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Abstract

The polaron model is a basic model of quantum field theory describing a single particle
interacting with a bosonic field. It arises in many physical contexts. We are mostly concerned
with models applicable in the context of an impurity atom in a Bose-Einstein condensate as
well as the problem of electrons moving in polar crystals.
The model has a simple structure in which the interaction of the particle with the field is given
by a term linear in the field’s creation and annihilation operators. In this work, we investigate
the properties of this model by providing rigorous estimates on various energies relevant to the
problem. The estimates are obtained, for the most part, by suitable operator techniques which
constitute the principal mathematical substance of the thesis.
The first application of these techniques is to derive the polaron model rigorously from first
principles, i.e., from a full microscopic quantum-mechanical many-body problem involving an
impurity in an otherwise homogeneous system. We accomplish this for the N + 1 Bose gas
in the mean-field regime by showing that a suitable polaron-type Hamiltonian arises at weak
interactions as a low-energy effective theory for this problem.
In the second part, we investigate rigorously the ground state of the model at fixed momentum
and for large values of the coupling constant. Qualitatively, the system is expected to display
a transition from the quasi-particle behavior at small momenta, where the dispersion relation
is parabolic and the particle moves through the medium dragging along a cloud of phonons, to
the radiative behavior at larger momenta where the polaron decelerates and emits free phonons.
At the same time, in the strong coupling regime, the bosonic field is expected to behave purely
classically. Accordingly, the effective mass of the polaron at strong coupling is conjectured to
be asymptotically equal to the one obtained from the semiclassical counterpart of the problem,
first studied by Landau and Pekar in the 1940s. For polaron models with regularized form
factors and phonon dispersion relations of superfluid type, i.e., bounded below by a linear
function of the wavenumbers for all phonon momenta as in the interacting Bose gas, we prove
that for a large window of momenta below the radiation threshold, the energy-momentum
relation at strong coupling is indeed essentially a parabola with semi-latus rectum equal to the
Landau–Pekar effective mass, as expected.
For the Fröhlich polaron describing electrons in polar crystals where the dispersion relation is
of the optical type and the form factor is formally UV–singular due to the nature of the point
charge-dipole interaction, we are able to give the corresponding upper bound. In contrast to
the regular case, this requires the inclusion of the quantum fluctuations of the phonon field,
which makes the problem considerably more difficult.
The results are supplemented by studies on the absolute ground-state energy at strong coupling,
a proof of the divergence of the effective mass with the coupling constant for a wide class of
polaron models, as well as the discussion of the apparent UV singularity of the Fröhlich model
and the application of the techniques used for its removal for the energy estimates.
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CHAPTER 1
Introduction

1.1 The polaron

1.1.1 Wider context
An important goal of XXI century physics is to understand the emergent properties, i.e.,
properties that are not inherent to individual constitutents of a large system, but arise due
to mutual interactions between them. For this reason it is important to investigate the
interactions between basic constituents of ordinary materials on a very fundamental level,
including the methods of mathematical physics.

Interesting effects due to complex interactions arise already when the chemical composi-
tion of the system is entirely uniform, but a siginificant degree of complexity is added if one
considers inhomogeneous systems. The simplest case corresponds to a single object - an
atom, molecule, or even an elementary particle - immersed in a large, excitable medium. The
model we shall be considering here, the polaron model, is arguably one of the most basic
examples. It concerns the motion of a quantum particle interacting with a large medium
modelled by a bosonic field. The basic nature of the model makes it perfectly fit for a rigorous
analysis. In fact, it is relatively simple and many aspects of it are tractable with the use of
the mathematical methods at hand, while at the same time it is complicated enough to pose
several hard problems, the solution of which might both increase our understanding of the
underlying physics and lead to new, interesting developments in mathematics.

1.1.2 The Fröhlich Hamiltonian
The Hamiltonian that we are going to analyze has been first introduced by Fröhlich [67]. It
has the form

H = −∆x

2m +
∫
R3
ε(k)a†kakdk +

√
α
∫
Rd

(
v(k)akeik·x + v(k)a†ke−ik·x

)
dk (1.1)

and acts on the Hilbert space L2(Rd)⊗F , with

F :=
∞⊕
n=0

n⊗
sym

L2(Rd) (1.2)

1



1. Introduction

denoting the bosonic Fock space, where ⊗n
sym L

2(Rd) is the space of symmetric square
intergable functions of n variables. By definition ⊗0

sym L
2(Rd) = C, and this case is referred

to as the vacuum. Furthermore, a†k, ak are the bosonic creation and annihilation operators,
actually operator-valued distributions, satisfying the commutation relation

[ak, a†q] = δ(k − q) (1.3)
with δ(·) denoting the delta distribution. At this level, these operators are introduced
formally, but their proper definition poses no difficulty once the usual annihilation operators
are introduced. For a function f ∈ L2(Rd), we have

a(f) :
n⊗

sym
L2(Rd)→

n−1⊗
sym

L2(Rd), (1.4)

(a(f)Ψ)(x1, ·, xn−1) =
√
n
∫
dxf(x)Ψ(x1, · · · , xn−1, x). (1.5)

It is a simple exercise to compute the adjoint a†(f)

(a†(f)Ψ)(x1, · · · , xn) = 1√
n

n∑
i=0

f(xi)Ψ(x1, · · · , xi−1, xi, · · · , xn) (1.6)

and to verify that the canonical commutation relations hold true:
[a(g), a†(f)] = 〈g|f〉 (1.7)

where we employed the Dirac bra-ket notation for the inner product in L2.

(1.1) thus models a quantum particle of mass m > 0 and position x ∈ Rd interacting
with a scalar bosonic field. Its main ingredients are as follows:

• −∆x is the Laplacian in the particle variable, and −∆x

2m describes the particle’s kinetic
energy;

• ε(·) is the dispersion relation, and the term involving this quantity in (1.1) is called the
field energy ;

• the term involving the function v(·) is the interaction term, and v(·) is called the form
factor ;

• α > 0 is a coupling constant traditionally appearing in (1.1) under the square root.

It is to be noted that the interaction is linear in the creation and annihilation operators, which
is the most distinctive feature of the model. One typically assumes that ε(k) > 0 for all
k ∈ Rd and that v ∈ L2(Rd), in which case (1.1) is well defined on the intersection of the
domains of the particle’s Laplacian and the field energy, although one physically important
model discussed here has v(k) ∼ |k|−1 in d = 3, and the UV divergence in this case constitutes
one of the most mathematically involved aspects of this and various preceding works. Let
us finally remark that the k modes of the field are called phonons, a term well-known from
elementary physics.

(1.1) arises in many physical contexts, and our analysis shall be focused on the case of
an electron in a polar crystal, hereafter referred to as the Fröhlich (large) polaron, and an
impurity atom immersed in a cold atomic gas comprising of bosonic atoms, called the Bose
polaron. Our two principal goals are

2



1.1. The polaron

1. the derivation of (1.1) as an effective theory from first principles, i.e., from a microscopic
quantum-mechanical many-body problem;

2. the analysis of the properties of (1.1) at strong coupling, especially in the context of
the energy-momentum relation and the emergence of the polaron quasi-particle, and the
verification of the semiclassical approximation in this case.

Let us discuss these points in some detail, including the basic physics background, and present
our results.

1.1.3 Derivation of the Fröhlich Hamiltonian as an effective theory
The Fröhlich case: a physics derivation

(1.1) has first appeared in the physics literature in the context of the problem of electronic
motion in polar crystals [67, 68]. This corresponds to the choice

ε(k) = 1, v(k) = 1
(2π)3|k|

, d = 3 (Fröhlich case). (1.8)

Of course, |k|−1 is not an L2(R3) function, but using the methods recalled in Chapter 4 one
can show that if one introduces a cutoff K in the form factor, i.e. sets v(k) = (2π)−3|k|−1 for
|k| ≤ K and zero otherwise, then the resulting Hamiltonian is bounded from below uniformly in
K, and thus one can define the corresponding Hamiltonian for K =∞ via a suitable quadratic
form. For a thorough discussion concerning the definition and domain of the Hamiltonian with
the choice (1.8), we refer to [74].
For the sake of this introductory section, we are first interested in physical arguments leading to
the Fröhlich model (1.8). The situation is the following: consider an electron moving through
a ionic lattice, i.e, a lattice whose sites are occupied by ions. For simplicity, imagine the case
of the lattice being simply Z3, and the situation in which each site is occupied by an ion
surrounded by oppositely charged ions occupying the nearest neighbor sites. The ions are not
entirely immobile and can perform small oscillations around their equilibrium positions. The
moving electron distorts the lattice by attracting the positive ions and repelling the negative
ones, which, in turn, leads to the formation of local dipole moments spreading through the
lattice in the form of optical phonons. The origin of the Fröhlich model is then best seen once
the Hamiltonian is rewritten in position space for the phonons. It reads

H = −∆x +
∫
R3
a†yay dy +

√
α
∫
R3

a†y + ay

2π2|x− y|2
dy. (1.9)

In order to arrive at (1.9) as a model for the electron-ionic lattice system, one argues as
follows:

1. The first thing to note is the choice of units, in which the Planck’s constant ~ and the
phonon frequency is set to unity, as well as m = 1/2 for the mass of the electron. In
fact, this mass is not the bare mass of the electron in vacuum, but the band mass. The
origin of this lies in band theory of solids, for our purposes it is enough to point out
that the band mass is an effective way of taking the interaction of the electron with the
immobile ions into account. The actual value of the band mass depends on the material
(i.e., the chemical composition and the geometric structure of the crystal).

3



1. Introduction

2. One essential ingredient here is the continuum approximation, in which the discrete
lattice is replaced by a continuous polarizable medium. The physical argument behind
this is that when considering this problem, the electron is supposed to be a relatively
slow one, thus having a low kinetic energy and consequently a wave function with small
gradients, which is then presumably spread over many lattice sites.

3. Related to this is the choice ε(k) = 1, corresponding to optical phonons. These are
quantized oscillations in which the adjacent ions oscillate out of phase which leads
to a dipole moment. Their dispersion relation tends to a positive constant at k = 0,
is essentially flat for small k and the deviations from a constant dispersion relation
reveal themselves for k of the order of the inverse lattice spacing, and can therefore be
neglected in the continuum approximation, which justifies the choice ε(k) = 1 for all k.

4. The term 1
2π2|x−y|2 is the interaction potential of a charge located at x and a dipole

located at y. This corresponds to the form factor v(k) = 1
(2π)3

1
|k| (and the exponential

factors eikx) via Fourier transform.

5. In the units chosen, the coupling constant is

α = 1
2

(
1

ε(∞) −
1
ε

)
(1.10)

where ε(∞) is the high-frequency dielectric permittivity of the material in question, and
ε is its static permittivity. This particular combination arises here due to the fact that
the ε contains contributions also from the high-frequency polarization effects happening
at the level of the electronic structure of the ions themselves, which are neglected here
and thus the number ε(∞) describing them needs to be subtracted from the equations.
A detailed analysis of the underlying electrodynamics leads to this particular form of α.

For more details, we refer the interested reader to the review [87]. Although the above physical
arguments are well-founded and plausible, a rigorous derivation of (1.9) from the underlying
microscopic model of an electron in a polar crystal would be a formidable task (note, however,
the work [25], in which the Pekar functional, a model related to the Hamiltonian (1.1), is
derived from a simplified model of a crystal in the Hartree-Fock setting). Our first contribution
in this work is a rigorous derivation of (1.1) from a microscopic model of another instance of
the polaron problem, the N + 1 Bose gas. Its microscopic structure is much simpler, but the
N + 1 Bose gas, or the Bose polaron problem, lies at the forefront of modern cold atomic
physics, and hence the problem is of great interest of its own.

The Bose polaron

The Bose polaron problem, that is, the problem of an impurity atom immersed in an interacting
Bose gas, has been investigated both theoretically and experimentally in the recent years, and
has an extensive physics literature. One of the most prominent models in these investigations
is via a suitable Fröhlich Hamitonian [1]. Our goal is to derive this effective model rigorously
from first principles, on a simple example. We hence start with a specific model of an impurity
in a Bose gas, in which the constituents are confined to a finite-size box modelled by the unit
torus in d dimensions, and show how the Fröhlich model arises from it in a natural way.
We thus consider a system of N bosons of mass 1/2 and one additional particle (of an
unspecified type of statistics) of mass M . We assume that the particles confined to move

4



1.1. The polaron

on the unit torus in d dimensions, Td. Moreover we assume that the bosons interact among
themselves via a positive two-body potential v : Td → R and that the additional impurity
particle interacts with the bosons via a positive real-valued two-body potential w : Td → R.
The positions of the bosons are labeled by {xi}Ni=1, xi ∈ Td and the position of the impurity
by R ∈ Td. The Hamiltonian of this system reads

HN,1 = −4R

2M −
N∑
i=1
4xi + λ

∑
1≤i<j≤N

v(η(xi − xj)) + µ
N∑
i=1

w(ν(xi −R)) (1.11)

and acts on the Hilbert space L2(Td)⊗
(
⊗NsymL2(Td)

)
. The pairs of real numbers (λ, η) and

(µ, ν) are scaling parameters describing the strength and the ranges of the potentials v, w
respectively. (1.11) is our starting point as a microscopic many-body theory from which we are
going to derive a version of the Fröhlich Hamiltonian (1.1) as an effective low-energy theory
in an appropriate limiting scaling. In order to introduce the main strategy, it is instructive to
view HN,1 as an operator on L2(Td)⊗F (here, in the definition of F , we simply replace Rd

with Td in (1.2)) and express it via the creation and annihilation operators corresponding to
the functions x→ eipx, p ∈ (2πZ)d, forming an orthonormal basis of L2(Td). In this way, we
arrive at the second-quantized version of (1.11):

HN,1 =−4y

2M + EH(N) +
∑
p 6=0

p2a†pap +
∑
p 6=0

vp/η
∑
q,k

a†p+ka
†
q−paqak+ (1.12)

+ µ
∑
p 6=0

wp/νe
−iν−1py

∑
k

a†p+kak.

Here w· v· are the Fourier coefficients of the potentials w, v, and EH(N) is the Hartree energy
λ
2N(N − 1)v0 +Nµw0. Note that in order to arrive at (1.12), translation invariance is crucial
(we also assume parity invariance so that the Fourier coefficients are real, and hence even
functions of p).

We are interested in a low-energy effective theory of HN,1, and predict that it should lead
to a version of the Fröhlich Hamiltonian if one follows the appropriately adjusted approach
laid down by Bogoliubov [33]. First of all, it is to be expected that for low energies most of
the bosons have very low momenta, in fact, that most of the processes that occur at low
energy involve bosons having zero momentum. Accordingly, we expect that at low energies,
one can replace the operators a0, a

†
0 by numbers

√
N . The heuristic reason for this is that

most of the bosons are predicted to have momentum zero and thus a†0a0 ∼ N , and therefore
also a0a

†
0 = 1 + a†0a0 ∼ N and a0, a

†
0 are effectively commuting. After this replacement, one

retains only terms which are at most quadratic in the creation and annihilation operators
(which, after the above replacement, depend only on the non-zero momenta). In the boson-
impurity interaction, one goes even further and retains only the linear terms in the creation
and annihilation operators, neglecting all the scattering terms. At this stage, we take the
simplest choice of (λ, η) and (µ, ν) so as to meet two conditions. First, we wish that the v−
dependent term in EH is extensive, i.e., linear in N . Moreover, we want the boson-boson and
the impurity-boson interactions beyond EH to lead to an N− independent O(1) contribution
to the energy. This leads to the mean-field scaling λ = 1

N−1 , µ = 1√
N

for the strengths and
η = ν = 1 for the ranges. This corresponds to the case of weak long-ranged potentials. This
is physically expected to be accurate at high boson densities, or for large N in our approach,
as the volume of the torus is set to unity in our setting. It has to be noted that since actual
gases used in experiments are typically dilute, the mean-field scaling serves mainly as a toy

5



1. Introduction

model, against which various other approaches are tested. In this sense, it is a bit artificial, but
has an important theoretical value. We shall henceforth take this limit in our considerations
on the derivation of the Bose polaron model. For a discussion of other scalings, see Chapter 2.

With the mean-field scaling and the Bogoliubov approximation, we arrive at the Hamiltonian

Hpre−F =N2 v0 +
√
Nw0 + −∆R

2M +
∑
p 6=0

(
(p2 + vp)a†pap + vp

2 (a†pa
†
−p + apa−p)

)
+
∑
p 6=0

wpe
−ipR(a†p + a−p).

Note that this one does not leave the L2(Td)⊗
(
⊗NsymL2(Td)

)
subspace invariant, in contrast

to (1.12). We see that once the aforementioned approximation is made, we arrive at our goal,
since Hpre−F − N

2 v0 −
√
Nw0 is unitarily equivalent to the Fröhlich Hamiltonian

HF = −∆R

2M +
∑
p 6=0

εpb
†
pbp +

∑
p 6=0

w̃p
(
e−ipRb†p + eipRbp

)
+ EB (1.13)

where EB is an explicit constant, the dispersion equals

εp =
√
p4 + 2vpp2 (1.14)

and the form factors turns out to be

w̃p = |p|wp√
ep

(1.15)

The operators bp, b†p are also bosonic, and given by b†p = αpa
†
p + βpa−p where αp, βp are

appropriate constants chosen such that [bp, b†q] = δp,q. Explicitly, αp = (1 − γp)−1/2 with
γp = 1 + p2−ep

vp
and βp = γpαp. An important thing to note is that

εp ≥ c|p| (1.16)
for all p, for some c > 0 (since v is positive, v0 > 0). This fact is related to the onset of
superfluidity in the interacting Bose gas at low temperatures [33]. Accordingly, a dispersion
relation satisfying infk |k|−1ε(k) > 0 will be said to be of superfluid type, and this will play an
important role also below.

Contributions of the author

In Chapter 2 we perform a rigorous derivation of the Fröhlich Hamiltonian (1.13) as an
effective low-energy theory of the excitations of HN,1 in the mean-field limit. More precisely,
we compare the low-lying parts of the spectra of HN,1 and EH(N) + HF and show that they
agree for N large, provided that the eigenvalues lie in an energy window which grows not too
fast with N . This is the content of the following Theorem.

Theorem 1.1.1 (M-Seiringer 2020). Let HN,1 and HF be defined by Eqs. (1.12) and
(1.13), respectively, and let EH(N) := N

2 v0 +
√
Nw0. Assume that v and w are positive

and bounded, and that v is positive definite. Then for all eigenvalues ei(HN,1) such that
ei(HN,1)− e0(HN,1) ≤ ξ for some ξ ≥ 1 we have

|ei(HN,1)− EH(N)− ei(HF)| ≤ Cv,wξ

(
ξ

N

)1/2

(1.17)

for some constant Cv,w > 0 independent of the parameters ξ and N .

6



1.1. The polaron

This result on the lower part of the spectrum is supplemented by a statement on the eigenvec-
tors, see Theorem 2 in Chapter 2.

The method of proof uses techniques developed for the justification of the Bogoliubov
approximation for interacting Bose gases developed in the mathematical physics literature in
the past few years. The main tool are suitable operator inequalities that compare HN,1−EH(N)
with HF. From these inequalites, one can draw two important conclusions: first, it holds
that the difference of the two operators is essentially of the order N−1/2N+, where N+ is the
excitation number operator N+ = ∑

p 6=0 a
†
pap. The second conclusion is that this operator is

uniformly bounded in N on states with sufficiently small energy. This allows us to conclude the
desired statement by the min-max principle. Of course, there is a certain number of technical
issues that need to be taken into account, most of them stemming from the fact that HN,1
and HF act on different Hilber spaces and cannot be directly compared. This is handled by a
unitary transformation introduced by Nam, Lewin, Serfaty and Solovej in 2016 [28] as well as
Fock space localization techniques utilized in [48], whose application turns out to be quite
effective in our mean-field case due to the operator inequalities obtained.

1.1.4 The energy-momentum relation at strong-coupling
The next topic is focused on one of the central points of polaron theory. The origin of the
term polaron lies in the physical picture of a quasi-particle emerging in the system composed
of an impurity and a boson field as described by the Fröhlich Hamiltonian. The impurity
is imagined to excite and drag along a cloud of phonons as it moves, and this composite
structure - the particle plus the cloud of phonons attached to it - is viewed as a separate entity,
a quasi-particle termed the polaron. As we shall see, this picture can be translated to the level
of equations and theorems. To this end, let us first note that due to translation invariance,
the Hamiltonian (1.1) commutes with the total momentum operator

Ptot = −i∇x + Pf , Pf =
∫
dk k a†kak. (1.18)

It therefore makes sense to consider the infimum of the spectrum of H as defined in (1.1) on
the subspace where the total momentum equals P ∈ Rd. Thanks to the unitary transformation
introduced by Lee, Low and Pines [10], one can introduce another definition of this quanity,
which involves explicit objects and is hence much easier to manipulate. The Lee-Low-Pines
unitary operator has the form eiPfx and satisfies

eiPfxa†ke
−iPfx = eikxa†k.

A computation thus shows that H unitarily equivalent to ∫⊕ dP HP with

HP = 1
2m(P − Pf )2 +

∫
Rd
ε(k)a†kakdk +

√
α
∫
Rd

(
v(k)ak + v(k)a†k

)
dk.

Note that this operator acts on F only. The energy-momentum relation is then defined as

E(P ) = inf spec HP

which is the ground-state energy at fixed total momentum P . This quantity shall be our main
object of interest.
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1. Introduction

In order to motivate our further analysis, let us start with the simplest case α = 0. Assume
for simplicity that the dispersion relation is strictly positive and subadditive, i.e., ε(k1 + k2) ≤
ε(k1) + ε(k2) for all k1, k2 ∈ Rd. Then

E(P ) = min
{
P 2

2m, inf
Q∈Rd

(
(P −Q)2

2m + ε(Q)
)}

. (1.19)

In other words, either the free particle carries the entire momentum and no phonons are
produced, or, once the momentum is too large, the energy is distributed among the particle
and the phonons and partially released in the form of radiation. Note that in the particular
case of optical phonons, the infimum over Q in (1.19) equals unity, and thus the particle
decelerates completely and transfers the entire momentum to the phonon field. For α > 0,
we expect a similar picture and a smoothed out version of (1.19), in the sense that E(P )
should continuously interpolate between the quasi-particle and the radiation regime, see Fig.
1.1. The quasi-particle regime corresponds precisely to the polaron picture and is determined
by a parabolic behavior of E(P ), but with the bare mass of the particle m replaced by an α
dependent effective mass. In fact, it is known [71]that E(P ) has at least a local minimum at
P = 0 and is analytic in its vicinity, and hence that the limit

lim
P→0

P 2

2(E(P )− E(0)) =: Meff (1.20)

exists. The number Meff is the effective mass. It can be shown that Meff > m for α > 0.
Thus the energy-momentum relation at sufficiently small P is approximately parabolic with
semi-latus rectum Meff , which corresponds to the dispersion relation of a free non-relativistic
particle having the effective mass Meff . This is precisely the polaron as envisaged physically.
On the other hand, for P large, it is known under certain natural assumptions that [90]

lim
P→∞

(E(P )− Eess(P )) = 0 (1.21)

where Eess(P ) is the bottom of the essential spectrum

Eess(P ) := inf
Q∈Rd

(E(P −Q) + ε(Q)) (1.22)

(comp. Eq. (1.19)). This corresponds to the radiative regime, where the part of the momen-
tum is transferred to the phonons, just as in the non-interacting case discussed above.

In this work, we are interested in the opposite extreme of the non-interacting case (1.19),
the strong coupling limit α� 1. We wish to confirm the quasi-particle transition picture as
depicted in 1.1 and use this picture to confirm validity of the semiclassical analysis applied to
the energy-momentum relation. More precisely, define first the transition momentum as the
absolute value of momenta satisfying the equation

P 2
t

2Meff
= inf

Q∈Rd

(
(P −Q)2

2Meff
+ ε(Q)

) ∣∣∣∣∣
P=Pt

. (1.23)

We shall consider dispersion relations that are strictly positive, radial and non-decreasing in
|P |. We expect that

1. E(P ) − E(0) remains essentially a parabolic curve for momenta |P | � |Pt| and
approaches Eess(P ) for |P | � |P |t, and undergoes a swift transition between the two
cases for momenta around P ∼ Pt.
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1.1. The polaron

Figure 1.1: A schematic plot of the expected behaviour of E(P ) at non-zero coupling: the non-
interacting case is added for comparison.

2. At large coupling, the parabola approximating E(P )−E(0) in the quasi-particle regime
should be determined by the effective mass coefficient as obtained from the semiclassical
theory of Landau and Pekar.

In order to motivate the second point in more detail, we need to explain the connection
between the strong coupling and semiclassical limits of the polaron problem, which we shall
do next. This connection has been subject to an extensive investigation in the mathematics
literature [2, 85, 60].

1.1.5 Semiclassical theory of the polaron and the strong-coupling
limit

Ground-state energy

The semiclassical approximation boils down to the replacement of the creation and annihilation
operators in (1.1) by complex-valued functions, and taking the expectation value in the electron
variable. This leads to the Pekar functional

G(ψ, ϕ) = 1
2m

∫
|∇ψ(x)|2dx+ 2

√
αRe

∫
v(k)ϕ(k)ρψ(k)dk (1.24)

+
∫
ε(k)|ϕ(k)|2dk

with
ρψ(k) = 1

(2π)d
∫
dx|ψ(x)|2e−ikx. (1.25)

For a given ψ, the minimizing field is ϕ0(k) = −
√
α
v(k)ρψ(k)

ε(k) , and the electronic Pekar
functional is

EPek
α (ψ) = 1

2m

∫
|∇ψ(x)|2 − α

∫∫
|ψ(x)|2g(x− y)|ψ(y)|2dxdy (1.26)

with g(x) =
∫ |v(k)|2

ε(k) e
ik·xdk. In particular, in the Fröhlich case g(x) = 1

4π|x| .
We define the Pekar energy:

EPek(α) = inf
ψ∈L2(Rd),‖ψ‖2=1

EPek
α (ψ).

9



1. Introduction

The validity of the semiclassical approximation is, among other things, expected to manifest
itself in the fact that for the ground state of H, we should have

inf spec H =: E0(α) = inf
P
E(P ) ≈ EPek(α) (1.27)

for α large. In fact, one can verify that the Pekar energy is an upper bound for E0(α) for all
α by taking a suitable product state on L2(Rd)⊗F , and thus one way to proceed in proving
the above asymptotics is to provide a suitable lower bound. We shall now distinguish between
two cases:

1. the Fröhlich case, correspondng to the choice ε(k) = 1 and v(k) = 1
(2π)3

1
|k| in d = 3 as

discussed above;

2. the regular case, corresponding to ε(k) continuous, radial and positive, and with v(k)
satisfying (1 + k2)v(k) ∈ L2(Rd).

In the Fröhlich case, one has by scaling that

EPek(α) = α2EPek(1), Fröhlich case. (1.28)

In particular, the kinetic energy of the electron ‖∇ψ‖2
2 is of the order α2 and contributes to

the Pekar energy at leading order - the electron maintains its quantum nature. In contrast, in
the regular case, one can verify by dominated convergence that

lim
α→∞

EPek(α)
α

= −g(0) = −
∫ |v(k)|2

ε(k) dk, regular case. (1.29)

Here, the kinetic energy of the electron is negligible at leading order for large α, and the
electron behaves at large coupling as a classical particle sitting at the bottom of the potential
well determined by the function g. This conclusion is also valid for the quantum problem, since
−αg(0) is a simple lower bound in the regular case, obtained simply by neglecting the kinetic
energy of the electron and completing the square. The non-trivial problem here is to establish
whether the semiclassical approximation is still valid beyond the extremely large coupling limit,
i.e., at the order of the energy where the kinetic energy of the electron contributes to the
total energy. By expanding the exponential factor in the definition of g, it is not difficult to
predict that the next order correction corresponds to quantum harmonic oscillations in the
well determined by g, with frequency

ω =
√

2α
dm

√√√√∫ dk
k2|v(k)|2
ε(k)

The validity of this prediction is our first result, which is the starting point for further
considerations concerning the validity of the semiclassical approximation for the energy-
momentum relation in the regular case.

Contributions by the author

For the Fröhlich case, the lower bound was obtained by Lieb and Thomas [2], and in Chapter
4 where we discuss its slight improvement based on [66] and present one of the methods of
handling the UV divergence of the form factor. For the regular case, we provide the lower
bound in Chapter 3. Its slightly simplified statement is as follows.
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1.1. The polaron

Theorem 1.1.2 (M-Seiringer 2021). In the regular case, for α sufficiently large,

E0(α) ≥ −α
∫ |v(k)|2

ε(k) dk + dω

2 −O(1)

Both the Lieb–Thomas bound with our extension and the bound in the regular case are
obtained with the use of suitable operator techniques, but there is an important distinction
between them: the bound of Lieb and Thomas is provided on the Hamiltonian (1.1) in the
Fröhlich setting and hence is performed on L2(R3)⊗F , while our bound in the regular case
we prove a lower bound on E(P ) which is uniform in P . The ideas used resemble the ones of
Lieb and Yamazaki [3], which were devised for the Fröhlich case, but there they do not result
in a sharp lower bound.

1.1.6 Effective mass in the semiclassical approximation
The semiclassical approximation is thus shown to be valid as far as the ground state energy is
concerned (there are also results about the dynamics, see, e.g., [64, 13, 81]). Our next goal is
to discuss its validity in the effective mass problem, or on the level of E(P ) for non-zero P .
To this end, we shall introduce the result by Landau and Pekar [8] concerning the effective
mass of the polaron in the semiclassical approximation. One way to derive this result in a
formal way is to consider the infimum of the Pekar functional (1.24) restricted to the set of
functions (ψ, ϕ) having total momentum P , i.e., satisfying the condition∫

ψ(x)(−i∇x)ψ(x)dx+
∫
p|ϕ(p)|2dp = P. (1.30)

A heuristic analysis (see Sec. 3.1.3) leads to the prediction that the when we restrict the
minimization to states satisfying (1.30), the Pekar energy gets increased by a factor P 2

2MPek
α

,
with the Landau–Pekar mass

MPek
α = 2α

d

∫ k2|v(k)2

ε(k)3 |ρ
Pek(k)|2dk (1.31)

where ρPek(k) equals (1.25) evaluated at the minimizer of (1.26), ψPek
α (for the sake of the

present discussion, we dispense with questions related to their existence, uniqueness, etc.). In
the Fröhlich case, due to scaling, we arrive after a formal computation at

MPek
α = 2α4

3 ‖ψ
Pek
1 ‖4

4 =: α4MLP (1.32)

while in the regular case, since the electron wave function tends to a delta function as suggested
by Theorem 1.1.2, we expect that

lim
α→∞

MPek
α

α
= 2
d

∫ k2|v(k)|2
ε(k)3 dk =: MPek (1.33)

The Landau–Pekar conjecture is
Conjecture. For all polaron models described by Hamiltonians of the type (1.1), we have

lim
α→∞

Meff

MPek
α

= 1. (1.34)

In particular, Meff should diverge with α as α→∞; in the Fröhlich case, the growth should
be proportional to the fourth power of α, and in the regular case we expect a linear divergence.
The Landau–Pekar conjecture is still open. In our work, we are prepared to prove two related
results in the regular case, and provide the first upper bound on E(P ) in the Fröhlich case
that is compatible with (1.34).
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1. Introduction

Contributions by the author

The first result concerns strictly the effective mass in the regular case.

Theorem 1.1.3 (M-Seiringer 2021). For polaron models satisfying the assumptions of Theorem
1.1.2 we have that for all α sufficiently large there exists a constant C > 0 such that

Meff ≥ Cα1/4. (1.35)

The lower bound is far from the expected ∼ α behaviour; nevertheless, we can conclude that
the effective mass is in fact divergent in all spatial dimensions for a wide class of polaron
models. The first result on the divergence of the effective mass was given by Lieb and Seiringer
[85] for the Fröhlich case. Recently, this result has been supplemented by a bound on the rate
of that divergence [53].

The above divergence result is in line with the conclusion that can be drawn from the
Landau–Pekar conjecture, but the actual value of the Pekar mass does not appear in the
proof. In order to give the Landau–Pekar semiclassical calculation a qualitiative evidence for
its validity from a different angle, we turn our attention to the behaviour of E(P ) away from
zero but below the transition momentum Pt as defined by the condition (1.23). The effective
mass is related to the curvature and analyticity of E(P ) at zero, as expressed by

E(P ) = E(0) + P 2

2Meff
+O(P 4), close to P = 0. (1.36)

If the transition picture mentioned above is valid, we expect that another expansion is true at
strong coupling, namely

E(P ) = EPek(α) + P 2

2MPek
α

1 +O

(
|P |
|Pt|

)2
+ EPeko(1) α� 1 (1.37)

which can be viewed as a combination of (1.36) and (1.27). The exact value of Pt depends
on the form of ε. Here, we restrict our discussion to two cases: the optical phonons ε(k) = 1
and a superfluid-type dispersion relation satifying

inf
k

ε(k)
|k|

= c > 0. (1.38)

As we have seen, optical phonons are found in the ionic crystal (Fröhlich) problem, and
a superfluid-type dispersion relation naturally appears in the Bose polaron. Assuming the
Landau–Pekar asymptotics of the effective mass at strong coupling, from (1.23) we arrive
at the conclusion that Pt ∼ α for ε of superfluid type in the regular case and Pt ∼ α2 for
optical phonons in the Fröhlich case, so that Pt grows with α at large coupling, suggesting
that terms of the order (|P |/|Pt|)2 can be in fact expected to be much smaller than unity for
a range of P . The last term on the right-hand side of (1.37) describes the order of magnitude
of corrections to the semiclassical approximation for the ground state energy, and can be
expected to be of order unity in all cases, as we shall explain below. For the regular case with
a superfluid-type dispersion relation, the parabolic Landau–Pekar term is thus much larger
than these corrections if |P | � α1/2. Thus, there is a window of momenta α1/2 � |P | � α
where (1.37) makes sense as an approximation for E(P ) at large coupling, where the leading
order quanties are calculated entirely using the semiclassical analysis. The proof of this fact is
one of the central results of this thesis.
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1.1. The polaron

Figure 1.2: Plot of the lower and upper bounds from Theorem 1.1.3, on a log-log scale. In a window
of momenta beyond the transition momentum, the curves are well-approximated by the prediction
from the Pekar conjecture.

Theorem 1.1.4 (M-Seiringer 2021). Assume that v satisfies the regularity assumptions in
1.1.1 and that ε is strictly positive and of superfluid type. Then

lim
α→∞

α1/2�|P |�α
α−1 P 2

2(E(P )− E(0)) = MPek. (1.39)

In fact, we have for H regular, for all P with |P | ≤ Cα for some C > 0, independent of P
and α,

E(P ) ≤ −αg(0) + dω

2 + P 2

2αMPek +O( |P |
α

).

If in addition the dispersion relation is assumed to be massive (i.e., strictly positive) and of
superfluid type, we have for all P such that |P | ≤ C ′α with C ′ > 0 small enough,

E(P ) ≥ −αg(0) + dω

2 + P 2

2αMPek −O(1)−O(P 2α−3/2).

This proves that in the window of momenta where (1.37) is valid, E(P )− E(0) is, at large
coupling, approximately parabolic with semi-latus rectum determined by the Landau–Pekar
approximation, see Fig. 1.2. It also shows that if the transition picture is correct, then the
effective mass equals the Landau–Pekar mass at leading order in α.

The proof of the lower bound is performed using the operator techniques from the proof of
Theorem 1.1.1, while for the upper bound, we propose a novel trial state for HP see Chapter
3.
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1.1.7 The energy-momentum relation in the Fröhlich case
In contrast to the regular case with a superfluid-type dispersion relation, in the Fröhlich case
the expansion (1.37) is not meaningful as it stands, and one has to incorporate the explicit
form of the leading order correction to EPek(α). The reason is that for the Landau–Pekar
term P 2

2α4MLP to be larger than this correction, one needs P � α2, in particular P � Pt. Thus,
in order to proceed, we need to know what to expect from the subleading correction to Eα(0)
beyond the Pekar energy.

The theory of quantum fluctuations in the strong coupling limit appears to have been first
considered decades ago by various authors [98, 51]. Although it works the same way for a
general choice of the dispersion relation and form factor, here we restrict ourselves to the
Fröhlich case. In short, just as the Pekar theory arises if one takes the trial state for (1.1)
in the form of a pure tensor product ψ ⊗ Φ where ψ ∈ L2(Rd) and Φ ∈ F , the quantum
corrections arise if one takes a trial state of the form

ψ(x, {a†, a})Φ′, (1.40)

where Φ′ ∈ F and ψ can be thought to be a function on L2(Rd) that depends parametrically
on a specific combination of the creation and annihilation operators. This structure is analogous
to the Born-Oppenheimer theory of electronic motion in molecules. Since the semiclassical
theory corresponds to a pure product of a suitable Φ with the Pekar minimizer ψPek

α one can
further suspect that in order to arrive at the next order term using the structure (1.40), it
suffices to take

ψ(x, {a†, a}) = ψPek
α (x) + a(rx) + a†(rx) (1.41)

for an appropriately chosen phonon function rx depending parametrically on x. In order to
motivate a specific choice of rx, assume that the field undergoes a fluctuation changing the
value ϕPek

α to ϕPek
α + η̂, where ϕPek

α is the field minimizer of (1.26) The function η can be
viewed as a perturbation on the level of the Pekar functional (1.26), and thus, by first-order
perturbation theory, the electron wave function changes into

ψη(x) = ψPek
α (x) +

√
α

2π2

(
R η ∗ 1

| · |2
ψPek
α

)
(x) (1.42)

where R is the resolvent of

−∆x + 2
√
α

(2π)3

∫ ϕPek
α (k)
|k|

eikxdk + EPek(α)−
∫
|ϕPek
α (k)|2dk. (1.43)

rx(y) is then chosen to be the functional derivative of ψη with respect to η(y), i.e.,

rx(y) =
√

α

(2π2)2

(
R

1
| · −y|2

ψPek
α

)
(x) (1.44)

so that (1.41) can be formally viewed as an expansion of a general ψ(x, {a†, a}) around the
case where the creation and annihilation operators are replaced by the function ϕPek

α . Note that
the eigenvalues of (1.43) are of order α2, so that rx(y) is in fact formally small with respect
to the Pekar minimizer ψPek

α (x). Taking the expectation value of the Fröhlich Hamiltonian
(1.9) on ψ(x, {a†, a})Φ′ and retaining only terms linear in rx leads to a quadratic operator
in the phonon creation and annihilation operators, which can be further diagonalized using
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1.1. The polaron

a suitable Bogoliubov transformation. We shall not perform the details of this computation
here, referring to [89]; it leads to the prediction that

Eα(0) = EPek(α) + 1
2Tr(
√
HPek − 1) + o(1) (1.45)

where HPek is an integral operator on L2(R3) with the kernel

HPek(x, y) = δ(x− y)− 4 α

(2π2)2 〈ψ
Pek
α |

1
| · −y|2

R
1

| · −x|2
ψPek
α 〉 (1.46)

By scaling, the term involving the resolvent R in (1.46) does not depend on α, and the
correction term in (1.45) is indeed of order unity. One can show that the trace term is, in
fact, finite. Thus, we expect that the following expansion is valid in the Fröhlich case:

E(P ) = EPek(α) + 1
2Tr(
√
HPek − 1) + o(1) + P 2

2α4MLP

1 +O

(
P

|Pt|

)2
 . (1.47)

In fact, the expectation is that the subleading correction to the quantum fluctuation term is of
order α−2, so that there is a momentum window α� |P | � Pt ∼ α2 for the Landau–Pekar
term to be visible on the energy scale related to the expansion (1.47). In this work, we are
able to prove an upper bound on E(P ) in line with the expansion (1.47).

Theorem 1.1.5 (Mitrouskas-M-Seiringer 2022). Consider the Fröhlich polaron problem. Then
for every c, ε > 0 there exists a constant Cc,ε such that

E(P ) ≤ EPek(α) + Tr(
√
HPek − 1)

2 + P 2

2α4MLP + Cc,εα
− 1

2 +ε

holds for all |P |/α2 ≤ c and all α large enough.

In particular,in (1.47), the corrections to the parabolic quasi-particle behaviour should always
be negative. On the other hand, since E(0) ≤ E(P ), our result also gives an upper bound on
the ground state energy compatible with (1.45).

Since the quantum fluctuation term has to be included in the analysis, this is arguably
the most challenging part of the thesis, despite the fact that it is only the upper bound, and
that the trial state used has its roots in the one used for the proof of Theorem 1.1.2. The
structure of the trial state is, in our view, the main mathematical novelty of this part of the
thesis. We also believe that it might be useful in other translation-invariant models of quantum
field theory. We refer to Chapter 5 for details: the trial state we use is discussed in Sec. 5.2.2,
and the heuristic idea behind the proof is expounded in Sec. 5.3.2.

