k ⊂ W̊k. 

For non-renormalizable critical points this follows from Lemma 4.10, whereas for renor-
malizable points it follows by our choice of s and considering the iterate of g described 
above. Setting Wk := Wk−1 ∪ W̊ ∗

k completes the inductive step.
Suppose that the induction for CritR ended with the set Wm. Let W be the union 

of Wm and all components in L(Wm) \Wm that contain critical points. Again, since all 
puzzle pieces in question are of depth at least s, each component in W contains at most 
one critical fiber. The construction of Wm implies CritR ⊂ W.

Finally, let Crit′nR := CritnR \W; these are all combinatorially non-recurrent critical 
points whose orbits are disjoint from Wm. Define the set

V := W ∪
⋃

c∈Crit′nR

P̊l(c), (5.2)

where l � s is a depth at least as large as the depths of the puzzle pieces in W with the 
further properties that the orbit of each c ∈ Crit′nR never re-enters the puzzle piece Pl(c)
and each of the puzzle pieces Pl(c) for c ∈ CritnR is weakly protected. The existence 
of such a depth follows from Lemma 4.6 and because the critical points in question are 
combinatorially non-recurrent. Observe that Critnf(g) ⊂ V.

By construction, the set V is a nice open set with finitely many connected components, 
each of which is the interior of a puzzle piece, and each containing at least one critical 
point. Define U := R(V) and let F : U → V be the first return map to V as defined 
in Lemma 2.5. We claim that the map F : U → V is a box mapping with the desired 
properties.

Indeed, F is a box mapping in the sense of Definition 3.1: Lemma 2.5 (2) implies 
property (4) in Definition 3.1, while property (2) of the definition follows from the con-
struction of V.
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For Property (3), observe first that since each of the puzzle pieces W ∗
k is weakly 

protected by Wk, Lemma 2.6 implies that the set of points in Wm that eventually return 
to Wm is compactly contained in Wm. At the same time, the components of W \ Wm

are simultaneously components of U and V. Similarly, by Lemma 2.6, since each Pl(c)
for c ∈ Crit′nR is weakly protected (by a puzzle piece of some depth) and the orbit of c
escapes from Pl(c), the set of points in P̊l(c) returning to P̊l(c) is compactly contained 
in P̊l(c).

Finally, property (1) follows from Lemma 2.5 (3): we have that Critnf(g) ⊂ V and 
the orbits of points in V that return to V do not intersect CritB 
 CritI , as the latter 
points do not belong to the interiors of the puzzle pieces of depth s. Therefore, the map 
F : U → V is indeed a box mapping.

Step 2: properties of the box mapping. Lemma 2.5 (4) implies that every g-orbit that 
accumulates at some point in V also intersects K(F ). Since Critnf(g) ⊂ V, we conclude 
that Crita(g) ⊂ K(F ). Moreover, since Crit(F ) ⊂ Critnf(g) (by Lemma 2.5 (3)), it 
follows that Crita(g) ⊂ Crit(F ) ∩K(F ).

The claim that each critical component of U contains exactly one critical fiber follows 
from the construction of F . (Note that there is no ambiguity by referring to critical fibers 
without explicitly mentioning the map: since Crit(F ) ⊂ Critnf(g), each critical fiber of 
F is a critical fiber of g.)

It remains to prove that our box mapping is dynamically natural in the sense of 
Definition 3.9. The fact that the box mapping F : U → V has no (NE) components 
follows again from the construction: any cycle of (NE) components of U must pass 
either through the set Wm, or through one of the sets P̊l(c) for some c ∈ Crit′nR. The 
former is impossible since all components in Wm ∩ U are compactly contained in Wm

by construction of the box mapping, while the latter is impossible since c is an escaping 
point for P̊l(c), again by construction.

The next condition for dynamical naturality that we verify is meas(Koff-crit(F )) = 0. 
For n � s, define Un :=

⋃
c∈Critnf(g) Pn(c). By Lemma 4.7, meas(E(Un)) = 0. Since 

Koff-crit(F ) ⊂
⋃

n E(Un), and the latter set is a countable union of sets of measure zero, 
the claim follows.

The final condition is K(F ) = Kwell-inside(F ). If U has only finitely many connected 
components, then this property is obvious. So assume that U has infinitely many com-
ponents: all but finitely many of them are compactly contained in V.

Define X to be the set of all components of U with the following properties:

• each U ∈ X is compactly contained in the respective component of V;
• for every U ∈ X , if gr : U → V , V ⊂ V is the restriction of F to U , then r is larger 

than the maximal depth of the components in V.

The set X contains all but finitely many components of U . Let us show that the 
elements of X are “well-inside” V, i.e. there exists δ > 0 such that for every U ∈ X , 
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Fig. 8. An illustration for the proof of Lemma 5.1.

if W is the component of V containing U , then mod(W \ U) � δ. This would finish 
the proof of dynamical naturality of F because by definition of Kwell-inside(F ) it then 
would follow that K(F ) = Kδ′(F ), where δ′ is the minimum over δ and finitely many 
moduli of annuli that separate the components of U not accounted in X but that are 
still compactly contained in V.

Let U ∈ X and W be the component of V such that U ⊂ W , and suppose gr : U → V

is the restriction of F to U . By construction of F , the degree of the map gr : U → V is 
bounded independently of U (because F is a first return map, see Lemma 2.5) and V is 
a component in the decomposition (5.2). The latter means that V is weakly protected 
by some open puzzle piece V ′. Let U ′ be the component of g−r(V ′) containing U (see 
Fig. 8). Since V is weakly protected by V ′, i.e. V ⊂ V ′, we conclude that U ′ \ U is a 
non-degenerate annulus. Furthermore, U ′ ⊂ W because U

′ is of depth at least r that is 
larger than the depths of all the components of V (by definition of X ). We claim that 
the degree of the map gr : U ′ → V ′ is uniformly bounded (independently of the choice 
of U ∈ X ).

Suppose gi(U ′) is an open puzzle piece containing a critical point c ∈ Critnf(g) for 
some 0 � i < r, and let Vc be the component of V containing c. If the depth of gi(U ′)
is larger than the depth of Vc, then gi(U ′) ⊂ Vc, which is impossible: i < r and hence U
would be contained in a component of g−i(Vc), a contradiction to the fact that U is the 
domain of a branch of the first return map to V with the range equal to V . Therefore, 
the depth of gi(U ′) must be smaller than the depth of Vc. Now the claim follows because 
there are only finitely many critical puzzle pieces of depth smaller than the depths of the 
components of V, and thus the number of such indices i is bounded above independently 
of r (and hence of U).
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The degree of the map gr : U ′ → V ′ is uniformly bounded above, say by some D > 0. 
Together with Lemma 2.7, this implies that the modulus of U ′ \U is bounded below only 
in terms of D and mod(V ′\V ); since W \U ⊃ U ′\U , the same is true for mod(W \U). And 
since there are only finitely many components of V and our choice of V ′ was independent 
of U we conclude that the elements of X are all “well-inside” V, as desired. �
Proof of Theorem A. The statement of Theorem A is invariant under the quasiconformal 
surgery that makes the Newton map Np attracting-critically finite (see Section 4), and 
also by passing to an iterate. Therefore, we assume that Np is attracting-critically-finite 
and consider the iterate g = NM

p that has a well-defined puzzle partition.
Consider some z ∈ Ĉ and distinguish the following cases:

(1) the point z is in the basin of a root, or equivalently, ω(z) ∩ CritB �= ∅;
(2) orb(z) � ∞, so z is ∞ or a (pre-)pole; in particular, orb(z) might intersect CritI ;
(3) ω(z) ∩ fib(c) = ∅ for every c ∈ Critnf(g), ω(z) ∩CritB = ∅, and orb(z) /� ∞; in other 

words, z is not ∞ or a (pre-)pole and the ω-limit set of z does not intersect the roots 
and the critical fibers of g, except, perhaps, at critical (pre-)poles.

(4) ω(z) ∩fib(c) �= ∅ for some c ∈ Critnf(g), that is the orbit of z lands in, or accumulates 
at the fiber of a critical point that is not in CritI 
 CritB .

