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Abstract

Deep learning has enabled breakthroughs in challenging computing problems and has emerged
as the standard problem-solving tool for computer vision and natural language processing
tasks. One exception to this trend is safety-critical tasks where robustness and resilience
requirements contradict the black-box nature of neural networks. To deploy deep learning
methods for these tasks, it is vital to provide guarantees on neural network agents’ safety and
robustness criteria. This can be achieved by developing formal verification methods to verify
the safety and robustness properties of neural networks.

Our goal is to design, develop and assess safety verification methods for neural networks to
improve their reliability and trustworthiness in real-world applications. This thesis establishes
techniques for the verification of compressed and adversarially trained models as well as the
design of novel neural networks for verifiably safe decision-making.

First, we establish the problem of verifying quantized neural networks. Quantization is a
technique that trades numerical precision for the computational efficiency of running a neural
network and is widely adopted in industry. We show that neglecting the reduced precision
when verifying a neural network can lead to wrong conclusions about the robustness and
safety of the network, highlighting that novel techniques for quantized network verification are
necessary. We introduce several bit-exact verification methods explicitly designed for quantized
neural networks and experimentally confirm on realistic networks that the network’s robustness
and other formal properties are affected by the quantization.

Furthermore, we perform a case study providing evidence that adversarial training, a standard
technique for making neural networks more robust, has detrimental effects on the network’s
performance. This robustness-accuracy tradeoff has been studied before regarding the accuracy
obtained on classification datasets where each data point is independent of all other data
points. On the other hand, we investigate the tradeoff empirically in robot learning settings
where a both, a high accuracy and a high robustness, are desirable. Our results suggest that
the negative side-effects of adversarial training outweigh its robustness benefits in practice.

Finally, we consider the problem of verifying safety when running a Bayesian neural network
policy in a feedback loop with systems over the infinite time horizon. Bayesian neural networks
are probabilistic models for learning uncertainties in the data and are therefore often used
on robotic and healthcare applications where data is inherently stochastic. We introduce a
method for recalibrating Bayesian neural networks so that they yield probability distributions
over safe decisions only. Our method learns a safety certificate that guarantees safety over
the infinite time horizon to determine which decisions are safe in every possible state of the
system. We demonstrate the effectiveness of our approach on a series of reinforcement learning
benchmarks.
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CHAPTER 1
Introduction

Machine learning is a set of problem-solving methods that increasingly become better at
solving their task with more available data. Instead of being explicitly programmed by a
human developer, these algorithms learn their function from the provided data. Deep learning,
a subclass of ML, has emerged as being particularly successful at solving difficult problems.
Most famously, deep learning has enabled breakthroughs in the long-standing open problems
of autonomous driving [Bojarski et al., 2016], protein folding [Jumper et al., 2021], and the
board game Go [Silver et al., 2016]. The key components of deep learning are neural networks,
which are parametrized functions fθ that are structurally loosely inspired by the information
processing of biological nervous systems, e.g., see Figure 1.1. The parameters θ of these
networks are learned by gradient descent-based training algorithms such that the resulting
function fits the provided training data with respect to a loss criterion.

Figure 1.1: Illustration of a Multi-Layer Percep-
tron (MLP) neural network [Rumelhart et al.,
1986]. Red nodes represent inputs; green nodes
represent hidden units and blue nodes represent
outputs of the network. Typical deep neural
networks consist of thousands of inputs and
outputs, and millions of hidden units.

Despite their remarkable problem-solving ca-
pabilities, deploying neural networks on safety-
critical tasks where performance guarantees
are necessary is problematic due to three rea-
sons: First, as the function implemented by a
network is determined by millions of parame-
ters, interpreting and explaining on what basis
the network forms its decision is non-trivial
[Olah et al., 2018]. Consequently, established
techniques for validating software correctness,
such as code audit, are inapplicable to deep
learning. Second, neural networks are sus-
ceptible to adversarially crafted input pertur-
bations. For instance, changing the pixels
values of an image by a few percent can lead
to neural networks making completely differ-
ent decisions, despite the original and the perturbed images being visually indistinguishable for
humans [Goodfellow et al., 2014b]. In Figure 1.2 we visualize such an adversarial perturbation
on the popular ResNet50 image classifier. Third, neural networks inherit the biases and flaws
of the training data. For example, Arjovsky et al. [2019] considers a hypothetical network that
needs to classify images of camels and cows. Naturally, most training images of cows have a
grassland background, while the images of camels have a desert background. Consequently,

1



1. Introduction

=+ ε×

stop (98.7%) speed up (99.9%)

Figure 1.2: Example of an adversarial attack on a ResNet50 [He et al., 2016] running on a
mobile robot to classify gesture commands. The image on the left is classified by the network
as ”stop” command (confidence 98.7%), while the image on the right is classified as ”speed
up” command (confidence 99.9%). The mask in the center shows the difference between the
two images, amplified for visualization purposes.

the neural network learns to rely on the very predictive background for making a decision and
misclassifies images at prediction time of cows with a sandy beach background.