Remark about different choices of units in the Fröhlich model. In the present Section,
we use the units with the coupling contant under the squre root in front of the interaction
term in order to make it explicitly connected to (1.1). In Chapter 4 and 5 we use the strong
coupling units and rescale all lengths by α so as to extract the leadding order α2 dependence.
More precisely, we use the unitary transformation Uα on L2(R3)⊗

(
⊗nsymL2(R3)

)
Uαψ(x, y1, · · · , yn) = α

3
2 (n+1)ψ(αx, αy1, · · · , αyn) (1.48)
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which can be easily extended to L2(R3)⊗F . A computation using the homogeneity of the
function |x− y|−2 shows that

α−2U †αHUα = H̃ = −∆x + 1
α2

∫
dy a†yay + 1

α

∫
dy

1
2π2|x− y|2

(
a†y + ay

)
. (1.49)

In Chapter 4 we further redefine α−1ay → ay so that the new operators commute to

[a(f), a†(g)] = 1
α2 〈f |g〉. (1.50)

In these units, H̃ is at first sight independent on α and the α dependence is transferred
to the commutation relations, highlighting the connection between the strong coupling and
semiclassical limits. To our knowledge, these units were first introduced in [64]. This is
the choice we adopt in Chapter 4, while in Chapter 5 we keep the standard creation and
annihilation operators.

1.2 Structure of the thesis
The individual chapters that now follow contain the original research papers on the topics
discussed in their entirety. In particular, they start with extensive introductory sections which
discuss the background, motivation and methods of the proofs in much more detail than
presented here, and can also be consulted by readers who are interested in the basic aspects
of the subject of this thesis and not necessarily the proofs, which are, of course, included in
the subsequent chapters.
The thesis starts with the rigorous microscopic derivation of the Fröhlich Hamiltonian as an
effective theory of the Bose polaron in the mean-field limit in Chapter 2, which contains the
paper

• K. Myśliwy and R. Seiringer, Microscopic derivation of the Fröhlich Hamiltonian for the
Bose polaron in the mean-field limit, Ann. Henri Poincaré 21, 4003-4025 (2020).

devoted to the precise statement and proof of Theorem 1.1.1 along with the supplementary
result on the projections onto the respective eigenspaces.
Chapter 3 takes up the problem of the energy-momentum relation of the polaron at strong-
coupling, which is discussed in the regular setting mentioned above. It contains the paper

• K. Myśliwy and R. Seiringer, Polaron models with regular interactions at strong coupling,
J. Stat. Phys. 186, 5 (2022)

together the detailed statements and proofs of Theorems 1.1.2 and 1.1.3. Since the case of a
superfluid-type dispersion relation plays a central role in this analysis, this Chapter has largely
the Bose polaron as its physical background. In this sense, it is a continuation of the previous
one containing the derivation result, and thus Chapters 2 and 3 can be seen as the first part
of the thesis devoted mainly to the Bose polaron.

The second part of the thesis, comprised of Chapters 4 and 5, is concerned with the Fröhlich po-
laron in a ionic crystal, and the main, and most voluminous part of it, extends the ideas utilized
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in the proof of the upper bound on the energy-momentum relation in Chapter 3 to this case.
In this sense Chapter 3 provides a smooth transition between the first part of the thesis, where
mostly the Bose polaron is discussed, to the second one which is focused on the Fröhlich polaron.

As already pointed out, the analysis of the Fröhlich polaron is more complicated, and this is
so for two reasons. The first one is technical and is related to the UV singularity of the form
factor ∼ |k|−1 encountered in the Fröhlich case. For the most part, this can be handled by the
commutator method of Lieb and Yamazaki [86] and its various extensions. For this reason,
before giving the proof of the upper bound on E(P ) in the Fröhlich case in Chapter 5, in the
preceding Chapter 4, which contains the unpublished note

• K. Myśliwy, Ground state energy of the strongly-coupled polaron in free space - lower
bound, revisited (2019)

we apply a version of the commutator method and combine it with several ideas developed for
the confined Fröhlich polaron [66] in order to provide a slightly improved lower bound on the
absolute ground-state energy of the Fröhlich polaron at strong coupling. In this way, we are
able to introduce, on a working example, the ideas behind the UV regularization of the model,
which are then used extensively in the upper bound in Chapter 5.

The second aspect responsible for the increased level of difficulty in the case of the Fröhlich
polaron is more subtle, and is related to the fact that we need to incorporate the quantum
corrections to the semiclassical asymptotics of the polaron problem into account as explained
above. This requires a fair amount of work, which is summarized in Chapter 5, which contains
the submitted paper

• D. Mitrouskas, K. Myśliwy and R. Seiringer, Optimal parabolic upped bound for the
energy-momentum relation of a strongly-coupled polaron, arXiv:2203.02454.

Its subject is the proof of Theorem 1.1.5. It is arguably the most technically involved and
certainly the longest paper constituting this thesis. For this reason, this Chapter includes
an exhaustive heuristic section explaining the principal idea behind the proof, as well as a
discussion of the trial state used. The general idea behind the construction of this trial
state is applied already in Chapter 4, and we believe it might be of relevance also to other
translationally invariant models, placing the result in Chapter 5 in a broader context beyond
the polaron model.
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CHAPTER 2
Microscopic derivation of the Fröhlich
Hamiltonian for the Bose polaron in

the mean-field limit

This Chapter contains the work

• K. Myśliwy and R. Seiringer, Microscopic derivation of the Fröhlich Hamiltonian for the
Bose polaron in the mean-field limit, Ann. Henri Poincare 21, 4003-4025 (2020)

Abstract
We consider the quantum mechanical many-body problem of a single impurity particle immersed
in a weakly interacting Bose gas. The impurity interacts with the bosons via a two-body
potential. We study the Hamiltonian of this system in the mean-field limit and rigorously show
that, at low energies, the problem is well described by the Fröhlich polaron model.

2.1 Introduction and main results

2.1.1 The polaron
The behavior of impurity particles interacting with a large background constitutes an important
class of problems within condensed matter physics [50, 21]. Among these, one of the most
prominent is the polaron problem, where one considers a quantum particle of mass M linearly
coupled to a scalar boson field. For a translation invariant system, this corresponds to the
formal Hamiltonian

H = P 2

2M +
∑
k

eka
†
kak +

∑
k

(
gkake

ikR + g∗ka
†
ke
−ikR

)
, (2.1)

where R denotes the position of the impurity particle, and k labels the momentum modes
of the field. Moreover, P = −i∇R is the particle’s momentum operator in the canonical
representation, and a†k, ak are the usual field mode creation and annihilation operators. They
satisfy the canonical commutation relations [ak, a†k′ ] = δk,k′ , [ak, ak′ ] = 0. The gk are
coefficients quantifying the coupling of the particle to the field, with ∗ denoting the complex
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2. Microscopic derivation of the Fröhlich Hamiltonian

conjugate, and ek is the free field dispersion relation. The natural domain of this Hamiltonian
lies in the Hilbert space H ⊗ F(K), where H is the Hilbert space of the particle and K is
the Hilbert space of a single field mode, with F(K) denoting the symmetric Fock space over
K. K and H are appropriate L2 spaces, whose exact specification depends on the underlying
physical situation; our choice thereof is discussed below.

The Hamiltonian (2.1) is commonly referred to as the Fröhlich Hamiltonian, as it was introduced
by Fröhlich in 1937 [67] in order to describe electronic motion in polar crystals. The polaron
in this context refers to the picture of an electron dressed with the emerging optical phonons
dragged along as it moves. Later, this concept was extended to include other phenomena
related to mobile impurities coupled to excitations of the background, giving rise to interesting
effects in many materials [50, 22, 20] which are still the subject of ongoing research [23, 24].

In this work, we are interested in a rigorous justification of the use of Hamiltonians of the type
(2.1) as an effective description of a full quantum mechanical many-body problem. In the case
of the original Fröhlich model this task seems too ambitious due to a complicated microscopic
structure of the background (see, however, [25], where the classical approximation to the
original polaron problem, the Pekar functional, is rigorously derived from a specific model of
an electron moving through a quantum crystal). The applicability of the polaron picture is not
limited to electrons in crystal lattices, however. In fact, recent progress in experiments with
ultracold atoms opened the possibility of studying impurity atoms immersed in an environment
consisting of many bosonic atoms at low temperatures, displaying Bose–Einstein condensation.
As discussed below, at sufficiently low energies the excitations of the bosonic bath correspond
to quantized acoustic phonons, and hence the Bose polaron corresponds to the impurity
atom dressed with these phonons. We refer to [1] for a review of recent theoretical progress
concerning the application of Fröhlich Hamiltonians to these systems. As the mathematical
description of cold Bose systems, and in particular the structure of their excitation spectra at
low energies, have recently been studied rigorously in numerous works [29, 27, 28, 26, 30, 31],
we find it natural to provide a rigorous microscopic derivation of (2.1) based on these results.

2.1.2 The N + 1 Bose gas
We consider a system of N bosons of mass 1/2 and one additional particle (of an unspecified
type of statistics) of mass M , all confined to move on the unit torus in d dimensions, Td.

Assumption 1 (Assumptions on the potentials). We assume that

1. the bosons interact among themselves via a two-body potential v : Td → R which is
bounded, Borel measurable, even and of positive type, i.e., all its Fourier coefficients vp
are non-negative.

2. the additional impurity particle interacts with the bosons via a real-valued two-body
potential w : Td → R, which is bounded, Borel measurable and even.

Note that no assumption is made on the Fourier coefficients wp of w. Nevertheless w being
even implies wp = w−p ∈ R. Without loss of generality, we may in addition assume that v
and w are non-negative, since they can be shifted by a constant otherwise.
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2.1. Introduction and main results

The positions of the bosons are labeled by {xi}Ni=1, xi ∈ Td and the position of the impurity
by R ∈ Td. The Hamiltonian of this system reads

−4R

2M −
N∑
i=1
4xi + λ

∑
1≤i<j≤N

v(η(xi − xj)) + µ
N∑
i=1

w(ν(xi −R)) (2.2)

where we introduced some coupling (λ,µ) and scaling (η,ν) parameters to be chosen. It acts
on L2(Td)⊗HN with HN being the Hilbert space of square-integrable symmetric functions on
TdN . Here, 4y denotes the d−dimensional Laplacian in the coordinate y acting on functions
on the unit torus. The coupling parameters λ and µ determine the strength of the potentials
v and w (for the functional forms of v and w being fixed), whereas η and ν determine the
respective ranges (relative to the system size). They can be adjusted to consider various
scaling regimes. The usual thermodynamic limit corresponds to the choice η ∼ ν ∼ N1/d and
λ ∼ µ ∼ N2/d. In contrast, we consider here the mean-field limit, where the interactions are
weak and extend over the entire system. In particular, we choose λ = (N − 1)−1, µ = N−1/2,
and η = ν = 1. For systems without impurity, this was the scaling for which the first rigorous
results on the excitation spectrum were obtained [26, 28, 31, 32], and our analysis is based on
them. The choice µ = N−1/2 for the impurity-boson coupling turns out to be a natural in
the analysis, compatible with the methods from [26, 28] we use, as explained below (see, in
particular, Remark 1.1). Therefore, from now on we consider the Hamiltonian

HN := −4R

2M −
N∑
i=1
4xi + 1

N − 1
∑

1≤i<j≤N
v(xi − xj) + 1√

N

N∑
i=1

w(xi −R) (2.3)

on L2(Td)⊗HN , with v and w non-negative 1-periodic functions satisfying Assumption 1.

Motivation of the Fröhlich Hamiltonian

With vp and wp denoting the Fourier coefficients of v and w, respectively, the second-quantized
version of HN in (3.1) reads

−4R

2M +EH(N)+
∑
p 6=0

p2a†pap+
1

2(N − 1)
∑

p,q,k∈(2πZ)d
p 6=0

a†p+ka
†
q−paqak+

1√
N

∑
p,k∈(2πZ)d

p 6=0

wpe
−ipRa†p+kak.

(2.4)
We defined the Hartree ground state energy

EH(N) = N

2 v0 +
√
Nw0, (2.5)

which captures the effect of interactions between particles in the p = 0 mode. The sums
run over (2πZ)d with p = 0 excluded. Here, ap denotes the usual annihilation operator
HN → HN−1 acting as

(apΨ)(x1, x2, · · · , xN−1) =
√
N
∫
Td

Ψ(x1, · · · , xN−1, x)e−ipxdx. (2.6)

The second-quantized Hamiltonian (2.4) acts on L2(Td)⊗F , with F the bosonic Fock space
F over L2(Td), i.e., F := ⊕∞

i=0Hi (with H0 = C). Actually, it preserves L2(Td)⊗HN . For
the system without impurity, it was predicted by Bogoliubov [33] that for sufficiently low
energies, the excitation spectrum of HN should be composed of elementary excitations, which
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2. Microscopic derivation of the Fröhlich Hamiltonian

are physically interpreted as quantized (acoustic) free phonons. This serves as the basis for
the microscopic explanation of the onset of superfluid behavior in low-temperature bosonic
systems. From the formal perspective, it provides a specific example of the emergence of
an effective quantum field theoretical description of a many-body system. The low-energy
effective theory is predicted to be that of the Hamiltonian

HB =
∑
p 6=0

epb
†
pbp . (2.7)

Here, b†p = αpa
†
p+βpa−p where αp, βp are appropriate constants chosen such that [bp, b†q] = δp,q.

Explicitly, αp = (1− γp)−1/2 with γp = 1 + p2−ep
vp

and βp = γpαp. These algebraic relations are
realized via a suitable unitary (Bogoliubov) transformation. From (2.7) we deduce that, for low
energies, the excitation spectrum is expected to be composed of free bosonic quasi-particles
with dispersion relation ep. In the mean-field scaling λ = (N − 1)−1 considered here, one
can prove [26] that ep =

√
p4 + 2vpp2. Additionally, it can be shown that in this scaling the

ground state energy equals 1
2Nv0 + EB + o(1) with the constant EB equal to

EB = −1
2
∑
p 6=0

(
p2 + vp −

√
p4 + 2p2vp

)
. (2.8)

The method employed by Bogoliubov leading to HB consists of the following steps:

1. the operators a0, a
†
0 are replaced by the number

√
N

2. all the terms of higher order than quadratic in creation and annihilation operators that
remain in the Hamiltonian are dropped.

This procedure is physically motivated by the expectation that for sufficiently small energies
there is Bose–Einstein condensation in the system, that is, the p = 0 mode is occupied by an
overwhelming fraction of particles. Whereas this has not been proven for a generic bosonic
system with general interactions, the validity of the Bogoliubov approximation has been
rigorously verified (in the case w ≡ 0) for a variety of assumptions on v [26, 30, 28, 31, 40].
The first such result [26] refers precisely to our conditions on v and, as already mentioned,
the mean-field scaling λ = (N − 1)−1, which corresponds to a very weak and long-ranged
potential.
If one applies the Bogoliubov approximation to the Hamiltonian (2.4) with impurity, one
expects that the system is, for small energies, effectively described by the Fröhlich Hamiltonian

HF := −4R

2M +
∑
p 6=0

(p2 + vp)a†pap + 1
2
∑
p 6=0

vp(a†pa
†
−p + apa−p) +

∑
p 6=0

wpe
−ipR(a†p + a−p). (2.9)

By expressing the ap’s in terms of the operators bp, b†−p, we see that it equals

HF = −4R

2M +
∑
p 6=0

epb
†
pbp +

∑
p 6=0

|p|wp√
ep
e−ipR(b†p + b−p) + EB (2.10)

which belongs to the class of Hamiltonians defined in (2.1). The Hamiltonian HF acts on
L2(Td)⊗F+, where F+ is the Fock space over the complement of the normalized constant
function in L2(Td), describing solely the p 6= 0 modes of the field. In order to obtain (2.10)
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via a Bogoliubov approximation, we supplemented this procedure by additionally dropping, in
the impurity-boson interaction, all the terms that are of higher order than linear in the creation
and annihilation operators (after first replacing the a0 and its adjoint by

√
N), whereas we

kept the quadratic terms in the boson-boson interaction. One of elements of our analysis
below is the justification of this additional step while checking that the other steps, known to
be rigorously justifiable in the mean-field case in the absence of an impurity, are still applicable.
It is important, however, to realize that in some instances, especially when the impurity-boson
interaction is strong, additional terms not present in the Fröhlich Hamiltonian (2.10) cannot
be neglected [34, 35, 36].

2.1.3 Main results
The interpretation of our main results, as stated below, is that the Fröhlich Hamiltonian (2.10)
may indeed be seen as an effective low-energy, large N theory for the original model described
by HN in (3.1). Our analysis consists of a rigorous justification of the extended Bogoliubov
approximation, based on suitable operator inequalities. It leads to two main theorems, the
first of which concerns the excitation spectrum of HN .

Theorem 1: convergence of eigenvalues

Let us denote by ei(A) the i−th eigenvalue resp. the i−th min-max value of an operator A,
starting at i = 0. Our first Theorem states that as long as one considers the energy levels of
HN lying in a not too large window above the ground state, their values are provided by the
corresponding eigenvalues of the Fröhlich Hamiltonian if N is sufficiently large. In particular,
we provide explicit bounds on the size of that window as compared with N .

Theorem 1. Let HN and HF be defined by Eqs. (3.1) and (2.10), respectively, and let
EH(N) := N

2 v0 +
√
Nw0. Assume that v and w satisfy Assumption 1. Then for all eigenvalues

ei(HN) such that ei(HN)− e0(HN) ≤ ξ for some ξ ≥ 1 we have

|ei(HN)− EH(N)− ei(HF)| ≤ Cv,wξ

(
ξ

N

)1/2

(2.11)

for some constant Cv,w > 0 independent of the parameters ξ and N .

Remark 1.1. In the special case of the ground state energy we have

inf specHN = 1
2Nv0 +

√
Nw0 + inf specHF +O(N−1/2). (2.12)

The interaction with the impurity thus gives rise to a N1/2 contribution to the ground state
energy and, more importantly, leads to an O(1) contribution to the excitation spectrum via the
last term in (2.9). This can be understood as follows. In the impurity-free case, the effect of
the emergence of phonons is reflected as a O(1) correction to the ground state and low-lying
excitation energies, in the mean-field limit considered here. There are only finitely many (even
for large N) phonons that emerge in the system. The Fröhlich model describes the impurity
creating and annihilating excitations of the background. The number of the latter being O(1),
we expect that this phonon-impurity interaction should as well give rise to an O(1) correction.
The Bogoliubov approximation suggests that this interaction should scale as µN1/2, hence we
see that µ ∼ 1/

√
N is consistent with these considerations.
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2. Microscopic derivation of the Fröhlich Hamiltonian

Remark 1.2. The error bounds are of the form ξ(ξ/N)1/2. Therefore, as long as the total
excitation energy satisfies ξ � N , the error made by using the Fröhlich Hamiltonian instead
of the original one when computing the energy levels is small compared to the total excitation
energy. The size of this energy window is presumably optimal. In fact, if the condition ξ � N
is not fulfilled one cannot expect the onset of BEC anymore, which is an essential assumption
in the Bogoliubov approximation. It is noteworthy that precisely the same error scaling was
obtained in [26] for the pure bosonic system. The effects of the inclusion of the impurity thus
manifest themselves only in the value of the constant Cv,w.

Remark 1.3. By a direct inspection of the proof, one sees that the result can easily be
generalized to the case of multiple impurities (as long as their number is fixed, i.e., independent
of N). This holds irrespectively of the statistics of the impurities, i.e. they could be fermions,
bosons, or distinguishable (in particular, different) particles.

Remark 1.4. Extending the results to the case of more realistic, short-ranged potentials
remains a challenge. In fact, the w ≡ 0 cases with either λ = N2/d, η = N1/d (equivalent
to the thermodynamic limit) or λ = N2, η = N in d = 3 (the Gross-Pitaevskii limit) were
rigorously analyzed only very recently. The results for the thermodynamic limit concern the
ground state energy only [27, 37, 38, 39], whereas in the Gross-Pitaevskii scaling regime the
emergence of the Bogoliubov spectrum for low energies was shown as well [40].

Remark 1.5. If a contact interaction is used to model both boson-boson and boson-impurity
interaction, one encounters the Bogoliubov–Fröhlich Hamiltonian [1, 41]

HB-F = P 2

2M +
∑
p

εpb
†
pbp +√n0gIB

∑
p

(
(ζp)2

2 + (ζp)2

)1/4

(b†p + b−p)e−ipR, (2.13)

where n0 is the condensate density and ζ = (2gBBn0)−1/2 is the healing length; the parameters
gIB and gBB are the coupling constants describing the impurity-boson and boson-boson
interactions, respectively. Additionally, εp =

√
c2p2(1 + (ζp)2) with c = 1/ζ =

√
2gBBn0

denoting the speed of sound in the bosonic bath. This Hamiltonian displays an evident
ultraviolet divergence, recently analyzed in [41]. By naively replacing vp and wp in (2.10)
with the respective coupling constants gBB and gIB, one arrives at HB-F with unit condensate
density. We conjecture that (2.13), resp. some renormalized version of it, arises in place of
HF in scaling regimes corresponding to more realistic interactions of shorter range than the
mean-field limit considered here.

Remark 1.6. Our proof makes use of methods from [26] and [28]. In particular, in the case
w ≡ 0, we reproduce the results of [26], but by utilizing techniques from [28] we are able to
substantially simplify the proof.

Theorem 2: convergence of eigenvectors

In order to compare the two operators HN and HF, which act on different Hilbert spaces, we
utilize an operator introduced by Lewin, Nam, Serfaty and Solovej in [28], which maps HN to
(a subspace of) F+. We give here a quick review of their construction, as it is important to
formulate our second result.
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The LNSS transform

If {vi}i≥0 is an orthonormal basis of some Hilbert space H, then the N -fold symmetric tensor
product of H is spanned by N -fold tensor products

vi1 ⊗s · · · ⊗s viN := N
∑
σ∈SN

vσ(i1) ⊗ · · · ⊗ vσ(iN )

for all choices of indices ij ∈ N ∪ {0} with N a normalization constant. Let us fix an element
v0 in the basis of H. If one defines H0

l to be the span of ⊗l
s v0 ⊗s vil+1 ⊗s · · · viN for all

choices of the N − l indices ij 6= 0, it is clear that

HN =
N⊕
l=0
H0
l .

For convenience, we further define H+
m by the relation H0

N−m = {⊗N−ms v0}⊗sH+
m. Explicitly,

H+
m =

⊗m

s H
+, H+ := {v0}⊥.

For every element Ψ ∈ HN , define the linear operator

U : HN → F≤N+ , Ψ 7→ φ0 ⊕ · · ·φN

where the φi ∈ H+
i , i ∈ {0, . . . , N}, are uniquely determined by the above considerations.

The space F≤N+ is naturally seen to be a proper subset of the Fock space over the orthogonal
complement of v0 ∈ H. Moreover, U is unitary. Performing this construction for H = L2(Td)
with, for instance, the plane wave basis and with v0 ≡ 1 we arrive at a unitary transformation
U : HN → F≤N+ ⊂ F+ with F+ being the Fock space over the orthogonal complement of
the unit function on Td. This space has a clear physical interpretation of being the space of
excitations from the condensate, and the fully condensed state plays the role of the vacuum.
It is due to the algebraic properties of U , however, that it becomes helpful in the analysis,
as it can be seen to rigorously realize the Bogoliubov substitution of a0, a

†
0 by

√
N . More

precisely, with Q denoting the projection onto the orthogonal complement of the unit function
in L2(Td), one can check that (the annihilation operator is here understood to be the standard
operator in the purely bosonic Fock space)

U(Ψ) =
N⊕
j=0
Q⊗sj

 aN−j0√
(N − j)!

Ψ
 (2.14)

for all Ψ ∈ HN and consequently that for k, l 6= 0

U †a†ka0U = a†k

√
N −N+ (2.15)

U †a†kala
†
0a0U = a†kal(N −N+) (2.16)

U †a†ka
†
la0a0U = a†ka

†
l

√
(N −N+)(N −N+ − 1). (2.17)

The last two identities follow from the first, in fact. We trivially extend this transformation
to an operator L2(Td)⊗HN → L2(Td)⊗F≤N+ by tensor-multiplying it by the unit operator
on the impurity Hilbert space. This extended U is again unitary and satisfies (2.15) with a0
defined by (2.6). One should keep in mind that U depends on N . Equipped with the extended
operator U , we now state our second main result concerning the eigenvectors.
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2. Microscopic derivation of the Fröhlich Hamiltonian

Theorem 2. Let Pi denote the orthogonal projection onto the eigenspace of HF corresponding
to energy ei(HF). Under Assumption 1, the following statements hold true.

1. The spectra of both HN and HF are discrete.

2. For all i such that there exists an eigenstate Ψi of HN corresponding to energy ei(HN )
with ei(HN)− e0(HN) < ξ where ξ > 0 is fixed, we have

lim
N→∞

(Ψi, U
†PiUΨi)L2(Td)⊗F+ = 1. (2.18)

Remark 2.1. In contrast to the case without impurity, the eigenstates of HF are not explicit.
In particular, they display non-trivial correlations among the phonons and are not quasi-free.

Remark 2.2. We have not tried to find the rate of growth of the size of the energy window
in N so as provide the corresponding error for replacing eigenvectors. This rate is probably
much worse than the one from Theorem 3.

Remark 2.3. Theorems 3 and 2 together imply, as N →∞, the norm resolvent convergence
of HN − EH(N) towards HF, that is, for any z ∈ C\R,

lim
N→∞

||(UN(HN − EH(N))U †N − z)−1 − (HF − z)−1|| = 0 (2.19)

in operator norm. Here UN has to be understood as a partial isometry, i.e., U †N is extended by
0 to all of L2(Td)⊗F+.

Remark 2.4. Another interesting problem concerns the dynamics of the impurity and the use
of the Fröhlich Hamiltonian as its generator. This question has been recently studied from a
physics perspective [35, 42]. From a mathematical point of view, there exist results concerning
the dynamics of a tracer particle immersed in a Bose gas [43, 44], which concern a different
scaling limit than the one considered here and do not utilize the Fröhlich description. The
convergence (2.19) can also be reformulated as convergence of the corresponding group of
time evolutions, and hence can be used to determine also the dynamics of small excitations
of the condensate. In the absence of an impurity, more general results are known where the
condensate itself is excited and evolves according to the time-dependent Hartree equation
(see, e.g., [45, 46]).

The remainder of this paper contains the proofs of Theorems 3 and 2. Throughout the text,
the symbol C denotes a positive constant whose value may change at different appearances.
Moreover, unless stated otherwise, all states on the relevant Hilbert spaces are normalized.
Finally, all operators that are defined as acting on functions of the Bose gas coordinates or
the field modes only are actually everywhere understood as their tensor products with the unit
operator on L2(Td), the latter being the Hilbert space of the impurity particle.

2.2 Auxiliary considerations
In this Section we introduce four preparatory Lemmas that will be needed in the proofs of
Theorems 3 and 2. For their statement, we need to introduce some notation. We shall often
denote the terms on the right side of (3.1), from left to right, by P 2/2M,T, V and W . Let P
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denote the projection onto the normalized constant wave function in L2(Td), and Q = 1−P .
We define the excitation number operator

N+ =
N∑
i=1
Qi (2.20)

as an operator on HN . The sub-index in Qi means here that we project onto the orthogonal
complement of the normalized constant wave function in the i-th variable. The second
quantized form of the excitation number operator in the plane wave basis equals

N+ =
∑
p 6=0

a†pap. (2.21)

The first Lemma explores the consequences of the mean-field structure of HN . In particular,
the ground state energy of HN is, to leading order in N , equal to EH(N), and the excitation
number operator is uniformly bounded in N for states of fixed excitation energy.

Lemma 2.2.1. The ground state energy of HN , e0(HN), satisfies the bounds

Nv0

2 +
√
Nw0 ≥ e0(HN) ≥ Nv0

2 +
√
Nw0 − δE (2.22)

with δE =
∫

(2π2)−1w2 + (v(0)− v0) ≥ 0. Moreover, we have the operator inequality

N+ ≤ C(HN − e0(HN)) + C. (2.23)

Remark 2.5. Below, we will make use of a direct consequence of this Lemma, namely

(Ψ, N+Ψ) ≤ Cξ + C (2.24)

for any state Ψ such that (Ψ, HNΨ) ≤ e0(HN) + ξ with ξ > 0.

Proof. The upper bound on the ground state energy is obtained by taking the constant wave
function in L2(Td)⊗HN as trial function. We write HN = P 2

2M + 1
2T + V + (1

2T +W ); by a
standard argument using the positivity of the Fourier coefficients of v we have

V = 1
2(N − 1)

∑
i,j∈{1,...,N}

v(xi − xj)−
Nv(0)

2(N − 1)

= 1
2(N − 1)

∑
p

vp

∣∣∣∣∣
N∑
i=1

eipxi

∣∣∣∣∣
2

− Nv(0)
2(N − 1)

≥ N

2 v0 −
N

2(N − 1)(v(0)− v0) (2.25)

since ∑p 6=0 vp
∣∣∣∑N

i=1 e
ipxi
∣∣∣2 ≥ 0. Next, we use Temple’s inequality, see, e.g.,[47]. Consider a

Hamiltonian H = H0 + Z with non-negative self-adjoint operators Z and H0 with ground
state energy satisfying e0(H0) = 0. Denoting by e0, e1 the first two eigenvalues of H, we have
clearly (H − e0)(H − e1) ≥ 0. We evaluate this at the ground state of H0, Ψ0. We get

(Ψ0, (H − e0)(H − e1)Ψ0) = (Ψ0, (Z − e0)(Z − e1)Ψ0) ≥ 0

and rewrite this, since e1 > 0, as

e0 ≥ −
(Ψ0, Z

2Ψ0)
e1

+
(

1 + e0

e1

)
(Ψ0, ZΨ0). (2.26)
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Using the positivity of Z and e1 ≥ e1(H0) we finally get

e0 ≥ (Ψ0, ZΨ0)− (Ψ0Z
2Ψ0)

e1(H0) . (2.27)

Using this for H = −4x2 +N−1/2w(x−R) with Z = N−1/2w(x−R) and Ψ0 the normalized
constant function on Td, we have,

e0

(
−4x

2 +N−1/2w(x−R)
)
≥ N−1/2w0 −N−1(2π2)−1

∫
w2. (2.28)

This leads to

(Ψ, HN − EH(N)Ψ) ≥ (Ψ, T2 Ψ)−
(

N

2(N − 1)(v(0)− v0) + (2π2)−1
∫
w2
)
‖Ψ‖2. (2.29)

Using that N+ ≤ (2π)−2T , we see that the desired result holds.

The second Lemma concerns the fluctuations of the condensate in the ground state, which
are seen to be strongly suppressed due to the mean field scaling.

Lemma 2.2.2. For all N ≥ 2 we have the operator inequality

N2
+ ≤ C(HN − e0(HN))2 + C. (2.30)

Remark 2.6. Similarly as above, the Lemma immediately implies that if Ψ belongs to the
spectral subspace of HN corresponding to energy E ≤ e0(N) + ξ with ξ ≥ 0, then we have

(Ψ, N2
+Ψ) ≤ Cξ2 + C (2.31)

where the constants depend only on v and w but not on N . This will be of importance below.

Proof. Because N+ ≤ 1
2π2 (1

2T ) and N+ commutes with T , we find it convenient to give a
bound on the operator 1

2N+T , as the latter can be directly linked to HN . Writing

T

2 = (HN − e0(HN)) + S1 + S (2.32)

with
S1 = − 1

N − 1

N∑
j=2

v(x1 − xj)−
(−41)

2 − w(x1 −R)√
N

(2.33)

and

S = e0(HN)− 1
N − 1

∑
2≤i≤j≤N

v(xi − xj)−
1√
N

N∑
j=2

w(xj −R)−
N∑
j=2

−4j

2 − P 2

2M (2.34)

we estimate the relevant terms. By the Cauchy–Schwarz inequality,

(Ψ, N+(HN − e0(HN))Ψ) ≤
√

(Ψ, N2
+Ψ)

√
(Ψ, (HN − e0(HN))2Ψ). (2.35)

Note that (S+S1)Ψ is permutation symmetric in the Bose gas coordinates, so that (Ψ, N+(S+
S1)Ψ) = N(Ψ,Q1(S + S1)Ψ), where Q1 = 1− P1. Moreover, S is independent of x1 hence
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2.2. Auxiliary considerations

it commutes with Q1. Using the inequality (2.25) (with N replaced with N − 1) as well as
Temple’s inequality (2.28) and the upper bound on e0(HN) in (2.22), we see that

S ≤ v0 + v(0)
2 + w0√

N
+ N − 1

N

∫
w2

2π2 =: δE ′.

Since S commutes with Q1 we thus have

N(ΨQ1SΨ) ≤ δE ′(Ψ, N+Ψ). (2.36)

The part of N+S1 not containing −41/2+N−1/2w(x1−R) is equal to −N(Ψ,Q1v(x1−x2)Ψ).
We introduce the short-hand v12 to denote v(x1 − x2). We write, following [26]

(Ψ,Q1v12Ψ) = (Ψ,Q1Q2v12Ψ) + (Ψ,Q1P2v12P2Ψ) + (Ψ,Q1P2v12Q2Ψ). (2.37)

Observe that (Ψ,Q1P2v12P2Ψ) = (Ψ,Q1P2v12P2Q1Ψ)+(Ψ,Q1P2v12P2P1Ψ), where the last
term vanishes and the remaining one is positive. For the first term, we use (Ψ,Q1Q2v12Ψ) ≥
−‖v‖∞

√
(ΨQ1Q2Ψ). Furthermore,

(Ψ,Q1P2v12Q2Ψ) ≥ −1
2(Ψ,Q2v12Q2Ψ)− 1

2(Ψ,Q1P2v12P2Q1Ψ)

≥ −‖v‖∞2 ((Ψ,Q2Ψ) + (Ψ,Q1P2Q1Ψ)) ≥ −‖v‖∞(Ψ,Q1Ψ) (2.38)

as P2 ≤ 1 and (Ψ,Q1Ψ) = (Ψ,Q2Ψ) due to the permutation symmetry. The remaining part
of S1 is bounded as(

Ψ,Q1

(
−41

2 + 1√
N
w(x1 −R)

)
Ψ
)
≥ −‖w‖∞2

( 1
N

+ (Ψ,Q1Ψ)
)

since w ≥ 0.

We thus have

(Ψ,Q1S1Ψ) ≤ ‖v‖∞
√

(Ψ,Q1Q2Ψ) + (‖v‖∞ + 1
2‖w‖∞)(Ψ,Q1Ψ) + ‖w‖∞2N . (2.39)

With N2(Ψ,Q1Q2Ψ) ≤ (Ψ, N2
+Ψ), this altogether implies

1
2(Ψ, N+TΨ) ≤

(
‖v‖∞ +

√
(Ψ, (HN − e0(HN)2Ψ)

)√
(Ψ, N2

+Ψ) + α(Ψ, N+Ψ) + ‖w‖∞2 ,

(2.40)
where the N -independent constant α equals α = 1

2‖w‖∞ + ‖v‖∞ + δE ′. As N+ ≤ gT , with
g = (2π)2 being the energy gap of the Laplacian on the torus, this implies

gN2
+ ≤

‖v‖2
∞

κ
+ (HN − e0(HN))2

λ
+ α2

ε
+ ‖w‖∞ + (κ+ ε+ λ)N2

+

for any ε, λ, κ > 0. By choosing ε = λ = κ = g
4 , we arrive at the desired result.

The third and fourth Lemmas concern HF. They will be of importance when proving the upper
bound on the difference of eigenvalues in Theorem 3.
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2. Microscopic derivation of the Fröhlich Hamiltonian

Lemma 2.2.3. Let HF
0 = P 2

2M + ∑
p 6=0(p2 + vp)a†pap denote the particle-conserving part of

the Fröhlich Hamiltonian (2.9). Then there exist positive constants C0, C1, C2 such that the
inequalities

N+ ≤ C0HF
0 ≤ C1HF + C2 (2.41)

hold true on L2(Td)⊗F+.

Proof. Clearly, as vp ≥ 0, one can take C0 = g−1 = (2π)−2. The particle non-conserving part
of HF consists of the purely bosonic (v-dependent) part V ODand a w-dependent part W̃ . The
latter can be bounded by

W̃ ≥ −εHF
0 − ε−1 ∑

p 6=0

|wp|2

vp + p2 (2.42)

for any ε > 0. To see this, simply complete the square for a single mode using the inequality
(ηa†p + η−1wpe

ipR)(ηap + η−1wpe
−ipR) ≥ 0, then choose η2 = ε(p2 + vp) and sum over the

modes. It is hence enough to show that the bosonic particle non-conserving part, given by

V OD = 1
2
∑
p 6=0

vp(a†pa
†
−p + apa−p) (2.43)

can be bounded below by −cHF
0 − c′ for 0 < c < 1 and c′ > 0. By Cauchy–Schwarz,

vp
2 (a†pa

†
−p + apa−p) ≥ −εa†pap −

|vp|2

4ε a†−pa−p −
|vp|2

4ε (2.44)

for any ε > 0. Now take ε = λ(p2+vp) for some λ > 0 and define µ := supp6=0 v
2
p

supp6=0 v
2
p+infp6=0 p2(p2+2vp) ;

then 0 < µ < 1 (recall that p ∈ (2πZ)d) and v2
p ≤ µ

1−µp
2(p2 + 2vp), or

v2
p

p2 + vp
≤ µ(p2 + vp). (2.45)

Consequently,

V OD ≥ −(λ+ µ

4λ)HF
0 −

∑
p

v2
p

λ(p2 + vp)
. (2.46)

By choosing λ =
√
µ

2 , we have λ+ µ
4λ = √µ < 1 and the desired result follows.

Remark 2.7. Note that the above Lemma implies that HF is bounded from below.

The last Lemma relates N2
+ to (HF)2.

Lemma 2.2.4. On L2(Td)⊗F+ we have

N2
+ ≤ C(HF)2 + C. (2.47)

Proof. We will show that N+HF
0 ≤ C(HF)2 + C, which implies the desired result by the

previous lemma. As [N+,HF
0 ] = 0, we have

N+HF
0 = 1

2(N+HF
0 +HF

0N+) = 1
2(N+HF +HFN+)− 1

2(N+V
OD +V ODN+ +W̃N+ +N+W̃ ),

(2.48)
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2.2. Auxiliary considerations

with W̃ and V OD defined as in the proof of Lemma 2.2.3. Using the canonical commutation
relations [ap, a†q] = δp,q, we compute

N+V
OD =

∑
p 6=0

a†pV
ODap +

∑
p 6=0

vp
2 a
†
pa
†
−p. (2.49)

Since V ODN+ = (N+V
OD)† we have V ODN+ = ∑

p 6=0 a
†
pV

ODap +∑
p 6=0

vp
2 apa−p and finally

1
2(N+V

OD + V ODN+) =
∑
p 6=0

a†pV
ODap + 1

2V
OD. (2.50)

Using (2.46) and the fact that ∑p 6=0 a
†
pHF

0ap = HF
0 (N+ − 1), we have

− 1
2(N+V

OD + V ODN+) ≤ √µHF
0N+ +

√
µ

2 HF
0 + C (2.51)

where µ < 1. By Lemma 2.3 and the Cauchy–Schwarz inequality, the last two terms of the
above are bounded by C(HF)2 + C.

For W̃ we perform a computation analogous to (2.50), which yields

1
2(N+W̃ + W̃N+) =

∑
p 6=0

a†pW̃ap + 1
2W̃ . (2.52)

By completing the square similarly as in Lemma 2.3, we have

W̃ ≥ −λN+ −
1
λ

∑
p 6=0
|wp|2 (2.53)

for any λ > 0. We obtain

− 1
2(N+W̃ + W̃N+) ≤ λN+(N+ − 1) +

∑
p 6=0 |wp|2

λ
N+ + 1

2N+ +
∑
p 6=0 |wp|2

2 (2.54)

for any λ > 0. By Lemma 2.2.3 and HF ≤ (HF)2

2 + 1
2 , we can bound

− 1
2(N+W̃ + W̃N+) ≤ λC0N+HF

0 + ( 1
λ

+ 1)C(HF)2 + C. (2.55)

Finally, using again the Cauchy–Schwarz inequality, we can bound

N+HF + HFN+ ≤ εN2
+ + 1

ε
(HF)2 (2.56)

for any ε > 0. Invoking Lemma 2.3 again, we obtain for any ε > 0 and λ > 0,(
1−√µ− 1

2C0(ε+ 2λ)
)
N+HF

0 ≤ ((2ε)−1 + λ−1)C(HF)2 + C. (2.57)

By choosing ε and λ small enough, we arrive at the desired result.
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2. Microscopic derivation of the Fröhlich Hamiltonian

2.3 Comparing HN and HF

The estimates provided in the previous section concern the relation of the number of excitations
operator N+ (or its square) to the Hamiltonians HN and HF independently. Now, making
use of the LNSS transformation U introduced in Sec. 2.1.3, we give an important estimate
relating UHNU

† and HF.