Clearly, these four cases cover all possibilities. Moreover, all the cases above are dis-
joint. Let us show in each of the cases which of the alternatives (B), (T), or (R) in 
Theorem A holds.

(1) This is precisely case (B).
(2) If orb(z) � ∞, then fib(z) = {z} by Lemma 4.5, so we are in case (T).
(3) Since ω(z) does not intersect the roots and the critical fibers of g, except possibly 

at poles or prepoles, we can apply Lemma 4.7, so z has trivial fiber and we are in case 
(T).

(4) By Lemma 5.1, there exists a dynamically natural box mapping F : U → V such 
that Critnf(g) ⊂ V. Therefore, if the orbit of z accumulates on the fiber of a point in 
Critnf(g), then it also intersects the non-escaping set K(F ) of F , again by Lemma 5.1. 
Since the box mapping F contains no (NE) components, and the orbit of z is not of 
(CB) type (those are taken care of in case (3)), the conclusion of Theorem A follows 
from Theorem C. �
5.2. Proof of Corollaries 1.1 and 1.2

In this subsection, we will prove that every component of the basin of every root has 
locally connected boundary (Corollary 1.1), and that the Julia set of every Newton map 
is locally connected provided that every polynomial-like restriction of Np with connected 
Julia set straightens to a polynomial in S (Corollary 1.2). Theorem A will be our main 
ingredient for the proof. (Recall that S stands for the set of all polynomials so that the 
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two conditions are satisfied: 1) most of the Fatou components are small; 2) the boundaries 
of all Siegel disks are Jordan curves.)

Proof of Corollary 1.1. As before, we assume that Np is attracting-critically-finite and 
replace Np by its iterate g := NM

p , so we work in the setting of Section 4. By invariance, 
it suffices to prove that every immediate basin Uξ has locally connected boundary. We 
will prove the following somewhat more precise statement: every z ∈ ∂Uξ has trivial 
fiber, unless z is eventually periodic and the fiber of z intersects ∂Uξ in a single point, 
which is (pre)periodic. In both cases, ∂Uξ is locally connected at z.

By Theorem A, the point z either has trivial fiber, or it maps after finitely many 
iterations to the little filled-in Julia set, say K, of a polynomial-like restriction of g with 
connected Julia set, and so that K is connected. In the first case, Uξ is locally connected 
at z and we are done, so (after replacing z by a point on its orbit) it suffices to assume 
that z ∈ K. The key step of the proof will be to show that K ∩ ∂Uξ = {z}, and as a 
byproduct that z is a periodic point of g.

By Lemma 4.8, the set K is the filled-in Julia set of a polynomial-like restriction 
gk : P̊n+k(z) → P̊n(z) for some n � 0 and k � 1, and all critical points of gk on P̊n(z)
are already in K. Denote its degree by δ � 2. Define A := P̊n(z) \ K; this is a non-
degenerate annulus, again by Lemma 4.8.

For every w0 ∈ A, for each of the δ preimages w1 ∈ (gk)−1(w0), and for every simple 
curve γ0 ⊂ A connecting w0 to w1, one can construct a curve γ that starts at w0 and 
converges to ∂K by connecting a preimage component γ1 of γ0 to w1, then connecting 
another preimage component of γ1 to the end of γ1, and so on. A standard argument 
relating the hyperbolic and Euclidean geometries of A shows that this curve must con-
verge to a point in ∂K that is fixed by gk. After straightening, this curve is fixed by the 
polynomial and lies in the escaping set, so it lands at a fixed point and is homotopic 
(relative to the filled Julia set) to a fixed dynamic ray (by Lindelöf’s theorem).

There are only finitely many fixed points of gk on ∂K and only finitely many homotopy 
classes of fixed rays, so many choices of w0, w1 and γ0 will lead to homotopic curves.

We are going to use the curves γ0 and its extension γ ⊂ A to construct three curves 
landing at z: one curve will be an internal ray of Uξ fixed by gk, and two further curves 
together will separate K \{z} from Uξ. This will then establish local connectivity of ∂Uξ

at z (see Fig. 9 for an illustration of the construction).
The dynamics of Np on Uξ is conformally conjugate to z �→ zm on D for some m � 2, 

so dynamic rays on Uξ are well defined together with their usual mapping properties, 
and periodic rays land at periodic points. By the construction of Newton puzzles (see 
Section 4.1), for every s � 0 the puzzle piece Pn+sk(z) intersects Uξ in a domain, say Ds, 
so that ∂Ds∩Uξ consists of pieces of two pre-fixed dynamic rays, say Rs and R′

s, together 
with some equipotential in Uξ. We clearly have Ds+1 ⊂ Ds for all s, with common 
boundary only on ∂Uξ. Since gk(Pn+(s+1)k(z)) = Pn+sk(z) and hence gk(Ds+1) = Ds, 
the rays Rs and R′

s must converge from both sides to a single ray, say R, that is fixed 
by gk. This ray R must land at a point p ∈ ∂Uξ that is also fixed by gk.
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Fig. 9. Example of the separating curves Γ and Γ′ in the proof of Corollary 1.1: their parts within 
Pn+(s+1)k(z) are shown in white. The point z is marked in red. The curves Γ, Γ′ and the internal ray 
R land at the same point p, this point is fixed by gk. The curve Γ ∪ {p} ∪ Γ′ separates K \ {p} and the 
immediate basin Uξ within the puzzle pieces.

One particular curve γ ⊂ A that lands at a fixed point in ∂K can be constructed by 
choosing w0, w1 and γ0 on R; then the entire curve γ is a subset of R and lands at p.

Construct another curve Γ as follows. Start by connecting the landing points of the 
rays Rs+1 and Rs+2 within A by a curve Γ0 ⊂ A that lies outside of Uξ. In particular, 
since Γ0 avoids the ray R, this fixes the homotopy class of Γ0 in A. Let us explain 
in more detail why such a curve exists. By the structure of the boundary of a Newton 
puzzle piece (see the discussion in the beginning of Section 4.2), there exists a component 
V of the basin of some root such that V ∩ Uξ is exactly the landing point of Rs+1 and 
V ∩∂Pn+(s+1)k(z) is a piecewise smooth curve consisting of two pieces of internal rays (for 
V ) and an arc of an equipotential. Consider the set B := P̊n+(s+1)k(z) \Pn+(s+2)k(z) ⊂ A, 
which is a non-degenerate annulus. Then the landing point of Rs+1 is accessible from 
within the connected set B \ Uξ. Likewise, the landing point of Rs+2 is accessible from 
within B \Uξ. The curve Γ0 can be now chosen as a curve connecting the landing points 
of Rs+1 and Rs+2 in B \ Uξ.

Extend the curve Γ0 as before; this will yield the curve Γ. The two curves Γ0 and γ0

(between w0 and w1) have finite hyperbolic distance between each other within A, and 
this distance is preserved by taking preimages with respect to the hyperbolic distance 
of preimage domains of A; hence the distance is contracted with respect to A. Therefore 
the extensions Γ and γ must land at the same point p. A third curve Γ′ that lands at 
p can be constructed analogously starting from the landing points of the rays R′

s+1 and 
R′

s+2. The hyperbolic distance argument shows that all three curves land through the 
same access to p relative to K. Hence, the union Γ ∪ {p} ∪ Γ′ disconnects Pn+k(z), but 
it does not disconnect K. Therefore, it separates K \ {p} from Uξ within Pn+k(z).
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The conclusions now follow: the only point in K ∩ ∂Uξ is p = z, so z is fixed by gk. 
Therefore the fiber of z, which is K, intersects Uξ only in {z}. This shows that Uξ is 
locally connected at z. �
Proof of Corollary 1.2. Consider a Newton map Np that satisfies the hypothesis of the 
corollary. By [32], the Julia set J(Np) is connected. By a well known classical condition 
[47,30], it is locally connected if and only if every complementary component (i.e. every 
Fatou component) has locally connected boundary, and moreover for every ε > 0, there 
are only finitely many components with spherical diameters exceeding ε.