These three challenges highlight the importance of verifying learned networks. An ultimate
goal is to obtain formal guarantees about the behavior and correctness of a neural network
beyond simply evaluating them on a test dataset. Researchers from machine learning, artificial
intelligence, formal methods, and the robotics communities have all tried to tackle this problem
from different perspectives. In this thesis, we look at the problem of learning a verifiable
network from the various perspectives of these different research communities.

Vision Our goal is to design, develop and assess methods for verifying neural networks while
capturing the nuances of the particular types of applications and networks deployed in practice.
We uncover several limitations, flaws, and missing aspects regarding realistic use cases of
existing literature on the topic. Finally, we establish methods addressing these limiting factors
to serve as a foundation for future work on advancing the scale of neural network verification.

In the rest of this chapter, we summarize the main topics of this thesis. We first give some
background on the learning and verification of neural networks. We then look at the verification
questions and methods covered in this thesis. Finally, we summarize our contributions.

1.1 Learning Representations
A neural network is a function fθ : X → Y from the input space X to the output space Y.
Structurally, fθ comprises of a sequence of layers, e.g., as illustrated in Figure 1.1, which
iteratively change the representation of the input data until a final decision is made at the
output layer. Therefore, learning fθ is often called representation learning. The most common
learning setting is supervised learning, in which the training data takes the form of a set
{(x1, y1), . . . (xn, yn)} independently sampled from a probability distribution over the domain
X × Y . The parameters are learned by minimizing the empirical risk term

1
n

n∑︂
i=1
L(fθ(xi), yi)

via stochastic gradient descent, where L : Y×Y → R is a given loss function that characterizes
how well the network’s prediction fθ(xi) matches the ground truth yi.

2



1.2. Verifying Learned Representations

Simply minimizing the empirical risk of the training data tells us little about how the network
performs, as the network could have just learned to recall the training data. To genuinely
measure how well the network generalizes to arbitrary data, some fraction of the training
samples are typically held out from the learning process and reserved for testing how well the
network performs on non-training data. This procedure allows us to estimate the expected loss
on data sampled from the same probability distribution as the training data. However, testing
does not tell us how the network performs if the prediction time data distribution differs from
the training distribution due to biases in the data collection step. Moreover, the test loss does
not capture other potential properties such as fairness, robustness, and safety.

1.2 Verifying Learned Representations
Formal methods are algorithms and proof techniques that, given a specification and an
implementation of a system, check whether the implementation fulfills the specification [Clarke
et al., 2018]. Researchers have adopted these methods to neural network settings. Most
notably, mixed-integer linear programming (MILP) and satisfiability modulo theories (SMT)
have been employed to check whether trained neural networks satisfy specifications on the
input and output variables of the network [Ehlers, 2017, Katz et al., 2017, Tjeng et al., 2019].
MILP and SMT are methods for determining if a feasible solution to a set of constraints exists.
MILP and the various theories within SMT differ in what data types and variable operations
are allowed to specify the constraints. For instance, while MILP allows only conjunctions of
linear inequalities over integer and real variables, SMT is derived from decidable subsets of
first-order logic.

MILP or SMT-based approaches verify a neural network by representing the semantics of a
neural network together with the specification as a set of constraints. A MILP or SMT solver
then checks the constraints for satisfiability.

MILP and SMT approaches have been particularly successful for networks with ReLU activations,
i.e., x ↦→ max(x, 0), by exploiting their piecewise linear structure and employing efficient linear
programming techniques for reasoning over the linear components of the network [Ehlers,
2017, Katz et al., 2017, Tjeng et al., 2019]. [Katz et al., 2017] have shown that verifying
a ReLU network with linear inequality specification is NP-complete in the number of ReLU
nodes in the network, making it an inherently complex problem.

More recently, abstract interpretation [Cousot and Cousot, 1977] has become a common
approach to neural network verification. These approaches avoid the NP-hardness of the
verification problem at the cost of algorithmic completeness [Singh et al., 2019, Gowal et al.,
2019, Wang et al., 2021]. In particular, incomplete methods can prove some, but not all,
positive instances, i.e., that the network fulfills the specification. The key idea of abstract
interpretation is to represent the network by another mathematical object that can be checked
more efficiently than the original network. An essential condition of the abstraction is that it
must over-approximate the input-output behavior of the network, i.e., if the abstraction fulfills
the specification, the original network must also meet it. The drawback of such approaches is
that the abstraction might be too loose and violate the specification, even though the network
satisfies the specification.

