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Statistical inference is central to many scientific endeavors, yet how it works remains unresolved. Answering
this requires a quantitative understanding of the intrinsic interplay between statistical models, inference methods,
and the structure in the data. To this end, we characterize the efficacy of direct coupling analysis (DCA)—a highly
successful method for analyzing amino acid sequence data—in inferring pairwise interactions from samples
of ferromagnetic Ising models on random graphs. Our approach allows for physically motivated exploration
of qualitatively distinct data regimes separated by phase transitions. We show that inference quality depends
strongly on the nature of data-generating distributions: optimal accuracy occurs at an intermediate temperature
where the detrimental effects from macroscopic order and thermal noise are minimal. Importantly our results
indicate that DCA does not always outperform its local-statistics-based predecessors; while DCA excels at low
temperatures, it becomes inferior to simple correlation thresholding at virtually all temperatures when data are
limited. Our findings offer insights into the regime in which DCA operates so successfully, and more broadly,

how inference interacts with the structure in the data.
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I. INTRODUCTION

A quantitative understanding of the limitations and biases
of inference methods is critical for developing high per-
forming and trustworthy approaches to data analyses. While
emerging, such an understanding is incomplete, not least be-
cause it requires a thorough investigation of the intertwined
nature of statistical models, inference methods, and the struc-
ture in the data [1]. Statistical physics models are ideally
suited for this investigation for three main reasons. First,
they often encompass the statistical models used in practice;
take, for example, the Potts model in direct coupling analysis
(DCA) [2,3]. Second, they enjoy a number of well-studied
inference methods owing to a long history of inverse statis-
tical physics problems [4—6]. Third, they provide a controlled
and physically motivated way to alter data-generating dis-
tributions across qualitatively distinct regimes. Adopting a
statistical physics approach, we characterize the performance
of DCA, one of the most oft-used tools in biological sequence
analyses, and highlight the importance of the structure in the
data in quantifying the performance of inference methods.
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DCA has proved successful as a technique for inferring the
physical interactions that underpin the structure of biological
molecules from amino acid sequence data [2,3]. This success
has led to new insights into the protein folding problem [7]
and how RNAs obtain their structures [8—10]. The essence
of DCA is to draw a distinction between direct and indirect
correlations—those originating from direct physical interac-
tions between two sites in a sequence and those mediated via
other sites—by fitting a global statistical model to sequence
data. But while DCA supersedes its local-statistics-based pre-
decessors in virtually all applications, relatively little is known
about the conditions that underlie its success [11].

The statistical model in DCA, well known in physics as
the Potts model [12], captures a phase transition that re-
sults from a competition between disorder-promoting thermal
noise and order-promoting interactions. The disordered phase,
which prevails at high temperatures, describes a system whose
constituents (e.g., residues in a sequence) are largely uncor-
related; on the other hand, a macroscopic number of such
constituents assume the same state in the low-temperature or-
dered phase. Both phases make for difficult inference: the data
are noisy in the disordered phase and macroscopic ordering
leads to strong indirect correlations in the ordered phase [13].
A question arises as to the regime in which DCA operates
so successfully and more broadly how the nature of data-
generating distributions affects inference (see also Ref. [14]).

Recent work suggests that sequence data are drawn
from distributions poised at the onset of order [15,16].
This regime sits at the boundary of the two phases,
thus minimizing the detrimental effects from thermal noise
while avoiding precipitation of macroscopic order. In fact,
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FIG. 1. Data generation and inference. We generate samples
from a ferromagnetic spin model on an Erd6s-Rényi random graph
and evaluate inference methods on the data at different model tem-
peratures across order-disorder phase transitions. Direct coupling
analysis ranks the likelihood of an interaction by leveraging global
statistics, whereas local inference uses pairwise statistics such as
empirical correlations. We obtain predictions by thresholding the
likelihood scores. In general, local and global inference methods
result in different predictions.

signatures of criticality—a defining property of a type of
phase transitions—appear ubiquitous across a wide variety
of biological systems [17,18], including antibody diversity
[19], genetic regulations [20,21], neural networks [22-28],
behaviors of individuals [29], and those of groups [30,31].
This apparent ubiquity has inspired a search for the origin of
this behavior [32-35] as well as work that attempts to uncover
its function [36]. However, the structure of data distributions
alone cannot capture the complete phenomenology of infer-
ence and as such cannot explain the success of DCA relative
to local-statistics-based methods.