By Sullivan’s no-wandering-domain theorem, every Fatou component is eventually 
periodic, and it is either a component of the basin of some root, or a component of the 
attracting or parabolic basin of a non-repelling periodic point of period at least 2, or a 
component of a Siegel disk, again of period at least 2. By Corollary 1.1, components of 
basins of roots have locally connected boundaries. The other types of components are 
eventually mapped to bounded Fatou components of a polynomial-like restriction f of 
Np (Theorem A). By [35], all the components in the basins of attracting or parabolic 
periodic points of f have locally connected boundaries. On the other hand, all the Siegel 
disks of f (if any), as well as their iterated preimages, have locally connected boundary 
by hypothesis (f straightens to a polynomial in S). This establishes the first condition 
for local connectivity of J(Np), so it remains to show that there are only finitely many 
Fatou components of Np with spherical diameters exceeding any ε > 0.

Assuming the contrary, let (Xi)i�0 be a sequence of Fatou components with

diam(Xi) � ε > 0 for every i � 0. (5.3)

Let x ∈ J(Np) be an accumulation point of (Xi). Without loss of generality we can 
assume that Np is attracting-critically-finite; after passing to the iterate g of Np, we can 
use the puzzle construction from Section 4. By Theorem A, we have either fib(x) = {x}, 
or the orbit of x belongs to or eventually lands in the filled Julia set of a suitable 
polynomial-like restriction of g. Let us consider these two cases separately.

In the first case there exists a nest (Pn(x))n�0 of puzzle pieces or unions of puzzle 
pieces (depending on whether x is ∞, a (pre-)pole or not) with diam(Pn(x)) → 0 as 
n → ∞, so there is an N so that diam(Pn(x)) < ε for all n � N . The boundary of each 
individual Pn(x) passes through finitely many touching components of the basins of roots. 
Therefore, infinitely many Xi must be contained in Pn(x), and this is a contradiction.

In the second case, we can assume that fib(x) is the little filled Julia set of some 
polynomial-like map f := gs : P̊n+s(x) → P̊n(x) (Lemma 4.8). Up to a subsequence, we 
can further assume that all Xi either lie in Ĉ \ fib(x), or in fib(x).

Suppose first that all Xi ⊂ fib(x). By hypothesis, the polynomial-like map f straight-
ens to a polynomial in S, so most of its Fatou components are small, and most of the 
Fatou components of f are small as well (homeomorphisms on compacts are uniformly 
continuous). This gives a contradiction to (5.3).
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Finally, suppose all Xi ⊂ Ĉ \ fib(x). The map f : P̊n+s(x) \ fib(x) → P̊n(x) \ fib(x) is 
a local isometry with respect to the hyperbolic metric in the domain and in the range. 
Since P̊n+s(x) \fib(x) ⊂ P̊n(x) \fib(x), the restriction f |P̊n+s(x)\fib(x) is weakly expanding 

with respect to the hyperbolic metric in P̊n(x) \ fib(x). Let us use this weak expansivity 
to complete the proof.

Assume first, up to passing to a subsequence, that each Xi is disjoint from the bound-
ary of Pn+ks(x) for every k � 1. In terms of the hyperbolic metric in P̊n(x) \ fib(x)
assumption (5.3) means that the hyperbolic diameters of Xi are unbounded (because 
fib(x) is a part of the ideal boundary and (Xi) accumulates on fib(x)). Choose an i0
such that the hyperbolic diameter of Xi0 is larger than the hyperbolic diameter of the 
closed annulus Pn+s(x) \ P̊n+2s(x). If X ′

i0
is the iterated image of Xi0 under f that lies 

in the annulus, then by expansivity, the hyperbolic diameter of X ′
i0

is not smaller than 
the hyperbolic diameter of Xi0 , a contradiction to our choices. (Note that X ′

i0
does not 

necessarily lie in our sequence of Fatou components.)
If there are no subsequences of (Xi) specified in the previous paragraph, then all 

but finitely many of Xi intersect the boundaries of Pn+ks(x), and hence all but finitely 
many Xi lie in the basins of roots. In this case, since ∂Pn+s(x) intersects only finitely 
many components of root basins, there exists another subsequence in (Xi) consisting 
of f -iterated preimages of a component of a root basin that intersects ∂Pn+s(x). Again 
by weak expansivity (or, equivalently, by weak contraction for the corresponding inverse 
branches of f), the hyperbolic diameters of the elements this subsequence are uniformly 
bounded above. But they accumulate on fib(x), the ideal boundary of P̊n(x) \ fib(x) in 
its hyperbolic metric, which implies that their spherical diameters must go to zero. This 
again contradicts (5.3) and concludes the proof. �
6. Proof of parameter rigidity for Newton maps (Theorem B)

In this section we prove parameter rigidity for Newton maps (Theorem B). This will 
be accomplished by combining the rigidity results of Kozlovski–van Strien, as described 
in [4], together with our results from Section 5.

Our strategy is to decompose the Newton dynamics into a box mapping that captures 
the non-renormalizable part of the Newton dynamics (done in Subsection 6.1), as well 
as some renormalizable parts that will be treated separately, and so that what is left 
has measure zero. We then show in Subsection 6.4 that for combinatorially equivalent 
Newton maps the corresponding non-renormalizable box mappings are combinatorially 
equivalent as well, and hence we can apply the result of Kozlovski–van Strien (spelled 
out in Subsection 6.2). In Subsections 6.5 and 6.6, we will piece together a global con-
jugation between combinatorially equivalent Newton maps that are renormalizable in 
the same way (defined in Subsection 6.3), and show that the only way this can fail to 
be (parameter) rigid is coming from the renormalizable parts, i.e. from the dynamics of 
non-rigid polynomials. This will be done modulo a key proposition (Proposition 6.11), 
which we then prove in Subsection 6.7.
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6.1. Constructing non-renormalizable box mappings for Newton maps

We start this section by showing how to upgrade the result of Lemma 5.1 so that the 
resulting box mapping is non-renormalizable.

Lemma 6.1 (Extracting non-renormalizable box mappings). Let g be the iterate of an 
attracting-critically-finite Newton map as defined in Section 4. Then there exists a dy-
namically natural complex box mapping F : U → V with the following properties:

(1) the components of U and V are open puzzle pieces of g, and F is the restriction of 
g to the components of U ;

(2) every g-orbit that accumulates at a point in V also intersects K(F );
(3) Crit(F ) ⊂ Critnf(g) \ Criter(g) ⊂ V;
(4) F is non-renormalizable with all periodic points repelling;
(5) the set Critnf(g) \ (Crit(F ) ∪ Criter(g)) consists of critical points c such that c /∈

Criter(g) and ω(c) is disjoint from Critnf(g) \ Criter(g).

Remark. In Lemma 6.1 (5), ω(c) is disjoint from Critnf(g) \ Criter(g) if and only if it 
does not intersect fibers of points in Critnf(g) \ Criter(g) because the latter fibers are 
trivial by Theorem A.

Proof. Let F ′ : U ′ → V ′ be the dynamically natural complex box mapping constructed 
in Lemma 5.1 for the map g; it satisfies Crit(F ′) ⊂ Critnf(g) ⊂ V ′ and the set of non-
escaping critical points of F ′ contains Crita(g). Let V be the union of all components of 
U ′ intersecting Critnf(g) \Criter(g). Consider the first return map F : U → V for F ′ to V. 
Since each critical component of U ′ contains exactly one critical fiber (Lemma 5.1 (4)), 
the orbits of the eventually renormalizable critical points do not intersect V. Therefore, 
F is a complex box mapping with the property that Crit(F ) ⊂ Critnf(g) \Criter(g) (see 
Lemma 2.5 (3)); by Lemma 2.5 (4), every g-orbit that accumulates at a point in V also 
intersects K(F ).

By construction, F : U → V is a non-renormalizable box mapping with all periodic 
points repelling. Since F ′ is dynamically natural, the same is true for F (compare the 
end of the proof of Lemma 5.1).

Finally, property (5) follows from (2) and (3). �
The dynamics on the non-escaping set of the box mapping F constructed in 

Lemma 6.1, together with the dynamics on all renormalizable fibers of g, describes the 
behavior of almost all orbits in the Julia set of the Newton map g. This is made precise 
in the following lemma.

