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Abstract1

We characterize critical points of 1-dimensional maps paired in persistent homology geometrically2

and this way get elementary proofs of theorems about the symmetry of persistence diagrams and3

the variation of such maps. In particular, we identify branching points and endpoints of networks as4

the sole source of asymmetry and relate the cycle basis in persistent homology with a version of the5

stable marriage problem. Our analysis provides the foundations of fast algorithms for maintaining6

collections of interrelated sorted lists together with their persistence diagrams.7
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1 Introduction8

We consider 1-dimensional real-valued maps, by which we mean continuous functions on9

1-dimensional spaces, such as the real line, the unit circle, or more general geometric networks.10

Such maps are ubiquitous and arise in developmental biology (e.g. rythmic gene expression11

[1]), physiology (e.g. heart-rate), but also in discrete geometry (e.g. piecewise constant maps12

on a line arrangement to count k-set [5]).13

Maps on 1-dimensional spaces allow for local conditions that characterize features identified14

by persistent homology, as we will explain in the technical sections of this paper. Indeed, the15

main contribution of this paper is a local characterization of the pairing of critical points16

in persistent homology. Let f : G → R be a tame map on a compact geometric graph or17

network, by which we mean that f is continuous with isolated and therefore finitely many18

critical points. The local characterization of persistent homology is formulated in terms of19

windows, each the product of a connected subset of G and the range of f restricted to this20

subset. Such a product is defined by a pair of critical points, a, b, and we refer to it as a21

window and denote it W (a, b), if it satisfies the conditions detailed in Definitions 3.1, 4.1,22
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4.3, and 5.3. We distinguish between windows with (simple) wave (see Figure 2), windows23

with short wave (see Figure 3), windows with branching wave (see Figure 4), windows of24

component, and windows of cycle (see Figure 5). To state the main theorem, we recall that25

the (extended) persistence diagram of f , denoted Dgm(f), consists of three subdiagrams,26

denoted Ord(f), Rel(f), and Ess(f); see [3] for details. Whenever necessary or convenient,27

we restrict the diagrams to a given dimension, which we list as a subscript.28

I Main Theorem. Let f : G → R be a tame map on a compact geometric network, a a29

minimum, with f(a) = A, and b a maximum, with f(b) = B. Then30

(i) (A,B) ∈ Ord0(f) iff W (a, b) is a window with wave of f ,31

(ii) (B,A) ∈ Rel1(f) iff W (b, a) is a window with wave of −f ,32

(iii) (A,B) ∈ Ess0(f) iff W (a, b) is a window of component of f ,33

(iv) (B,A) ∈ Ess1(f) iff W (a, b) is a window of cycle of f .34

The geometric networks contain the unit circle as a special case. For a map on the unit35

circle, f : S1 → R, the windows with wave are upside-down symmetric; that is: if W (a, b) is a36

window for f , then W (b, a) is a window for −f . In addition to the windows with wave, f has37

a window of component and another of cycle, which are upside-down versions of each other.38

It follows that the persistence diagram of a tame map on the unit circle is symmetric across39

the main diagonal. This is not necessarily the case when the network is not a 1-manifold.40

Another implication of the Main Theorem is a relation between the variation and the41

total persistence. The variation of a real-valued map quantifies the total amount of local42

change in the map. According to the Koksma–Hlawka inequality, the error of a numerical43

integration is bounded from above by the variation of the map times the discrepancy of44

the points at which the map is evaluated [8, 9]. For 1-dimensional differential maps, the45

variation is the integral of the absolute derivative. It is also the total persistence of the map,46

as we will prove for general compact 1-dimensional spaces in this paper. The variation is47

thus a numerical summary of the more detailed information about the map expressed in48

the persistence diagram. Not unlike the Fourier transform, this diagram decomposes the49

variation into components of different scales.50

I Main Corollary. For a tame map f : G→ R on a compact geometric network, the variation51

equals the total persistence: Var(f) = ‖Dgm(f)‖1.52

This relation has been known in the special case of a map on the unit circle; see e.g. [1].53

Beyond this case, the relation is new. The main technical insights needed to prove these54

results are nesting properties of the windows that characterize persistence pairs. Indeed, the55

projections of any two windows onto the geometric network are either nested or disjoint and56

thus form the basis of a topology of the network.57

Outline. Section 2 introduces basic terminology and properties of maps, homology, and58

persistent homology. Section 3 studies maps on the unit circle. Section 4 considers maps on59

the unit interval and on geometric trees. Section 5 extends the results to maps on geometric60

networks. Section 6 concludes the paper.61

2 Background62

This paper deals exclusively with 1-dimensional real-valued maps. We therefore need only a63

few mathematical prerequisites, and it suffices to introduce basic terminology for tame maps64

and the homology and persistent homology of 1-dimensional sets. We recommend [4] for a65

more comprehensive introduction to these concepts.66
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2.1 Maps67

The school-book example of a map is from R to R. In contrast, we consider maps on compact68

1-dimensional spaces, of which the unit circle and the unit interval are examples, but R is not69

because it is not compact. We call a compact 1-dimensional space a geometric network, and70

if it is connected and without cycle a geometric tree. All maps in this paper are continuous.71

Letting f : G→ R be such a map on a geometric network, a minimum is a point a ∈ G for72

which there exists a neighborhood, N(a) ⊆ G, such that f(a) ≤ f(x) for all x ∈ N(a). It is73

isolated if there exists a neighborhood such that f(a) < f(x) for all x in this neighborhood.74

Maxima and isolated maxima are defined symmetrically, and the critical points of f are its75

minima and maxima. A critical value of f is the value of a critical point, and all other values76

are non-critical. We call f tame if all critical points are isolated, and because G is compact,77

this implies that f has only finitely many critical points. Assuming f is tame, we call it78

generic if the critical points have distinct values.79

As an example, let f : S1 → R be a map on the unit circle. Since S1 is a manifold, we80

may assume that f is smooth. Such a map is Morse if its critical points are isolated and81

have distinct values; that is: if it is tame and generic. In the smooth category, an isolated82

minimum is characterized by f ′(a) = 0 and f ′′(a) > 0, while an isolated maximum satisfies83

f ′(b) = 0 and f ′′(b) < 0. The minima and maxima alternate in a trip around the circle,84

which implies that there are equally many of them. There is exactly one global minimum, a0,85

and one global maximum, b0, which satisfy f(a0) ≤ f(x) ≤ f(b0) for all x ∈ S1. Note that86

the definitions of tame and generic also apply to piecewise linear functions, which are often87

more convenient for computations.