Proposition 2.3.1. There exist positive constants α, β, independent of N , such that for
every ε > 0 and every Φ in L2(Td)⊗F≤N+ we have the inequality

∣∣∣(Φ, (U(HN − EH(N))U † −HF
)

Φ
)∣∣∣ ≤ α

(Φ, N2
+Φ)

N

(
1 + 1

ε

)
+ β(Φ, N+Φ)

(
ε+ 1√

N

)
.

(2.58)

The proof of the proposition is divided into two main steps. In step 1, we take care of
the higher-order terms in the creation and annihilation operators that appear in the second
quantization of HN , but are absent in HF. Let

Hpre−F
N := P 2

2M +
∑
p 6=0

p2a†pap + 1
2(N − 1)

∑
p 6=0

vp(2a†papa
†
0a0 + a†pa0a0a

†
−p + apa

†
0a
†
0a−p)

+ 1√
N

∑
p 6=0

wpe
−ipR(a†pa0 + a−pa

†
0). (2.59)

viewed as an operator on L2(Td)⊗HN .

Lemma 2.3.2. For any ε > 0, one has the operator inequalities

− Eε ≤ HN − EH(N)−Hpre−F
N ≤ Fε (2.60)

where
Eε = N+(N+ − 1)

2(N − 1)

(
v0 + v(0)

ε

)
+ εv0

2N − 1
N − 1 N+ (2.61)

and
Fε = ‖w‖∞√

N
N+ + εv0

2N − 1
N − 1 N+ +

(
1 + 1

ε

)
N+(N+ − 1)

2(N − 1) v(0). (2.62)

Proof. Using the Cauchy–Schwarz inequality and positivity of v viewed as a two-particle
multiplication operator, we have

± ((P ⊗Q+Q⊗P)v(Q⊗Q) + (Q⊗Q)v(P ⊗Q+Q⊗P))

≤ ε(P ⊗Q+Q⊗P)v(P ⊗Q+Q⊗P) + 1
ε
(Q⊗Q)v(Q⊗Q). (2.63)

By translation invariance Q⊗ PvP ⊗ P = 0. Moreover, the boundedness of v enables us to
bound

Q⊗QvQ⊗Q ≤ v(0)Q⊗Q. (2.64)
Therefore, we have the bounds

v ≥ P ⊗ PvP ⊗ P + P ⊗ PvQ⊗Q+Q⊗QvP ⊗ P
+ (1− ε) (P ⊗Q+Q⊗P) v (P ⊗Q+Q⊗P)− ε−1v(0)Q⊗Q

(2.65)
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and

v ≤ P ⊗ PvP ⊗ P + P ⊗ PvQ⊗Q+Q⊗QvP ⊗ P
+ (1 + ε) (P ⊗Q+Q⊗P) v (P ⊗Q+Q⊗P) + (1 + ε−1)v(0)Q⊗Q.

(2.66)

Similarly, treating w(x−R) as a one-body multiplication operator parametrized by R, we have

0 ≤ w ≤ PwP +QwP + PwQ+ ‖w‖∞Q. (2.67)

Taking into account that

(N − 1)−1 ∑
p 6=0

vpa
†
pa
†
0a0ap ≤ v0N+ (2.68)

one easily arrives, after computing the relevant second quantization representations of the
operators appearing in the bounds (2.65) and (2.67), at the desired result. Since this is
essentially the same computation as in [26, Sec. 5], we omit the details.

The operator inequalities in Lemma 2.3.2 quantify the effect of dropping the higher order
terms in the creation and annihilation operators appearing in the original Hamiltonian. As a
second step, we now estimate the effect of the Bogoliubov substitution of a0, a

†
0 by
√
N ∈ R

via the unitary transform U , which replaces the a0, a
†
0 by an operator

√
N −N+ acting on

F≤N+ .

Lemma 2.3.3. We have the following inequality for all Φ ∈ L2(Td)⊗F≤N+ :

|(Φ, UHpre−F
N U † −HF,Φ)| ≤ α′(Φ, N2

+Φ) + β′‖Φ‖2

(N − 1) , (2.69)

where the positive constants α′, β′ do not depend on N .

Proof. By using the algebraic properties (2.15)–(3.27) of U we see that the expressions to
estimate are the following. First, using (2.15),

|(Φ,
N−1/2 ∑

p 6=0
wpe

−ipRU(a†pa0 + apa
†
0)U † −

∑
p 6=0

wpe
−ipR(a†p + a−p)

Φ)|

=

∣∣∣∣∣∣
∑
p 6=0

(Φ, wp

a†pe−ipR
1−

√
N −N+

N

+
1−

√
N −N+

N

 a−peipR
Φ)

∣∣∣∣∣∣
≤ ε−1 (Φ, N2

+Φ)
N2

∑
p

|wp|2 + ε(Φ, N+Φ) (2.70)

which gives an expression of the type claimed Proposition 2.3.1 for ε−1 = N2/(N − 1). In the
above, we used the Cauchy–Schwarz inequality

AB +BA† ≤ εA†A+ ε−1B2 (2.71)

for A = a†pe
−ipR and B = wp(1−

√
(N −N+)/N), and used the bound

B2 = w2
pN
−1(
√
N +

√
N −N+)−2N2

+ ≤ w2
pN

2
+/N

2.
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2. Microscopic derivation of the Fröhlich Hamiltonian

Similarly, from (3.27), we arrive at the second term to estimate:
∣∣∣∣∣∣
∑
p 6=0

(Φ, (vpa†pa
†
−p


√

(N −N+)(N −N+ − 1)
N − 1 − 1

+ h.c.)Φ)

∣∣∣∣∣∣
≤ ε−1 ∑

p 6=0
|vp|2

(Φ, (N+ + 1)2Φ)
(N − 1)2 +

∑
p 6=0

ε(Φ, a†pa
†
−pa−papΦ)

≤ C
(Φ, (N+ + 1)2Φ)

N − 1 + (Φ, N+(N+ − 1)Φ)
N − 1 (2.72)

for ε−1 = N − 1. We used (2.71) for A = a†pa
†
−p and

B = vp


√

(N −N+)(N −N+ − 1)
N − 1 − 1

 ,
whose square is bounded by v2

p(
N++1
N−1 )2. Additionally,

∑
p 6=0

a†pa
†
−pa−pap ≤

∑
p 6=0

a†pN+ap = N2
+ −N+. (2.73)

Similarly, ∣∣∣(Φ, [(N − 1)−1vpU(a†papa
†
0a0 + h.c.)U † − 2a†pap

]
Φ)
∣∣∣

=
∣∣∣∣(Φ, (vpa†pap (N −N+

N − 1 − 1
)

+ h.c.)Φ)
∣∣∣∣ ≤ v0

(Φ, N+(N+ − 1)Φ)
N − 1 . (2.74)

By combining these inequalities, we obtain the desired bound.

The main result of this section, Proposition 2.3.1, is a direct consequence of the last two
Lemmas.

2.4 Proof of Theorem 1
For brevity we denote HN − EH(N) by H ′N .

2.4.1 Lower bound
Let ξ > 0 and consider i such that ei(HN )−EH(N) ≤ ξ. Let G be the span of the i+1 lowest
eigenvectors of H ′N (their existence is shown in Theorem 2; its proof relies on compactness
arguments and does not exploit Theorem 3). For any normalized Ψ ∈ G, (Ψ, H ′NΨ) ≤ ei(H ′N ).
For Ψ ∈ G, let Φ = UΨ ∈ L2(Td)⊗F≤N+ . With the choice ε =

√
ξ/N in Proposition 2.3.1

it follows, by additionally invoking Lemma 2.2.2, that (Φ, UH ′NU †Φ) ≥ (Φ,HFΦ) − Cξ3/2
√
N

for some C > 0. Thus clearly ei(H ′N) + Cξ3/2N−1/2 ≥ maxΨ∈G(Ψ, U †HFUΨ) and, by the
min-max principle,

ei(H ′N) + Cξ3/2N−1/2 ≥ ei(HF). (2.75)
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2.4.2 Upper bound
For the upper bound, we use Fock space localization. It is quantified by the following result
[28, 48].

Proposition 2.4.1. Let A > 0 be an operator on F with domain D(A) such that for the
projections P̄j : F → Hj we have P̄jD(A) ⊂ D(A) and P̄jAP̄i = 0 for |i− j| > σ for some
constant σ > 0. Then, if f, g ∈ C∞(R,R≥0) with f 2 + g2 ≡ 1 and f(x) = 1 for |x| ≤ 1/2
as well as f = 0 for x > 1, then we have the inequality

− Cσ3

M2

∞∑
j=0

P̄jAP̄j ≤ A− fMAfM − gMAgM ≤
Cσ3

M2

∞∑
j=0

P̄jAP̄j (2.76)

for all M ∈ N. Here fM denotes the operator

fM :=
∞∑
j=0

f
(
j

M

)
P̄j (2.77)

and analogously for gM .

For the proof, which is based on an IMS-type argument, see [28, Appendix B]. Proposition 2.4.1
can be used to quantify the error made by constraining the states on Fock space to contain
only up to M particles. From the Proposition, we deduce

Lemma 2.4.2. We have

HF − fMHFfM − gMHFgM ≥ −
C

M2 (HF + C) (2.78)

for all M ∈ N.

Proof. We apply Proposition 2.4.1 for A = HF − e0(HF). From Lemma 2.2.3 it follows
e0(HF) ≥ −C2/C1 and further that ∑j P̄j(HF − e0(HF)P̄j = HF

0 − e0(HF) ≤ C1C
−1
0 HF +

(C2C
−1
0 − e0(HF)), which leads to the right hand side of the claimed inequality, with σ = 2.

Using f 2
M + g2

M = I, we have A− fMAfM − gMAgM = HF − fMHFfM − gMHFgM , which
yields the left hand side of the desired result.

Lemma 2.4.3. Let Y ⊂ L2(Td)⊗F+ be the spectral subspace of HF corresponding to an
energy window [e0(HF), e0(HF) + ξ] for ξ > 0. Then dim fNY := dim{fNΨ : Ψ ∈ Y } =
dim Y for N large enough and ξ

N
small enough.

Proof. Suppose dim fNY < dim Y , in which case there exists Φ ∈ Y with ‖Φ‖ = 1 such
that fNΦ = 0. In particular, Φ = gNΦ. From Lemma 2.2.3 we thus conclude that

e0(HF) + ξ ≥ (Φ,HFΦ) = (Φ, gNHFgNΦ) ≥ C(Φ, gNN+gNΦ)− C ≥ CN − C, (2.79)

which is a contradiction for large N and small ξ/N .

Let us now take Y ⊂ L2(Td) ⊗ F+ to be the spectral subspace of HF corresponding to
energies E ≤ ei(HF), and let 1 ≤ ξ ≤ N . The bound (2.75) together with the upper bound
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2. Microscopic derivation of the Fröhlich Hamiltonian

of Lemma 2.2.1 implies that ei(HF) ≤ Cξ, and hence also (Φ, (HF)kΦ) ≤ Cξk for k = 1, 2
for any Φ ∈ Y . By Lemma 2.4.2 and Proposition 2.3.1 (with the choice ε =

√
ξ/N) we have

HF ≥ fNUH
′
NU

†fN + e0(HF)g2
N −

C

N2 (HF +K)− CfNN
2
+fN√
Nξ

− C
√
ξ

N
fNN+fN . (2.80)

By taking the expectation value in any normalized Φ ∈ Y , we obtain, by Lemmas 2.2.3
and 2.2.4 and the simple inequalities Nk

+ ≥ fNN
k
+fN for k = 1, 2, the bound

Cξ

(
ξ

N

)1/2

+ ei(HF) ≥ (Φ, fNUH ′NU †fNΦ) + e0(HF)(Φ, g2
NΦ). (2.81)

Since g2(x) ≤ 2x, we have g2
N ≤

2N+
N
≤ CHF+C

N
by Lemma 2.2.3. For Y ∈ Φ we thus have

(Φ, g2
NΦ) ≤ Cξ+C

N
. Hence 1 ≥ (Ψ, f 2

NΨ) ≥ 1− Cξ+C
N

> 0 for large N and ξ/N small enough.
By Lemma 2.4.3 and the min-max principle, the maximum over Y of the right hand side
(2.81) is at least as large as ei(H ′N) +O(ξ2N−1). This allows us to conclude that

Cξ

(
ξ

N

)1/2

+ ei(HF) ≥ ei(H ′N) (2.82)

for some C > 0, which is the desired bound.

2.5 Proof of Theorem 2
2.5.1 Existence of eigenvectors
We shall now conclude the existence of eigenvectors of HN and HF by showing that these
operators have compact resolvents. By the definition of compactness and the spectral theorem
one easily sees that if A ≥ B > 0, then the compactness of B−1 implies the compactness of
A−1. Since the particles are confined to the unit torus, for any ε > 0 the operators T + ε and
P 2 + ε are strictly positive and have purely discrete spectra with eigenvalues accumulating at
infinity; therefore, they have a compact inverse. The same observation applies to the operator

H0 := P 2

2M +
∑
p 6=0

epb
†
pbp (2.83)

since lim|p|→∞ ep = ∞ and infp ep > 0. Since HN ≥ T + P 2

2M , we conclude that HN has
compact resolvent, which, by the spectral theorem, implies that the spectrum of HN is discrete
and eigenvectors exist. On the other hand, by completing the square, as in Lemma 2.2.3, it is
easy to see that

HF ≥ cH0 − d (2.84)
for appropriate constants c, d > 0. The existence of eigenvectors of HF, along with the fact
that its spectrum is discrete, follows now from precisely the same reasoning as above. This
proves the first part of Theorem 2.

2.5.2 Convergence of eigenvectors
Fix ξ > 0 and take any i such that ei(H ′N) ≤ ξ, uniformly in N . Recall that from the
proof of the lower bound in Theorem 3, we have ∑i

j=0 ej(HF) ≤ ∑i
j=0(UΨj,HFUΨj) ≤
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∑i
j=0 ej(H ′N ) + cN with limN cN = 0 for i fixed. The upper bound (2.82) implies further that

ej(H ′N) ≤ ej(HF) + c′N where again c′N goes to zero as N →∞. Thus,

lim
N→∞

i∑
j=0

(UΨj,HFUΨj) =
i∑

j=0
ej(HF). (2.85)

We first show the convergence for ground states. Recall that Pi denotes the orhogonal projection
onto the eigenspace of HF corresponding to energy ei(HF). By writing UΨ0 = aN + bN ,
aN ∈ ranP0 and bN ⊥ aN , we have

(UΨ0,HFUΨ0) ≥ ‖Ψ0‖2e0(HF) +
(

inf
Ψ∈kerP0

(Ψ,HFΨ)− e0(HF)
)
‖bN‖2. (2.86)

By using (2.85) for i = 0 as well as the fact that infΨ∈kerP0(Ψ,HFΨ) > e0(HF) by the
discreteness of the spectrum of HF, we have limN→∞ ‖bN‖ = 0, which is the desired result
for the ground states.
For higher eigenvectors, we apply a reasoning similar to the one in [49, Sec. 5]. Let us take
any k > 0 such that ek+1(HF) > ek(HF). Consider the operator H̃ := HFP̃k + ek(HF)(1− P̃k)
where P̃k denotes the projection onto the k+1 lowest eigenvectors of the Fröhlich Hamiltonian
HF. H̃ acts on L2(Td) ⊗ F+ and has spectrum {e0(HF), ..., ek(HF)}. Therefore, by the
min-max principle,

k∑
i=0

(UΨi, H̃UΨi) ≥
k∑
i=0

ei(HF). (2.87)

Clearly, HF ≥ HFP̃k + ek+1(HF)(1− P̃k) so that
k∑
i=0

(UΨi,HFUΨi) ≥
k∑
i=0

ei(HF) + (ek+1(HF)− ek(HF))
k∑
i=0
‖(1− P̃k)UΨi‖2, (2.88)

which can be rewritten as
k∑
i=0

(UΨi, P̃kUΨi) ≥ k + 1−
∑k
i=0

(
ei(HF)− (Ψi, U

†HFUΨi)
)

ek+1(HF)− ek(HF) . (2.89)

Note that the last term converges to zero as N →∞ by (2.85). Take now l to be the largest
integer such that el(HF) < ek(HF). The dimension of the eigenspace corresponding to ek(HF)
therefore equals k − l. We have the simple identity

k∑
i=l+1

(UΨi,PkUΨi) =
k∑
i=0

(UΨi, P̃kUΨi)+
l∑

i=0
(UΨi, P̃lUΨi)−

k∑
i=0

(UΨi, P̃lUΨi)−
l∑

i=0
(UΨi, P̃kUΨi)

(2.90)
(note the presence of both tilded and untilded operators). For the first two terms, we
can use (2.89) for a lower bound. Moreover, since the Ψi are orthonormal, we have∑k
i=0(UΨi, P̃lUΨi) ≤ Tr P̃l = l + 1. The last term in (2.90) is trivially bounded from

below by −(l + 1). We thus conclude that

k − l ≥
k∑

i=l+1
(UΨi,PkUΨi) ≥ k − l − CN −DN , (2.91)

where the quantities CN > 0, DN > 0 can be read off from (2.89) and vanish as N → ∞,
because of (2.85). Therefore, ∑k

i=l+1(UΨi,PkUΨi)→ k − l, but as each individual term in
the sum is ≤ 1, we must have lim(UΨiPkUΨi) = 1 for every eigenstate of H ′N with energy
ek(H ′N). This is precisely the convergence result stated in Theorem 2, whose proof is now
complete.
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CHAPTER 3
Polaron models with regular

interactions at strong coupling

This chapter contains the paper

• K. Myśliwy and R. Seiringer, Polaron models with regular interactions at strong coulpling,
J. Stat. Phys. 185, (2022).

Abstract. We study a class of polaron-type Hamiltonians with sufficiently regular form factor
in the interaction term. We investigate the strong-coupling limit of the model, and prove
suitable bounds on the ground state energy as a function of the total momentum of the
system. These bounds agree with the semiclassical approximation to leading order. The
latter corresponds here to the situation when the particle undergoes harmonic motion in a
potential well whose frequency is determined by the corresponding Pekar functional. We show
that for all such models the effective mass diverges in the strong coupling limit, in all spatial
dimensions. Moreover, for the case when the phonon dispersion relation grows at least linearly
with momentum, the bounds result in an asymptotic formula for the effective mass quotient, a
quantity generalizing the usual notion of the effective mass. This asymptotic form agrees with
the semiclassical Landau–Pekar formula and can be regarded as the first rigorous confirmation,
in a slightly weaker sense than usually considered, of the validity of the semiclassical formula
for the effective mass.

3.1 Introduction and main results
3.1.1 The model
The polaron problem concerns the motion of a quantum particle of mass m exchanging energy
and momentum with a large environment modeled by a bosonic field. The model has a long
history tracing back to the thirties [77, 67, 9, 4] but due to its basic character it remains
a model of reference in many problems, and is still under active investigation in condensed
matter physics; we refer to [50, 1] for an overview and further references. The models under
study here are defined by the Hamiltonian

H = − 1
2m∆x +

∫
Rd
ε(k)a†kakdk +

√
α
∫
Rd

(
v(k)akeik·x + v(k)a†ke−ik·x

)
dk. (3.1)
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3. Polaron models with regular interactions at strong coupling

This operator acts on L2(Rd) ⊗ F with F the bosonic Fock space over L2(Rd), and with
ak, a

†
k the usual annihilation and creation operators. The phonon dispersion relation ε is a

positive function, v quantifies the interaction of the particle with the field modes and is referred
to as the form factor, and α is a positive coupling constant, traditionally appearing in (3.1)
under the square root. We assume that infk∈Rd ε(k) > 0 and v ∈ L2(Rd), in which case (3.1)
is well-defined as a self-adjoint operator on the intersection of the domains of ∆x and the
field energy ∫ ε(k)a†kakdk, respectively. Moreover, we can then readily define two functions
naturally related to this Hamiltonian: the Pekar kernel

h(x) := 1
(2π)d/2

∫
Rd

v(k)√
ε(k)

eik·xdk (3.2)

and the position space potential

η(x) := 1
(2π)d/2

∫
Rd
v(k)eik·xdk. (3.3)

We shall impose further regularity assumptions on h and η, namely that h is in the Sobolev space
W 2,2(Rd) and that η is in W 1,2(Rd). Equivalently, the functions k 7→ v(k)(1 + k2)ε(k)−1/2

and k 7→ v(k)(1 + k2)1/2 are in L2(Rd). For simplicity, we shall also assume that the form
factor and the dispersion relation depend on |k| only, and that the latter is a continuous
function of |k|. If all these conditions are satisfied, we call H regular.
Our main interest lies in the strong-coupling limit of very large α, and its connection to
the semiclassical limit described below. This problem has been studied in the mathematical
physics literature [2, 58, 66] in the special case of the Fröhlich model corresponding to d = 3,
v(k) = (

√
2π|k|)−1 and ε(k) = 1 in appropriate units. It corresponds to the original polaron

problem addressing the important problem of electronic conductivity in ionic crystals. Our
goal here is to analyze the strong-coupling limit in the regular case, where, on the one hand,
one does need to worry about the UV divergences as in the Fröhlich model, but at the same
time the useful scaling properties found therein are lost. We believe that performing the
strong-coupling analysis for polaron models other than the original Fröhlich Hamiltonian may
be of relevance as various versions of the polaron problem, with more general choices of the
form factor and the dispersion relation, are being considered in the literature, mostly in the
context of the physics of cold atoms, e.g. in the Bose polaron model and its analog, the
angulon model [1, 5, 19, 34, 16]. The rigorous results obtained, even if proved for simplified
versions of the problem, may be practically useful e.g. as a reference point for numerical
calculations. At the same time, the regularity enables us to prove new results concerning
the validity of the semiclassical approximation to the effective mass, which constitutes an
outstanding open problem. Our result on the effective mass is applicable in the case of a
dispersion relation growing at least linearly in |k| as in the case of the Bose polaron, thus
excluding the Fröhlich polaron, although we expect that our methods can serve as a starting
point in future investigations on this problem also in this case.

3.1.2 Basic considerations and definitions
Because of translation invariance, the Hamiltonian (3.1) commutes with the total momentum

− i∇x +
∫
k a†kak dk︸ ︷︷ ︸

=:Pf

(3.4)
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3.1. Introduction and main results

and it can be cast, using a transformation due to Lee, Low and Pines [10], in the unitarily
equivalent form

1
2m (−i∇x − Pf )2 + F +

√
αV (3.5)

where F =
∫
ε(k)a†kakdk and V =

∫
(v(k)ak + v(k)a†k)dk. This can be easily diagonalized in

the L2 part of the domain, so that one has the fiber decomposition H '
∫
⊕HPdP with a

family of Hamiltonians acting only on Fock space

HP := 1
2m(P − Pf )2 + F +

√
αV (3.6)

describing the system moving with momentum P ∈ Rd. In this work, we are concerned with
the ground state energies at fixed momentum,

E(P ) := inf spec HP (3.7)
and the absolute ground state energy

E0 = inf spec H = inf
P
E(P ). (3.8)

The following terminology concerning the dispersion relation will be useful below.

1. We say that ε is massive if ∆ := infk ε(k) > 0.

2. ε is subadditive if ε(k1 + k2) ≤ ε(k1) + ε(k2) for all k1, k2 ∈ Rd.

3. Moreover, we say that ε is of superfluid type if

inf
k∈Rd

ε(k)
|k|

=: c > 0. (3.9)

The number c is called the critical velocity.

Prime examples of the above are optical phonons (with constant dispersion relation) for a
massive and subadditive field and acoustic phonons (where ε(k) is linear in |k|) for a field
of superfluid type. Physically, the first case is encountered in the original Fröhlich polaron
model, while a superfluid-type field is found in the Bose polaron. If the dispersion relation is
massive and subadditive, E(P ) is an isolated, simple eigenvalue for P 2 < 2m∆. Moreover,
infP E(P ) = E(0), and E(P ) is an analytic function close to P = 0 [71, 90]. The effective
mass is then defined as

Meff := 1
2 lim
P→0

(
E(P )− E(0)

P 2

)−1

. (3.10)

In other words, E(P ) ≈ E(0) + P 2

2Meff
for small P , and the system is envisioned as behaving,

for sufficiently small momenta, like a free particle of mass Meff called the polaron, whence the
entire model bears its name. We also introduce the function

M(P ) = 1
2

(
E(P )− E(0)

P 2

)−1

(3.11)

which we call the effective mass quotient. It is well-defined for all P s.t. E(0) 6= E(P ), and can
be viewed as a global measure of the curvature of E(P ), in contrast to Meff = limP→0 M(P )
which quantifies this curvature locally at P = 0. The validity of the polaron picture can be
also expressed as a statement that M(P ) is asymptotically a constant function for sufficiently
small momenta. We find this picture useful below, where we shall consider both the case of P
vanishingly small as well as admitting values from a specified range.
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3. Polaron models with regular interactions at strong coupling

3.1.3 Motivation and statements of the results
We shall provide bounds on the above quantities in the limit of large α. These bounds agree
with the semi-classical approximation, which we now briefly recall. To do so, let us first observe
from (3.6) that the presence of the particle induces non-trivial correlations between the modes
of the field; if these are ignored, the problem is easily solvable. Indeed, in the case m =∞,
the spectrum of HP is equal to that of the operator F − α‖h‖2, with ground state energy
−α‖h‖2. This corresponds to a free bosonic field fluctuating on top of a classical deformation
profile induced by a point impurity. The ground state is simply the coherent state |φ〉 with

ak|φ〉 = −
√
α
v(k)
ε(k) |φ〉 ∀k ∈ Rd. (3.12)

The evaluation of H on pure tensor products of the form ψ ⊗ φ, where φ is a coherent state,
amounts to replacing the creation and annihilation operators by complex numbers, which is
equivalent to treating the boson field in a classical way. In fact, as is well known (we reproduce
the argument in the proof of the upper bound in Theorem 3 below), this coherent state ansatz
is optimal over all product trial states. In other words, for polaron models, the adiabatic limit
(corresponding to a product trial state) and the strong-coupling limit coincide. The adiabatic
limit can certainly be expected to be asymptotically correct if the mass of the particle is large.
At the same time, it is well known that the adiabatic limit is asymptotically correct as α→∞
in the Fröhlich case, indirectly through energy estimates [2] and also as far as the dynamics is
concerned [81, 13]. If we were, therefore, to assume that the same conclusion is valid in more
generality, our regular case included, we expect that

lim
α→∞

E0

α
= −‖h‖2. (3.13)

Moreover, one can readily postulate how the next order correction should look like: since the
leading order corresponds to the picture of a classical point particle situated at the bottom
of a potential well created by the phonons, the next order correction should stem from the
zero-point oscillations in this well. If we replace the annihilation operators in H by the numbers
−
√
α v(k)
ε(k) (and a†k by its complex conjugate) and expand the eik·x factors to second order, we

arrive at the one-particle Schrödinger operator

− ∆x

2m + mω2

2 x2 − α‖h‖2, (3.14)

where
ω =

√
2α
dm
‖∇h‖, (3.15)

with well-known ground state energy dω
2 − α‖h‖

2. We hence expect the subleading term to
be dω/2, and thus of order α1/2. That these considerations are correct is the content of our
first theorem.

Ground state energy asymptotics

Theorem 3. Let H be regular. Then we have

− α‖h‖2 +
√
dα

2m‖∇h‖ ≥ inf spec H ≥

≥ −α‖h‖2 +
√
dα

2m‖∇h‖ −
d

2
‖∇η‖2

‖∇h‖2 −
d

8m
‖∆h‖2

‖∇h‖2 .

(3.16)
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In particular, for E0 = inf spec H, (3.13) holds, and

lim
α→∞

α−1/2
(
E0 + α‖h‖2

)
=
√

d

2m‖∇h‖. (3.17)

Remark 3.1. As recalled in detail in the proof, the semiclassical limit naturally gives rise to
the Pekar functional

EPek
α (ψ) = 1

2m

∫
|∇ψ(x)|2dx− α

∫∫
|ψ(x)|2g(x− y)|ψ(y)|2dxdy, (3.18)

where
g(x) =

∫ |v(k)|2
ε(k) eik·xdk = (h̄ ∗ h)(x), (3.19)

and
E0 ≤ EPek := inf

ψ:‖ψ‖=1
EPek
α (ψ). (3.20)

In the Fröhlich case, where g(x) = 1
|x| , one has inf EPek

α (ψ) = α2 inf EPek
1 (ψ) ≡ α2ePek, in

particular the contribution of the kinetic energy ∫ |∇ψ|2 to EPek
α is not negligible in this limit.

Existing results [2] show that in this particular case

ePek ≥ α−2E0 ≥ ePek − Cα−1/5 (3.21)

for some C > 0 and α large. If instead of Rd one considers a sufficiently regular subset Ω
thereof (suitably rescaled to be of linear size α−1), with the corresponding modification of η
involving the Laplacian on Ω, then also the subleading correction to E0, being of order α0, has
been rigorously established [66, 7]. Adapting some of the methods in that proof to improve
the control on the UV divergence of the model, the exponent −1/5 in the lower bound (3.21)
can be slightly improved to −20/73 [6].
In our case, we lose the scaling properties of the original Fröhlich model, and the semiclassical
energy is a more general function of α; our result captures the first two terms that emerge
from the expansion of the kernel (3.19) of the Pekar functional around its maximum.

Remark 3.2. It can be argued that the O(1) correction in (3.16) is optimal as far as the
order of magnitude is concerned. These O(1) corrections can be attributed to two sources:
the quantum fluctuations of the field and a purely classical effect of anharmonicity of the
actual potential well that accompanies the particle’s motion. We do not know how to obtain
the sharp O(1) correction to E0, however.

Remark 3.3. While the lower bound in Theorem 3 holds for all values of the parameters in the
problem, it is optimal only in our case of interest, i.e., for large α with m fixed. However, our
analysis leads to a distinct result in the opposite regime with m large at α fixed. In this case
our technique yields a positive term α

4m
‖∇h‖4
‖∇η‖2 as a leading-order finite mass correction to the

exact ground state energy at infinite mass −α‖h‖2 in the lower bound. Perturbation theory
predicts here −α‖h‖2 + α

2m
∫ k2|v(k)|2

ε(k)2 dk + o(m−1). Clearly ‖∇h‖4 ≤ ‖∇η‖2
(∫
k2 |v(k)|2

ε(k)2 dk
)
,

with equality in the case a constant dispersion relation, but even in this case the resulting
correction is off by a factor of two with respect to the result from perturbation theory.

The proof of Theorem 3 will be given in Section 3.2.1. The upper bound relies on a
straightforward expansion of the kernel of the Pekar functional. For the lower bound we closely
follow the approach of Lieb and Yamazaki [3] in their analysis of the Fröhlich model. In the
regular case considered here, the obtained bounds turn out to be sharp, however.
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Divergence of the effective mass

Our further results concern the effective mass problem (for other rigorous work concerning this
problem, we refer to [14, 59, 15, 85] and references therein). First, we present a generalization
of [85] by showing that the effective mass diverges as α→∞, in all spatial dimensions, and
for all regular polaron models with massive fields. This is to be expected from the fact that
the strong-coupling limit and the adiabatic limit coincide: while the particle’s mass is fixed,
the relevant dynamical degrees of freedom behave like a free particle with very large mass,
which leads to the effective separation of timescales of the field and of the particle.

Theorem 4. Let H satisfy the assumptions of Theorem 3, with a dispersion relation that is
massive and subadditive. Then there exists a constant C > 0 s.t. for all α� 1 we have

Meff ≥ Cα1/4. (3.22)

Remark 4.1. The assumption of subadditivity of ε is only used to ensure the existence of a
ground state of H0, which is proved in [90].

Remark 4.2. We emphasize that the result holds regardless of the spatial dimension, assuming,
of course, the required regularity of H. On the other hand, in the physics literature the effective
mass of a polaron has been investigated numerically also for various different polaron-type
models [16, 18, 34], and it appears that for some of these models one can expect different
behavior of the effective mass in different dimensions.

Our proof takes the formula for the inverse of the effective mass from second-order perturbation
theory as a starting point, and provides an upper bound on this quantity. The proof of this
bound relies heavily on Theorem 3. It can be shown that the same conclusion can be reached
with the method from [85]. The regularity enables us to simplify the argument, and also to
provide an explicit estimate on the rate of the divergence. However, based on the semiclassical
analysis, we expect that the effective mass should actually, in the regular case, diverge much
faster, namely linearly in α. We perform this semiclassical analysis subsequently (see also [5])
before stating our last result, which addresses the effective mass quotient at non-zero P .

Semiclassical analysis of the effective mass

As discussed above, the behavior of the system at strong coupling can be expected to be
inferable from the semiclassical functional

1
2m

∫
|∇ψ(x)|2dx+ 2

√
αRe

∫
v(p)ϕ(p)ρψ(p)dp+

∫
ε(p)|ϕ(p)|2dp (3.23)

with ρψ(p) =
∫
|ψ(x)|2eip·xdx and ϕ : Rd → C the classical field, which carries momentum∫

p|ϕ(p)|2dp. We wish to minimize (3.23) under the constraint that the total momentum of
the system be P . With u a Lagrange multiplier (which can be interpreted as the velocity), the
relevant functional to be minimized is thus

HP (ψ, ϕ, u) =
∫
ε(p)|ϕ(p)|2dp+ 1

2m

∫
p2|ψ̂(p)|2dp+

+ 2
√
αRe

∫
v(p)ϕ(p)ρψ(p)dp+ u ·

(
P −

∫
p
(
|ϕ(p)|2 + |ψ̂(p)|2

)
dp
)
.

(3.24)
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We expect continuity and accordingly u → 0 as P → 0; we also suppose that to leading
order in |u|, the particle moves with velocity u while maintaining its waveform, i.e., the ψ
minimizing (3.24) is approximately

ψ̂u(p) = ̂eimu·xψPek
α (p) = ψ̂Pek

α (p−mu) (3.25)

where ψPek
α minimizes (3.18). Plugging this into (3.24), we minimize with respect to the field,

with the result that
ϕu(p) = −

√
α
ρPek
α (p)v(p)
ε(p)− u · p (3.26)

with ρPek
α = ρψPek

α
. Accordingly, the Lagrange multiplier u has to be chosen such that

P = mu+ α
∫
p
|v(p)|2|ρPek

α (p)|2
(ε(p)− u · p)2 dp. (3.27)

Expanding this to leading order in u, we have

P =
(
m+ 2α

d

∫
p2 |v(p)|2|ρPek

α (p)|2
ε(p)3

)
u. (3.28)

We further evaluate the energy HP (ψu, ϕu, u) and expand it to second order in P , with the
result that

HP (ψu, ϕu, u) ≈ EPek +
(

2m+ 4α
d

∫
p2 |v(p)|2|ρPek

α (p)|2
ε(p)3 dp

)−1

P 2 (3.29)

with EPek defined in (3.20). We are thus led to the definition of the Pekar mass formula

MPek
α := 2α

d

∫∫
|ψPek
α (x)|2R(x− y)|ψPek

α (y)|2dxdy = 2
d

∫
p2 |ϕPek

α (p)|
ε(p)

2

dp (3.30)

where R(x) :=
∫ p2|v(p)|2

ε(p)3 eip·xdp, ψPek
α minimizes (3.18) and ϕPek

α is the corresponding mini-
mizing field. If we evaluate the above expression for the original Fröhlich model, in which case
ψPek
α (x) = α3/2ψPek

1 (αx) and R(x) = 4πδ(x − y), we obtain the celebrated Landau–Pekar
mass formula [8]

MLP = 8π
3 α4‖ψPek

1 ‖4
4. (3.31)

In the regular case we expect, given Theorem 3, that |ψPek
α |2 tends to a δ-function as α→∞,

and accordingly that

lim
α→∞

α−1MPek
α = 2

d

∫
p2 |v(p)|2

ε(p)3 dp =: MPek (3.32)

holds true. This leads us to the following

Conjecture. Let H be regular. Then

lim
α→∞

α−1Meff = MPek = 2
d

∫ p2|v(p)|2
ε(p)3 dp. (3.33)
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This conjecture generalizes the one for the original Fröhlich model, where one expects that
limα→∞ α

−4Meff = 8π
3 ‖ψ

Pek
1 ‖4

4, c.f. Eq. (3.31), as suggested by a calculation by Landau and
Pekar [8]. A proof of this prediction remains an outstanding open problem. In the physics
literature one also encounters discussions beyond the Fröhlich case that lead to Conjecture
3.1.3 [5] (see also [19, Eq. 12]) and also to the linear dependence of the effective mass on α
at strong coupling [1].

While we are unable to prove Conjecture 3.1.3, we are able to prove a related result that can
be regarded as a confirmation of the validity of the semiclassical approximation in the effective
mass problem. Recall the definition of the effective mass quotient in (3.11). Instead of the
limit limα→∞ α

−1 limP→0 M(P ), we consider the combined limit

α→∞, |P | → ∞ with |P |/α→ 0, |P |/α1/2 →∞. (3.34)

which we denote as
lim
α→∞

α1/2�|P |�α
.

Then we have

Theorem 5. Let H be regular, and assume that ε is massive and of superfluid type. Then

lim
α→∞

α1/2�|P |�α
α−1M(P ) = MPek (3.35)

with MPek defined in (3.32). In particular, we have for H satisfying the assumptions of
Theorem 3 and for all P with |P | ≤ Cα for some C > 0 independent of P and α,

E(P ) ≤ −α‖h‖2 + dω

2 + P 2

2αMPek +O(|P |α−1), (3.36)

where ω is defined in (3.15). If in addition the dispersion relation is assumed to be of superfluid
type, we have for all P such that |P | ≤ C ′α with C ′ > 0 small enough,

E(P ) ≥ −α‖h‖2+ dω

2 + P 2

2αMPek−
d

2
‖∇η‖2

‖∇h‖2−
d

8m
‖∆h‖2

‖∇h‖2−O(P 2α−3/2+|P |3α−2). (3.37)

Note that (3.36) and (3.37) are non-zero momentum analogs of the bounds in Theorem 3. In
combination, they readily imply (3.35). We conjecture that (3.35) holds without the restriction
that |P | � α1/2 (and hence, in particular, in the case when P → 0 before α→∞).

Since the limit (3.34) may at first sight appear artificial, let us briefly explain its origin. Theorem
5 states that E(P )−E(0) is, for large α, and in a suitable window of momenta, asymptotically
a parabolic curve with a coefficient determined by the semiclassical approximation. This can
be regarded as a statement on the global curvature of E(P )− E(0), in contrast to the local
curvature at P = 0 described by the effective mass. The size of the window of momenta for
which this asymptotic form holds depends on α: the lower margin |P | � α1/2 ensures that
we look at E(P ) in the regime when the kinetic energy of the center-of-mass motion is much
larger than the O(1) energetic error determining the accuracy of our knowledge of the ground
state energy, as expressed in Theorem 3 and the bounds (3.36) and (3.37). The upper margin
|P | � α is natural in view of the following discussion. Typically, one can expect that E(P )
has a parabolic shape for sufficiently small momenta, and this parabolic shape is in general
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lost when E(P ) approaches the bottom of the essential spectrum Eess(P ). There is a formula
for the latter [90, 71],

Eess(P ) = inf
k

(E(P − k) + ε(k)) , (3.38)

and in particular Eess(P ) ≤ E(0) + ε(P ). Hence E(P ) ≈ E(0) + P 2

2Meff
certainly ceases

to be valid for P 2 & Meffε(P ). Since ε(P ) ≥ c|P | by assumption, this is thus the case if
|P | &Meff ∼ α.
Theorem 5 may be regarded as our principal novel contribution to the existing literature.
Its proof utilizes, in particular, a new trial state in order to obtain the upper bound (3.36),
which is essentially the extension of the very simple bound E(0) ≤ infψ EPek

α (ψ) to non-zero
momenta. The lower bound relies, on the other hand, on an extension of the techniques used
in the lower bound of Theorem 3, and is thus also ultimately rooted in [3].

In the remainder of the article we give the proofs of our results. The symbol C denotes a
positive constant, independent of α and P , whose exact value may change from one instance
to the other.

