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Abstract

In Fall 2020, several European countries reported rapid increases in COVID-19 cases along

with growing estimates of the effective reproduction rates. Such an acceleration in epidemic

spread is usually attributed to time-dependent effects, e.g. human travel, seasonal behav-

ioral changes, mutations of the pathogen etc. In this case however the acceleration occurred

when counter measures such as testing and contact tracing exceeded their capacity limit.

Considering Austria as an example, here we show that this dynamics can be captured by a

time-independent, i.e. autonomous, compartmental model that incorporates these capacity

limits. In this model, the epidemic acceleration coincides with the exhaustion of mitigation

efforts, resulting in an increasing fraction of undetected cases that drive the effective repro-

duction rate progressively higher. We demonstrate that standard models which does not

include this effect necessarily result in a systematic underestimation of the effective repro-

duction rate.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1] and its variants [2] con-

tinue to challenge our lives [3] even after the rollout of several effective vaccines [4]. As of Fall

2021, non-pharmaceutical interventions such as mask mandates and travel restrictions at vary-

ing degrees still remain in place around the globe [3]. These interventions are guided by

almost-real-time assessment of the ongoing epidemiological situation which rely on surveil-

lance data and mathematical models and, are thus, prone to their uncertainties and shortcom-

ings [5]. It is, therefore, crucial for decision making that the epidemiological models are

sufficiently simple to be used in a fast-changing environment while containing the necessary

amount of complexity to capture all essential features of the real epidemic.

Simple epidemic models divide a population into “compartments” according to individuals’

epidemiological status and specify the rules by which the disease progresses within an individ-

ual and spreads over the population [6]. In the most basic form, these rules are given as transi-

tion rates between the compartments which can be translated into a set of ordinary differential

equations (ODEs). One such model is the SEIR model where the compartments correspond to

those who are susceptible (S) to infection, exposed (E) to the pathogen (but not yet a spreader),
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infectious (I), and removed (R) from epidemic dynamics (dead or immune). The SEIR model

can capture the initial exponential increase of infections when the majority of a population is

susceptible and the subsequent slow down of spreading due to the continuously increasing

removed population.

In Fall 2020, the second wave of the COVID-19 in Austria exhibited a remarkably different

behavior than the one that we described above. What appeared to be slow-but-steady initial

increase was followed by an acceleration of the epidemic indicated by a faster-than-exponential

growth in case numbers [7]. For simple mathematical models, such an observation indicates a

change in rules, i.e. increased transmissibility, which can be due to seasonality [8, 9] or occur-

rence of more infectious variants [10]. In contrast to such expectations, here we show that the

accelerating increase of COVID-19 cases reported in Austria during Fall 2020 can be captured

in an autonomous compartmental model described by a time-independent (deterministic) set

of ODEs. As we explain in the following, the key modeling ingredient for accelerating epidem-

ics is explicit inclusion of mitigation efforts and their capacity limitations within the model

dynamics.

Since the early stages of the pandemic, case and contact isolation has been one of the pri-

mary public health responses [11]. Using stochastic agent-based epidemic models on net-

works, Scarselli et al. [12] showed that while testing and contact isolation slow down an

epidemic, limiting the number of available tests fundamentally alter its nature by changing the

epidemic transition for large populations (in the thermodynamic limit) from gradual (second

order) to sudden (first order). The driving mechanism of this qualitative change was the accel-

eration of transmissions when the models’ testing capacity were exhausted. In the present

work, we introduce the SEIRTCmodel which, in addition to the S, E, I, and R, includes separate

compartments for the tested individuals (T) and confirmed cases (C) similar to [12]. Differ-

ently from the stochastic network models used in [12], the dynamics of the SEIRTC model is

determined by a set of ODEs, rendering it suitable for working with real data. In other words,

our aim in the present paper is to present a simple way of incorporating capacity-limited inter-

ventions to the standard epidemic models so that it can be utilized to explain the real-world

observations without resorting to complex network-based models. In this sense, our approach

is similar to that of Arino et al. [13], who presented an extension of the SEIR model that

includes treatment as a counter-acting measure to explain influenza data. We show that the

SEIRTC model can be fitted to the COVID-19 surveillance data published by the Austrian

Agency for Health and Food Safety (AGES) [14] and capture the epidemic acceleration

observed in Fall 2020 without the need for a temporal modification of the infectiousness. Our

results suggests that during this period, the effective reproduction rate, i.e. the average number

of secondary cases originating from a primary one after the initial uncontrolled spread period,

was systematically underestimated.