The use of the Potts model to capture correlations among
constituents of a system is neither unique to DCA nor limited
to analyzing sequence data. Indeed, this approach is appli-
cable to a range of biological systems from neural activity
[37,38] to flocks of birds [39]. In addition, the Potts model is
closely related to probabilistic graphical models and Markov
random fields in probability theory, statistics,and machine
learning with applications including inferring interactions
among genetic transcription factors [40] and computer vision
[41]. Understanding what affects the performance of DCA and
when it outperforms local statistical inference is relevant to
a large class of problems beyond the application of DCA in
structural biology.

Here we investigate the efficacy of DCA in inferring pair-
wise couplings from samples drawn from ferromagnetic spin
models on random graphs at different temperatures across
order-disorder phase transitions (see Fig. 1). We demonstrate
that the inference quality depends on data-generating dis-
tributions; in particular, better inference methods need not
be more elaborate nor computationally more expensive. We

show that a simple method based on thresholding pairwise
correlations can easily outperform DCA at all temperatures in
the undersampled regime—a condition applicable to nearly all
amino acid sequence datasets. We find further that more data
improve DCA most significantly in the ordered phase where
strong indirect correlations limit the performance of local
methods. Interestingly, we do not observe direct effects of
criticality despite its association with diverging Fisher infor-
mation [42-46]. Instead, we attribute the accuracy maximum
at an intermediate temperature to the competition between the
emergence of macroscopic order at low temperatures and high
thermal noise level at high temperatures. Our work under-
scores the necessity to characterize the role of data-generating
distributions when evaluating inference methods and offers a
first step towards a deeper understanding of the intertwined
nature of inference, models, and the structure in the data.

II. DATA GENERATION

To highlight the role of a phase transition, we consider
the problem of reconstructing the interaction matrix of an
Ising model on a random graph. A limiting case of the Potts
model, the Ising model is one of the simplest models that
captures a phase transition. It describes a system of » spins,
o = (o1, 02, ..., 0,), each of which is a binary variable o; €
{=£1}. The spins interact via the Hamiltonian

H@E)=—)_ ) Jijoig;— > ho, (1)
i=1 j=it+1 i=1

where J;; denotes the interaction between spins i and j, and

h; the bias field on spin i. The probability distribution of this

system is given by

o~ BHE)
S e PG’

=/

o

P@G) = ()

where 8 = 1/T is the inverse temperature and the summation
is over all spin configurations.

Figure 1 provides an overview of our work. We gener-
ate samples from a uniform-interaction ferromagnetic Ising
model on an Erd6s-Rényi random graph,

H¥E) == " Jyoo; with J; ~Bem(i/n)  (3)

i<j

for a graph with n vertices and mean degree A. Each interac-
tion is drawn from a Bernoulli distribution with parameter p =
A/n, i.e., an interaction is present (J;; = 1) with probability p
and absent (J;; = 0) with probability 1 — p. In the thermo-
dynamic limit n — oo, a sharp transition exists between the
high-temperature disordered phase and the low-temperature
ordered phase. This phase transition is characterized by
the order parameter A = % (3,00, which vanishes in the
disordered phase and grows continuously with decreasing
temperature in the ordered phase. A standard mean-field ap-
proximation yields the critical temperature 7, = A with the
order parameter given by the largest root of the equation A =
tanh(AA/T). As a result, when the mean degree is relatively
high, the effect of a change in A is completely captured by crit-
ical temperature rescaling [see also Eq. (C5)]. Our results are
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FIG. 2. Local statistical modeling outperforms mean-field DCA in the disordered phase. We show density histograms of empirical and
direct pair correlations—(0;0;)dqaa and (o;0;)air [see Eq. (5)]—for interacting (filled) and noninteracting (line) pairs of spins at T'/T,. =
0.7, 1.0, 1.5 [(a)—(c), respectively]. The predictions of pairwise interactions are depicted in a contact map for local (upper half) and global
(lower half) inference. The discrimination threshold is chosen such that the number of positive predictions is equal to the number of real
interactions, and false positives and false negatives are equal (see legend). In general, both empirical and direct pair correlations are higher
among interacting spins and are thus informative of interactions. For local inference, the prediction error decreases with temperature and is
smaller than that of global inference at 7 /7, = 1.5 (c). Global inference error exhibits nonmonotonic temperature dependence and is minimal
at an intermediate temperature 7 /7, = 1.0 (b). Shown results are based on 5 x 10 samples drawn from Ising models on an Erdés-Rényi graph

with 50 vertices and mean degree 20.

based on samples generated with exact Monte Carlo sampling
[47].