2π0

Figure 1: Left: the graph of a Morse function on the circle with the global maximum at 0 = 2π.
The six minima alternate with the six maxima. Right: the persistence diagram of the map. The two
points that correspond to the global min-max pair are marked by crosses, while all other points are
marked by small circles.

88

2.2 Homology89

For 1-dimensional spaces, homology groups are straightforward objects, so we do not have to90

introduce them in full generality. For a more comprehensive treatment, we recommend a91

standard text in algebraic topology, for example Hatcher [7].92

Given a map, f : S1 → R, the sublevel set at t ∈ R is ft = f−1(−∞, t], and the superlevel93

set is f t = f−1[t,∞). Let A0 and B0 be the values at the global minimum and maximum.94

For a non-critical value, we have the following three cases:95
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t < A0: ft = ∅ and f t = S1;96

A0 < t < B0: ft consists of a positive number of connected components, each a closed arc97

with non-empty interior, and f t consists of the same number of connected components of98

the same type;99

t > B0: ft = S1 and f t = ∅.100

We use homology to formally distinguish between these cases. In particular, the rank of101

H0(ft) is the number of connected components of the sublevel set, and the rank of H1(ft)102

is the number of cycles, which is 0 for t < B0 and 1 for t > B0. Compare this with the103

homology of S1 relative to f t, denoted Hi(S1, f t), where we have rank H0(S1, f t) = 1 for104

t > B0 and rank H0(S1, f t) = 0 for t < B0. More interesting is the case i = 1, for which the105

relative homology group counts the open arcs in S1 \ f t. By Lefschetz duality, the (absolute)106

homology groups and the relative homology groups are isomorphic: Hi(ft) ' H1−i(S1, f t),107

for i = 0, 1 and for all non-critical values, t of f . This is an elementary insight for the circle108

and is also true for higher-dimensional manifolds. It does not hold for more general spaces,109

not even for the unit interval. On the other hand, both homology and relative homology110

generalize and can be used to count connected components and cycles in geometric networks111

and the sub- and superlevel sets of maps on them.112

2.3 Persistent Homology113

Persistent homology arises when we keep track of sub- and superlevel sets while t changes114

continuously. We again take advantage of the relative simplicity provided by the restriction to115

compact 1-dimensional spaces and avoid the introduction of the concept in full generality. For116

more comprehensive background, we refer to the text [4]. Specifically, we use the framework117

that is referred to as extended persistent homology, which is constructed in two phases, first118

growing the sublevel set until it exhausts the space, and second doing the same with the119

superlevel set. We explain this for a tame and generic map on the unit circle.120

In Phase One, we increase t from −∞ to ∞ and use H0(ft) and H1(ft) to do the book-121

keeping. A connected component is born when t passes the value of a minimum, and the122

component dies merging into another, older component when t passes the value of a maximum.123

There is one exception: when t passes B0, then no component dies and instead a cycle is124

born. We pair up the minimum, a, and the maximum, b, responsible for the birth and death125

of a component and represent the two events by the point (f(a), f(b)) in the plane.126

In Phase Two, we decrease t from ∞ to −∞ and use H0(S1, f t) and H1(S1, f t) to do the127

book-keeping. We enter Phase Two with a component born at A0 = f(a0) and a cycle born128

at B0 = f(b0), both of which did not yet die. The component dies in relative homology right129

at the beginning of Phase Two, when t passes B0, while the cycle lasts until the end, and130

dies when t passes A0. This gives two pairs represented by the points (A0, B0) and (B0, A0).131

During Phase Two, a (relative) cycle is born when t passes the value at a (non-global)132

maximum, and this cycle dies when t passes the value at a (non-global) minimum. Like in133

Phase One, we pair up the maximum, b, with the minimum, a, responsible for the birth and134

death of the cycle and represent the two events by the point (f(b), f(a)) in the plane.135

The events during the two phases are recorded in the persistence diagram of f , denoted136

Dgm(f), which is a multi-set of points, each marking the birth and death of a component137

or cycle; see Figure 1. We distinguish between three disjoint subdiagrams, Dgm(f) =138

Ord(f) t Rel(f) t Ess(f), in which the ordinary subdiagram records the pairs in Phase One,139

the relative subdiagram records the pairs in Phase Two, and the essential subdiagram records140

the pairs that straddle the two phases. Whenever convenient, we list the dimension as a141
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subscript, writing Dgmi(f) for the points that represent i-dimensional homology classes,142

and similarly for the subdiagrams. For a 1-dimensional map, we have Ord(f) = Ord0(f),143

Rel(f) = Rel1(f), but Ess(f) = Ess0(f) t Ess1(f). Recall that for a map on the unit144

circle, Lefschetz duality implies that the pairs in Phase One are the same as in Phase145

Two, only reversed. Similarly, for every pair straddling the two phases, there is also the146

reversed pair straddling the two phases. This implies that Dgm(f) is symmetric across147

the main diagonal, with the caveat that a point (f(a), f(b)) ∈ Dgmi(f) maps to the point148