Methods

We begin with a brief recapitulation of the standard SEIR model which forms the basis of our

SEIRTC model to follow. For a detailed treatment, we refer the reader to [6, 15]. The SEIR

model is represented by the state transition diagram in Fig 1A and the corresponding ODEs

can be written by expressing the rates of changes in compartments’ populations according to

the transition rates implied by the annotated arrows as

_S ¼ � bIS=N; _E ¼ bIS=N � gEE; _I ¼ gEE � gII; _R ¼ gII; ð1Þ

where, _denotes derivative with respect to time, N = S + E + I + R is the population, β is the

transmission parameter, and γE and γI are the inverse latent and infectious times, respectively.
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The transmission parameter β can be interpreted as the number of interactions per person per

unit time multiplied by the transmission probability at each interaction [6]. The underlying

assumption of SEIR model is that the population is well mixed, thus, the effects solely due to

the network heterogeneities are neglected.

We obtain the SEIRTC model shown in Fig 1B by the following series of modifications to

the SEIR. First, we split the infectious individuals I into two sub-compratments, namely Is
“symptomatic” and Ia “asymptomatic”, the latter of whom are those who show no symptoms

throughout their infectious period and spread the disease at a relative risk ρ as implied by the

S! E term. At this stage, our model is equivalent to the SLIAR model of Arino et al. [13].

Next, we incorporate testing into our model by introducing the compartments TS, TE, and TI,

where the subscripts refer to the epidemiological state of the individuals who are tested. We

assume that testing with symptoms also invokes isolation, i.e. the individuals in the TI state can

no longer spread the disease. The susceptibles who are tested (TS) return to S, whereas the

Fig 1. State transition diagrams of SEIR (A) and SEIRTC (B) models where the encircled letters denote the compartments into which the population is

divided and the arrows along with their labels underneath indicate the transition rates between the compartments. The compartments are S:

susceptible, E: exposed, I: infectious, R: removed (recovered or dead), Ia/s: a/symptomatic infectious, Ru/k: un/known removed, TS/E/I: tested susceptible/

exposed/infectious, C: case.

https://doi.org/10.1371/journal.pone.0269975.g001
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exposed and infectious individuals become “cases” (C) after being tested. Finally, the removed

individuals are split into “known” (Rk) and “unknown” (Ru) parts for convenience in present-

ing our results to follow.

Similar to those in the SEIR model, the parameters γx of the SEIRTC model refer to the

inverse mean lifetime at the compartment x, with the exception γs which is the inverse mean

symptom onset time, at which point a symptomatic infectious individual becomes detectable.

Hence, this delay term accounts for presymptomatic transmissions which are believed to play

a significant role in spreading COVID-19 [16]. γT is the test turn-over time, i.e. the time from

the administration of a test to its outcome. Finally, γC is not an independent parameter but is

determined as

gC ¼ g� 1
I �

TEg
� 1
T þ TIðg

� 1
s þ g

� 1
T Þ

TE þ TI

� �� 1

; ð2Þ

where we assume that at time t, the ratio of cases that are identified before and after developing

symptoms are proportional to the number of individuals in TE and TI, respectively. In doing

so, we neglect a delay by g� 1
T and avoid working with delay-differential equations which are

complicated to work with numerically.

The transition rates in Fig 1B have several probabilistic factors. These are p: probability of

an asymptomatic infection, ρ: relative risk of transmission from an asymptomatic individual,

d: probability of detecting a symptomatic infectious individual via testing, g: probability of

detecting an exposed individual via contact tracing before becoming infectious. All but the last

one of these probabilities are independent parameters to be determined via literature estimates

or model fitting. Because the detection of an infection before developing any symptoms can

only be possible via contact tracing, the probability g is a complex function of the number of

(un)identified infections, the underlying social network structure, and the contact tracing pol-

icy and capacity. Since these details are not within the scope of the present model, here, we

resort to an ansatz that is based on two simplifying assumptions: (i) The probability of detect-

ing a case is proportional to the ratio C/(C + Is + Ia) of known cases to those that are unde-

tected at a given time, (ii) Total contact tracing capacity is limited such that no more than Tm

tests on susceptible and exposed individuals can be carried out at an instance. Let H(x) be the

