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Abstract

Dispersal is a crucial factor in natural evolution, since it determines the habitat
experienced by any population and defines the spatial scale of interactions between
individuals. There is compelling evidence for systematic differences in dispersal char-
acteristics within the same population, i.e. genotype-dependent dispersal. The conse-
quences of genotype-dependent dispersal on other evolutionary phenomena, however,
are poorly understood. In this article we investigate the effect of genotype-dependent
dispersal on spatial gene frequency patterns, using a generalization of the classical
diffusion model of selection and dispersal. Dispersal is characterized by the variance
of dispersal (diffusion coefficient) and the mean displacement (directional advection
term). We demonstrate that genotype-dependent dispersal may change the qualita-
tive behaviour of Fisher waves, which change from being “pulled” to being “pushed”
wave fronts as the discrepancy in dispersal between genotypes increases. The speed
of any wave is partitioned into components due to selection, genotype-dependent
variance of dispersal, and genotype-dependent mean displacement. We apply our
findings to wave fronts maintained by selection against heterozygotes. Furthermore,
we identify a benefit of increased variance of dispersal, quantify its effect on the speed
of the wave, and discuss the implications for the evolution of dispersal strategies.

Natural populations are distributed in space and their habitat is often much larger
than the individual dispersal range. Thus, populations are not globally well-mixed, but
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individuals interact randomly on a local scale. Dispersal makes the link between local and
global scale interactions. Most theoretical models in population genetics assume that dis-
persal is random with respect to genotype (Slatkin, 1985; Lenormand, 2002; Edelaar
and Bolnick, 2012). Such a random gene flow homogenizes populations, eroding genetic
dissimilarities. However, as pointed out by Edelaar and Bolnick (2012), gene flow
can play a much more complex role. Non-random genotype-dependent dispersal appears
naturally in numerous organisms, e.g., aquatic species (Lutscher et al., 2007; Bolnick
et al., 2009), butterflies (Haag et al., 2005; Hanski et al., 2006), and plants that are poly-
morphic in flower shape and/or colour (Stanton, 1987). Thus, the question arises about
the impact of genotype-dependent dispersal on processes of natural selection in spatially
extended populations. For example, habitat choice between two possible environments
increases levels of local adaptation, thus reducing genetic loads and facilitating special-
ization relative to random dispersal (Ravigné et al., 2004, 2009; Bolnick and Otto,
2013). This kind of adaptive dispersal enhances adaptation by allowing deleterious alle-
les to be removed more efficiently from the population, and it has been found to shorten
waiting times for adaptive peak shifts in models with negative epistasis (Hadany et al.,
2004). Biased movement along fitness gradients mitigates the deleterious effects of gene
flow, favours spatial partitioning of populations, and keeps them geographically more con-
strained, compared to randomly dispersing species (Armsworth and Roughgarden,
2005; Armsworth, 2009).

Advantageous mutations tend to spread locally and propagate in the form of travelling
wave fronts (“Fisher waves”, Fisher, 1937). Gene frequency waves may move in space,
but have a stable shape that describes the transition between areas where different alleles
are predominant; stationary spatial changes in gene frequencies are commonly called clines
(Haldane, 1948). Gene frequency waves also emerge due to spatial heterogeneities in
selection, when different alleles are favoured in different places (Slatkin, 1973; Nagylaki,
1975), or in the case of selection against hybrids, e.g., in hybrid zones that result from
secondary contact between populations (Barton, 1979). Spatial gene frequency waves
are frequently observed in many natural populations and provide insight into evolutionary
patterns, e.g. Haldane (1948); Endler (1977); Szymura and Barton (1986); Bridle
et al. (2001); Whibley et al. (2006); Teeter et al. (2008). Depending on their mode
of shifting, moving wave fronts are classified as “pulled” or “pushed” waves (c.f. Stokes,
1976). The speed of pulled waves is set by the dynamics of their leading edge. That is,
the rate at which one genotype spreads into foreign habitat and grows from low frequency
determines its rate of advance. A classical example of pulled waves are Fisher waves. In
contrast, a wave is called a pushed wave if its bulk determines its speed. For instance,
this is the case for wave profiles emerging under selection for common alleles, where genes
increase in frequency if they exceed a certain frequency threshold. Thus, the dynamics
in areas where the focal genotype is common, i.e. in the bulk of the wave, dictate the
direction and speed of the wave.