(f(b), f(a)) ∈ Dgm1−i(f); see Figure 1 and [3] for details. This property no longer holds149

for maps on non-manifold spaces, such as the unit interval, geometric trees, and general150

geometric networks. Nevertheless, the persistence diagram and its subdiagrams are useful151

book-keeping tools for such more general spaces.152

For a point (A,B) ∈ Dgm(f), we think of |B −A| as the life-time or persistence of the153

corresponding component or cycle. Taking the sum, over all points in the multi-set, we get154

what we call the total persistence of f :155

‖Dgm(f)‖1 =
∑

(A,B)∈Dgm(f)
|B −A|. (1)156

For a map on the unit circle, the global minimum and the global maximum contribute157

2|B0 −A0| to this measure. Everything beyond that is due to wrinkles in the map and may158

be regarded as a measure of how interesting or noisy the map is.159

An important property of persistence diagrams is their stability, which was first proved160

in [2]. Assuming f and g are tame maps on the same geometric network, this theorem161

asserts that the bottleneck distance between Dgm(f) and Dgm(g) is bounded from above162

by ‖f − g‖∞. It allows us to assume that a given tame map is also generic. Indeed, we can163

perturb the values ever so slightly so that the critical points do not change but their values are164

distinct. The perturbation can be arbitrarily small, so that the bottleneck distance between165

the diagrams of the original map and of the perturbed map is arbitrarily small. Furthermore,166

since the number of critical points is finite and preserved, the difference between the total167

persistence of the original map and the perturbed map is arbitrarily small. We will therefore168

state most claims for tame and not necessarily generic maps, tacitly assuming genericity in169

the proof.170

3 The Circle Case171

We treat the circle separately and before considering more general geometric networks because172

it is the only connected 1-manifold among them.173

3.1 Maps on the Circle174

We consider tame generic maps on the unit circle and introduce the notion of a window175

to characterize the critical points paired by persistent homology. After establishing this176

connection, we get elementary proofs of fundamental properties of maps on the circle.177

Let a be a minimum and b a maximum of a tame and generic map f : S1 → R, write178

A = f(a), B = f(b), and let J = J(a, b) be the component of f−1[A,B] that contains both179

a and b. It may be a closed interval, the entire circle, or empty if no such component exists.180

We call W (a, b) = J × [A,B] the frame with support J spanned by a and b, and we say181

W (a, b) covers the points x ∈ J . When J is an interval, a and b decompose it into three182

(closed) subintervals, which we read in a direction so that a precedes b: Jin before a, Jmid183
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between a and b, and Jout after b. Correspondingly, we call Jin × [A,B], Jmid × [A,B], and184

Jout× [A,B] the in-, mid-, and out-panels of W (a, b). We orient the in- and mid-panels away185

from the minimum, while we leave the the out-panel without orientation; see Figure 2.186

I Definition 3.1 (Windows for Circles). We call the frame, W (a, b), a window with (simple)187

wave if the values at the endpoints of Jin, Jmid, Jout are B,A,B,A in this sequence.188

a p QL q Rbvusr P

Figure 2: An oriented window with wave. There are two children in the in-panel, spanned by
r, s and u, v, there is one child in mid-panel, spanned by p, q, and there is no child in the out-panel.
The windows spanned by r, s and u, v overlap, while the corresponding small windows are disjoint.

We will sometimes consider a small window, which consists of the in-panel and the mid-panel.189

It contains the graph of the component in the sublevel set that grows from the minimum190

until it merges with another component at the corresponding maximum. We show that191

the windows with wave characterize the paired critical points, while noting that the global192

min-max pair is special and not subject to the following claim.193

I Theorem 3.2 (Characterization for Circles). Let f : S1 → R be tame, a a (non-global)194

minimum with f(a) = A, and b a (non-global) maximum with f(b) = B. Then (A,B) and195

(B,A) are points in the ordinary and relative subdiagrams of Dgm(f) iff the frame spanned196

by a and b is a window with wave.197

Proof. “⇐=”. Let a, b span W (a, b) = [L,R]× [A,B], and assume that a is to the left of b,198

as in Figure 2. Consider the component of ft that contains a as t increases from −∞ to ∞.199

This component is born at t = A. Since A ≤ f(x) ≤ B for all L ≤ x ≤ b, the component200

grows—occasionally by incorporating other, younger components—but never dies before t201

reaches B. At t = B, the component meets another component at b, and since W (a, b) is a202

window with wave, this other component is older. It follows that a, b are paired.203

“=⇒”. We suppose that a, b are paired. In other words, a component of ft is born204

at t = A, and a remains the point with minimum value in this component until t = B,205

when the component merges with another, older component. Let [L, b] and [b,X] be the206

components right before merging. The graph of f restricted to [L, b] describes the history207

of the component born at t = A, which implies that it is contained in [L, b]× [A,B]. The208

other component is born earlier, so [b,X] has a leftmost point, R, that has the same value as209

a. By construction, the graph of f restricted to [L,R] is contained in [L,R]× [A,B], which210

implies that W (a, b) is a window. J211
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In addition to the points in the ordinary and relative subdiagrams—which are characterized212

by Theorem 3.2—Dgm(f) contains two more points, namely (A0, B0) and (B0, A0) in the213

essential subdiagram. With A0 < B0 the values at the global minimum and the global214

maximum, the first point represents the component and the second the cycle of the circle.215

There is no ambiguity which critical points of f are paired in persistent homology.216

Theorem 3.2 thus implies that for every minimum there is a unique maximum such that the217

corresponding frame is a window. While we say that the pair spans the window, it is really218

the minimum which defines the window.219

3.2 Nesting and Ordering of Windows220

As illustrated in Figure 2, two windows can be nested, disjoint, or they can overlap. We will221

see that any overlap is limited. We call W (u, v) a child of W (a, b), and W (a, b) a parent of222