3.2 Proofs
3.2.1 Proof of Theorem 3
Upper bound

Proof. For any normalized φ ∈ F , we have
〈φ|a†kak|φ〉 ≥ |〈φ|ak|φ〉|2 ∀k ∈ Rd (3.39)

with equality if and only if φ is a coherent state, i.e., an eigenstate of all the ak. Thus
inf
φ,ψ
〈ψ ⊗ φ|H|ψ ⊗ φ〉 = inf

ϕ,ψ
H(ψ, ϕ) (3.40)

where H is the classical functional

H(ψ, ϕ) = 1
2m

∫
|∇ψ(x)|2dx+ 2

√
αRe

∫
v(p)ϕ(p)ρψ(p)dp+

∫
ε(p)|ϕ(p)|2dp (3.41)

with ρψ(p) =
∫
|ψ(x)|2eip·xdx. Minimizing with respect to the field ϕ and passing to position

space, we obtain the Pekar functional

EPek
α (ψ) = 1

2m

∫
|∇ψ(x)|2dx− α

∫∫
|ψ(x)|2g(x− y)|ψ(y)|2dxdy, (3.42)

with g(x) =
∫ |v(k)|2

ε(k) e
ik·xdk. Since H is isotropic, g(x) =

∫ |v(k)|2
ε(k) cos(k · x)dk. By the

elementary inequality cos x ≥ 1− x2

2 we have
EPek
α (ψ) ≤ −α‖h‖2 + Lα(ψ) (3.43)

with the functional

Lα(ψ) = 1
2m

∫
|∇ψ(x)|2dx+ α‖∇h‖2

2d

∫∫
|ψ(x)|2(x− y)2|ψ(y)|2dxdy

= 1
2m

∫
|∇ψ(x)|2dx+ α‖∇h‖2

d

(∫
|ψ(x)|2x2 −

(∫
x|ψ(x)|2dx

)2
)
. (3.44)

It follows from the Heisenberg uncertainty principle that the infimum of Lα equals dω/2, with
ω in (3.15). This leads to the claimed upper bound.
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Lower bound

Proof. Our starting point is the inequality, valid for all λ ∈ R and all R ∈ Rd,
√
αλ[Pf +R, [V, Pf +R]] ≤ 1

2m(Pf +R)2 − 2mλ2α[Pf +R,V]2 (3.45)

which can be easily proved using the Cauchy–Schwarz inequality (the minus sign on the
right-hand side stems from the fact that [Pf ,V] is anti-hermitian). We have the identity

λ[Pf +R, [V, Pf +R]] = λ[Pf , [V, Pf ] = −λ
∫
k2
(
v(k)a†k + v(k)ak

)
dk. (3.46)

We conclude that for all P ∈ Rd, the operators HP in (3.6) are bounded below, uniformly in
P , by

HP ≥ H′λ := F +
√
αWλ + 2mλ2α[Pf ,V]2 (3.47)

with
Wλ =

∫
(1− λk2)

(
v(k)ak + v(k)a†k

)
dk. (3.48)

Given that H is unitarily equivalent to ∫⊕HPdP , this clearly implies that

inf spec H ≥ sup
λ

inf spec H′λ. (3.49)

Let
wλ(k) := (1− λk2)v(k) (3.50)

and observe that our assumptions on v and ε, i.e., h ∈ W 2,2(Rd) and ε massive, imply that
wλε

−1 ∈ L2(Rd). We may thus apply the unitary shift operator U with the property that
UakU

† = ak −
√
αwλ(k)

ε(k) for all k ∈ Rd to Hλ. We obtain

U
(
F +
√
αWλ

)
U † = F− α‖h‖2 + 2λα‖∇h‖2 − λ2α‖∆h‖2. (3.51)

Furthermore

U [Pf ,V]U † =
∫
kv(k)

(
a(k)− α1/2wλ(k)ε(k)−1

)
dk −

∫
k
(
v(k)a†k − α1/2wλ(k)ε(k)−1

)
dk

= [Pf ,V] (3.52)

since ∫ kv(k)wλ(k)ε(k)−1dk ∈ R. We are thus left with providing a lower bound to the
operator

F + 2mλ2α[Pf ,V]2. (3.53)
Since η ∈ W 1,2(Rd) by assumption, we can introduce the bosonic operators, for i = 1, . . . , d,

bi =
√
d

‖∇η‖

∫
kiv(k)akdk (3.54)

with [bi, b†j] = δij. Then

[Pf ,V]2 = ‖∇η‖
2

d

d∑
i=1

(bi − b†i )2. (3.55)

Let
E = ‖∇η‖

2

‖∇h‖2 . (3.56)
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We claim that
F ≥ E

d∑
i=1

b†ibi. (3.57)

To prove this, it is enough to show that for every one-phonon vector Φ ∈ L2(Rd)
∫
ε(k)|Φ(k)|2dk ≥ dE

‖∇η‖2

d∑
i=1

∣∣∣∣∫ kiv(k)Φ(k)dk
∣∣∣∣2 . (3.58)

For any ψ ∈ L2(Rd) and d orthonormal functions φi we have by Bessel’s inequality
∫
|ψ(k)|2dk ≥

d∑
i=1

∣∣∣∣∫ φi(k)ψ(k)dk
∣∣∣∣2 . (3.59)

Using this for ψ(k) =
√
ε(k)Φ(k) and φi(k) = (d−1/2‖∇h‖)−1ki

v(k)√
ε(k)

yields (3.58). Moreover,
since

(bi − b†i )2 = (bi + b†i )2 − 4b†ibi − 2 ≥ −4b†ibi − 2 (3.60)
we conclude that (3.53) is bounded below by −4mλ2α‖∇η‖2 provided that

|λ| ≤ λ0 =
√

d

8mα‖∇h‖2 = 1
2mω. (3.61)

In particular,

inf spec H ≥ −α‖h‖2 + α sup
|λ|≤λ0

(
2λ‖∇h‖2 − λ2‖∆h‖2 − 4mλ2‖∇η‖2

)
. (3.62)

The choice λ = λ0 yields the lower bound in (3.16). This choice for λ is in fact optimal as
long as

α ≥ αm := d

8m

(
4m‖∇η‖2 + ‖∆h‖2

‖∇h‖3

)2

. (3.63)

For α < αm, the optimal choice of λ is rather λ = ‖∇h‖2(4m‖∇η‖2 + ‖∆h‖2)−1, which
yields the improved lower bound mentioned in Remark 3.3 in this case.

3.2.2 Proof of Theorem 4

Proof. Under the stated assumptions on v and ε, there exists an isolated eigenvalue at the
bottom of the spectrum of H0, and a unique corresponding ground state φ0 [90]. Using
second-order perturbation theory and rotation invariance, one arrives at the formula

1
2Meff

= 1
2m −

1
dm2 〈φ0|Pf

1
H0 − E0

Pf |φ0〉 (3.64)

for the effective mass Meff defined in (3.10). Note that 〈φ0|Pf |φ0〉 = 0, hence QPf |φ0〉 =
Pf |φ0〉, where Q is the projection onto the orthogonal complement of the ground state of
H0, and H0 − E0 is strictly positive and invertible on the range of Q. Therefore, by the
Cauchy-Schwarz inequality,

m

Meff
≤ 1− 2

dm

〈φ0|P 2
f |φ0〉2

〈φ0|Pf (H0 − E0)Pf |φ0〉
. (3.65)
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3. Polaron models with regular interactions at strong coupling

We exploit the fact that φ0 is the ground state of H0 and arrive at the identity

〈φ0|Pf (H0 − E0)Pf |φ0〉 = 1
2〈φ0|[Pf , [H0, Pf ]]|φ0〉. (3.66)

A simple computation shows that the double commutator equals
1
2[Pf , [H0, Pf ]] = W := −

√
α

2

∫
k2
(
v(k)ak + v(k)a†k

)
dk. (3.67)

Define for λ > − 1
2m and µ ∈ R

H(λ, µ) := H0 + λP 2
f + µW, E0(λ, µ) = inf spec H(λ, µ). (3.68)

By the variational principle,

E0(λ, µ) ≤ E0 + λ〈φ0|P 2
f |φ0〉+ µ〈φ0|W|φ0〉. (3.69)

We have the lower bound

E0(0, µ) ≥ −α
∫ (

1− µk2

2

)2 |v(k)|2
ε(k) dk (3.70)

which is finite because of our assumption h ∈ W 2,2(Rd). Combining the last two inequalities
with the upper bound on E0 from Theorem 3, we conclude that for all negative µ

〈φ0|W|φ0〉 ≤
dmω2

2 − αµ4

∫
k4 |v(k)|2

ε(k) dk − µ−1dω

2 . (3.71)

Optimizing over µ < 0 yields the bound

〈φ0|W|φ0〉 ≤
dmω2

2
(
1 + Cα−1/4

)
(3.72)

for C = ‖∆h‖m−1/4(d/2)1/4‖∇h‖−3/2.
In a similar fashion we conclude from (3.69) that for all λ > − 1

2m

λ〈φ0|P 2
f |φ0〉 ≥ E0(λ, 0)− E0 ≥ E0(λ, 0) + α

∫ |v(k)|2
ε(k) dk − dω

2 (3.73)

where we again used the upper bound from Theorem 3. Now, a lower bound on E0(λ, 0) is
provided by Theorem 3 for a particle with mass m

(1+2λm) :

E0(λ, 0) ≥ −α
∫ |v(k)|2

ε(k) dk + dω

2
√

1 + 2λm− d

2
‖∇η‖2

‖∇h‖2 −
d(1 + 2λm)

8m
‖∆h‖2

‖∇h‖2 . (3.74)

In particular, for any λ > 0,

〈φ0|P 2
f |φ0〉 ≥

dmω

2 +
(
dω

2

(√
1 + 2mλ− 1

λ
−m

))
− C 1 + λ

λ
(3.75)

for suitable C > 0. For small λ, the second term on the right-hand side behaves like ωλ,
hence the optimal choice of λ is of the order ω−1/2 ∼ α−1/4, and we arrive at the bound

〈φ0|P 2
f |φ0〉 ≥

dmω

2
(
1− Cα−1/4

)
for α� 1. (3.76)

Combining (3.65), (3.72) and (3.76), we arrive at the claimed lower bound on the effective
mass.
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3.2.3 Proof of Theorem 5
Lower bound

Proof. Recall our assumption ε(k) ≥ c|k| for some c > 0. Pick u ∈ Rd with |u| < c, and
write

HP = P · u− m

2 u
2 + (Pf − P +mu)2

2m + F̃u +
√
αV (3.77)

where
F̃u =

∫
(ε(k)− u · k) a†kakdk. (3.78)

We proceed as in the proof of Theorem 3 and use (3.45), this time for R = P −mu. This
gives the lower bound

E(P ) ≥ P · u− m

2 u
2 − α‖hu‖2

+ sup
λ∈R

[
inf spec{F̃u + 2mαλ2[Pf ,V]2}+ 2λα‖∇hu‖2 − λ2α‖∆hu‖2

]
(3.79)

with
hu(x) = 1

(2π)d/2
∫ v(k)√

ε(k)− u · k
eik·xdk. (3.80)

Without loss of generality, we can assume that P = |P |e1, where e1 is the unit vector pointing
in the first coordinate direction, and we shall also pick u to point along e1. The functions

φui (k) = kiv(k)√
ε(k)− u · k

= kiv(k)√
ε(k)− |u|k1

(3.81)

are then orthogonal, and

‖φui ‖2 = 1
d

∫ k2|v(k)|2
ε(k) dk + u2

∫ k2
i k

2
1|v(k)|2

ε(k)2(ε(k)− |u|k1)dk

≤ 1
d

∫ k2|v(k)|2
ε(k) dk

(
1 + u2

c(c− |u|)

)
(3.82)

where we used ε(k) ≥ c|k| ≥ c|k1| in the last step. Bessel’s inequality

∫
|ψ(k)|2dk ≥

d∑
i=1

∣∣∣∣∣ 1
‖φui ‖

∫
φui (k)ψ(k)dk

∣∣∣∣∣
2

(3.83)

thus yields

F̃u ≥
(

1 + u2

c(c− |u|)

)−1

E
d∑
i=1

b†ibi (3.84)

with E defined in (3.56). Arguing as in the proof of the lower bound in Theorem 3, we
conclude that

inf spec{F̃u + 2mαλ2[Pf ,V]2} ≥ −4mλ2α‖∇η‖2 (3.85)
as long as

|λ| ≤
(

1 + u2

c(c− |u|)

)−1/2 1
2mω. (3.86)
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We choose the maximally allowed value of λ (i.e., equality in (3.86)), and arrive at the lower
bound

E(P ) ≥ P · u− m

2 u
2 − α‖hu‖2

+
(

1 + u2

c(c− |u|)

)−1/2√
αd

2m‖∇hu‖
2 − d

2
‖∇η‖2

‖∇h‖2 −
d

8m
‖∆hu‖2

‖∇h‖2 . (3.87)

We are left with estimating the norms appearing in (3.87). We have

‖hu‖2 =
∫ |v(k)|2

ε(k)

(
1 + (u · k)2

ε(k) (ε(k)− u · k)

)
dk ≤ ‖h‖2 + u2 MPek

2(1− |u|/c) (3.88)

where we used the definition of MPek in (3.32) and ε(k) ≥ c|k|. Similarly,

‖∆hu‖2 =
∫ |k|4|v(k)|2

ε(k)

(
1 + (u · k)2

ε(k) (ε(k)− u · k)

)
dk ≤ ‖∆h‖2

(
1 + u2

c(c− |u|)

)
. (3.89)

For the remaining term, we simply bound

‖∇hu‖2 =
∫ k2|v(k)|2

ε(k)

(
1 + (u · k)2

ε(k) (ε(k)− u · k)

)
dk ≥ ‖∇h‖2. (3.90)

We are still free to choose u (subject to the constraint |u| < c) and the leading terms to
optimize are simply P · u− αu2MPek/2. We therefore choose

u = P

αMPek (3.91)

which yields the desired bound (3.37).

Remark 5.1. By choosing u simply O(1), the bound (3.87) implies that under the same
assumptions on v and ε, there exist γ > 0 and Fα ∈ R such that for all P ∈ Rd,

E(P ) ≥ γ|P |+ Fα. (3.92)

From this and from the analyticity of E(P ) in a neighborhood of its global minimum at P = 0
one can deduce that there exists a P ∗ > 0 such that

E(P ) = E∗(P ), ∀P : 0 ≤ |P | ≤ P ∗, (3.93)

where E∗ denotes the convex envelope of E, i.e., the largest convex function not exceeding E.
One can verify that

E∗(P ) = sup
s∈Rd

(
sP + inf

Q∈Rd
(E(Q)− sQ)

)
; (3.94)

using the Lee-Low-Pines transformation, this can be cast into the form

E∗(P ) = sup
s∈Rd

(s · P + inf spec (H− s · Ptot)) (3.95)

where Ptot = −i∇x+Pf . In particular, for any ϕ ∈ L2(Rd) and any L2-normalized ψ ∈ H1(Rd)
we have E∗(P ) ≤ supsHP (ψ, ϕ, s), where HP (ψ, ϕ, s) is defined in (3.24). Choosing

ψ = ψPek
α , ϕ(p) = ϕPek

α (p)
(

1 + p · P
ε(p)MPek

α

)
(3.96)
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one easily arrives at
E∗(P ) ≤ EPek + P 2

2MPek
α

∀P ∈ Rd, (3.97)

and hence
E(P ) ≤ EPek + P 2

2MPek
α

∀P with |P | ≤ P ∗, (3.98)

where EPek is the infimum of the Pekar functional (3.18), and MPek
α is given by the Pekar

mass formula (3.30). If we knew that |P ∗| ∼ α, we could already deduce the main statement
of Theorem 5, Eq. (3.35). Without this knowledge, we need to find an upper bound directly
on E(P ) by using an appropriate trial state for HP , with is the topic of the next section. The
resulting bound holds for all |P | . α, and is hence sufficient for our purpose. Let us also
emphasize that for the upper bound in (3.98) via the equality (3.93) the superfluid property of
ε is crucial. In fact, for a constant dispersion relation (and hence, in particular, in the Fröhlich
case) E∗(P ) ≡ E(0) and hence P ∗ = 0. On the other hand, the proof of the upper bound
that we shall now give holds for all regular polaron Hamiltonians, without the restriction that
ε be superfluid.

Upper bound

Proof. The trial state: Let ψ ∈ L2(Rd) be real-valued, with Fourier transform in H1(Rd),
and let ϕ ∈ L2(Rd). We denote by |ϕ〉 the coherent state corresponding to ϕ, satisfying
ak|ϕ〉 = ϕ(k)|ϕ〉 for all k ∈ Rd. Explicitly, |ϕ〉 = ea

†(ϕ)−a(ϕ)|Ω〉 with |Ω〉 – the vacuum on F .
We choose a trial state (on F) of the form (comp. [11, 12])

|φP 〉 = ψ(P − Pf )|ϕ〉. (3.99)

This state corresponds to the P -momentum fiber of the product state ψ ⊗ |ϕ〉. It appears
that this particular form of a trial state for HP was first considered, for the case P = 0, by
Nagy [11], who in this way obtained the bound E(0) ≤ EPek directly on F . This form is also
behind the intuition of the trial state in [12], where its linearized version is considered. In these
cases ψ and ϕ were chosen to be the momentum space minimizers of the Pekar functional.
We shall rather choose functions related to the ones mentioned in the preceding Remark, i.e.,
(3.96), in particular ϕ will have an additional explicit P -dependence. Thanks to the regularity,
we can sligthly simplify their form using the intuition from Theorem 3, which facilitates the
computations. Note that (3.99) induces non-trivial correlations between different modes of
the field, in contrast to the full product state. One of the main points of the analysis below is
to show that these correlations lead to subleading corrections to the desired energy expression,
which naturally appears for our choice of ψ and ϕ. We proceed with the details and start by
rewriting the expected value of the energy and the norm of our trial state in a suitable way.
Preliminary computations : We have the identity

apψ(P − Pf ) = ψ(P − p− Pf )ap (3.100)

whence we deduce the relations

ψ(P − Pf )Vψ(P − Pf ) =
∫
dp v(p)ψ(P − Pf − p)ψ(P − Pf )ap + h.c. (3.101)

as well as

ψ(P − Pf )Fψ(P − Pf ) =
∫
ε(p)a†pψ(P − Pf − p)2apdp. (3.102)
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Consequently

〈φP |HP |φP 〉 = 1
2m〈ϕ|(P − Pf )

2ψ(P − Pf )2|ϕ〉+
∫
dp ε(p)|ϕ(p)|2〈ϕ|ψ(P − Pf − p)2|ϕ〉

+ 2
√
αRe

∫
dp v(p)ϕ(p)〈ϕ|ψ(P − Pf − p)ψ(P − Pf )|ϕ〉. (3.103)

Define
Gψ,ϕ(R) = 〈ϕ|ψ(R− Pf )2|ϕ〉. (3.104)

In particular, 〈φP |φP 〉 = Gψ,ϕ(P ). Using the properties of the Weyl operator ea†(ϕ)−a(ϕ), we
compute

〈ϕ|e−ix·Pf |ϕ〉 = exp
(∫
|ϕ(p)|2(e−ip·x − 1)dp

)
(3.105)

and obtain
Gψ,ϕ(R) = 1

(2π)d
∫
dx ρψ(x)eF (x)−F (0)+iR·x (3.106)

where
ρψ(x) =

∫
|ψ(k)|2e−ik·x dk (3.107)

and
F (x) := ρϕ(x) =

∫
|ϕ(p)|2e−ip·xdp. (3.108)

In a similar fashion, we obtain

G
(2)
ψ,ϕ(R, S) := 〈ϕ|ψ(R− Pf )ψ(S − Pf )|ϕ〉 = 1

(2π)d
∫
ρ

(2)
ψ (x;R− S)eiR·xeF (x)−F (0)dx

(3.109)
with

ρ2
ψ(x; y) =

∫
ψ(k)ψ(k − y)e−ik·xdk. (3.110)

Finally,
1

2m〈ϕ|(P − Pf )
2ψ(P − Pf )2|ϕ〉 = 1

(2π)d
∫
τψ(x)eiP ·xeF (x)−F (0)dx (3.111)

where
τψ(x) = 1

2m

∫
k2ψ(k)2e−ik·xdk. (3.112)

We shall now specify our choice of ψ and ϕ. We choose

ψ(k) = e−
k2

2mω (3.113)

where ω is defined in (3.15). With this choice of ψ, we have

ρ2
ψ(x; p) = (mπω)d/2 e− 1

4mω p
2
e−

ip·x
2 e−

mω
4 x2

, (3.114)

ρψ(x) = ρ2
ψ(x; 0) = (mπω)d/2 e−mω4 x2

, (3.115)
and

τψ(x) = (mπω)d/2
(
dω

4 −
mω2

8 x2
)
e−

mω
4 x2

. (3.116)

For ϕ, we choose

ϕ(p) = −
√
αv(p)
ε(p)

(
1 + p · P

αMPekε(p)

)
. (3.117)
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In particular, by the definition of MPek in (3.32),∫
p|ϕ(p)|2dp = P (3.118)

and ∫
ε(p)|ϕ(p)|2dp = α

∫ |v(p)|2
ε(p) dp+ P 2

2αMPek . (3.119)

Furthermore, for this choice of ϕ we have

ReF (x) = αJ(x) + 1
α
KP (x) (3.120)

where
J(x) :=

∫ |v(p)|2
ε(p)2 cos(p · x) dp (3.121)

and
KP (x) := 1

(MPek)2

∫ |v(p)|2
ε(p)4 (P · p)2 cos(p · x) dp (3.122)

as well as

ImF (x) = −P ·x− 2
MPek

∫ |v(p)|2
ε(p)3 (p ·P ) (sin(p · x)− p · x) dp ≡ −P ·x+A(x) (3.123)

where we used (3.118). As a consequence,

Gψ,ϕ(R) = Nα

∫
e−

m
4 ωx

2
eReF (x)ei((R−P )·x+A(x)) dx

= Nα

∫
e−

m
4 ωx

2
eReF (x) cos ((R− P ) · x+ A(x)) dx

(3.124)

where
Nα := 1

(2π)d (mπω)d/2 e−F (0). (3.125)

We finally evaluate

G
(2)
ψ,ϕ(R, S) = Nα

∫
e−

1
2ω (R−S)2

e−
mω
4 x2

eReF (x) cos
(
A(x) + (R− P ) · x− (R− S) · x

2

)
dx.

(3.126)
In the next step, we perform an asymptotic analysis of the integrals appearing in the definitions
of G,G(2) for large values of α.

Estimation of the weight integrals : Let

I := Nα

∫
e−

m
4 ωx

2
eReF (x) dx; (3.127)

since ReF (x) ≤ ReF (0), this integral is well-defined. We can hence introduce the probability
measure

m(x)dx = Nαe
−m4 ωx

2
eReF (x)

I
dx. (3.128)

Note that all moments of this distribution exist. We denote the expectation value with respect
to this distribution by 〈·〉, which should not be confused with the usual Dirac notation also
employed here. The following lemma shows that m(x) is essentially a Gaussian distibution
with effective support on a lengthscale x ∼ α−1/2 dictated by the F (x).
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Lemma 3.2.1. For all r ≥ 0 there exist positive constants C(r)
1 , C

(r)
2 such that for all α large

enough and all P with |P |/α small enough we have

C
(r)
1 α−(r+d)/2 ≤ e−F (0)

∫
|x|re−

m
4 ωx

2
eReF (x)dx ≤ C

(r)
2 α−(r+d)/2. (3.129)

Proof. As cos x ≤ 1− 1
2x

2 + 1
24x

4, we clearly have, with J defined in (3.121),

J(x) ≤ J(0)− λx2 + θ|x|4 (3.130)

with λ = 1
2d
∫ p2|v(p)|2

ε(p)2 dp and θ = 1
24d

∫ |p|4|v(p)|2
ε(p)2 dp. These integrals are finite by our assump-

tions on v and ε. Moreover the function KP , defined in (3.122), satisfies KP (x) ≤ KP (0)
and hence

ReF (x) ≤ F (0)− αλx2 + αθ|x|4. (3.131)
Let us choose ε such that 0 < ε < λ, and let δ =

√
ε
θ
. We have that J(x) < J(0) for any x

with |x| > δ. By the Riemann–Lebesgue Lemma, J is continuous and vanishes at infinity. It
follows that there exists ξ > 0 such that

J(x) ≤ J(0)− ξ, ∀x : |x| > δ. (3.132)

Note that since J is independent of α and P , so are δ and ξ. From (3.132) and from
KP (x) ≤ KP (0) we conclude that

ReF (x) ≤ F (0)− αξ ∀x : |x| > δ. (3.133)

We thus obtain the upper bound∫
|x|re−

m
4 ωx

2
eReF (x)dx =

∫
|x|≤δ
|x|re−

m
4 ωx

2
eReF (x)dx+

∫
|x|>δ
|x|re−

m
4 ωx

2
eReF (x)dx

≤ eF (0)
∫
Rd
|x|re−α(λ−ε)x2−m4 ωx

2
dx+ eF (0)−αξ

∫
Rd
|x|re−

m
4 ωx

2
dx

= eF (0)Cr
((

α(λ− ε) + mω

4

)−(r+d)/2
+ e−αξ

(
mω

4

)−(r+d)/2
) (3.134)

where Cr =
∫
Rd |u|re−u

2
du = 2πd/2Γ( r+d2 )/Γ(d2). Since ω ∼ √α and ξ > 0, the desired upper

bound follows.
For a lower bound we simply use cos x ≥ 1− 1

2x
2, and consequently

ReF (x) ≥ F (0)−
(
αλ+ P 2

α
µ

)
x2 (3.135)

where
µ = 1

2d(MPek)2

∫
|p|4 |v(p)|2

ε(p)4 dp. (3.136)

Thus we can directly bound∫
|x|re−

m
4 ωx

2
eReF (x)dx ≥ eF (0)Cr(

αλ+ P 2

α
µ+ m

4 ω
) r+d

2
. (3.137)

Again, since ω ∼ √α, and since |P | ≤ Cα by assumption, we arrive at the desired conclusion.
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The lemma implies the bounds

C
(r)
1

C
(0)
2
α−r/2 ≤ 〈|x|r〉 ≤ C

(r)
2

C
(0)
1
α−r/2. (3.138)

With these preliminary computations and results at hand, we shall now estimate the various
terms in (3.103), as well as the norm of φP .

Bound on the norm: Note that for all R ∈ Rd

Gψ,ϕ(R) = Nα

∫
e−

m
4 ωx

2
eReF (x) cos ((R− P ) · x+ A(x)) dx ≤ I (3.139)

with I defined in (3.127). Since 〈φP |φP 〉 = Gψ,ϕ(P ), Gψ,ϕ(P ) is positive. Using cos x ≥
1− 1

2x
2 again, we have

Gψ,ϕ(P ) ≥ I − J (3.140)
where

J := 1
2Nα

∫
e−

m
4 ωx

2
eReF (x)A(x)2 dx. (3.141)

Since | sin x− x| ≤ C|x|3 and ∫ |v(p)|2
ε(p)2 |p|4 dp is finite, we have

|A(x)| ≤ CA|P ||x|3 (3.142)

for some constant CA > 0, independent of P and α. Therefore

J
I
≤ C2

AP
2

2 〈|x|6〉 ≤ C
P 2

α3 (3.143)

by (3.138). Hence, if α is large and |P | . α, J /I is small and we can conclude that

1
〈φP |φP 〉

= 1
Gψ,ϕ(P ) ≤

1
I

(
1 + C

P 2

α3

)
(3.144)

for suitable C > 0. This bound on the norm is sufficient for our purpose.

Bound on the field energy: Using the definitions, we can express the expected value of the
field energy in our trial state as

〈φP |F|φP 〉
〈φP |φP 〉

=
∫
ε(p)|ϕ(p)|2Gψ,ϕ(P − p)

Gψ,ϕ(P ) dp. (3.145)

Using now (3.139), (3.140) and (3.143), we have

Gψ,ϕ(P − p)
Gψ,ϕ(P ) ≤ 1 + C

P 2

α3 , (3.146)

and hence
〈φP |F|φP 〉
〈φP |φP 〉

≤ α
∫ |v(p)|2

ε(p) dp+ P 2

2αMPek + C
P 2

α2 (3.147)

for |P | . α, where we used (3.119).
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Bound on the interaction energy : We have

〈φP |V|φP 〉 = 2Re
∫
v(p)ϕ(p)G(2)

ψ,ϕ(P − p, P ) dp. (3.148)

By plugging in (3.114), we obtain

〈φP |V|φP 〉 = 2Nα

∫∫
v(p)ϕ(p)e− 1

4mω p
2
e−

mω
4 x2 cos

(
A(x)− p · x

2

)
eReF (x) dxdp. (3.149)

Let Ṽ denote the above expression without the coupling between p and x under the cosine,
i.e.,

Ṽ = 2Nα

∫
v(p)ϕ(p)e− 1

4mω p
2
dp
∫
e−

mω
4 x2

eReF (x) cosA(x) dx. (3.150)

Using the definition of Gψ,ϕ and plugging in our choice of ϕ, we obtain

Ṽ = −2Gψ,ϕ(P )
√
α
∫ |v(p)|2

ε(p) e−
p2

4mω dp. (3.151)

Note that the contribution of the P -dependent part of ϕ vanishes here by rotation invariance.
By e−x ≥ 1− x and the definition of ω in (3.15), this gives

√
αṼ

〈φP |φP 〉
≤ −2α

∫ |v(p)|2
ε(p) dp+ dω

4 . (3.152)

We are left with estimating the difference |Gψ,ϕ(P )−1(〈φP |V|φP 〉 − Ṽ )|. We apply the
elementary inequality∣∣∣∣cos

(
A(x)− p · x

2

)
− cosA(x)

∣∣∣∣ ≤ | cos(A(x))|| cos(p · x/2)− 1|+ | sinA(x)|| sin(p · x/2)|

≤ (p · x)2

8 + |A(x)| |p||x|2
(3.153)

where we used | cos z − 1| = 2| sin2 z/2| ≤ z2/2. Recalling our choice of ϕ in (3.117), this
gives √

αG(P )−1
(
〈φP |V|φP 〉 − Ṽ

)
≤ Ia + Ib + IIa + IIb (3.154)

with the following terms to estimate:

Ia = 2αNα

G(P )

∫∫ |v(p)|2
ε(p) e−

1
4mω p

2
e−

mω
4 x2

eReF (x) (p · x)2

8 dxdp

≤ αNα

4Id

∫ p2|v(p)|2
ε(p) dp

∫
x2e−

mω
4 x2

eReF (x)dx

(
1 + C

P 2

α3

)
= mω2

8 〈x
2〉
(

1 + C
P 2

α3

)
(3.155)

where we have used (3.144), the rotation-invariance of |v|2/ε, and the definition of ω in (3.15);

Ib = 2Nα

G(P )

∫∫ |P · p| |v(p)|2
MPekε(p)2 e−

1
4mω p

2
e−

mω
4 x2

eReF (x) (p · x)2

8 dxdp

≤ |P | 〈x
2〉

4MPek

(∫ |p|3|v(p)|2
ε(p)2 dp

)(
1 + C

P 2

α3

)
≤ C
|P |
α

(3.156)
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by (3.138);

IIa = 2αNα

G(P )

∫∫ |v(p)|2
ε(p) e−

1
4mω p

2
e−

mω
4 x2

eReF (x)|A(x)| |p||x|2 dxdp

≤ CAα|P | 〈|x|4〉
(∫ |p||v(p)|2

ε(p) dp

)(
1 + C

P 2

α3

)
≤ C
|P |
α

(3.157)

by (3.142) and again (3.138); finally

IIb = 2Nα

G(P )

∫∫ |P · p| |v(p)|2
MPekε(p)2 e−

1
4mω p

2
e−

mω
4 x2

eReF (x)|A(x)| |p||x|2 dx dp

≤ CA
P 2

MPek 〈|x|
4〉
(∫ |v(p)|2|p|3

ε(p)2 dp

)(
1 + C

P 2

α3

)
≤ C

P 2

α2 .

(3.158)

Combining all the estimates, we conclude that in the regime of large α and small |P |/α we
have

√
α
〈φP |V|φP 〉
〈φP |φP 〉

≤ −2α
∫ |v(p)|2

ε(p) dp+ dω

4 + mω2

8 〈x
2〉+ C

|P |
α
. (3.159)

Bound on the kinetic energy : By plugging (3.116) into (3.111), we see that the first term in

(3.103) is given by

1
2m
〈φP |(P − Pf )2|φP 〉

〈φP |φP 〉
= dω

4 −
mω2

8
〈x2 cosA(x)〉
〈cosA(x)〉 , (3.160)

where 〈φP |φP 〉 = Gψ,ϕ(P ) = I〈cosA(x)〉 and, in particular, 0 < 〈cosA(x)〉 ≤ 1. We have,
by (3.142),

〈x2 cosA(x)〉 ≥ 〈x2〉 − CP 2〈|x|8〉, (3.161)
and thus

〈x2 cosA(x)〉
〈cosA(x)〉 ≥ 〈x

2〉 − CP 2〈x8〉 ≥ 〈x2〉 − CP 2α−4 (3.162)

using (3.138). In particular,

1
2m
〈φP |(P − Pf )2|φP 〉

〈φP |φP 〉
≤ dω

4 −
mω2〈x2〉

8 + C
P 2

α3 . (3.163)

Upon adding (3.163), (3.159), and (3.147), we arrive at the claimed upper bound.
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CHAPTER 4
The ground state energy of the

strongly coupled polaron in free space -
lower bound, revisited

This chapter contains the unpublished note

• K. Myśliwy, The ground state energy of the strongly coupled polaron in free space -
lower bound, revisited. (2019)

Abstract
We provide a better error estimate for the Lieb and Thomas lower bound to the ground state
energy of the Fröhlich polaron in the limit of strong coupling, directly adapting a method
recently used in the proof of the ground state asymptotics of the confined model.

4.1 The Fröhlich Hamiltonian
When an electron is moving through a polarizable crystal, it starts to interact with the emerging
instanteneous dipoles. In the classical picture, this creates a cloud of screening charge which
is dragged along with the electron. In the quantum point of view, this cloud gives rise to a
quasi-particle called the polaron, and the actual dipoles themselves amount to a phonon field
with a dispersion relation corresponding to the optical branch. This heuristic picture leads
to the model of a single quantum particle interacting with a scalar boson field. Because the
electrostatic potential from a dipole scales as the square inverse distance from the dipole, in the
simplest case of a linear electron-phonon coupling, we have the following (formal) Hamiltonian

H = p2 + N−
√
α
∫
R3
dy

1
2π2|x− y|2

a†y + h.c., (4.1)

acting on L2(R3)⊗F , where F is the bosonic Fock space over L2(R3). Here x ∈ R3 is the
electon’s coordinate, p2 is the electron’s kinetic energy operator, N is the number operator
on F , and the a†y are the bosonic creation operators (operator-valued distributions) on F
creating a dipole at y ∈ R3, and α > 0 is the coupling constant. Typically in the literature
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one passes to the Fourier space, in which the Fröhlich Hamiltonian arises

H = p2 + N−
√
α

(2π)3

∫
R3
dk

1
|k|
eikxak + h.c., (4.2)

with [ak, a†k′ ] = δ(k − k′), and the k’s label the momentum modes of the phonon field.
In this work, we will be concerned with the question of the ground state energy of (4.2),
E(α), in the case of the strong coupling limit, i.e. α � 1. Despite the fact that (4.2) has
been proposed almost a century ago, the question of the ground state energy asymptotics is
still an object of intensive studies when it comes to proving rigorous statements. It has been
first suggested in calculations by Pekar and Feynman [9, 4] and then proven by Donsker and
Varadhan [58] that lim

α→∞
E(α)/α2 = ePek, where ePek ≈ −0.109/(16π2) is the Pekar constant,

which arises if the semiclassical approximation is applied to the problem, wherein the creation
and annihilation operators are treated as complex numbers. In 1997 Lieb and Thomas [2] have
given a very nice proof of a lower bound to the ground state energy in this form, which came
along with the first known error estimate, which scales as α9/5. This estimate is far away
from the conjectured behaviour of the first order correction to the ground state energy, which
should reflect the effects of quantum fluctuations of the phonon field on the energy and is
believed to be smaller than the leading term by a factor of α−2. This has recently been proven
rigorously by Frank and Seiringer [66] for the case of the confined model, that is, for the case
when the electron and the field are confined to move in a set Ω being an open, bounded subset
of R3 with a sufficiently regular boundary, and under some natural assumptions on the Pekar
functional, an object which naturally appears in the discussion. These assumptions have been
recently verified for the case of Ω being a ball in R3 by Feliciangeli and Seiringer [60].
The proof of the conjecture about the next order term in the functional form of the ground
state energy in the case of Ω = R3 remains an open problem, however. While in our work
are still far away from providing that proof, we at least slightly improve the error bound of
Lieb and Thomas, using some techniques that were developed by Frank and Seiringer for the
confined case, but which can be (in contrast, however, to some of their results which do rely
on the boundedness of Ω) easily adapted to Ω = R3.

4.1.1 Notation and units
We mentioned that the problem is physically linked to quantum fluctuations of the phonon
field because the Pekar calculation, and also the Lieb and Thomas proof relies on a c-number
substitution in place of the non-commuting creation and annihilation operators. The subleading
term should hence reflect the effect of the a, a† being actually non-commuting objects. This
fact of itself motivates our choice of units, in which the α is incorporated into the length
scale of the problem, and then into the creation and annihilation operators [64] These new
operators, for f, g ∈ L2, commute to

[af , a†g] = (f, g)
α2 , (4.3)

explicitly displaying the relation between the semi-classical and strong coupling limits. The
Hamiltonian is therefore unitarily equivalent to α2H with

H = p2 + N− (2π)−3
∫
R3
dk

1
|k|
eikxak + h.c; (4.4)

with p2 = −4R3 being the Laplace operator acting on the electronic coordinates. For some
orthonormal basis of L2(R3), N =

∫
R3 a

†
kakdk = ∑

i a
†(φi)a(φi) with spectrum { i

α2}∞i=0.
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It is understood that in general k stands for the phonon momentum variable and x for
the electron’s position. We denote the characteristic function of a subset A ⊂ R3 by χA.
For h(·) being an L2-function of the phonon variables, we denote hx(k) = h(k)eikx and
a(fx) = (2π)− 3

2
∫
dkf(k)eikxak and similarly for a†(fx). Even though

v := |k|−1 (4.5)

and
wx := vxχ|k|≥K (4.6)

for any K > 0 are not in L2, we will continue to use this notation for the corresponding
operators which appear in the definition of H. Actually, the fact that vx /∈ L2(R3) causes
concern about the domain of H, in particular whether it is densely defined ot not. This
question was tackled by Griesemer and Wünsch in 2016 [74] and some ideas used in this work
were first developed there. Finally, we use the notation that a . b means that a 6 Cb for
some constant C > 0 independent on the parameters on which b or a possibly depend. Having
established the notation and conventions, we are now free to pass to the section containing
the main ideas and results.

4.2 Auxiliary considerations, main result and proof
strategy

For K > 0, write the Hamiltonian as

H = p2 + N− + N+ − V+ − V− (4.7)

with N− =
∫
|k|<K a

†
kakdk, N+ = N−N−, V+ = a(wx) + a†(wx) and V− = a(vx −wx) + h.c..

Denote then
HK := p2 +N− − V−. (4.8)

Since we are interested in the lower bound, we can drop the N+ due to its positivity. The paper
of Lieb and Thomas [2] (in fact, only sections II-IV) can be applied to provide an estimate on
HK , which we will state in the form of a theorem.

Theorem 6. For any E > 0, P > 0 and K > 0 and δ > 0 sufficiently small, we have

inf spec HK − ePek > c1δ − E + c2
P 2K

δE
+ c3

K3

α2P 3 (4.9)

where the ci’s are negative constants independent of α.

The method used in the proof consists of the following steps:

1. First, one localizes the electron in a cube of side length ∼ E−1/2. By the IMS localization
formula, this gives rise to an error of order E, as given above.

2. The phonon modes are already localized into a ball of radius K, which is later divided
into cubes of side length P , called blocks, and labelled by Bi. Within each block, one
chooses some arbitrary point kB. Using |eikx− eikBx| 6 |(k− kB)x| . PE−1/2 and the
obvious positivity of (

√
δa†k− δ−1/2|k|−1(eikx− eikBx))(h.c.) for any δ, one replaces HK

with H ′K = p2 +∑
i

∫
Bi
dk(1− δ)a†kak + ake

ikBx

|k| + hc.) at the energy penalty ∼ P 2K
δE

.
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3. One introduces ABi =
∫
Bi
dkak|k|−1/

√∫
Bi
dk|k|−1 with A†BiABi 6

∫
Bi
a†kakdk . Then

by replacing ak with AB in the Hamiltonian, one can apply a coherent-state Ansatz and
choose kB optimally in each block. This directly leads to the Pekar functional (with
coefficients altered by ∼ δ), whose minimization leads to ePek, as desired. The − K3

α2P 3

term stems from the application of the coherent state ansatz, which replaces A†BAB
with |A|2− 1/α2, where A is the corresponding c−number substitute, and the α−2 term
is rooted in the commutator. This −α−2 term appears one per block, and the total
number of blocks is of order K3/P 3. In this way, we arrive at the statement of the
Theorem.

We are therefore left with the interaction term V+, which describes the interaction of the
electron with high-momentum modes of the phonon field. Giving an estimate to this part of
the energy is essential both from the physical and mathematical perspective. In fact, it is the
V+ which contains the part of vx not in L2, raising problems concerning the domain of H. On
the other hand, physically, one expects that the electron has to be localized on the lengthscale
of the wavelength of the phonon mode to effectively interact with it. This localization increases
the kinetic energy, which, by the uncertainty principle, becomes larger with the localization
accuracy. It is therefore expected that the high momentum modes contribute only negligibly
to the ground state energy.
Assuming that the effect of the interaction with high-momentum phonon modes decays
according to a power-law decay in the cut-off parameter K, we have now the simple

Theorem 7. Assume that inf spec H > inf specHK − c
Kβ holds for some β > 0 and c > 0.