Heaviside step function that takes values H(x) = 0 for x< 0 and H(x) = 1 for x> 0,

g ¼ k
C

C þ Is þ Ia
HðTm � TS � TEÞ ð3Þ

fulfils the assumptions that we stated above. We assume the rest of the factors such as the ratio

of false negative tests and likelihood of contact tracing are averaged into the fit parameter κ. In

our implementation, we approximate the step function as H(x)� 1/2 + (1/2) tanh(x). Because

contact tracing is only possible through known cases, we expect the the probability g to

increase with the ratio of identified cases to total number of infectious individuals and the

ansatz (3) should be understood as the simplest expression that agrees with this intuition.

While opting for model simplicity, we neglect beyond-linear-order terms, such as those pro-

portional [C/(C + Is + Ia)]3 and [C/(C + Is + Ia)]5, and delays since taking the probability of an

exposed case to be detected at time t to be a function of the number of cases and infectious

individuals at time t ignores the latent time γE from exposure to become detectable.

Similar to g, the number of susceptible individuals to be tested per unit time f is also an

unknown function of the social network and contact tracing procedures. Because in this case

the individuals are not exposed to the pathogen, we assume that this rate is independent of the
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number of infectious individuals at present and take

f ¼ ðaSC=NÞHðTm � TS � TEÞ ; ð4Þ

as our second ansatz, where the term αSC/N is analogous to the S! E term of the SEIR model

(Fig 1A). Here, we assume that the daily probability of a susceptible person to have a past con-

tact with a known case wherein no infection have occured is proportional to the fit parameter

α and is independent from the probability of being infected at the same time, i.e. the S! E
transition. Once again, the step function H(Tm − TS − TE) approximated as H(x)� 1/2 + (1/2)

tanh(x) models the capacity limit of contact tracing by setting S! TS flux to 0, once the capac-

ity limit Tm is reached. Finally, we ignore false positives, and thus let all individuals from the

compartment TS back to S after the turnover time 1/γT.

As we illustrate through our results of the next section, the presence of H(Tm − TS − TE)

terms in (3) and (4) limits the total number of individuals in TS and TE compartments to Tm

by substantially reducing S! TS and E! TE fluxes, as this limit is approached. This bound is

not imposed upon the testing of the symptomatic individuals, i.e. the Is! Ts term, since we

assume it to be due to contact tracing. Finally, we assume that if an asymptomatic individual is

detected via contact-tracing, this takes place before the individual becomes infectious, which is

implied by the fact that those in Ia are not tested.

With the ansätze (3) and (4), the SEIRTC ODEs similar to (1) corresponding to the state

transition diagram Fig 1B can be obtained by expressing the rates of change in compartment

populations as the shown transition rates. Explicit form of these equations can be found in the

S1 File (eqs. S1–S10). In our numerical results to follow, we simulate these using odeint
function of scipy [17].

For model fitting and uncertainty quantification, we follow [18] and utilize weighted non-

linear least squares fit [19] for adjusting model parameters followed by a bootstrap method

[20] for finding alternative sets of fit parameters. In a real-life scenario, testing constitutes the

primary source of information as most countries publish the daily numbers of tests they con-

duct and those with a positive outcome (incidence). We make use of both of these measure-

ments and minimize the cost function

J ¼
XN

n¼0

1

~T
ð~T ½n� � T 0½n�Þ2 þ

XN

n¼1

1

~C
ð~C½n� � C0½n�Þ2 ; ð5Þ

where [n] denotes the discrete time in days, ˜ indicates measurements coming from the

surveillance data, and T0[n] = ∑i=S,E,I Ti[n](γT × day) and C0[n] = C[n] + Rk[n] − C[n − 1] −
Rk[n − 1] are the number of tests carried out and new cases recorded in the model on day n,

respectively. In the following, we take 1/γT = 1 day, which renders the factor γT × days = 1, i.e.

each individual remains in the test compartment for 1 day. Note that because our definition of

daily new cases C0[n] in the SEIRTC model depends on the total number of C + Rk of the previ-

ous day, the corresponding term in the cost function start from the day 1 rather than 0. The

choice of weights ~T � 1½n� and ~C � 1½n� ensures that the optimization algorithm does not ignore

the earlier stages in favor of the later days on which the case and test numbers are much higher.