W (u, v), if W (u, v) is nested inside the in-panel or the mid-panel of W (a, b), and there is no223

other window nested between the two. Assuming W (r, s) and W (u, v) are not nested, we224

say W (r, s) is higher than W (u, v) if f(r) > f(u) and f(s) > f(v).225

I Lemma 3.3 (Nesting and Ordering in Circle). Let f : S1 → R be tame, let W (a, b) be a226

windows with wave of f with supports Jin, Jmid, Jout of its panels, and let W (r, s) and W (u, v)227

be children that are nested inside a common panel of W (a, b).228

(i) If u ∈ Jin, Jmid, Jout, then W (u, v) is nested inside the corresponding panel of W (a, b).229

(ii) W (r, s) is higher than W (u, v) iff v, u, s, r is the ordering of the four critical points in230

the direction of the orientation of the panel that contains W (r, s) and W (u, v).231

Proof. To prove (i), we first consider the mid-panel of W (a, b), which we assume is oriented232

from left to right, so a < b. Moving from x = a to x = b, we encounter an alternating233

sequence of minima and maxima, starting with a and ending with b. If a and b are the234

only critical points in this sequence, then (i) is vacuously true. Otherwise, let a < p < b235

be the minimum with the smallest value, f(p). There is at least one maximum to its left,236

and we let a < q < p be the maximum with the largest value, f(q); see Figure 2. Drawing237

a horizontal line from (p, f(p)) to the left, we intersect the graph of f in (P, f(p)), and238

drawing a horizontal line from (q, f(q)) to the right, we intersect the graph in (Q, f(q)). By239

construction, a < P < q < p < Q < b as well as f(p) ≤ f(x) ≤ f(q) for all P ≤ x ≤ Q.240

Hence, W (p, q) is a window with wave nested inside the mid-panel of W (a, b). To continue,241

we subdivide [a, b] at q and p, and apply the same argument in each to get a pairing of all242

critical points in the interior of [a, b]. Their frames are therefore windows with wave and243

nested inside mid-panel of W (a, b). Repeating the symmetric argument for the in-panel and244

the out-panel, we get (i).245

To prove (ii), we consider two consecutive children, W (r, s) and W (u, v) with r, s to the246

left of u, v, both nested inside the in-panel of W (a, b); see again Figure 2. Then f(s) > f(u247

because f decreases monotonically from s to u, and f(r) > f(u), else W (r, s) would violate248

the definition of a window with wave. Finally, f(s) > f(v), else W (r, s) would be nested249

inside W (u, v). Hence, W (r, s) is higher than W (u, v), and (ii) follows by transitivity inside250

the in-panel of W (a, b). The symmetric argument applies to the mid-panel, which completes251

the proof of (ii). J252

Recall that a small window is obtained by dropping the out-panel. The small windows253

can be nested or disjoint, but in contrast to (full) windows, they cannot overlap. Indeed by254

Lemma 3.3 (i), non-nested windows do not cover each other’s critical points. It follows that255
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the overlap is limited to the in-panel of one and the out-panel of the other window. Since we256

drop the out-panel, small windows cannot overlap.257

3.3 Consequences: Symmetry and Variation258

We use the hierarchies of windows and of small windows to prove two folklore results about259

real-valued maps on the circle. The first is a statement of symmetry that follows from260

Alexander duality. Given a multiset of points in R2, such as Dgm(f), we write Dgm◦(f)261

for the central reflection, which negates coordinates. Similarly, we write DgmR(f) for262

the reflection across the major diagonal, which switches coordinates, and Dgmr(f) for the263

reflection across the minor diagonal, which negates and switches coordinates.264

I Corollary 3.4 (Strong Symmetry for Circles). Let f : S1 → R be tame. Then Dgm(f) =265

DgmR(f) and Dgm(−f) = Dgmr(f).266

Proof. A window with simple wave of f is also such a window of −f . Hence, (A,B) ∈ Ord(f)267

iff (B,A) ∈ Rel(f). Recall also that Ess(f) consists only of two points, (A0, B0) and (B0, A0),268

in which A0 = minx f(x) and B0 = maxx f(x). This implies Dgm(f) = DgmR(f).269

To relate f with −f , note that both have the same critical points, except that minima270

switch with maxima. Since W (a, b) = J × [A,B] is a window of f iff W (b, a) = J × [−B,−A]271

is a window of −f , this implies that we get the diagram of −f by negating and switching272

the coordinates; that is: Dgm(−f) = Dgmr(f). J273

To state the second result, we recall that the variation of a 1-dimensional Morse function274

is the total amount of climbing up and down. In the differentiable case, it is the integral of275

the absolute derivative: Var(f) =
∫

x∈S1 |f ′(x)|dx. We claim that this is the total persistence276

of f , which we recall is the sum of |B −A| over all points (A,B) ∈ Dgm(f).277

I Corollary 3.5 (Variation for Circles). Let f : S1 → R be tame. Then the total persistence of278

f is equal to the variation: ‖Dgm(f)‖1 = Var(f).279

Proof. We use induction, considering the small windows defined by min-max pairs of f in280

a sequence in which the children precede their parents. Observe that f restricted to the281

support of a small window without children consists of two monotonic pieces. Its contribution282

to the variation of f is twice the height of the small window, and so is its contribution to the283

total persistence. Indeed, the min-max pair corresponds to a point each in the ordinary and284

the relative subdiagrams, or it corresponds to two points in the essential subdiagram. After285

recording these contributions, we locally flattening f to remove the small window. J286

The relation between the total persistence and the variation of a map on S1 expressed in287

Corollary 3.5 was known before. For example, it is used to measure to what extent a noisy288

cyclic map is periodic [1]. Its generalization to maps on networks stated in Corollary 5.6 is289

however new.290

4 The Geometric Tree Case291

In this section, we consider geometric networks without cycles, which if connected are trees.292

We begin with a single edge and continue with geometric trees whose interior vertices have293

degree 3.294
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4.1 Maps on the Interval295