Then
inf spec H− ePek & −αε (4.10)

with ε = −4β
11β+9 and α sufficiently large.

Proof. The proof is elementary. Invoking Theorem 2.1, we get for any E > 0, P > 0, K > 0
and δ > 0 sufficiently small,

inf specH− ePek > c1δ − E + c2
P 2K

δE
+ c3

K3

α2P 3 − cK
−β. (4.11)

Now, we optimize over E,P,K and δ, assuming that K ∼ ακ, P ∼ αp, E ∼ αε and δ ∼ αd.
Since the function in question behaves like −ya − y−b for y ∈ {E, δ,K, P} for the relevant
exponents a > 0, b > 0, at the optimum we have that ya−1 ∼ y−b−1. We conclude that at
the optimum, every term is of the same order. After imposing this condition, we get a set of
linear equations on the exponents

−βκ = −2− 3κ− 3p = d = κ+ 2p− d− ε = ε.

It yields ε = −4β
11β+9 , and, consistently, that δ � 1 and K � 1 if α� 1.

Remark 7.1. The original method of Lieb and Thomas, based on the Lieb–Yamazaki estimate,
leads to β = 1, which gives ε = −1/5. We will improve the ultraviolet regularization scaling
law to β = 5/2, yielding ε = −20/73, which is slightly better, although still by a factor α126/73

larger than expected.

Remark 7.2. In the limit where β becomes arbitrarily large, the best estimate we can get is
−4/11, effectively squaring the Lieb and Thomas correction but still being off the mark by
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α18/11. This is the best one can do by using a power-like estimate on the interaction with
high-momentum modes and combining it with the Lieb and Thomas method. To attack the
ground state energy asymptotics in full space, we need additional ideas.

Remark 7.3. In the case of the confined model, the IMS localization error disappears as
the electron is localized in a fixed volume Ω from the very beginning. Then repeating the
remaining steps, we have

inf spec H− ePek > c1δ + c2|Ω|2/3
P 2K

δ
+ c3

K3

α2P 3 − cK
−β. (4.12)

Performing the optimizing procedure now, we get that the error term scales as αεΩ with
εΩ = −4β

8β+9 . This gives asymptotically an error of order α−1/2; the original LT ultraviolet
regularization leads to α−4/17 whereas β = 5/2 yields α−20/58. Confining the electron makes
the LT result closer to the expectations, but is still not sufficient.

As announced, we shall improve the (unconfined) error bound by proving that one can take β
larger than unity. The essential technical result is hence the following.

Theorem 8. For any K > 0 and α� 1, we have

inf spec H ≥ inf spec HK − const.(K−5/2 + α−1K−3/2 + α−2K−1). (4.13)

Taking now K ∼ ακ with 0 < κ < 1, which is consistent with the statement and proof of
Theorem 7, we see that the leading term is K−5/2. Therefore, given the above considerations,
it directly leads to the main result:

Corollary 4.2.1. For the Fröhlich Hamiltonian in free space, we have the following lower
bound for the ground state energy asymptotics

inf spec H > ePek − const.α−20/73 (4.14)

for α� 1.

4.2.1 Overview of the proof
As we see, the main point is to provide a power-like ultraviolet regularization estimate. Recall
that the ultraviolet cutoff problem in the original proof of Lieb and Thomas was handled using
the identity

− V+ =
∑
j

[
pj, a

(
kj
|k|2

wx

)
− h.c.

]
. (4.15)

Using this, one readily applies the Cauchy-Schwarz inequality to get the bound

− V+ & −
c̃1

K
p2 − N+ −

3
2α2 (4.16)

for c̃1 > 0. The cutoff thus gives rise to an error of order K−1, which effectively sets the scale
of the entire error estimate. The method of Frank and Seiringer, which essentially amounts
to replacing 1

k
vx → 1

k3vx and differentiating it three times, enables one to replace the above
bound by

− V+ & −
(
p2 + N + 1

)2
K−5/2; (4.17)
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which goes along with a better error in the cutoff parameter ∼ K−5/2, but one is faced with
the appeareance of the square of the non-interacting Hamiltonian. This can be handled,
however, by an appropriate unitary transformation. It effectively replaces (4.17) with

V+ & −(H2 + C2)K−5/2 (4.18)

for some C > 0, which can be chosen to be independent of α. Now, if Ψ is a state in the
domain of H such that (Ψ,HΨ) is sufficiently close to inf spec H, then (Ψ,H2Ψ) can be
chosen to be of order (ePek)2, independently of α. This observation immediately leads to

inf spec H > inf spec HK − const.K−5/2, (4.19)

and the way towards the final estimate is now cleared: we can apply the remaining steps of
the Lieb and Thomas proof to HK , now equipped with a better error estimate for the UV
cut-off, which scales as K−5/2 and not as K−1 as before.
The remaining sections are devoted to the proof of Theorem 2.3. We directly adapt the results
of Frank and Seiringer, which were originally obtained for the confined model, to the case
of Ω = R3. This actually requires only minor modifications, which in many cases amount
merely to notational adjustments. In fact, most of the material is actually easier to handle
in the unconfined case. However, we work it out here in detail to make the presentation
self-contained. The section is split into two parts: first, we demonstrate the triple commutator
method and a subsequent proof of (4.17). Secondly, we apply the Gross transformation to the
original Hamiltonian, estimate the additional terms which arise, and finally prove (4.18). As
already pointed out, this immediately yields the main result, Corollary 2.1, thus establishing a
new error estimate on the subleading term in the lower bound to the ground state energy of
the strongly-coupled polaron in free space.

4.3 The ultraviolet cutoff
4.3.1 The triple Lieb–Yamazaki bound
As announced, this section gives rise to the following

Proposition 4.3.1. For any K > 0 and α large enough, we have

− V+ & −
(
p2 + N + 1

)2 (
K−5/2 + α−1K−3/2

)
. (4.20)

Proof. Clearly, with p = −i∇x,

V+ =
∑
rst

[
pr,

[
ps,

[
pt, a

†
(
kskrkt
|k|6

wx

)
− a

(
kskrkt
|k|6

wx

)]]]
. (4.21)

It is convenient to rewrite the above commutator as a multi(anti)linear expression in the p’s
and Brst ≡ a†

(
kskrkt
|k|6 wx

)
− a

(
kskrkt
|k|6 wx

)
, which makes it ready for a direct application of the

Cauchy-Schwarz inequality in the form

AC + C†A† 6 εAA† + 1
ε
C†C (4.22)

for any A,C and arbitrary ε > 0. We get

V+ =
∑
rst

(prps[pt, Brst] + [pt, Brst]prps)− 2
(
prpsBrstpt + ptB

†
rstprps

)
. (4.23)
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The second term is obtained by renaming the indices, which is possible by the invariance of
Brst under this operation. This term is bounded by

−
(
prpsBrstpt + ptB

†
rstprps

)
6 εp2

rp
2
s + 1

ε
ptB

†
rstBrstpt (4.24)

for any ε > 0. On the other hand, for any Ψ ∈ F , f ∈ L2 and B = a†(f)− a(f),

(Ψ, B†BΨ) = ||BΨ||2 6 2(||a(f)Ψ||2 + ||a†(f)Ψ||2)

≤ 4(Ψ, a†(f)a(f)Ψ) + 2(Ψ, [a(f), a†(f)]Ψ) 6 ||f ||22(Ψ, 4N + 2
α2 ,Ψ).

Using this, we obtain
B†rstBrst . K−5(4N + 2

α2 ). (4.25)

In exactly the same way one can handle the first term; by defining ∑t[pt, Brst] ≡ Crs we get
for any µ > 0 that this term is bounded by µp2

sp
2
r + 1

µ
C2
rs, and

C2
rs 6 4a†

(
krks
|k|4

wx

)
a

(
krks
|k|4

wx

)
+ 2
α2 ||

krks
|k|4

wx||2. (4.26)

However, here the norm scales as K−3/2, which is not dangerous in the term stemming from
the commutator, as it gets multiplied by α−2. The bare term has to be improved, however,
if we wish to maintain the better K−5/2 decay rate. This can be done using the following
lemma, which will be useful also afterwards.
Lemma 4.3.2. Let f ∈ (L2 ∩ L∞)(R3). Then a†(fx)a(fx) 6 (3(2π)2/3‖f‖4/3

∞ ‖f‖
2/3
2 )p2N.

Proof. It is enough to restrict ourselves to the one-particle sector of the Fock space C ⊗
L2(R3) ' L2(R3). Then for all Ψ ∈ L2(R3)⊗ L2(R3),

||a(f)Ψ||2 =
∫
dp|

∫
dkf(k)Φ(p− k, k)|2; (4.27)

here, we have written down the integral in the x−space, absorbed the eikx factor into the Ψ,
and used the Parseval’s identity (Φ stands for the Fourier transform of Ψ(x, k) regarded as a
function of x). Now we use the CS inequality to bound the above by

||a(f)Ψ||2 6
∫
dp

(∫
dk
|f(k)|2
|k − p|2

)(∫
dk|k − p|2|Φ(p− k, k)|2

)
6

6

(
sup
q

∫
dk
|f(k)|2
|k − q|2

)
(Ψ, p2NΨ). (4.28)

The prefactor is now estimated directly:∫
dk|f(k)|2|k − q|−2 =

∫
B(q,R)

dk|f(k)|2|k − p|−2 +
∫
Bc(q,R)

dk|f(k)|2|p− k|−2

≤ ||f 2||∞4πR + ||f ||
2
2

R
; (4.29)

where B(x,R) is the ball of radius R centered at x ∈ R3. Optimizing over R, we arrive at
the statement of the Lemma.
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Using the lemma for fx = krks
|k|4 wx we get a†

(
krks
|k|4 wx

)
a
(
krks
|k|4 wx

)
. K−5p2N since in this case

‖f‖∞ ∼ K−3 and ‖f‖2 ∼ K−3/2. We have thus gained an additional power in the decay rate
at the cost of the electron’s kinetic energy. This conforms with the physical interpretation of
the cutoff decay rate given in the introduction.
Finally, after taking ε = 2K−5/2, µ = 6(K−5/2 + 2α−1K−3/2), summing over the indices, and
combining the above inequalities we get

V+ . K−5/2(|p|4 + 3p2(N + 2α−2)) + (K−5/2 + α−1K−3/2)(|p|4 + p2N + 1/2). (4.30)

Since p2 and N commute, are positive and self-adjoint, we can treat the above operator term
as an ordinary polynomial, which can be bounded by the one given in the statement of the
proposition for α sufficiently large.

4.3.2 The Gross transformation
The operator inequality given in Proposition 3.1 is not sufficient for our purpose, as in principle
(Ψ, (p2 + N)2Ψ) is infinite if Ψ is in the domain of H. Our goal will be to replace the
non-interacting Hamiltonian there by H. Then also (4.19) will be true. We will achieve this
result by (4.18). To get there, we need

Proposition 4.3.3. Let Ψ be in the domain of p2 + N, being a dense subset of L2(R3)⊗F .
Then for any ε > 0 there exist constants K ′ > 0, C > 0 and a unitary transformation UK′,α,
parametrized by K ′ and α, such that

(1 + ε)||(p2 + N)Ψ||+C||Ψ|| > ||U †K′,αHUK′,αΨ|| > (1− ε)||(p2 + N)Ψ|| −C||Ψ||, (4.31)

assuming that α is sufficiently large.

Proof. Consider some function of the phonon variables, f , such that fx ∈ L2(R3) and
(fx, pfx) =

∫
k|f(k)|2dk = 0. Take

U = eα
2(a(fx)−a†(fx)). (4.32)

Using the easy to prove formulae, valid for any h s.t. (h, fx) <∞,

UahU
† = ah + (h, fx) Ua†hU

† = a†h + (fx, h), (4.33)

as well as

[p, U ] = (−i∇xU), (−i∇xa)(fx) = −a(pfx), (−i∇xa
†)(fx) = a†(pfx) (4.34)

and the formula
deA(x)

dx
=
∫ 1

0
etA(x)A′(x)e(1−t)A(x)dt (4.35)

one finds

UHU † = p2 + N + α4(a†(pfx) + a(pfx))2 + 2α2pa(pfx) + 2α2a†(pfx)p+
+a(α2p2fx + fx − vx) + a†(α2p2fx + fx − vx) + ||fx||22 − 2Re(vx, fx) ≡ p2 + N + Ṽ ,

we see that the proposition will be true if we find fx and C such that

||ṼΨ|| 6 ε||(p2 + N)Ψ||+ C||Ψ||
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for all Ψ ∈ D(p2 + N). Take any K ′ > 0 and consider fx = χ|k|>K′e
ikx

|k|(α2|k|2+1) with

α2p2fx + fx − vx = −χk6K
′eikx

|k|
≡ gx.

Writing down the relevant integrals, we readily have the following estimates:

||gx||22 . K ′, ||fx||22 . α−4K ′−3 (4.36)

and
(vx, fx) . α−2K ′−1, ||pfx||22 . α−4K ′−1. (4.37)

We are now able to estimate every term in Ṽ . We have, by similar computations as in
Proposition 3.1

||(a(gx) + a†(gx))Ψ|| 6 ||gx||2
∣∣∣∣∣∣∣∣√(N + α−2)Ψ

∣∣∣∣∣∣∣∣ . δ||(N + α−2)Ψ||+ δ−1K ′||Ψ|| (4.38)

for any δ > 0. Similarly,

α4||(a†(pfx) + a(pfx))2Ψ|| . K ′−1||(N + α−2)Ψ||. (4.39)

The cross-terms give, by pafa†fp . p2(N + α−2)||f ||22 . (p2 + N + α−2)2||f ||22,

α2||a†(pfx)pΨ|| . K ′−1/2||(p2 + N + α−2)Ψ||. (4.40)

The term α2pa(pfx) requires a bit more work. "Commuting the p through", we get that it can
be bounded using the former estimate, and an estimate on α2a(p2fx). p2fx /∈ L2, however,
so we split it as

α2p2fx = gx − fx + eikx

 1
|k|
− 1√

K ′2 + |k|2

+ eikx√
K ′2 + |k|2

. (4.41)

Then we estimate term by term. The gx and fx estimates are exactly as above, the operator
estimates included. Clearly, jx := |k|−1 − (K ′2 + |k|2)−1/2 6 K ′|k|−1(K ′2 + |k|2)−1/2 with
the square of the L2 norm of the latter bounded by ∼ K ′. We are left with an estimate of
the last term. We can use the Cauchy-Schwarz inequality in the same way as in Lemma 3.1
and estimate

||a((K ′2 + |k|2)−1/2eikx)Ψ|| 6

√√√√(sup
p

∫
dk

1
(K ′2 + |k|2)|k − p|2

)
(Ψ,Np2Ψ). (4.42)

The integral can be shown to be bounded by ∼ ∫ dk(K ′2 + |k|2)−1|k|−2 ∼ K ′−1. Indeed, we
split it into an integral over the set Ap := {k : |k − p|2 ≥ |k|2} and its complement. On Ap,
the bound holds clearly; on the complement, we bound it by ∫ dk(K ′2 + |k − p|2)−1|k − p|−2

and translate the coordinate system. Consequently,

||a((K ′2 + |k|2)−1/2eikx)Ψ|| . K ′−1/2||(p2 + N)Ψ||. (4.43)

The remaining estimates are

||a(gx)Ψ|| . K ′1/2||N1/2Ψ|| 6 δ||NΨ||+ δ−1K ′||Ψ||, (4.44)
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||a(fx)Ψ|| . α−2K ′−3/2||
√
NΨ|| 6 δ||NΨ||+ δ−1α−4K ′−3||Ψ|| (4.45)

and
||a(jx)Ψ|| . δ||NΨ||+ δ−1K ′||Ψ|| (4.46)

so that remaining part of a(p2fx) is bounded by δ||NΨ||+ δ−1K ′(1 + 1
K′4α2 )||Ψ||. Putting

it all together we see that the p2 + N terms are multiplied by δ,K ′−1/2, K ′−1, and the bare
Ψ terms -by δ−1K ′(2 +K ′−4α−2). It therefore suffices, assuming α� 1, to take δ ∼ ε and
K ′ ∼ ε−2, and hence also C ∼ ε−1.

Equipped with the last statement, which establishes a link between the domains of the
interacting and non-interacting Hamiltonians, we now use the obvious fact that A 6 0 =⇒
BAB† 6 0 for any B . Then from Proposition 3.1. we have

− UV+U
† & −U(p2 + N)2U †

(
K−5/2 + α−1K−3/2

)
. (4.47)

For the choice of fx as in Proposition 3.3, we have U †V+U = V+ + (wx, fx) as the inner
product is finite. Now, it is easy to see that (wx, fx) . α−2K−1 for the chosen K ′ and any
K > 0. Combining this with Proposition 3.3 by taking Ψ = U †Ψ′ for Ψ′ in the domain of H,
as well as some ε ∈ (0, 1), we conclude U(p2 + N)2U † 6 2

(1−ε)2 (H2 + C2) and hence

− V+ & −(H2 + C2)
(
K−5/2 + α−1K−3/2

)
− α−2K−1. (4.48)

We can now always choose Ψ′ such that both (Ψ′,H,Ψ′) is arbitrarily close to inf spec H and
(Ψ′,H2Ψ′) can be bounded by a constant independent of Ψ′ and α. Choosing such Ψ′, we
have finally

inf spec H > inf spec HK − const.(K−5/2 + α−1K−3/2 + α−2K−1) (4.49)

This is precisely the result that has been claimed.
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CHAPTER 5
Optimal upper bound for the

energy-momentum relation of a
strongly coupled polaron

This chapter contains the submitted paper

• D. Mitrouskas, K. Myśliwy and R. Seiringer, Optimal parabolic upped bound for the
energy-momentum relation of a strongly-coupled polaron, arXiv:2203.02454.

Abstract. We consider the large polaron described by the Fröhlich Hamiltonian and study its
energy-momentum relation defined as the lowest possible energy as a function of the total
momentum. Using a suitable family of trial states, we derive an optimal parabolic upper bound
for the energy-momentum relation in the limit of strong coupling. The upper bound consists
of a momentum independent term that agrees with the predicted two-term expansion for the
ground state energy of the strongly coupled polaron at rest, and a term that is quadratic
in the momentum with coefficient given by the inverse of twice the classical effective mass
introduced by Landau and Pekar.

5.1 Introduction
5.1.1 The Model
The large polaron provides an idealized description for the motion of a slow band electron
through a polarizable crystal. The analysis of the polaron is a classic problem in solid state
physics that first appeared in 1933 when Landau introduced the idea of self-trapping of an
electron in a polarizable environment [77]. Since it provides a simple model for a particle
interacting with a nonrelativistic quantum field, the polaron has been of interest also in field
theory and mathematical physics. In particular the strong coupling theory of the polaron
and Pekar’s adiabatic approximation have been the source of interesting and challenging
mathematical problems.
Following H. Fröhlich [68] the Hamiltonian of the model acts on the Hilbert space

H = L2(R3, dx)⊗F , (5.1)
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5. Energy-momentum relation of the Fröhlich polaron at strong coupling

with F the bosonic Fock space over L2(R3), and is given by

Hα = −∆x + α−2N + α−1φ(hx). (5.2)

Here x ∈ R3 is the coordinate of the electron, N denotes the number operator on Fock space,
and the field operator φ(hx) = a†(hx) + a(hx) with coupling function

hx(y) = − 1
2π2|x− y|2

(5.3)

accounts for the interaction between the electron and the quantum field. The creation and
annihilation operators satisfy the usual canonical commutation relations[

a(f), a†(g)
]

=
〈
f |g

〉
L2 ,

[
a(f), a(g)

]
= 0. (5.4)

Since we set ~ = 1 and the mass of the electron equal to 1/2, the only free parameter is the
coupling constant α > 0.
By rescaling all lengths by a factor 1/α, one can show that α2Hα is unitarily equivalent to the
Hamiltonian

HPolaron
α = −∆x + N +

√
αφ(hx), (5.5)

which is more common in the polaron literature and also explains why α→∞ is called the
strong coupling limit.
The Fröhlich Hamiltonian defines a translation invariant model, i.e., it commutes with the
total momentum operator,

[Hα,−i∇x + Pf ] = 0 (5.6)

where Pf = dΓ(−i∇) denotes the momentum operator of the phonons. This allows the
definition of the energy-momentum relation Eα(P ) as the lowest possible energy of Hα when
restricted to states with total momentum P ∈ R3. To this end, it is convenient to switch to
the Lee–Low–Pines representation

Hα(P ) = (Pf − P )2 + α−2N + α−1φ(h0), (5.7)

where Hα(P ) acts on the Fock space only [79]. The Fröhlich Hamiltonian Hα is unitarily
equivalent to the fiber decomposition ∫⊕R3 Hα(P )dP , which follows easily from transforming
Hα with eiPfx and diagonalizing the obtained operator in the electron coordinate. The
energy-momentum relation is then defined as the ground state energy of the fiber Hamiltonian,

Eα(P ) = inf σ(Hα(P )), (5.8)

which by construction satisfies Eα(RP ) = Eα(P ) for all rotations R ∈ SO(3). It is known that
Eα(0) ≤ Eα(P ) and hence Eα(0) = inf σ(Hα) (in fact it is expected that Eα(0) < Eα(P ) for
all P 6= 0 [59]). Further properties, such as the domain of analyticity, existence of ground states
and the value of the bottom of the continuous spectrum, were analyzed in [69, 97, 90, 71, 57].
The aim of this work is to analyze the quantitative behavior of the energy-momentum relation
for large coupling α→∞. Our main result provides an upper bound for Eα(P ). The upper
bound consists of a momentum independent part coinciding with the optimal upper bound for
the ground state energy of the strongly coupled polaron at rest, and a momentum dependent
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part. In more detail, the momentum independent part is given by the classical Pekar energy
and the corresponding quantum fluctuations that are described by the energy of a system of
harmonic oscillators with frequencies determined by the Hessian of the corresponding classical
field functional. This part agrees with the expected asymptotic form of Eα(0), see (5.25).
The momentum dependent part, on the other hand, describes the energy of a free particle
with mass M(α) = 2α4

3
∫
|∇ϕ|2, where ϕ denotes the self-consistent polarization field, which

coincides with the classical polaron mass introduced by Landau and Pekar [78], see (5.24). As
will be explained in Section 5.1.3, our result confirms the heuristic picture of the polaron (the
electron and the accompanying classical field) as a free quasi-particle with largely enhanced
mass. To our best knowledge, the upper bound we present in this work is the first rigorous
result about the connection between the energy-momentum relation Eα(P ) and the classical
polaron mass M(α).
Starting from the works in the 30’s and 40’s [77, 78, 67] there has been a large number of
publications in the physics literature that studied the ground state energy Eα(0) and the
effective mass, that is, the inverse curvature of Eα(P ) at P = 0. For a comprehensive
summary of the earlier results, we refer to [87]. More recent developments are reviewed in
[50]. Mathematically rigorous results for the leading order asymptotics of Eα(0), for α large,
were obtained by Lieb and Yamazaki [86] (with non-matching upper and lower bounds) and
by Donsker and Varadhan [58] as well as Lieb and Thomas [2]. The effective mass has been
studied in [96, 59, 62, 85, 84, 53]. Further improvements have been obtained for confined
polarons or polaron models with more regular interaction [66, 63, 93]. For completeness, let
us also mention recent progress in the understanding of the polaron path measure [92, 52]
as well as the increased interest in the analysis of the Schrödinger time evolution of strongly
coupled polarons [73, 81, 82, 88, 61, 64, 65].

5.1.2 Pekar functionals
The semiclassical theory of the polaron has been introduced by Pekar [94]. It arises naturally
in the context of strong coupling, based on the expectation that the electron and the phonons
are adiabatically decoupled, similarly as the electrons are adiabatically decoupled from the
heavy nuclei in the famous Born–Oppenheimer theory [55, 54]. With this in mind, one can
minimize the Fröhlich Hamiltonian over product states of the form

Ψu,v = u⊗ ea†(αv)Ω (5.9)
where u ∈ H1(R3) is a normalized electron wave function, Ω = (1, 0, 0, . . .) the Fock space
vacuum and ea†(αv)Ω the coherent state, up to normalization, that is associated with a classical
field αv ∈ L2(R3). A simple computation leads to the Pekar energy functional

G(u, v) =

〈
Ψu,v|HαΨu,v

〉
H〈

Ψu,v|Ψu,v

〉
H

=
〈
u|(−∆ + V v)u

〉
L2 + ||v||2L2 (5.10)

with polarization potential

V v(x) = −2 Re
〈
v|hx

〉
L2 = −Re

∫ v(y)
π2|x− y|2

dy. (5.11)

By completing the square, one can further remove the field variable and obtain the energy
functional for the electron wave function,

E(u) = inf
v∈L2
G(u, v) =

∫
|u(x)|2dx− 1

4π

∫∫ |u(x)|2|u(y)|2
|x− y|

dxdy, (5.12)
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which is known [83] to admit a unique rotational invariant minimizer ψ > 0 (the minimizing
property is unique only up to translations and multiplications by a constant phase). Alternatively,
one can minimize the Pekar energy functional w.r.t. the electron wave function first. This
leads to the classical field functional

F(v) = inf
||u||L2=1

G(u, v) = inf spec (−∆ + V v) + ||v||2L2 (5.13)

whose unique rotational invariant minimizer is readily shown to be

ϕ(z) = −
〈
ψ
∣∣∣h·(z)ψ

〉
L2 =

∫ |ψ(y)|2
2π2|z − y|2

dy. (5.14)

The corresponding classical ground state energy is called the Pekar energy

ePek = E(ψ) = F(ϕ), ePek < 0, (5.15)

and by the variational principle it provides an upper bound for inf σ(Hα). The validity
of Pekar’s ansatz was rigorously verified by Donsker and Varadhan [58] who proved that
limα→∞ inf σ(Hα) = ePek and subsequently by Lieb and Thomas [2] who added a quantitative
bound for the error by showing that

inf σ(HF
α ) ≥ ePek +O(α−1/5). (5.16)

Given the potential V ϕ for the field ϕ, one can define the Schrödinger operator

hPek = −∆ + V ϕ(x)− λpek, λPek = ePek − ||ϕ||2L2 (5.17)

with λPek = inf σ(−∆ + V ϕ(x)) < 0 and ψ the corresponding unique ground state. It follows
from general arguments for Schrödinger operators that hPek has a finite spectral gap above
zero, and thus the reduced resolvent

R = Qψ(hPek)−1Qψ with Qψ = 1− Pψ, Pψ = |ψ〉〈ψ|, (5.18)

defines a bounded operator (Pψ denotes the orthogonal projection onto the state ψ).
The last object to be introduced in this section is the Hessian HPek of the energy functional
F at its minimizer ϕ, defined by〈

v
∣∣∣HPekv

〉
L2 = lim

ε→0

1
ε2

(
F(ϕ+ εv)−F(ϕ)

)
∀v ∈ L2(R3). (5.19)

In the following lemma we collect some important properties of HPek.

Lemma 5.1.1. The operator HPek has integral kernel

HPek(y, z) = δ(y − z)− 4 Re
〈
ψ
∣∣∣h·(y)Rh·(z)ψ

〉
L2 (5.20)

and satisfies the following properties.

(i) 0 ≤ HPek ≤ 1

(ii) KerHPek = Span{∂iϕ : i = 1, 2, 3}

(iii) HPek ≥ τ > 0 when restricted to (KerHPek)⊥

(iv) TrL2(1−
√
HPek) <∞.

The proof of the lemma, in particular Item (ii), is based on the analysis of the Hessian of the
energy functional E [80]. The details are given in Section 5.4.
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5.1. Introduction

Figure 5.1: The energy-momentum relation Eα(P ) is expected to have two characteristic regimes:
The parabolic quasi-particle regime for small momenta (dark area) and the radiative regime for large
momenta (light area). For the transition between the two there is no concrete prediction. The dashed
lines denote the quasi-particle energy (5.21) and the bottom of the continuous spectrum (5.23).
Their intersection defines the momentum scale Pc(α) that is proportional to α for large coupling.

5.1.3 Motivation and goal of this work
In this work, we are interested in the behavior of the energy-momentum relation Eα(P ) for
large values of the coupling α. In general, Eα(P ) is expected to interpolate between two
distinct regimes (see for instance [72, 70, 99, 97]): The quasi-particle regime and the radiative
regime. The former corresponds to small momenta, and the expectation is that the system
behaves effectively like a free particle with energy

Eeff
α (P ) = Eα(0) + P 2

2M eff(α) (5.21)

where the effective mass is determined by the inverse curvature of Eα(P ) at P = 0 (which is
known to be well-defined),

M eff(α) := 1
2 lim
P→0

(
Eα(P )− Eα(0)

P 2

)−1

. (5.22)

It is easy to verify that M eff(α) ≥ 1/2 (the mass of the electron in our units), and one can
further show that the inequality is strict if α > 0, so that the emerging quasi-particle is heavier
than the bare electron. The heuristic idea is that the electron drags along a cloud of phonons
when it moves through the crystal and thus appears to be heavier than it would be without
the interaction. The radiative regime, on the other hand, describes a polaron at rest and
an unbound/radiative phonon carrying the total momentum P . It is expected to be valid
for large momenta and it is characterized by a flat energy-momentum relation that equals or
approaches the bottom of the continuous spectrum [90],

inf σcont(Hα(P )) = Eα(0) + α−2. (5.23)

The two regimes cross at |P | = Pc(α) :=
√

2M eff(α)/α which marks a characteristic
momentum scale of the polaron. While the quasi-particle picture is expected to be accurate
for |P | � Pc(α), the radiative regime should hold for |P | � Pc(α) (see also Remark 2
below). Between the two regimes there is no concrete prediction for the behavior of Eα(P ).
A schematic plot is provided in Figure 5.1.
One aspect of this work is to show that the quasi-particle picture is mathematically rigorous,
insofar as it provides a parabolic upper bound on Eα(P ) that coincides with the expected form
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5. Energy-momentum relation of the Fröhlich polaron at strong coupling

of the quasi-particle energy in the limit of large coupling. Since the quasi-particle energy (5.21)
is determined by the values of Eα(0) and M eff(α), it is instructive to recall two long-standing
open conjectures concerning their behavior for α→∞. As explained in the previous section,
the phonon field behaves classically for large coupling, and thus it is expected that M eff(α)
should asymptotically tend to the expression that follows from the corresponding semiclassical
counterpart of the problem. This semiclassical theory of the effective mass was introduced by
Landau and Pekar in 1948 [78], and, based on this work (see also [96, 62]), it is conjectured
that

lim
α→∞

M eff(α)
α4 = MLP with MLP = 2

3 ||∇ϕ||
2
L2 . (5.24)

Although this problem is many decades old, the best available rigorous result is that M eff(α) is
divergent [85], with a recent proof that it diverges at least as fast as α2/5 [53]. Regarding the
ground state energy Eα(0) the prediction from the physics literature (see e.g. [51, 89, 98, 75])
is that

Eα(0) = ePek + 1
2α2 TrL2(

√
HPek − 1) +O(α−2−δ) as α→∞ (5.25)

for some δ > 0 (in fact it is predicted that δ = 2 [75]). Compared to the semiclassical
expansion this includes a subleading correction of order α−2, which we call the Bogoliubov
energy, and which arises from quantum fluctuations of the field around its classical value. For
a nice heuristic derivation of this correction, we recommend the study of [89]. Now inserting
(5.24) and (5.25) into (5.21), and based on the expectation that the quasi-particle regime is
restricted to |P | �

√
2M eff(α)/α ∼ α, it is clear that the Bogoliubov energy needs to be taken

into account in order to see the quasi-particle energy shift given by P 2/(2α4MLP) � α−2.
Mathematically, the validity of (5.25) has been established only for confined polaron models
[66, 63]. The corresponding upper bound for the unconfined model is a corollary of our main
result.
As a summary of the above we arrive at the following claim.

Conjecture. LetMLP be the Landau–Pekar mass defined in (5.24). There exists a continuous
function f : [0,∞)→ [0,∞), satisfying f(s)→ 1 as s→∞ and

f(s) = s

2MLP +O(s2) as s→ 0, (5.26)

such that for all P ∈ R3

lim
α→∞

α2
(
Eα(αP )− ePek − 1

2α2 TrL2

(√
HPek − 1

))
= f(P 2). (5.27)

Our main result, Theorem 5.2.1 below, provides an upper bound for Eα(αP ) that is compatible
with the conjecture in the quasi-particle regime. To be more precise, our result implies that
the left side of (5.27), with the limit replaced by the lim sup, is bounded from above by
P 2/(2MLP) for all P ∈ R3. This shows that the corrections to the quasi-particle energy are
always negative, a conclusion that is not entirely obvious a priori.
Remark 1. An immediate consequence of the conjecture would be that

1
2 lim
P→0

lim
α→∞

α2
(
Eα(αP )− Eα(0)

P 2

)−1

= MLP (5.28)

which is to be compared with (5.24) where the limits are taken in reversed order.
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Remark 2. Even though our analysis is focused on the quasi-particle regime, let us mention an
interesting problem concerning the radiative regime. The question is whether Eα(P ) enters
the continuous part of the spectrum, i.e. whether the spectral gap closes at some finite
momentum, or not. The answer may in fact depend on the dimension and possibly also on
the value of α. It is known that in two dimensions Eα(P ) remains an isolated eigenvalue for
all P , meaning that the curve approaches inf σcont(Hα(P )) only in the limit |P | → ∞ [97].
To our knowledge in three dimensions the question is not completely settled. While for small
momenta it is known that Eα(P ) corresponds to a simple eigenvalue [97], there is indication
from results obtained for weak coupling that Eα(P ) agrees with the bottom of the continuous
spectrum when |P | is sufficiently large [57].

5.2 Main Result
We are now ready to state the main result.

Theorem 5.2.1. Let Eα(P ) = inf σ(Hα(P )), MLP = 2
3 ||∇ϕ||

2
L2 with ϕ defined in (5.14)

and choose c > 0. For every ε > 0 there exists a constant Cc,ε > 0 such that

Eα(P ) ≤ ePek + TrL2(
√
HPek − 1)
2α2 + P 2

2α4MLP + Cc,ε α
− 5

2 +ε (5.29)

for all |P |/α ≤ c and all α large enough.

Since the operator
√
HPek−1 is trace class, non-zero and non-positive (see Lemma 5.1.1), the

second term on the right side is finite and lowers the energy. It corresponds to the predicted
quantum corrections of the ground state energy of the Fröhlich Hamiltonian [51, 89, 98, 75].
Since Eα(0) = inf σ(Hα), our theorem implies a two-term upper bound for the ground state
energy of the Fröhlich Hamiltonian that agrees with this prediction. For momenta in the range
α−

1
4 + ε

2 � |P |/α ≤ c, the last term in (5.29) is subleading for large α when compared to the
momentum dependent term. In this region the upper bound describes a quadratic dispersion
relation for a free quasi-particle with mass α4MLP. The upper restriction on the range of |P |
is natural, since for |P |/α ≥

√
2MLP the right side of (5.29) would be larger than the value

of the bottom of the continuous spectrum (5.23). The lower restriction |P |/α� α−
1
4 + ε

2 , on
the other hand, could in principle be improved by deriving a better error term in (5.29).
The derivation of a matching lower bound is, of course, more involved. To our knowledge
the best known parabolic lower bound is still the one obtained by Lieb and Yamazaki [86] in
1958 stating that Eα(P ) ≥ c1e

Pek + c2P
2/(2α4MLP) with c1 ≈ 3.07 and c2 ≈ 0.11. Even

for P = 0 it remains a challenging problem to improve the Lieb–Thomas bound (5.15) such
that it includes the quantum corrections of order α−2. Progress in this direction has been
achieved in [66, 63] for simplified polaron models in which the electron and the quantum field
are confined to suitable finite size regions.
In the next two sections we provide the definition of our trial state and formulate our main
statement as a variational estimate. The remainder of the paper is devoted to the proof of
the variational estimate. A sketch of the strategy of the proof is given in Section 5.3.2.

5.2.1 Bogoliubov Hamiltonian
In this section we introduce and discuss a quadratic Hamiltonian defined on the Fock space.
For its definition we set Π0 and Π1 to be the orthogonal projectors onto KerHPek = Span{∂iϕ :
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5. Energy-momentum relation of the Fröhlich polaron at strong coupling

i = 1, 2, 3} and (KerHPek)⊥, that is

Ran(Π0) = KerHPek, Ran(Π1) = (KerHPek)⊥. (5.30)

Even though we will not make explicit use of it, it is convenient to keep in mind that the
decomposition L2(R3) = Ran(Π0)⊕ Ran(Π1) implies the factorization

F = F0 ⊗F1 with F0 = F(Ran(Π0)) and F1 = F(Ran(Π1)). (5.31)

For technical reasons, which are explained in Section 5.3.4, we introduce the Bogoliubov
Hamiltonian HK with a momentum cutoff K ∈ (0,∞]. Setting N1 = dΓ(Π1) (the number
operator on F1) we define

HK = N1 −
〈
ψ
∣∣∣φ(h1

K,·)Rφ(h1
K,·)ψ

〉
L2 , (5.32)

where the new coupling function

h1
K,x(y) =

∫
dzΠ1(y, z)hK,x(z) with hK,x(y) = 1

(2π)3

∫
|k|≤K

eik(x−y)

|k|
dk (5.33)

results from the coupling function hx by removing all momenta larger than K and then
projecting to Ran(Π1). The second term in (5.32) defines the quadratic operator given by〈

ψ
∣∣∣φ(h1

K,·)Rφ(h1
K,·)ψ

〉
L2

=
∫∫

dydz
〈
ψ
∣∣∣(h1

K,·)(y)R(h1
K,·)(z)ψ

〉
L2(a†y + ay)(a†z + az). (5.34)

By definition HK acts non-trivially only on the tensor component F1. Below we will show that
HK is bounded from below and diagonalizable by a unitary Bogoliubov transformation. For
the precise statement, we need some further preparations.
For K ∈ (0,∞] we introduce HPek

K as the operator on L2(R3) defined by

HPek
K � Ran(Π1) = Π1 − 4TK (5.35a)

HPek
K � Ran(Π0) = 0 (5.35b)

where TK is defined by the integral kernel

TK(y, z) = Re
〈
ψ
∣∣∣h1
K,·(y)Rh1

K,·(z)ψ
〉
L2 . (5.36)

By definition HPek
∞ = HPek, see (5.20). Moreover we set ΘK = (HPek

K )1/4 and

AK � Ran(Π1) = Θ−1
K + ΘK

2 BK � Ran(Π1) = Θ−1
K −ΘK

2 (5.37a)

AK � Ran(Π0) = Π0 BK � Ran(Π0) = 0. (5.37b)

The next lemma, whose proof can be found in Section 5.4, implies some useful properties of
these operators, among others, that there is a constant C > 0 such that

sup
K≥K0

(
||AK ||op + ||BK ||HS

)
≤ C (5.38)

for some K0 large enough.
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Lemma 5.2.2. For K0 large enough there exist constants β ∈ (0, 1) and C > 0 such that

(i) 0 ≤ HPek
K ≤ 1 and (HPek

K − β) � Ran(Π1) ≥ 0

(ii) (BK)2 ≤ C(1−HPek
K )

(iii) TrL2(1−HPek
K ) ≤ C

for all K ∈ (K0,∞]. Moreover for all K ∈ (K0,∞)

(iv) TrL2((−i∇)(1−HPek
K )(−i∇)) ≤ CK.

Up to normal ordering the Hamiltonian HK corresponds to the second quantization of HPek
K .

From the properties of the latter we can deduce that HK is diagonizable by a unitary Bogoliubov
transformation. To this end we introduce the transformation

U.
Ka(f)U†K = a(AKf) + a†(BKf) for all f ∈ L2(R3). (5.39)

That this transformation defines a unitary operator UK for all K ∈ (K0,∞] is a consequence
of (5.38). This is known as the Shale-Stinespring condition and we refer to [95] for more
details. Also note that UK does not mix the two components in F = F0 ⊗F1.

Lemma 5.2.3. For K ∈ (K0,∞] with K0 large enough and UK the unitary operator defined
by (5.39), we have

U.
KH.

KU
†
K = dΓ(

√
HPek
K ) + 1

2TrL2(
√
HPek
K − Π1) (5.40)

with HPek
K defined by (5.35a) and (5.35b).

The proof is obtained by an explicit computation and postponed to Section 5.4. From this
lemma, we can infer that the ground state energy of HK is given by

inf σ(HK) = 1
2TrL2

(√
HPek
K − Π1

)
= 1

2TrL2

(√
HPek
K − 1

)
+ 3

2 , (5.41)

where we also used Π1 = 1 − Π0 and TrL2(Π0) = 3. Moreover, since HPek
K ≤ Π1 we have

inf σ(HK) < 0 and from Item (iv) of Lemma 5.2.2 we find that inf σ(HK) > −∞ uniformly
in K →∞.