III. MEAN-FIELD INVERSION

While several methods exist for the inverse Ising problem
[5], we focus on the so-called naive mean-field inversion
which forms the basis for a number of practically relevant
algorithms [3,4,7,48]. Derived from a mean-field theory and
the linear response theorem [49,50] (see Appendix B), the
naive mean-field inversion expresses interactions J;; in terms
of empirically accessible connected correlation matrix C,

BJij=—(C™"); fori < j, 4)

where C;; = (0,0;) — (07)(0;). In the following, global statis-

tical inference refers to the naive mean-field inversion.

IV. RESULTS

A. Discriminability of interactions

One measure of inference quality is the ability to discrim-
inate directly interacting spin pairs from those that interact
only via other spins. Figure 2 visualizes this discrimination
based on local and global statistical inference. For each spin
pair, we assign a score that ranks the likelihood of an in-
teraction being present; here, we use empirical correlations
(070)dara and direct correlations {o;0;)qir in local and global
inference, respectively. The average (---)da 1S taken with
respect to the empirical distribution and (- - - )gi; to the direct
pairwise distribution [2],

exp(BJijoio; + hio; + hjo;)

- = —, (5)
Za’,ﬁ; exp(BJijojo} + hio/ + hjo})

Adi _
P01, 0)) =

where J; ; denotes the inferred interactions from naive mean-
field inversion and the fields 7; and &; are chosen such that
the marginal distributions coincide with empirical single-spin
distributions. In Fig. 2, we see that on average both empirical

and direct correlations are higher among interacting pairs and
are thus predictive of true interactions. To turn the likeli-
hood scores into concrete predictions, we need to define a
threshold which separates positive and negative predictions.
We choose a discrimination threshold that equates the number
of positive predictions to the number of true interactions and
display inference predictions and errors as a contact map
[Figs. 2(a)-2(c)]. The accuracy of the global approach exhibits
nonmonotonic temperature dependence with higher error rates
at temperatures above and below 7. In contrast, the accuracy
of local inference increases with temperature over the range
shown in Fig. 2. (But note that the accuracy must eventually
go down at adequately high temperatures; see Fig. 3.) While
the error rate of global inference is less than half that of
local inference at low temperatures [Figs. 2(a) and 2(b)], a
local statistical approach outperforms global inference at high
temperature [Fig. 2(c); see also Fig. 3].
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FIG. 3. Local inference is more data efficient but more severely
affected by macroscopic order. We depict the local (red) and global
(blue) inference discriminability of interactions (area under the ROC
curve) for Ising models on Erd&s-Rényi graphs with mean degree
40 and different number of vertices n (see legend) for sample sizes
K = 2x10? and 10* [(a) and (b), respectively]. Both local and global
inference exhibits discriminability maximum near 7. Local infer-
ence is more discriminating at all temperatures when the data are
limited (a). But global inference performs better in the ordered phase
when more data are available (b).
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Although specifying a discrimination threshold allows us
to make concrete predictions, its choice is often arbitrary.
We now consider a more general measure of discriminability
grounded in receiver operating characteristic (ROC) analysis.
ROC analysis constructs a curve that traces the true and false
positive rates as the discrimination threshold varies. In the
following, we identify discriminability with the area under the
ROC curve which is equal to the probability that a real positive
scores higher than a real negative.

Local and global statistical inference exhibits qualitatively
different sample size dependence (see Fig. 3). At low samples,
local inference is more discriminating than naive mean-field
inversion at all temperatures [Fig. 3(a)]. This behavior is a
result of the distinct natures of local and global approaches.
Global inference requires a good estimate of the full joint
distribution, whereas local inference relies only on pairwise
distributions which are much easier to estimate, especially
with limited samples. An increase in samples improves both
local and global inference but this improvement diminishes
for local inference at low temperatures [Fig. 3(b)]. This re-
sults from the fact that the entropy of the model increases
with temperature and thus, given a fixed number of sam-
ples, a low-temperature model is better sampled. In Fig. 3(a),
pairwise distributions are already well sampled at low tem-
peratures and more samples do not lead to higher accuracy for
local inference [Fig. 3(b)]. However, well-sampled pairwise
distributions do not imply a good estimate of the full distri-
bution; indeed, more samples improve the discriminability of
global inference in the low-temperature regimes, i.e., the blue
points in Fig. 3(b) are higher than in Fig. 3(a) below 7.

Inference performance depends not only on well-measured
probability distributions but also the structure of the distribu-
tions. Despite having lower entropy and being better sampled,
low-temperature models are more difficult to infer compared
to those in the vicinity of the phase transition (see Fig. 3). This
feature is a consequence of macroscopic ordering below 7. In
the ordered phase, two spins are likely to align regardless of
the presence of an interaction and therefore pair correlations
become less discriminating. While the decrease in discrim-
inability affects both local and global inference, its effect is
less severe for global inference (Fig. 3). The use of global
statistics—statistical quantities that require measurements of
the entire system such as the inverse connected correlation
matrix—helps avoid direct comparisons between spin pairs in
dense clusters of the interaction graph and those in sparser
parts.

