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Variational quantum algorithms are promising algorithms for achieving quantum advantage on near-
term devices. The quantum hardware is used to implement a variational wave function and measure
observables, whereas the classical computer is used to store and update the variational parameters. The
optimization landscape of expressive variational ansitze is however dominated by large regions in param-
eter space, known as barren plateaus, with vanishing gradients, which prevents efficient optimization. In
this work we propose a general algorithm to avoid barren plateaus in the initialization and throughout the
optimization. To this end we define a notion of weak barren plateaus (WBPs) based on the entropies of
local reduced density matrices. The presence of WBPs can be efficiently quantified using recently intro-
duced shadow tomography of the quantum state with a classical computer. We demonstrate that avoidance
of WBPs suffices to ensure sizable gradients in the initialization. In addition, we demonstrate that decreas-
ing the gradient step size, guided by the entropies allows WBPs to be avoided during the optimization
process. This paves the way for efficient barren plateau-free optimization on near-term devices.
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I. INTRODUCTION

In recent years the field of quantum computation
has seen rapid growth fueled by the arrival of the
first generation of quantum computers, dubbed noisy
intermediate-scale quantum devices (NISQ) [1]. The NISQ
era is characterized by quantum computers with a small
number of qubits and limited control. The number of
coherent operations that can be performed is small and the
implementation of famous algorithms with proven quan-
tum speedups, such as Shor’s algorithm [2], remains out
of reach. To make use of the current generation of quan-
tum computers, the so-called variational hybrid approach
[3] was proposed. The idea is to use the quantum com-
puter in a feedback loop with a classical computer, where
it implements a variational wave function that is mea-
sured to compute the value of the so-called cost function.
This information is then fed into a classical computer
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where it is processed and the variational wave function
is subsequently updated aiming to find a minimum of the
cost function, which provides an (approximate) solution to
the computationally hard problem. The variational hybrid
approach has seen a wide range of proof-of-concept appli-
cations on NISQ devices ranging from quantum chemistry
[4,5] to quantum optimization [6,7] and quantum machine
learning [8,9].

Despite the large number of suggested applications, the
variational approach encountered also a number of obsta-
cles, that have to be overcome for the future success of the
method. In particular, the infamous emergence of barren
plateaus (BPs) implies that expressive variational ansétze
tend to be exponentially hard to optimize [10]. The main
obstacle on the way to optimization lies in the fact that
gradients of the cost function are on average zero and devi-
ations vanish exponentially in system size, thus precluding
any potential quantum advantage. Moreover, it has been
shown that the classical optimization problem is generally
NP-hard and plagued with many local minima [11].

The problem of BPs attracted significant attention,
and numerous approaches were proposed in the litera-
ture. In particular, the early research focused on avoid-
ance of BP at the initialization stage of variational
algorithms [12—16]. In a different direction, the relation
between occurrence of BPs and the structure of the cost
function was studied [17,18]. Also notions of so-called
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entanglement-induced [19] and noise-induced [20] BPs
were introduced. The relation between BPs and entan-
glement has lead to various proposals that suggest con-
trolling entanglement to mitigate BPs [21—24]. However,
measuring entanglement is hard, therefore making these
approaches impractical on a real quantum device.

In this work we introduce the notion of weak barren
plateaus (WBPs), in order to diagnose and avoid BPs
in variational quantum optimization. WBPs emerge when
the entanglement of a local subsystem exceeds a certain
threshold identified by the entanglement of a fully scram-
bled state. In contrast to BPs, WBPs can be efficiently
diagnosed using the few-body density matrices and we
show that their absence is a sufficient condition for avoid-
ing BPs. Based on the notion of WBPs, we propose an
algorithm that can be readily implemented on available
NISQ devices. The algorithm employs classical shadow
estimation [25] during the optimization process in order to
efficiently estimate the expectation value of the cost func-
tion, its gradients, and the second Rényi entropy of small
subsystems. The tracking of the second Rényi entropy
enabled by the classical shadows protocol allows for an
efficient diagnosis of the WBP both at the initialization
step and during the optimization process of variational
parameters. If the algorithm encounters a WBP, as wit-
nessed by a certain subregion having a sufficiently large
Rényi entropy, the algorithm restarts the optimization pro-
cess with a decreased value of the update step (controlled
by the so-called learning rate). We support the proposed
procedure by rigorous results and numerical simulations.
The structure of the paper is as follows.

In Sec. II we introduce the theoretical framework and
present our main results. In Sec. I A we introduce the
framework of variational quantum eigensolvers (VQEs).
Section IIB introduces the phenomenon of BPs, which
dramatically hinders the performance of VQEs. In Sec.
IIC we demonstrate WBPs to be a precursor to BPs.
We explain why and how WBPs can be efficiently diag-
nosed in experiments and contrast this with much harder
task of detecting BPs. Finally we propose a modification
to the VQE algorithms, which allows prevention of the
occurrence of BPs by avoiding WBPs.

In Sec. III we present a bound for the expectation value
of the second Rényi entropy in quantum circuits drawn
from a unitary ensembles forming a 2-design. This bound
allows us to use the second Rényi entropy, which is much
easier to estimate, instead of the entanglement entropy. In
Sec. IIT A we provide a formal definition of WBPs accord-
ing to the value of the second Rényi entropy of the sub-
system and prove that the occurrence of a BP implies the
occurrence of a WBP. From this argument it follows that
the absence of a WBP precludes the occurrence of a BP. In
addition, we provide an upper bound (whose proof'is found
in Appendix A) for the measurement budget require in
order to estimate a WBP using classical shadows. Finally,

in Sec. [II B we demonstrate numerically how the avoid-
ance of WBPs precludes the presence of a BP using the
popular BP-free small-angle initialization [15,26].

In Sec. 1V, we explore how BPs and WBPs emerge at
different stages in the VQE optimization and perform a
systematic performance analysis. Next, in Sec. IVA we
explore the relation of the learning rate and entropy growth
for a single update of the VQE algorithm. We analytically
and numerically illustrate how a large learning rate leads to
an uncontrolled growth in subsystem entropies, essentially
driving optimization to a WBP region. In Sec. [IVB we
explore the performance of the WBP-free VQE algorithm
in different settings for the Heisenberg model on a chain.
Finally, in Sec. IV C, we show that our approach allows
for the efficient convergence to both, area- and volume-law
entangled ground states and compare it to layerwise opti-
mization [13], which is a popular heuristic for BP avoid-
ance. This is illustrated using the Heisenberg model on
a random 3-regular graph, additional results for Sachdev-
Ye-Kitaev (SYK) model can be found in the Appendix E
which exhibits a nearly maximally entangled ground state.

Finally, in Sec. V we summarize our results, discuss
their implications, and outline open questions.

II. AVOIDING BARREN PLATEAUS IN
VARIATIONAL QUANTUM OPTIMIZATION

In this section we first introduce the framework of
VQEs, i.e., the unitary ensemble, the cost functions, and
the optimization algorithm, and discuss the BP problem.
After this, we present our main result—a specific modifi-
cation of the VQE that avoids the issue of BPs.

A. Variational quantum eigensolver

The aim of the VQE, initially introduced by Peruzzo
et al. [27], is to approximate the ground state |GS) of a
Hamiltonian H with a variational wave function |y (0)).
A quantum computer is used to prepare the variational
function via the action of a set of unitary gates, [y (0)) =
U@9) o), where |yr) is the initial state that is typically
assumed to be a product state. The variational parameters
are then iteratively updated to minimize the expectation
value of the Hamiltonian, also called cost function £(0) =
(V)| H |y(@)).

We consider a unitary circuit U(@) of the form of the
so-called “hardware-efficient” ansatz [4]

p

N
ue) =] Wz(l'[Réw;')), ()

I=1 i=1

where 6/ € [—m,7) are pN variational angles, concisely
denoted as 6. In this expression the product goes over spa-
tial dimension i = 1,...,N that labels individual qubits
and “time dimension,” / =1,...,p with p specifying a
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number of layers, see Fig. 1 (a). We choose the single-
qubit gates to be rotations Rj(6)) = exp(—36/G;) with
random directions given by Gy; € {c¥,07,07}. W; is an
entangling layer that consists of two-qubit entangling gates
represented by nearest-neighbor controlled-Z (CZ) gates
with periodic boundary conditions, see Fig. 1(a) for an
illustration.

We focus our study on k-local Hamiltonians H, defined
as sum of terms each containing at most £ Pauli matrices.
We take & to be finite and fixed, while the number of qubits
N > k. A particular example of a 2-local Hamiltonian
from the many-body physics is provided by the Heisenberg
(XXX) model subject to a magnetic field

N
Hywy = Y J(0j07 +0]0] +0i0f) +h. Y _of, (2)
ijeVg i=1

where Vg refers to the vertex set of the graph G and,
couplings are fixed J = A, = 1. In our simulations we
consider two different graphs: a ring corresponding to a
one-dimensional (1D) chain with periodic boundary con-
dition, and a random 3-regular graph. The U(1) symmetry
related to the conservation of the z component of the spin
under the action of H, as well as translational invariance
present for chains with periodic boundary condition, can
be explored to decrease the space of parameters by using
a suitable gate set respecting this symmetry. However, for
the sake of generality we focus on the hardware-efficient
unitary ansatz defined in Eq. (1).