In the realm of neural network verification, interval arithmetic [Gowal et al., 2019], hybrid
automata [Xiang et al., 2018], zonotopes [Singh et al., 2018], polyhedra [Gehr et al., 2018,
Singh et al., 2019], convex relaxations [Dvijotham et al., 2018], and polynomial [Zhang et al.,
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Operation float (32 bit) float (16 bit) integer (32 bit) integer (8 bit)
Add 0.9pJ 0.4 pJ 0.1 pJ 0.03pJ

Multiply 4 pJ 1 pJ 3 pJ 0.2 pJ

Table 1.1: Rough hardware energy consumption for various arithmetic operations on a 45nm
CMOS node in picojoules (pJ) [Horowitz, 2014]. Quantized neural networks primarily use 8-bit
integer multiply and 32-bit integer add operations (highlighted in bold) [Jacob et al., 2018].

2018] abstract domains have been introduced. Abstraction-refinement procedures [Clarke
et al., 2000] tackle the incompleteness issue by tightening the abstraction whenever a spurious
counterexample violates the specification. Naturally, these techniques have been adopted to
neural network verification settings [Bunel et al., 2018, Wang et al., 2018a, 2021].

In this thesis, we are the first who investigate the problem of verifying quantized neural
networks and how it differs from the verification of standard neural networks.

1.3 Quantized Neural Networks
Quantized neural networks (QNNs) are neural networks that represent their parameters and
computations as low-bit integer variables, e.g., typically 8-bit integers [Hubara et al., 2016,
Li et al., 2017, Chen et al., 2017, Hubara et al., 2017, Jacob et al., 2018]. The compressed
size and reduced precision of the quantized model significantly improve the computational
efficiency of running a network, e.g., see Table 1.1, while usually having only minor effects
on the model’s accuracy. Consequently, quantizing trained networks before deploying them
in embedded applications has been adopted as a de-facto standard in the industry. For
instance, the first generation of Google’s Tensor processing units (TPUs) only supported
running quantized neural networks [Jouppi et al., 2017]. Similarly, neural processing units
(NPUs) for accelerating neural networks in phones and autonomous driving hardware 1 are
often optimized for quantized networks.

In Chapter 2, we are the first to study how formal properties of a network, such as certified
adversarial robustness, are affected by quantization. We show that the robustness of a network
is non-monotonic in the numerical precision used to run the network. Consequently, when we
quantize a provably robust floating-point network, we cannot conclude the formal robustness of
the quantized model. To formally verify some properties of quantized networks, we propose a
bit-vector SMT encoding that captures the exact semantics of the integer networks. Using our
SMT encodings and existing methods for verifying non-quantized networks, we experimentally
study how the robustness of networks with floating-point and quantized at various bit-levels, i.e.,
6 to 10 bits, differ in practice. For the non-quantized, 7-bit, and 8-bit quantized network triple,
we observed all of the eight possible combinations of robustness-vs-adversarial vulnerability
verification outcomes. For example, input samples exist for which the floating-point network is
provably robust, while adversarial attacks for the quantized models exist. Counterintuitively
but expected from our theoretical insights, in some cases, quantizing with fewer bits makes
the network robust again. Conversely, some samples can be certified robust for the quantized
networks, while attacks for the non-quantized model exist.

1https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip
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1.4. Robust Learning

Moreover, most complete verification methods for non-quantized networks do not prove the
robustness of floating-point networks directly; they do so for their real-valued abstractions
[Katz et al., 2017]. In essence, no rounding errors caused by the floating-point numerics are
considered. Our theoretical insights also show that a verification tool might miss adversarial
attacks that exploit floating-point rounding effects in such cases. Concurrent work has
demonstrated that there indeed exist such floating-point attack opportunities in practice [Jia
and Rinard, 2021].

From a complexity perspective, verifying the robustness of a non-quantized network is NP-hard
[Katz et al., 2017]. However, the complexity bit-vector SMT used in our verification method
for quantized networks is in general NEXP-complete [Kovásznai et al., 2016]. In Chapter 3, we
prove that verifying the robustness of a quantized neural network is PSPACE-hard, i.e., more
complex than for non-quantized networks. We show this result by a poly-time reduction from
TQBF, i.e., a known PSPACE-complete problem [Arora and Barak, 2009], to the adversarial
verification problem of quantized neural networks. From a top-level view, the same effect
that allows quantization to express a neural network at a fraction of the original size also
allows a more succinct expression of computationally hard problems, thus causing an increase
in complexity compared to the verification of real-valued networks.

We propose an optimized bit-vector SMT formulation of quantized networks by leveraging
their internal structure to simplify their encoded representation to tackle the complexity barrier.
First, we perform a fast abstract interpretation overapproximation of the network’s behavior
to obtain bounds on the value of each node inside the network. Next, we prune variables and
constraints from the SMT formula that the obtained bounds already determine. Moreover,
while a naive bit-vector encoding would represent each variable in the SMT formula by the
exact amount of bits used in their actual implementation, e.g., 32-bit registers for intermediate
results, we use the obtained variable bounds to allocate only the minimum necessary bits for
each variable to avoid overflows. In essence, we prune bits that will never change during the
network’s computations. Finally, as the weights are quantized, there is a high chance of two or
more equal weights coming from the same input. We factorize such common subexpressions
into a single expression to yield an SMT formula with fewer constraints.