The simplest compact 1-dimensional space that is not a 1-manifold is a line segment, which296

we refer to as an interval and parametrize from 0 to 1. We call a map f : [0, 1]→ R tame297

and generic if the minima and maxima in the interior of [0, 1] are isolated and their values298

together with the values at the endpoints are distinct. An endpoint has ↘-type or ↗-type if299

its value is larger or smaller than the values of the points in a sufficiently small neighborhood,300

respectively. Theorem 3.2 applies in the interior of the interval, but we need new kinds301

of windows that cover the endpoints. Let a be a minimum or ↗-type endpoint and b a302

maximum or ↘-type endpoint of f : [0, 1] → R, write A = f(a) and B = f(b), and recall303

that J = J(a, b) is the component of f−1[A,B] that contains both a and b, with J = ∅ if no304

such component exists.305

I Definition 4.1 (Windows for Intervals). The frame W (a, b) = J × [A,B] is a window306

with (short) wave if its in-, mid-, out-panels are delimited by 0 ≤ a < b < x < 1 or by307

1 ≥ a > b > x > 0 such that f(x) = A.308

Observe that Definition 4.1 allows for the cases a = 0 and a = 1. As illustrated in Figure 3,309

a window with short wave covers exactly one endpoint of the interval, and this endpoint is310

either a or a maximum. The case in which the window covers both endpoints is also possible311

but different and introduced in Definition 5.3. In contrast to windows with simple wave,312

windows with short wave do not come in symmetric pairs; that is: if W (a, b) is a window313

with short wave of f , then W (b, a) is not a window with short wave of −f .

0 a b x x b a 1

Figure 3: Two windows with short wave, oriented from left to right on the left and from right to
left on the right. Both cases may degenerate to zero-width in-panels. The black points correspond to
endpoints of the interval. There are different ways how a frame can fail to be a window, one being
that f(x) > f(a).

314

Because of the asymmetry of windows with short wave, the extension of Theorem 3.2 to315

intervals requires a separate treatment of the ordinary and relative subdiagrams of Dgm(f).316

I Theorem 4.2 (Characterization for Intervals). Let f : [0, 1]→ R be a tame map on the unit317

interval, a a minimum or ↗-type endpoint, with f(a) = A, and b a maximum or ↘-type318

endpoint, with f(b) = B. Then319

(i) (A,B) ∈ Ord(f) iff W (a, b) is a window with simple or short wave of f ,320

(ii) (B,A) ∈ Rel(f) iff W (b, a) is a window with simple or short wave of −f .321

Proof. The pairs in (i) correspond to components of the sublevel set, which are counted by322

H0, while the points in (ii) correspond to relative cycles, which are counted by H1. The proof323

of (i) is almost verbatim the same as that of Theorem 3.2, and we omit the details.324

Write I = [0, 1] and recall that f t = f−1[t, 1]. To prove (ii), we relate H0(f t) with325

H1(I, f t). Specifically, we decrease t from ∞ to −∞ and show that the two groups change326

their ranks in parallel, with only one exception at t = B0, the value of the global maximum,327
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when H0(f t) goes from rank 0 to 1 while H1(I, f t) remains at rank 0. For this purpose, we328

consider the long exact sequence of the pair (I, f t). We recall that exactness means that the329

image of a map is the kernel of the next map in order along the sequence; see [4, Section IV.4]330

or [7, Section 2.1] for details. In the 1-dimensional case, all homology groups of dimension331

other than 0 and 1 are trivial, so the long exact sequence is rather short:332

0→ H1(f t)→ H1(I)→ H1(I, f t)→ H0(f t)→ H0(I)→ H0(I, f t)→ 0. (2)333

We have rank H0(I) = 1 and rank H1(I) = rank H1(f t) = 0 for every t. There are only three334

possibly non-trivial groups, which we related to each other in a case analysis.335

For t > B0, the only non-trivial groups are H0(I) and H0(I, ∅), which both have rank 1.336

In particular, H0(f t) and H1(I, f t) are both trivial and therefore isomorphic.337

For t ≤ B0, H0(I, f t) is trivial, so by the exactness of (2), rank H1(I, f t) = rank H0(f t)−1.338

To finish the argument, we remove the class born at t = B0 from all groups H0(f t) to get339

two isomorphic persistence modules. It follows that the implied pairing of the critical values340

is the same, whether we track the components of f t or the relative cycles of (I, f t). Claim341

(ii) thus follows from (i). J342

In addition to the points in the ordinary and relative subdiagrams—which are charac-343

terized by Theorem 4.2—Dgm(f) contains one more point, namely (A0, B0) in the essential344

subdiagram. This point will be discussed in Section 5.345

4.2 Maps on Geometric Trees346

If we glue intervals at their endpoints without forming a cycle in the process, we get a347

geometric tree, A = (V,E), with vertices, V , and edges, E. We restrict ourselves to degree-3348

trees, in which each vertex is an endpoint of either one or three edges. We call a map349

f : A→ R generic if350

(1) the restriction of f to any edge in E is generic;351

(2) any degree-3 vertex is ↘-type endpoint for at least one restriction of f to an incident352

edge, and ↗-type endpoint for at least one such restriction.353

We thus have two types of degree-3 vertices: y-type and λ-type. It is tempting to consider354

↗- and y-type vertices as minima and ↘- and λ-type vertices as maxima, but note that355

components of sublevel sets are born at ↗-type but not at y-type vertices, and they die at356

λ-type but not at ↘-type vertices.357

Geometric trees introduce the topological phenomenon of branching, which requires yet358

another extension of the notion of window with wave. Let a be a minimum or ↗-type vertex,359

with f(a) = A, and b a maximum or λ-type vertex, with f(b) = B. Recall that J = J(a, b)360

is the component of f−1[A,B] that contains both a and b, which is a geometric tree, and361

that a, b subdivide J into subtrees Jin, Jmid, Jout.362

I Definition 4.3 (Windows for Geometric Trees). We call W (a, b) = J × [A,B] a window363

with (branching) wave if f(x) > A for every point x 6= a in Jin ∪ Jmid, and f(y) = A for at364

least one point y 6= b in Jout.365

Note that the windows with simple and short wave satisfy the conditions of Definition 4.3,366

but there are also others, as illustrated in Figure 4. We can now generalize Theorem 4.2367

from intervals to geometric trees.368
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a b

Figure 4: A window with branching wave, W (a, b). There is a branch in the in-panel on the left
and another in the out-panel on the right. Branching points and endpoints of the geometric tree are
marked in black. Note that W (b, a) violates the conditions in Definition 4.3 for the negated map.