Genotype-dependent dispersal and gene frequency waves in the form of stationary clines
that are maintained by a spatial gradient in selection have been studied for various types of
adaptive dispersal, e.g., genotypes either biasing their direction of movement along fitness
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gradients, or basing their decision whether to disperse on their locally realized fitness.
In such cases, clines become steeper relative to random dispersal since individuals tend
to move out of the mixing zone between genotypes Armsworth and Roughgarden
(2008). More rigorous analytical treatments of travelling waves in continuous space under
non-random dispersal exist for ecological models of interacting species (Holmes et al.,
1994), e.g., predator-prey dynamics (Dunbar, 1983) and interspecific competition models
(Shigesada et al., 1979; Lewis et al., 2002). While models in population genetics keep
population densities fixed and follow the dynamics gene frequencies, these ecological models
consider the abundances of certain species subject to density-dependent regulation, and
dispersal is assumed to depend on the species’ densities.

Any model of genotype-dependent dispersal and selection requires a connection between
the dispersal trait and individual fitness. We choose the simplest approach by assuming
that the two are completely linked, i.e., a single locus under selection also controls the
dispersal behaviour of the individual. Thus, both the selected and the dispersal traits
are determined by the genotype. The assumption that dispersal and viability are closely
correlated is reasonable, since alleles affecting dispersal are likely to pleiotropically also
affect fitness. An intuitive example where this can be expected to be true are flowering
plants, whose flower shape both determines how successfully to attract pollinators and
what kind of pollinators to attract. The assumption is also justified if separate alleles
determining fitness and dispersal are sufficiently closely linked, at least for a limited period
of time. Generally, it has been argued that we should expect close correlations between
loci affecting viability traits and indirectly selected life history traits in natural populations
(Hawthorne and Via, 2001).

A rigorous analysis of our differential-equation model is presented in Kollár and
Novak (2016), where we guarantee the existence of wave front solutions for the type of
equations considered here and study the speed of Fisher waves under genotype-dependent
dispersal. In the present article, we discuss the implications of these mathematical results
in the context of population genetics and extend them to biologically relevant questions.
Studying the effect of genotype-dependent dispersal on spatial gene frequency waves, we
show that genotype-dependent dispersal can affect both the shape of a wave profile and the
speed at which it moves. Hence, the presence of different dispersal patterns in the same
population can bias our inference made from the analysis of gene frequency waves. We
partition the speed of wave fronts into components due to dispersiveness, directional bias,
and selection, which allows for a qualitative understanding of the impact of systematic
differences in each of those factors. Furthermore, we present analytic expressions for gene
frequency waves under genotype-dependent dispersal in hybrid zones, thus generalizing
classical results that have proven to be of empirical relevance (Barton and Turelli,
2011).
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1 The model

Throughout this article, we consider a spatially homogeneous environment with a (spatially
and temporally) constant population density. The classical continuous model for selection
and dispersal in unidimensional space assumes that all individuals follow the same spatially
homogeneous dispersal pattern, which is characterized by a mean displacement (directional
advection coefficient) M , and a variance of dispersal (diffusion coefficient) V . If the popula-
tion consists of two genotypes with frequencies p(x, t) and 1−p(x, t) at location x and time
t, the diffusion limit of the stochastic selection-dispersal dynamics for a large population
is the well-studied Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) equation

∂tp =
V

2
∂xxp−M ∂xp+ F (x; p) (1)

(Nagylaki, 1975). Here, the function F (x; p) describes selection: at position x, the
frequency p grows at rate F relative to the frequency of the other genotype. If no selective
force is active (F = 0), gene frequencies spread in space and equilibrate to a spatially
constant value at a rate proportional to V . The parameter M adds a directional component
that may emerge due to an active individual preference or due to the presence of a slope,
wind, or a current of water in the habitat. Since this is a constant shift of the system, M
disappears from the equation when transforming x 7→ x−Mt.

