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Abstract
We investigate the ground-state properties of weakly repulsive one-dimensional bosons in the
presence of an attractive zero-range impurity potential. First, we derive mean-field solutions to the
problem on a finite ring for the two asymptotic cases: (i) all bosons are bound to the impurity and
(ii) all bosons are in a scattering state. Moreover, we derive the critical line that separates these
regimes in the parameter space. In the thermodynamic limit, this critical line determines the
maximum number of bosons that can be bound by the impurity potential, forming an artificial
atom. Second, we validate the mean-field results using the flow equation approach and the
multi-layer multi-configuration time-dependent Hartree method for atomic mixtures. While
beyond-mean-field effects destroy long-range order in the Bose gas, the critical boson number is
unaffected. Our findings are important for understanding such artificial atoms in low-density Bose
gases with static and mobile impurities.

1. Introduction

A quantum state is bound if the probability to find parts of the system infinitely far from each other
vanishes. It is one of the basic problems in quantum mechanics to determine conditions for a bound state
to occur. Such problems are typically encountered in few-body settings. However, they also play an
important role in many-body physics. For example, a low-energy model of dilute many-body systems may
include bound states as building blocks.

Only in some special cases, there exist results that provide conditions for binding. For example, any
attractive potential supports a two-body bound state in one (1D) and two (2D) spatial dimensions, whereas
solely ‘deep’ potentials can lead to a bound state in three dimensions (3D) [1, 2]. For more than two
particles, general conditions for binding are not known. Moreover, there seem to be no universal theoretical
approaches to find them. Typically, one has to resort to numerical calculations, and only some problems can
be addressed analytically (within certain approximation schemes). The latter class of problems includes for
example the Efimov effect, which provides a universal mechanism for resonant interactions in 3D [3–6].
Another example of analytically tractable model are bound states of weakly repulsive bosons attracted by a
short-range potential [7–10]. That system is reminiscent of an atom where the role of electrons is played by
the bosons, and the nucleus is realized by the potential. Therefore, in what follows we shall occasionally
refer to the system as an ‘artificial atom from bosons’.

Artificial atoms were mainly studied in one or three spatial dimensions. In 3D, different theoretical
methods seem to disagree on the number of bosons that can be bound to an impurity [7–10]. In 1D, there
is a similar puzzle. The outcome of the mean-field approximation [7, 11] is not supported by the
phenomenological argument of reference [9]. The latter study argues that a dilute Bose gas can always be
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mapped onto a system of non-interacting fermions implying that only a single boson can be bound (cf the
Pauli exclusion principle). However, the mean-field studies demonstrate that the number of bound bosons
can be large if boson–boson interactions are weak. These different results certainly motivate further
investigations of the ‘artificial atom’ problem. Besides providing insight into conditions for binding, they
shed light onto the physics of the Bose polaron (see, e.g., [12–14]), in particular onto the
polaron-to-molecule transition region. In this paper, we focus on properties of a 1D artificial atom.

1.1. Main results of the paper
Our first result concerns

• the mean-field solution of an artificial-atom problem in a finite ring. This solution rigorously shows that
an impurity can support a many-boson bound state.

Specifically, the mean-field solution unveils the existence of three different physical scenarios depending
on the number of bosons, N, see equations (4) and (5). Below a critical particle number all bosons are
trapped by the impurity, which confirms the previous findings of references [7, 11]. In this regime, the
density of the Bose gas decays exponentially, see equation (15). Therefore, we classify the system as a
many-body bound state. At the critical particle number, all bosons are also bound to the impurity. However,
the corresponding density decays as 1/x2, see equation (16). Therefore, we shall say that the system is in a
critical state. If the number of bosons is larger than the critical one, a certain portion of bosons occupies
scattering states, i.e., there is a significant probability to find a boson far from the impurity.

The second result of this paper is

• a validation of the mean-field predictions for the artificial atom problem using numerical
beyond-mean-field methods.

To this end, we use a recently introduced in-medium similarity renormalization group method for
bosons (IM-SRG; also called flow equations) [15] whose accuracy is confirmed here using the
well-established multi-layer multi-configuration time-dependent Hartree method for atomic mixtures
(ML-MCTDHX) [16]. These methods allow us to study the decay of phase correlations and demonstrate
phase coherence between the bosons in the vicinity of the impurity, see figure 4. We conclude that the
mean-field solution describes the system well as long as all bosons are bound to the impurity. When bosons
populate scattering states, they occupy the whole space, which lowers the density and increases phase
fluctuations. The here employed numerical methods can be used to test the argument of reference [9] that
bosons fermionize in artificial atoms in 1D. Our results suggest that fermionization occurs only for bosons
in scattering states.

1.2. Structure of the paper
The paper is structured as follows: section 2 introduces the system under consideration. Section 3 presents
the mean-field solution, which is further analyzed in the zero-density limit in section 4. Further, the
mean-field solution is benchmarked against the flow equations results in section 5. A mobile impurity in a
Bose gas is studied in section 6; it is concluded that the mean-field approach describes that system also well.
Section 7 contains a brief summary and outlook. For convenience, we provide five appendices that elaborate
on technical details of our study. Appendix A describes the employed numerical methods. They are
benchmarked against one another in appendix B. Appendix C presents a mean-field solution for a box trap.
Appendix D contains some details on the mean-field solution in the zero-density limit. In appendix E we
discuss the smallest non-trivial system—a two-boson artificial atom.

2. System: an impurity atom in a Bose gas

2.1. Hamiltonian
We investigate a 1D system of N bosons and an impurity in a ring. The standard Hamiltonian for such a
system in the context of cold-atom experiments reads (see, e.g., [17, 18] and references therein)

H = − 1

2m

∂2

∂y2
− 1

2M

N∑
i=1

∂2

∂x2
i

+ c
N∑

i=1

δ(xi − y) + g
∑

i,j

δ(xi − xj), (1)

where we assume � = 1; y (xi) is the position of the impurity (ith boson), m refers to the mass of the
impurity atom, and M denotes the mass of a boson. For convenience, we shall use a system of units with
M = 1 in the numerical calculations. To model atom-atom interactions, we employ delta-function
potentials that describe s-wave scattering [19], which is dominant in the ultracold regime. Their strengths c
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Figure 1. Panel (a): illustration of the system. Red balls represent N bosons. The blue vertical line is the heavy attractive
impurity. Panel (b): sketch of the density of the Bose gas for a finite value of N, and a large system size (i.e., zero-density limit)
assuming that g/|c| � 1. Near the impurity, at distances ∼1/(Mc), the density of the Bose gas is high due to the impurity-boson
attraction and thus the effective boson–boson interaction is weak. For larger distances from the impurity, the density is low,
which implies that the Bose gas is strongly interacting there. (Note that it is specific to 1D systems that a lower density
corresponds to stronger interactions. For example, in 3D, the situation is reversed—low densities imply weak interactions.)

and g can be virtually arbitrary thanks to the possibility to tune them via external fields using the
phenomenon of Feshbach resonances [20].