Lemma 6.2 (Almost nothing is left). If F : U → V is the dynamically natural box mapping 
constructed in Lemma 6.1 for g, then the set of points in J(g) whose orbits are disjoint 
from K(F ) as well as from all renormalizable fibers of g has Lebesgue measure zero.
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Proof. The set of points z so that ω(z) avoids the fibers of all c ∈ Critnf(g) has measure 
zero by Lemma 4.7 (2). We may thus exclude these and consider the set A of points 
z ∈ J(g) so that orb(z) is disjoint from K(F ) and from all renormalizable fibers of g, 
and so that ω(z) intersects the fibers of some c ∈ Critnf(g).

If orb(z) accumulates on the fiber of some c ∈ Critnf(g) \ Criter(g), then by 
Lemma 6.1 (2) it accumulates on the fiber of a point in Crit(F ), so orb(z) intersects 
K(F ), contrary to assumption. Therefore, for all z ∈ A there is a c ∈ Criter(g) the fiber 
of which intersects ω(z) but not orb(z).

By Lemma 4.6, all fibers are contained in the interior of each of its puzzle pieces, so 
Lemma 2.11, and hence Corollary 2.12 apply. Therefore, there is an increasing sequence 
of integers (νj)j�0 and a pair of nested puzzle pieces P̊s ⊂ P0 (possibly after an index 
shift) so that gνj (z) ∈ P̊s for every j � 0 and gνj : P̊νj

(z) → P̊0 are branched coverings of 
uniformly bounded degrees (independent of j). Let w ∈ Ps be an accumulation point of 
(gνj (z)), and let B := B(w, ε) be an open round disk that intersects ∂Ps so that B ⊂ P̊0
(such a disk exists because P̊0 \ Ps is a non-degenerate annulus).

Since, by the Newton puzzle construction, ∂Ps∩J(g) is a finite set of poles or prepoles, 
while the remaining part of ∂Ps lies in the basins of roots, there is a round sub-disk 
B′ ⊂ B fully lying in one of the root basins and compactly contained in B. We can now 
transfer this “hole” B′ in the Julia set at fixed scale to ever-smaller scales with bounded 
distortion, so as to apply the Lebesgue Density Theorem.

The construction of w gives us a subsequence (sj) of (νj) so that gsj (z) ∈ B. Let Dj ⊂
P̊sj (z) be the pullback of B under gsj containing z, and D′

j ⊂ Dj be a corresponding 
pullback of B′. From Lemma 2.11 it follows that diamDj → 0 as j → ∞. Since the 
degrees of the maps gsj : P̊sj (z) → P̊0 are uniformly bounded, B ⊂ P̊0, and B

′ ⊂ B, the 
disks Dj and D′

j have uniformly bounded shapes and uniformly comparable diameters 
(Lemmas 2.8 and 2.9). As in the proof of Lemma 4.7 (2), we conclude that z is not a 
Lebesgue density point of J(g). Therefore, A has zero Lebesgue measure. �
6.2. Quasiconformal rigidity of complex box mappings

In this subsection we introduce a result from [4] on quasiconformal rigidity of combi-
natorially equivalent complex box mappings, including the required notation.

For a box mapping F : U → V, define PC(F ) := {Fn(c) : c ∈ Crit(F ), n � 0} to be 
the union of the forward orbits of all critical points of F (the critical and postcritical 
set). By the definition of a box mapping, each component of U and V is a Jordan disk. 
Therefore, by the Carathéodory theorem for every branch F : U → V there is a well-
defined continuous extension to the boundary, denoted as F̂ : U → V , and by continuity 
this extension is unique. Let us denote by F̂ : U → V the total extended map.

Definition 6.3 (Itinerary of puzzle pieces relative to curve family). Let F : U → V be a 
dynamically natural complex box mapping, and X ⊂ ∂V be a finite set with one point 
on each component of ∂V. Let Γ be a collection of simple curves in V \ (U ∪PC(F )), one 
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for each y ∈ F̂−1(X), that connects y to a point in X. Then for every n � 0 and for each 
component U of F−n(U) there exists a simple curve connecting ∂U to X of the form 
γ0 . . . γn, where F̂ k(γk) ∈ Γ. The word (γ0, F̂ (γ1), . . . , F̂n(γn)) is called the Γ-itinerary
of the puzzle piece U .

Every orbit can intersect V \ U at most once, so PC(F ) ∩ (V \ U) is finite. Therefore, 
the existence of the curves in Γ is clear, but of course there is a choice involved. Hence 
the Γ-itinerary of U is in general not uniquely defined (there is a unique finite word 
for every y′ ∈ F̂−n(x) ∩ ∂U). However, different components of F−n(U) have different 
Γ-itineraries.

Definition 6.4 (Combinatorial equivalence of box mappings). Let F : U → V and F̃ : Ũ →
Ṽ be two dynamically natural complex box mappings. Let H : V → Ṽ be a homeomor-
phism with the property that H(U) = Ũ , H(PC(F ) \ U) = PC(F̃ ) \ Ũ and such that it 
has a homeomorphic extension Ĥ to the closures of V and Ṽ.

The maps F and F̃ are called combinatorially equivalent with respect to the homeo-
morphism H if:

(1) H is a bijection between the critical sets of F and F̃ ; for c ∈ Crit(F ), c̃ := H(c) is 
the corresponding critical point;

(2) there exists a curve family Γ as in Definition 6.3 so that for every n � 0 and for 
each k � 0 such that both F k(c) and F̃ k(c̃) are well-defined, the Γ-itineraries of the 
puzzle piece Pn(F k(c)) coincide with the Ĥ(Γ)-itineraries of P̃n(F̃ k(c̃)).

Note that every critical point of F may have several itineraries, and they should all 
coincide with the itineraries of the corresponding critical point of F̃ . Roughly speaking, 
this equivalence says that there is a correspondence between components of the box 
mappings that is preserved by the dynamics (not in the sense of conjugation), that this 
correspondence respects critical points and the postcritical set, and that within compo-
nents containing critical points the choice of preimages is respected. We do not require 
that H is a conjugation between the postcritical sets: the definition of combinatorial 
equivalence is not a dynamical condition, and upgrading it to a dynamical condition is 
one of the major goals that is included in the next theorem, which is the main parameter 
rigidity result for non-renormalizable box mappings (see [4, Theorem 6.1 (2,3)] and the 
remark after that theorem).

Theorem 6.5 (Rigidity of complex box mappings). Let F : U → V be a dynamically 
natural complex box mapping that is non-renormalizable. Then:
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(1) If each puzzle piece of F contains an open set of escaping points, then F carries no 
measurable invariant line fields on K(F ).

(2) Suppose F̃ : Ũ → Ṽ is another dynamically natural complex box mapping for which 
there exists a quasiconformal homeomorphism H : V → Ṽ so that
(a) F̃ is combinatorially equivalent to F w.r.t. H, and so in particular H(U) = Ũ ,
(b) F̃ ◦H = H ◦ F on ∂U , i.e. H is a conjugacy on ∂U .
Then F and F̃ are quasiconformally conjugate, and this conjugation can be chosen 
to agree with H on V \ U . �

By definition, the non-escaping set K(F ) carries a measurable invariant line field if 
there is an F -invariant measurable Beltrami differential supported on K(F ) (see [28, 
§3.5]).

6.3. Combinatorially equivalent Newton maps

Let Np : Ĉ → Ĉ be an attracting-critically-finite Newton map and let Δn be the 
Newton graph of level n � 0 for Np. Let 
 > 0 be the smallest level such that Δ�

contains all the critical points that eventually land on the Newton graph (either at ∞
or at a root), as well as all poles of Np; such a level exists by Theorem 4.3. Similarly, let 
Np̃ : Ĉ → Ĉ be another attracting-critically-finite Newton map with Newton graph Δ̃n

at level n � 0, and level 
̃ analogous to 
.