B. The effects of local interaction networks on inference

Indeed, local inference is more likely to misclassify well-
connected noninteracting spin pairs. To illustrate this point,
we randomly divide all of the spin pairs into two disjoint
sets for validation and testing. We use the validation set
to determine a discrimination threshold and report inference
quality on the test set. In Fig. 4 we use 20% of pairs in
validation and choose the discrimination threshold such that
the resulting true and false positive rates are closest to that
of ideal classifiers, as measured by the Euclidean distance
in the ROC plane [panel (a)]. Note that while the Euclidean
distance is not the only possibility, the concavity of the ROC

curve means our results remain qualitatively the same for any
metric based on £, norm with p > 1. Figures 4(b) and 4(c)
show that the quality of local inference deteriorates faster as
temperature decreases below T;; i.e., decreasing true positive
rate, increasing false positive rate, and more overprediction
(excess positive predictions compared to ground truth).

We characterize the false positives (misclassified noninter-
acting pairs) by the number of shortest paths between spins
in each pair [Fig. 4(d)]. Here we focus only on pairs with a
graph distance of two (less than 2% of pairs have distance
greater than two for this particular graph). At high tempera-
tures the distribution of the number of shortest paths among
false positives is the same as that for noninteracting pairs; that
is, any noninteracting pair is equally likely to be misclassified.
As temperature lowers to around T, the false positives from
local inference contain a disproportionately large fraction of
pairs that are connected by more paths. This behavior is a
direct consequence of the emergence of order which gen-
erates strong correlations, especially among pairs in denser
parts of the graph. At very low temperatures, macroscopic
order proliferates and pair correlations are strong regardless
of the number of paths or physical interactions. While this
effect reduces the disproportionate misclassification among
better connected pairs, it increases the discrepancy between
the predicted and actual positive rates [Fig. 4(c)]. In fact, the
positive rate of ~50% results from the fact that any pair leads
to a positive prediction with probability % We see that in
contrast to local inference, mean-field DCA is less likely to
confound path multiplicity with interactions, especially close
to the onset of order. In addition it suffers less from strong
indirect correlations as evidenced by smaller overprediction
rates at low temperatures. In sum, leveraging global statis-
tics helps DCA draw a better distinction between direct and
indirect correlations, thus making it more accurate at low
temperatures.

C. Root-mean-square error of inferred couplings

While a useful characterization of discriminability, ROC
analysis is agnostic about the magnitude of the inferred in-
teractions. We now show that the root-mean-square (rms)
error of the interactions inferred by naive mean-field inversion
exhibits similar temperature dependence to discriminability.
In Fig. 5(a), we see that the rms error is smallest at a tempera-
ture slightly below 7. for a range of sample sizes. Figure 5(b)
reveals the origin of this temperature dependence. On average
mean-field inversion correctly predicts the interactions—J;; €
{0, 1} depending on whether an interaction is present—but
the prediction variance is minimum around 7;. Above T, an
increase in temperature leads to a model with higher entropy,
thus requiring a larger number of samples to maintain infer-
ence accuracy. Below T, macroscopic order interferes with
inference by generating strong indirect correlations among
noninteracting pairs.

D. The role of data-generating models

Since inference quality is intrinsically a combined
property of inference methods and data distributions, it
is a priori unclear whether the observed nonmonotonic

023240-4



INFERRING COUPLINGS IN NETWORKS ACROSS ...

PHYSICAL REVIEW RESEARCH 4, 023240 (2022)

Validation ROC 1.0 True positive rate
&««;«f&fm@“ 9 0%e-0—q_ e local
o ././0 ('.. ~0-o. .—.s: : ° global
+= LN -
g 0 5"" et False positive rate
g . fo o‘lo o local
g %0 o global
> o} 0.
b= S _88‘8,88’0—8
0.0 1 1 |
false pos. rate 0.5 Eag Positive rate
LN m |ocal
0.4 .__.\ "1.‘- = global
| [
03} N g
o el i
. actual
00 1 1 | 1
0.8 1 1.2 1.4
T/Tc
10 # of shortest paths
for distance-2 pairs
(normalized frequency)
— local false positives
5 — global false positives
— all distance-2 pairs
T/Te 0.7 0.8 0.9 1.0 1.1