I Theorem 4.4 (Characterization for Geometric Trees). Let f : A→ R be a tame map on a369

geometric degree-3 tree, a a minimum, ↗-type, or y-type vertex, with f(a) = A, and b a370

maximum, λ-type, or ↘-type vertex, with f(b) = B. Then371

(i) (A,B) ∈ Ord(f) iff W (a, b) is a window with branching wave of f ,372

(ii) (B,A) ∈ Rel(f) iff W (b, a) is a window with branching wave of −f .373

The proof is almost verbatim the same as that of Theorem 4.2 and therefore omitted. Note374

that every vertex is paired only once: the ↗-type and λ-type vertices in Phase One, and the375

↘-type and y-type vertices in Phase Two. This is in contrast to the critical points in the376

interior of the edges, which are paired twice. Indeed, according to Definition 4.3, W (a, b) is377

not a window of f if a is a y-type vertex or b is a ↘-type vertex. Symmetrically, W (b, a) is378

not a window of −f if b is a λ-type vertex or a is a ↗-type vertex. In addition to the points379

in the ordinary and relative subdiagrams—which are characterized by Theorem 4.4—Dgm(f)380

contains one point representing the one component, which is the entire geometric tree, in the381

essential subdiagram.382

4.3 Consequences: Symmetry and Variation383

For a map, f , on a geometric tree, the upside-down version of a window of f is not necessarily384

a window of −f . The strong symmetry statement in Corollary 3.4 thus fails to generalize and385

must be replaced by a weaker statement of symmetry. Recall that Dgm◦(f) and Dgmr(f)386

are the reflections of Dgm(f) through the origin and across the minor diagonal.387

I Corollary 4.5 (Weak Symmetry for Geometric Trees). Let f : A→ R be a tame map on a388

geometric tree. Then Dgm(−f) = Ord◦(f) t Rel◦(f) t Essr(f).389

Proof. Recall that Dgm(f) = Ord(f) t Rel(f) t Ess(f). By Theorem 4.4, the windows with390

wave of f characterize Ord(f) and the windows with wave of −f characterize Rel(f). For391

−f , we turn all windows upside-down, which switches and negates coordinates as well as392

switches the phases in which the windows are constructed. Hence, Ord(−f) = Rel◦(f) and393

Rel(−f) = Ord◦(f). There is only one point (A0, B0) ∈ Ess(f), in which A0 and B0 are the394

values of the global minimum and the global maximum of f . Similarly Ess(−f) consists of a395

single point, (−B0,−A0), which completes the proof. J396

In contrast, Corollary 3.5 does generalize to geometric trees. However, the windows with397

short or branching wave complicate the proof of this generalization.398
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I Corollary 4.6 (Variation for Geometric Trees). Let f : A→ R be a tame map on a geometric399

tree. Then the variation equals the total persistence: Var(f) = ‖Dgm(f)‖1.400

Proof. To formulate the proof strategy, we interpret each point (A,B) ∈ Dgm(f) as the401

interval with endpoints A and B on the real line. We will show that for each non-critical402

value, t ∈ R, the cardinality of f−1(t) is equal to the number of intervals in Dgm(f) that403

contain t. The claimed equation follows.404

To begin, we add every minimum and maximum of f as a vertex to A, so that f is405

monotonic on every edge of the thus subdivided geometric tree. We have six types of vertices,406

two each of degree 1, 2, and 3. We are interested in the change of the sublevel set and the407

superlevel set when t passes the value of a vertex:408

↗-type endpoint: a component of ft is born;409

↘-type endpoint: a cycle of (A, f t) is born, unless the endpoint is the global maximum,410

in which case a component of ft dies.411

minimum: a component of ft is born and a cycle of (A, f t) dies;412

maximum: a component of ft dies, and a cycle of (A, f t) is born, unless the maximum is413

the global maximum, in which case another component of ft dies;414

y-type vertex: a cycle of (A, f t) dies;415

λ-type vertex: a component of ft dies.416

We now increase t from −∞ to ∞. The births and deaths of components correspond to417

start- and end-points of intervals, while the births and deaths of cycles correspond to end-418

and start-points of intervals, respectively. Accordingly, the number of intervals in Dgm(f)419

increases by 1 when t passes the value of a ↗-type endpoint or a y-type vertex, it decreases420

by 1 when t passes a ↘-type endpoint or a λ-type vertex, it increases by 2 when t passes a421

minimum, and it decreases by 2 when t passes a maximum. The induction basis is provided422

by t smaller than the value of at the global minimum, when there are no intervals that423

contain t and there are no points in f−1(t). The induction step is the observation that424

#f−1(t) changes in the same way as the number of intervals that contain t, namely #f−1(t)425

increases by 1 when t passes the value of a ↗-type endpoint or a y-vertex, etc. J426