Definition 6.6 (Combinatorial equivalence of Newton maps). We call two attracting-
critically-finite Newton maps Np and Np̃ combinatorially equivalent if

(1) 
 = 
̃, and the Newton maps restricted to Δ� and Δ̃� are topologically conjugate, 
respecting vertices;

(2) there is a bijection between the critical points of Np on Ĉ \Δ� and of Np̃ on Ĉ \ Δ̃�

that respects degrees and itineraries with respect to (complementary components 
of) the Newton graphs.

Two Newton maps (not necessarily attracting-critically-finite) are combinatorially 
equivalent if the quasiconformal surgery in the basins of roots (described in Section 4) 
turns them into combinatorially equivalent (attracting-critically-finite) Newton maps. 
This is clearly independent of all the choices in the surgery.

Remark. Let us make several comments on the conditions in Definition 6.6, phrased 
for convenience for attracting-critically-finite Newton maps. The first condition in the 
definition above means that there exists a graph homeomorphism, say ϕ : Δ� → Δ̃� that 
sends vertices to vertices and edges to edges (preserving their cyclic order locally around 
vertices), and such that the diagram
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Δ�

ϕ

Np

Δ�

ϕ

Δ̃�

Np̃

Δ̃�

is commutative. It follows that ϕ maps fixed points to fixed points and hence the chan-
nel diagram Δ of Np edge-wise onto the channel diagram Δ̃ of Np̃. Since ∞ is the 
unique fixed point that is connected to all other fixed points by the channel diagram, 
it follows that ϕ(∞) = ∞, and hence roots are mapped to roots respecting their cyclic 
order around ∞, and pre-fixed points of order l � 1 are mapped to pre-fixed points of 
order l.

In particular, the map ϕ provides a bijection between the eventually fixed critical 
points and preserves their local degrees. Combined with property (2) of Definition 6.6, 
this means that for every pair of combinatorially equivalent (attracting-critically-finite) 
Newton maps there is a degree-preserving bijection between their critical sets. Therefore, 
combinatorially equivalent Newton maps have equal degrees.

The notion of combinatorial equivalence for Newton maps gives rise to the notion of 
corresponding puzzle pieces respecting boundary marking as follows.

Since Newton graphs are defined by pulling back the channel diagrams, the homeo-
morphism ϕ : Δ� → Δ̃� extends to a homeomorphism ϕn : Δn → Δ̃n for all n � 
 using 
ϕn = N

−(n−�)
p̃ ◦ ϕ ◦ Nn−�

p for appropriate choices of inverse branches (where ϕ� = ϕ). 
This induces a bijection between the components of Ĉ\Δn and Ĉ\Δ̃n: we will call a pair 
of components corresponding if their boundaries consist of homeomorphic subsets of Δn

and Δ̃n. The notion of corresponding components extends to the notion of corresponding 
puzzle pieces for the iterates g and g̃ of Np, resp. Np̃ (see Section 4).

We want to upgrade this bijection to a homeomorphism between corresponding bound-
ary pieces with good properties. To begin with, since there is a bijection between the 
roots of p and p̃ respecting the degrees of the Newton maps in the immediate basins, 
there is a biholomorphic conjugation ψ between the immediate basins of Np and Np̃. 
This conjugation extends to the entire basins, and hence induces a correspondence of 
equipotentials there.

Consider a puzzle piece Ps be of depth s � 0 defined for g, and let P̃s be the corre-
sponding puzzle piece for g̃. By construction (see Section 4), the boundary of Ps consists 
of finitely many edges of Δk some k = k(s), cropped and connected by arcs of equipo-
tentials; those two types of boundary pieces alternate along ∂Ps. The same is true for P̃s

with the same choice of k and equipotentials. We say that a homeomorphism h : P̊s → ˚̃
P s

respects the boundary marking if h extends to a continuous map h : Ps → P̃s, and this 
extension agrees with the maps ϕk and ψ on the alternating boundary pieces of Ps (along 
edges respectively equipotentials).



K. Drach, D. Schleicher / Advances in Mathematics 408 (2022) 108591 53
We can now describe the good properties of the homeomorphisms between correspond-
ing puzzle pieces. This is [20, Lemma 5.3] transferred almost verbatim to our setting, so 
we can omit the proof.

Lemma 6.7 (Initial QC maps respecting boundary marking). For every pair of corre-
sponding Newton puzzle pieces P and P̃ , there exists a quasiconformal homeomorphism 
ϕ : P → P̃ that respects the boundary marking. �
Definition 6.8 (Renormalizable in the same way). Two combinatorially equivalent New-
ton maps g and g̃ are renormalizable in the same way if for every pair of corresponding 
renormalizable critical points c ∈ Crit(g) and c̃ ∈ Crit(g̃) there exists a pair of cor-
responding puzzle pieces Pn(c) ⊃ Pn+k(c) � c and P̃n(c̃) ⊃ P̃n+k(c̃) � c̃ and a 

homeomorphism h : P̊n(c) → ˚̃
Pn(c̃) mapping P̊n+k(c) onto ˚̃Pn+k(c̃) such that:

(1) the restrictions gk : P̊n+k(c) → P̊n(c) and g̃k : ˚̃
Pn+k(c̃) → ˚̃

Pn(c̃) are polynomial-like 
mappings with connected Julia sets, and k is the period of renormalization;

(2) h is a hybrid equivalence between gk and g̃k on P̊n(c);
(3) h respects the boundary marking;
(4) moreover, if c0 ∈ Crit(g) is a non-renormalizable critical point so that gs(c0) ∈

fib(c) for the minimal such s, then the hybrid conjugacy h lifts to a quasiconformal 
homeomorphism h0 : P̊n+s(c0) → ˚̃

Pn+s(c̃0) that respects the boundary marking and 
such that its dilatation vanishes on fib(c0).

Remark. Condition (3) means that h respects the combinatorial positions of little filled 
Julia sets corresponding to renormalizations within the puzzle partition of the dynamical 
plane of the Newton map.

Condition (4) ensures that the critical fibers that are not renormalizable but are 
mapped to renormalizable ones also respect the hybrid conjugacy coming from the 
polynomial-like restrictions, and hence the combinatorial position within the Newton 
puzzle.

A critical point c ∈ Crit(g) is called eventually renormalizable if it is either renormaliz-
able, or is mapped be some finite iterate to a renormalizable fiber. We write Criter(g) for 
the set of all such critical points. Thus c ∈ Criter(g) if c falls into case (R) of Theorem A.

6.4. Combinatorially equivalent box mappings from Newton maps

In this subsection, we consider two combinatorially equivalent Newton maps g and g̃
(not necessarily renormalizable the same way).

The first lemma, which is one of the key ingredients towards the proof of rigidity, 
allows us to “spread” certain partially defined quasiconformal homeomorphisms over the 
whole Riemann sphere so as to produce a partial conjugation with nice properties.
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Lemma 6.9 (The Spreading Principle). Let g and g̃ be two combinatorially equivalent 
Newton maps. Let U be a finite union of open puzzle pieces for g such that U is nice and 
Critnf(g) ⊂ U , and let Ũ be the union of the corresponding pieces for g̃. Let ϕ : U → Ũ be 
a K-quasiconformal homeomorphism that respects the boundary marking. Then ϕ extends 
to a K-quasiconformal homeomorphism Φ: Ĉ → Ĉ such that:

(1) Φ = ϕ on U ;
(2) for each z /∈ U

g̃ ◦ Φ(z) = Φ ◦ g(z) ;

(3) Φ maps every open puzzle piece V which is not contained in L̂(U) onto the corre-
sponding puzzle piece Ṽ , and the homeomorphism Φ: V → Ṽ respects the boundary 
marking;

(4) the dilatation of Φ vanishes on Ĉ \ L̂(U).

Remark. It follows that the homeomorphism Φ has the following additional property:

(5) for every component V of L̂(U) \ U , we have Φ|V = g̃−k ◦ ϕ ◦ gk|V , where gk|V is 
the restriction to V of the first landing map L : L̂(U) → U .

In fact, claim (5) follows for each z ∈ L̂(U) by iterating (2) until z reaches U .

Proof. The proof goes verbatim as in [20, Section 5.3], based on Lemmas 4.7 and 6.7. �
The second lemma shows that for combinatorially equivalent Newton maps the box 

mappings from Lemma 6.1 can be chosen to be combinatorially equivalent as well.