Equation (1) can be generalized to different dispersal strategies for the two genotypes,
including the possibility of conditional dispersal strategies that depend, e.g., on space
and time (Nagylaki and Moody, 1980; Novak, 2014). We briefly sketch a derivation
of the dynamics here; the mathematical details are presented in Kollár and Novak
(2016). Assume that the two genotypes have mean displacements M1(x, t) and M2(x, t),
and variance of dispersal V1(x, t) and V2(x, t). If the abundances of the two genotypes are
denoted by N1 and N2, their reaction-diffusion dynamics can be written as

∂tN1(x, t) =
1

2
∂xx [V1(x, t)N1(x, t)]− ∂x [M1(x, t)N1(x, t)]

+G1(x;N1, N2), (2a)

∂tN2(x, t) =
1

2
∂xx [V2(x, t)N2(x, t)]− ∂x [M2(x, t)N2(x, t)]

+G2(x;N1, N2), (2b)

where G1 and G2 are the growth rates of the two genotypes. If there was variation in the
dispersal trait alone, the class of dispersal strategies that are unconditional with respect
to space would be evolutionarily stable in homogeneous environments (Cantrell et al.,
2010). To exclude the effects of selection on dispersal, we thus restrict our considerations
to unconditional dispersal strategies defined by constant Mi(x, t) ≡ Mi and Vi(x, t) ≡ Vi.
Furthermore, since we assume that the environment is spatially homogeneous, the growth
rates of the genotypes do not explicitly depend on x, hence G1(x;N1, N2) = G1(N1, N2) and
G2(x;N1, N2) = G2(N1, N2). If the total population size NT = N1 + N2 is regulated and
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remains constant in time and space, the system (2) can be reduced to a single equation for
the variable p = N1/NT . Then, the gene frequency dynamics (1) for genotype-dependent
dispersal generalizes to

∂tp =
V (p)

2
∂xxp−M(p) ∂xp+ F (p), (3)

with M(p) = pM2 + (1 − p)M1, V (p) = p V2 + (1 − p)V1, and the selection function F
being obtained from the individual growth rates G1 and G2 (for details, c.f. Kollár and
Novak, 2016). Since the growth rates do not depend on space explicitly (see above), also
F (p) is a function of the gene frequencies only, i.e., selection acts homogeneously in space.
It is often convenient to define the differences in mean displacement by ∆M = M2 −M1,
and write ∆V = V2 − V1 and V1 = V > 0. With this notation, equation (3) can be written
as

∂tp =
V + p∆V

2
∂xxp

−
(
M1 +M2

2
− ∆M

2
(1− 2p)

)
∂xp+ F (p). (3’)

2 Results

2.1 Existence of wave front solutions

As a first step, we discuss the existence of travelling wave solutions p̃(x, t) = P (x− ct) =
P (z) with 0 ≤ P ≤ 1 to equation (3) for a wide range of local selection functions F .
We focus on solutions that connect P (−∞) = 1 with P (+∞) = 0 and move with speed
c (positive c means movement to the right, negative c to the left). The analysis of the
inverse case, P (−∞) = 0 and P (+∞) = 1, follows by symmetry.

We consider continuous selection functions F that fulfil F (0) = F (1) = 0, and F ′(0) 6= 0
and F ′(1) 6= 0, see Figure 1. This contains all types of selection regimes without mutation
where the stability of the equilibria p(x, t) ≡ 0 and p(x, t) ≡ 1 can be determined by
first-order stability analysis. Depending on the selection function, one of the following is
the case:

(i) If F does not change sign on [0, 1] (Figure 1A), a continuum of wave solutions exists.
In particular, if F > 0 on the interval (0, 1), there is a minimal wave speed c∗ such
that there exists a wave solution P (x − ct) for every c ≥ c∗. Analogously, if F < 0
on (0, 1), there is a maximal wave speed c∗ such that there exists a wave solution
P (x− ct) for every c ≤ c∗.

(ii) If F changes sign in (0, 1) exactly once (Figure 1B), there is a unique wave speed c∗

permitting a wave solution P (x− c∗t).

(iii) If F changes sign in (0, 1) more than once (Figure 1C), wave solutions may or may
not exist, depending on F itself, and on M(p) and V (p).
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Figure 1: Illustration of different choices of F (p). (A) F does not change its sign on [0, 1].
(B) F changes sign in (0, 1) exactly once. (C) F changes sign in (0, 1) more than once.

Furthermore, wave solutions connect p = 0 with p = 1 monotonically. We present a rigorous
proof of these statements in Kollár and Novak (2016), also discussing the conditions
on the existence of travelling waves under case (iii) in more detail. Similar results for non-
linear diffusion equations with a single dispersal strategy have been derived earlier, see for
example classical work by McKean (1975); Fife and McLeod (1977); Aronson and
Weinberger (1978). These authors also consider the asymptotic stability of wave front
solutions, which is mathematically non-trivial. In this article, however, we only discuss
existence of the wave front solutions as the nonlinearities in the diffusion and advection
terms significantly complicate even the spectral stability analysis of the travelling waves
and hence their asymptotic stability.