5 The General Geometric Network Case427

In this section, we take the step from maps on the unit circle and on geometric trees to maps428

on more general 1-dimensional spaces. By a geometric network we mean the realization of an429

abstract graph in some Euclidean space: each vertex is mapped to a point, and each edge to430

a line segment connecting the images of its vertices. We are not concerned with the details of431

the embedding, except that different vertices map to different points, and line segments do432

not intersect except possibly at shared endpoints. For convenience, we restrict ourselves to433

finite graphs in which every vertex has degree 1 or 3. This is not really a limitation since we434

can replace a degree-k vertex by a tree with k − 2 vertices, all of degree 3, and if the edges435

in the tree approach zero length, we can recover the original topology in the limit. Similar436

substitutions can be used to model multi-edges and circles. Letting G be such a geometric437

network, we call f : G→ R tame and generic if it satisfies Conditions (1) and (2) required438

for tame and generic maps on geometric trees. Similar to Section 4, we distinguish between439

↗-type and ↘-type degree-1 vertices, and between y-type and λ-type degree-3 vertices. In440

contrast to a geometric tree, we do not assume that a geometric network is connected.441
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5.1 Stable Marriage442

We call an element of H1(G) a cycle, which by definition is an even degree and not necessarily443

connected subgraph of the network. We relate the global minima and maxima of the cycles444

in G to each other using the notion of a stable marriage. Let f : G → R be a tame and445

generic map on a geometric network, and write k = rank H1(G) for the rank of the cycle446

space. For Λ ∈ H1(G), we introduce special notation for the global minimum and maximum447

of f along Λ:448

lo(Λ) = arg minx∈Λ f(x), (3)449

hi(Λ) = arg maxx∈Λ f(x), (4)450

calling them the low point and the high point of the cycle. If cycles Λ 6= Λ′ have the451

same low point, then tameness and genericity imply the existence of a common arc that452

contains the shared low point in its interior. This arc does not belong to the sum, hence453

f(lo(Λ + Λ′)) > f(lo(Λ)) = f(lo(Λ′)). The symmetric inequality holds for cycles with shared454

high point. Write Lo(f) and Hi(f) for the collections of low and high points of all cycles.455

We begin by proving that both collections have cardinality k.456

I Lemma 5.1 (Low and High Points). Let f : G→ R be tame and generic. Then #Lo(f) =457

#Hi(f) = rank H1(G).458

Proof. It suffices to prove that #Lo(f) is equal to k = rank H1(G). Since H1(G) is a vector459

space, every one of its bases consists of k cycles. Let Λ1,Λ2, . . . ,Λk be a basis that maximizes460 ∑k
i=1 f(lo(Λi)). We claim that their low points are distinct. Indeed, if lo(Λi) = lo(Λj) with461

i 6= j, then f(lo(Λi + Λj)) > f(lo(Λj)) and we can substitute Λi + Λj for Λj to get a new462

basis with larger sum of values. This contradiction implies lo(Λi) 6= lo(Λj) whenever i 6= j463

and therefore #Lo(f) ≥ k.464

To get #Lo(f) ≤ k, we observe that the low point of a sum of cycles in the basis is the465

lowest low point of these cycles and therefore one of the k low points we already observed466

exist. Thus, #Lo(f) = k, as claimed. J467

Since there are equally many low and high points, we can pair them up. Of particular468

interest is the solution to a stable marriage problem [6]. To formulate it, we call b ∈ Hi(f) a469

candidate of a ∈ Lo(f), and vice versa, if there exists a cycle, Λ, with a = lo(Λ) and b = hi(Λ).470

Among its candidates, a low point prefers high points with small function values, and a high471

point prefers low points with large function values. We write hi(a) and lo(b) for the favorites472

among their candidates and claim that everybody can be paired with its favorite.473

I Lemma 5.2 (Stable Marriage). Let Lo(f) and Hi(f) be the low and high points of a tame474

and generic map f : G→ R. Then µ : Lo(f)→ Hi(f) defined by µ(a) = hi(a) is a bijection,475

and it satisfies µ−1(b) = lo(b).476

Proof. We show b = hi(a) iff a = lo(b), for all a ∈ Lo(f) and b ∈ Hi(f), which implies the477

claim. To reach a contradiction, suppose b = hi(a) but a′ = lo(b) with a′ 6= a. By definition478

of favorite, there exists a cycle, Λ, with lo(Λ) = a and hi(Λ) = b. Hence, a is a candidate479

of b. However, since a′ 6= a is the favorite of b, this implies f(a′) > f(a). Let Λ′ be the480

cycle with lo(Λ′) = a′ and hi(Λ′) = b. Then lo(Λ + Λ′) = a and f(hi(Λ + Λ′)) < f(b), which481

contradicts that b is the favorite of a. J482
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5.2 Maps on Geometric Networks483

The components and cycles of G give rise to points in the 0- and 1-dimensional essential484

subdiagrams of Dgm(f). They need new kinds of windows to be recognized. The more485

interesting case is that of a cycle. Let a ∈ Lo(f), b ∈ Hi(f), and recall the definition of486

J = J(a, b). If a and b are candidates of each other, then J 6= ∅ as it contains at least the487

cycles whose low and high points are a and b. Even if a and b are not candidates of each488

other, J 6= ∅ is possible, but then it does not contain any cycle through the two points.489

I Definition 5.3 (Windows for Geometric Networks). Let a ∈ G be a minimum, ↗-type,490

or y-type vertex, with f(a) = A, and b ∈ G a maximum, ↘-type, or λ-type vertex, with491

f(b) = B. Recall that J = J(a, b) is the component of f−1[A,B] that contains both a and b,492

with J = ∅ if no such component exists.493

(i) W (a, b) = J × [A,B] is a window of component if J is an entire component of G.494

(ii) W (a, b) is a window of cycle if J contains a cycle that passes through a and b such that495

J \ {a, b} is not connected.496

The window of cycle is illustrated in Figure 5: (a,A) and (b, B) lie on the lower and upper497

boundaries of the cylindrical strip. If W (a, b) does not satisfy the conditions in Definition 5.3,498

then cutting the strip along vertical lines at a and b does not split it into two connected499

pieces. On the other hand, if W (a, b) is a window of cycle, then the two cuts split the strip500

into two components. Note that a window with wave can neither be a window of component

(b, f(b))

(a, f(a))

Figure 5: A window of cycle. If the two arms met at the ends, this would be a violation of the
conditions in Definition 5.3 (ii) since cutting at a and b would not disconnect the strip.