Lemma 6.10 (Extracting combinatorially equivalent box mappings). If g and g̃ are two 
combinatorially equivalent Newton maps, then in Lemma 6.1 one can choose two dy-
namically natural complex box mappings F : U → V and F̃ : Ũ → Ṽ, and so that 
they are combinatorially equivalent with respect to some quasiconformal homeomorphism 
H : V → Ṽ such that H(U) = Ũ and F̃ ◦H = H ◦ F on ∂U .

Proof. Let F : U → V be a box mapping given by Lemma 6.1. If in that lemma we 
carry out the same construction for g̃ as we did for g by picking the same iterates along 
the way, we obtain a non-renormalizable box mapping F̃ : Ũ → Ṽ for which all periodic 
points are repelling and that is dynamically natural. Since g and g̃ are combinatorially 
equivalent, the sets U and Ũ , as well as V and Ṽ, consist of corresponding puzzle pieces 
of g and g̃, and the restrictions of F and F̃ to the corresponding components of U
and Ũ are the same iterates of g and g̃. Let us show that F and F̃ obtained this way 
are combinatorially equivalent (in the sense of Definition 6.4) with respect to some 
quasiconformal homeomorphism H : V → Ṽ. We apply the standard pull-back argument.
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For a pair V ⊂ V, Ṽ ⊂ Ṽ of corresponding puzzle pieces, let h : V → Ṽ be some qua-
siconformal homeomorphism that respects the boundary marking (Lemma 6.7). Modify 
h on V so that: 1) h is unchanged on ∂V ; 2) h maps the critical values of F in V to 
the corresponding critical values of F̃ in Ṽ ; 3) h maps every point in PC(F ) \ U that 
happens to lie in V to the corresponding point in Ṽ . The modification is possible because 
it requires to change the map at finitely many points while preserving the map on the 
boundary. Define a quasiconformal homeomorphism H0 : V → Ṽ by setting H0|V = h

on each such component V . Since H0 maps the critical values of F to the correspond-
ing critical values of F̃ , we can lift H0 to a quasiconformal map H1 : U → Ũ that also 
respects the boundary marking. Finally, construct a map H : V → Ṽ by setting

H(z) :=
{
H0(z), for z ∈ V \ U ;

H1(z), for z ∈ U .

Defined in this way, H is a quasiconformal homeomorphism between V and Ṽ such that 
H(U) = Ũ , H(PC(F ) \ U) = PC(F̃ ) \ Ũ , F̃ ◦ H = H ◦ F on ∂U , and H respects 
the boundary marking. The last fact combined with the observation that F resp. F̃
restricted to the components of U resp. Ũ yield equal iterates of g resp. g̃ implies that H
provides a combinatorial equivalence between F and F̃ in the sense of curve itineraries 
in Definition 6.4. �
6.5. Proof of Theorem B: the attracting-critically-finite case

We can restate the theorem as follows, using the notation developed so far: if Np and 
Np̃ are two attracting-critically-finite Newton maps that are combinatorially equivalent 
and renormalizable the same way, then they are affinely conjugate.

By Theorem 4.1, there exists an iterate M so that g := NM
p has a well-defined Markov 

partition; choose M to be the minimal with this property. By combinatorial equivalence, 
the same holds for g̃ := NM

p̃ with the same iterate M ; then every combinatorial property 
of the orbits for g, i.e. defined in terms of puzzle itineraries, immediately transfers to the 
corresponding property for g̃.

For convenience, let us choose a depth 
0 so that

(1) 
0 � 
, where 
 is defined before Definition 6.6;
(2) any two critical points of g that are not in the same fiber are in different puzzle 

pieces of depth 
0.

The depth 
0 has the same properties for g̃.
Since g and g̃ are renormalizable in the same way, we can pull back the conjugating 

homeomorphisms from Definition 6.8 as follows. Define

O :=
⋃ ⋃

gi(fib(c)) .

c∈Criter(c) i�0
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This is really a finite union of fibers because all renormalizable critical points have 
periodic fibers: every renormalizable c has a k = k(c) � 1 so that fib(c) = gk(fib(c)), and 
every non-renormalizable c0 ∈ Criter(g) has a minimal s = s(c0) so that gs(fib(c0)) =
gk0(c) for some renormalizable c = c(c0) and some k0 = k0(c0). For each n � 
0 define 
the following open puzzle neighborhood of O:

Ωn :=
⋃
c

(
k−1⋃
i=0

P̊n+k−i

(
gi(c)

))
∪
⋃
c0

⎛⎝s−1⋃
j=0

P̊n+k−k0+s−j

(
gj(c0)

)⎞⎠ , (6.1)

where the first union is over all renormalizable critical points and the second one is over 
the others, and where we wrote k, s, and k0 instead of k(c), s(c), and k0(c0) for simplicity 
(in the last union, k = k(c), where c = c(c0)). The depths n in this definition are large 
enough so that all Ωn are nice sets. All puzzle pieces in Ωn have depth n + 1 or more. 
Of course we have analogous sets Õ and Ω̃n.

The homeomorphisms from Definition 6.8 extend by pull-backs to K-quasiconformal 
homeomorphism ψn : Ωn → Ω̃n such that: 1) K is independent of n; 2) ψn(O) = Õ; 3) 
ψn respects the boundary marking; 4) ψn conjugates g and g̃ on O; 5) the dilatation of 
ψn vanishes on O. By construction, for m > n the map ψm is just the restriction of ψn

to the smaller set Ωm. In particular, the restriction ψn|O is independent of n.
The proof of Theorem B is based on the following key proposition, which is in analogy 

to the main claim in [20, Section 6.4].

Proposition 6.11 (Uniform control of dilatation). There exist K > 0 and n0 � 
0 so 
that for every c ∈ Critnf(g) \ Criter(g) and n � n0 there exists a K-quasiconformal 
homeomorphism

ϕn,c : P̊n(c) → ˚̃
Pn(c̃)

that respects the boundary marking.

Remark. In Proposition 6.11, by our choice of 
0 all critical points in each Pn(c) are 
contained in fib(c). However, the map ϕn,c does not depend on a choice of a critical 
point in fib(c) because each c ∈ Critnf(g) \ Criter(g) has trivial fiber by Theorem A.

Conceptually, Proposition 6.11 says that critical puzzle pieces do not degenerate as 
their depths increase, akin to “a priori bounds” for polynomial renormalization. We post-
pone the proof to Subsection 6.7 and use it first, together with the Spreading Principle 
(Lemma 6.9), to complete the proof of Theorem B in the attracting-critically-finite case.

Proof of Theorem B. The proof is done in three steps. First we construct a quasicon-
formal homeomorphism conjugating g and g̃. Second, we show that this conjugation is 
affine. Finally, we conclude that Np and Np̃ are also affine conjugate.
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Step 1: a quasiconformal conjugation. Take a depth n � n0, where n0 is given by 
Proposition 6.11. Set U := Ωn+1 ∪

⋃
c∈Critnf(g)\Criter(g) P̊n(c). This construction is such 

that U is a nice open set containing Critnf(g). Let Ũ be the corresponding set for g̃.
Define a homeomorphism ϕ : U → Ũ by setting ϕ|Ωn+1 := ψn+1 and ϕ|P̊n(c) := ϕn,c, 

where the latter map is given by Proposition 6.11. The map ϕ defined this way is a 
K-quasiconformal homeomorphism that respects the boundary marking. Therefore, we 
can apply the Spreading Principle (Lemma 6.9): it guarantees that ϕ extends to a K-
quasiconformal homeomorphism Φn : Ĉ → Ĉ that conjugates g and g̃ on Ĉ \ U . Since 
all Φn have dilatation uniformly bounded by K, the sequence (Φn) has a convergent 
subsequence. A limiting map is a quasiconformal homeomorphism Φ∞ : Ĉ → Ĉ that 
conjugates g and g̃ on Ĉ\(O∪

⋃
c∈Critnf(g)\Criter(g) fib(c)). But on O the homeomorphism 

Φ∞ coincides with ψn|O, and hence is a conjugacy there as well. Each of the finitely many 
critical fibers fib(c) for c ∈ Critnf(g) \Criter(g) are trivial by Theorem A. Therefore, Φ∞
extends to a global quasiconformal conjugacy between g and g̃. Finally, any two limiting 
maps coincide on an everywhere dense open set, and hence must be equal.