For the ground state of H.
K we shall use the notation

ΥK = U†KΩ, (5.42)

where it is important to keep in mind that the state ΥK has excitations only in F1 (i.e., no
zero-mode excitations) since U†K acts as the identity on F0, see (5.37b).
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5. Energy-momentum relation of the Fröhlich polaron at strong coupling

5.2.2 Trial state and variational estimate
As starting point for the definition of our trial state consider the Fock space wave function
obtained from the fiber decomposition of the classical Pekar product state Ψψ,ϕ, that is

ΨPek
α (P ) =

∫
dx ei(Pf−P )xψ(x)ea†(αϕ)Ω. (5.43)

Testing the energy of Hα(P ) with ΨPek
α (P ), one would in fact obtain that Eα(P ) is bounded

from above by

ePek − 3
2α2 + P 2

α4MLP + o(α−2). (5.44)

For Eα(0) this provides already a better bound compared to the semiclassical approximation
for inf σ(Hα). The improvement comes from taking into account the translational symmetry
and can be interpreted as the missing zero-point energy of three quantum oscillators (that
turned into translational degrees of freedom). As a side remark, we find it somewhat surprising
that fiber decompositions of this form have been employed very rarely in the polaron literature,
exceptions being [76] and [11]. We think they could be of interest also for other translation-
invariant polaron type models.
To obtain the desired bound for Eα(P ), we need to add several modifications to the integrand
in (5.43). On the one hand, we have to replace the classical field ϕ by a suitably shifted ϕP
in order to get the correct momentum dependent term (note that (5.44) is missing a factor
1
2 in the quadratic term). The missing part of the rest energy (compare with (5.41)), on
the other hand, is caused by two types of correlations that need to be added to the Pekar
product state. First, we include correlations between the electron and the phonons. This is
done in the spirit of first-order adiabatic perturbation theory. Second, we rotate the vacuum
by the unitary transformation (5.39) that diagonalizes the Bogoliubov Hamiltonian (5.32). As
discussed, the latter describes the quantum fluctuations of the phonons around the classical
field. For technical reasons, briefly explained in Section 5.3.2, we also need to introduce
suitable momentum and space cutoffs in the trial state.
Explicitly, we consider the family of Fock space wave functions ΨK,α(P ) ∈ F , depending on
the coupling α, the total momentum P ∈ R3 and the cutoff K ∈ (K0,∞), given by

ΨK,α(P ) =
∫

dx ei(Pf−P )x ea
†(αϕP )−a(αϕP )

(
G0
K,x − α−1G1

K,x

)
(5.45)

where

ϕP = ϕ+ iξP with ξP = 1
α2MLP (P∇)ϕ, MLP = 2

3 ||∇ϕ||
2
L2 , (5.46)

and

G0
K,x = ψ(x)ΥK , G1

K,x = uα(x)(Rφ(h1
K,·)ψ)(x)ΥK and ΥK = U†KΩ. (5.47)

Here uα : R3 → [0, 1] is a radial function, satisfying

uα(x) =

1 ∀ |x| ≤ α

0 ∀ |x| ≥ 2α
and ||∇uα||L∞ + ||∆uα||L∞ ≤ Cα−1 (5.48)

for some C > 0. For completeness, we recall that ψ > 0 and ϕ are the unique rotational
invariant minimizers of the Pekar functionals (5.12) and (5.13).
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Remark 3. Writing Gi
K,x we think of these states as elements in L2(R3,F) and of

(Rφ(h1
K,·)ψ)(x) =

∫∫
dzdy R(x, y)h1

K,y(z)ψ(y)
(
a†z + az

)
(5.49)

as an x-dependent Fock space operator. Via the isomorphism L2(R3,F) 'H , we can view
Gi
K,x also as a wave function in H . In this case we shall write

G0
K = ψ ⊗ΥK , G1

K = uαRφ(h1
K,·)ψ ⊗ΥK . (5.50)

For the introduced trial states, we prove the following variational estimate, where H∞ denotes
the Bogoliubov Hamiltonian (5.32) for K =∞.

Proposition 5.2.4. Let ΨK,α(P ) ∈ F as in (5.45), choose c, c̃ > 0 and set r(K,α) =
K−1/2α−2 +

√
Kα−3. For every ε > 0 there exists a constant Cε > 0 (we omit the

dependence on c and c̃) such that
〈
ΨK,α(P )|Hα(P )ΨK,α(P )

〉
F〈

ΨK,α(P )|ΨK,α(P )
〉
F

≤ ePek +
inf σ(H∞)− 3

2
α2 + P 2

2α4MLP + Cεα
εr(K,α)

(5.51)

for all |P |/α ≤ c and all K, α large enough with K/α ≤ c̃.

With (5.41) and HPek
∞ = HPek we can rewrite the term of order α−2 as

inf σ(H∞)− 3
2 = 1

2TrL2

(√
HPek − 1

)
. (5.52)

Choosing K now proportional to α optimizes the asymptotics of the error in (5.51) and proves
Theorem 5.2.1.

5.3 Proof of Proposition 5.2.4
We recall the definition of the field operators

φ(f) = a†(f) + a(f), π(f) = φ(if) (5.53)

and the Weyl operator

W (f) = e−iπ(f) = ea
†(f)−a(f) = ea

†(f)e−a(f)e
− 1

2 ||f ||
2
L2 . (5.54)

The Weyl operator is unitary and satisfies

W †(f) = W (−f), W (f)W (g) = W (g)W (f)e2i Im〈g|f〉L2 = W (f + g)ei Im〈g|f〉L2 .
(5.55)
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5.3.1 The total energy
The proof of Proposition 5.2.4 starts with a convenient formula for the energy evaluated in
the trial state. For the precise statement, we introduce the y-dependent function in L2(R3),

wP,y = (1− e−y∇)ϕP , (5.56)

and the y-dependent Fock space operator

AP,y = iPfy + igP (y), gP (y) = − 2
MLP

∫ 1

0
ds 〈ϕ|e−sy∇(y∇)3(P∇)ϕ〉L2 . (5.57)

Since gP (y) is real-valued we have (AP,y)† = −AP,y. We further consider the Weyl-transformed
Fröhlich Hamiltonian,

H̃α,P = W (αϕP )†
(
Hα − ePek

)
W (αϕP ) = hPek + α−2N + α−1φ(hx + ϕP ), (5.58)

where we recall hPek = −∆ + V ϕ − λPek, and denote the shift operator acting on L2(R3) by
Ty = ey∇ with y ∈ R3.

Lemma 5.3.1. For ΨK,α(P ) defined in (5.45) we have

〈
ΨK,α(P )|Hα(P )ΨK,α(P )

〉
F

=
(
ePek + P 2

2α4MLP

)
N + E + G +K (5.59)

where N = ||ΨK,α(P )||2F and

E =
∫

dy
〈
G0
K |H̃α,PTye

AP,yW (αwP,y)G0
K

〉
H

(5.60a)

G = − 2
α

∫
dy Re

〈
G0
K |H̃α,PTye

AP,yW (αwP,y)G1
K

〉
H

(5.60b)

K = 1
α2

∫
dy
〈
G1
K |H̃α,PTye

AP,yW (αwP,y)G1
K

〉
H
. (5.60c)

For the proof we recall that the Weyl operator shifts the creation and annihilation operators
by complex numbers,

W (g)†a†(f)W (g) = a†(f) + 〈g|f〉L2 , W (g)†a(f)W (g) = a(f) + 〈g|f〉L2 , (5.61)

and, as a simple consequence,

W (g)†φ(f)W (g) = φ(f) + 2 Re
〈
f |g

〉
L2 , (5.62a)

W (g)†NW (g) = N + φ(g) + ||g||2L2 , (5.62b)
W (g)†PfW (g) = Pf − a†(i∇g)− a(i∇g)−

〈
g|i∇g

〉
L2 . (5.62c)

Moreover we need the following identity.

Lemma 5.3.2. Let ϕP = ϕ+ iξP with ξP defined by (5.46). Then

W †(αϕP )ei(Pf−P )yW (αϕP ) = eAP,yW (αwP,y). (5.63)
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Proof of Lemma 5.3.2. We first observe that

e−iPfya†(f)eiPfy = a†(e−y∇f) (5.64)

which follows from d
ds
e−isPfya†(e(s−1)y∇f)eisPfy = 0. In combination with (5.55) this leads to

W †(αϕP )eiPfyW (αϕP ) = eiPfyW (α(1− e−y∇)ϕP ) exp
(
iα2 Im〈ϕP |e−y∇ϕP 〉L2

)
. (5.65)

Recalling ϕP = ϕ+ i 1
α2MLP (P∇)ϕ, we compute

α2 Im〈ϕP |e−y∇ϕP 〉L2 = 2
MLP 〈ϕ|e

−y∇(P∇)ϕ〉L2

= − 2
MLP 〈ϕ|(y∇)(P∇)ϕ〉L2 − 2

MLP

∫ 1

0
ds 〈ϕ|e−sy∇(y∇)3(P∇)ϕ〉L2 (5.66)

where we inserted e−y∇ = 1 − (y∇) + 1
2(y∇)2 −

∫ 1
0 ds e−sy∇(y∇)3 and used that, due

to rotational invariance of ϕ, 〈ϕ|(P∇)ϕ〉L2 = 0 = 〈ϕ|(y∇)2(P∇)ϕ〉L2 . Also because of
rotational invariance,

〈ϕ|(y∇)(P∇)ϕ〉L2 = −(Py)
3 ||∇ϕ||2L2 = −(Py)

2 MLP, (5.67)

and thus, α2 Im〈ϕP |e−y∇ϕP 〉L2 = Py + gP (y).

Proof of Lemma 5.3.1. The norm squared is given by

N =
∥∥∥∥ ∫ dx ei(Pf−P )xW (αϕP )

(
G0
K,x − α−1G1

K,x

)∥∥∥∥2

F

=
∑

i∈{0,1}
α−2i

∫∫
dydx

〈
Gi
K,x|W (αϕP )†ei(Pf−P )(y−x)W (αϕP )Gi

K,y

〉
F

− 2α−1 Re
∫∫

dydx
〈
G0
K,x|W (αϕP )†ei(Pf−P )(y−x)W (αϕP )G1

K,y

〉
F
. (5.68)

Shifting y → y+x and writing the x-integration as an inner product in the electron coordinate,
cf. Remark 3, we can proceed for i, j ∈ {0, 1} with∫∫

dydx
〈
Gi
K,x|W (αϕP )†ei(Pf−P )(y−x)W (αϕP )Gj

K,y

〉
F

=
∫∫

dydx
〈
Gi
K,x|W (αϕP )†ei(Pf−P )yW (αϕP )Gj

K,y+x

〉
F

=
∫

dy
〈
Gi
K |W (αϕP )†ei(Pf−P )yW (αϕP )TyGj

K

〉
H

=
∫

dy
〈
Gi
K |eAP,yW (αwP,y)TyGj

K

〉
H
, (5.69)

where we applied Lemma 5.3.2 in the last step. Similarly for the energy〈
ΨK,α(P )|Hα(P )ΨK,α(P )

〉
F

=
∑

i∈{0,1}
α−2i

∫∫
dydx

〈
Gi
K,x|W (αϕP )†e−i(Pf−P )xHα(P )ei(Pf−P )yW (αϕP )Gi

K,y

〉
F

− 2α−1 Re
∫∫

dydx
〈
G0
K,x|W (αϕP )†e−i(Pf−P )xHα(P )ei(Pf−P )yW (αϕP )G1

K,y

〉
F

(5.70)
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where we also used self-adjointness of Hα(P ). Next we invoke

e−i(Pf−P )xHα(P ) =
(
−∆x + α−2N + α−1φ(hx)

)
e−i(Pf−P )x (5.71)

to proceed for i, j ∈ {0, 1} with∫∫
dydx

〈
Gi
K,x|W (αϕP )†

(
−∆x + α−2N + α−1φ(hx)

)
ei(Pf−P )(y−x)W (αϕP )Gj

K,y

〉
F

=
∫

dy
〈
Gi
K |W (αϕP )†Hαe

i(Pf−P )yW (αϕP )TyGj
K

〉
H

=
∫

dy
〈
Gi
K |W (αϕP )†HαW (αϕP )eAP,yW (αwP,y)TyGj

K

〉
H
. (5.72)

Using (5.62a), (5.62b) and −2 Re〈ϕP |hx〉L2 = −2 Re〈ϕ|hx〉L2 = V ϕ(x) we have

W (αϕP )†HαW (αϕP ) = −∆x + V ϕ(x) + α−2N + α−1φ(hx + ϕP ) + ||ϕP ||2L2

= H̃α,P + ePek + ||ϕP ||2L2 − ||ϕ||2L2 (5.73)

where we added and subtracted ePek = λPek + ||ϕ||2L2 . It remains to compute

||ϕP ||2L2 − ||ϕ||2L2 = 1
α4(MLP)2 ||(P∇)ϕ||2L2 = P 2

2α4MLP (5.74)

since ||(P∇)ϕ||2L2 = P 2

3 ||∇ϕ||
2
L2 = P 2

2 M
LP because of rotational invariance of ϕ. With (5.73)

inserted into (5.72), the stated formula for the energy follows from (5.68) and (5.70).

5.3.2 A short guide to the proof
Heuristic picture

Given Lemma 5.3.1, the remaining task is to show that (E + G +K)/N coincides, up to small
errors, with the energy contribution of order α−2 in (5.51). Although our proof is somewhat
technical, the main idea is a simple one, and we explain the corresponding heuristics here in
order to facilitate the reading. The main point is that the integrals appearing in the terms
given in Lemma 5.3.1 turn out to be, as α→∞ and |P |/α ≤ c, sharply localized around zero
at the length scale of order α−1. In this regime, as formally wP,y(z) ≈ y∇ϕ(z) for y small,
the Weyl operator W (αwP,y) effectively acts non-trivially only on the F0 part of the Fock
space (at this point it is convenient to recall the factorization (5.31)). Moreover, we shall
show that eAP,y can be effectively replaced by the identity operator and it suffices to consider
Ty ≈ 1 + y∇. Since our trial state coincides with the vacuum on F0, we thus expect for |y|
small that

Tye
AP,yW (αwP,y)Gi

K ≈ e−λα
2y2 (1 + y∇) ea†(αy∇ϕ)Gi

K , i = 0, 1 (5.75)

with λ = 1
6 ||∇ϕ||

2
L2 . (Since Ty acts on the electron coordinate, it commutes with eAP,y

and W (αwP,y)). Taking this approximation for granted, and considering only the term with
i = j = 0 in (5.69), would lead to

N ≈
∫

dy
〈
G0
K |TyeAP,yW (αwP,y)G0

K

〉
H

=
∫

dy e−λα2y2 + Errors. (5.76)
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With the above replacement, and keeping only the terms of order α−2 (relative to the factor
from the norm), the energy terms are found to be given by

E = 1
α2

〈
ψ ⊗ΥK |N1ψ ⊗ΥK

〉
H

∫
dy e−λα2y2 + Errors (5.77a)

+ 1
α

∫
dy e−λα2y2〈

ψ ⊗ΥK |
(
φ(h· + ϕ)(1 + (y∇)a†(αy∇ϕ))

)
ψ ⊗ΥK

〉
H

(5.77b)

G = − 2
α2 Re

〈
ψ ⊗ΥK |φ(h1

· )uαRφ(h1
K,·)ψ ⊗ΥK

〉
H

∫
dy e−λα2y2 + Errors (5.77c)

K = 1
α2

〈
ψ ⊗ΥK |φ(h1

· )RuαhPekuαRφ(h1
K,·)ψ ⊗ΥK

〉
H

∫
dy e−λα2y2 + Errors. (5.77d)

From here the Bogoliubov energy is obtained by setting uα = 1 andK =∞ in the leading-order
terms, and using RhPekR = R, since this would imply (omitting the errors)

(5.77a) + (5.77c) + (5.77d) =
〈
ψ ⊗Υ∞|(N1 − φ(h1

· )Rφ(h1
∞,·))ψ ⊗Υ∞

〉
H

1
α2

∫
dy e−λα2y2

= inf σ(H∞)
α2

∫
dy e−λα2y2

. (5.78)

The remaining − 3
2α2 term stems from the part of the interaction involving the zero modes. In

(5.77b), the term not involving y∇ vanishes due to 〈ψ|h·ψ〉L2 = −ϕ. Moreover, 〈ψ|h·∇ψ〉L2 =
−1

2∇ϕ using ∇h· = −(∇h)· via integration by parts (in the sense of distributions). Thus,
since [a†(y∇ϕ),U†∞] = 0,

(5.77b) =
∫

dy e−λα2y2〈Ω|φ(〈ψ|h·y∇ψ〉)a†(y∇ϕ)Ω
〉
F

= −1
2

∫
dy e−λα2y2 ||y∇ϕ||2L2 = − 3

2α2

∫
dy e−λα2y2

. (5.79)

Equations (5.78) and (5.79) now add up to the desired energy of order α−2, see (5.52). Note
that for estimating the error induced by replacing eAP,y by unity we require the momentum
cutoff K in the definition of the trial state, see Lemma 5.3.14.
The main issue in (5.75) is that while for small enough y one can use the first-order approx-
imation W (αwP,y) ≈ W (αy∇ϕ), for y large, on the other hand, the higher-order terms in
wP,y begin to play an important part, ultimately killing the Gaussian factor. Writing〈

Gi
K |H̃α(P )eAP,yW (αwP,y)TyGj

K

〉
H

(5.80)

= e
−α

2
2 ||wP,y ||

2
L2
〈
Gi
K |H̃α(P )eAP,yea†(αwP,y)e−a(αwP,y)TyG

j
K

〉
H
, i, j = 0, 1,

we notice that, since

||wP,y||2L2 = 2
∫

dk |ϕ̂P (k)|2(1− cos(ky))→ 2||ϕP ||2L2 for |y| → ∞, (5.81)

the prefactor should lead to a y-independent, exponentially small constant. In order to make
use of this exponential decay in α, however, we need to ensure that∣∣∣〈Gi

K |H̃α(P )eAP,yea†(αwP,y)e−a(αwP,y)TyG
j
K

〉
H

∣∣∣ ≤ Cαng(y) (5.82)

is polynomially bounded in α with some integrable function g(y), which heuristically can be
expected to be true since the average number of particles in the state H̃α(P )Gi

K is of order
one w.r.t. α. To obtain the required integrability in y is also the reason for introducing the
cutoff function uα in the definition of G1

K .
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Outline of the proof

Although the replacement (5.75) illustrates the main idea behind extracting the leading order
terms, in our proof we do not directly perform this replacement and estimate the resulting
error. Instead, when taking inner products, we commute the exponential operators ea†(αwP )

and e−a(αwP ) in W (αwP,y) to the left resp. to the right until they hit the vacuum state in
Gi
K . This involves the Bogoliubov transformation, cf. Lemma 5.3.10, and gives rise to a

slight modification of wP,y, which we denote by w̃P,y. These manipulations naturally lead
to a multiplicative factor exp(−α2

2 ||w̃P,y||
2
L2) which, as we shall see, indeed behaves like the

Gaussian function in (5.75) for |y| small and tends to a constant exponentially small in α
as |y| → ∞. In Lemma 5.3.4 we prove the large α asymptotics of integrals of the type∫
g(y) exp(−α2

2 ||w̃P,y||
2
L2)dy for a suitable class of functions g. The major part of the proof,

apart from extracting the leading order terms, is to establish that the resulting error terms in
the integrands are, in fact, functions in this class. This is, for the most part, achieved by use
of elementary estimates combined with the commutator method by Lieb and Yamazaki [86]
in the form stated in Lemma 5.3.8. As already mentioned, for certain terms this makes the
introduction of the space cutoff uα and the momentum cutoff K necessary, while for others,
it is enough to use the well-known regularity properties of ψ, the relevant consequences of
which are summarized in Lemma 5.3.6.

In the next two sections, we state the remaining necessary lemmas. The main proof is then
carried out in Sections 5.3.5–5.3.9.

Throughout the remainder of the proof we will abbreviate constants by the letter C and write
Cτ whenever we want to specify that it depends on a parameter τ . As usual, the value of a
constant may change from one line to the next.

5.3.3 The Gaussian lemma
We recall that wP,y = (1− e−y∇)ϕP and ΘK = (HPek

K )1/4 and set

w0
P,y = Π0wP,y ∈ KerHPek (5.83a)

w1
P,y = Π1wP,y ∈ (KerHPek)⊥ (5.83b)

w̃P,y = w0
P,y + ΘK Re(w1

P,y) + iΘ−1
K Im(w1

P,y). (5.83c)

Remark 4. Note that (y, z) 7→ Re(wP,y)(z) is even as a function on R6, while Im(wP,y)(z) is
odd on the same space. Since Π0 and ΘK have real-valued kernels that are even as functions
on R6, they preserve the parity properties just mentioned. That Π0 has the desired properties
follows directly from its explicit form. To see this for ΘK , it is enough to check this for HPek

K ,
which can be easily done using the fact that the resolvent R commutes with the reflection
operator, which, on the other hand, follows from the invariance of hPek and Πi under parity.
Thus (y, z) 7→ Re(wiP,y)(z) is even as a function on R6 for i = 0, 1 while the corresponding
imaginary parts are odd on the same space. These facts will be of relevance below where they
lead to the vanishing of several integrals.

The following lemma is proven in Section 5.4.
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Lemma 5.3.3. Let λ = 1
6 ||∇ϕ||

2
L2 and K0 > 0 large enough. For every c > 0 there exists a

constant C > 0 such that

||w1
P,y||2L2 + ||w̃1

P,y||2L2 ≤ C
(
α−2y2 + y4

)
(5.84a)∣∣∣||w0

P,y||2L2 − 2λy2
∣∣∣ ≤ C

(
α−2y2 + y4 + y6

)
(5.84b)∣∣∣||w̃P,y||2L2 − 2λy2

∣∣∣ ≤ C
(
α−2y2 + y4 + y6

)
(5.84c)

for all y ∈ R3, |P |/α ≤ c, K ∈ (K0,∞] and α > 0.

For 0 ≤ δ < 1 and η > 0 we introduce the weight function

nδ,η(y) = exp
(
−
ηα2(1−δ)||w̃P,y||2L2

2

)
(5.85)

where, for ease of notation, the dependence on α, P and K is omitted. Using the arguments
laid down in Remark 4, it is easy to see that nδ,η(y) is even as a function of y. Moreover in
the limit of large α the dominant part of the weight function when integrated against suitably
decaying functions comes from the term in the exponent that is quadratic in y, cf. (5.84c).
This is a crucial ingredient in our proofs and the content of the next lemma.

Lemma 5.3.4. Let η0 > 0, c > 0, λ = 1
6 ||∇ϕ||

2
L2 and nδ,η(y) defined in (5.85). For every

n ∈ N0 there exist constants d, Cn > 0 such that
∫
|y|ng(y)

∣∣∣∣nδ,η(y)− e−ηλα2(1−δ)y2
∣∣∣∣dy ≤ Cn

||g||L∞
α(4+n)(1−δ)+δ + e−dα

−2δ+1 ||| · |ng||L1 (5.86)

for all non-negative functions g ∈ L∞(R3) ∩ L1(R3), η ≥ η0, δ ∈ [0, 1), |P |/α ≤ c and all
K,α large enough.

At first reading, one should think of n = 0, δ = 0, η = 1 and g a suitable α-independent
non-negative function. In this case the integral involving the Gaussian is of order α−3 whereas
the term on the right hand side is of order α−4 and thus contributing a subleading error. The
proof of the lemma is given in Section 5.4. As a direct consequence that will be useful to
estimate error terms, we find

Corollary 5.3.5. Given the same assumptions as in Lemma 5.3.4, for every n ∈ N0 there
exist constants d, Cn > 0 such that

∫
|y|ng(y)nδ,η(y)dy ≤ Cn

||g||L∞
α(3+n)(1−δ) + e−dα

−2δ+1 ||| · |ng||L1 (5.87)

for all non-negative functions g ∈ L∞(R3) ∩ L1(R3), η ≥ η0, δ ∈ [0, 1), |P |/α ≤ c and all
K,α large enough.

Proof of Corollary 5.3.5. Since∫
dy |y|ne−ηλα2(1−δ)y2 = (ηλα2(1−δ))−

3+n
2

∫
dy |y|ne−y2 = Cnα

−(3+n)(1−δ), (5.88)

the statement follows immediately from Lemma 5.3.4.
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5.3.4 Further preliminaries
Estimates involving the Pekar minimizers

Lemma 5.3.6. Let ψ > 0 be the rotational invariant unique minimizer of the Pekar functional
(5.12), and let

H(x) :=
〈
ψ|Txψ

〉
L2 = (ψ ∗ ψ)(x). (5.89)

We have that ψ, |∇ψ| and H are Lp(R3, (1 + |x|n)dx) functions for all 1 ≤ p ≤ ∞ and all
n ≥ 0. Moreover, there exists a constant C > 0 such that for all x we have

|H(x)− 1| ≤ Cx2. (5.90)

Proof. As follows from [83], ψ(x) is monotone decreasing in |x|; moreover, it is smooth and
bounded and vanishes exponentially at infinity, i.e. there exists a constant C0 such that
ψ(x) ≤ Ce−|x|/C for all |x| large enough (for the precise asymptotics see [91]). This clearly
implies the statement for ψ. It further implies that all the derivatives of ψ are bounded. Hence,
in order to show the desired result for |∇ψ|, it suffices to show that ∫ dx|x|n|∇ψ(x)| is finite
for all n ≥ 0. Since ψ is radial, i.e. there is a function ψrad : [0,∞) → (0,∞) such that
ψ(x) = ψrad(|x|), and monotone decreasing, we have∫

dx |x|n|∇ψ(x)| = −4π
∫ ∞

0

dψrad(r)
dr rn+2dr = (n+ 2)

∫ |ψ(x)|
|x|
|x|ndx

≤ 4π
(
Rn+2

0 ||ψ||L∞ + n+ 2
R0
||| · |nψ||L1

)
(5.91)

for all R0 > 0. Clearly H is bounded, and hence, by |x + y|n ≤ 21−n (|x|n + |y|n), we can
easily bound ∫

|x|nH(x)dx ≤ 22−n||ψ||L1 ||| · |nψ||L1 (5.92)

from which the statement follows also for H. To show (5.90), use the Fourier representation

H(x) =
∫
|ψ̂(k)|2 cos(kx)dk, (5.93)

together with H(x) ≤ 1, cos(kx) ≥ 1− (kx)2

2 and ∇ψ ∈ L2.

The next lemma contains suitable bounds for the potential V ϕ and the resolvent R introduced
in (5.11), (5.14) and (5.18).

Lemma 5.3.7. There is a constant C > 0 such that

(V ϕ)2 ≤ C(1−∆), ±V ϕ ≤ 1
2(−∆) + C and ||∇R1/2||op ≤ C. (5.94)

Proof. For the proof of the first two inequalities, we refer to [82, Lemma III.2]. The bound
for the resolvent is obtained through

0 ≤ R
1
2 (−∆)R 1

2 ≤ R
1
2hPekR

1
2 −R

1
2 (V ϕ − λPek)R 1

2 ≤ CR + 1
2R

1
2 (−∆)R 1

2 , (5.95)

where we made use of the second inequality in (5.94).
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The commutator method

In the course of the proof we are frequently faced with bounding field operators like φ(hx).
From the standard estimates for creation and annihilation operators, we would obtain

||a(f)Ψ||H ≤ ||f ||L2 ||N1/2Ψ||H , ||a†(f)Ψ||H ≤ ||f ||L2 ||(N + 1)1/2Ψ||H , Ψ ∈H , (5.96)

which is not sufficient since h0(y) is not square-integrable. With the aid of the commutator
method introduced by Lieb and Yamazaki [86] one obtains suitable upper bounds by using in
addition some regularity in the electron variable of the wave function Ψ. For our purpose, the
version summarized in the following lemma will be sufficient.

Lemma 5.3.8. Let hK,· for K ∈ (1,∞] as defined in (5.33), let A denote a bounded
operator in L2(R3) (acting on the field variable) and a• ∈ {a, a†}. Further let X, Y be
bounded symmetric operators in L2(R3) (acting on the electron variable) that satisfy D0 :=
||X||op||Y ||op + ||∇X||op||Y ||op + ||X||op||∇Y ||op < ∞. There exists a constant C > 0 such
that

||Xa•(AhK,·+y)YΨ||H ≤ CD0||(N + 1)1/2Ψ||H (5.97a)

||Xa•(AhΛ,·+y − AhK,·+y)YΨ||H ≤ CD0√
K
||(N + 1)1/2Ψ||H (5.97b)

for all y ∈ R3, Ψ ∈H and Λ > K > 1.

Remark 5. Note that AhK,·+y = Ty(AhK,·) and in case that A has an integral kernel,

(AhK,x)(z) =
∫

duA(z, u)hK,x(u). (5.98)

Proof of Lemma 5.3.8. To obtain the first inequality, write hK,· = (hK,· − h1,·) + h1,· and
apply the second inequality (with Λ and K interchanged) to the term in parenthesis. The
bound for the term involving h1,· follows from (5.96), as

||a•(Ah1,·+y)YΨ||2H =
∫

dx ||a•(Ah1,x+y)(YΨ)(x)||2F (5.99)

≤
∫

dx||Ah1,x+y||2L2 ||(N + 1)1/2(YΨ)(x)||2F ≤ ||A||2op||h1,0||2L2 ||Y ||2op||(N + 1)1/2Ψ||2H .

To verify the second inequality, write the difference as a commutator

hΛ,x(z)− hK,x(z) = [−i∇x, jK,Λ,x(z)], jK,Λ,x(z) = 1
(2π)3

∫
K≤|k|≤Λ

dkke
ik(x−z)

|k|3
(5.100)

and use that ∇ and A commute (they act on different variables). Then similarly as in (5.99)
we obtain

||Xa•([∇, AjK,Λ,·+y])YΨ||H ≤ ||X∇a•(AjK,Λ,·+y)YΨ||H + ||Xa•(AjK,Λ,·+y)∇YΨ||H
≤ ||X∇||op||a•(AjK,Λ,·+y)YΨ||H + ||X||op||a•(AjK,Λ,·+y)∇YΨ||H
≤ ||A||op

(
||X∇||op||Y ||op + ||X||op||∇Y ||op

)
||jK,Λ,0||L2 ||(N + 1)1/2Ψ||H . (5.101)

The desired bound now follows from supΛ>K ||jK,Λ,0||2L2 ≤ C/K.
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A simple but useful corollary is given by

Corollary 5.3.9. Under the same conditions as in Lemma 5.3.8, with the additional assumption
that Y is a rank-one operator, there exists a constant C > 0 such that∫

dz ||X(AhK,·+y)(z)Y ||2op ≤ CD2
0 (5.102a)∫

dz ||X
(
(AhK,·+y)(z)− (AhΛ,·+y)(z)

)
Y ||2op ≤

CD2
0

Λ (5.102b)

for all y ∈ R3 and Λ > K > 1.

Proof. Since Y has rank one, we can use∫
dz ||X(AhK,·+y)(z)w||2L2 = ||Xa†(AhK,·+y)w ⊗ Ω||2H , (5.103)

for any w ∈ L2(R3), and similarly for (5.102b), and apply Lemma 5.3.8.

Transformation properties of UK

The next lemma collects relations for the Bogoliubov transformation UK defined in (5.39).
Its proof follows directly from this definition and the fact that ΘK = (HPek)1/4 is real-valued.
We omit the details.

Lemma 5.3.10. Let f ∈ L2(R3), f 0 = Π0f , f 1 = Π1f with Πi defined in (5.30) and set

f = f 0 + Θ−1
K Re(f 1) + iΘK Im(f 1) (5.104a)

f̃ = f 0 + Θ.
K Re(f 1) + iΘ−1

K Im(f 1). (5.104b)

The unitary operator UK defined in (5.39) satisfies the relations

UKa(f)U†K = a(f 0) + a(AKf 1) + a†(BKf 1) (5.105a)

U†Ka(f)U.
K = a(f 0) + a(AKf 1)− a†(BKf 1) (5.105b)

U.
Kφ(f)U†K = φ(f), U.

Kπ(f)U†K = π(f̃) (5.105c)

UKW (f)U†K = W (f̃). (5.105d)

The following statements provide helpful bounds involving the number operator when trans-
formed with the Bogoliubov transformation.

Lemma 5.3.11. There exists a constant b > 0 such that

U.
K(N + 1)nU†K ≤ bnnn(N + 1)n, U†K(N + 1)nU.

K ≤ bnnn(N + 1)n (5.106)

for all n ∈ N and K ∈ (K0,∞] with K0 large enough.

Proof. With b replaced by bK = 2||BK ||2HS + ||AK ||2op + 1, both estimates follow from [56,
Lemma 4.4] together with (5.105a) and (5.105b). That bK ≤ b for some K-independent
b > 0 is inferred from Lemma 5.2.2.
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In the next two statements we denote by 1(N > c) (resp. 1(N ≤ c)) the orthogonal projector
in F to all states with phonon number larger than (resp. less or equal to) c.

Corollary 5.3.12. Let ΥK = U†KΩ and Υ>
K := 1(N > αδ)ΥK for δ > 0. There exist

constants b, Cδ,n > 0 such that〈
ΥK |(N + 1)nΥK

〉
F
≤ bnnn (5.107a)〈

Υ>
K |(N + 1)nΥ>

K

〉
F
≤ Cδ,n α

−20. (5.107b)

for all n ∈ N0 and all K ∈ (K0,∞] with K0 large enough.

Proof. The first bound follows directly from Lemma 5.3.11. The second one is obtained from〈
Υ>
K |(N + 1)nΥ>

K

〉
F
≤ ||Nm(N + 1)nΥ>

K ||F ||N−mΥ>
K ||F

≤ ||(N + 1)n+mΥK ||F α−mδ ≤ (2(n+m)b)n+mα−mδ (5.108)

with m ≥ 20/δ.

Lemma 5.3.13. For δ > 0 and κ = 1/(16ebαδ) with b > 0 the constant from Lemma 5.3.11,
the operator inequality

1(N ≤ 2αδ)U†K exp(2κN)U†K1(N ≤ 2αδ) ≤ 2 (5.109)

holds for all K,α large enough.

Proof. We write out the Taylor series for the exponential and invoke Lemma 5.3.11,

1(N ≤ 2αδ)U†Ke2κNU†K1(N ≤ 2αδ) =
∞∑
n=0

(2κ)n
n! 1(N ≤ 2αδ)U†K(N + 1)nU†K1(N ≤ 2αδ)

≤
∞∑
n=0

(2κbn)n
n! 1(N ≤ 2αδ)(N + 1)n1(N ≤ 2αδ)

≤
∞∑
n=0

(8αδκbn)n
n! (5.110)

where we used 1 ≤ 2αδ in the last step. The stated bound now follows from the elementary
inequality n! ≥ (n

e
)n.

The reason for introducing the momentum cutoff in HK is to obtain a finite upper bound for
the norm of the state Pf |ΥK〉. This is the content of the next lemma, whose proof is given in
Section 5.4.

Lemma 5.3.14. Let Pf =
∫ dk k a†kak and K0 large enough. There is a C > 0 such that〈

Ω|U.
K(Pf )2U†KΩ

〉
F
≤ CK (5.111)

for all K ∈ (K0,∞).
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5.3.5 The norm
In this section we provide the computation of the norm N = ||ΨK,α(P )||2F .

Proposition 5.3.15. Let λ = 1
6 ||∇ϕ||

2
L2 and c > 0. For every ε > 0 there exist a constant

Cε > 0 (we omit the dependence on c) such that∣∣∣∣∣N −
(
π

λα2

)3/2∣∣∣∣∣ ≤ Cε
√
Kα−4+ε (5.112)

for all |P |/α ≤ c and all K,α large enough.

Proof. It follows from (5.68) and (5.69) that N = N0 +N1 +N2 with

N0 =
∫

dy
〈
G0
K

∣∣∣TyeAP,yW (αwP,y)G0
K

〉
H

(5.113a)

N1 = − 2
α

∫
dy Re

〈
G0
K

∣∣∣TyeAP,yW (αwP,y)G1
K

〉
H

(5.113b)

N2 = 1
α2

∫
dy
〈
G1
K

∣∣∣TyeAP,yW (αwP,y)G1
K

〉
H
. (5.113c)

Term N0. This part contains the leading order contribution ( π
λα2 )3/2. With H defined in

(5.89), let us write

N0 =
∫

dy H(y)
〈
ΥK

∣∣∣W (αwP,y)ΥK

〉
F

+
∫

dy H(y)
〈
ΥK

∣∣∣(eAP,y − 1)W (αwP,y)ΥK

〉
F

= N01 +N02. (5.114)

In the first term we use |ΥK〉 = U†K |Ω〉 and apply (5.105d) to transform the Weyl operator
with the Bogoliubov transformation. This gives

UKW (αwP,y)U†K = W (αw̃P,y) (5.115)

with w̃P,y defined in (5.83c). From (5.54) and (5.85), we thus obtain

N01 =
∫

dy H(y)
〈
Ω
∣∣∣W (αw̃P,y)Ω

〉
F

=
∫

dy H(y)n0,1(y). (5.116)

Since ||H||L1 + ||H||L∞ ≤ C, cf. Lemma 5.3.6, we can apply Lemma 5.3.4 in order to replace
the weight function n0,1(y) by the Gaussian e−λα2y2 . More precisely,∣∣∣∣∣

∫
dy H(y)n0,1(y)−

∫
dy H(y)e−λα2y2

∣∣∣∣∣ ≤ Cα−4 (5.117)

for all |P |/α ≤ c and all K,α large enough. Then we use |H(y)− 1| ≤ Cy2 in order to obtain∣∣∣∣∣N01 −
(
π

λα2

)3/2∣∣∣∣∣ ≤ Cα−4. (5.118)

To treat N02 it is convenient to decompose the state ΥK into a part with bounded particle
number and a remainder. To this end, we choose a small δ > 0 and write

ΥK = Υ<
K + Υ>

K = 1(N ≤ αδ)ΥK + 1(N > αδ)ΥK . (5.119)
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Inserting this into N02 and using unitarity of eAP,y and ||H||L1 ≤ C, we can estimate

|N02| ≤
∫

dy H(y)
∣∣∣〈Υ<

K

∣∣∣(eAP,y − 1)W (αwP,y)ΥK

〉
F

∣∣∣+ C||Υ>
K ||F . (5.120)

By Corollary 5.3.12 for n = 0, ||Υ>
K || ≤ Cδ α

−10. In the remaining expression we use (5.115),〈
Υ<
K

∣∣∣(eAP,y − 1)W (αwP,y)ΥK

〉
F

=
〈
Υ<
K

∣∣∣(eAP,y − 1)U†KW (αw̃P,y)Ω
〉
F
, (5.121)

and insert the identity

1 = eκNe−κN with κ = 1
16ebαδ (5.122)

on the left of the Weyl operator (where b > 0 is the constant from Lemma 5.3.11). After
applying the Cauchy–Schwarz inequality, this leads to∣∣∣〈Υ<

K

∣∣∣(eAP,y − 1)W (αwP,y)ΥK

〉
F

∣∣∣
≤ ||eκNUK(e−AP,y − 1)Υ<

K ||F ||e−κNW (αw̃P,y)Ω||F . (5.123)

In the second factor we then employ

||e−κNW (αw̃P,y)Ω||F = e
−α

2
2 ||w̃P,y ||

2
L2 ||e−κNea†(αw̃P,y)eκNΩ||F (5.124)

and use e−κNa†(f)eκN = a†(e−κf) to write

e−κNea
†(αw̃P,y)eκNΩ = ea

†(e−καw̃P,y)Ω = e
α2e−2κ

2 ||w̃P,y ||2
L2W (e−καw̃P,y)Ω. (5.125)

Combining the previous two lines we obtain

||e−κNW (αw̃.P,y)Ω||F = exp
(
− α2

2 (1− e−2κ)||w̃P,y||2L2

)
≤ nδ,η(y) (5.126)

for some α-independent η > 0 and α large enough. To estimate the first factor in (5.123), we
apply Lemma 5.3.13 (note that (eAP,y − 1)Υ<

K ∈ Ran(1(N ≤ 2αδ)))

||eκNUK(e−AP,y − 1)Υ<
K ||F ≤

√
2||(e−AP,y − 1)ΥK ||F . (5.127)

On the right side we use the functional calculus for self-adjoint operators

||(e−AP,y − 1)ΥK ||F ≤ ||AP,yΥK ||F ≤ ||(yPf )ΥK ||F + |gP (y)| ≤ C
(√

K|y|+ α|y|3
)
,

(5.128)

where in the last step we applied Lemma 5.3.14 and used

|gP (y)| ≤ Cα|y|3, (5.129)

which is inferred from (5.57) using ||∆ϕ||L2 <∞. Returning to (5.123) we have shown that

|N02| ≤ C
∫

dy H(y)
(√

K|y|+ α|y|3
)
nδ,η(y) + Cδ α

−10, (5.130)

and hence we are in a position to apply Corollary 5.3.5. This implies for all K,α large

|N02| ≤ C
(√

Kα−4(1−δ) + α−6(1−δ)+1
)

+ Cδ α
−10 ≤ Cδ

√
Kα−4(1−δ). (5.131)
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Term N1. We start by inserting (5.50) for G1
K in expression (5.113b). Since the Weyl operator

commutes with uα, R and Pψ = |ψ〉〈ψ|, we can apply (5.62a) to obtain

W (αwP,y)G1
K = uαR

(
φ(h1

K,·) + 2α〈hK,·|Re(w1
P,y)〉L2

)
PψW (αwP,y)G0

K , (5.132)

where we used that hK,x is real-valued. Note that 〈hK,·|Re(w1
P,y)〉L2 is a y-dependent

multiplication operator in the electron variable. With (TyeAP,y)† = T−ye
−AP,y and (5.119), we

can thus write

N1 = − 2
α

∫
dy Re

〈
R1,yψ ⊗

(
Υ<
K + Υ>

K

)∣∣∣W (αwP,y)G0
K

〉
H

= N<
1 +N>

1 , (5.133)

where we introduced the operator R1,y = R1
1,y +R2

1,y with

R1
1,y = Pψφ(h1

K,·)RuαT−yPψe−AP,y , (5.134a)

R2
1,y = 2αPψ

〈
hK,·|Re(w1

P,y)
〉
L2RuαT−yPψe

−AP,y . (5.134b)

Using Lemma 5.3.8 in combination with ||∇Pψ||op + ||∇R1/2||op <∞, see Lemmas 5.3.6 and
5.3.7, we can bound the first operator, for any Ψ ∈H , by

||R1
1,yΨ||H ≤ C||(N + 1)1/2uαT−yPψe

−AP,yΨ||H ≤ C||uαT−yPψ||op||(N + 1)1/2Ψ||H .
(5.135)

To estimate the second operator, we write out the inner product, use Cauchy–Schwarz twice,
apply Corollary 5.3.9 (with A = 1, X = R and Y = Pψ) and use (5.84a),

||R2
1,yΨ||2H = 4α2||

∫
dz Re(w1

P,y(z))PψhK,·(z)RuαT−yPψe−AP,yΨ||2H

≤ 4α2
∫

du |w1
P,y(u)|2

∫
dz ||PψhK,·(z)R||2op ||uαT−yPψe−AP,yΨ||2H

≤ Cα2||w1
P,y||2L2 ||uαT−yPψe−AP,yΨ||2H

≤ Cα2(y4 + α−4)||uαT−yPψ||2op||Ψ||2H . (5.136)

Combining the above estimates we arrive at

||R1,yΨ||H ≤ C||uαT−yPψ||op(1 + αy2)||(N + 1)1/2Ψ||H . (5.137)

Since ψ(x) decays exponentially for large |x|, the function fα(y) := ||uαT−yPψ||op satisfies

||| · |nfα||L1 ≤
∫

dy |y|n
(∫

dxψ(x+ y)2uα(x)2
)1/2

≤ Cnα
3+n for all n ∈ N0. (5.138)

With this at hand we can estimate the part containing the tail. Invoking Corollary 5.3.12

|N>
1 | ≤

C

α
||(N + 1)1/2Υ>

K ||F
∫

dy fα(y)(1 + αy2) ≤ Cδ α
−5. (5.139)

To estimate the first term in (5.133), we proceed similarly as in the bound for N02. We insert
the identity (5.122), apply Cauchy–Schwarz and employ (5.126). This leads to

|N<
1 | ≤

2
α

∫
dy ||eκNU.