In our existence statement above, case (i) encompasses Fisher waves, where F is a
quadratic polynomial, see below. Cubic selection functions that give rise to bistable waves
are contained in case (ii) and will be discussed in more detail in Section 2.4. Both types of
wave fronts are well-understood for the genotype-independent case, yet genotype-dependent
dispersal makes our analysis non-trivial.

2.2 Fisher waves under genotype-dependent dispersal

As an illustrative example, consider Fisher waves that model the spread of an advantageous
mutation through a spatially distributed population with F (p) = k p (1− p) for some k > 0.
This function satisfies case (i) in Section 2.1, see also Figure 1A. It corresponds to the choice
Gj(N1, N2) = rjNj (j = 1, 2) in equation (2); then k = r1 − r2. The resulting equation
for genotype-independent dispersal was analysed by Fisher (1937). Section 2.1 implies
that, for every wave speed c above a threshold c∗ (which depends on the parameters),
there is a wave solution with P (−∞) = 1 and P (+∞) = 0 to the genotype-dependent
dispersal equation (3) that moves at speed c. For V1 = V2 = V , it is possible to explicitly
determine the lower bound to the wave speed (critical wave speed) c∗. Using the notation
∆M = M2 −M1, we have

c∗ =

{
M1 +

√
2V k for ∆M ≤

√
2V k

M1+M2

2
+ V k

∆M
for ∆M >

√
2V k

(4)
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(the mathematical proof is presented in Kollár and Novak, 2016). Note that the speed
of the wave, equation (4), is always positive in the reference frame travelling with speed
M1. Hence, the advantageous mutation advances into the range of the wild type at a rate
of at least c∗, which is at least M1 +

√
2V k, the value found by Fisher (1937) under

genotype-independent dispersal. Figure 2 shows the critical wave speed c∗ as a function of
∆M for M1 = 0. We see that for large ∆M , the threshold wave speed c∗ approaches a linear
dependence on ∆M with slope 1/2. It is interesting to observe that c∗ = M1+

√
2V k is valid

for ∆M in an interval around zero, ∆M ∈ (−∞,
√

2V k]. Hence, small differences in the
mean displacement between the genotypes do not change the threshold c∗. It can be shown
that this phenomenon is due to a transition between a pulled and a pushed wave (Kollár
and Novak, 2016). For genotype-independent dispersal, we have a pulled wave, i.e., the
speed of the critical wave with the smallest speed is determined by its leading edge (where
p ≈ 0). However, when ∆M exceeds the critical value of

√
2V k, the drift of the bulk of the

wave (where p ≈ 1) becomes faster than the pulling speed of the leading edge. Hence, the
wave becomes pushed, i.e., its speed is determined by the speed of its bulk. This example
demonstrates that genotype-dependent dispersal can have a structurally significant impact
on the behaviour of gene frequency waves.

Measuring the steepness of a wave profile by its maximal slope (Endler, 1977), the
analysis in Kollár and Novak (2016) furthermore reveals that the pushed waves become
steeper and steeper in the transition region between p ≈ 1 and p ≈ 0 as ∆M increases.
Therefore the wave profile becomes narrower. Genotype-dependent dispersal thus has an
influence both on the speed and the shape of gene frequency waves.

2.3 The speed of a wave

For an arbitrary selection function F satisfying F (0) = F (1) = 0, F ′(0) 6= 0, and F ′(1) 6= 0,
assume that P (z) = P (x − ct) is a travelling wave solution to equation (3’) that moves
with wave speed c. Inserting P into (3’) produces

−c P ′ = V + P∆V

2
P ′′

−
(
M1 +M2

2
− ∆M

2
(1− 2P )

)
P ′ + F (P ).