Obtaining the energy expectation value £(0) = (¥ (0)|
H | (0)) requires measuring a subset or all qubits in the
circuit as we schematically show in Fig. 1(a). For our
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FIG. 1.

example of a 2-local Hamiltonian on the 1D chain, the
required measurements include the value of the o* opera-
tor on all sites along with the o/’0/, | expectation values of
all i=1,...N (periodic boundary condition is assumed,
so that bits 1 and N + 1 are identified) and a = x,y, z.
Finding the optimal parameters #* requires minimization
of the Hamiltonian expectation value E(0*) = ming E(9)
performed by a classical computer.

There is a plethora of sophisticated classical optimiza-
tion algorithms that were applied to this minimization
problem [28-31]. We use the plain gradient-descent (GD)
algorithm due to its simplicity, which makes analytical
considerations easier. A GD update step is given by

0" = 0" — nVyE(0), )

where 1 is the learning rate, which controls the update
magnitude. This update step is repeated until convergence
of E£(#), which results from finding a (local) minimum of
E@).

The resulting VQE algorithm is shown schematically in
Fig. 1(b) by solid lines. Following the initialization of the
variational angles 6, that may be chosen to be real random
numbers, the quantum computer is used to prepare the vari-
ational state and provide quantum measurement results.
The classical computer uses the measurements to estimate
the value of the cost function and its gradient, and performs
an update of the variational parameters controlled by the
learning rate 7.

B. Barren plateaus and entanglement

Whilst the VQE described above is a promising frame-
work for near-term quantum computing due to its modest
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(a) Ilustration of the variational quantum circuit U(@) |0) that is considered in the main text followed by the shadow tomog-

raphy scheme [25]. The variational circuit consists of alternating layers of single-qubit rotations represented as boxes and entangling
CZ gates shown by lines. The measurements at the end are used to estimate values of the cost function, its gradients, and other
quantities. (b) The original hybrid variational quantum algorithm shown by solid boxes can be modified without incurring significant
overhead as is shown by the dashed lines and boxes. The modified algorithm tracks entanglement of small subregions and restarts
the algorithm if it exceeds the fraction of the Page value that is set by parameter «. The full algorithm is efficient; rigorous sample
complexity bounds are provided in Appendix A.
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hardware requirements, its performance may be ruined
by the issue of barren plateaus [10,15,17]. Specifically,
the BPs are defined as regions in the space of varia-
tional parameters where the variance of the cost-function
gradient (and consequently its typical value) vanishes
exponentially in the number of qubits [10]:

1
Var[9;,E(6)] ~ O (ﬁ) . “)

McClean et al. [10] were among the first to theoretically
investigate BPs. They showed that the appearance of a BP
can be related to the circuit matching the Haar random dis-
tribution up to the second moment. More precisely, they
showed that BPs are a consequence of the unitary ensem-
ble £ ~ {U(0)}y forming a so-called 2-design [10] (see
Appendix B for details and the definition of a #-design).
To understand the different circuit depth at which BPs are
encountered, the authors in Ref. [17] introduced the con-
cept of cost-function-dependent BPs. In particular, they
argued that the emergence of BP occurs at different circuit
depths, depending on the nature of the cost function.

In contrast, for a so-called global cost function, exempli-
fied by the fidelity, Ref. [17] found that BPs already occur
at very modest circuit depths p ~ O(1). The emergence
of BP for the fidelity is naturally related to “orthogonality
catastrophe” in many-body physics: even a small global
unitary rotation applied to the many-body wave function
results in it becoming nearly orthogonal to itself. In terms
of fidelity, this implies that it vanishes exponentially in
the number of qubits. Moreover, most global state fea-
tures—such as expectation values of general operators,
fidelities with general states and global purities—cannot
be efficiently accessed on NISQ devices, and are therefore
not practical from an algorithmic point of view [25,32—34].
Therefore, in what follows we do not consider the global
cost functions and corresponding BPs.

Local cost functions, that are the focus of the present
work are characterized by a later onset of BPs. Specifi-
cally, for a k-local cost function where £ is fixed, the BPs
will occur for circuit depth p ~ O(poly(N)) that increases
polynomially in system size [10,17]. In other words, for a
large enough p the VQE algorithm will also suffer from a
BP already at the very first step of the GD optimization,
provided random choice of variational angles #. We also
note that gradient-free optimization strategies do not cir-
cumvent the BP problem since the optimization landscape
is inherently flat [35].

The potential emergence of BPs at the initialization
stage of the VQE and other algorithms spurred the investi-
gation of different initializations strategies that avoid BPs.
Until now, several BP-free initializations were considered
in the literature. Reference [12] suggests to initialize the
circuit with blocks of identities, Ref. [13] suggests to opti-
mize the ansatz layer by layer, and Ref. [14] suggests to

use a matrix-product-state ansatz that is optimized by a
separate algorithm [36] and map that to a quantum cir-
cuit. In this work we focus on small single-qubit rotation
as suggested in Ref. [15].

More recently, it was observed that the entanglement
entropy defined as a trace of the reduced density matrix,
S = —trpgInpy (Where py = trgp is the reduced density
matrix where 4 is the subset of qubits that are measured
and B is the rest of the system) is another source for the
occurrence of BPs [19]. The community has subsequently
dubbed this kind of BP, entanglement-induced BP [19,21,
23,24]. In this work, we however show that entanglement-
induced BPs and BPs for local cost functions, are in fact
one and the same. Avoiding entanglement-induced BPs is
equivalent to avoiding BPs for local cost functions, the
details are presented in Sec. III.

Experimentally probing a BP is a hard task. The esti-
mation of the exponentially small gradient in Eq. (4)
requires a number of measurements that is exponential in
the number of qubits, and therefore invalidates any poten-
tial quantum speedup. Moreover, small values of gradient
encountered in BP have to be distinguished from the case
when gradient vanishes due to convergence to a local min-
imum. Experimentally diagnosing BPs via entanglement
is also impractical. For example, quantum circuits that
implement 2-design and thus lead to BPs for local cost
functions are characterized by typical volume-law entan-
glement that approaches nearly maximal values. Check-
ing volume-law entanglement scaling on any device is a
formidable challenge.

In the process of variational quantum optimization, the
majority of approaches to mitigate BPs apply to the initial-
ization stage [12,37,38] and not during the optimization. In
Sec. IV, we illustrate the importance of BP mitigation dur-
ing the optimization. This motivates the need to devise a
BP mitigation strategy for the initialization and during the
optimization procedure that is efficient. This procedure is
discussed in the algorithm proposed below.

C. Weak barren plateaus and improved algorithm

In order to devise an efficient algorithm for BP-free ini-
tialization and optimization of the VQE we introduce the
notion of WBPs. Specifically, for a Hamiltonian that is &
local, we define the WBP as the point where the second
Rényi entropy S; = — Intrp? of any subregion of k qubits
satisfies S, > a4 (k, N), where the Page entropy in the
limit £ << N corresponds to the (nearly) maximal possible
entanglement of subregion A4,

Page ~ _
ST (k,N) ~ kIn2 N2 5)
where we explicitly use that the Hilbert-space dimension
of region 4 is 2¥ and its complement B has Hilbert-space
dimension 2V, The naive choice for the parameter « is
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o = 1. Given some a priori knowledge of the entangle-
ment structure of the target state |GS), the choice can how-
ever be more informed to help avoid large entanglement
local minima, see Sec. III.

The notion of WBP is practical since it is defined by -
body density matrices, being much easier to access on a
real NISQ device. The fact that the prevention of a WBP
is sufficient for avoiding the BP may be understood by
the intuition from quantum many-body dynamics and the
process of thermalization or scrambling of quantum infor-
mation. In the thermalization process the small subsystems
are first to become strongly entangled, as is witnessed by
the proximity of their density matrix to the infinite tem-
perature density matrix. This intuition suggests that it is
enough to keep in check the density matrices of small sub-
sets of qubits. If their entanglement or other properties are
far away from thermal, the system overall is still far away
from the BP.

Practically, the WBP can be diagnosed using the shadow
tomography scheme [25]. This scheme enables an effi-
cient way of representing a classical snapshot of a quan-
tum wave function on a classical computer. In essence,
the shadow tomography replaces the measurements per-
formed in the computational basis with a more general
measurements, that turns out to be sufficient for recon-
structing linear and nonlinear function of the state, such
as expectation values of few-body observables and sec-
ond Rényi entropy of few-body reduced density matrices,
respectively.

Relying on the shadow tomography, we propose the fol-
lowing modification of the VQE shown by dashed lines
in Fig. 1(b). In essence, we suggest to use the tomog-
raphy to simultaneously measure the cost function value
and the k-body second Rényi entropy. For the deriva-
tive we require an additional 2pN tomographies (two for
each parameter) to compute the gradient exactly using
the parameter shift rule [39,40], a detailed derivation of
the computational cost for each operation is presented in
Appendix A. Access to the second Rényi entropy allows
prevention of the appearance of WBPs not only at the ini-
tialization step, but throughout the optimization cycle. The
explicit algorithm works as follows.