FIG. 4. Local inference is more likely to misclassify well-connected noninteracting pairs. We use 20% of pairs chosen at random (validation
set) to compute the discrimination threshold (a) and report inference properties on the rest [test set, (b)—(d)]. (a) Typical ROC curve for the
validation set. We choose a threshold such that the resulting model is closest to the ideal model, as measured by the Euclidean distance in the
ROC space. (b) True and false positive rates vs temperature. Both local and global methods are most accurate at a temperature close to 7, but
local inference worsens faster at low temperatures. (c) Temperature dependence of the positive rate (the ratio between positive predictions and
all pairs). Overprediction is most acute for local inference at low temperatures. (d) Distribution of the number of shortest paths among false
positive pairs with graph distance two at different temperatures. At low temperatures the false positives from local inference contain a larger
fraction of highly connected pairs, compared to all pairs with distance two (gray) as well as to the false positives from global inference. Thus
noninteracting pairs in denser parts of the graph are likelier to be misclassified than those in sparser parts. Shown results are based on 10*
samples from an Ising model on an Erd6s-Rényi graph with 400 vertices and mean degree 40.

temperature dependence (Figs. 3 and 5) originates from the
inductive bias in inference methods or the structure in the
data. To isolate the role of data-generating models, we con-
sider the response of data distributions to a change in model
parameters as a proxy for how informative a data point
is about model parameters. We quantify the distributional
response by the f divergence, an information-theoretic dis-
tance between two distributions, defined via D;(Px||Qx) =
(f(Px/QOx))x~0c Where f:[0,00) = (—00,00) is convex
and f(1) = 0. The f divergence between two zero-field Ising
models on different graphs, parametrized by J and J’, reads

[see Egs. (2) and (3)]
, eﬁ Zi<i Alijoio;
D =(f NG|
2 :
G~Hy
) is with respect to

AJijo} rrj

T Seie)
~riy

where AJ = J’ — J and the average (- - -
the model on the graph J.

Before we discuss the numerical results, it is instructive
to derive an expression for the f divergence in a mean-field
approximation. Expanding Eq. (6) around 8 = 0 and taking

P@G) =[]; 3(1 + o;A) yield

mf 7/ 1 A(T)4
DY (J,J) = f (1)||AJ||1—, (7)
where A(T) is the mean-field order parameter and the ¢,
norm ||AJ||; counts the number of different edges in J and J'.
Note that the elements of J and J’ are either zero or one and
we set J;; = 0 for i > j as they do not enter the model [see
Eq. (3)]. In the disorder phase T > T, high noise level makes
models less dependent on the parameters and the f divergence
decays as 7 ~2. The dependence on the order parameter means
different parameters also result in more similar models at
low temperatures [since A(T) — 1 as T — 0]. Indeed, the
competition between thermal noise and macroscopic order
leads to a maximum at 7 /7, ~ 0.83. Figure 6 illustrates the
temperature dependence of the f divergence between two
Ising models. Here we adopt the Jensen-Shannon (JS) di-
vergence which is an f divergence defined with f(r) = (r +
1)log, h%l + 1 log, t. We compute the divergence Dys(J', J)
from data using Eq. (6) for a fixed Erd6s-Rényi graph J
and we generate J' by randomly deleting and adding edges
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FIG. 5. Interactions inferred from mean-field DCA are statis-
tically unbiased with smallest variances around phase transitions.
(a) Root-mean-square error of inferred interactions as a function of
temperature at different sample sizes K (see legend). (b) Density
histograms of inferred interactions for noninteracting and interacting
pairs whose true interactions are one and zero, respectively. Shown
results are for an Ising model on an Erd&s-Rényi graph with 400
vertices and mean degree 40.

in J, allowing J and J’ to have different numbers of edges.
We see that, as expected from the mean-field analysis, the f
divergence decays as T2 at high temperatures and peaks at a
temperature below T, with its scale controlled by the number
of different interactions in J and J’ [Fig. 6(a)]. In Fig. 6(b),
we compare the empirical JS divergence to the mean-field
approximation [Eq. (7)] and find good agreement for 7 > 7.
Below T, the mean-field result only captures the qualitative
behavior due to large variance in the JS divergence (from