For simplicity, we first focus on a heavy impurity, m/M →∞; the role of the impurity mass is briefly
discussed in section 6. Without loss of generality, we place the impurity at y = 0 as illustrated in figure 1(a).
Note that from the experimental point of view, a heavy impurity can be realized using atoms with very
different masses, e.g., 7Li (bosons) and 174Yb (impurity) [21], such that the kinetic energy of the impurity
can be neglected. Alternatively, a localized external field (light blade) can be used to trap the impurity atom
(see, e.g., reference [12]) or to even simply produce a delta-function potential, see, e.g., reference [22]. Note
that these different experimental methods might lead to different finite range effects whose investigation we
leave for future studies.

Below, we focus on attractive boson–impurity (c < 0) and repulsive boson–boson interactions (g > 0).
In the main part of the discussion, we consider periodic boundary conditions, i.e., particles are confined to
a ring of length L. For completeness, we also present results for a box trap in appendices B and C. Note that
such boundary conditions can also be realized in experiment, see, e.g., references [23, 24].

2.2. Physical picture
Before we proceed with an analysis of the Hamiltonian H, let us provide some basic insight into the physics
of the system, which is driven by the interplay between attractive impurity-boson and repulsive
boson–boson interactions. First we note that a delta-function potential supports a single bound state (see,
e.g., [25]). This means that an arbitrary number of bosons can be trapped by the impurity if the bosons are
non-interacting (g = 0). In contrast, if 1/g = 0, the bosons fermionize [26], and only one boson can be
trapped by the impurity. (Indeed, only one fermion can be trapped by the impurity due to the Pauli
exclusion principle.) This observation implies that the interplay between the attractive impurity-boson
interaction and repulsive boson–boson interaction should lead to a critical number of bosons, Ncr, that can
be bound to an impurity.

In this work, we estimate this critical number Ncr from a mean-field approximation (see also references
[7, 11]). We also investigate the system using two numerical approaches, namely the IM-SRG [15] and the
ML-MCTDHX [16] (for a brief description of these methods see appendix A). These methods allow us to
estimate the importance of beyond-mean-field effects from the decay of the quasi-long-range order as
captured by the system’s reduced density matrix, see section 5 and appendix B.

To understand why the mean-field approximation is accurate, let us consider the system in the limit
L →∞ (N is fixed) and g/|c| � 1, which is one of the main limits of this work. The effective strength of the
boson–boson interactions can be parameterized by Mg/ρ(x), where ρ(x) is the density of the Bose gas. This
parameterization is natural for 1D problems, see, e.g., [27]. The value of Mg/ρ(x) is the smallest in the
vicinity of the impurity, and it grows towards the edge of the bound state. For example for g = 0,
ρ(x) = N|c|Me−2M|cx|, see, e.g., reference [25]. Assuming that this density approximates also the system with
g/|c| � 1, we conclude that

g

ρ(x)
� g

NM|c|e
2M|cx|. (2)

Therefore, the mean-field ansatz must describe the Bose gas well in the vicinity of the impurity as long as x
is not large. The characteristic width of this ‘mean-field’ region is proportional to 1/(M|c|). Farther away
from the impurity, the density of the Bose gas is low, hence, the boson–boson interactions are strong, and
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the mean-field ansatz is no longer applicable, see figure 1(b). We extend this line of argumentation in
section 4.

2.3. Relevant length scales
Three parameters define the length scales in our model: 1/(Mg), 1/(M|c|) and L. One can always employ
one of them to define the system of units. In our work, it is convenient to use 1/(M|c|) for this purpose
because it is the only relevant length scale for the impurity-boson bound state if N = 1 or g = 0 (see
equation (2)). The corresponding two dimensionless parameters are: the relative interaction strength
α = c/g and the dimensionless length LM|c|. Note that the latter will be useful sometimes to express as
LM|c|/N or equivalently as M|c|/ρ, where ρ = N/L is the density of the Bose gas without the impurity. This
will be especially convenient in section 5 where we consider how the system approaches the zero-density
limit (L →∞ and N is finite).

3. Mean-field solution for the heavy impurity problem

For a system consisting of weakly interacting bosons it is reasonable to assume that the ground-state wave
function is a product state: Φ =

∏
i

f (xi). Here, f(x) is a single-particle function obtained by minimizing

〈Φ|H|Φ〉. This minimization procedure leads to the Gross–Pitaevskii equation (GPE) [27]:

− 1

2M

d2f

dx2
+ g(N − 1)f (x)3 + cδ(x)f (x) = μf (x), (3)

where μ is the chemical potential6. By assumption, the function f is periodic i.e. f(−L/2) = f(L/2). (For a
brief discussion of a system in a box trap where f(−L/2) = f(L/2) = 0, see appendix C.) Note that some
care is needed when using a mean-field approximation in 1D where quantum fluctuations destroy the
condensate in the thermodynamic limit [27, 29–31]. We shall rely on ab initio numerical calculations to
confirm that the mean-field approximation is indeed accurate, at least for describing the Bose gas in the
vicinity of the impurity. The relevant physical picture is given in section 2.2.

We notice that equation (3) with c = 0 is integrable, see, e.g., reference [32]. Therefore, one can follow
the same strategy as when solving the Schrödinger equation with the delta-function interaction [25], i.e.,
use the known solutions for x > 0 and x < 0, then implement the boson–impurity interaction cδ(x) as the
boundary condition at x = 0. Once the mean-field solution is obtained, it is possible to calculate any
observable of interest. For example, the energy of the system is determined by

E

N
= μ− g(N − 1)

2

∫ L/2

−L/2
|f (x)|4 dx.

Below, we present the two solutions to equation (3) that, by increasing L to infinity, connect
adiabatically to the two different physical situations: (i) all bosons are bound to the impurity, (ii) no boson
is bound, see the next section. The two solutions coincide at the threshold for binding, which we refer to as
the point of transition (PoT). Note that the bound-state solution was discussed in references [7, 11] for
L →∞.

We focus on systems with finite values of L, since they allow us to directly benchmark the mean-field
method against beyond-mean-field numerical approaches. In addition, our solution is relevant to
cold-atom experiments, which typically have a finite size. Last but not least, the finite-L solution provides
insight into the case with N > Ncr, which is important for understanding the thermodynamic limit, as we
plan to discuss in an upcoming work.

3.1. Mean-field solutions
The first solution to equation (3) reads

fmbb(x) =

√
4K(pmbb)2

MgL2δ2(N − 1)
ds

(
2K(pmbb)

[
|x|
δL

+
1

2
− 1

2δ

]
, pmbb

)
. (4)

6 It is interesting to note that this equation was also derived and studied for a heavy atom in a strong magnetic field, see parameter
regime 5 (‘region 5’) of reference [28].
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It is determined by the Jacobi elliptic function ds [32]. By construction, this solution is parity symmetric
fmbb(−x) = fmbb(x). The chemical potential is

μmbb =
2K(pmbb)2(1 − 2pmbb)

Mδ2L2
,

where K is the complete elliptic integral of the first kind.
The second solution to equation (3) is given by the Jacobi elliptic function ns:

fscatt(x) =

√
4K(pscatt)2

MgL2δ2(N − 1)
ns

(
2K(pscatt)

[
x

δL
+

1

2
− 1

2δ

]
, pscatt

)
. (5)

The corresponding chemical potential is

μscatt =
2K(pscatt)2(pscatt + 1)

Mδ2L2
.