If a WBP is diagnosed at the initialization, one may have
to take a different initial value of the variational angles or
change the initialization ensemble. These aspects are dis-
cussed in detail in Sec. III. In addition, the WBP can occur
in the optimization loop. This can be mitigated by keep-
ing track of the second Rényi entropies in the optimization
process. If the WBP condition is fulfilled, one must restart
the algorithm with a smaller learning rate. In Sec. IV we
discuss the optimization process in greater details. In par-
ticular, we show how the learning rate is related to the
potential change in entanglement entropy, which implies
that a smaller learning rate is generally better at avoiding
WBPs.

: Choose a, default isa =1 > see Sec. IIT A for details
: Choose 6 such that So < aST*8°(k, N)
Choose learning rate n
repeat > see Appendix A for details
Obtain classical shadows p*)(8)
Use them to compute E(0), Vo E(0) and S2(0)
if Sy < aST?2°(k, N) then
0+ 0 —nVeE(O)
else
10: Start again with smaller n + 7’
11: end if
12: until convergence of E(0)

©

Algorithm 1. WBP-free optimization with classical shadows

III. WEAK BARREN PLATEAUS AND
INITIALIZATION OF VQE

A. Definition and relation to barren plateaus

As mentioned in the above, BPs for local cost functions
are a consequence of the unitary ensemble £ ~ {U(0)}g
forming a 2-design [10,17], which leads to an exponen-
tially vanishing gradient variance, i.e., a BP. What is
important to note is that the exponential decay is simply
a witness of the emergence of a 2-design. Another, equiv-
alent witness is the second Rényi entropy, where we have
the following.

Theorem 1. (2-design and Rényi entropy) If the unitary
ensemble £ ~ {U(0)} forms a 2-design, then for typical
instances the second Rényi of the state p, concentrates
around the Page value

1
S N) = Sy = Be[S:00] = SV,

for all subregions A of size k < N.

These results are known in the literature, and in the con-
text of random quantum circuits, can be found in Refs.
[41-43]. However, for completeness we also provide a
proof in Appendix C.

The theorem above implies that a large amount of entan-
glement naturally follows from the similarity between
the considered circuit and a random unitary (2-design).
Such similarity also gives rise to the vanishing variance
of local cost-function gradients that define BPs. There-
fore, so-called entanglement-induced BPs [19] and BPs
for local cost functions are the same. In fact, entangle-
ment provides an intuitive picture for the emergence of
BPs and its circuit-depth dependence. Every entangling
layer in the circuit typically increases entanglement of
the resulting wave function, until it saturates to its maxi-
mal value for any subregion of & qubits at a circuit depth
p ~ O(poly(N)). If the second Rényi entropy for half of
the subsystem k = N /2 has saturated, it has saturated for
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all smaller subsystem sizes and is thus a sufficient check
for a BP. Computing the second Rényi is however typically
exponentially hard in subsystem size on NISQ devices
(for single-copy access this was recently proven in Ref.
[33,34]). It is therefore only practical to check a small
subregion where k£ is small and independent of system
size.

The above considerations naturally lead us to introduce
the notion of WBPs as a modification of the BP that is com-
putationally efficient to diagnose on NISQ devices. More
formally we have as follows.

Definition 2. (Weak barren plateaus) Let H be an N-qubit
Hamiltonian, and A is a region containing k qubits.
We define a weak barren plateau by the second Rényi
entropy of the reduced density matrix py satisfying S» >
aSPe(k, N) with a € [0, 1).

This definition works for any k&, however it is reason-
able to use k that corresponds to the number of spins
involved in interaction terms in the Hamiltonian H since
it provides a natural length scale. Moreover, in such a
case the reduced density matrix of subregion with k spins
contains all necessary information needed to extract the
expectation values of Hamiltonian terms localized inside
this region.

While a WBP is a necessary condition for a BP, it is
however not sufficient (which motivates the term weak).
From a practical perspective we are actually interested only
in avoiding a BP. For this, WBPs provide a powerful tool,
since the following holds.

Corollary 2.1. If we find a particular subregion A such
that p4 does not satisfy the weak barren plateau condi-
tion, i.e., Definition 2, it is on average also not in a barren
plateau where the variance is exponentially small.

Proof. This assertion immediately follows from negating
Theorem 1. |

The corollary above formalizes the intuition behind the
dynamics of entanglement in a circuit: if the state restricted
to the smaller subsystem has not scrambled, then neither
has the state restricted to a larger subregion. In prac-
tice, using classical shadows we can efficiently check one
subregion of size k with a total measurement budget

ket 1gp 2
>4 trp;

T ,
€28

(6)

where € is a desired accuracy and § is a failure probability
(over the randomized measurement process). Parameters
€ and § do not depend on the number of qubits, whereas
the factor trp? is upper bounded by one for weakly entan-
gled states and can be as small as 2% when entanglement

is large. Moreover, checking all size k& subregions incurs
an additional overhead of only kIn N. A derivation of this
result is presented in Appendix A, see Eq. (A6). Provided
that £ is small and does not scale with system size, N, this
can be efficiently implemented on NISQ devices.

If any of these subregions avoids the WBP condition, we
are guaranteed to also avoid an actual BP. For simplicity,
in the numerical results below we check for the WBP con-
dition for a particular region containing the first £ qubits,
ie,A={1,...,k}.

This argument is also intuitive to see by considering
a causal cone (blue region) that indicates the extent of
the so-called scrambled region (i.e., extend of a subregion
with entropy close to the maximal value) in the circuit,
see Fig. 2(a). Such a scrambled region grows with every
consecutive entangling layer W; [see Eq. (1)]. When this
region extends beyond & qubits, the WBP is reached (left
orange dashed line). Later, when the “scrambling light-
cone” has extended to the full system, the BP is reached
(right orange dashed line). Once the BP is reached all
smaller regions are also fully entangled and will satisfy the
WBP condition on average.

Figure 2(b) to (d) provides a numerical illustration for
the Corollary 2.1 stated above. We use the hardware-
efficient circuit, presented in Eq. (1), and compute the
gradient variance and second Rényi entropy as a func-
tion of circuit depth p for different system sizes N. We fix
[Y0) = |0) as the initial state, which is simply all qubits
in the zero state. Panel Fig. 2(b) shows the exponen-
tial decay of the gradient variance that is usually used
to diagnose a BP. Panel Fig. 2(c) shows the correspond-
ing bipartite second Rényi entropy. We see that it indeed
approaches the Page value (gray dashed line). The Page
value is not fully reached since we are considering the
second Rényi instead of the von Neumann entanglement
entropy, this difference however becomes negligible once
the subsystem size is decreased. This numerically illus-
trates that when the 2-design is reached both the gradient
variance and bipartite second Rényi entropy have con-
verged. In panel Fig. 2(d) we consider a smaller region of
two qubits and see that the second Rényi for this region
saturates to its maximal value at a significantly lower cir-
cuit depth. This illustrates the emergence of the WBP
that precedes the onset of the BP after a few more entan-
gling layers. Before the WBP is reached, gradients are well
behaved and do not decrease exponentially with the system
size.

Finally, we address the effects of the control parame-
ter «, that enters in Definition 2 of the WBP. The naive
choice is ¢ = 1, which means that a WBP is reached if
the subregion is maximally entangled with the rest of the
system. However, in the case when some a priori knowl-
edge about the entanglement properties of the target state
|GS) is available, it can be used to set a smaller value
of a. If, for instance, the ground state is only weakly
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FIG. 2. (a) Sketch of the circuit, where the blue color shows
the scrambling lightcone. The lightcone first extends over &
qubits, where the WBP occurs, and for larger circuit depths
extends to the full system size where the BP occurs. (b) The sat-
uration of the gradient variance Var[d;;E] and (c) saturation of
the bipartite second Rényi entropy S>(p4) of the region 4 con-
sisting of qubits 1,...,N/2 nearly to the Page value happen at
the similar circuit depths p, that increases with the system size
N. (d) In contrast, the saturation of the second Rényi for two
qubits (4" = {1,2}) is system-size independent, illustrating that
WBP precedes the onset of a BP. Data is averaged over 100 ran-
dom initializations. Gradient variance is computed for the local
term o505, typically used in BP illustrations. Gradient variance
for the full Heisenberg Hamiltonian, Eq. (2), looks similar.

entangled, a choice of @ « 1 may be appropriate. In this
way Algorithm 1 in Sec. II C can also help in avoiding con-
vergence to highly entangled local minima. We discuss this
in more detail in Sec. IV B.

B. Illustration of WBP-free initialization

In order to illustrate the notion of WBP in a more
specific setting we apply it to the initialization process
of the VQE. Specifically, we focus on the family of
initializations that was proposed earlier in order to avoid
the issue of BPs [15,26]. The one-parametric family of ini-
tializations restricts the single-qubit rotation angles from
ansatz Eq. (1) as 9} € €g[—m,m), where €4 € [0, 1) is the
control parameter. This strategy allows the onset of the
BP to be delayed to arbitrary circuit depths by tuning ¢4
accordingly.

Similarly, it allows the onset of WBPs to be delayed.
Depending on the parameter €, one can afford a deeper
circuit without encountering a WPB in the initialization
when compared to the full parameter range (5 = 1). It is
straightforward to see that for ¢y = 0, the ansatz is WBP
free for all circuit depths. Indeed, in the absence of the
single-qubit rotations, the entangling gates in W; do not
create any entanglement [since the CZ gates used in Eq. (1)
are diagonal in the computational basis], leaving |0) invari-
ant. Note that, for example, the identity block initialization,
proposed by Grant et al. [12] works in a similar way in that
the unitary is constructed such that it also implements the
identity and one is equally left with the zero state.