10 @) = g L) Mean-field
adl 3
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FIG. 6. Jensen-Shannon (JS) divergence between two Ising mod-
els vs temperature. (a) JS divergences computed from 10* samples
using Eq. (6) for a fixed graph J and many realizations of J' gen-
erated by randomly deleting and adding edges to J. The curves are
grouped by the number of different edges in J and J’ (see legend).
(b) Empirical JS divergences compared to a mean-field prediction,
Eq. (7), showing good agreement for 7 > T, [same color code as
in (a)]. Here J is an Erd6s-Rényi graph with 400 vertices and mean
degree 40.
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FIG. 7. Interaction discriminability for Ising and Potts models.
Discriminability maximum results from the competition between
thermal noise and macroscopic ordering but is not a signature of
criticality associated with second-order phase transitions. We show
DCA discriminability at different sample sizes K (see legend) as a
function of temperature (a) and mean-field order parameter A (b).
In all cases, discriminability peaks at an intermediate temperature
and displays similar temperature dependence above 7.. By plot-
ting discriminability as a function of A for T < T, we see that
a different temperature dependence for Ising and Potts models at
T < T. originates from the fact that macroscopic order forms more
rapidly in Potts models which admit first-order phase transitions.
This highlights the detrimental effect of macroscopic order on in-
ference quality. Shown results are based on the same Erd&s-Rényi
interaction graph with 400 vertices and mean degree 40.

different realizations of J’). This is an expected result since
the locations where macroscopic order nucleates depend on
graph structure and a change to which can yield a range of
divergences.

E. Inference discriminability for Potts models

It is tempting to view the inference quality maximum as
a manifestation of critical phenomena, not least because the
Fisher information (magnetic susceptibility) diverges at T
[42-46]. However, criticality does not seem to play an im-
portant role in inferring the interaction graph. Indeed, Fig. 6
illustrates that the distance between two models on different
graphs varies smoothly across the critical temperature.

To elaborate this point further, we consider g-state Potts
models on an Erdés-Rényi random graph which generalizes
the binary spins in Ising models to g states. Unlike the Ising
model, a g-state Potts model with g > 2 exhibits a discontinu-
ous phase transition which does not display critical behaviors
and at which the susceptibility remains finite. Figure 7 com-
pares the inference discriminability for three- and four-state
Potts models with that for Ising models (g = 2). We use the
naive mean-field inversion, generalized to Potts models [3] for
both Ising and Potts models (see Appendix B). In Fig. 7, we
see that, in the disordered phase, the discriminability for Potts
and Ising models shows similar dependence on sample size
and temperature. In the ordered phase, the inference quality
decreases with temperature and worsens with increasing q.
This g dependence results from the fact that macroscopic
order forms more rapidly for larger ¢ with order parameter
discontinuity growing with g (see Appendix C [Eq. (C7)]).
In fact, Fig. 7(b) illustrates that the inference discriminability
for Potts and Ising cases displays similar dependence on the
mean-field order parameter (for a mean-field analysis of the
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Potts model, see Ref. [12] and Appendix A), thus suggesting
that macroscopic ordering rather than criticality is an impor-
tant determinant of inference performance.

V. DISCUSSION

Despite being more elaborate and computationally more
expensive than local statistical approaches, mean-field DCA
does not always lead to better inference quality. Indeed, we
show that local statistical methods can be more accurate when
data are limited. More generally, although global statistics
encode more information that could potentially improve infer-
ence, they are more difficult to estimate in the undersampled
regime. Inference quality depends not only on sample size but
also on the nature of data distributions. A low-temperature
generative model, while better sampled due to lower entropy,
is more difficult to infer, compared to higher-temperature
models around the phase transition. This feature highlights
how macroscopic ordering, and more broadly data distribu-
tions, can interfere with inference. For models exhibiting an
order-disorder phase transition, we find that DCA provides
the most advantage over local statistical modeling in the
ordered phase and when the systems are relatively well sam-
pled. Our results highlight the fact that inference quality can
only be quantified with respect to the structure in the data
and illustrate the central role of data-generating distributions
in understanding inductive biases of inference methods [51].
Finally, our work lays a foundation for future investigations
seeking to provide a prescription for inference method selec-
tions based on the structure in the data.

While we consider ferromagnetic models on relatively
dense interaction networks, our analysis yields qualitative
insights applicable to models with sparser interactions. In
particular, we expect better performance from local inference
as each spin pair becomes less connected (see Sec. IV B). In
addition, the increased probability of isolated spins means that
the connected correlation matrix is more likely to be singular,
thus making naive mean-field inversion ill-defined without
regularization. A quantitative study of inference for models on
sparse networks is an interesting research direction, not least
because of the important role of fluctuations in such models.

Although we base our analysis on naive mean-field in-
version, a number of methods exist for inferring pairwise
interactions (see, e.g., Ref. [5]). The general conclusion of our
work also applies to these methods; the inference quality must
depend on the structure in the data-generating distribution as
well as the number of available observations. Revealing the
optimal setting for each of these methods is likely to require
generative models that capture different types of correlations
in the system, and is a promising avenue for future research.
For the ferromagnetic model considered here, we expect that
our qualitative results hold for other inference methods, not
least because the inference performance maximum near the
phase transition stems from the property of the generative
model (see Sec. IV D).