The parameters pscatt ∈ [0, 1), pmbb ∈ [0, 1) and δ7 that enter in the definitions above are fixed by
normalization, and the boundary condition due to the impurity-boson potential

∫ L/2

−L/2
|f (x)|2 dx = 1,

df

dx

∣∣∣∣
x→0+

= Mcf (0).

It is straightforward to write these conditions in a more explicit form. For example, for fmbb, the
normalization condition leads to

E
(

K − K

δ
, p

)
+ (1 − p)nd

(
K

δ
, p

)
sc

(
K

δ
, p

)
− E(p) +

1 − p

δ
K =

MgLδ(N − 1)

4K
, (6)

where K = K(p), and we imply that p = pmbb [E , E(p) (not to be confused with the energy), sc and nd are
standard Jacobi functions [32]]. The boundary condition can be written as

2K(pmbb)
sc

(
K(pmbb)

δ
, pmbb

)
nc

(
K(pmbb)

δ , pmbb

) =
M|c|δL

dc
(

K(pmbb)
δ , pmbb

) . (7)

Equations (6) and (7) can be satisfied only for N � Ncr, i.e., fmbb can describe only such systems. The
solution fscatt describes systems with N � Ncr. The calculation of Ncr will be given in the next section, see
equation (10).

The subscripts ‘mbb’ (many-body bound) and ‘scatt’ (scattering) are motivated by the observation that
for a large system (L →∞) Ncr is the maximal number of bosons that can be trapped by the impurity, see
reference [7, 11] and the discussion in the next section. Note also that the chemical potential for the first
(second) solution is negative (positive) for large system sizes since pmbb → 1 and pscatt → 1 for L →∞. This
is another indication that the first solution describes a many-body bound state while the second is
applicable if the bosons occupy scattering states.

We illustrate mean-field solutions in figure 2 for different values of N and L. At the position of the
impurity, any solution f reaches its maximum as a result of the attractive impurity-boson interaction.
Increasing the number of particles decreases the binding energy per particle (increases the energy per
particle) due to the repulsive boson–boson interaction, see figure 2(d), which also leads to a more flat
profile of the density for the largest considered systems. The insets in panels (a) and (b) show the
parameters p and δ as a function of the particle number. As it can be seen δ → 1 for increasing particle
number. The parameter p first drops down to 0 at the critical particle number Ncr = 11, see equation (10),
and then rises again towards 1 (note that for N � 11 (N > 11), p corresponds to pmbb (pscatt)). For the
largest ring size p is larger; for L →∞ (not shown) we find empirically that p → 1 except in the vicinity of
Ncr. The chemical potential becomes negative for the largest ring size and N � 11 (figure 2(c)), which is an
indication of a bound state. We discuss this behavior in more detail in the following sections.

7 Note that the solutions fscatt and fmbb can be transformed into one another via pmbb = − pscatt
1−pscatt

if one allows for negative values of p.
The parameter δ remains unchanged in this transformation.

5
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Figure 2. Upper panels: mean-field solutions for different numbers of particles. Panel (a) is for LM|c| = 1; panel (b) is for
LM|c| = 5. The relative interaction strength is fixed to α = −5. Therefore the maximal possible particle number in a bound state
is Ncr = 11, see equation (10). The insets show the parameters p and δ as a function of the particle number. The lower panels
depict the corresponding chemical potential (c) and the energy per particle (d) for different system sizes (see legends).

3.2. Point of transition
The PoT from one solution to another occurs at pmbb = pscatt = 0 (cf the insets in figures 2(a) and (b)). In
this case, the functions in equations (4) and (5) coincide:

fPoT(x) =

√
π2

MgL2δ2(N − 1)

1

cos
(

π(x−L/2)
δL

) . (8)

The corresponding chemical potential reads

μPoT =
π2

2Mδ2L2
.

It vanishes for large system sizes, i.e., μPoT = 0 for L →∞. Normalization, and the boundary condition
due to the delta-function potential determine the parameter δ

π tan
( π

2δ

)
= M|c|Lδ, (9)

and the critical number of bosons

Ncr =
2|c|

g
+ 1. (10)

Note that Ncr →∞ when g → 0, and Ncr = 1 when g →∞, in agreement with our discussion in
section 2.2.

Equation (9) shows that δ is determined only by the dimensionless parameter M|c|L, whereas Ncr

depends only on the ratio |c|/g. This decoupling of δ and Ncr is unexpected for systems with finite values of
L. It suggests scale invariance of the problem at the PoT, and leads to a number of surprising consequences.
In particular, at the PoT, the energy of the system also does not depend on L:

E = −Ncrc2M

6
, (11)

which implies a state of zero pressure, in a sense that it costs no energy to adiabatically change the radius of the
ring. This unique signature will later be used to identify the transition point in our numerical simulations.

6
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Note that equation (11) provides a variational upper bound on the exact value of the energy. It rigorously
shows that more than a single boson can be trapped by the impurity, since this upper bound is below the
ground-state energy of a single boson, −Mc2/2, for Ncr � 3.

4. Zero-density limit: mean-field results

In this section, we discuss the limit of vanishing density (ρ→ 0) that occurs for a fixed number of bosons in
a large system, i.e., L →∞ (see also references [7, 11] and appendix D). This limit provides insight into the
general results of the previous section.

4.1. Many-body bound state
The limit ρ→ 0 leads to pmbb → 1 (cf figure 2 and its discussion), so that equation (4) can be written as

fmbb(x > 0) =

√
2ζ(2ζ + 1)

xmbb

1

(2ζ + 1)ex/xmbb − e−x/xmbb
, (12)

where

ζ =
Ncr − N

N − 1
, xmbb =

1

M|c|
Ncr − 1

Ncr − N

(
=

1

M|c|
ζ + 1

ζ

)
.

The quantity xmbb sets the characteristic width of the state8. If we define ζ = 0 for N > Ncr, ζ can be
seen as the ‘order’ parameter for our system. Indeed, ζ is positive for a many-body bound state, and
vanishes as we approach the PoT. The respective chemical potential reads

μmbb = − 1

2Mx2
mbb

. (13)

It is negative which means that adding an additional boson lowers the total energy—this is a typical
characteristic of a bound state. The energy of the system is given by

Embb = − N

Mx2
mbbζ

2

(
ζ(ζ + 1)

2
+

1

6

)
. (14)

Additionally, for large values of |x| equation (12) yields

fmbb(|x| � xmbb) �
√

2ζ

(2ζ + 1)xmbb
e
− |x|

xmbb , (15)

which corresponds to a typical tail of a bound state whose extension is defined by xmbb (see, e.g., reference
[1]). Note that equation (15) is valid only for N < Ncr. At the PoT (ζ → 0, xmbb →∞), another function
will describe the tail of the state, see below.