In Fig. 3 we numerically illustrate the influence of €y on
the growth of entanglement and its relation to the gradient
variance. Panel (a) illustrates the growth of the second

(@) 1.001

I
o
S

SQ / SPagc

0.25

0 100 200 300 400 500 600
p

FIG. 3. (a) Decreasing parameter €5 from 1 slows down the
growth of the second Rényi entropy with the circuit depth p. The
chosen region contains two qubits. (b) The encounter of BP in
the variance of the gradient of the cost function is visible only
for the case €y = 1, and it is preceded by the onset of a WBP.
We use a system size of N = 16 for (a) and N = 8,...,16 for
(b), color intensity corresponds to system size, same as in Fig. 2.
Data is averaged over 100 random instances, variance is for the
local term o035 .
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Rényi entropy in the circuit for three different small-angle
parameters €y and panel (b) shows the corresponding gra-
dient variance. Outside of the WBP the gradient variance
vanishes at most polynomially in system size N. This illus-
trates that the avoidance of a WBP is sufficient for avoiding
a BP and thus allows for a simple strategy for constructing
BP-free initializations.

IV. ENTANGLEMENT CONTROL DURING
OPTIMIZATION

A. Bounding entanglement increase at a single
optimization step

In Sec. II we presented how the general VQE can be
extended with minimal overhead to avoid WBPs in the
optimization procedure. The learning rate, as presented in
Algorithm 1, hereby plays a crucial role. A smaller learn-
ing rate, as observed in Figs. 1(c)-1(e) is more likely
to avoid a WBP. To understand this phenomenological
observation on more rigorous grounds, let us consider a
sufficiently deep circuit (with a polynomial number of lay-
ers in system size), so that the optimization landscape is
dominated by WBPs. Careful selection of the parameters
allows for an initialization outside of a WBP. However, to
remain in the WBP-free region, the optimization has to be
performed in a controlled manner, such that the optimizer
does not leave the region of low entanglement due to large
learning rate and does not end in a WBP.

Since WBPs are defined in terms of the second Rényi
entropy S, we need to bound the change in S, between
iteration steps ¢ and r4 1. For practical purposes, we
instead use the purity (trp? = e~%2). The change in purity
is upper bounded by [44]

T5()

2k—1°
0

o3t + 1) — trpz ()] < 1= (1 = T4(0)* -

where T,(f) = T(p4(t), p4(t+ 1)) is the trace distance
between the reduced density matrices at iteration steps ¢
and 7 + 1, and we assume that region A has k qubits.

Assuming that the states at consecutive update steps of
gradient descent are pertubatively close (see Appendix D
for details), as measured by the trace distance, one can
show that

2
T(pa(t+ 1), pa(1) < \/%(VoE)Tf(é’)VoE, ®)

where F;(0) = 4Re[(30/19;) — () (Y13 9)] s
the quantum Fisher information matrix (QFIM) [45] and
n is the learning rate. Inequalities (7)—(8) imply that the
learning rate 1 can be used to limit the maximal possible
change of the purity [46]. Provided that the change in
purity is sufficiently small, the Taylor expansion can be

used to argue that the corresponding change in the second
Rényi entropy S», related to the purity as e =2 = trp?, also
remains controlled. Therefore, the choice of an appropri-
ately small learning rate can guarantee the avoidance of a
WBP at t + 1, provided the absence of one at 7.

To illustrate the bound numerically, we prepare an ini-
tialization outside of the WBP using a small angle param-
eter €y and compute the change in the purity trp? after one
GD update step for different learning rates 7. The results of
this procedure for four different learning rates are shown in
Fig. 4. We see that larger learning rates correspond to a big-
ger change in purity and are thus more prone to encounter
a WBP. At the same time, all data points are below the the-
oretical bound. While up to the best of our knowledge the
bound Eq. (7) is not proven to be tight, we observe that
points corresponding to the extreme learning rates closely
approach the theoretical line.

Using Eq. (8), the bound can be efficiently approxi-
mated on NISQ hardware: the QFIM can be estimated
efficiently on a quantum device using techniques suggested
in Ref. [31] or Ref. [47] using classical shadows. For the
computation of the gradient one can use the parameter shift
rule [39,40] also with shadow tomography. The expres-
sion can thus be efficiently evaluated on a real device and
used together with the continuity bound to estimate a suit-
able learning rate . However, in practice this might not be
needed and simply following Algorithm 1 could be more
efficient and easier to implement.

B. Optimization performance with learning rate

Finally, we illustrate Algorithm 1 in practice. To this
end we first prepare a WBP-free initial state using small

Continuity bound

n=1
0.6 n=0.1
n=0.01
n = 0.001

(t+1)]

2
A

0.4+

0.2

|trp? (1) — trp?

0.0

0.0 0.2 0.4 06 0.8 1.0
T(pa(t),pa(t+1))

FIG. 4. We numerically illustrate the continuity bound Eq. (7)
and its relation to the learning rate n for t = 0, i.e., at the begin-
ning of the optimization schedule. This shows that one should be
careful with the choice of the learning rate since a large learn-
ing rate leads to a big change in the trace distance and change
in purity. We use a system size of N = 10 and a random circuit
with circuit depth p = 100 and small qubit rotations (eg = 0.05)
to generate a BP-free initialization. Data is averaged over 500
random instances.
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qubit rotation angles and compare the performance of GD
optimization with different learning rates. If we start with
a large learning rate, n = 1, corresponding to red lines in
Figs. 5(a)-5(c), we see that the energy expectation value
in Fig. 5(a) rapidly (within one or two update steps) con-
verges to a value far away from the target ground state
energy Egs. At the same time, panel (b) reveals that this
can be attributed to an onset of a WBP, as the second Rényi
entropy spikes up to the Page value. Finally, panel (c)
shows that the gradient norm also is convergent, though at
non-zero value. We attribute this to the fact that the system
gets trapped in the WBP region.

As suggested by Algorithm 1, we thus decrease the
learning rate to n = 0.1 and start again. This time a WBP is
avoided, the algorithm however gets stuck in a local min-
imum with large entanglement entropy. In this instance a
choice of parameter « that defines an onset of a WBP in
Definition 2 being smaller than one may be beneficial. For
instance, setting = 0.5 could help avoiding the subopti-
mal local minima characterized by large entanglement, see
gray dashed line in Fig. 5(b). Note that the large gradient
persistent after many iterations for the blue line in Fig. 5(c)
may also indicate that the learning rate is chosen too large
for the width of the local minima.

Provided that our algorithm uses o = 0.5, the system
would satisfy a WBP condition even for learning rate n =
0.1, forcing us to restart the algorithm with an even smaller
learning rate. Setting n = 0.01, we see that the algorithm
is now able to converge very close to the true ground-state
energy [violet line in Figs. 5(a)-5(c)]. In particular, the
norm of the gradient assumes the smallest value among
all learning rates. We note, that the further decrease of the
learning rate (i.e., to n = 0.001) degrades the performance
of GD. While WBPs are not encountered during the opti-
mization process, the GD optimization converges slower
and within the considered number of iterations leads to a
larger energy expectation value. This highlights the fact
that it is best to choose the highest possible learning rate,
that still avoids a WBP. We speculate, that an optimization
strategy that adapts the learning rate at each optimization
step would give the best performance, though testing this
assumption is beyond the scope of the present work.

C. Classical simulatability and performance
comparison

Now that we have illustrated the procedure outlined
in Algorithm 1 in detail, let us comment on the restric-
tions that our algorithm imposes, its relation to classical
simulatability and finally compare our method with other
common means for mitigating BPs.

To avoid WBPs and thus BPs we require that the sec-
ond Rényi entropy of a small subregion is less than a
fraction o of the Page value, where o € (0, 1] and the

(a) )
n=0.1
7n=0.01
n =0.001

£ 0.6
=9
N | memtiAege s m e e e m e E E EEEEE N EEEEE ==
~
A 0.41
0.2
0.0
(c)
301
I 201
>
101
01 ‘ : : : :
0 100 200 300 400 500
Iteration ¢
FIG. 5. (a)Ac) The application of the proposed algorithm to

the problem of finding the ground state of the Heisenberg model.
For large learning rates n = 1 and 0.1 (red and blue lines) the
optimization gets into a large entanglement region as is shown in
(b), indicated by colored stars, forcing the restart of the optimiza-
tion with smaller value of 1. For n = 0.01 the algorithm avoids
large entanglement region and gets a good approximation for the
ground state. Finally, setting even smaller learning rate (green
lines) degrades the performance. The normalized second Rényi
entropy of the true ground state is S,/ST%(k, N) ~ 0.246. (c)
Shows the corresponding gradient norm. A small gradient norm
equally corresponds to the BP and the good local minima found
with n = 0.01 and 0.001. We use a system size of N = 10, sub-
system size k = 2, and a random circuit [see Eq. (1)] with circuit
depth p = 100 and small qubit rotations (€5 = 0.05) to gener-
ate a BP-free initialization. Here we choose « = 0.5 indicated by
the gray dashed line, see the last paragraph of Sec. IIT A for a
discussion on the choice of . Data is averaged over 100 random
instances.

default choice is « = 1. While this restriction does place
a limitation on the entanglement generated by the cir-
cuit for a region of £ qubits, it does not imply classi-
cal simulatability of the circuit. Indeed, it is the scal-
ing of the entanglement entropy with system size that is
important for classical simulatability of a quantum sys-
tem. Only in the special case when the entanglement
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entropy of the quantum state scales poly-logarithmically
with the number of qubits, we can simulate the states
on a classical computer in polynomial time [48-50]. In
contrast, the criteria for WBP, Definition 2 is generally
consistent with volume-law entanglement as we illustrate
below, thus allowing our algorithm to be applied to sys-
tems that cannot be efficiently simulated on a classical
computer.