To isolate the role of a phase transition, we specialize our
analysis to uniform-interaction models on Erd6s-Rényi ran-
dom graphs which tend to be less structured than interaction
graphs of real systems. For example, the structural organi-
zation of proteins leads to a hierarchy of sectors of strongly

interacting amino acids [52]. Spin models on hierarchical
random graphs also capture order-disorder phase transitions
[53] and it would be interesting to investigate how such a
structure affects inference. Another promising future direction
is to extend our analysis beyond ferromagnetic models to
systems with richer phase diagrams such as spin-glass models
and sparse Hopfield networks.
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APPENDIX A: GRAPHICAL POTTS MODELS

Potts models describe a system of g-state spins & =

(o1,00,...,0,) with o; € {1,2,..., g}, interacting via the
Hamiltonian,
n n n
HE)=-Y_ Y Jyjloi.o) =Y (o). (Al
i=1

i=1 j=itl

The probability distribution of this system is given by

o PHE)
P@) = W (A2)
This measure is invariant under the gauge transformation,
JF#
hi(p) = hi) + ¢+ Y Aij(w),
j
Jij(, v) = Jij(, v) — Ay (u) — Aji(v) + (A3)

for any ¢;, ¥;;, and A;;(p). This gauge symmetry means that
the Potts measure is characterized by (;) (g—1>+ng-1
independent parameters, which is the same number of in-
dependent parameters in single- and two-spin distributions,
P(0;) and P(o;, 0;) (see, e.g., Ref. [3]). Indeed, for spec-
ified P(o;) and P(0;, 0;) the Potts measure is the unique
maximum-entropy model [3]. Another consequence of the
gauge invariance is that a family of model parameters (J, &)
can result in the same measure. As a result, inference methods
that produce a unique set of parameters must invoke gauge fix-
ing conditions (either explicitly or via implicit regularization).

APPENDIX B: MEAN-FIELD INVERSION

For completeness, we reproduce the derivation of the
mean-field inversion method for Potts models from Ref. [3].
We define the free energy

F=FU.h)y=-In) e (B1)

It follows that the first- and second-order derivatives of this
free energy are related to the single-spin and pairwise distri-
butions via

dF 9>F

— =-pP, and —— =—Py, i+ P,P:, (B2
dhi,, " dhi, dh;, piv + Puby. (B2)
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where we introduce the shorthand notations

hiy = hi(o; = ), Jip,jv = Jij(0i = u, 05 =v),

Py = 85,,P@). Pujv=  86.u85,,P@).
o o

Equation (B2) also implies
aP;

9lip —P
i, jv
dh,

where C;,, j, denotes the connected correlation matrix.

P P]v = Cip,jvs (B3)

1. Gauge fixing

To infer a unique set of model parameters, we adopt the
lattice-gas gauge which explicitly limits the model parameters
to those that are independent [see Eq. (A3) and the text around
it]. In this gauge each spin has a gauge state, c; for spin i, for
which the pairwise coupling and local field vanish, i.e.,

V&,i,j I],'j(O'l',Cj)IJij(C,‘,O‘j):h,'(Ci)IO. (B4)

We assume this gauge in the following analysis unless speci-
fied otherwise.

2. Legendre transformation

Since the local field h;, is conjugate to the single-spin
distributions P, [see Eq. (B2)], we can define a Legendre
transform of the free energy

G=F+> huPy. (BS)
in
Note that G does not depend explicitly on the probability of
the gauge state P, ; it is left out of the summation by the gauge
condition h;,, = 0 [Eq. (B4)]. In this ensemble the local fields
are given by

0
hiy = g . (B6)
apm
Taking the derivative of the above equation yields
oh; 3’G _
. = (C ijvs (B7)

dPj,  OP,dP;,
where the last equality follows from Eq. (B3) and the fact
that the first-order derivatives of a function and its Legendre
transform are inverse functions of one another. Note that the
indices (i, jv) in Egs. (B6) and (B7) do not include the
gauge states.