4.2. Point of transition
At ζ = 0, the mean-field solution of equation (12) can be further simplified

fPoT(x) =

√
|c|M

2

1

M|cx|+ 1
. (16)

We see that for our many-body problem there is a finite probability to find a boson next to the impurity
even at the threshold of binding. This clearly distinguishes the many-body problem from the one-body
system (see equation (2)) where this probability vanishes in the limit L →∞.

The characteristic length xmbb diverges, and we need another quantity to describe the size of the state. It
cannot be a root-mean-square radius, because of the 1/x tail of fPoT(x). Still, we can define a meaningful size
of the state as

xPoT =
1

|c|M .

This quantity defines the spatial region which contains half of the probability density, i.e.,∫ xPoT
−xPoT

f 2
PoT(x)dx = 1/2. Note that xPoT is given by the size of a one-particle bound state (equation (2)),

which supports the physical picture provided in section 2.2.

8 Note that xmbb is proportional to the characteristic size of a one-body bound state 1/M|c|. However, it can be much larger since xmbb

grows with N.
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The energy of the system was already given in equation (11), which is independent of the system size L.
The chemical potential is zero. This implies that if we add more bosons, they must occupy scattering states.
Hence, equation (11) defines the energy for all systems with N � Ncr and ρ→ 0.

4.3. Scattering state
The function fscatt of equation (5) in the limit ρ→ 0 (pscatt → 1) can be approximated as follows

fscatt(x) �
√

1

MgL2δ2(N − 1)
ln

(
16

1 − pmbb

)
coth

(
ln

(
16

1 − pmbb

) [
x

δL
+

δ − 1

2δ

])
.

For this solution, it is not possible to fulfil simultaneously normalization, and the delta-potential
boundary conditions. If we impose the latter condition, we derive a non-normalizable wave function for
L →∞. If we demand a normalized state, the resulting function is constant in space and does not include
the impurity potential. We interpret this result as if all bosons occupy scattering states and distribute over
the whole system until they are no longer affected by the impurity. This state is physical, however it is not
the ground state, in which Ncr bosons are bound to the impurity, and other bosons occupy scattering states.
The GPE cannot describe this physics because it assumes that all bosons occupy the same orbital. Hence, as
soon as there are more bosons in the system than can be supported by the many-body bound state, all
occupy scattering states within the mean-field approximation.

An appropriate variational ansatz for large (but finite) L should include two parts, where the first part
describes a many-body bound state, and the second one accounts for the bosons that occupy scattering
states. In the low-density limit this leads to a Tonks–Girardeau gas formed outside the many-body bound
state. We leave an investigation of such an ansatz for a future study.

5. IM-SRG results: approach to the zero-density limit

To test our findings from the previous sections, we use the IM-SRG and ML-MCTDHX methods, which are
briefly discussed in appendix A, see the references given there for more details. Both numerical methods are
able to capture corrections stemming from quantum fluctuations, and agree for the considered parameters.
Therefore, in this section we illustrate our numerical results only for IM-SRG, see appendix B for some
ML-MCTDHX results. We focus on the question of approaching the limit L →∞. This allows us not only
to test the mean-field predictions but to also address beyond-mean-field corrections that must be important
far from the impurity, see figure 1(b).

5.1. Energies
In figure 3, we present the energy per particle as a function of the inverse density (1/ρ) for different values
of N. For the considered parameters, the critical number of bosons that can be trapped by the impurity is
Ncr = 11. We see that the IM-SRG data agree with the mean-field results well. Only small deviations are
visible for N � Ncr. We attribute these deviations to residual beyond-mean-field effects naturally captured
by the IM-SRG. The energies of the systems with N � Ncr decrease and in the limit of L →∞, we expect
them to approach the critical energy of equation (11). Unfortunately, we cannot follow this convergence for
larger values of L; we observed that the IM-SRG method is not accurate for M|c|/ρ � 1. In particular, for
the largest considered particle numbers, the truncated flow equations diverge. This can be interpreted as a
sign that the system becomes progressively more correlated, and IM-SRG cannot map the reference state (in
our case a condensate) onto the real ground state of the system.

For N < Ncr, figure 3 shows that the energy increases with the size of the ring. This is a typical behavior
for bound states (at least for L →∞), where the potential energy dominates the kinetic one. For N = 1, this
increase can be understood using the equation for the binding energy√

2M|E|
M|c| tanh(

√
2|E|ML) = 1,

which leads to E = −Mc2

2 − 2Mc2e−2M|c|L for M|c|L � 1. For N = Ncr the energy remains nearly constant
with respect to the system size as predicted by equation (11). There is a very weak dependence on L
pointing to beyond-mean-field effects. For N > Ncr, the energy is a decreasing function of L. Our
interpretation is that some bosons are now dropped out of the many-body bound state. Their kinetic energy
decreases approximately as 1/L2, allowing us to conjecture the following behavior of the energy in the limit
L →∞

E � −MNcrc2

6
+

2π2N (N + 1)(2N + 1)

3ML2
, (17)

8
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Figure 3. The energy per particle as a function of the inverse density M|c|/ρ for different particle numbers. The circles are
calculated using IM-SRG. The dashed–dotted curves represent our mean-field results. The solid (horizontal) lines correspond to
the mean-field prediction for ρ = 0, see equation (14). The left panel shows the data for N � Ncr. The right panel is for N � Ncr.
We fix α = −5 which leads to Ncr = 11. Notice that the numerical error bars on the IM-SRG data calculated according to
appendix A are smaller than the sizes of the markers.

where N = (N − Ncr − 1)/2 for odd values of N − Ncr and

E � −MNcrc2

6
+

2π2N (N + 1)(2N + 1)

3ML2
− 2

N 2π2

ML2
, (18)

with N = (N − Ncr)/2 for even values of N − Ncr. These expressions are the sums of the energy of the
many-body bound state and the energy of the Tonks–Girardeau gas made of N − Ncr particles, assuming
that there is no interaction between the bound state and bosons in scattering states9.

All in all, the IM-SRG data support the existence of different physical scenarios that correspond to
bound and scattering states. However, note that our numerical analysis cannot rule out the possibility that
Ncr becomes larger when L →∞. In particular, we cannot rule out bound states with an infinite number of
particles that are exponentially weakly bound in the limit L →∞. However, one does not expect this to
happen because far from the impurity the bosons interact strongly (fermionize).