Experimental results on our optimized encodings show that they improve the scalability of
SMT-based verification of quantized neural networks by up to three orders of magnitude
compared to naive encodings. We discuss these results in Chapter 3.

1.4 Robust Learning
Robust learning describes the problem of training a network that is immune to certain types
of attacks [Huber, 1964, Xu et al., 2009, Madry et al., 2018, Zhang et al., 2019, Song et al.,
2019, Konstantinov and Lampert, 2019]. Attacks that try to make a neural network produce
incorrect outputs by manipulating its input, i.e., often referred to as adversarial attacks, are
among the most common types of attacks [Goodfellow et al., 2014b, Eykholt et al., 2018].
Formally, an adversarial attack is a norm-bounded noise vector ε that when added to an input
sample x changes the classification output of the network, i.e., f(x) ̸= f(x + ε), e.g., as
shown in Figure 1.2. A network is said to be robust if no such perturbation ε for the data
samples exist within a given radius2. The most dominant approach for training robust models

2Note that adversarial robustness is not defined for a network alone but only with respect to a set data
samples
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is to add adversarial perturbations to the training data already during the learning procedure
[Madry et al., 2018]. In essence, the risk term that is minimized via stochastic gradient descent
becomes the robust optimization [Wald, 1945] objective of

1
n

n∑︂
i=1

max
ε:∥ε∥≤δ

L(fθ(xi + ε), yi), (1.1)

where δ > 0 is some attack budget controlling how much each input can be perturbed. While
these techniques do not provide absolute guarantees about the robustness of the trained
networks, they significantly improve robustness empirically.

Adversarial training methods do not improve the robustness of a network for free but at the
cost of lower nominal accuracy [Raghunathan et al., 2019, Zhang et al., 2019]. For instance,
the advanced adversarial training algorithm of Zhang et al. [2019], which won the NeurIPS
2018 Adversarial Vision Challenge, yielded a robust network with an accuracy of 89% on the
CIFAR-10 dataset. In contrast, standard training algorithms can easily produce non-robust
networks with an accuracy above 96% on this dataset. In particular, adversarial training
violates some of the assumptions made in machine learning, i.e., the training samples are iid,
making the optimization process more difficult. Consequently, when deploying a network in a
real-world machine learning application, we are faced with the dilemma of deploying a highly
accurate but non-robust or a slightly less accurate but robust network.

In Chapter 4 of this thesis, we study this dilemma empirically and investigate the accuracy-
robustness tradeoff in the context of robot learning [Atkeson and Schaal, 1997]. Robotic
tasks are inherently closed-loop with several controller-environment interactions per second,
unlike the static applications typically considered in machine learning research. For instance,
a network running at 10Hz that controls an autonomous vehicle may tolerate occasional
failure to detect other cars if the controller does detect them in the next frame. Contrarily,
the vehicle will crash eventually if the network consistently fails to detect green cars, even
though green cars might be uncommon. Finally, robots that operate in an open domain are
expected to encounter situations that deviate from the nominally collected training scenarios
and observe out-of-distribution data. Thus, resilience and robustness requirements are vital to
robot learning setups.

To characterize these erroneous behaviors in robot learning settings on a more fine-grained
level, we introduce three types of error profiles: transient, systematic, and conditional errors.
We first generalize adversarial training to a safety-domain optimization scheme allowing
for more generic specifications, i.e., arbitrary adversarial domains instead of norm-bounded
neighborhoods around samples. We then perform a case study consisting of three real-world
robot-learning tasks. We train each network with standard and adversarial/safety-domain
training at various levels of the adversarial attack budget. Finally, we evaluate whether the
robotic controllers can solve a predefined set of control scenarios.

We observed that the networks trained with standard empirical risk minimization yield the best
application performance. Moreover, while the models trained with small adversarial attack
budgets still behave acceptably, the performance deteriorates significantly for non-trivial attack
budgets. In essence, our results in Chapter 4 suggest that the negative effects on the accuracy
outweigh the improved robustness of adversarial training procedures in practice.
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1.5 Closed-loop Stability and Safety
Often a trained network does not operate alone but continuously interacts with a system, e.g.,
closed control loops with neural network control policies. Research from the control theory
community has considered the problem of verifying the safety of closed loops with neural
network control policies. The two dominant notions of safety considered in the literature are
stability, which requires all system trajectories to converge to an equilibrium set and safety in
the context of all system trajectories avoiding unsafe states.