Step 2: the conjugation Φ∞ is affine. By construction and the Spreading Principle, the 
dilatation of Φ∞ vanishes on the set Ĉ \

⋃
c∈Critnf(g), s�0 g

−s(fib(c)). However, on the full 
backward orbit of a renormalizable fiber fib(c) the map Φ∞ coincides with ψn|O or its 
conformal lifts. Therefore, the dilatation of Φ∞ vanishes on 

⋃
c∈Criter(g),s�0 g

−s(fib(c)).
In order to conclude that Φ∞ : Ĉ → Ĉ is conformal, and thus affine, it suffices to show 

that the set of points in J(g) that do not land in one of the renormalizable fibers under 
the iteration does not support a measurable invariant line field.

Let A ⊂ J(g) be the set of points whose orbits do not land in one of the renormalizable 
fibers. Let F : U → V be the box mapping given by Lemma 6.1 for g. By construction of 
Newton puzzles, the interior of any puzzle piece for F intersects the basin of some root, 
and hence each puzzle piece contains an open set of points not in K(F ). Thus, by Theo-
rem 6.5 (1), the set of points in A whose orbits land in K(F ) does not support a measur-
able invariant line field. All other points in A have zero Lebesgue measure by Lemma 6.2.

Step 3: the Newton maps are affine conjugate. We still need to upgrade the affine 
conjugation from the iterates g and g̃ to the Newton maps Np and Np̃ themselves. Up to 
a Möbius conjugation, we may assume that g and g̃ have the same Fatou set, and hence 
the same unbounded Fatou components, with the same centers that are super-attracting 
fixed points. But then Np and Np̃ also have identical Fatou set and identical immediate 
basins with identical fixed points, which are the roots of p and p̃. Since these roots must 
be simple, we have p = p̃ up to a constant multiple, hence Np = Np̃ (up to Möbius 
conjugation). �
6.6. Proof of Theorem B: general case

If Np and Np̃ are not attracting-critically-finite, then we can perform the surgery in 
the basins of roots described in Subsection 4.1 to turn them into attracting-critically-
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finite maps. By the previous arguments, these new maps are affine conjugate on the 
Riemann sphere. Hence, before the surgery the maps were quasiconformally conjugate in 
some neighborhood of the Julia set, and this neighborhood includes all the components 
of the Fatou set that are not in the basins of roots. The dilatation of this conjugation 
vanishes on those components as well as on the entire Julia set. This concludes the proof 
of Theorem B. �
6.7. Proof of Proposition 6.11

In many cases, Proposition 6.11 follows from quasiconformal rigidity of the box map-
pings constructed in Lemma 6.10. However, these mappings do not capture all the critical 
points of the original maps. The main part of the proof below will be dealing with the 
“run-away” points that are not eventually renormalizable.

Let F : U → V and F̃ : Ũ → Ṽ be the box mappings constructed in Lemma 6.10 for 
g and g̃. By Lemma 6.1 (5), Crit(F ) is disjoint from Criter(g). The set S := Critnf(g) \
(Crit(F ) ∪ Criter(g)) consists of critical points not in Criter(g) that do not accumulate 
on Critnf(g) \ Criter(g). Define the corresponding set S̃ for g̃.

The depths of fibers have been chosen large enough so that every critical puzzle piece 
contains a single critical fiber. In view of Theorem A, the only case when this fiber can 
fail to be trivial, and hence contain more than one critical point, is when the fiber is 
eventually renormalizable, so all its critical points are in Criter(g). We are not dealing 
with this case in Proposition 6.11.

6.7.1. Strategy of the proof
In Lemma 6.12 and Proposition 6.13 we will construct certain nice and arbitrary deep 

puzzle neighborhoods for points in S; these neighborhoods will be constructed with good 
control over the geometry of first landing domains to them. After that we extend these 
neighborhoods to arbitrary deep nice puzzle neighborhoods of the entire critical set of g
by adding deep enough critical puzzle pieces of the box mapping F and renormalization 
domains containing Criter(g). These extended neighborhoods will also come with quasi-
conformal maps to the corresponding sets for g̃. Using the fact that these maps respect 
the boundary marking, they will be globalized by the Spreading Principle (Lemma 6.9). 
The dilatations of these globalized maps, however, will be uniformly controlled every-
where except on the first landing domains to the neighborhoods of S (for puzzle pieces 
landing in the neighborhood of Crit(F ) we will have uniform control by Theorem 6.5, 
and for puzzle pieces first landing in the neighborhood of Criter(g) this control will be 
given by the hypothesis on being renormalizable in the same way). The result of Propo-
sition 6.13 will allow us to use the QC-Criterion (Theorem 6.14 below) to improve, in a 
uniform way, the “uncontrolled” dilatation caused by the landing domains to the neigh-
borhoods of S. The required uniformly quasiconformal maps in Proposition 6.11 will be 
then constructed as restriction of the improved maps to the required depth.
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Remark. If S = ∅, then the proof of Proposition 6.11 follows immediately by Theorem 6.5
and the Spreading Principle.

6.7.2. Constructing puzzle neighborhoods of S with uniformly bounded geometry and 
moduli bounds

The following lemma gives the control over shapes of the critical puzzle pieces for 
points in S.

Lemma 6.12 (Geometric control for puzzle neighborhood of S). For every c ∈ S there is 
a constant η > 0 and for every ε > 0 there exists a puzzle piece W with c ∈ W̊ such that 
diamW < ε and W has η-bounded geometry. Moreover, the statement remains true if 
we replace W by W̃ and c by c̃.

Recall that an open topological disk U in C has η-bounded geometry if it contains a 
round Euclidean disk of radius η · diamU .

Proof of Lemma 6.12. By definition of S, every critical point c ∈ S is non-recurrent. 
Therefore, by Theorem A, the fiber of c is trivial, and hence the critical puzzle pieces 
around c shrink in diameter. Let us show that we can pick a shrinking nest of such puzzle 
pieces with uniformly bounded geometry.

If ω(c) is disjoint from critical fibers of all points in Critnf(g), then the claim follows 
by the Koebe Distortion Theorem. Otherwise, there exists at least one critical point 
c′ ∈ Criter(g) such that orb(c) accumulates at but does not land in fib(c′). In this 
situation, by Corollary 2.12 there exist an increasing sequence of integers (νj)j�0 and 
a pair of nested puzzle pieces P̊s ⊂ P0 so that gνj (c) ∈ P̊s and gνj : P̊νj

(c) → P̊0 is a 
branched covering of uniformly bounded degree. The claim now follows by Lemma 2.8
applied to V ′ := P̊0, V := P̊s, f := gνj . �

For a subset A of Critnf(g), an open set V containing A is a nice open puzzle neigh-
borhood of A if V is nice and each component of V is an open puzzle piece intersecting 
A.

In what follows, we will need to distinguish puzzle pieces of g from those of the box 
mapping F (and similarly for g̃ and F̃ ). For this, we will say an F -puzzle piece of F -depth 
n for the piece of depth n view as a puzzle piece of F ; from the point of view of the map 
g this is a puzzle piece of depth (g-depth) at least n.

Proposition 6.13 (Good landing domains to puzzle neighborhood of S). There exists η > 0
and an integer n0 � 
0 such that for every depth n � n0 there exists a nice open puzzle 
neighborhood W of Critnf(g) \ Criter(g) with the following properties:

(1) The depths of the components of W are larger than n.
(2) The components of W intersecting Crit(F ) are F -puzzle pieces of the same F -depth.
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(3) Let L : L̂(W ) → W be the first landing map to W under g. If WS is the union 
of all components of W intersecting S, then for every component U of L̂(W ) with 
L(U) ⊂ WS the following hold:
• U has η-bounded geometry;
• if P is a puzzle piece of depth n containing U , then mod

(
P̊ \ U

)
� η.