Here we focus on two types of systems: namely systems
where the ground state satisfies area law, which implies
that the entanglement entropy of an arbitary bipartition of
the state scales with the size of the boundary S(p,4) ~ |94],
as well as volume law, which implies that it scales with
the volume, S(p4) ~ |4| (see Ref. [51] for a review on
these concepts). For area-law states in 1D the entanglement
entropy is constant and therefore allows for an efficient
classical representation using techniques such as matrix
product states [52]. The 1D Heisenberg model, consid-
ered in the previous subsection, is an example for such a
system.

The Heisenberg model, however, can be made hard to
simulate classically by considering a random-graph geom-
etry illustrated in Fig. 6(a), instead of a 1D chain. This
leads to nonlocal interactions and a volume-law entan-
glement scaling for a typical bipartite cut. Due to the
nonlocal nature of the model we choose o = 1 since we
have no prior knowledge on the entanglement properties
of the ground state. We again use the small-angle ini-
tialization [15,26] to generate a BP-free initial state. We
compare this with layerwise optimization [13], which is
another common heuristic for avoiding BPs. There the cir-
cuit is initialized with a single layer, which is optimized,
the circuit is then grown by one layer at a time and opti-
mized while keeping the parameters in the previous layers
constant.

Figures 6(b) and 6(c) reveal that for the Heisenberg
model on a graph layerwise optimization ends up in a
WBP during the optimization for both learning rates that
we considered. The small-angle initialization successfully
avoids the WBP for both learning rates, however good
convergence is only achieved with n = 0.01. This is sim-
ilar to the situation encountered in the Heisenberg model
in 1D, see Fig. 7 where a too large learning rate pre-
vents convergence to the basin of attraction of the local
minimum. Likewise to the case of the 1D Heisenberg
model, the fact that learning rate n = 0.1 does not lead to
convergence to a minimum can be revealed through the
norm of the gradient, which stays large even after 500
iterations.

In addition to the Heisenberg model on the random
graph, we also considered the SYK model [53] that
features a volume-law entangled ground state [54]. In
Appendix E we illustrate that our method is also successful
in preventing the BP occurrence and results in finding the
SYK ground state.
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FIG. 6. Application of our algorithm to the problem of find-
ing the ground state for the Heisenberg model on a 3-regular
random graph depicted in (a). Panel (b) shows the energy as a
function of GD iterations ¢ and panel (c) illustrates the second
Rényi entropy of two-spin region 4 with £ = 2 shown in panel
(a). Since the interactions are now nonlocal and we do not have
any prior knowledge on the entanglement properties of the target
state we set o = 1 (gray dashed line). For the initialization we
use the small-angle initialization (SA) with ¢y = 0.1 and com-
pare it to layerwise optimization (LW). LW encounters a WBP
for both learning rates that we consider (green star). In contrast,
SA avoids the WBP for both learning rates. Good performance
and further convergence in the local minimum is only achieved
through a smaller learning rate of = 0.01. We use a system size
of N = 10 and a random circuit from Eq. (1) with circuit depth
p = 100. Data is averaged over 100 random instances.

V. SUMMARY AND DISCUSSION

The main result of this work is the introduction of
the concept of WBPs, which in essence provides an effi-
ciently detectable version of BPs. In particular, we pro-
pose to use the classical shadows protocol to estimate the
second Rényi entropy of small subregions that are inde-
pendent of system size. If these subregions avoid nearly
maximal entanglement—a condition sufficient for avoid-
ing WBPs—the system also avoids conventional BPs.
Building on this definition of the WBP, we proposed an
algorithm that is capable of avoiding BPs on NISQ devices
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without requiring a computational overhead that scales
exponentially in system size.

In order to illustrate the notion of WBPs and the
proposed algorithm, we studied a particular BP-free
initialization of the variational quantum eigensolver. Fur-
thermore, we considered an optimization procedure that
uses gradient descent. Phenomenologically, we observed
that the encounter of a BP during the optimization crucially
depends on the learning rate, which controls the param-
eter update magnitude between consecutive optimization
steps. A smaller learning rate is less likely to lead to
the encounter of a BP during the optimization. However,
choosing the learning rate to be very small degrades the
performance of GD. These results support the feasibility
of the proposed algorithm for efficiently avoiding BPs on
NISQ devices. While our results and numerical simula-
tions are focused on VQEs, they readily extend to other
variational hybrid algorithms, such as quantum machine
learning [8,55,56], quantum optimization [6,57,58], or
variational time evolution [59,60].

Although the issue of avoiding BPs at the circuit initial-
ization is a subject of active research [12—16], the influence
and role of BPs in the optimization process has received
much less attention [61]. Our results indicate that entan-
glement, in addition to playing a crucial role for circum-
venting BPs at the launch of the VQE, is also important for
achieving a good optimization performance. In addition,
our heuristic results in Sec. IV suggest that postselection
based on the entanglement of small subregions may help
to avoid low-quality local minima that are characterized
by higher entanglement. Algorithm 1 allows for such post-
selection by appropriately tuning the value of «. Doing so,
however, requires some prior knowledge about the entan-
glement structure of the target state. This may be inferred
from the structure of the Hamiltonian (for instance, for a
Hamiltonian that is diagonal in the computational basis,
the eigenstates are product states with no entanglement), or
by targeting small instances of the computational problem
using exact diagonalization.

Beyond that, one could imagine an algorithm where the
learning rate is not only adapted when a WBP is encoun-
tered, but dynamically adjusted at every step of the opti-
mization process. This may allow for efficiently maneuver-
ing complicated optimization landscapes by staying clear
of highly entangled local minima. VQE, for instance, is
known to have many local minima [11], but a systematic
study of their entanglement structure, required for devising
such a dynamic entanglement postselection procedure, has
yet to be done.

Another important question concerns the effect of noise,
which has been suggested to be an additional source for
the emergence of BPs [20]. Noise cannot be avoided on
NISQ machines and has a profound impact on any near-
term quantum algorithm, which is difficult to analyze
analytically. Fortunately, none of the tools we propose are

especially susceptible to noise corruption. In fact, both the
classical shadow protocol and the estimation of observ-
ables and purities are stable with respect to the addition of a
small but finite amount of noise, and there have even been
some proposals for noise mitigation techniques [62,63].

Finally, we comment on the possibility of testing
Algorithm 1 on a real NISQ device. While the shad-
ows protocol can readily be implemented on near-term
devices to diagnose WBPs, whether a variational circuit
with enough entangling layers that lead to a BP can be
realized on a NISQ device is not entirely clear at this
stage. Nevertheless recent results of Ref. [64] observed
convergence of the out-of-time correlators to zero, indi-
cating that a 2-design might already have been reached.
This implies that large entanglement, as present in a BP,
could be realizable on available NISQ devices, and opens
the door to experimental studies of the effect of entangle-
ment on the optimization performance on current NISQ
machines using the proposed shadows protocol.
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APPENDIX A: CLASSICAL SHADOWS AND
IMPLEMENTATION DETAILS

Shadow tomography attempts to directly estimate inter-
esting properties of an unknown state without performing
full state tomography as an intermediate step. Aaronson
[67] and Aaronson and Rothblum [68] showcased that such
a direct estimation protocol can be exponentially more effi-
cient, both in terms of Hilbert-space dimension (2" in our
case) and in the number of target properties (we use L
to denote this cardinality). These techniques do, however,
require copies of the underlying quantum state to be stored
in parallel within a quantum memory and highly entangled
gates to be performed on all copies simultaneously. This is
too demanding for current and near-term quantum devices.

Huang et al. [25] developed a more near-term friendly
variant of this general idea known as prediction with clas-
sical shadows. Similar ideas have been independently pro-
posed by Paini and Kalev [69] and Morris and Daki¢ [70],
respectively. As explained in detail below, the key idea is
to sequentially generate state copies and perform randomly
selected single-qubit Pauli measurements. Such measure-
ments can be routinely implemented in current quantum
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hardware and enable the prediction of many (linear and
polynomial) properties of the underlying quantum state.
Importantly, the measurement budget (number of required
measurements) still scales logarithmically in the number
of target properties L, but it may scale exponentially in
the support size k of these properties. This is not a prob-
lem for local features, like subsystem purities or terms in
a quantum many-body Hamiltonian, but does prevent us
from directly estimating global state features like fidelity
estimation.