Lyapunov functions allow verifying stability specifications of such closed-loop systems [Khalil
and Grizzle, 1996]. Finding such a Lyapunov function or proving its existence for a given
system is the main challenge of this approach. While older works relied on Lyapunov functions
that are given or synthesized via constraint-solving [Berkenkamp et al., 2017], more recently,
reformulating the problem of finding a Lyapunov function as a learning problem has emerged
as a more scalable alternative [Richards et al., 2018, Chang et al., 2019, Abate et al., 2021].
In particular, the Lyapunov function is parametrized by a neural network and trained to satisfy
the conditions of a valid Lyapunov function.

Barrier and positive invariant functions allow verifying safety specifications in the context of
the system never to reach an unsafe state [Blanchini and Miani, 2008, Ames et al., 2019].
These functions partition the system’s state space into two safe and unsafe states so that no
transition from the safe to the unsafe states exists. Naturally, these techniques have been
adapted to verify systems’ close-loop safety with neural networks as controllers [Peruffo et al.,
2021].

Alternative approaches for proving a system’s safety are based on bounded analysis. These
methods construct overapproximations of all states reachable from given initial states, i.e.,
reachtubes. As the reachtube is guaranteed to contain all possible system trajectories, we can
conclude the system’s safety if the reachtube is disjoint from unsafe system states. Bounded
reachability analysis over finite time horizons of systems with neural network controllers have
been studied in Ivanov et al. [2019], Dutta et al. [2019], Gruenbacher et al. [2020]

In this thesis, we study the safety of Bayesian neural networks in feed-forward and closed-loop
settings via positive invariants.

Bayesian Neural Networks Bayesian neural networks (BNNs) model their parameters θ
as a probability distribution over the parameter space, i.e., θ ∼ p(θ) [MacKay, 1992, Hinton
and Van Camp, 1993, Barber and Bishop, 1998, MacKay, 1995, Neal, 2012, Blundell et al.,
2015, Gal and Ghahramani, 2016, Maddox et al., 2019]. As a result, Bayesian neural networks
do not learn a single function fθ but an entire distribution of networks fθ∼p(θ)). Bayesian
neural networks can learn a flexible class of output distribution from primitive parameter
distributions, e.g., typically Gaussian parameters. Consequently, Bayesian neural networks can
capture uncertainties present in the data and model’s prediction as illustrated in Figure 1.3.

These capabilities make BNNs an appealing model choice for many real-world applications
in the robotic and healthcare domains, where uncertainty is an inherent property of the data
[Herzog and Ostwald, 2013, McAllister et al., 2017, Amini et al., 2020b, Michelmore et al.,
2020]. However, precisely these domains often involve making safety-critical decisions, requiring
safety guarantees on the behavior of the network.

In Chapter 5, we introduce two approaches for verifying the safety of BNNs, one for feed-
forward specifications and one for BNNs in closed-loop systems. Our method verifies sure
safety, i.e., the safety of every system execution, whereas the existing verification techniques
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for Bayesian neural networks rely on sampling, which provides only statistical guarantees.
Moreover, our method allows verifying BNNs in closed-loop systems that run indefinitely, i.e.,
over the infinite time horizon, while existing sampling-based approaches can only handle finite
time horizons [Cardelli et al., 2019, Wicker et al., 2020, Michelmore et al., 2020].
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Figure 1.3: Visualization of how aleatoric
and epistemic uncertainty emerges when
fitting a function to data. Aleatoric uncer-
tainty is caused by ambiguous data, while
epistemic uncertainty is caused by a lack
of data. Bayesian neural networks can cap-
ture both sources of uncertainty.

Bayesian neural networks typically use weight dis-
tributions with unbounded support, i.e., ”long-
tailed” distributions such as Gaussian distributions.
Consequently, BNN’s output distributions are likely
also to have unbounded support and assign a non-
zero probability density to every possible output
decision in R. However, the existence of rare tail
events of the output variables is problematic with
respect robustness and safety properties of the
network. Consequently, typical Bayesian neural
networks might be considered unsafe by default
under such strict definition of safety. To overcome
this issue, we introduce a re-calibration scheme
in the form of safe weight sets, which provides
safety guarantees as long as the BNN samples its
parameters from this set. We propose a method
for efficiently computing such safe weight sets
for feed-forward BNNs by using constraint solving
techniques for deterministic neural networks.

For proving the safety of BNNs in closed-loop
systems, we synthesize a safety certificate in the
form of a positive invariant, i.e., a set that the
system is guaranteed never to leave as long as the BNN’s parameters are sampled from the
safe weight set. We represent the potentially infinite positive invariant set efficiently as a
deterministic neural network classifier. Next, we propose an algorithm for learning the positive
invariant classifier by obtaining the training data as samples from the safety specification
and the system’s executions. After the training process, our method checks if the trained
classifier is a valid positive invariant, i.e., the system never leaves the positive invariant. If a
counterexample is found that shows how the classifier violates a positive invariant condition,
we add the counterexample to the training data and re-train the invariant classifier. We repeat
this process until the system is proven safe by finding a valid positive invariant.