5.2. Densities and phase fluctuations
Here, we calculate the density of the Bose gas

ρ(x) = 〈Φgr|
N∑

i=1

δ(x − xi)|Φgr〉, (19)

in the ground state, Φgr. We also investigate beyond-mean-field effects. To this end, we estimate phase
fluctuations (also known as phase correlations), δΦxx′ , from the one-body density matrix according to the
prescription (see, e.g., [27, 33, 34])

ρ(x, x′) ≡ 〈Φgr|ρ(x, x′)|Φgr〉 =
√
ρ(x)ρ(x′) exp

{
−δΦxx′

2

}
. (20)

The quantity δΦxx′ is a measure of the off-diagonal quasi-long-range order, which vanishes for a condensate
(mean-field) state. Note that δΦxx′ is not only a convenient theoretical object for studying the importance of
the beyond-mean-field effects. It also leads to experimental indicators of phase coherence that are
observable through Bragg spectroscopy and interferometry, see, e.g., reference [35].

In figure 4, we show ρ(x) and δΦxx′ for L = 0.1N/M|c| and L = 0.5N/M|c|. For all considered
parameters, the IM-SRG and mean-field results agree on the density profile of the Bose gas. The density is
the highest in the vicinity of the impurity, as expected. For the largest values of N, it features a weak
dependence on N irrespective of the (considered) ring size. In spite of this, there is a noticeable increase of
beyond-mean-field correlations as identified by the non-vanishing phase fluctuations. Their effect is more
pronounced for the largest ring and N � Ncr, especially in the region with low densities. This observation is
in agreement with the physical picture outlined in figure 1: low densities lead to strong boson–boson
interactions, which can be quantified by Mg/ρ(x). Surprisingly, IM-SRG and mean-field results are in a

9 Equations (17) and (18) assume that the size of the ring is sufficiently large in the sense that 1/kF � 1/|c|M, where kF is the Fermi
wavelength corresponding to the Tonks–Girardeau gas and 1/|c|M is the characteristic width of the many-body bound state. Assum-
ing that kF = πρ, we derive the condition M|c|/ρ � π. This condition implies that the ring sizes used in figure 3 are too small to
numerically confirm equations (17) and (18).

9
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Figure 4. Panels (a) and (c) show the density of the Bose gas. Symbols are calculated with IM-SRG, and the solid curves are the
corresponding mean-field results (equations (4) and (8)). Panels (b) and (d) demonstrate phase fluctuations whose non-zero
values reveal presence of beyond-mean-field correlations. The dashed curves are plotted to guide the eye. The data show
many-body bound, critical and scattering states. We fix α = −5, thus, the critical number of bosons supported by the bound
state is Ncr = 11. Panels (a) and (b) are for systems with LM|c| = 0.1N (M|c|/ρ = 0.1). Panels (c) and (d) refer to LM|c| = 0.5N
(M|c|/ρ = 0.5). The numerical error bars are calculated according to the prescription given in appendix A.

reasonable agreement even when Mg/ρ(x) is of the order of unity, where the mean-field treatment is not
expected to be valid. It is also worthwhile noting that the mean-field approximation is valid, in particular
equation (10), even for the smallest non-trivial bound system—a two-boson artificial atom, see appendix E.

Note that phase fluctuations are the strongest for the largest considered N. This can be rationalized in
the following way. For N = 15, a few bosons are not trapped by the impurity. Therefore, the probability of
strong boson–boson interactions far away from the impurity is high leading to large phase fluctuations. In
contrast, for small particle numbers (e.g., N = 5), phase fluctuations may be small even if the density is low.
The probability of finding two bosons outside the many-body bound state in this case is exponentially
suppressed.

6. Mobile impurity

A single mobile impurity atom in a weakly interacting Bose gas is an experimentally relevant system
[12, 36], which motivated various theoretical studies of a ‘Bose-polaron’, see, for example, references
[37–43]. Here, we complement those studies by considering the many-body bound state that follows from
our results in the previous sections.

6.1. Mean-field analysis
To investigate an impurity with a finite mass, we use the mean-field ansatz in the frame ‘co-moving’ with
the impurity [39–41, 44–46]. This frame is introduced via the set of new coordinates

zi = Lθ(y − xi) + xi − y, (21)

where θ(x) is the Heaviside step function. These coordinates allow us to exclude the position of the
impurity from the Hamiltonian (similarly to the Lee–Low–Pines transformation [47])10. In the new

10 Transformation to the ‘co-moving’ frame allows us to use the analytical results of the previous sections. The mean-field approxima-
tion in the laboratory frame will lead to a system of coupled GPEs, which one should solve numerically, see appendix B.

10
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Figure 5. The energy per particle as a function of the inverse density 1/ρ for a mobile impurity (m = M) for different values of
N. The circles are calculated using IM-SRG. The dashed–dotted curves represent the mean-field results. The solid (horizontal)
lines correspond to the mean-field prediction for ρ = 0, see equation (14). The left (right) panel shows the energy for N � Ncr

(N � Ncr). We fix α = −5 which leads to Ncr = 11. Notice that the numerical error bars calculated within IM-SRG according to
appendix A are smaller than the sizes of the markers.

coordinates, the Hamiltonian reads as follows

HP = − 1

2M

N∑
i

∂2

∂z2
i

− 1

2m

(
N∑
i

∂

∂zi

)2

+
iP

m

N∑
i

∂

∂zi
+ g

∑
i<j

δ(zi − zj) + c
N∑

i=1

δ(zi), (22)

where P is a quantum number—the total (angular) momentum of the system. For simplicity, we consider
the case P = 0, which corresponds to the ground-state manifold.

The GPE that follows from equation (22) reads (see, e.g., [40]):

− 1

2κ

d2f

dz2
+ g(N − 1)f (z)3 + cδ(z)f (z) = μf (z), (23)

where κ = mM/(m + M) is the reduced mass. This equation is equivalent to equation (3) up to a change of
the mass of the boson M to κ. In this sense, all of our mean-field results from sections 3 and 4 also apply to
a mobile impurity.

6.2. IM-SRG results
We use IM-SRG to validate the mean-field predictions of equation (23). We focus on the case with m = M.
In figure 5, we show the ground-state energy as a function of 1/ρ—similar to figure 3. First of all, we see
that the mean-field and IM-SRG results are in agreement. Furthermore, just like before, the energy of the
system with N < Ncr increases as a function of L. For the critical number of bosons, the energy remains
nearly constant. Note that according to equation (10) the critical number of bosons does not depend on the
mass of the impurity. Our numerical simulations confirm this result. Finally, we used IM-SRG to calculate
the density and phase fluctuations of the Bose gas in the presence of a mobile impurity. The comparison of
the mean-field predictions to the IM-SRG is similar to the one presented in figure 4. Therefore, we refrain
from discussing it further.

7. Summary & outlook

We studied a 1D artificial atom made of bosons. First, we analyzed this system within the mean-field
approximation, and presented two possible solutions. In the limit L →∞, the solutions correspond to two
different physical scenarios with the bosons bound (or not) to the impurity. The critical state in between
these scenarios is a zero-pressure state, meaning that its energy does not depend on the radius of the ring.
We presented analytical expressions that describe
this state.