The general measurement budget that is required to
simultaneously estimate L local observables using classi-
cal shadows, necessary for the energy expectation value
estimation, is provided in Theorem 3. Typically the estima-
tion of L observables would scale linearly in L (essentially
every term is estimated individually). This is traded with
a In L dependence instead and an exponential dependence
on the support & of the operators. The cost for estimating
the subsystem purities and thus second Rényi entangle-
ment entropies is provided in Eq. (A6) and is exponential
in k (this dependence was recently proven to be unavoid-
able [34]). However since for the WBP check outlined
in the main text &k is small, this is generally an efficient
operation. Lastly, the cost for estimating the gradients is
given in Eq. (A8). The efficiency of using classical shad-
ows to estimate the energy expectation value and gradients
is system dependent (see Ref. [25] for the application
of classical shadow tomography to the lattice Schwinger
model). For the estimation of the purities, the shadow
protocol, however, generally provides the most efficient
technique currently available [71]. One possibility to cir-
cumvent these restrictions is to use a hybrid scheme where
the energy and gradients are estimated with either classical
shadows or the usual approach dependent on the struc-
ture of the Hamiltonian while the second Rényi entropies
for the WBP check are always estimated using classical
shadows.

1. Data acquisition via classical shadows
We use randomized single-qubit measurements to
extract information about a variational N-qubit state rep-
resented by a density matrix

p0) =¥ @)Xy (6)] withd € R

To this end, we repeat the following procedure a total of T
times. For 1 < ¢ < T we carry out the following.

1. Prepare quantum state o (@) on the NISQ device.

2. Select N single-qubit Pauli observables indepen-
dently and uniformly at random.

3. Perform the associated N-qubit Pauli measurement
(single shot) to obtain N classical bits (0 if we
measure “spin down” and 1 if we measure “spin

upn).

4. Store N single-qubit “postmeasurement” states,

|s§’)), where an ith qubit measurement outcome, s;,
can take six possible values denoted as |0), |1) if
qubit is measured in z basis, |4+) and |—) for x
basis, and, finally, | 4+ 1) and | — 1) for y basis. Here,
|£) = (|10) &= [1) /ﬁ denote Pauli-x matrix eigen-
states and | &= 1) = (]0) £ 1i|1)) /«/5 are two Pauli-y
eigenstates. In practice, this is achieved by applying
random single-qubit Clifford gates that effectively
implement a change of basis such that the usual
z-basis measurement can be used, see Fig. 1 (a) for
a visualization.

5. (Implicitly) Construct the N-qubit classical shadow

N
200 =@ (3Is")s1 - 1)..

i=1

(A1)

Repeating this procedure a total of 7' times provides us with
T classical shadows p (), . .., pP (). These are random
matrices that are statistically independent (because they are
constructed from independent quantum measurements).
By construction, each classical shadow reproduces the true
underlying state in expectation (over both the choice of
Pauli observable and the observed spin direction):

E[50®)]=p®) = v@OXv@).  (A2)

see, e.g., Ref. [25, Proposition S.2]. We can now approx-
imate this ideal expectation value by empirical averaging
over all samples:

1 T
A~ — 50
p(0) T;:lp ).

This approximation becomes exact in the limit 77— oo
of infinitely many measurement repetitions. But the main
results in Refs. [25,69] highlight that convergence actually
happens much more rapidly.

This is, in particular, true for subsystem density matri-
ces. The tensor product structure of classical shadows,
Eq. (Al), plays nicely with taking partial traces. Let 4 C
{1,...,N} be a collection of |4| = k qubits. Then,

P ®) =t (57) (A3)
is a k qubit shadow that can be used to approximate the

associated subsystem density matrix. More precisely, Eq.
(A2) asserts

E[00®)] =t~ (E[5"®)]) = t-4(0(0)) = pu(®),
(Ad)

which can (and should) form the basis of empirical aver-
aging directly for the subsystem in question. Here is a
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mathematically rigorous result in this direction. In what
follows, the range (or weight) of an observable is the num-
ber of qubits on which it acts nontrivially. For example,
coupling terms in the Heisenberg Hamiltonian (2) have
range k = 2, while the external field terms have range
k=1.

Theorem 3. Fix a collection of L range-k observables O,
as well as parameters €,5 > 0. Then, with probability (at
least) 1 — 6, classical shadows of size

ket 1
> 4=11n(2L/8)
z T a
suffice to jointly estimate all L expectation values up to
additive accuracy €. In other words,

1 T
p®) == 50 obeys [ (01p(®))

=1

—tr(Op@))| < e,
foralll <l <L

We emphasize that it is not necessary to form
global shadow approximations. If O; only acts nontriv-
ially on subsystem 4; C {1,...,N} (O, = b; ® I-4,), then
tr (016(0)) = tr (OIﬁA,)- Theorem 3 is slightly stronger
than a related result in Ref. [25] (it does not require
median-of-means estimation). Conceptually similar results
have been established in Refs. [72] and [73,74]. Notably,
the authors of Ref. [75] pointed out to us that they pro-
vided a similar statement as in Theorem 3 in their work.
We present a formal proof in Appendix A 5 below.

2. Estimating subsystem purities
Suppose we are interested of estimating a collection of
multiple subsystem purities
pa0) =t (04(0)%) =tr (04(0)p4(0)),  (A5)
where 4 C {1,...,N} labels different subsystems of size
|4| = k each. Then, we can use the corresponding sub-

system shadows, Eq. (A3), to approximate each p, by
empirical averaging:

A 1 o
pa(0) = TT—1) ;tf (pA:OA> . (A6)

It is important that we restrict our averaging operation to
distinct pairs of classical shadows (¢ # ¢'). This guarantees

that the expectation values factorize, i.e.,
E|54| = E [ E[5] = o},

where the last equality is due to Eq. (A3). Formula (AS)
is an empirical average over all distinct shadow pairs
contained in the data set. It converges to the true aver-
age p4(0) =E [f)A (0)], and the speed of convergence is
governed by the variance. As data size T increases, this
variance decays as

2 1
Var [p4(0)] < = (2 x 4p2(0) + ——2%
ar[PA()]_T<>< pz()+T_1 >,

see, e.g., Ref. [76, SM Eq. (12)]. In the large-T limit, this
expression is dominated by the first term in parentheses,
4 % 2%p,(8)/T, and Chebyshev’s inequality allows us to
bound the probability of a large approximation error. For
€ >0,

. 4k+1tr ,02
Pr[[pa(0) —tr (p4(0)%)| = €] < —Tez( A),
provided that the total number of measurements 7' is large
enough to suppress the higher-order contribution in the
variance bound (this is why we write <). In this regime,
a measurement budget that scales as

laar ( ,Oj)
> 2 (A7)
suppresses the probability of a sizable approximation error
(> €) below §. It is worthwhile to point out that this
bound depends on the subsystem purity under consider-
ation. Smaller purities are cheaper to estimate than large
ones. It is also important to note that the accuracy parame-
ter € has to be small enough in order to accurately capture
the purity in the WBP regime, which decays exponentially
fast, but only with the subsystem size .

The & dependence in Eq. (A6) can be further improved
to In(1/8) by replacing simple empirical averaging in
Eq. (A5) by median-of-means estimation [25]. Doing so
would allow us to estimate all possible L = () < N
size-k subsystem purities with only a kln/N overhead.
Median-of-means estimation does, however, worsen the
dependence on € by a constant amount. Empirical studies
conducted in Ref. [77] showcase that such a trade-off only
becomes viable if one wishes to approximate polynomially
many subsystem purities.

3. Estimating gradients

To perform the GD update step suggested in Algorithm 1
we require the knowledge of gradient VyE (@), which con-
sists of pN derivatives 9, ;E(#). The derivative can naively
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be approximated using finite difference, though for vari-
ational single-qubit rotation gates, as used in the main
text [see Eq. (1)], we can use the parameter-shift rule
to compute the gradients exactly (up to finite sampling
errors) [39,40]. The parameter-shift rule is given by

1
0i,E (0) = 5 (E(0+ (/2)ei)) —E (0 — (77/2)eiy))

where i labels the qubits and / cycles through all circuit
layers, and e;; is the unit vector. In order to approximate a
single gradient, we need to estimate the difference of two
energy expectation values E(0.) = (Y (0.)|H|¥(01))
with 0. =0 + (77/2)e;; and E(0-) = (Y (0-)|H |y (6-))
with 0_ =0 — (7w /2)e;; (we suppress i and / indices in
0. for the sake of brevity). Typically, the Hamiltonian
itself can be decomposed into a sum of L “simple” terms:
H = Zlel h;, where often L can be proportional to the
number of qubits, N. This allows expression of the gradient
as a linear combination of 2L expectation values,

1 L
Ok (8) = 5 D (WOl 6))
=1

— (VO )|l (0-)), (A8)

each of which can be estimated by performing a collec-
tion of single-qubit Pauli measurements. If each term 4, is
supported on (at most) k qubits, then Theorem 3 applies.
Performing T ~ 4* In(L/8)/€* randomized Pauli measure-
ments on state p(6,) and p(@_) each allows us to €
approximate all 2L simple terms in Eq. (A7).

Unfortunately, approximation errors may accumulate
when taking the sum over all 2L terms. Suppose that
we obtain e-accurate estimators E;(Oi) of contribution
of the local Hamiltonian term to the energy E;(0i) =
(Y (@) (01)). A triangle inequality over all approx-
imation errors then produces only

0E®) — DE®)|

L
= % [Z (E1(0+) —E0,) —E(0-) —|—E,(0>'
=1
T 1 |-
= 5 ‘El(0+) - El(0+)’ + 5 Z ‘El(a_) — El(e_)’
I=1 =
= Le.