We experimentally evaluate our approach on three benchmark tasks and show that our method
can yield non-trivial safe weight sets for Bayesian neural networks in practice.

1.6 Methods
In this section, we summarize the formal methods used throughout the thesis. Formal methods
are rigorous mathematical proof techniques used to analyze system properties formally. They
can be used to provide formal guarantees about whether a system fulfills its specification, e.g.,
correctness, safety, and security. Some methods and concepts described here have already
been briefly introduced in previous sections.

Satisfiability modulo theories Computation problems can often be represented as satisfia-
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bility questions over formal systems of rules and axioms. The most commonly used formal
systems are the propositional logic and the first-order logic [Kroening and Strichman, 2016].

Satisfiability problems phrased in propositional logic are generally solvable by SAT-solvers in
NP. However, propositional logic reasons only about true or false propositions, which severely
limits its expressiveness in practice. For example, while verification problems of binarized
neural networks, i.e., networks with weights and activations restricted to the domain {−1, 1},
can be naturally expressed in propositional logic [Narodytska et al., 2018, Cheng et al., 2018],
verification problems that involve variables over the real domain are impossible to express in
propositional logic.

First-order logic allows quantifiers, predicates, and functions over arbitrary domains and is
significantly more expressive than propositional logic. The main disadvantage of first-order
logic is that it is generally undecidable.

Satisfiability modulo theories (SMT) resolve this limitation by introducing theories that restrict
first-order logic to a decidable subset. In particular, an SMT theory defines the interpretation
of specific predicates and functions and asks whether a given formula is satisfiable with
respect to the fixed interpretation. For example, the theory of linear real arithmetic fixes
the interpretation of the function + and the predicate < according to their generally known
mathematical definitions. Computer programs that check if an SMT formula is satisfiable are
called SMT-solvers. Most practically relevant SMT theories further remove quantifiers and fix
the interpretation of all predicates and functions for the sake of algorithmic efficiency [Barrett
et al., 2017, Kroening and Strichman, 2016, Clarke et al., 2018].

We use SMT with the background theories of quantifier-free bit-vectors (QF_BV) [Barrett
et al., 2017] in Chapters 2 and 3. Notably, we phrase the formal verification question of
quantized neural networks as a satisfiability problem over the theory of bit-vectors. Our SMT
formulas are satisfiable if and only if the specification of the quantized neural network is
violated. In Chapter 3 we simplify the formulas by removing the parts of the formula whose
value can be determined in advance, leading to a significant speedup in solving time.

In Chapter 5, we show how non-linear real arithmetic SMT (NRA-SMT) and SMT over the
Reluplex calculus [Katz et al., 2017] can be used to verify the safety of Bayesian neural
networks restricted to weight-sets.

Mixed-integer linear programming Mixed-integer linear programming (MILP) refers to a
class of optimization problems over real and integer variables with linear inequality constraints
[Dantzig, 2016]. While optimization problems over real variables with linear inequalities can be
solved in polynomial time, the addition of integer variables makes the problem NP-complete.
Computer programs that can find the solution of a MILP problem, if there is any, are called
MILP-solvers.

MILP has been used to verify the robustness of neural networks with piecewise linear activation
functions [Tjeng et al., 2019]. Particularly, the network and the negation of the specification
are expressed as a set of linear constraints, i.e., a MILP problem instance. A MILP-solver
is then asked to find a variable assignment that fulfills the constraints corresponding to the
network’s semantics but violates the specification.

In Chapter 5, we use mixed-integer linear programming to verify safe-weight sets of Bayesian
neural networks. A safe-weight set is a set of weights for which safety is guaranteed as long as
the Bayesian neural network samples its weights from this set. In particular, we express the
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semantics of the network using MILP constraints via the scheme of Tjeng et al. [2019] but let
each weight w vary within an interval [l, u] resembling the safe weight set.

Abstract interpretation Abstract interpretation is a method that over-approximates a com-
puter program’s behavior soundly, i.e., the approximation must be a superset of all possible
executions of the program [Cousot and Cousot, 1977]. The key idea is to interpret the
program’s semantics over abstract domains instead of concrete program states. For instance,
an integer variable z might be interpreted over the two abstract sets "z is zero or positive"
and "z is negative". Problems that may be undecidable for the program’s concrete semantics,
e.g., termination analysis, might be decidable for the abstract interpretation depending on the
choice of the abstract domain. The main disadvantage of abstract interpretation methods is
that they are incomplete, i.e., the abstraction might contain program executions that are not
realizable in the concrete semantics, leading to a pessimistic characterization of the program.
Nonetheless, abstract interpretation is a feasible and fast way to obtain information about the
behavior of a program. Consequently, abstract interpretation is widely adopted in static code
analysis tools and compiler optimization frameworks.