Second, we investigated the system numerically using beyond-mean-field methods (IM-SRG and
ML-MCTDHX). Our numerical simulations justified the use of the mean-field approximation for studying
artificial atoms from bosons in 1D. They confirmed the existence of bound, critical and scattering states in
the system. Despite the validity of the obtained mean-field solutions, we argued that quantum fluctuations
are present in the tail of the wavefunctions. Therefore, only the bosons near the impurity are described with
a mean-field ansatz well. Bosons far away from the impurity are strongly interacting, supporting the

11
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phenomenological argument of reference [9]. However, their influence on the system can be neglected for
particle numbers smaller than the critical one, because the attraction from the impurity assures a
sufficiently large region with high density where particles are weakly interacting11. Although, we mainly
focused on a heavy impurity, we also showed that our results are applicable for a mobile one.

Further studies are needed to understand Bose systems with Ncr + 1 particles in the limit L →∞. Our
results indicate that the mean-field approach is not suitable for such studies. In particular, it cannot be used
to calculate the effective boson–artificial-atom interactions. The knowledge of this interaction will simplify
the analysis of low-density Bose gases with attractive impurity-boson interactions.

Our results pave the way for investigations of many-atom physics using artificial atoms as elementary
building blocks. For example, a lattice of heavy impurities immersed in a Bose gas may feature different
phases (e.g., Mott insulator and superfluid) depending on the strength of the boson–impurity and
boson–boson interactions. Dilute systems of artificial atoms based upon mobile impurities can enjoy the
physics of cold gases. To explore that context, one needs to understand the effective interaction between two
artificial atoms.
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Appendix A. Numerical methods

In this appendix, we briefly discuss the two numerical methods used in this work. The first method is called
the flow equation approach or IM-SRG (‘in-medium similarity renormalization group’). Our numerical
implementation of this approach is based upon previous works [40, 48] (see also reference [15] for a study
of the Lieb–Liniger gas), which are inspired by the methods known in condensed matter and nuclear
physics (see e.g. [49–51]). The second method is called the multi-layer multi-configuration time-dependent
Hartree method for atomic mixtures (ML-MCTDHX) [16] (see also a relevant review on the topic [52]). It
is a variational approach that has been extensively used, among others, for studying systems with impurities
[42, 43, 53–56].

A.1. Flow equation approach (IM-SRG)
The flow equation approach (block)-diagonalizes the Hamiltonian in second quantization,

H =
∑

i,j

Ai,ja
†
i aj +

∑
i,j,k,l

Bijkla
†
i a†j akal, (A.1)

via the so-called flow equation
dH

ds
= [η, H]. (A.2)

Here, s is the flow parameter, which formally plays a role of (imaginary) time. The generator of the flow η
has to be chosen such that the off-diagonal matrix elements vanish in the limit s →∞ [49].

In this work, we aim to decouple the ground state from the rest of the Hilbert space. Therefore, we
normal order the Hamiltonian using a reference state following the prescription in reference [15]. This leads
to the normal-ordered Hamiltonian

H = EI+
∑

i,j

fi,j : a†i aj : +
∑
i,j,k,l

Γijkl : a†i a†j akal :, (A.3)

11 Note that in appendix E we validate the mean-field solution even for a two-boson system where the strength of the boson–boson
repulsion can be of the same order of magnitude as the one of the boson–impurity attraction.
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where we denote normal ordered operators with : O :. The matrix elements fij and Γijkl describe one- and
two-particle excitations from the reference state. For the generator, we use

η(s) = fi0(s) : a†i aj : +Γij00(s) : a†i a†j akal : −h.c., (A.4)

these are the matrix elements which need to vanish in order to decouple the ground state from the
excitations. Therefore, once the flow equation converges, our ground state is decoupled.

The transformation governed by the flow equations can also be understood as a mapping of the
reference state onto the real ground state of the system. Since we are interested in a system of bosons, it is
reasonable to use condensate as reference state. Our reference state is constructed iteratively: starting from
the ground state solution of the non-interacting Hamiltonian, the density is calculated and used as the new
reference state. This procedure is repeated until the density converges. Note that also other choices for the
reference state are possible such as the mean-field solution, see reference [48]. For our system of interest
such a reference state leads to the same result.

Induced higher order terms make it impossible to solve equation (A.2) exactly, and should be truncated.
In our truncation scheme, we truncate at the two-body level, while keeping three-body operators which
contain at least one a†0a0 operator. This leaves us only with zero-, one- and two-body operators in
equation (A.2) which leads to a system of coupled, closed, non-linear differential equations, which we solve
numerically [15, 48]. We estimate the error due to the neglected pieces (called W) using second order
perturbation theory

δE �
∑

p

(
〈Φp|

∫ ∞
0 W(s)ds|Φref〉

)
〈Φp|H|Φp〉 − 〈Φref|H|Φref〉

, (A.5)

where Φp is a state that contains three-body excitations and Φref is our reference state.
To construct the Hamiltonian in second quantization we use the solution of the one-body Hamiltonian

of our system. Since we can only work with a finite Hilbert space, we solve the flow equations for different
numbers of basis states (in our case n ∈ [11, 13, 15, 17, 19, 21]). For the energy, we fit these values with

E(n) = E(n →∞) +
A

nδ
(A.6)

to obtain the result in infinite Hilbert space. For other observables, such a fit is not always possible. In such
cases, we take the result for the largest Hilbert space as our result and estimate the error by the largest
deviation between the results for the different numbers of basis states. So there are in total two
contributions to our error bars: the truncation error from neglecting higher order terms in the flow
equation and the truncation error due to a finite Hilbert space.

For a more detailed description of the method we refer to reference [15], where the flow equations and
our estimate of the truncation error are introduced, see also reference [48] for information about
calculation of observables and a detailed explanation of our estimate of error bars.

A.2. ML-MCTDHX approach
In the ML-MCTDHX approach, the Hilbert space is truncated in a variationally optimal manner. To this
end, one employs a time-dependent moving basis in which the system is instantaneously optimally
represented through time-dependent permanents12. In this sense, the many-body wave function is expressed
with respect to bosonic number states |�n〉 ≡ |n1, n2, . . . , nD; t〉 and time-dependent expansion coefficients
C�n(t) as follows

|Ψ(t)〉 =
∑
�n

C�n(t)|n1, n2, . . . , nD; t〉. (A.7)

Here, |�n; t〉 built upon time-dependent single-particle functions ϕi(t) with i = 1, 2, . . . , D. The summation
in equation (A.7) is performed over all possible combinations ni such that the total number of bosons N is
conserved. In our numerical implementation, the single-particle functions ϕi(t) are expanded in a
time-independent primitive basis of dimension M13 that is based upon a sine discrete variable
representation for the box potential with hard-wall boundary conditions at ±L/2. To calculate the
ground-state wave function of the many-body setting, we determine the underlying equations-of-motion
for the coefficients C�n(t) and the single-particle functions ϕi(t) following the Dirac–Frenkel [57] variational

12 For a multicomponent setting, the variational ansatz has a multilayer structure allowing one to include both intra- and interspecies
correlations, see reference [16]. Here, we describe a reduction of ML-MCTDHX to a single-component system that is investigated.
13 In the limit where D = M the wave function expansion of equation (A.7) is equivalent to a full configuration interaction approach,
while for D = 1 it reduces to a single product state, which automatically satisfies symmetrisation conditions for bosons, and thus
corresponds to the mean-field approximation.
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principle. An imaginary time propagation method is used to obtain the system’s ground state configuration.
More details on the ingredients of this variational method can be found in references [16, 58].