Multiply this equation by P ′ = dP/dz and integrate over z ∈ (−∞,∞). We assume that
the admissible solutions P have vanishing derivatives for z → ±∞. Then, we obtain upon
integration by parts

c

∫ ∞
−∞

(P ′)2dz =
∆V

4

∫ ∞
−∞

(P ′)3dz +
M1 +M2

2

∫ ∞
−∞

(P ′)2dz−

− ∆M

2

∫ ∞
−∞

(1− 2P )(P ′)2dz −
∫ ∞
−∞

F (P )P ′dz.
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Figure 2: The critical wave speed c∗ as a function of ∆M . The bold line shows c∗ as given
by equation (4) for k = 1, V1 = V2 = V = 1, and M1 = 0. The value ∆M =

√
2V k marks

the transition from a pulled to a pushed wave. The wave speed equals the pulled wave
speed for ∆M ≤

√
2V k and then monotonically increases, approaching a linear function

with slope 1/2.

With P (−∞) = 1 and P (+∞) = 0, the rightmost integral is transformed into−
∫ 1

0
F (P )dP .

Thus, we write the speed of the wave front as

c = cS + cV + cM , (5)

where the three components of this expression are given by

cS =

∫ 1

0
F (P )dP∫∞

−∞(P ′)2dz
, cV =

∆V

4

∫∞
−∞(P ′)3dz∫∞
−∞(P ′)2dz

, and

cM =
M1 +M2

2
− ∆M

2

∫∞
−∞(P ′)2(1− 2P )dz∫∞

−∞(P ′)2dz
.

This formula is implicit in the solution P , hence the contributions of selection, mean dis-
placement, and variance of dispersal are not purely additive as suggested by the decompo-
sition of c into cS, cV , and cM . Rather, this representation is chosen so that the respective
summand disappears if any of these characteristics – selection, variance of dispersal, or
mean displacement – is neutral with respect to the genotypes.

The contribution of selection, cS. If the two genotypes have different fitnesses, selec-
tive pressure acts on them. The term cS is already known (Fife, 1979) and can be made
explicit, e.g., in the case of disruptive selection (see below). In the absence of genotype-
dependent dispersal, the direction of movement of the wave front is determined by the sign
of the average selection

∫ 1

0
F (P )dP .
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The contribution of the variance of dispersal, cV. If the two genotypes have differ-
ent variances of dispersal, only their difference ∆V has a direct effect on the speed of the
wave. Since P ′ does not change its sign (see Section 2.1), the wave front shifts towards the
genotype with smaller variance of dispersal, i.e., more mobile individuals gradually push
back less mobile ones.

The contribution of the mean displacement, cM. The mean displacements enter
cM in two ways, first via the arithmetic mean (M1 + M2)/2. This expression already
appears in the genotype-independent case (M1 = M2) and can be scaled away by shifting
the coordinate system accordingly. Second, there is a term proportional to the difference
M2 − M1 = ∆M that is difficult to interpret. If the wave solution P is symmetric to
the point (zo, P (zo)), where zo is the position of the half-height of the wave defined by
P (zo) = 1/2, the term evaluates to zero. This applies, for example, if the wave front has
a sigmoid shape, i.e., is of the form (1 + exp[γ(x − ct)])−1), as is the case for genotype-
independent dispersal and disruptive selection (see below). However, the sigmoid shape
of the wave can be perturbed by breaking the symmetry of forces maintaining it, e.g., by
genotype-dependent variance of dispersal.

2.4 Genotype-dependent dispersal in hybrid zones

Consider two alleles subject to selection against heterozygotes, such that common alleles
have an advantage over rare alleles. Call the first allele the A allele with frequency p, and
the second allele the a allele. Assume that selection is homogeneous in space and that the
fitness values of the three possible genotypes AA, Aa, and aa are 1+2s (1− 2p̂), 1−2p̂s, and
1, respectively. With this notation, s > 0 measures the strength of selection and p̂ ∈ (0, 1)
is a threshold frequency such that selection increases the frequency of the A allele if it is
above p̂, and reduces it from below that value. If we assume that fitness differences are small
(s� 1), we can reformulate the local selection terms and obtain F (p) = 2sp(1− p)(p− p̂).
With 0 < p̂ < 1, this function satisfies case (ii) in Section 2.1, see also Figure 1B. Our
result from Section 2.1 implies that equation (3) with this specification of F has a unique
wave front solution p̃(x, t) = P (x − ct) with P (−∞) = 1 and P (+∞) = 0. Clearly, there
is another unique wave front solution with the opposite configuration, P (−∞) = 0 and
P (+∞) = 1, and with a generally different wave speed.