This upper bound equals only € if we rescale the accuracy
of original approximation to €/L. Inserting this rescaled
accuracy into Theorem 3 produces an overall measurement

cost of

k172
s 45+ 1r21(2L/5) ' (A9)
€
The number L of terms in the Hamiltonian typically scales
(at least) linearly in the number of qubits N. This implies
that the measurement budget, Eq. (AS8), required to (con-
servatively) estimate gradients scales quadratically in the
system size and thus is parametrically larger than the (con-
servative) cost of estimating purities of size-k subsystems,
Eq. (A6). To obtain the full gradient VyE(6) the proce-
dure has to be repeated pN times since the parameter-shift
rule has to implemented for every variational parameter. It
should be noted though, that in principle this can be com-
puted in parallel, provided large enough (quantum) compu-
tational resources. For example, different NISQ computers
could be used to estimate different gradient components at
the same time.

4. Example of error accumulation in an Ising model

The extra scaling with L? in Eq. (A8) is a consequence
of error accumulation. If we use the same measurement
data to jointly estimate many Hamiltonian terms, then all
these estimators become highly correlated. And the effect
of outlier corruption—which occurs naturally in empirical
estimation—becomes amplified.

Here, we illustrate this subtlety by means of a simple
example. Let H = —J vaz_ll o;of_, be the Ising Hamilto-
nian on a 1D chain comprised of N qubits (L =N — 1).
Let us also assume that N is even. This Hamiltonian is
diagonal in the z basis |ij, ..., iy) = |i;) ® - - - ® |iy) with
i1,...,iy €{0,1}. So, in order to estimate H, it suffices
to perform measurements solely in this basis. Born’s rule
asserts, that we observe bitstring 1, . . ., Sy with probabil-

ity

Pr[gls"-,gN] = (gln""§N|p|§1""9§N>n

where p denotes the underlying NV -qubit state. And, we can
use these outcomes to directly estimate the total energy. It
is easy to check that

A

E =(81,...,5v|H|51,...,5N)

N
=—J Y _Gilo718) Girilofy 3i)
i=1

obeys E [E ] = tr (H p), regardless of the quantum state p

in question. Also, estimating individual terms in this sum
is both cheap and easy. Convergence of the sum, however,
does depend on the underlying quantum state and the cor-
relations within. To illustrate this, we choose A € (0, 1) and
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set

p) = (1 =V N&|+ Alo)ol,

where [¢) = |00 - - - 00) is the Ising ground state and |¢) =
[01---01) is a Néel state. These states obey (V¥ |H|y) =
—J(N — 1) (ground state) and (¢|H|p) =+J(N —1)
(highest excited state), so

tr(Hp(A) = —J(n— 1) (1 — 220).

The task is to approximate this expectation value based
on computational basis measurements. For each measure-
ment, we either obtain outcome 0---0 (with probability
1 —p) or outcome 01---01 (with probability p). This
dichotomy extends to our estimator

o (Y|H|Y) =—=J(N — 1) with prob. 1 — A,
(plH|p) = +J(N — 1)  with prob. A,

and we are effectively faced with estimating the (rescaled)

expectation value of a biased coin. The associated variance

of such a coin toss can be easily computed and amounts to

Var [E] —E [Ez] - (E [E])2 — 472 (N — 1)20(1 — ).

Unless A # 0,1 (where the variance vanishes), this vari-
ance it is proportional to L? = (N — 1)? and controls the
rate of convergence. Asymptotically, a total number of

T> Var [E] /€ = AT L2 (1 — 2) /€ = QL2 /e?)

independent coin tosses are necessary (and sufficient)
to € approximate the true expectation value E [E] =

tr (o(A)H). This is a consequence of the central limit
theorem and showcases that a measurement budget scaling
with the number L of Hamiltonian terms is unavoidable in
general.

We emphasize that this is a contrived worst-case argu-
ment that showcases how correlated measurements can
affect the approximation quality of a sum of many simple
terms, while each term individually is cheap and easy to
evaluate. A generalization to the Heisenberg Hamiltonian
considerable in the main text, see Eq. (2), is straightfor-
ward.

5. Proof of Theorem 3

Theorem 3 is a consequence of the following concentra-
tion inequality. Let ||O||» denote the operator and spectral
norm of an observable. We also use | - ||; to denote the
trace norm.

Theorem 4. Fix a collection of L range-k observ-
ables O; with |0l <1, a quantum state p and let

p=1/TS.L, 9 be a classical shadow estimate thereof.
Then, for € € (0, 1),

Pr mx|tr(0 A))—tr(O )|>e < 2Lex —Gz—T
i 0 (09) ~w @)z | =2t ep gy ).

This large deviation bound is a consequence of another
well-known tail bound, see, e.g., Ref. [78, Theorem 7.30].

Theorem 5 ((Bernstein inequality)). Let XV, ..., XD pe
independent, centered (i.e., E[X;] = 0) random variables
that obey |X | < R almost surely. Then, for € > 0

€21%/2
Pr >e€| <2exp _—2+RT€ S
o

where > =Y.l E [(X(’))z].

1 T
712){(0

=1

Proof of Theorem 4. Fix an observable O = O; with 1 <
I < Land define X = tr (0p”) — tr (Op). Then, by con-
struction of classical shadows, each X ® is an independent
random variable that also obeys E [X @] = 0, courtesy of
Eq. (A2). Next, let 4 C {1,...,N} with |4] = k be the
subsystem on which the range-k observable acts nontriv-
ially, i.e., O =0, ® 1.4 and |O|lcc = [|O4llec < 1. Then,

Hoelder’s inequality (|tr (O404)| < |04l llp4]l1) asserts

X0 =i (045) = ¢ )

)
= 04l (1 + [T 131 %s) - 11||1)

aeAd

A1)
Ay

< 10ale (ol +

<(1+2")=1+2F =R,

where we also use ||p4|l1 =tr(p4) = 1 and the specific
form of subsystem classical shadows, Eq. (A3), that fac-
torizes nicely into tensor products. Estimating the vari-
ance is more difficult by comparison. However, Ref. [25,
Proposition S3] asserts

2
E[(X)"] = 108 gon = 4100 = 4"
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In turn, o2 < T4* and we conclude

Pr[|tr (0p) — tr (Op)| > €]
L
:PI‘|: ?;X(I) Z€:|

<> e21%/2
€X —
=SSP\ T T (1 + 29 Te

T
< 2 eXp _W .
where the last line is a rough simplification of the expo-
nent. Such a tail bound is valid for any O = O; and
the advertised statement follows from taking a union

bound (also known as Boole’s inequality) over all possible
deviations:

Pr |:1mlaxL |tr (01p)) — tr (Oyp)| = ei|

L
< Y Pr[[w(0p) —tr (O1p)| = €]
I=1

T
< 2Lexp g )

APPENDIX B: UNITARY #~DESIGNS

Here, we briefly review the notion of unitary #-designs.
The Haar measure is the unique left and right invariant
measure on the unitary group U(d), where d here stands
for the dimension of the full Hilbert space, d = 2". Uni-
tary t-designs are ensembles of unitaries that approximate
moments of the Haar measure. More precisely, let £ be an
ensemble of unitaries, i.e., a subset of U(d) equipped with
a probability measure. For an operator O acting on the #-
fold Hilbert space H®', the t-fold channel with respect to
£ is defined as

dL(0) = / dUU® (0O)U™". (B1)
&

Essentially, we are asking when the average of an operator

O over the ensemble £ equals an average over the full uni-

tary group. A unitary #-design [79,80] is an ensemble & for

which the #-fold channels are equal for all operators O,
@L(0) = By, (0).

Being a t-design means we exactly capture the first ¢

moments of the Haar measure with larger ¢ better approx-

imating the full unitary group. There are known construc-
tions of 7-designs for + =2 and ¢ =3 [79,81-84]. For

t = 1, it is known that any basis for the algebra of oper-
ators of H, including the Pauli group, is a 1-design. In
practice, one is more interested in when the ensemble of
unitaries is close to forming a 7-design. With this, given a
tolerance €, > 0 one refers to the ensemble £ as being an
approximate ¢-design if

“ chg - qji{aar“@fel"

where |||, is the diamond norm—a worst-case distance
measure that is very popular in quantum information the-
ory, see, e.g., [85]. In the quantum-machine-learning litera-
ture the distance between the two #-fold channels is known

as the expressibility of the ensemble £ [15], the smaller the
distance the more expressive the ensemble is.

APPENDIX C: ENTANGLEMENT AND UNITARY
2-DESIGNS

Random unitary operators have often been used to
approximate late-time quantum dynamics. In the crudest
approximation, it is assumed that the unitary matrix is
directly drawn from the Haar measure. Although modeling
quantum dynamics by random unitaries is an approxima-
tion, it has led to new insights into black-hole physics
[86—88] and produced computable models of information
spreading and entanglement dynamics [89-92].