Moreover, the same statements hold true if we replace all the objects for the corresponding 
objects with tilde.

Proof. Let us start by choosing n0 � 
0 such that for every c ∈ S the following holds:

(i) for every c′ ∈ S ∪ Crit(F ) the orbit of F (c) is disjoint from Pn0(c′);
(ii) for every c′′ ∈ Criter(g) the orbit of c′′ is disjoint from Pn0(c).

The existence of n0 satisfying (i) follows by definition of S and Lemma 6.1 (5): the 
orbits of points from S do not accumulate on Critnf(g) \ Criter(g) = S ∪ Crit(F ). Prop-
erty (ii) can be easily satisfied since fib(c′′) has a (pre-)periodic itinerary.

Let n � n0. Since n0 � 
0, every critical puzzle piece of depth n of a point in 
Critnf(g) \ Criter(g) contains a single fiber and this fiber is equal to the critical point. 
By Lemma 6.12, for every c ∈ S there exists a constant η > 0 and arbitrary small open 
puzzle piece Wc containing c and having η-bounded geometry. By choosing Wc smaller 
if necessary, we can find an open puzzle piece W ′

c � c such that Wc ⊂ W ′
c ⊂ Pn(c) and 

mod(W ′
c \ Wc) � η. Since S is finite, we can assume that η is the same for all c ∈ S. 

Define

WS :=
⋃
c∈S

Wc.

Choose κ = κ(n) to be an integer such that all critical F -puzzle pieces of F -depth 
equal to κ are of g-depth at least n. We write PF

κ (c) for such pieces. Define

W := WS ∪
⋃

c∈Crit(F )

P̊F
κ (c).

So defined, W is a nice open set. Indeed, the only thing we need to check is that 
gm(∂Wc) ∩ P̊F

κ (c′) = ∅ for all m � 1, c ∈ S and c′ ∈ Crit(F ). This follows by as-
sumption (i) on n0. Hence W is a nice open puzzle neighborhood of Critnf(g) \Criter(g). 
By construction, it satisfies properties (1) and (2). Let us check property (3).

Let L : L̂(W ) → W be the first landing map to W under g, and let gs : U → Wc, 
c ∈ S be a branch of this map with the range in WS. Define U ′ to be the component of 
g−s(W ′

c) containing U . We claim that the degree of the map gs : U ′ → W ′
c is uniformly 

bounded independently of the chosen branch.
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Indeed, suppose there exists 0 � i < s such that gi(U ′) contains a critical point. 
This critical point, say c′, necessarily lies in Crit(F ) because it cannot lie in Criter(g)
by assumption (ii) on n0, and it cannot lie in S by assumption (i) and the first landing 
property. Since U is a component of the domain of the first landing map to W under 
g, it follows that the depth of gi(U ′) must be not larger than the depth of PF

κ (c′). And 
since there are only finitely many puzzle piece of depth smaller than the depths of the 
puzzle pieces in W \WS , the degree of the map gs : U ′ → W ′

c is uniformly bounded above 
independently of the choice of the branch (compare the proof in Step 2 of Lemma 5.1). 
The claim now follows by Lemmas 2.4 and 2.8: there exists η′ > 0 (depending only η
and the degrees of the critical points of g) such that U have η′-bounded geometry and 
mod(U ′ \U) � η′. As the depth of W ′

c is at least n, the open puzzle piece U ′ is contained 
in some puzzle piece P of depth n and mod(P̊ \ U) � mod(U ′ \ U) � η′.

The claim for the objects with tilde follows by just repeating the arguments above. �
Finally, we will need the following QC-Criterion from [20, Appendix 1].

Theorem 6.14 (QC-Criterion). For any constants 0 � K < 1 and η > 0 there exists a 
constant K ′ with the following property. Let ψ : Ω → Ω̃ be a quasiconformal homeomor-
phism between two Jordan disks. Let X be a subset of Ω consisting of pairwise disjoint 
topological disks. Assume that the following holds:

(1) If V is a component of X, then both V and ψ(V ) have η-bounded geometry, and 
moreover

mod(Ω \ V ) � η, mod(Ω̃ \ ψ(V )) � η;

(2) |∂ψ| � K|∂ψ| holds almost everywhere on Ω \X.

Then there exists a K ′-quasiconformal map Ψ: Ω → Ω̃ such that Ψ = ψ on ∂Ω. �
6.7.3. Proof of Proposition 6.11

Let n0 be given by Proposition 6.13. For every n � n0, construct an open puzzle neigh-
borhood W of Critnf(g) \Criter(g) using that proposition. The set W can be decomposed 
as

W = WS ∪
⋃

c∈Crit(F )

P̊F
κ (c).

Let l be the maximal depth of the puzzle pieces in W ; define

U := WS ∪
⋃

P̊F
κ (c) ∪

⋃
P̊l(c).
c∈Crit(F ) c∈Criter(g)
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By construction, U is a nice open puzzle neighborhood of Critnf(g) consisting of open 
puzzle pieces of depths at least n + 1.

Let us now define a quasiconformal map ϕ : U → Ũ that respects the boundary 
marking, specifying the map on each component in the decomposition for U as follows.

On each P̊l(c) we define ϕ|P̊l(c) := ψm|P̊l(c), where ψm is the map defined before 

Proposition 6.11 and m = m(l) is chosen so that P̊l(c) ⊂ Ωm.
On each P̊F

κ (c) we will define the map using Theorem 6.5. By Lemma 6.10, the box 
mappings F and F̃ are combinatorially equivalent with respect to some quasiconfor-
mal homeomorphism H. Hence, by Theorem 6.5 (2), there exists a quasiconformal map 
Ψ: V → Ṽ that respects the boundary marking, maps U onto Ũ , and is a conjugation 
between F and F̃ on U . We define ϕ|P̊F

κ (c) := Ψ|P̊F
κ (c).

The maps defined so far are K-quasiconformal and respect the boundary marking, 
with K independent of n.

On the remaining components in the decomposition, that is on the components of 
WS , define ϕ by means of Lemma 6.7. We do not control the dilatation of ϕ on these 
components.

Since U is a nice open set containing Critnf(g) and ϕ respects the boundary marking, 
we can spread this map around using Lemma 6.9. In this way we obtain a quasiconformal 
homeomorphism Φ: Ĉ → Ĉ such that for every c ∈ Critnf(g) \ Criter(g) the restriction 

Φ: P̊n(c) → ˚̃
Pn(c̃) has the following properties:

• Φ respects the boundary marking (by Lemma 6.9 (3) using the fact that P̊n(c) does 
not lie in L̂(U) as the depths of the components of L̂(U) are at least n + 1);

• the dilatation of Φ vanishes on P̊n(c) \ L̂(U) (by Lemma 6.9 (4));
• Φ(V ) = Ṽ for each component V of L̂(U) ∩ P̊n(c), and Φ|V is either equal to ϕ|V , 

or is the corresponding lift of ϕ (by claims (2) and (5) of Lemma 6.9).

Let us now apply Theorem 6.14: set Ω := P̊n(c), Ω̃ := ˚̃
Pn(c̃), ψ := Φ, and furthermore, 

let X := P̊n(c) ∩ L̂∗
(U), where L̂∗

(U) is the union of the components V of the domain 
L̂(U) of the first landing map L : L̂(U) → U such that L(V ) ⊂ WS . Defined this way, 
the dilation of ψ is bounded by K outside of X, and hence the second assumption in 
Theorem 6.14 is satisfied. To see that the first assumption is satisfied, note that every 
component V of X is a component of L̂(W ), and thus, by Proposition 6.13, both V and 
Ṽ have η-bounded geometry and

mod
(
P̊n(c) \ V

)
� η, mod

(˚̃
Pn(c̃) \ Ṽ

)
� η

for some constant η > 0 independent of n.
Since both assumptions in Theorem 6.14 are satisfied, we conclude that Φ: ∂Pn(c) →

∂P̃n(c̃) extends to a K ′-quasiconformal map between P̊n(c) and ˚̃
Pn(c̃), with K ′ inde-

pendent of n. This is the desired map ϕn,c in Proposition 6.11. �
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