In order to reduce the number of fit parameters, we make the following simplifying assump-

tions. Whenever available, we take literature values for parameters or restrict them to the

established estimated interval. While the number of exposed individuals on day 0 is varied, the

initial populations of TS, TE, Ia, Is, TI, C are adjusted through a fixed-point iteration that trans-

fers individuals from S to these compartments while minimizing the error between the simu-

lated dynamics of the first 10 days from exponential fits.Rk(0) and Ru(0) are both set to the

number of cases registered until the first day. Although this is an arbitrary assumption for
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Ru, it has no effect on the dynamics as long as it is much less than the total population, which

is the case for our results to follow. With these assumptions, the set of fit parameters becomes

θ = {E(0), α, κ, Tm, β, γs, d}. In our applications, we utilized least_squares method of

scipy [17] to minimize (5) and find the best-fit parameters θ�. For bootstrapping, we gener-

ate synthetic data T̂ ½n� ¼ PoisðT 0½n�Þ; Ĉ½n� ¼ PoisðC0½n�Þ, where Pois(λ) indicates a random

variable drawn from a Poisson distribution [21] with the mean and variance λ, and refit our

model by taking the T̂ ½n�; Ĉ½n� as our new set of observations in (5). This procedure is illus-

trated in S2 Fig in S1 File of the supplement.

In the following for comparison, we also present fits by SEIR models for which we discard

the test measurements from (5) and take the cost function

J ¼
XN

n¼1

wC½n�ð~C½n� � C0½n�Þ2 ; ð6Þ

where C0[n] = I[n] + R[n] − I[n − 1] − R[n − 1] in the SEIR model. Similar to the SEIRTC

model, we take E(0) and β as fit parameters and initiate simulations such that the dynamics of

the first 10 days can be approximated by exponentials. In order to illustrate how the SEIR

model fits the different stages of the time-interval considered for different weights, we consider

two different choice of weights, namely wC[n] = 1 and wC½n� ¼ 1=~C.

In order to estimate the effective reproduction number (Rt) from surveillance and model

data we utilize the python implementation [22] of the [23]’s EpiEstim algorithm that is

based on the Bayesian inference of Rt from a Gamma-distributed prior assuming Poisson-dis-

tributed transmissions. This method was also used by AGES [24] who performs the real-time

epidemilogical monitoring of the ongoing COVID-19 situation in Austria.

Results

We consider the second wave of COVID-19 in Austria from September 1 to November 3,

2020, on which day the country went into its second lockdown in order to protect its health-

care system from an otherwise-inevitable overload. Fig 2A and 2B shows the 7-day moving

averages of the numbers of confirmed cases and performed tests during this period, respec-

tively (retrived from [14]). Fits to these data by the SEIRTC model with parameters in Table 1

are also shown in Fig 2A and 2B, which we obtained by minimizing (5). For comparison in Fig

2A, we also show fits by SEIR models with initial conditions and model parameters as listed in

Table 2. The different choice of weights in (6) results in SEIR models, with different set of

model parameters and initial conditions, which we refer to as SEIR1 and SEIR2. As shown in

Fig 2A, when unit weights are chosen, the SEIR2 model underestimates the initial case num-

bers whereas when the weights are inversely proportional to the daily number of confirmed

cases, the later case numbers are underestimated by the SEIR1 model. In contrast, the fit by the

SEIRTC model captures both episodes. This is further illustrated by the scatter plots of model

predictions against the observations in S1 Fig in S1 File where the largest deviation between

the two are also marked for each model. Quantitatively, the largest percentage relative error

between the case numbers and their model predictions, i.e. 100�maxnð
~C½n� � C0½n�Þ=C0½n�,

are 39.3% and 68.8% for SEIR1 and SEIR2 models, respectively, whereas it is 25.0% for the

SEIRTC model. In addition, we also carried out a reduced-χ2 “goodness of fit” test taking our

model predictions as means of Poisson distributions, see the S1 File for details. w2
n
¼ w2=n

where ν is the number of degrees of freedom is w2
n
¼ 223:1 and w2

n
¼ 207:1 for SEIR1 and

SEIR2 models, respectively, whereas w2
n
¼ 86:7 for the SEIRTC model. The lower w2

n
of the

SEIRTC model further demonstrates that it is a better fit to the data considered [25]. In
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addition to the goodness of fit test, we also performed a Poisson bootstrap analysis to reveal

parameter correlations of the SEIRTC model. Although some of the model parameters show

correlations (see S3 Fig in S1 File) our main results are robust to these parameter variations.