Genotype-dependent mean displacement. Let ∆V = 0, such that V1 = V2 = V .
With genotype-dependent mean displacements M1 6= M2, equation (3) has two sigmoidal
wave front solutions given by

p̃±(x, t) =
(
1 + exp

[
ζ±s(x− c±t)

])−1
, (6)

where

ζ± = 4

(
−∆M ±

√
∆2

M + 8V s

)−1

,

9



and the speed of the wave front is

c± =
M1 +M2

2
+

1− 2p̂

ζ±
(7a)

=
M1 +M2

2
+

2V s

∆M

1− 2p̂

1±
√

1 + 8V s
∆2

M

. (7b)

For each set of parameters (i.e. V , s, M1, and M2), p̃+ is monotonically increasing and
connects p̃+(−∞) = 0 with p̃+(+∞) = 1. Conversely, p̃− is monotonically decreasing,
p̃−(−∞) = 1 and p̃−(+∞) = 0. These solutions hence correspond to the two possible
configurations of either genotype being absent on one and fixed on the other end of the
habitat. As discussed above in Section 2.1, these two solutions are the only travelling wave
solutions.

The two components of the wave speed (7a) have been identified in equation (5). The
summand (1− 2p̂)/ζ± brings in the effect of selection. It is scaled relative to dispersal by
the parameter ζ±, which leads to a non-additive dependence of the speed of the wave front
on selection and dispersal. If dispersal is independent of the genotypes (∆M = 0), the
term (M1 +M2)/2 becomes a shift of the wave due to the displacement of the population
as a whole. Then, the second summand can be disposed of by the rescaling described
above, x 7→ x−Mt, such that we recover known results (Bazykin, 1969; Barton, 1979).
Note that the wave fronts (6) emerging from cubic selection functions are pushed waves
(Stokes, 1976). Correspondingly, equation (7b) has a structure similar to equation (4)
for ∆M >

√
2V k.

Genotype-dependent variance of dispersal. Let ∆M = 0. If the variance of dispersal
is different for the two genotypes, the wave front solution becomes asymmetric which
impedes an explicit solution of equation (3). However, if the values of V1 and V2 are
sufficiently similar, |∆V | � 1, we may assume that the shape of the wave front does not
differ from the wave solution under genotype-independent dispersal. Then, from (5) we
find that the contribution to the speed of the wave due to the genotype-dependent variance
of dispersal is

cV =
∆V

4

∫∞
−∞(P ′)3dz∫∞
−∞(P ′)2dz

≈ − ∆V

10

√
s

2V
. (8)

Thus, the wave front moves towards the genotype with smaller variance of dispersal
(P (−∞) = 1 and P (+∞) = 0). In Figure 3, the accuracy of the approximation lead-
ing to equation (8) is confirmed numerically. If |∆V | is small relative to V , simulated wave
speeds are very precisely predicted by equation (8). For higher values of |∆V |, the induced
wave speed increases slower than predicted. However, the fit is very close up to consider-
able deviations in the variances of dispersal; prediction and simulation start to diverge by
more than 5% only around |dV | ≈ 0.1V for the parameters studied here.
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Figure 3: Wave speed induced by differences in the variance of dispersal. We numerically
solved equation (3) with M1 = M2 = ∆M = 0, s = 1, F (p) = 2sp(1 − p)(p − p̂), and
p̂ = 1/2 using standard integration routines of the software Mathematica. The simulation
was initialized at t = 0 with the solution of equation (3) for genotype-independent dispersal,
i.e., by p̃(x, 0) as in equation (6) for ∆M = 0, and stopped at t = 60. Assuming that the
solution closely approaches a stable wave form within the first 50 time units (confirmed
numerically), the displacement of the solution in the last ten time units (between t = 50
and t = 60) was used to calculate its wave speed cV induced by ∆V . The relative deviation
of the simulated wave speed csimV from the predicted cV in equation (8) is evaluated for
various values of ∆V /V ; the data coincide for positive and negative ∆V /V of the same
absolute value. The reference variance of dispersal is V = 1 (⊗), V = 1/2 (+), and V = 2
(×). Small values of |∆V /V | lead to a good fit between the simulation and the analytic
prediction.