3. Small-coupling expansion
To derive the mean-field inversion, we consider a sys-

tematic expansion around the noninteracting Hamiltonian,
treating the coupling term as a perturbation [54,55],

—BHa(3) = Y Jijoi,0)) + Zh (@),  (BY)
i<j

where the parameter « tunes the interaction strength: Hg
corresponds to the noninteracting case and 7; to the original
Hamiltonian. Expanding G as a power series in « yields

Go = Go + G + 1Gja® + 0(?), (BY)

where G, = dG,/da and G, = d*G, /do?. Substituting the
above expression in Egs. (B6) and (B7) gives

3G | 3G )
hiy = — + —2a + O(a?),
AP, 8Pw
_ 3Go G,
C Y= 0 O(a? B10
( )/4,1 3Pmanv + aPmanva"‘ (a”) ( )

for iy # ic; and jv # jc;.

4. Zeroth order

When o = 0, the spins decouple and the free energy reads
DIONE

From Eq. (B2), we have Py, = eh"#/ ZV " and

Go = Z P lnPM—i—Z( ZP,-U> In (1—21%).
VF#C; v#£C;

(B11)

ipFic;
(B12)
Taking the derivatives, we have
0 P, 92 S 1
ﬂ:ln—“ and iZS,’j ® — 1,
8Piu Pic,- BPi;Lapjv ’ Pm Pic,-
(B13)
where P, =1—)_ st P;,,. We note that the pairwise cou-

pling does not appear in the zeroth-order expansion.

5. First order

Differentiating the thermodynamic potential G, with re-
spect to « gives

e PHa(@)

ZZ T ,)ZJ,,(G,,OJ

i<j

(B14)

Note that the expression for G, can be obtained from Egs. (B1)
and (B5) for the small-coupling Hamiltonian in Eq. (BS). In
the limit « — 0, the Boltzmann weight becomes that of the
noninteracting system and the above equation reduces to

Go=—_> PuPitiujv- (B15)
i<j pv
Therefore we have
j i
ag <
0 — ZPJVJI/L jv- (B16)

1 n

Here the gauge condition on J ensures that the single-spin
probability of the gauge state does not appear on the right-
hand side. Note that J;, j, for j < i does not enter the model
and we let J;, j, = Jj, i, for convenience. Taking the deriva-
tive of Eq. (B16), we obtain

923,

——0 = (1 = &) jo- B17
8Pi;48Pju ( ]) 22V ( )
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Substituting Eq. (B13) and the above equation in Eq. (B10)
gives
Suv 1 ip s .
w 1 fi—=
(€ D ju > {P MR
if j #£i.

—Dljm,jv
Finally, we combine Eqgs. (B10), (B13), and (B16) to obtain
the self-consistent condition for the local fields

(B18)

» J#i
hi, = In ﬁ —o ZPJ'U./,'MJV + 0(0{2).

e jl)

(B19)

The naive mean-field inversion method is based on Eqgs. (B18)
and (B19) which relate the model parameters to the empiri-
cally accessible connected correlation matrix.

APPENDIX C: PHASE TRANSITIONS IN POTTS MODELS
ON HOMOGENEOUS RANDOM GRAPHS

Here we reproduce the mean-field analysis of Potts models
(see, e.g., Ref. [12, Sec. 1.C]). Consider a uniform-interaction
ferromagnetic g-state Potts model on a graph,

HE)=— ) b0 (C1)

ij)e€
where §;, , denotes the Kronecker delta and the summation is
over the graph’s edges £. In the mean-field approximation, all

spins are identical and the internal energy and entropy of the
system read

q q
U=—I€|) p, and S=-n) p,Inp,  (C2)

pn=1 n=1

where p,, is the fraction of spins in state w, n the number of
spins, and |€| the numbers of edges (interactions). To analyze

the ferromagnetic transition, we consider the ansatz

1
Pu= 5(1 —A)+ 8,44, (C3)
where A is the order parameter and we chose the state g as
the spin state of the ferromagnetic phase. This ansatz yields
the free energy per spin

#m[l + (g — DA]

BLf(A) = f(O)] =
-1 —1A
+ 14— AMma =) =LA,
q 2g T
(C4)
where A = 2|€|/n is the mean coordination number. In the
thermodynamic limit n — oo, a phase transition exists at the
critical temperature

1 1 q ifg <2
g _ . CS5
T )LX{Zg—éln(q—l) ifg>2. (€5
The free energy is minimized by A = 0 for T > T, and by the
largest root of the equation

e—xA/T — 1-A
I+ (g— DA
for T < T,. This phase transition is continuous for g < 2 and
discontinuous for ¢ > 2 in which the order parameter and in-
ternal energy per spin are discontinuous across the transition,

(Co)

AT — AT =172
q

-1’
e, (g=2)
w(T,;”) —u(T.") = lzq(q_ 5 (&)

Finally, we note that the above analysis is exact for complete
graphs in which all spins in the system are truly (as opposed
to statistically) identical.
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