Appendix B. ML-MCTDHX results

In the main text, the analytical solution for the bound state has been benchmarked against IM-SRG data.
We have checked that these results are in agreement with the predictions of the well-established
ML-MCDTHX approach. This is illustrated in figure B1 where the densities and phase fluctuations for the
largest value of N considered in the main text are shown (cf figure 4).

Below, we study a system in a box potential, thus, exploring the formation of the artificial atom from
bosons in the presence of hard-wall boundary conditions. This allows us to further understand the validity
of the relatively novel IM-SRG method. Afterwards, we discuss the mean-field approximation to a mobile
impurity in a Bose gas without the transformation to relative coordinates, equation (21).

B.1. IM-SRG vs ML-MCTDHX
We show in figure B2 the energy, density and phase fluctuations of the Bose gas for different particle
numbers N. The used values of N correspond to bound, critical, and scattering states discussed in the main
text. Note, however, that the box trap modifies all properties of the system if L is of the order of 1/M|c|. For
example, we noticed that we need to use stronger impurity-boson interactions (and therefore larger
numbers of particles) than in the main text to be able to observe significant beyond-mean-field effects.

The ML-MCTDHX and IM-SRG results for the energy (panel (a)) and the density (panel (b)) are in
agreement. However, phase fluctuations (panel (c)) show some deviations for larger particle numbers. We
notice, that while the density and the energy are accurate already for a small number of orbitals in
ML-MCDTHX, phase fluctuations require more involved simulations. This is expected for several reasons.
In particular, phase fluctuations require to determine the off-diagonal of the reduced density matrix which
is a higher order observable. Note that ML-MCTDHX contains in general more information about the
Hilbert space of the system in comparison to IM-SRG. Furthermore, ML-MCTDHX provides a direct access
to spatially resolved observables and multicomponent settings. In that light, ML-MCTDHX calculations of
certain observables are computationally more demanding than those with IM-SRG.

Nevertheless, increasing the number of orbitals leads to an agreement between the IM-SRG and the
ML-MCDTHX results also for the phase fluctuations. We showcase this statement in panel (d), presenting
the phase fluctuations within ML-MCDTHX for an increasing orbital number in the case of N = 26
(a similar pattern is expected for N = 40). We observe a systematic convergence behavior. The main
disagreement is near the boundaries of the box trap where the calculation of phase fluctuations becomes
hard due to almost zero densities, see equation (20) especially so for ML-MCTDHX which operates in first
quantization. We conclude that the decrease of phase fluctuations near the boundary is a numerical artifact
caused in part by the presence of hard walls. Thus, we only show results for x < 0.35L. Overall, both
numerical methods predict the same behavior for the observables of interest.

B.2. Mobile impurity: two-component mean-field approximation
For the sake of completeness, here, we apply the mean-field approach to the problem of a mobile impurity
without the transformation to relative coordinates, see equation (21). We numerically solve the following
set of coupled GPEs [

− �

2M

d2

dx2
+ g(N − 1)|ΨB(x)|2 + c|ΨI(y)|2

]
ΨB(x) = μBΨB(x),

[
− �

2m

d2

dy2
+ c|ΨB(x)|2

]
ΨI(y) = μIΨI(y),

(B.1)

for increasing particle numbers while fixing the ratio N/α = −1. Here, ΨI (ΨB) is the mean-field wave
function of the impurity (bosons). Below, we assume m/M = 1.

To justify this mean-field approximation, we benchmark it against ML-MCDTHX. (Note that we cannot
use the current implementation of IM-SRG for such a benchmark, as it cannot be used to study
multicomponent systems.) Our findings are illustrated in figure B3 where the one-body densities of the
impurity and the bosons are shown. It becomes evident that a larger particle number results in a higher
bosonic density at the position of the impurity as the effective boson–boson interaction decreases if the
ratio N/α is kept fixed.

The considered weak boson–boson interactions lead to a good agreement between the mean-field and
ML-MCTDHX methods, at least for the density of the Bose gas. This is expected since for these weak
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Figure B1. Density (left) and phase fluctuations (right) for the Bose gas using periodic boundary conditions calculated with
IM-SRG (circles) and ML-MCTDHX (solid curves). The dashed curves are added to guide the eye. The parameters of the system
are: α = −5, LM|c| = 0.5N, and N = 15. In ML-MCDTHX, we used D = 5 orbitals. The energy per particle in IM-SRG is
EM/Nc2 = −0.100 722 ± 0.000 089 and in ML-MCDTHX it is EM/Nc2 = −0.097. The numerical error bars are calculated
according to the prescription given in appendix A.

Figure B2. Observables for a Bose gas in a box trap assuming that there is an impurity in the middle of the trap. The parameters
of the system are: α = −12.5, LM|c| = 0.25N, and N = 15, 26, 40. (Note that the critical particle number for these parameters in
a ring would be Ncr = 26.) Panels (a)–(c) show correspondingly the energy, the density and phase fluctuations calculated with
IM-SRG and ML-MCDTHX for different particle numbers. Solid curves present ML-MCDTHX data. In ML-MCDTHX, we used
D = 5, 7, 6 orbitals for N = 15, 26, 40, respectively. Dots, squares, triangles showcase IM-SRG results. Dashed lines are added to
guide the eye. In panel (d) we show phase fluctuations for N = 26 for different numbers of orbitals in ML-MCDTHX together
with the IM-SRG result. Note that already for three orbitals, the values of the energy and the density are converged for this N.

interactions boson–boson correlations are suppressed. For the impurity, the deviations between the
ML-MCDTHX and the mean-field predictions become more noticeable for the largest numbers of bosons.
Particularly, the impurity appears to be more spatially localized in the mean-field approach.

Our data allow us to conclude that the mean-field approximation is able to provide adequate results also
without transformation to a co-moving frame. However, such a transformation is needed to obtain some
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Figure B3. Densities of the bosonic (blue) and of the impurity (orange) clouds for different particle numbers. The mass of the
impurity is identical to that of a boson, i.e., m = M. The other parameters are chosen such that N/α = −1. The size of the
system is LM|c| = 40. The curves (dots) are the ML-MCDTHX (mean-field) results.

analytic insight into the system, as we discuss in the main text. If one is simply interested in estimating
lower order observables such as densities in the mean-field approximation, then it seems that it is sufficient
to work in the laboratory frame.