3 Discussion

In nature, dispersal characteristics may vary between individuals even of the same pop-
ulation. There are documented cases in which either the capacity to disperse is variable
itself, or systematic differences in a dispersal direction are observable (Edelaar and Bol-
nick, 2012). Classical mathematical models of evolution in spatially extended populations
however predominantly assume homogeneous dispersal characteristics (we refer to classical
work by Fisher (1937); Bazykin (1969); Slatkin (1973); Nagylaki (1975); Barton
(1979) for the type of models treated in this article). Genotype-dependent variation in
dispersal may be conditional on environmental factors, for example variation in fitness
(Armsworth and Roughgarden, 2008; Ravigné et al., 2009) or the intensity of com-
petition (Holmes et al., 1994). This article focusses on unconditional genotype-dependent
dispersal, where each genotype i has a fixed dispersal strategy given by constant mean dis-
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placement Mi and variance of dispersal Vi. We consider a population consisting of two
different dispersal types that may also differ in fitness. The assumption of complete link-
age is justified if either a single locus pleiotropically determines fitness and dispersal at
the same time, or if recombination between the fitness and the dispersal genes is suffi-
ciently unlikely. The other extreme, a dispersal trait that is completely unlinked from any
fitness-related genes, is typically studied in the context of dispersal evolution (Ronce,
2007). We employ a continuous diffusion model, equation (3), to investigate the effect of
genotype-dependent dispersal on gene frequency waves. We consider two genotypes that
may differ in their fitness, their variance of dispersal (dispersal propensity), and their mean
displacement (directional dispersal bias).

By mathematical analysis detailed elsewhere (Kollár and Novak, 2016), we prove
the existence of wave solutions to equation (3) for a general class of selection functions, in
particular for quadratic and cubic selection functions. These types of functions are com-
monly used in population biology. Quadratic selection functions are applied to describe
the spread of an advantageous mutation in a population (Fisher, 1937). With 0 < p̂ < 1
(see Section 2.4), cubic selection functions model positive frequency dependent selection
that leads to the maintenance of wave fronts in hybrid zones (Barton, 1979). In Sec-
tion 2.3, we derive a general formula for the wave speed, equation (5), given implicitly in
terms of the wave solution. It allows us to decompose the total speed c of the wave front
into individual components due to selection (cS), differences in the variance of dispersal
(cV ), and differences in the mean displacement (cM). While the term cS is well-known,
the components cV and cM are new and quantify the relative contributions of selection,
variance of dispersal, and mean displacement to the speed of a wave.

Genotype-dependent mean displacement alone, V1 = V2 = V , as introduced in this
model does not break the asymmetry in the solutions of the model equations (3). Thus,
the equations can still be solved relatively easily whenever the choice of the local selection
function F permits. For instance, if F (p) ≡ 0, it is straightforward to check that

p̃(x, t) =

(
1 + exp

[
∆M

V
(x− ct)

])−1

,

where c = cM = (M1 + M2)/2, is a solution to equation (3). Hence, one should not
simply assume that natural selection is always responsible for adaptive divergence between
populations (Bolnick and Otto, 2013); even without selection, there may be stable wave
fronts that are maintained solely by genotype-dependent dispersal. This is not surprising;
if both genotypes have a movement bias in the direction of the environment where they are
predominantly present they only mix to a certain degree in the region where they meet.
Similar patterns may emerge if individuals have an active habitat preference, which has
been found to exhibit genetic variation and adaptive potential (Jaenike and Holt, 1991;
Bolnick et al., 2009).

Genotype-dependent dispersal may drastically change the behaviour of gene frequency
waves maintained by selection, as we show by the example of Fisher waves. The minimal
velocity at which an advantageous mutation advances through space is known to be

√
2V k
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for genotype-independent dispersal. The wave front is a pulled wave, i.e., the dynamics in
its leading edge determines its speed. This is also the case for moderate differences in mean
displacement between the genotypes, ∆M = M2 −M1 ≤

√
2V k. If ∆M exceeds its critical

value of
√

2V k, however, the bulk of the wave moves faster than the leading edge would
afford. Hence, the wave turns into a pushed wave as the bulk of the wave determines its
speed. Thus, genotype-dependent dispersal may not only influence the speed of the wave,
but also its dynamical properties.