K(e−AP,yR1,yψ ⊗Υ<
K)||F ||e−κNW (αw̃P,y)Ω||F

≤ 2
α

∫
dy ||eκNU.

K(e−AP,yR1,yψ ⊗Υ<
K)||F nδ,η(y). (5.140)
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In the remaining norm we use the fact that R1,y changes the number of phonons at most by
one, and thus we can apply Lemma 5.3.13 and (5.137), together with (5.107a), to get

||eκNU.
K(e−AP,yR1,yψ ⊗Υ<

K)||F ≤
√

2||R1,yψ ⊗Υ<
K ||F ≤ Cfα(y)

(
1 + αy2

)
. (5.141)

With Corollary 5.3.5, (5.138) and ||fα||L∞ ≤ 1, this leads to

|N<
1 | ≤

C

α

∫
dy fα(y)

(
1 + αy2

)
nδ,η(y) ≤ Cα−1−3(1−δ). (5.142)

Term N2. The strategy for estimating this term is similar to the one for N1. Proceeding as
described before (5.133), one obtains

N2 = 1
α2

∫
dy
〈
R2,yψ ⊗

(
Υ<
K + Υ>

K

)∣∣∣W (αwP,y)G0
K

〉
H

= N<
2 +N>

2 (5.143)

with R2,y = R1
2,y +R2

2,y and

R1
2,y = Pψφ(h1

K,·)Re−AP,yuαT−yuαRφ(h1
K,·)Pψ, (5.144a)

R2
2,y = 2αPψ〈hK,·|Re(w1

P,y)〉L2Re−AP,yuαT−yuαRφ(h1
K,·)Pψ. (5.144b)

It follows in close analogy as for R1,y in (5.134a)–(5.134b) that given any Ψ ∈H ,

||R2,yΨ||H ≤ C||uαT−yuα||op(1 + αy2)||(N + 1)Ψ||H , (5.145)

and since ||uαT−yuα||op ≤ 1(|y| ≤ 4α), we can use Corollary 5.3.12 to estimate

|N>
2 | ≤

C

α2 ||(N + 1)Υ>
K ||F

∫
dy 1(|y| ≤ 4α)(1 + αy2) ≤ Cδ α

−6. (5.146)

To bound the first term in (5.143) we proceed similarly as for N01,

|N<
2 | ≤ α−2

∫
dy ||eκNUK(R2,yψ ⊗Υ<

K)||F ||e−κNW (αw̃P,y)Ω||F

≤
√

2
α2

∫
dy ||R2,yψ ⊗Υ<

K ||H nδ,η(y) ≤ C

α2

∫
dy 1(|y| ≤ 4α)(1 + αy2)nδ,η(y).

(5.147)

The last integral is estimated again via Corollary 5.3.5, and thus |N<
2 | ≤ Cα−5+3δ.

Collecting all relevant estimates and choosing δ > 0 small enough completes the proof of the
proposition.

5.3.6 Energy contribution E
In this section we prove the following estimate for the energy contribution E defined in (5.60a).

Proposition 5.3.16. Let N1 = dΓ(Π1) and choose c > 0. For every ε > 0 there is a constant
Cε > 0 (we omit the dependence on c) such that∣∣∣∣∣ E − 1

α2

(〈
ΥK |N1ΥK

〉
F
− 3

2

)
N
∣∣∣∣∣ ≤ Cε

√
Kα−6+ε (5.148)

for all |P |/α ≤ c and K,α large enough.

95



5. Energy-momentum relation of the Fröhlich polaron at strong coupling

Proof. Since G0
K = ψ ⊗ΥK , hPekψ = 0 and NΥK = N1ΥK , one has

E =
∫

dy
〈
G0
K |
(
α−2N1 + α−1φ(h· + ϕP )

)
Tye

AP,yW (αwP,y)|G0
K

〉
H

= E1 + E2, (5.149)

where both terms provide contributions to the energy of order α−2.

Term E1. Recall that H(y) = 〈ψ|Tyψ〉L2 and use this to write

E1 = 1
α2

∫
dy H(y)

〈
ΥK |N1W (αwP,y)ΥK

〉
F

+ 1
α2

∫
dy H(y)

〈
ΥK |N1(eAP,y − 1)W (αwP,y)ΥK

〉
F

= E11 + E12. (5.150)

With (5.115), (5.55) and (5.85) it follows that

W (αwP,y)ΥK = U†KW (αw̃P,y)Ω = n0,1(y)U†K ea
†(αw0

P,y)ea
†(αw̃1

P,y)Ω, (5.151)

and since ea†(αw0
P,y) commutes with UKN1U†K and ea(αw0

P,y)ΥK = ΥK (we use UKa
†(f 0)U†K =

a†(f 0) for f 0 ∈ Ran(Π0)), this leads to

E11 = 1
α2

∫
dy H(y)n0,1(y)

〈
Ω|UKN1U†Ke

a†(αw̃1
P,y)Ω

〉
F
. (5.152)

Because UKN1U†K is quadratic in creation and annihilation operators, we can expand the
exponential in the inner product and use that only the zeroth and second order terms give a
non-vanishing contribution,

E11 = 1
α2

∫
dy H(y)n0,1(y)

〈
ΥK |N1ΥK

〉
F

+ 1
2α2

∫
dy H(y)n0,1(y)

〈
ΥK |N1U†Ka†(αw̃1

P,y)a†(αw̃1
P,y)Ω

〉
F

= E111 + E112. (5.153)

Next we add and subtract the Gaussian to separate the leading-order term,

E111 = 1
α2

∫
dy H(y) e−λα2y2〈ΥK |N1ΥK

〉
F

+ 1
α2

∫
dy H(y)

(
n0,1(y)− e−λα2y2)〈ΥK |N1ΥK

〉
F

= E lo
111 + Eerr

111. (5.154)

In E lo
111 we use |H(y)− 1| ≤ Cy2 and Corollary 5.3.12 to replace H(y) by unity at the cost of

an error of order α−7. In the term where H(y) is replaced by unity, we perform the Gaussian
integral and use Proposition 5.3.15 and again Corollary 5.3.12. This leads to∣∣∣∣ E lo

111 −N
1
α2

〈
ΥK |N1ΥK

〉
F

∣∣∣∣ ≤ Cε
√
Kα−6+ε. (5.155)

The error in (5.154) is bounded with the help of Lemma 5.3.4,

|Eerr
111| ≤

C

α2

∫
dy H(y)|n0,1(y)− e−λα2y2 | ≤ Cα−6. (5.156)

In E112 we use the Cauchy–Schwarz inequality, Corollary 5.3.12 and Lemma 5.3.3, to obtain∣∣∣〈ΥK |N1U†Ka†(αw̃1
P,y)a†(αw̃1

P,y)Ω
〉
F

∣∣∣
≤ ||N1ΥK ||F ||a†(αw̃1

P,y)a†(αw̃1
P,y)Ω||F ≤ 2α2||w̃1

P,y||2L2 ≤ Cα2(y4 + α−4). (5.157)
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With ||| · |nH||L1 ≤ Cn we can now apply Corollary 5.3.5 to obtain

|E112| ≤ C
∫

dy H(y)(y4 + α−4)n0,1(y) ≤ Cα−7. (5.158)

In order to bound E12 in (5.150), we decompose ΥK = Υ<
K + Υ>

K for some δ > 0, see (5.119),
and then follows similar steps as described below (5.121). This way we can estimate

|E12| ≤
1
α2

∫
dy H(y)||eκNUK(e−AP,y − 1)N1Υ<

K ||F nδ,η(y) + 2
α2 ||N1Υ>

K ||F
∫

dy H(y).
(5.159)

While the second term is bounded via (5.107b) by Cδ α−12, in the first term we apply Lemma
5.3.13 and use the functional calculus for self-adjoint operators,

||eκNUK(e−AP,y − 1)N1Υ<
K ||F ≤

√
2||(e−AP,y − 1)N1Υ<

K ||F
≤
√

2||(Pfy + gP (y))N1Υ<
K ||F . (5.160)

Since Pf changes the number of phonons in F1 at most by one, we can proceed by

||(Pfy + gP (y))N1Υ<
K ||F ≤ (αδ + 1)||(Pfy + gP (y))ΥK ||F ≤ Cαδ(

√
K|y|+ α|y|3),

(5.161)

where we used 1 ≤ αδ, Lemma 5.3.14 and (5.129) in the second step. We conclude via
Corollary 5.3.5 that

|E12| ≤
C

α2

∫
dy H(y)(

√
K|y|+ α|y|3)nδ,η(y) + Cδ α

−12 ≤ Cδ
√
Kα−6+4δ. (5.162)

Term E2. Here we start with

E2 = α−1
∫

dy
〈
ΥK |L1,yW (αwP,y)ΥK

〉
F

+ α−1
∫

dy
〈
ΥK |L1,y(eAP,y − 1)W (αwP,y)ΥK

〉
F

= E21 + E22, (5.163)

where

L1,y =
〈
ψ|φ(h· + ϕP )Tyψ

〉
L2 = φ(ly) + π(jy) (5.164)

with

ly = H(y)ϕ+
〈
ψ|h·Tyψ

〉
L2 , jy = H(y)ξP , (5.165)

and ξP defined in (5.46). We record the following properties of ly and its derivative. The
proof of the lemma is postponed until the end of the present section.

Lemma 5.3.17. For k = 0, 1 and for all n ∈ N0,

sup
y
‖∇kly‖L2 < ∞,

∫
|y|n‖∇kly‖L2 dy < ∞. (5.166)
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Note that, by Lemma 5.3.6, jy clearly has these properties as well. We proceed by writing
E21 = E0

21 + EP21 with

E0
21 = α−1

∫
dy
〈
ΥK |φ(ly)W (αwP,y)ΥK

〉
F

(5.167a)

EP21 = α−1
∫

dy
〈
ΥK |π(jy)W (αwP,y)ΥK

〉
F
, (5.167b)

and estimate the two parts separately. Using the canonical commutation relations and (5.105c),
we evaluate

E0
21 =

∫ 〈
ly|w̃P,y

〉
L2n0,1(y)dy

=
∫ (〈

l0y|w0
P,y

〉
L2 +

〈
l1y|Re(w1

P,y)
〉
L2 + i

〈
l1y|Θ−2

K Im(w1
P,y)

〉
L2

)
n0,1(y)dy (5.168)

where we used that ly is real-valued. Note that l−y(−z) = ly(z). As discussed in Remark
4, n0,1(y) is even, and using the arguments therein one can conclude that Θ−2

K Im(w1
P,y) and

Im(w0
P,y) are odd functions on R6 since (y, z) 7→ Im(wP,y)(z) is odd on this space, and hence∫ 〈

l0y|Im(w0
P,y)

〉
L2n0,1(y)dy =

∫ 〈
l1y|Θ−2

K Im(w1
P,y)

〉
L2n0,1(y)dy = 0. (5.169)

Thus, with Re(wP,y) = w0,y, and with

v(y) :=
〈
ly|w0,y

〉
L2 (5.170)

we finally have

E0
21 =

∫ 〈
l0y + l1y|Re(w0

P,y) + Re(w1
P,y)

〉
L2n0,1(y)dy =

∫
v(y)n0,1(y)dy. (5.171)

Note that v ∈ L1∩L∞ since y 7→ ||ly||L2 is, while ||w0,y||L2 is uniformly bounded in y. Because
of ϕ(z) = −〈ψ|h·(z)ψ〉L2 and ∇zh(x− z) = −∇xh(x− z) we have by integration by parts

∇ϕ = −2
〈
∇ψ|h·ψ

〉
L2 . (5.172)

Thus

ly = −1
2y∇ϕ+ ϕ(H(y)− 1) +

〈
ψ|h·(Tyψ − ψ − y∇ψ)

〉
L2 . (5.173)

Since ψ is a smooth function with uniformly bounded derivatives, there exists a C > 0 such
that for all y

||Tyψ − ψ − y∇ψ||L∞ ≤ Cy2. (5.174)

Moreover, for k = 0, 1 and every z ∈ R3,

x 7→ (h·(z)∇kψ)(x) ∈ L1(R3, dx) and z 7→ ||h·(z)∇kψ||L1 ∈ L2(R3, dz). (5.175)

The first statement follows easily from Lemma 5.3.6; to show the second one, use∫
dz 1
|u− z|2|v − z|2

= 1
π3|u− v|

(5.176)

98



5.3. Proof of Proposition 5.2.4

and apply the Hardy–Littlewood–Sobolev inequality. This, together with (5.90), shows that
there exists a function f in L2(R3, dz) such that

|ly(z) + 1
2y∇ϕ(z)| ≤ f(z)y2. (5.177)

Now let

by(z) := w0,y(z)− y∇ϕ(z) =
∫ 1

0
ds
∫ s

0
dt (y∇)2ϕ(z − ty) (5.178)

and note that ||by||2L2 ≤ 1
4y

4||∆ϕ||2L2 which is finite since ∆ϕ ∈ L2. This equation, together
with (5.177), implies ∣∣∣∣∣v(y) + 1

2 ||y∇ϕ||
2
L2

∣∣∣∣∣ ≤ C(|y|3 + |y|4). (5.179)

From this, and from v ∈ L1 ∩ L∞ it is also easy to deduce that | · |−2v ∈ L1 ∩ L∞. We can
thus write∫

dy v(y)n0,1(y) =
∫

dy v(y)e−α2λy2 +
∫

dy |y|−2v(y)y2
(
n0,1(y)− e−α2λy2) (5.180)

and use Lemma 5.3.4 for g = | · |−2|v| to bound∣∣∣∣∫ dy |y|−2v(y)y2(n0,1(y)− e−α2λy2)
∣∣∣∣ ≤ Cα−6. (5.181)

Using (5.179), the definition of λ = 1
6 ||∇ϕ||

2
L2 as well as ∫ y2e−y

2dy = 3
2π

3/2, we further have
that ∣∣∣∣∣

∫
dy v(y)e−α2λy2 + 3

2α2

(
π

λα2

)3/2
∣∣∣∣∣ ≤ Cα−6 (5.182)

which finally gives the estimate∣∣∣∣∣E0
21 +

(
3

2α2

)
N
∣∣∣∣∣ ≤ Cε

√
Kα−6+ε (5.183)

using Proposition 5.3.15.
In a similar fashion as for E0

21, we obtain

EP21 = 1
α2MLP

∫ 〈
iP∇ϕ|w0

P,y

〉
L2H(y)n0,1(y)dy. (5.184)

Explicit computation, using Π0 = 3
||∇ϕ||2

L2

∑3
i=1 |∂iϕ〉〈∂iϕ| and 〈ϕ|∇ϕ〉L2 = 0, gives

1
3w

0
P,y(z) = −(ϕ ∗ ∇ϕ)(y)

||∇ϕ||2
L2
∇ϕ(z) + iP

α2MLP

(
||∇ϕ||2L2 − (∇ϕ ∗ ∇ϕ)(y)

) ∇ϕ(z)
||∇ϕ||2

L2
.

(5.185)

Note that the real part of the above is odd as a function of y and hence∫ 〈
∇ϕ|Re(w0

P,y)
〉
L2n0,1(y)H(y)dy = 0, (5.186)
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and, taking rotational invariance of ϕ into account, we arrive at

EP21 = P 2

α4(MLP)2

∫ (
‖∇ϕ‖2

2 − (∇ϕ ∗ ∇ϕ) (y)
)
n0,1(y)H(y)dy. (5.187)

Further note that |||∇ϕ||2L2 − (∇ϕ ∗ ∇ϕ) (y)| ≤ Cy2 and thus, by Lemma 5.3.6 and Corollary
5.3.5, one obtains

|EP21| ≤ C
P 2

α9 ≤
C

α7 . (5.188)

This completes the analysis of E21.
In order to estimate the term E22, we proceed as before by splitting ΥK = Υ<

K + Υ>
K . Using

(5.96) we can estimate∣∣∣∣∣α−1
∫

dy
〈
Υ>
K |(φ(ly) + π(jy))(eAP,y − 1)W (αwP,y)ΥK

〉
F

∣∣∣∣∣
≤ Cα−1

∫
dy (||ly||L2 + ||jy||L2)‖(N + 1)1/2Υ>

K‖F ≤ Cδ α
−11 (5.189)

where we used Corollary 5.3.12 and Lemmas 5.3.6 and 5.3.17. The term involving Υ<
K , we

split again into two contributions,

E0
22 = α−1

∫
dy
〈
Υ<
K |φ(ly)(eAP,y − 1)W (αwP,y)ΥK

〉
F

(5.190a)

EP22 = α−1
∫

dy
〈
Υ<
K |π(jy)(eAP,y − 1)W (αwP,y)ΥK

〉
F
. (5.190b)

To bound the first one we proceed as in (5.159), i.e. use Lemma 5.3.13 and the fact that
φ(ly) changes the number of phonons at most by one. This leads to

|E0
22| ≤ α−1

∫
dy ‖eκNUK(e−AP,y − 1)φ(ly)Υ<

K‖F nδ,η(y)

≤
√

2α−1
∫

dy ‖(e−AP,y − 1)φ(ly)Υ<
K‖F nδ,η(y). (5.191)

Furthermore, we have

||(e−AP,y − 1)φ(ly)Υ<
K ||F ≤ ||AP,yφ(ly)Υ<

K ||F ≤ ||φ(ly)AP,yΥ<
K ||F + ||[AP,y, φ(ly)]Υ<

K ||F
≤ Cαδ/2 (||ly||L2 ||AP,yΥK ||F + ||y∇ly||L2) (5.192)

where we used [iPfy, φ(f)] = π(y∇f) and Υ<
K = 1(N ≤ αδ)ΥK . Note that in order to

estimate the remaining expression, it is not sufficient to directly apply Corollary 5.3.5. To
obtain a better bound, we first replace nδ,η(y) by e−ηλα2(1−δ)y2 and then, for the part containing
the Gaussian, we use that ||ly||L2 and ||∇ly||L2 provide additional factors of |y|, as is shown
below. More precisely, with Lemma 5.3.17 and the aid of Lemmas 5.3.4 and 5.3.14, we bound

α
δ
2−1

∫
dy ||ly||L2 ||AP,yΥK ||F nδ,η(y) ≤ Cα

δ
2−1

∫
dy ||ly||L2(

√
K|y|+ α|y|3)nδ,η(y)

≤ Cα
δ
2−1

∫
dy ||ly||L2(

√
K|y|+ α|y|3)e−ηλα2(1−δ)y2 + C

√
Kα−6+ 9δ

2 . (5.193)

Next we use that by Equation (5.177) there exists an L2 function f such that

|ly(z)| ≤ 1
2 |y∇ϕ(z)|+ f(z)y2. (5.194)

100



5.3. Proof of Proposition 5.2.4

Hence, by integration

αδ/2−1
∫

dy ||ly||L2

(√
K|y|+ α|y|3

)
e−ληα

2(1−δ)y2 ≤ C
√
Kα−6+11/2δ. (5.195)

With regard to the second term in (5.192),

αδ/2−1
∫

dy |y|||∇ly||L2nδ,η(y) (5.196)

we proceed in a similar way, using that

||∇ly||L2 ≤ C(|y|+ y2). (5.197)

In fact, since ∇ϕ(z) = −〈ψ|h·(z)∇ψ〉L2 − 〈∇ψ|h·(z)ψ〉L2 , we have the identity

∇ly(z) = H(y)∇ϕ(z) +
〈
∇ψ|h·(z)Tyψ

〉
L2 +

〈
ψ|h·(z)∇Tyψ

〉
L2 (5.198)

= (H(y)− 1)∇ϕ(z) +
〈
∇ψ|h·(z)(Ty − 1)ψ

〉
L2 +

〈
ψ|h·(z)(Ty − 1)∇ψ

〉
L2 .

Again using that ψ has bounded derivatives, we have

||(Ty − 1)ψ||L∞ + ||(Ty − 1)∇ψ||L∞ ≤ C|y|, (5.199)

and the desired inequality now follows from |H(y)− 1| ≤ Cy2 and (5.175). Given (5.166),
we can use Lemma 5.3.4 to replace nδ,η(y) in (5.196) with e−ληα2(1−δ)y2 at the energy penalty
Cα−6+9δ/2, and then use (5.197) to bound the remaining integral involving the Gaussian
factor, which yields an error of the same order. Altogether, this gives the estimate

|E0
22| ≤ C

√
Kα−6+ 11

2 δ. (5.200)

For the term EP22 we proceed in exactly the same way as in (5.191):

|EP22| ≤
√

2α−1
∫

dy ‖
(
e−AP,y − 1

)
π(jy)Υ<

K‖F nδ,η(y)

≤ Cαδ/2−1
∫

dy ‖jy‖L2‖AP,yΥK‖F nδ,η(y) + Cαδ/2−1
∫

dy ‖y∇jy‖L2nδ,η(y)

≤ Cαδ/2−1 |P |
α2

∫
dy H(y) (

√
K|y|+ α|y|3)nδ,η(y)

+ Cαδ/2−1 |P |
α2

∫
dy |y|H(y)nδ,η(y)

≤ Cα−6+ 9
2 δ
√
K (5.201)

where the last estimate follows from Corollary 5.3.5 and the assumption |P | ≤ cα.

Combining the relevant estimates, that is (5.155), (5.156), (5.158) and (5.162) for E1 as
well as (5.183), (5.188), (5.189), (5.200) and (5.201) for E2, we arrive at the statement of
Proposition 5.3.16, thus providing an appropriate bound for E .

Proof of Lemma 5.3.17. Since H has the desired properties, we need to show them for

l(1)
y =

〈
ψ|h·Tyψ

〉
L2 . (5.202)
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To this end we introduce

S = {f ∈ Lp(R3, (1 + |y|n)dy) ∀1 ≤ p ≤ ∞, ∀n ≥ 0} (5.203)

and start with the following observation: Suppose f1, f2, f3 and f4 are functions in S. Then

S(y) :=
∫∫

dudvf1(u)f2(v)f3(u+ y)f4(v + y)
|u− v|

∈ S. (5.204)

In fact, |S(y)| ≤ C‖f4‖L∞‖f3‖L∞‖f1‖Lp‖f2‖Lq for all 1 < p < 3/2, q = 3p/(5p− 3) by the
Hardy–Littlewood–Sobolev inequality. Since ∫ dy|y|nf3(u+y) ≤ 2n−1 (|u|n‖f3‖L1 + ‖| · |nf3‖L1),
we have also∫

dy|y|nS(y) ≤ C‖f4‖L∞ (‖| · |nf1‖Lp‖f2‖Lq‖f3‖L1 + ‖f1‖Lp‖f2‖Lq‖| · |nf3‖L1) (5.205)

from which (5.204) follows. Moreover,

f ∈ S =⇒
√
|f | ∈ S. (5.206)

Indeed, we have for all n ≥ 0,∫
|y|n

√
|f |dy ≤

√
‖f‖L∞

∫
|y|≤1
|y|ndy + 1

2

∫
|y|n+m|f |dy + 1

2

∫
|y|>1
|y|n−mdy < ∞

(5.207)

since m can be chosen arbitrarily large by assumption. Thus, it suffices to prove the desired
statement for the functions ‖∇kl(1)

y ‖2
L2 . For k = 0, we use (5.176) to compute

‖l(1)
y ‖2

L2 = 1
4π

∫∫
dudvψ(u)ψ(v)ψ(y + u)ψ(v + y)

|u− v|
. (5.208)

The statement now follows easily from (5.204) and Lemma 5.3.6. Arguing again via (5.206),
for k = 1 it suffices to show the statement for

‖∇l(1)
y ‖2

L2 = ‖〈∇ψ|h·Tyψ〉L2 +
〈
ψ|h·∇Tyψ〉L2‖2

L2

≤ 2‖〈∇ψ|h·Tyψ〉L2‖2
L2 + 2‖〈ψ|h·∇Tyψ〉L2‖2

L2 (5.209)

(the first equality follows from ∇zhx(z) = −∇xhx(z) and integration by parts). Using (5.176),
we find

‖〈∇ψ|h·Tyψ〉L2‖2
L2 ≤ C

∫∫
dudv |∇ψ(u)||∇ψ(v)|ψ(v + y)ψ(u+ y)

|u− v|
, (5.210a)

‖〈ψ|h·∇Tyψ〉L2‖2
L2 ≤ C

∫∫
dudv |∇ψ(u+ y)||∇ψ(v + y)|ψ(v)ψ(u)

|u− v|
. (5.210b)

We arrive at the desired conclusion by Lemma 5.3.6 and (5.204).

5.3.7 Energy contribution G
This energy contribution, defined in (5.60b), is evaluated by the following proposition.

102



5.3. Proof of Proposition 5.2.4

Proposition 5.3.18. Let HK as in (5.32), N1 = dΓ(Π1) and choose c > 0. For every ε > 0
there exists a constant Cε > 0 (we omit the dependence on c) such that∣∣∣∣∣G −N 2

α2

〈
ΥK |(HK − N1)ΥK

〉
F

∣∣∣∣∣ ≤ Cε α
ε
(√

Kα−6 +K−1/2α−5
)

(5.211)

for all |P |/α ≤ c and all K,α large enough.

Proof. Using hPekG0
K = 0 and NG0

K = N1G
0
K we can decompose G into two terms

G = − 2
α

∫
dy Re

〈
G0
K |(α−2N1 + α−1φ(h· + ϕP ))TyeAP,yW (αwP,y)G1

K

〉
H

= G1 + G2, (5.212)

where the first term will contribute to the error while the second one provides an energy
contribution of order α−2. We proceed for each one separately.

Term G1. With the aid of (5.119), (5.132) and (TyeAP,y)† = T−ye
−AP,y , one finds

G1 = − 2
α3

∫
dy Re

〈
R3,yψ ⊗

(
Υ<
K + Υ>

K

)
|W (αwP,y)G0

K

〉
H

= G<1 + G>1 (5.213)

where we introduced the operator R3,y = R1
3,y +R2

3,y with

R1
3,y = Pψφ(h1

K,·)RuαT−yPψe−AP,yN1 (5.214a)

R2
3,y = 2αPψ

〈
hK,·|Re(w1

P,y)
〉
L2RuαT−yPψe

−AP,yN1. (5.214b)

Proceeding similarly as for R1
1,y and R2

2,y in (5.134a)–(5.134b), one further verifies

||R3,yΨ||H ≤ C||uαT−yPψ||op
(
1 + αy2

)
||(N + 1)3/2Ψ||H . (5.215)

Recalling the definition fα(y) = ||uαT−yPψ||op and (5.138), we can use Corollary 5.3.12 to
find

|G>1 | ≤
C

α3 ||(N + 1)3/2Υ>
K ||F

∫
dy fα(y)(1 + αy2) ≤ Cδ α

−7. (5.216)

In the first term we proceed with (5.126) and Lemma 5.3.13 to obtain

|G<1 | ≤
2
α3

∫
dy ||eκNUK(R3,yψ ⊗Υ<

K)||H ||e−κNW (αw̃P,y)Ω||F

≤ 2
√

2
α3

∫
dy ||R3,yψ ⊗ΥK ||H nδ,η(y) ≤ C

α3

∫
dy fα(y)(1 + αy2)nδ,η(y), (5.217)

which brings us again into a position to apply Corollary 5.3.5. Hence

|G<1 | ≤ Cα−6+3δ. (5.218)

Term G2. Here we have

G2 = − 2
α2

∫
dy Re

〈
G0
K |φ(h· + ϕP )TyW (αwP,y)G1

K

〉
H

− 2
α2

∫
dy Re

〈
G0
K |φ(h· + ϕP )Ty(eAP,y − 1)W (αwP,y)G1

K

〉
H

= G21 + G22. (5.219)
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To separate the leading order contribution in G21 we insert 1 = U†KUK next to G0
K and bring

U†K to the right side of the inner product. With UKΥK = Ω, (5.105c) and (5.115) this gives

G21 = − 2
α2

∫
dy Re

〈
ψ ⊗ Ω|a(h· + ϕP )TyW (αw̃P,y)uαRa†(h1

K,·)ψ ⊗ Ω
〉

H
, (5.220)

where · is defined in (5.104a). Next we write W (αw̃P,y) = n0,1(y)ea†(αw̃P,y)e−a(αw̃P,y) and
move the first exponential to the left side and the second exponential to the right side until
they act both on the Fock space vacuum. Using e−a(f)a†(g)ea(f) = a†(g)− 〈f |g〉 we find this
way

G21 = − 2
α2

∫
dy n0,1(y) Re

〈
ψ ⊗ Ω|a(h· + ϕP )TyuαRa†(h1

K,·)ψ ⊗ Ω
〉

H
(5.221a)

+ 2
∫

dy n0,1(y) Re
〈
ψ ⊗ Ω|〈h· + ϕP |w̃P,y〉L2TyuαR〈w̃P,y|h1

K,·〉L2ψ ⊗ Ω
〉

H
. (5.221b)

In the first line we write h· + ϕP = h0
· + h1

· + ϕ+ iξP , with hi· = (Πih)·, and use that〈
ψ ⊗ Ω|a(h0

· + iξP )TyuαRa†(h1
K,·)ψ ⊗ Ω

〉
H

= 0 (5.222)

since h0
x + iξP ∈ Ran(Π0) whereas h1

K,x ∈ Ran(Π1). Finally we can replace a and a† by φ,
and then transform back with UK , using (5.105c), in order to obtain

(5.221a) = − 2
α2

∫
dy n0,1(y) Re

〈
ψ ⊗ΥK |φ(h1

· + ϕ)TyuαRφ(h1
K,·)ψ ⊗ΥK

〉
H
. (5.223)

To summarize, we have shown that

G21 = − 2
α2

∫
dy Re

〈
G0
K |L2,yG

0
K

〉
H
n0,1(y) +

∫
dy `2(y)n0,1(y) = G211 + G212 (5.224)

with

L2,y = Pψφ(h1
· + ϕ)TyuαRφ(h1

K,·)Pψ (5.225a)

`2(y) = 2 Re
〈
ψ|〈h· + ϕP |w̃P,y〉L2TyuαR〈w̃1

P,y|h1
K,·〉L2ψ

〉
L2 . (5.225b)

In the first term we add and subtract the Gaussian,

G211 = − 2
α2

∫
dy Re

〈
G0
K |L2,yG

0
K

〉
H
e−λα

2y2

− 2
α2

∫
dy Re

〈
G0
K |L2,yG

0
K

〉
H

(
n0,1(y)− e−λα2y2) = G lo

211 + Gerr
211, (5.226)

and proceed with G lo
211 by inserting h1

· = h1
K,· + (h1

· − h1
K,·), Ty = 1 + (Ty − 1) and uα =

1 + (uα − 1),

G lo
211 = − 2

α2 Re
〈
G0
K |φ(h1

K,· + ϕ)Rφ(h1
K,·)G0

K

〉
H

∫
dy e−λα2y2

− 2
α2 Re

〈
G0
K |φ(h1

K,· + ϕ)(uα − 1)Rφ(h1
K,·)G0

K

〉
H

∫
dy e−λα2y2

− 2
α2

∫
dy Re

〈
G0
K |φ(h1

K,· + ϕ)(Ty − 1)uαRφ(h1
K,·)G0

K

〉
H
e−λα

2y2

− 2
α2

∫
dy Re

〈
G0
K |φ(h1

· − h1
K,·)TyuαRφ(h1

K,·)G0
K

〉
H
e−λα

2y2

=
4∑

n=1
G lo,n

211 . (5.227)
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Since Pψφ(ϕ)R = 0, we have G lo,1
211 = 2

α2

〈
ΥK |(HK −N1)ΥK

〉
F

( π
λα2 )3/2, cf. (5.32), and hence

we can use Proposition 5.3.15 to conclude that∣∣∣∣∣G lo,1
211 −N

2
α2

〈
ΥK |(HK − N1)ΥK

〉
F

∣∣∣∣∣ ≤ Cε
√
Kα−6+ε. (5.228)

For the other terms, we shall show the combined error estimate

|G lo,2
211 |+ |G lo,3

211 |+ |G lo,4
211 | ≤ C

(√
Kα−6 +K−1/2α−5

)
. (5.229)

In the last term, we recall h·(y) = hK=∞,·(y), and apply Lemma 5.3.8 in combination with
||R1/2uαT−y∇||op ≤ C. This gives

|G lo,4
211 | ≤

2
α2

∫
dy e−λα2y2 ||R1/2uαT−yφ(h1

· − h1
K,·)PψG0

K ||H ||R1/2φ(h1
K,·)PψG0

K ||H

≤ Cα−5K−1/2. (5.230)

Next we write Ty − 1 =
∫ 1

0 dsTsy(y∇) in the third term to obtain an additional |y|,

|G lo,3
211 | ≤

2
α2

(∫
dy |y|e−λα2y2

)
||∇uαR1/2||op ||φ(h1

K,· + ϕ)G0
K ||H ||R1/2φ(h1

K,·)G0
K ||H

≤ Cα−6
√
K, (5.231)

where the factor
√
K comes from the L2 norm of h1

K,0 in the bound on the first field operator
(since ∆R1/2 is unbounded, we can not apply the commutator method to this part). In the
second term, we use ψ(x) ≤ Ce−|x|/C for some C > 0, and thus ||(uα − 1)ψ||L2 ≤ Ce−α/C ,
to estimate

|G lo,2
211 | ≤

C

α5 ||(uα − 1)ψ||L2 ||φ(h1
K,· + ϕ)Rφ(h1

K,·)G0
K ||H ≤ C

√
Ke−α/C . (5.232)

This proves (5.229).
To bound the remaining contributions in Gerr

211 and G212, we shall use∣∣∣〈G0
K |L2,yG

0
K

〉∣∣∣ ≤ Cf2,α(y) (5.233a)

|`2(y)| ≤ Cf2,α(y)(y2 + α−2)(|y|+ |y|3 + α−2) (5.233b)

where

f2,α(y) = ||uαT−yPψ||op + ||∇uαT−yPψ||op. (5.234)

Using the exponential decay of ψ and |∇kuα|(y) ≤ 1(|y| ≤ 2α), for k = 0, 1, it is easy to
show that

||f2,α||L∞ ≤ C and ||| · |nf2,α||L1 ≤ Cnα
3+n for all n ∈ N0. (5.235)

To verify (5.233a) and (5.233b), use uαT−yφ(h·) = φ(h·−y)uαT−y and Cauchy–Schwarz to
bound∣∣∣〈G0

K |L2,yG
0
K

〉
H

∣∣∣ ≤ ||R1/2φ(h1
·−y + ϕ)uαT−yPψG0

K ||H ||R1/2φ(h1
K,·)PψG0

K ||H . (5.236)

105



5. Energy-momentum relation of the Fröhlich polaron at strong coupling

Now we can use (5.96) and Lemma 5.3.8 to obtain (5.233a). To estimate `2(y), defined in
(5.225b), we proceed with

|`2(y)| ≤ 2
∣∣∣〈ψ|Tyuα〈h·−y|w̃P,y〉L2R〈w̃1

P,y|h1
K,·〉L2ψ

〉
L2

∣∣∣ (5.237a)

+ 2
∣∣∣〈ψ|Tyuα〈ϕP |w̃P,y〉L2R〈w̃1

P,y|h1
K,·〉L2ψ

〉
L2

∣∣∣, (5.237b)

and considering the first line, we use Cauchy–Schwarz, write out the two inner products (in
the phonon variable) and then use Cauchy–Schwarz again,

|(5.237a)| ≤ 2
∫

du |w̃P,y(u)| ||PψTyuαh·−y(u)R1/2||op

∫
dz |w̃1

P,y(z)| ||R1/2h1
K,·(z)ψ||

≤ 2||w̃P,y||L2 ||w̃1
P,y||L2

(∫
du||PψTyuαh·−y(u)R1/2||2op

∫
dz||R1/2h1

K,·(z)ψ||2L2

)1/2

≤ Cf2,α(y)(|y|+ y3 + α−2)(y2 + α−2), (5.238)

where the last step follows from Lemma 5.3.3 and Corollary 5.3.9 together with hK,· =
h0
K,· + Θ−1

K h1
K,·. Since the second line is estimated similarly, we arrive at (5.233b). With

(5.233a) at hand we can apply Lemma 5.3.4 and (5.235) to get

|Gerr
211| ≤

2
α2

∫
dy
∣∣∣〈G0

K |L2,yG
0
K

〉
H

∣∣∣ ∣∣∣n0,1(y)− e−λα2y2
∣∣∣ ≤ Cα−6, (5.239)

and further, using (5.233b) and Corollary 5.3.5, we obtain

|G212| ≤ C
∫

dy |`2(y)|n0,1(y) ≤ Cα−6. (5.240)

This completes the analysis of G21.
Next we introduce R4,y = R1

4,y +R2
4,y with

R1
4,y = Pψφ(h1

K,·)R
1
2 (e−AP,y − 1)R 1

2φ(h·−y + ϕP )uαT−yPψ (5.241a)

R2
4,y = 2αPψ

〈
hK,·|Re(w1

P,y)
〉
L2R

1
2 (e−AP,y − 1)R 1

2φ(h·−y + ϕP )uαT−yPψ. (5.241b)

Inserting (5.119) and (5.132) into (5.219) it follows that

G22 = − 2
α2

∫
dy Re

〈
R4,yψ ⊗

(
Υ<
K + Υ>

K

)
|W (αwP,y)G0

K

〉
H

= G<22 + G>22. (5.242)

With the aid of Lemma 5.3.8 we obtain

||R1
4,yΨ||H ≤ C||(e−AP,y − 1)(N + 1)1/2R1/2φ(h·−y + ϕP )uαT−yPψΨ||H , (5.243)

and proceeding similarly as in (5.136), we find

||R2
4,yΨ||H ≤ Cα(y2 + α−2)||(e−AP,y − 1)R1/2φ(h·−y + ϕP )uαT−yPψΨ||H . (5.244)

For Ψ = ψ ⊗ Υ>
K , a second application of Lemma 5.3.8 (after using unitarity of e−AP,y)

together with ||ϕP ||2L2 ≤ C for |P |/α ≤ c and Corollary 5.3.12 is sufficient to find

||R4,yψ ⊗Υ>
K ||H ≤ C

(
||uαT−yPψ||op + ||∇uαT−yPψ||op

)
(1 + αy2)||(N + 1)Υ>

K ||F

≤ Cδ α
−10f2,α(y)(1 + αy2) (5.245)
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with f2,α defined in (5.234). Using this bound in G>
22 and recalling Corollary 5.3.12 and (5.235)

we thus obtain

|G>22| ≤ Cδ α
−6. (5.246)

In G<22 we proceed by inserting (5.122) and use (5.126) and Lemma 5.3.13. This gives

|G<22| ≤
2
√

2
α2

∫
dy ||R4,yψ ⊗Υ<

K ||H nδ,η(y). (5.247)

The derivation of a suitable bound for the norm in the integrand is more cumbersome, so
we go through it step by step. To shorten the notation let G0<

K = ψ ⊗Υ<
K . We start from

(5.243) and (5.244) where we insert h· = hK,· + (h· − hK,·) and use the triangle inequality,

||R1
4,yG

0<
K ||H ≤ C||(e−AP,y − 1)(N + 1)1/2R

1
2φ(hK,·−y + ϕP )uαT−yG0<

K ||H (5.248a)

+ C||(e−AP,y − 1)(N + 1)1/2R
1
2φ(h·−y − hK,·−y)uαT−yG0<

K ||H , (5.248b)

||R2
4,yG

0<
K ||H ≤ Cα(y2 + α−2)||(e−AP,y − 1)R 1

2φ(hK,·−y + ϕP )uαT−yG0<
K ||H (5.248c)

+ Cα(y2 + α−2)||(e−AP,y − 1)R 1
2uαφ(h·−y − hK,·−y)uαT−yG0<

K ||H . (5.248d)

For the second and fourth line, we apply Lemma 5.3.8 a second time (after bringing (N+ 1)1/2

to the right of a and a†) to find

(5.248b) + (5.248d) ≤ CK−1/2(1 + αy2)(||uαT−yPψ||op + ||∇uαT−yPψ||op)||(N + 1)Υ<
K ||F

≤ CK−1/2(1 + αy2)f2,α(y). (5.249)

In the first and third line, we use the functional calculus and write out AP,y = iPfy + igP (y),

(5.248a) + (5.248c) ≤ C||(Pfy)(N + 1)1/2R
1
2φ(hK,·−y + ϕP )uαT−yG0<

K ||H (5.250a)

+ Cα(y2 + α−2)||(Pfy)R 1
2φ(hK,·−y + ϕP )uαT−yG0<

K ||H (5.250b)
+ C|gP (y)|||(N + 1)1/2R1/2φ(hK,·−y + ϕP )uαT−yG0<

K ||H (5.250c)

+ Cα(y2 + α−2)|gP (y)|||R 1
2φ(hK,·−y + ϕP )uαT−yG0<

K ||H . (5.250d)

Now we use [iPfy, φ(f)] = π(y∇f) such that we can estimate the first line by

(5.250a) ≤ C
(
||(N + 1)1/2R1/2φ(hK,·−y + ϕP )(Pfy)uαT−yG0<

K ||H

+ ||(N + 1)1/2R1/2π(y∇hK,·−y + y∇ϕP )uαT−yG0<
K ||H

)
. (5.251)

To bound the first line, we use again Lemma 5.3.8, while in the second line we use (∇hK)· =
−∇(hK,·) = −[∇, hK,·] and (5.96) together with ||∇ϕP ||L2 ≤ C for |P |/α ≤ c. Together we
obtain

(5.250a) ≤ C|y|
(
||uαT−yPψ||op + ||∇uαT−yPψ||op

)(
||(N + 1)PfΥ<

K ||F +
√
K||(N + 1)Υ<

K ||F
)

≤ Cαδ|y|f2,α(y)
(
||PfΥ<

K ||F +
√
K
)

≤ Cαδ
√
K|y|f2,α(y), (5.252)
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where the factor
√
K in the first step comes from the L2-norm of hK,0, and the last step

follows from Lemma 5.3.14. In a similar fashion, one shows

(5.250b) ≤ Cαδ
√
K|y|(1 + αy2)f2,α(y), (5.253)

and, with (5.129), one also verifies

(5.250c) + (5.250d) ≤ Cαδ(α2|y|5 + α|y|3)f2,α(y). (5.254)

Collecting the estimates (5.249), (5.252), (5.253) and (5.254) we arrive at

||R4,yψ ⊗Υ<
K ||H ≤ Cf2,α(y)αδ

(
K−

1
2 (1 + αy2) + α2|y|5 +

√
K(|y|+ α|y|3)

)
. (5.255)

Now we can apply Corollary 5.3.5 together with (5.235) to bound the right side of (5.247).
The result is

|G<22| ≤ Cα−2+δ
(
K−1/2α−3 +

√
Kα−4+4δ

)
. (5.256)

In view of the estimates (5.216), (5.218), (5.228), (5.229), (5.239), (5.240), (5.246) and
(5.256), the proof of Proposition 5.3.18 is now complete.