Appendix C. Mean-field solution for hard-wall boundary conditions

To complement the mean-field studies in the main text, here, we present a solution of equation (3) for a box
trap, i.e., for f(−L/2) = f(L/2) = 0. For these boundary conditions, the solution that becomes the
many-body bound state in the limit L →∞ is given by the Jacobi-cs function [32]:

f (x) =

√
4K(p)2

MgL2δ2(N − 1)
cs

(
2K(p)

δ

[
|x|
L

+
δ − 1

2

]
, p

)
, (C.1)

with

μ = 2K(p)2 p − 2

Mδ2L2
. (C.2)
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To find the parameters p and δ, one should use the normalization condition and the boundary
condition due to the delta-function potential:∫

|f |2(x)dx = 1,
∂f

∂x

∣∣∣∣
x=0+

= −cMf (0). (C.3)

Note that there are other Jacobi-elliptic functions that can solve the GPE, for example, the Jacobi-sc
function:

f (x) =

√
4K(p)2(1 − p)

MgL2δ2(N − 1)
sc

(
2K(p)

[
−|x|
δL

+
1

2δ

]
, p

)
, (C.4)

with

μ = 2K(p)2 p − 2

δ2L2
. (C.5)

This function, however, does not lead to a physical solution in the limit L →∞, and therefore we do not
consider it here. We refrain from discussing any further solutions, which may, for example, correspond to
the scattering solution, equation (5), from the main text. It turns out that hard-wall boundary conditions
make it harder to find correct solutions for systems with finite L.

Appendix D. Zero-density limit within mean-field approximation

In this appendix, we provide some technical details for the results presented in section 4.

D.1. Many-body bound state
We first of all notice that the solution from equation (4) presented in the main text for periodic boundary
conditions and equation (C.1) from the previous appendix for closed boundary conditions are identical in
the limit of L →∞, p → 1:

f (x) =

√
1

Mg(N − 1)

ln(a)

δL
sinh

(
ln(a)

[
|x|
δL

+ b

])−1

, (D.1)

with a := 16
1−p and b := δ−1

2δ . We used that K(p) → 1/2 ln(a) [32].
Now we need to fulfill the boundary condition due to the delta-function potential

−f ′(0+) = Mcf (0) (D.2)

⇒ x + 1

x − 1
= coth(ln(a)b) =

−cMδL

ln(a)
, for x := a2b (D.3)

and normalization

1 = lim
L→∞

∫ L/2

−L/2
f (x)2 dx (D.4)

⇒ 1 =
4

Mg(N − 1)

ln(a)

δL

[
1

1 − a
− 1

1 − x

]
a�1
=

4

κg(N − 1)

ln(a)

δL

1

x − 1
. (D.5)

Combining these two equations leads to

ln(a)

δL
=

Mg(N − 1)

2
ζ, (D.6)

with

ζ = − 2c

g(N − 1) − 1
=

Ncr − N

N − 1
. (D.7)

Note that by definition x > 1, therefore, we derive the condition for the existence of the solution:

N � 2
|c|
g

+ 1, (D.8)

which is in agreement with the PoT condition equation (10) from the main text.
For the chemical potential, we derive:

μ = − ln (a)2

2Mδ2L2
= −Mg2(N − 1)2

8
ζ2 = − 1

2Mx2
mbb

, (D.9)
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with xmbb = 1
M|c|

ζ+1
ζ

, the characteristic width defined in the main text. For the energy per particle, we find

E/N = lim
L→∞

μ− g(N − 1)

2

∫ L/2

−L/2
dx f (x)4 a�1

= − Mg2(N − 1)2

(
ζ(ζ + 1)

8
+

1

24

)

= − 1

Mx2
mbbζ

2

(
ζ(ζ + 1)

2
+

1

6

)
. (D.10)

For the function f(x), we can use equation (D.6) to simplify the solution as

f (x) =

√
Mg(N − 1)

4
ζ sinh

(
Mg(N − 1)

2
ζx + ln(

√
2ζ + 1)

)−1

=

√
2ζ(2ζ + 1)

xmbb

1

(2ζ + 1)ex/xmbb − e−x/xmbb
, (D.11)

At the PoT, ζ → 0, this function can be expanded around xζ → 0 as follows

f (x) =

√
|c|M

2

1

|c|Mx + 1
. (D.12)

D.2. Point of transition
The solution with the critical particle number still supporting a many-body bound state reads

f (x) =

√
π2

MgL2δ2(N − 1)

1

cos
(

π(x−L/2)
δL

) . (D.13)

In the limit L →∞, we have πx
δL → 0 and δ → 1. Therefore, we can expand the solution such that:

f (x) ≈
√

|c|M
2

1

|x|+ Lδ(δ−1)
2

. (D.14)

From the normalization condition,

MgδL(N − 1)

2π
= tan

( π

2δ

)
, (D.15)

we derive

tan
( π

2δ

)
δ→1≈ 2

δ − 1
, (D.16)

which leads to

f (x) =

√
|c|M

2

1

|c|Mx + 1
. (D.17)

Note, that this expression coincides with the one derived in the previous subsection. The corresponding
chemical potential vanishes:

μ = lim
L→∞

π2

2Mδ2L2
= 0. (D.18)

Appendix E. Few-body limit of the artificial atom

In this appendix, we discuss the smallest non-trivial system with N = 2 assuming that only two or three
bosons can be bound to the impurity. Note that a priori it is not clear that the mean-field solution is
applicable to such a few-body system.

For a two-particle system, the IM-SRG becomes essentially exact (there is only an error due to the finite
Hilbert space, see appendix A, which can be easily controlled). This allows us to benchmark our mean-field
results for large ring sizes. The results are presented in figure E1 where panels (a) and (b) show the density
of the Bose gas for the cases where Ncr = 2 and Ncr = 3. It can be readily seen that independently of the
ring size the behavior of the density is in an excellent agreement between the mean-field and IM-SRG
approach. The same holds for the corresponding phase fluctuations depicted in panels (c) and (d) for
distinct sizes of the ring. Note that the density for the largest ring size, i.e. LM|c| = 2.5N, in both panels is
too low to render meaningful values of phase fluctuations (cf equation (20)). However, even for the largest
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Figure E1. Panels (a) and (b) show the density of the Bose gas. Circles, boxes, crosses and triangles are calculated with IM-SRG,
and the solid curves are the corresponding mean-field results (equations (4) and (8)). Panels (c) and (d) demonstrate phase
fluctuations whose non-zero values reveal the presence of beyond-mean-field correlations. The dashed curves are provided to
guide the eye. The data show results for two bosons (N = 2) for different ring sizes. Panels (a) and (c) are for systems with
α = −0.5 (Ncr = 2), and panels (b) and (d) for α = −1 (Ncr = 3). The numerical error bars are calculated according to the
prescription given in appendix A.

ring size, phase fluctuations are still low and the Bose gas can be adequately approximated with the
mean-field ansatz. This numerical observation shows that the physical picture given in section 2.2 is
accurate even for the smallest set-ups.
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