Our results can be used to detect the significance of genotype-dependent dispersal
strategies from experimental data. In the simplest case of two genotypes with the same
variance of dispersal, V1 = V2, but genotype-dependent mean displacement, M1 6= M2,
modelled by equation (3), it is enough to compare the asymptotic rates of decay of the
wave profile P (z) as z → ∞ and z → −∞ that we denote λ0 and λ1, respectively. These
quantities can be read off as the slopes of the data in a logarithmic plot. Here, we assume
that the travelling wave has the critical speed c∗ given by equation (4). A short calculation
shows that the case ∆M ≤

√
2V k corresponds to the condition λ0 + λ1 ≤ 0 and that

∆M/V = λ1 − (λ0 + λ1)2/(2λ1). Thus, one can estimate ∆M/V directly from the data
without any a priori knowledge of k, V , M1, M2, and c. On the other hand, the case
∆M ≥

√
2V k corresponds to the condition λ0 + λ1 ≥ 0 and then ∆M/V = λ1. Note

that the condition λ0 + λ1 > 0 directly implies ∆M ≥
√

2V k and thus it is sufficient for
the significant difference in the mean-displacement. In the general case, V1 6= V2, some
knowledge of parameters of the model (k, 4M , 4V , or c) is needed to use an analogous
criterion.

In hybrid zones, when F (p) = 2sp(1 − p)(p − p̂), selection against heterozygotes is
known to maintain gene frequency waves (Bazykin, 1969). These wave fronts can – at
least in the simplest cases – be calculated analytically and have proven to be of practical
importance to predict rates of spatial spread, local introduction numbers necessary to ini-
tialize spatial spread, and sufficient environmental conditions that interrupt spatial spread
in biocontrol applications (Barton and Turelli, 2011). For the case that only the mean
displacement is genotype-dependent, we generalize the known wave solution to genotype-
dependent dispersal (equation (6)). Genotype-dependent variance of dispersal disrupts the
symmetry in the solutions of the selection-dispersal model (3) and consequently makes
analytic solutions intractable. Thus, we employ a perturbation argument assuming that
the difference in the variance of dispersal values (∆V ) is small. This allows us to derive
a prediction for the wave speed induced by ∆V , equation (8), that should be accurate at
least for small values of |∆V |. Numerical simulations, however, show that the validity of
the approximation is very broad; for the studied parameter ranges, noticeable deviations
from the predicted wave speed only start to appear if |∆V /V | exceeds 10%, see Figure 3.

The variance of dispersal can be interpreted as the mobility of a genotype. Thus, the
result above – and more generally the formula for cV in equation (5) for arbitrary selection
function F – shows that more mobile genotypes push back less mobile ones. It is interesting
to interpret this in the light of the evolution of dispersal strategies, as we have a case in
which increased dispersal spreads through the population even in the absence of the classic
factors of dispersal evolution, i.e., any kind of spatio-temporal habitat variability, explicit

13



relatedness structure, or inbreeding effect. Instead, selection maintains heterogeneities in
the spatial genotype frequency profile, which has been shown to be sufficient to create
selection for elevated dispersal (Novak, 2014). In the framework of that article, the rate
of increase of a dispersal type with elevated variance of dispersal is |∆V /2| ×

∫
R(∂xp)

2dx
(equation (7) in Novak, 2014). Inserting the unperturbed wave front solution for genotype-
independent dispersal and cubic F (p) = 2sp(1 − p)(p − p̂) yields cV ≈ |∆V |

√
s/2V /6.

Hence, the order of magnitude of cV and its dependence on the parameters s and V agree
with our equation (8), even though the two models are different.

Throughout this article, we assume that population density is spatially and tempo-
rally constant. This is a common assumption in population genetics, but in the case of
genotype-dependent dispersal it is even more of an abstraction. Areas in which more
mobile genotypes are located will experience an excess of emigration and hence will be
underpopulated relative to areas where slow dispersers are abundant. Hence, population
density is bound to fluctuate in time, heterogeneously over space, as a consequence of
genotype-dependent dispersal. However, constant population densities can be justified if
the differences in dispersal strategies between genotypes are small (Novak, 2014), or if
there is an external population regulation mechanism, for example, a limited number of
nesting places available to a large progeny each generation. To incorporate a dynamic re-
sponse of population density to the heterogeneities in dispersal strategies of the population,
one has to include an ecological layer into the model. Travelling wave fronts are known to
speed up when moving down population density gradients and thus can be trapped in pop-
ulation sinks (Barton, 1979; Barton and Turelli, 2011). With genotype-dependent
dispersal, however, the population density changes in time with the changing genetic com-
position of the population. Hence, simple qualitative predictions will be hard to establish
for a joint ecological-evolutionary selection-dispersal model.
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