As shown in Fig 2B, the SEIRTC model also captures the reported test numbers with a visi-

ble change in its trend during the days following September 15. This coincides with the

Fig 2. Case (A) and Test (B) data (7-day moving average) reported in Austria from September 1, 2020 to November 3, 2020 along with the fitting curves

obtained from the SEIRTC model. Two SEIR model fits using different cost functions weights (see the main text) are also shown in A for comparison. C.

Populations of the individual compartments (except S) of the SEIRTC model. D. The ratio of daily new infections to the cases in the SEIRTC model. D. The

reported proportion of tests with a positive outcome and that in the SEIRTC model. F. Estimates Rt, R
ðCÞ
t , and RðIþCÞt of the effective reproduction number

based on the reported case data, case numbers of the SEIRTC model, and combined case infection numbers of, respectively.

https://doi.org/10.1371/journal.pone.0269975.g002
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exhaustion of the contact tracing capacity as reflected by the plateaus of TS and TE in Fig 2C.

Consequently, the ratio I0[n]/C0[n] (Fig 2D), where I0[n] = ∑i Ii[n] + ∑i Ri[n] + C[n] − ∑i Ii[n
− 1] + ∑i Ri[n − 1] + C[n − 1], of the daily new infections to those that are detected starts grow-

ing, yielding more and more infections that remain undetected. An observable consequence of

this is the increase of the proportion of the tests with a positive outcome as shown in Fig 2E

where we plotted this quantity using the data reported and those obtained from the SEIRTC

model.

In Fig 2F, we show the estimates of the effective reproduction number Rt calculated using

the case data shown in Fig 2A and those computed from the SEIRTC model’s daily case

(orange, dashed) and infections (green, dotted-dashed). In these calculations, we chose a

smoothing window of 7 days and used a serial interval obtained by discretizing a Gamma dis-

tribution with a mean 4.46 and a standard deviation 2.63 days as estimated by AGES [24].

About a week after the beginning of lockdown in Austria on November 3 2020, the case

numbers began to decrease as shown in Fig 3A. We observed that this trend can be

Table 1. The model parameter values which are used in the fit shown in Fig 2.

Symbol Value [Ref.] / [Fit] Symbol Value [Ref.] / [Fit]

N 8894380 [26] β 0.5993 / person / day [Fit]

α 10.84 / person / day [Fit] κ 0.7546 [Fit]

p 0.2 [27] d 0.5446 [Fit]

1/γE 4 days [28] 1/γT 1 day [29]

1/γI 5 days [28] 1/γs 2.594 days [Fit]

Tm 17 252 [Fit] ρ 0.35 [27]

https://doi.org/10.1371/journal.pone.0269975.t001

Table 2. Cost function weights and parameters for SEIR models with fit curves shown in Fig 2.

Model wC[n] 1/γE γI N E(0) I(0) R(0) β

SEIR1 1=~C½n� 4 days [28] 5 days [28] 8894380 [26] 1306 1353 5390 0.282

SEIR2 1 4 days [28] 5 days [28] 8894380 [26] 535 506 1518 0.332

https://doi.org/10.1371/journal.pone.0269975.t002

Fig 3. A. Case data reported in Austria from September 1, 2020 to December 6, 2020 along with its prediction by SEIRTC model wherein the

lockdown is modeled by a reduction of β to 45% of its value on November 3 which is indicated by the dashed line segment. B. Number of days in

“lockdown” necessary for reducing the 7-day incidence (per 100,000) by 10 as a function of the incidence at which the lockdown begins. Lockdown

is modeled by a drop of the transmission parameter β to half of its value.

https://doi.org/10.1371/journal.pone.0269975.g003
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qualitatively captured by the SEIRTC model if the transmission parameter β is reduced to 45%

of its value on the same day as shown in Fig 3A. Taking this as a crude model of a lockdown,

we investigated hypothetical scenarios during which the transmission parameter β is reduced

to 0.45β beginning at different times. Specifically, we started SEIR2 and SEIRTC models with

their initial conditions and model parameters same as those that we used in Fig 2, initiated

lockdowns when the 7-day incidence (per 100,000 people) reached a certain value, and mea-

sured the lockdown duration necessary for reducing the incidence by 10. The results of these

simulations are shown in Fig 3.