5.3.8 Energy contribution K
Recall that K was defined in (5.60c).

Proposition 5.3.19. Let HK as in (5.32), N1 = dΓ(Π1) and choose c > 0. For every ε > 0
there exists a constant Cε > 0 (we omit the dependence on c) such that∣∣∣∣∣K +N 1

α2

〈
ΥK |(HK − N1)ΥK

〉
F

∣∣∣∣∣ ≤ Cε α
ε
(√

Kα−6 +K−1/2α−5
)

(5.257)

for all |P |/α ≤ c and all K,α large enough.

Proof. We split this contribution into three terms

K = 1
α2

∫
dy
〈
G1
K |
(
hPek + α−2N + α−1φ(h· + ϕP )

)
Tye

AP,yW (αwP,y)G1
K

〉
H

= K1 +K2 +K3, (5.258)

and note that K1 provides the energy contribution of order α−2.

Term K1. We start again by writing

K1 = 1
α2

∫
dy
〈
G1
K |hPekTyW (αwP,y)G1

K

〉
H

+ 1
α2

∫
dy
〈
G1
K |hPekTy(eAP,y − 1)W (αwP,y)G1

K

〉
H

= K11 +K12. (5.259)

and proceed for the first term similarly as in the computation of G2, see (5.219). This leads to

K11 = 1
α2

∫
dy
〈
G0
K |φ(h1

K,·)RuαhPekTyW (αwP,y)uαRφ(h1
K,·)G0

K

〉
H

= 1
α2

∫
dy
〈
ψ ⊗ Ω|a(h1

K,·)RuαhPekTyW (αw̃P,y)uαRa†(h1
K,·)ψ ⊗ Ω

〉
H

= 1
α2

∫
dy
〈
G0
K |L3,yG

0
K

〉
H
n0,1(y)−

∫
dy `3(y)n0,1(y) = K111 +K112 (5.260)
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where

L3,y = Pψφ(h1
K,·)RuαhPekTyuαRφ(h1

K,·)Pψ (5.261a)

`3(y) =
〈
ψ|〈h1

K,·|w̃1
P,y〉L2Ruαh

PekTyuαR〈w̃1
P,y|h1

K,·〉L2ψ
〉
L2 . (5.261b)

We go on with

K111 = 1
α2

∫
dy
〈
G0
K |L3,yG

0
K

〉
H
e−λα

2y2

+ 1
α2

∫
dy
〈
G0
K |L3,yG

0
K

〉
H

(
n0,1(y)− e−λα2y2) = Klo

111 +Kerr
111, (5.262)

and in the leading-order term, we insert Ty = 1 + (Ty − 1) and uα = 1 + (uα − 1),

Klo
111 = 1

α2

〈
G0
K |φ(h1

K,·)RhPekRφ(h1
K,·)G0

K

〉
H

∫
dy e−λα2y2

+ 1
α2

〈
G0
K |φ(h1

K,·)R(uα − 1)hPekRφ(h1
K,·)G0

K

〉
H

∫
dy e−λα2y2

+ 1
α2

〈
G0
K |φ(h1

K,·)RuαhPek(uα − 1)Rφ(h1
K,·)G0

K

〉
H

∫
dy e−λα2y2

+ 1
α2

∫
dy
〈
G0
K |φ(h1

K,·)RuαhPek(Ty − 1)uαRφ(h1
K,·)G0

K

〉
H
e−λα

2y2

=
4∑

n=1
Klo,n

111 . (5.263)

Since RhPekR = R, one finds Klo,1
111 = − 1

α2

〈
ΥK |(HK −N1)ΥK

〉
F

( π
λα2 )3, cf. (5.32), and with

the aid of Proposition 5.3.15, this gives the leading-order contribution∣∣∣∣∣Klo,1
111 +N 1

α2

〈
ΥK |(HK − N1)ΥK

〉
F

∣∣∣∣∣ ≤ Cε
√
Kα−6+ε. (5.264)

For the other terms, we shall show that

|Klo,2
111 |+ |Klo,3

111 |+ |Klo,4
111 | ≤ C

√
Kα−6. (5.265)

In the second term we use hPekR = Qψ = 1− Pψ to write

K lo,2
111 = α−2

〈
G0
K |φ(h1

K,·)R(uα − 1)(1− Pψ)φ(h1
K,·)G0

K

〉
H

(
π

λα2

)3/2

(5.266)

which is exponentially small in α, since ||(uα− 1)ψ||L2 ≤ Ce−α/C , and thus with Lemma 5.3.8
one obtains |Klo,2

111 | ≤ C
√
Ke−α/C . In the next term we use [hPek, uα − 1] = −[∆, uα] and

again hPekR = 1− Pψ to get

Klo,3
111 = α−2

〈
G0
K |φ(h1

K,·)Ruα(uα − 1)(1− Pψ)φ(h1
K,·)G0

K

〉
H

(
π

λα2

)3/2

− α−2
〈
G0
K |φ(h1

K,·)R[∆, uα]Rφ(h1
K,·)G0

K

〉
H

(
π

λα2

)3/2

. (5.267)

Here the first line is bounded again exponentially in α, whereas in the second line we use
[∆, uα] = 2(∇uα)∇ + (∆uα) and ||∇uα||L∞ + ||∆uα||L∞ ≤ Cα−1, see (5.48). Together

109



5. Energy-momentum relation of the Fröhlich polaron at strong coupling

with Lemmas 5.3.7 and 5.3.8, this implies |Klo,3
111 | ≤ Cα−6. In the last term we employ

Ty − 1 =
∫ 1

0 dsTsy(y∇), [hPek, uα] = −[∆, uα] and hPekR = Qψ to find

Klo,4
111 = α−2

∫
dy

∫ 1

0
ds
〈
G0
K |φ(h1

K,·)QψuαTsy(y∇)uαRφ(h1
K,·)G0

K

〉
H
e−λα

2y2

+ α−2
∫

dy
∫ 1

0
ds
〈
G0
K |φ(h1

K,·)R[∆, uα]Tsy(y∇)uαRφ(h1
K,·)G0

K

〉
H
e−λα

2y2
.

(5.268)

In both lines there is an additional factor y, and together with (5.48), we thus obtain

|Klo,4
111 | ≤ Cα−6||φ(h1

K,·)G0
K ||H ||∇uαR1/2||op||R1/2φ(h1

K,·)G0
K ||H

+ Cα−6||R1/2φ(h1
K,·)G0

K ||H ||R1/2[∆, uα]||op||∇uαR1/2||op||Rφ(h1
K,·)G0

K ||H

≤ C(α−6
√
K + α−7). (5.269)

This proves (5.265).
To estimate K112 and Kerr

111, we make use of∣∣∣〈G0
K |L3,yG

0
K

〉
H

∣∣∣ ≤ Cf3,α(y) (5.270a)
|`3(y)| ≤ Cf3,α(y)(y4 + α−4) (5.270b)

where

f3,α(y) = ||uαTyuα||op + ||(∇uα)Tyuα||op + ||uαTy(∇uα)||op + ||(∇uα)Ty(∇uα)||op.
(5.271)

Recalling that by definition |∇kuα(y)| ≤ 1(|y| ≤ 2α) for k = 0, 1, it follows that f3,α(y) ≤
41(|y| ≤ 4α) and thus

||f3,α||L∞ ≤ 4 and ||| · |nf3,α||L1 ≤ Cnα
3+n for all n ∈ N0. (5.272)

In order to verify (5.270a), use hPek = −∆ + V ϕ − λPek to write

R
1
2uαTyh

PekuαR
1
2 = R

1
2uα

(
(−i∇)Ty(−i∇) + Ty(V ϕ − λPek)

)
uαR

1
2

= −R 1
2 (−i∇uα)Ty(−i∇uα)R 1

2 +R
1
2 (−i∇)uαTyuα(−i∇)R 1

2

+R
1
2 (−i∇)uαTy(−i∇uα)R 1

2 −R
1
2 (−i∇uα)Tyuα(−i∇)R 1

2

+R
1
2uαTyuα(V ϕ − λPek)R 1

2 . (5.273)

Since ||V ϕR1/2||op ≤ C(||R||op + ||∇R1/2||op) ≤ C, see Lemma 5.3.7, it thus follows that

||R
1
2uαTyh

PekuαR
1
2 ||op ≤ Cf3,α(y). (5.274)

With this at hand one applies Lemma 5.3.8 to conclude the bound stated in (5.270a). For
`3(y) we proceed similarly as in (5.238), that is

|`3(y)| ≤ ||R1/2uαh
PekTyuαR

1/2||op||R1/2〈w̃1
P,y|h1

K,·〉L2ψ||2L2

≤ f3,α(y) ||w̃1
P,y||2L2

∫
dz||Pψh1

K,·(z)R1/2||2op ≤ Cf3,α(y)(y4 + α−4). (5.275)
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Now we can apply Lemma 5.3.4 and (5.272) to estimate

|Kerr
111| ≤

C

α2

∫
dy f3,α(y) |n0,1(y)− e−λα2y2 | ≤ Cα−6, (5.276)

and further invoke Corollary 5.3.5 to obtain

|K112| ≤
∫

dy f3,α(y)(|y|4 + α−4)n0,1(y) ≤ Cα−7. (5.277)

Next we come to K12 which we rewrite with the aid of (5.119) and (5.132) as

K12 = 1
α2

∫
dy
〈
R5,yψ ⊗

(
Υ<
K + Υ>

K

)
|W (αwP,y)G0

K

〉
H

= K<12 +K>12 (5.278)

with the operator R5,y = R1
5,y +R2

5,y and

R1
5,y = Pψφ(h1

K,·)Ruα(e−AP,y − 1)T−yhPekuαRφ(h1
K,·)Pψ (5.279a)

R2
5,y = 2αPψ

〈
hK,·|Re(w1

P,y)
〉
L2Ruα(e−AP,y − 1)T−yhPekuαRφ(h1

K,·)Pψ. (5.279b)

Utilizing Lemma 5.3.8 and (5.84a), we have

||R1
5,yΨ||H ≤ C||(e−AP,y − 1)(N + 1)1/2R

1
2uαT−yh

PekuαRφ(h1
K,·)PψΨ||H , (5.280)

and following the same steps as in (5.136),

||R2
5,yΨ|| ≤ Cα(y2 + α−2)||(e−AP,y − 1)R 1

2uαT−yh
PekuαRφ(h1

K,·)PψΨ||H . (5.281)

After using unitarity of e−AP,y and (5.272), we can apply Lemma 5.3.8 another time to obtain

||R5,yψ ⊗Υ>
K ||H ≤ Cf3,α(−y)(1 + αy2)||(N + 1)Υ>

K ||F . (5.282)

Thus we can estimate the tail with the aid of Corollary 5.3.12 and (5.272),

|K>12| ≤
C

α2 ||(N + 1)Υ>
K ||F

∫
dy f3,α(−y)(1 + αy2) ≤ Cδ α

−6. (5.283)

Then we use (5.115), (5.126) and apply Lemma 5.3.13 to get

|K<12| ≤
1
α2

∫
dy ||UKe

κNR5,yψ ⊗Υ<
K ||H ||e−κNW (αw̃P,y)Ω||F

≤
√

2
α2

∫
dy ||R5,yψ ⊗Υ<

K ||H nδ,η(y). (5.284)

To bound the norm in the integral, we proceed in close analogy to the steps following (5.247).
We abbreviate again G0<

K = ψ ⊗Υ<
K and start from (5.280) and (5.281). With (5.272), the

functional calculus and AP,y = iPfy + igP (y), one finds

||R5,yG
0<
K ||H ≤ C

(
f3,α(−y)||(e−AP,y − 1)(N + 1)1/2R

1
2φ(h1

K,·)G0<
K ||H

+ α(y2 + α−2)f3,α(−y)||(e−AP,y − 1)R 1
2φ(h1

K,·)G0<
K ||H

)
≤ C

(
f3,α(−y)

(
||(yPf )(N + 1)1/2R

1
2φ(h1

K,·)G0<
K ||H (5.285a)

+ f3,α(−y)|gP (y)|(N + 1)1/2R
1
2φ(h1

K,·)G0<
K ||H (5.285b)

+ f3,α(−y)(αy2 + α−1)||(Pfy)R 1
2φ(h1

K,·)G0<
K ||H (5.285c)

+ f3,α(−y)(αy2 + α−1)|gP (y)|||R 1
2φ(h1

K,·)G0<
K ||H

)
. (5.285d)
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In the second and fourth line, we use |gP (y)| ≤ Cα|y|3 and Lemma 5.3.8,

(5.285b) + (5.285d) ≤ C(α2|y|5 + α|y|3)f3,α(−y)||(N + 1)Υ<
K ||F

≤ C(α2|y|5 + α|y|3)f3,α(−y). (5.286)

In the first and third line, we employ the commutator [iPfy, φ(f)] = π(y∇f) to get

(5.285a) + (5.285c) ≤ C
(
f3,α(−y)||(N + 1)1/2R

1
2φ(h1

K,·)(yPf )G0<
K ||H (5.287a)

+ f3,α(−y)||(N + 1)1/2R
1
2π(y∇h1

K,·)G0<
K ||H (5.287b)

+ f3,α(−y)(αy2 + α−1)||R 1
2φ(h1

K,·)(yPf )G0<
K ||H (5.287c)

+ f3,α(−y)(αy2 + α−1)||R 1
2π(y∇h1

K,·)G0<
K ||H

)
. (5.287d)

After another application of Lemma 5.3.8, we can use (5.119) and then Lemma 5.3.14 for the
terms involving Pf ,

(5.287a) + (5.287c) ≤ Cf3,α(−y)(αy2 + 1) |y| ||(N + 1)PfΥ<
K ||F

≤ Cf3,α(−y)(α|y|3 + |y|)αδ
√
K, . (5.288)

while in the other two lines, we use (∇hK)· = −[∇, hK,·], to obtain

(5.287b) + (5.287d) ≤ Cf3,α(−y) |y| (αy2 + 1)||hK,0||L2 ||(N + 1)Υ<
K ||F

≤ Cf3,α(−y)(α|y|3 + |y|)
√
K. (5.289)

Collecting all estimates we have thus shown that

||R5,yψ ⊗Υ<
K ||H ≤ Cf3,α(−y)αδ

(
α2|y|5 +

√
K(α|y|3 + |y|)

)
. (5.290)

Using this bound in (5.284) we can invoke Corollary 5.3.5 together with (5.272) in order to
obtain

|K<12| ≤ C
√
Kα−6+5δ. (5.291)

Term K2. Using (5.119) and (5.132), one finds

K2 = 1
α4

∫
dy
〈
R6,yψ ⊗

(
Υ<
K + Υ>

K

)
|W (αwP,y)G0

K

〉
H

= K<2 +K>2 (5.292)

with the operator R6,y = R1
6,y +R2

6,y and

R1
6,y = Pψφ(h1

K,·)RuαNT−ye−AP,yuαRφ(h1
K,·)Pψ (5.293a)

R2
6,y = 2αPψφ(h1

K,·)RuαNT−ye−AP,yuαR〈Re(w1
P,y)|hK,·〉L2Pψ. (5.293b)

With Lemma 5.3.8 and (5.84a) it is not difficult to verify

||R6,yΨ||H ≤ C||uαT−yuα||op(1 + αy2)||(N + 1)2Ψ||H , (5.294)

and since ||uαT−yuα||op ≤ 1(|y| ≤ 4α), we can use Corollary 5.3.12 to estimate the part with
the tail by

|K>2 | ≤
C

α4 ||(N + 1)2Υ>
K ||F

∫
dy 1(|y| ≤ 4α)(1 + αy2) ≤ Cδ α

−8. (5.295)
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To treat K<2 we proceed as in (5.284), that is

|K<2 | ≤
√

2
α4

∫
dy ||R6,yψ ⊗Υ<

K ||H nδ,η(y) ≤ C

α4

∫
dy 1(|y| ≤ α)(1 + αy2)nδ,η(y). (5.296)

It now follows from Corollary 5.3.5 that

|K<2 | ≤ Cα−7. (5.297)

Term K3. This term is similarly estimated as the previous one. With the aid of (5.119) and
(5.132), we have

K3 = 1
α3

∫
dy
〈
R7,yψ ⊗

(
Υ<
K + Υ>

K

)
|W (αwP,y)G0

K

〉
H

= K<3 +K>3 (5.298)

with the operator R7,y = R1
7,y +R2

7,y and

R1
7,y = Pψφ(h1

K,·)Ruαe−AP,yT−yφ(h· + ϕP )uαRφ(h1
K,·)Pψ (5.299a)

R2
7,y = 2αPψ〈Re(w1

P,y)|hK,·〉L2Ruαe
−AP,yT−yφ(h· + ϕP )uαRφ(h1

K,·)Pψ. (5.299b)

Utilizing again Lemma 5.3.8 and (5.84a), one shows that

||R7,yΨ||H ≤ Cf3,α(−y)(1 + αy2)||(N + 1)3/2Ψ||H (5.300)

with f3,α defined in (5.271). Invoking Corollary 5.3.12 and (5.272) we thus find

|K>3 | ≤
C

α3 ||(N + 1)3/2Υ>
K ||F

∫
dy f3,α(−y)(1 + αy2) ≤ Cδ α

−7. (5.301)

Similarly as in (5.284), we also obtain

|K<3 | ≤
√

2
α3

∫
dy ||R7,yψ ⊗Υ<

K ||H nδ,η(y) ≤ C

α3

∫
dy f3,α(−y)(1 + αy2)nδ,η(y). (5.302)

By Corollary 5.3.5 and (5.271) it follows that

|K<3 | ≤ Cα−6+3δ. (5.303)

This completes the analysis of K. The proof of Proposition 5.3.19 follows from combining
(5.264), (5.265), (5.276), (5.277), (5.283), (5.291), (5.295), (5.297), (5.301) and (5.303).

5.3.9 Concluding the proof of Proposition 5.2.4
Combining Propositions 5.3.16, 5.3.18 and 5.3.19, we arrive at∣∣∣∣∣E + G +K

N
− inf σ(HK)

α2 + 3
2α2

∣∣∣∣∣ ≤ Cε α
ε

(
K−1/2α−5 +

√
Kα−6

N

)
. (5.304)

Now for K ≤ c̃α we know from Proposition 5.3.15 that N ≥ Cα3 for some C > 0, such
that the right side is bounded by Cε αεr(K,α). It remains to show that one can replace
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α−2 inf σ(HK) by α−2 inf σ(H∞) at the cost of an additional error. To this end, recall that
inf σ(HK) = 〈ΥK |HKΥK〉F and use the variational principle to find〈

ΥK |(HK −H∞)ΥK

〉
F
≤ inf σ(HK)− inf σ(H∞) ≤

〈
Υ∞|(HK −H∞)Υ∞

〉
F
. (5.305)

Writing

HK −H∞ =
〈
ψ|φ(h1

K,· − h1
· )Rφ(h1

K,·)ψ
〉
L2 −

〈
ψ|φ(h1

· )Rφ(h1
· − h1

K,·)ψ
〉
L2 , (5.306)

and using Lemma 5.3.8, we can infer that for any Ψ ∈ F∣∣∣〈Ψ|(HK −H∞)Ψ
〉
F

∣∣∣ ≤ CK−1/2
〈
Ψ|(N1 + 1)Ψ

〉
F
. (5.307)

By Corollary 5.3.12 we know that
〈
ΥK |(N1 + 1)ΥK

〉
F
≤ C for all K ∈ (K0,∞] with K0

large enough, and thus | inf σ(HK)− inf σ(H∞)| ≤ CK−1/2. In view of (5.304) and Lemma
5.3.1 this completes the proof of Proposition 5.2.4.

5.4 Remaining Proofs

Proof of Lemma 5.1.1. The form of the kernel is readily found using second order perturbation
theory (we omit the details). (i) The lower bound HPek ≥ 0 follows from (5.19) whereas
HPek ≤ 1 is a consequence of

〈
v|(1−HPek)v

〉
L2 = 4

∥∥∥∥∥
∫

dy v(y)R1/2h·(y)ψ
∥∥∥∥∥

2

L2
. (5.308)

(ii) That Span{∂iϕ : i = 1, 2, 3} ⊆ KerHPek follows from translation invariance of the energy
functional F . To show equality we argue that there is a τ > 0 such that 〈v|HPekv〉L2 ≥ τ ||v||2L2

for all v ∈ L2(R3) with 〈v|∇ϕ〉L2 = 0 (note that this also implies (iii)). For that purpose we
quote [61, Lemma 2.7] stating that there exists a constant τ > 0 such that

F(v)−F(ϕ) ≥ τ inf
y∈R3
||v − ϕ(· − y)||2L2 (5.309)

for all v ∈ L2(R3). (a key ingredient in the proof of this quadratic lower bound are the results
about the Hessian of the Pekar energy functional (5.12) that were obtained in [80]; see [61]
for a detailed derivation). Combined with (5.19) this implies

〈v|HPekv〉L2 ≥ τ lim
ε→0

inf
y∈R3

fv(y, ε), (5.310a)

fv(y, ε) = ||v||2L2 + ε−2||ϕ− ϕ(· − y)||2L2 + 2ε−1 Re〈v|ϕ− ϕ(· − y)〉L2 . (5.310b)

Given any v satisfying 〈v|∇ϕ〉L2 = 0, we choose y∗(ε) such that fv(y∗(ε), ε) is minimal.
Furthermore, note that for every zero sequence (εn)n∈N such that

lim
n→∞

||ϕ(· − y∗(εn))− ϕ||L2 > 0, (5.311)

it follows that limn→∞ fv(y∗(εn), εn) =∞, and hence we can conclude that |y∗(ε)| → 0 as
ε→ 0. To proceed, let η(ε) := ϕ− ϕ(· − y∗(ε)) and assume |y∗(ε)| > 0 (for if y∗(ε) = 0 it
follows directly that fv(y∗(ε), ε) = ||v||2L2). With this we can estimate

fv(y∗(ε), ε) ≥ ||v||2L2 + ε−2||η(ε)||2L2 − 2ε−1|〈v|η(ε)〉L2 |

≥ ||v||2L2 − |〈v|
η(ε)
||η(ε)||L2

〉L2 |2. (5.312)
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To bound the right side, write

η(ε)(z) =
∫ 1

0
ds (y∗(ε)∇)ϕ(z − sy∗(ε)) (5.313)

and use, by dominated convergence, that

||
∫ 1

0 ds (y∇)ϕ(· − sy)− (y∇)ϕ||L2

||
∫ 1

0 ds (y∇)ϕ(· − sy)||L2
→ 0 as |y| → 0. (5.314)

Combining the last statement with |y∗(ε)| → 0 as ε→ 0 and 〈v|∇ϕ〉L2 = 0 we conclude that

lim
ε→0

fv(y∗(ε), ε) ≥ ||v||2L2 . (5.315)

This completes the proof of items (ii) and (iii). Property (iv) follows from HPek ≤ (HPek)1/2

and TrL2(1−HPek) <∞, see Lemma 5.2.2 for K =∞.

Proof of Lemma 5.2.2. (i) The bound HPek
K � Ran(Π1) ≤ 1 follows analogously to (5.308)

and HPek
K � Ran(Π0) = 0 holds by definition. The lower bound on Ran(Π1) is a consequence

of (HPek − τ) � Ran(Π1) ≥ 0 for some τ > 0, see Lemma 5.1.1, in combination with

±(HPek −HPek
K ) ≤ CK−1/2. (5.316)

To verify the latter, let v ∈ Ran(Π1), Πv = |v〉〈v| and write〈
v|(HPek

K −HPek)v
〉
L2 = 4

∫
dy Re

〈
ψ|
(
hK,·(y)− h·)(y)

)
R(ΠvhK,·)(y)ψ

〉
L2

+ 4
∫

dy Re
〈
ψ|(Πvh·)(y)R

(
hK,·(y)− h·(y)

)
ψ
〉
L2 . (5.317)

With Cauchy–Schwarz it follows that∣∣∣〈v|(HPek
K −HPek)v

〉
L2

∣∣∣ ≤ 4K1/2
∫

dy ||R1/2(hK,·(y)− h·(y))Pψ||2op

+ 4K−1/2
∫

dy
(
||R1/2(ΠvhK,·)(y)Pψ||2op + ||R1/2(Πvh·)(y)Pψ||2op

)
,

(5.318)
and from Corollary 5.3.9, we obtain∣∣∣〈v|(HPek

K −HPek)v
〉
L2

∣∣∣ ≤ CK−1/2. (5.319)

(ii) On Ran(Π0) the inequality holds trivially, whereas on Ran(Π1), it follows from ΘK ≤ 1,
B2
K ≤ 1

4(Θ−2
K − 1), Θ−2

K = (1− (1−HPek
K ))−1/2 and the elementary inequality (1− x)−1/2 ≤

1 + β−3/2x for all x ∈ (0, 1− β).

(iii) Here we use TrRan(Π0)(1−HPek
K ) = 3, write

TrRan(Π1)(1−HPek
K ) =

∫
dy
〈
ψ|h1

K,·(y)Rh1
K,·(y)ψ

〉
L2 =

∫
dy ||R1/2h1

K,·(y)Pψ||2op (5.320)

and apply Corollary 5.3.9.

(iv) Since 1−HPek
K = Π0 + Π1(1−HPek

K )Π1 = Π0 + 4TK , cf. (5.35a) and (5.35b), we can
write

TrL2((−i∇)(1−HPek
K )(−i∇)) = TrL2

(
∇Π0∇

)
+ 4TrL2

(
∇TK∇). (5.321)
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Using the explicit form of Π0, one shows that the first term is given by

TrL2

(
∇Π0∇) = 3

||∇ϕ||2
L2

3∑
j=1

TrL2

(
∇|∇jϕ〉〈∇jϕ|∇

)
≤ 3 ||∆ϕ||

2
L2

||∇ϕ||2
L2
, (5.322)

which is finite since ∆ϕ ∈ L2. For the second term it follows from a short computation that

TrL2

(
∇TK∇) =

∫
dy
〈
ψ|[∇, h1

K,·(y)]R[∇, h1
K,·(y)]|ψ

〉
L2 . (5.323)

Using the Cauchy–Schwarz inequality and ||∇ψ||L2 + ||R1/2||op + ||R1/2∇||op <∞, see Lemmas
5.3.6 and 5.3.7, we can estimate the last expression by∫

dy ||R1/2[∇, h1
K,·(y)]ψ||2L2 ≤ C

∫
dy
(
||h1

K,·(y)ψ||2L2 + ||h1
K,·(y)∇ψ||2L2

)
≤ C

∫
dy |h1

K,0(y)|2 ≤ C||hK,0||2L2 = CK. (5.324)

This completes the proof of the lemma.

Proof of Lemma 5.2.3. We recall that HPek
K � Ran(Π0) = 0 and TK = 1

4(HPek
K −Π1), and set

SK = 1
2(Π1 +HPek

K ). For (un)n∈N an orthonormal basis of Ran(Π1), we further set an = a(un)
and use this to write the Bogoliubov Hamiltonian as

HK =
∞∑

n,m=1

(〈
un|SKum

〉
L2a
†
nam +

(〈
un|TKum

〉
L2a
†
na
†
m + h.c.

))
+ TrL2(TK). (5.325)

Applying the transformation (5.39), a straightforward computation leads to

UKHKU†K =
∞∑

n,m=1

(〈
un|(AKSKAK +BKSKBK + 4AKTKBK)um

〉
L2a
†
nam

+
(〈
un|(AKSKBK + AKTKAK +BKTKBK)um

〉
L2a
†
na
†
m + h.c.

))

+ TrRan(Π1)
(
TK +BKSKBK + 2AKTKBK). (5.326)

The statement of the lemma now follows from

Π1(AKSKAK +BKSKBK + 4AKTKBK)Π1 =
√
HPek
K (5.327a)

Π1(AKSKBK + AKTKAK +BKTKBK)Π1 = 0 (5.327b)

Π1(TK +BKSKBK + 2AKTKBK)Π1 = 1
2
(√

HPek
K − Π1

)
. (5.327c)

Proof of Lemma 5.3.3. To bound ||w1
P,y||2L2 we expand

w1
P,y = Π1(1− e−y∇)(ϕ+ iξP ) =

∫ 1

0
ds1

∫ s1

0
ds2 Π1e

−s2y∇(y∇)2ϕ

+ i

α2MLP

∫ 1

0
dsΠ1e

−sy∇(y∇)(P∇)ϕ, (5.328)
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where we used Π1(y∇)ϕ = 0. Thus, since ∆ϕ ∈ L2, we easily arrive at

||w1
P,y||2L2 ≤ C

(
y4 + α−4y2P 2

)
(5.329)

for some constant C > 0, and with |P | ≤ αc we obtain the stated estimated. The bound for
||w̃1

P,y||2L2 follows from

||w̃1
P,y||2L2 = ||ΘK Re(w1

P,y)||2L2 + ||Θ−1
K Im(w1

P,y)||2L2 ≤ C||w1
P,y||2L2 , (5.330)

where we used that ΘK is real-valued and satisfies

0 < β ≤ Θ2
K ≤ 1 (5.331)

when restricted to Ran(Π1); see Lemma 5.2.2. To bound ||w0
P,y||2L2 we use

||w0
P,y||2L2 = ||w0

0,y||2L2 + ||Π0(1− e−y∇)ξP ||2L2 , (5.332)

since ϕ, ξP and Π0 are all real-valued. Expanding 1−e−y∇ as in (5.328), it is easy to conclude
that ||Π0(1 − e−y∇)ξP ||2L2 ≤ CP 2y2α−4. Using the explicit form of Π0 and 〈∇ϕ|ϕ〉L2 = 0,
we can write

||w0
0,y||2L2 = 3

||∇ϕ||2
L2

3∑
i=1

∣∣∣〈∇iϕ|e−y∇ϕ
〉
L2

∣∣∣2. (5.333)

Using the Fourier representation and rotation invariance, we have
∣∣∣〈∇iϕ|e−y∇ϕ

〉
L2

∣∣∣ =
∣∣∣∣∣
∫
pi|ϕ̂(p)|2 sin(py) dy

∣∣∣∣∣. (5.334)

By the elementary inequality | sin z − z| ≤ Cz3, the formula ||(y∇)ϕ||2L2 = 2λy2 and the
finiteness of ‖∆ϕ‖L2 , we conclude that∣∣∣||w0

P,y||2L2 − 2λy2
∣∣∣ ≤ C

(
y4 + y6 + α−4y2P 2

)
. (5.335)

To prove the last bound, we use

||w̃P,y||2L2 = ||w0
P,y||2L2 + ||ΘK Re(w1

P,y)||2L2 + ||Θ−1
K Im(w1

P,y)||2L2 , (5.336)

and hence with (5.331),

β||w1
P,y||2L2 ≤ ||w̃P,y||2L2 − ||w0

P,y||2L2 ≤ β−1||w1
P,y||2L2 . (5.337)

The desired bound now follows from (5.329) and (5.335).

Proof of Lemma 5.3.4. From Lemma 5.3.3, we have∣∣∣||w̃P,y||2L2 − 2λy2
∣∣∣ ≤ C(α−2y2 + y4 + y6) ≤ C

y2

α
for all |P |

α
≤ c, y2 ≤ α−1. (5.338)

Hence there is a constant µ > 0 such that for all y2 ≤ α−1 the weight function (5.85) satisfies

nδ,η(y) ≤ exp(−(ληα2(1−δ) − µα−2δ+1)y2) (5.339a)

nδ,η(y) ≥ exp(−(ληα2(1−δ) + µα−2δ+1)y2). (5.339b)
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In the remainder let us abbreviate fn(y) = |y|ng(y) and Z(y) = |nδ,η(y)− e−ληα2(1−δ)y2 |. We
then decompose the integral into∫

dy fn(y)Z(y) =
∫
Bα

dy fn(y)Z(y) +
∫
Bcα

dy fn(y)Z(y) (5.340)

with Bα = {y ∈ R3 : y2 ≤ α−1}. The bounds (5.339a) and (5.339b) imply that

|Z(y)| ≤ e−ληα
2(1−δ) (

eµα
−2δ+1y2 − 1

)
∀y ∈ Bα (5.341)

and thus by |ez − 1| ≤ zez for z > 0, we obtain∫
Bα

dy fn(y)Z(y) ≤ µα−2δ+1
∫

dy fn(y)y2e−(ηλ−µα−1)α2(1−δ)y2
. (5.342)

The last expression is further bounded by∫
dy fn(y)y2e−(ηλ−µα−1)α2(1−δ)y2 ≤ ||g||L∞

∫
dy |y|n+2e−(ηλ−µα−1)α2(1−δ)y2 (5.343)

= Cn||g||L∞
α(5+n)(1−δ)

(
ηλ− µα−1

)−(n+5)/2

and since the resulting expression is uniformly bounded in η ≥ η0 and α large, we get∫
Bα

dy fn(y)Z(y) ≤ Cn
||g||L∞

α(4+n)(1−δ)+δ . (5.344)

To bound the second term in (5.340), we estimate∫
Bcα

dy fn(y)Z(y) ≤
∫
Bcα

dy fn(y)nδ,η(y) + e−ληα
−2δ+1

∫
dy fn(y). (5.345)

To see that the first summand is exponentially small as well, we use (5.336), (5.331) and
Re(wiP,y) = Πi Re(wP,y) = Πi Re(w0,y) for i = 0, 1,

||w̃P,y||2L2 ≥ ||Re(w0
P,y)||2L2 + β||Re(w1

P,y)||2L2 ≥ β||Re(w0,y)||2L2 = β||(1− e−y∇)ϕ||2L2 ,
(5.346)

and hence

nδ,η(y) ≤ exp
(
− ηβα2(1−δ)q(y)

)
with q(y) = 1

2 ||(1− e
−y∇)ϕ||2L2 . (5.347)

Since ϕ is real-valued, we have 〈ϕ|e−y∇|ϕ〉L2 = 〈ϕ|ey∇|ϕ〉L2 = (ϕ ∗ ϕ)(y) and thus

q(y) = ||ϕ||2L2 − (ϕ ∗ ϕ)(y). (5.348)

Recall that, as shown in [83], the electronic Pekar minimizer ψ is radial and non-increasing and
hence ϕ, cf. (5.14), is radial and non-increasing as well, as convolutions of radial non-increasing
functions are themselves radial non-increasing functions. Consequently, q(y) is radial and
monotone non-decreasing, and thus q(y) ≥ q(y′) for all y ∈ Bc

α, y′ ∈ Bα. On the other
hand, by a simple computation, using the regularity of ϕ, one finds that q(y) ≥ C0y

2 for
some C0 > 0 and all |y| small enough, and thus q(y) ≥ C0α

−1 for all y ∈ Bc
α and α large.

Therefore∫
Bcα

dy fn(y)nδ,η(y) ≤
∫
Bcα

dy fn(y)e−ηβα2(1−δ)q(y)

≤ e−C0ηβα2(1−δ)−1
∫

dy fn(y) ≤ e−dα
−2δ+1

∫
dy fn(y) (5.349)

for some d > 0, which completes the proof of the lemma.
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Proof of Lemma 5.3.14. Let p = −i∇. By a straightforward computation using the transfor-
mation property (5.39), we arrive at

UKPfU†KΩ =
∑
n

a†(AKun)a†(BKpun)Ω + TrL2(BKpBK)Ω (5.350)

for some orthonormal basis (un)n∈N of L2(R3). That BKpBK is trace-class can be seen via

TrL2 |BKpBK | ≤ ||BK ||HS ||pBK ||HS ≤ CK, (5.351)

where the second step follows from Lemma 5.2.2, implying ||BK ||HS ≤ C, and

||pBK ||2HS = TrL2(pBKBKp) ≤ TrL2(p(1−HPek
K )p) ≤ CK. (5.352)

By rotation invariance TrL2(BKpBK) = 0. The first term in (5.350), on the other hand, is
seen to be a two-particle wave function ΦK given by

ΦK(x, y) = 1√
2

(AKpBK +BKpAK) (x, y). (5.353)

Thus〈
ΥK |(Pf )2ΥK

〉
F

= 1
2‖AKpBK +BKpAK‖2

HS ≤ 2||AK ||2op||pBK ||2HS ≤ CK, (5.354)

where we invoked again (5.352).
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