In the context of neural networks, abstract interpretation can reduce the complexity class of
neural network verification problems [Wang et al., 2018b, Singh et al., 2018, Bunel et al.,
2018]. For example, checking the robustness of a ReLU-network over the network’s concrete
semantics is NP-hard in the number of neurons [Katz et al., 2017] but only of linear complexity
when the network is interpreted over interval domains [Gowal et al., 2019].

In Chapter 4, we use abstract interpretation to learn networks with safety constraints. In
particular, we jointly train networks over their concrete semantics on the training data and
over their interval arithmetic semantics with respect to the safety objectives. As a result, the
network’s concrete interpretation fits the training data and is guaranteed never to make unsafe
decisions.

Unsound methods Unsound or incorrect methods do not provide formal guarantees but
ad-hoc estimates of whether a system satisfy given specifications. Despite this downside,
unsound methods play an essential role in software development, machine learning, and robotics.
Unsound methods do not suffer from undecidability or problematic complexity class issues and
quickly scale to complex systems. For example, testing allows us to uncover bugs in programs
or estimate the expected performance of machine learning models efficiently without providing
any hard formal guarantees.

In Chapter 4, we use unsound methods to estimate the adversarial robustness of large neural
networks for which existing sound methods do not scale anymore. Notably, we try to change
the prediction of an image classifier by making tiny changes to the input pixels via gradient
ascent to maximize the loss term [Goodfellow et al., 2014b]. We run this process for all
images in our dataset and measure the attack success rate as a proxy metric of the adversarial
vulnerability of a network.

Invariants An invariant is a property of an object that is unaffected when applying certain
transformations to the object. For instance, the volume of a cube is invariant regarding
rotations and translations applied to the cube. Positive invariants (or inductive invariants) are
subsets of invariants that can be proved by mathematical induction, i.e., by proving that the
invariant holds in the initial states and that if the invariant holds for a state, then it also holds
for all successor states. In program verification, invariants are used to prove that a property
holds over the entire execution of a program, i.e., the property is invariant with respect to the
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transformation of executing the program [Floyd, 1967]. In control theory, invariant sets have
been used to prove safety and stability of dynamical systems [Blanchini and Miani, 2008].

In Chapter 5, we use positive invariant sets for certifying the safety of systems involving
Bayesian neural networks controllers. We represent the positive invariant by a neural network
classifier and train it until the network is indeed an invariant. The step of proving that the
network fulfills the conditions of an invariant, i.e., initial case and induction step, is done via
MILP.

1.7 Summary of Contributions
In summary, this dissertation makes contributions on the following research topics:

• In Chapters 2 and 3, we introduce the first verification methods for quantized neural
networks and present the theoretical study of quantized neural network verification’s
non-monotonicity and algorithmic complexity.

• In Chapter 4, we empirically study the robustness-accuracy tradeoff of adversarial training
methods in robot learning settings and observe that, in practice, the improved robustness
of existing adversarial training methods is not worth the reduction in nominal accuracy.

• In Chapter 5, propose a method for proving sure safety of Bayesian neural networks by
re-calibrating the networks on safe weight sets. Furthermore, we introduce an algorithm
for computing safe weight sets for feed-forward and closed-loop safety specifications.
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CHAPTER 2
How Many Bits Does it Take to
Quantize Your Neural Network?

In this chapter, we investigate the robustness of quantized networks to adversarial attacks
and, more generally, formal verification questions for quantized neural networks.

The formal verification of neural networks has been addressed either by overapproximating—as
happens in abstract interpretation—the space of outputs given a space of attacks, or by
searching—as it happens in SMT-solving—for a variable assignment that witnesses an attack.
The first category include methods that relax the neural networks into computations over
interval arithmetic [Pulina and Tacchella, 2010], treat them as hybrid automata [Xiang et al.,
2018], or abstract them directly by using zonotopes, polyhedra [Gehr et al., 2018], or tailored
abstract domains [Singh et al., 2019]. Overapproximation-based methods are typically fast, but
incomplete: they prove robustness but do not produce attacks. On the other hand, methods
based on local gradient descent have turned out to be effective in producing attacks in many
cases [Moosavi-Dezfooli et al., 2016], but sacrifice formal completeness. Indeed, the search
for adversarial attack is NP-complete even for the simplest (i.e., ReLU) networks [Katz et al.,
2017], which motivates the rise of methods based on satisfiability modulo theories (SMT)
and mixed-integer linear programming (MILP). SMT-solvers have been shown not to scale
beyond toy examples (20 hidden neurons) on monolithic encodings [Pulina and Tacchella,
2012], but today’s specialized techniques can handle real-life benchmarks such as, neural
networks for the MNIST dataset. Specialized tools include DLV [Huang et al., 2017], which
subdivides the problem into smaller SMT instances, and Planet [Ehlers, 2017], which combines
different SAT and LP relaxations. Reluplex takes a step further augmenting LP-solving with a
custom calculus for ReLU networks [Katz et al., 2017]. At the other end of the spectrum, a
recent MILP formulation turned out effective using off-the-shelf solvers [Tjeng et al., 2019].
Moreover, it formed the basis for Sherlock [Dutta et al., 2018], which couples local search and
MILP, and for a specialized branch and bound algorithm [Bunel et al., 2018].