Discussion

Fig 2A and 2B demonstrates that the SEIRTC model with parameters listed in Table 1 and the

initial population shown in Fig 2C is able to capture the accelerating spread of COVID-19

observed in Austria in Fall 2020. We note that some of these fit parameters are correlated,

hence, it is possible to find different set of parameters that result in comparable fitting errors,

see S2 and S3 Figs in S1 File. Most of the correlations seen in S3 Fig in S1 File are easy to ratio-

nalize. For example, the negative correlation of E(0) and α tells us that if the number of

exposed on day zero is increased, then the probability of testing susceptibles has to decrease to

free capacity for the exposed. A similar argument can be made for the negative correlation of κ
and α, which are proportional to the rate of testing exposed and susceptibles, respectively. For

predicting the future of an ongoing outbreak, quantification of uncertainties due to such

parameter correleations is crucial and, thus, should be carefully taken into consideration [18].

Because near-real-time prediction is not our goal here, we focus on the qualitative aspects of

our findings that are robust to parameter uncertainties.

While Fig 2A illustrates how an autonomous SEIR model cannot capture an accelerating

epidemic, it also suggest how a nonautonomous SEIR model with a time-varying transmission

parameter β(t) could have indeed describe the observed case numbers. One could then have

interpreted the accelerating spread as being due to the seasonal effects such as people spending

more time indoors hence increasing chance of transmission. Another—somewhat trivial—

modification to the SEIR model could have been addition of infectious individuals to the

model by hand as a proxy for people bringing the virus from outside the country through

travel as suggested by the Austrian then-Chancellor Sebastian Kurz who claimed that the sud-

den increase of the COVID-19 cases during Fall 2020 was largely due to the Austrians of for-

eign origin who brought the virus back from their their countries of origin [30]. It is

conceivable that both of these factors have played some role in the sudden spread of COVID-

19 in Austria in Fall 2020 however they as such do not explain the coinciding increase in the

test-positive rate. As we point out in this study capacity limits in mitigation have played a key

role in the epidemic acceleration and offer an explanation for the observed events including

the change in positive rate.

The methods for estimating the effective reproduction number are usually believed to be

robust against incomplete observations under the assumption that an approximately same

fraction of infections are recorded on consecutive days [31]. This is also reflected in our initial

estimates of the effective reproduction number, since when the ratio of the number of infec-

tions to that of confirmed cases is constant as in the initial phase of Fig 2D, RðCÞt and RðIþCÞt coin-

cide in Fig 2F. This, however, breaks down as soon as the contract tracing limit is reached;

after this point, the effective reproduction number based only on the case data systematically

underestimates the one that is based on the actual number of infections. Although the differ-

ence between RðCÞt and RðIþCÞt appear small in Fig 2F, it should be recalled that this difference

translates into the number of infections exponentially, thus, has a dramatic real-life
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consequences such as expected number of hospital admissions. Note that the initial overshoot

of the effective reproduction number in Fig 2F is due to our omission of case data prior 2020–

09-01, which results in an overestimate of the effective reproduction number.

As one should expect, the increase of undetected cases in Fig 2D coincide with that of the

ratio of positive tests in Fig 2E, which is observable during an epidemic. While this informa-

tion could, and probably should, be incorporated into statistical methods for estimating Rt, we

believe that an increasing positive test ratio is a sufficient reason for a dramatic intervention

such as a lockdown, which is essentially inevitable once the contact tracing capacity is

exhausted.

During the second wave of covid-19 in Austria, the policy makers insisted that a lockdown

would be the last option in the country’s pandemic response [32]. Decreasing lockdown dura-

tions for the SEIR model as shown in Fig 3B might indeed suggest this as a reasonable compro-

mise to minimize the number of days during which the economic and social activities are

halted. Note, however, that this behavior changes dramatically in the SEIRTC model since the

uncontrolled spread following the breakdown of contact tracing makes it progressively harder

to reduce the case numbers. This is why we believe that a steadily increasing ratio of positive

tests necessitates a lockdown. At that point, early action not only saves lives but also shortens

the lockdown duration necessary to regain control.

Supporting information

S1 File. Explicit form of the SEIRTC model equations, further comparisons of fits by SEIR

and SEIRTC models, and parameter uncertainty analysis via Poisson-bootstrap method

are presented in the supplementary material.
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