In what follows, we consider a weaker situation where
the random unitary operator is drawn from an ensem-
ble £ forming a 2-design, and focus on the entanglement
properties of N-qubits random pure states

1¥) = Ulo), (CD

with U ~ £. These results have been previously obtained,
see, for example, Refs. [41—43] and references therein.
Given a bipartition (4, —4) of the system, we begin by
studying the distance of the reduced density matrix p, to
the maximally entangled state p7° = 1,/d,, where d4 is the
dimension of the Hilbert space H, associated with region
A. The full Hilbert-space dimension is denoted by d = 2V.

1. Bounding the expected trace distance

Let us recall the following inequality relating the 1-
norm (trace distance) ||M||; = trv/MTM, and the 2-norm
(Frobenius norm) || M ||, = /tr(MTM)

M|, < 1M, < Vd|M]|,. (C2)

We are interested in bounding Ee¢ (|| o4 — Li/d4|| 1)2. To do
so we first use Jensen’s inequality and afterwards employ
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the inequality (C2),

Ee (o4 — La/dalli)’ < Ee(llpa — La/dal?)

< dyBe(llps —Ly/dall?). (C3)

The last term on the right-hand side is related to the purity:

Ee(lp4 — La/dall3) = Ee(trp)) — 1/dy. (C4)
As we see, the only nontrivial dependence on U comes
from the purity of the reduced density matrix. Let {|/) =
|li4,j-4)}ij be the computational basis for the Hilbert space
‘H = H, ® H-,4 (such that it respects the bipartition).

Let us now proceed with the calculation of the average
purity. We first compute the reduced density matrix p4 and
write it as a sum over products of matrix elements of the
unitary operator U:

d—y d-y d
pa =Y (oalplima) = Y > prclj-alNK ),

J-4 J-a S

= Z Z Pl g ) L) (a5

igkg j-a

= D Vim0 Ule, 00 lia) thal

igkg j-a

where the last line follows from Eq. (C1).
Afterwards, it can be easily verified that tr(,oj) reads

2
(oD =Y Y Uirje.00Utkspn.00

igskg J-AP-4

X U000 Yl o). 00)- (C5)

Using the following identities for the first and second
moment of the unitary group endowed with the Haar
measure

/ dUn Ui U ;= 814,815, /d,
U

/ dUn U, Ul,mU;‘lilUZ”"l
U(n)

1
= dTl((Si,il(Sl,ll 8 j1 Ommy + 81y 811y 67 jy Smmy)
1

- m ((Si,il 81,11 8] ,my 57)1,/1 + 5[,]1 al,il 8] J1 8m,n11 )5 (C6)

we get that the following simple expression for the
expected purity

ds+d-y

Ee(trp)) = Tty

(€7)

Finally, substituting Eq. (C7) into Eq. (C4) we obtain

2 p—
mlo/dyd.

E P —1I d <
5(” A A/ A”l)_ W 1

Note that the above result implies that when the comple-
mentary subsystem —4 is (significantly) larger than A4, the
expected deviation of p, from the maximally mixed state
is exponentially small.

2. Bounding the expected second Rényi entropy

Let us now explore the average value of the second
Rényi entropy, which, as mentioned in the main text, can
be easily estimated using the classical shadows protocol by
Huang et al. [25].

Computing the exact average value of the second Rényi
is a complicated task. Hence, we instead provide a lower
and an upper bound for it. On one hand, via Jensen’s
inequality, we have that

—InEe(trp}) < Ee(S2(p)), (C9)
which changes the focus of our attention to the expectation
value of the purity of the reduced density matrix E¢ (trp?).
Using the result from the previous subsection Eq. (C7) and
taking the logarithm, we get the following lower bound:

dy+dy

— lnEg(trpj) =—In HT
AU—4

(C10)

Taking the large d limit and writing everything in terms of
dy/d-4 we find

2 da di
—InE¢(trp)) ?t:lndA—d——{—(Q . (C11)

2
) &,

On the other hand, we have that for any state p4 the
following inequality holds:

S$2(p4) < S(pg) = —Inpytrpy,

where S(p4) is the von Neumann entropy of p,. Taking
averages does not change this relation and we conclude
Ee(S5(04)) < Ee(S(p4)). The expectation value of the
von Neumann entropy is upper bounded by the Page
entropy:

d
1 dy—1dy 1
Page = (- o -). (12
Sednd = 5 (- T T Y 5) €
J=d/ds+1

Page [86] conjectured that this analytical formula accu-
rately captures the von Neumann entropy of a Haar ran-
dom state. This conjecture was subsequently proven in
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Ref. [93]. Putting everything together, we obtain

dy+dy

p AT
" dd,

< Ee(Sa(pa)) < S (dy,d).  (C13)

Considering now that the number of qubits inside region 4
is equal to k and assuming that d,/d_, = 1/2V "2 « 1 we
arrive at the expression in Theorem 1, that is

1
<Ee(S) <kln2 — =

kln2— 5 = 3 IN—2%k"

(C14)
We see that whenever the unitary ensemble £ forms a 2-
design, the expected value of the second Rényi entropy is
close to the Page entropy.

APPENDIX D: ENTANGLEMENT GROWTH AND
LEARNING RATE

Here we detail the derivation of Eq. (8). We first upper
bound the trace distance via

T(pa,04) = T(1Y),19) = V1 =1 (1Y), 1é)),

where f stands for the pure state fidelity f (|v(0)),
V(8 +8))) = | (O] |8 +8)) |. Taylor expanding
the pure state fidelity around 6 we get

(DI)

1
S @), ¥ O +8)) =1- Z5T7:(0)3 +0@%,
(D2)

where F () is the QFIM given by
Fij(0) = 4Re{ 3,y | [0;) — (@ | W) (w1 |9, ¥)}. (D3)

Assuming § << 1 we can neglect higher-order terms in &
and so

2
T(pa,0u) S \/%ST]:(G)S = \/%(VoE)Tf(f))VoE,
(D4)

where in the last equality we plug in the parameter change
under GD [Eq. (3)], § = —nVyE.

APPENDIX E: ALGORITHM PERFORMANCE
FOR THE SYK MODEL

In this section we show the numerical results for the
VQE applied to the ground-state search of the SYK
model [53]. The SYK model provides a canonical exam-
ple for a volume-law model where the ground state is
nearly maximally entangled [54]. The nonlocal nature of
the Hamiltonian does not allow for an efficient estima-
tion of the energy expectation value of this model using
classical shadows. Thus, this model may be viewed as

a theoretical example that shows that application of our
algorithm is not limited to area-law entangled states. We
use a small-angle initialization as well as the identity-block
initialization [12] to illustrate our method.

The SYK model is a quantum-mechanical model of
2N spinless Majorana fermions x; satisfying the follow-
ing anticommutation relations {x;, x;} = ;. The SYK
model was introduced by Kitaev [53] as a simplified vari-
ant of a model introduced by Sachdev and Ye [94]. The
Hamiltonian of the model is

2N

Hsyk = ZJi,j,lXin XkX1s
ikl

(ET)

where the couplings J;; ;; are taken randomly from a
Gaussian distribution with zero mean and variance

31 e

Var[J[J,k,l] = (N=-3)(N-2)(N—-1)

We can study Majorana fermions using spin-chain vari-
ables by a nonlocal change of basis known as the Jordan-
Wigner transformation:

X X y _ X X z
01+ 0i_10; 5  X2i-1 = —=071 **+0;_10;,
V2

(E2)

1
X2i = —=
S

such that {;, x;} = &;;. With this representation, encoding
2N Majorana fermions requires N qubits. For our studies,
we setJ = 1 and consider a system of N = 10 qubits.

We study performance of VQE for SYK model using
two different initializations. Figures 7(a) and 7(b) show
that the WBP is avoided during optimization for if the
learning rate is chosen appropriately. For a large learning
rate (n = 1) both initializations encounter a WBP during
the optimization (indicated by the gray and blue star). Once
the learning rate is decreased ( = 0.1) the entanglement
entropy slowly grows to the nearly maximal value asso-
ciated with the ground state of the SYK model (dotted
line) instead of uncontrollably reaching the Page value. For
this model, it is important to use « = 1 (the default value)
such that the entanglement entropy can grow during the
optimization. Only if there is some a priori knowledge of
the properties of the ground state, « can be chosen to be
smaller.

The identity block initialization [12] here leads to the
best optimization performance. We attribute this to the
fact that the identity block initialization allows for a faster
growth in entanglement since the parameter values are
highly fine tuned. Our results suggest that sensitivity of the
initialization ansatz to small perturbations may be benefi-
cial for the cases when the ground state is nearly maximally
entangled. These results highlight the advantage of using
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FIG. 7. (a),(b) The application of our algorithm to the problem

of finding the ground state of the SYK model. For the initial-
ization we consider the small-angle (SA) (¢p = 0.1) and identity
block (IB) initialization [12] (using one block). We can see that
only through the reset of the learning rate 5, as suggested by
Algorithm 1, WBPs are avoided during the optimization. The
entanglement entropy of the target state is nearly maximal (indi-
cated by the dotted line), we omit the WBP line for « =1 for
improved visibility. We measure energy in units of J and use a
system size of N = 10, subsystem size £k = 2 and a random cir-
cuit from Eq. (1) with circuit depth p = 100. Data is averaged
over 100 random instances.

our algorithm. The tracking of the second Rényi entangle-
ment entropy during the optimization reveals that the larger
learning rates encounter a WBP while the smaller learning
rates successfully avoid it.
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