501

nor of cycle. On the other hand, it is possible that a window with component is also a502

window of cycle.503

The proof of Lemma 5.2 implies that W (a, b) is a window of cycle iff a and b are each504

other’s favorites. We show that this is also equivalent to being paired in persistent homology;505

see [3, Section 3].506

I Theorem 5.4 (Characterization for Geometric Networks). Let f : G → R be a tame map507

on a network, let a be a minimum, ↗-type, or y-type vertex, with A = f(a), and let b be a508

maximum, ↘-type, or λ-type vertex, with B = f(b). Then509

(i) (A,B) ∈ Ess0(f) iff W (a, b) is a window with component,510

(ii) (B,A) ∈ Ess1(f) iff W (a, b) is a window of cycle.511

Proof. (i) is obvious enough so we omit the proof. To see (ii), assume a and b are each512

other’s favorites, and let Λ be a cycle whose low and high points are a and b. When t ∈ R513
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reaches B in Phase One, Λ is born along with all cycles Λ + Λ′, in which Λ′ is a cycle born514

before Λ. All these cycles die when t reaches A in Phase Two. Indeed, if Λ′ dies earlier, then515

Λ + Λ′ becomes homologous to Λ, but since Λ is born after Λ′, the sum of the two cycles516

does not die yet. On the other hand, Λ + Λ′ dies at t = A because it becomes homologous to517

Λ′, which was born earlier. J518

The characterization of points in the essential subdiagram of Dgm(f) in Theorem 5.4519

together with the characterization of the points in the ordinary and relative subdiagrams in520

Theorem 4.4 completes the proof of the Main Theorem stated in the Introduction.521

5.3 Consequences: Symmetry and Variation522

The weak symmetry assertion for geometric trees stated in Corollary 4.5 generalizes to523

geometric networks.524

I Corollary 5.5 (Weak Symmetry for Geometric Networks). Let f : G→ R be a tame map on525

a geometric network. Then Dgm(−f) = Ord◦(f) t Rel◦(f) t Essr(f).526

Proof. The argument for the windows with wave is the same as in the proof of Corollary 4.5.527

Since geometric networks are not necessarily connected, we can have more than one window528

of component, which is different for geometric trees, which are connected. Nevertheless, the529

argument for the argument for such windows is the same as in the proof of Corollary 4.5.530

It remains to argue about the cycles in the network. By Lemma 5.2, the cycles are531

represented by pairing their low and high points in a symmetric manner. Specifically, each532

low point is paired with the lowest candidate high point, and because the candidate relation533

is symmetric, this is equivalent to pairing each high point with the highest candidate low534

point. Each such pair generated in Phase One corresponds to a point (A,B) ∈ Ess(f), and535

by symmetry to a point (−B,−A) ∈ Ess(−f), which completes the proof. J536

The equality of the variation and the total persistence generalizes from circles and537

geometric trees to geometric networks. We can reuse the proof of Corollarr 4.6, which we538

complement with an argument about cycles.539

I Corollary 5.6 (Variation for Geometric Networks). Let f : G → R be a tame map on a540

geometric network. Then the variation equals the total persistence: Var(f) = ‖Dgm(f)‖1.541

Proof. We cut each cycle in G at its high point to obtain a geometric network, G′, with542

one less cycle. Let η : G′ → G be the surjection that reverses the cut, and let g : G′ → R be543

defined by g(x) = f(η(x)). Since the maps are essentially the same, we have Var(g) = Var(f).544

To show that the total persistence remains the same, let Λ be a cycle in G, a = lo(Λ) its545

low point, and b = hi(Λ) its high point. Assume that W (a, b) is a window of cycle, so that546

(A,B) ∈ Ess1(f), in which A = f(a) and B = f(b), as usual. The cut at b removes the cycle547

and thus the point (A,B) from the diagram. There is a second window, generated by b and548

another point x ∈ G, whose corresponding point, (B,X), is removed from the diagram. In549

lieu of b, we get two ↗-type endpoints in G′, which we denote b′ and b′′. By definition of η,550

we have g(b′) = g(b′′) = B. Since b′ and b′′ are endpoints, they are paired only once. By the551

local characterization of windows in Theorems 3.2, 4.2, 4.4, 5.4, all windows of f other than552

W (a, b) and W (b, x) are also windows of g. Hence b′ and b′′ can only be paired with a and553

x. We thus get two new points, (B,A) and (B,X) in Dgm(g). Their persistence is the same554

as that of the two points they replace, so ‖Dgm(g)‖1 = ‖Dgm(f)‖1.555
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We now repeat the argument, cutting one cycle at the time, until we reached a collection of556

geometric trees. Now Corollary 4.6 implies that the variation is equal to the total persistence.557

Since both quantities did not change during the process, we thus established the equality558

also for geometric networks. J559

6 Discussion560

The main contribution of this paper is the local characterization of points in the (extended)561

persistence diagram of a map on a geometric network. This work gives rise to a number of562

open questions, of which we state two:563

The characterization through critical point pairs by windows identifies endpoints and564

branching points as culprits for the failure of Dgm(f) = DgmR(f) beyond circles. Can we565

sharpen this to a quantitative relationship between the symmetric difference of the two566

diagrams and the number of endpoints and branching points in the geometric network?567

While the variation is a natural concept for 1-dimensional maps, there are several568

competing extensions to maps on 2- and higher-dimensional domains (Hardy–Wright569

variation, Harman variation, etc.); see e.g. [11]. How does the total persistence of such a570

map relate to these extensions?571

In conclusion, we note that many questions in discrete geometry are attacked and sometimes572

solved with topological methods [10]. Persistent homology is currently not part of the573

standard repertory, but perhaps it should be.574
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