All techniques mentioned above do not reason about the machine-precise semantics of the
networks, neither over floating- nor over fixed-point arithmetic, but reason about a real-number
relaxation. Unfortunately, adversarial attacks computed over the reals are not necessarily
attacks on execution architectures, in particular, for quantized networks implementations. We
show, for the first time, that attacks and, more generally, robustness and vulnerability to
attacks do not always transfer between real and quantized networks, and also do not always
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transfer monotonically with the number of bits across quantized networks. Verifying the
real-valued relaxation of a network may lead scenarios where

(i) specifications are fulfilled by the real-valued network but not for its quantized implemen-
tation (false negative),

(ii) specifications are violated by the real-valued network but fulfilled by its quantized
representation (false negatives), or

(iii) counterexamples witnessing that the real-valued network violated the specification, but
do not witness a violation for the quantized network (invalid counterexamples/attacks).

More generally, we show that all three phenomena can occur non-monotonically with the
precision in the numerical representation. In other words, it may occur that a quantized
network fulfills a specification while both a higher and a lower bits quantization violate it, or
that the first violates it and both the higher and lower bits quantizations fulfill it; moreover,
specific counterexamples may not transfer monotonically across quantizations.

The verification of real-numbered neural networks using the available methods is inadequate for
the analysis of their quantized implementations, and the analysis of quantized neural networks
needs techniques that account for their bit-precise semantics. Recently, a similar problem
has been addressed for binarized neural networks, through SAT-solving [Narodytska et al.,
2018]. Binarized networks represent the special case of 1-bit quantizations. For many-bit
quantizations, a method based on gradient descent has been introduced recently [Zhao et al.,
2019]. While efficient (and sound), this method is incomplete and may produce false negatives.

We introduce, for the first time, a complete method for the formal verification of quantized
neural networks. Our method accounts for the bit-precise semantics of quantized networks
by leveraging the first-order theory of bit vectors without quantifiers (QF_BV), to exactly
encode hardware operations such as 2’complementation, bit-shift, integer arithmetic with
overflow. On the technical side, we present a novel encoding which balances the layout of
long sequences of hardware multiply-add operations occurring in quantized neural networks.
As a result, we obtain an encoding into a first-order logic formula which, in contrast to a
standard unbalanced linear encoding, makes the verification of quantized networks practical
and amenable to modern bit-precise SMT-solving. We built a tool using Boolector [Niemetz
et al., 2015], evaluated the performance of our encoding, compared its effectiveness against
real-numbered verification and gradient descent for quantized networks, and finally assessed
the effect of quantization for different networks and verification questions.

We measured the robustness to attacks of a neural classifier involving 890 neurons and trained
on the MNIST dataset (handwritten digits), for quantizations between 6 and 10 bits. Each
robustness check was running on a single CPU core of a Intel Xeon W-2175 CPU with
64GB memory. First, we demonstrated that Boolector, off-the-shelf and using our balanced
SMT encoding, can compute every attack within 16 hours, with a median time of 3h 41m,
while timed-out on all instances beyond 6 bits using a standard linear encoding. Second, we
experimentally confirmed that both Reluplex and gradient descent for quantized networks can
produce false conclusions about quantized networks; in particular, spurious results occurred
consistently more frequently as the number of bits in quantization decreases. Finally, we
discovered that, to achieve an acceptable level of robustness, it takes a higher bit quantization
than is assessed by standard accuracy measures.
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Lastly, we applied our method beyond the property of robustness. We also evaluate the
effect of quantization upon the gender bias emerging from quantized predictors for a task of
predicting students’ performance in mathematics exams using synthetic data. More precisely,
we computed the maximum predictable grade gap between any two students with identical
features except for gender. The experiment showed that a substantial gap existed and was
proportionally enlarged by quantization: the lower the number bits the larger the gap.

We summarize our contribution in five points. First, we show that the robustness of quantized
neural networks is non-monotonic in the number of bits and is non-transferable from the
robustness of their real-numbered counterparts. Second, we introduce the first complete
method for the verification of quantized neural networks. Third, we demonstrate that our
encoding, in contrast to standard encodings, enabled the state-of-the-art SMT-solver Boolector
to verify quantized networks with hundreds of neurons. Fourth, we also show that existing
methods determine both robustness and vulnerability of quantized networks less accurately
than our bit-precise approach, in particular for low-bit quantizations. Fifth, we illustrate how
quantization affects the robustness of neural networks, not only with respect to adversarial
attacks, but also with respect to other verification questions, specifically fairness in machine
learning.

2.1 Quantization of Feed-forward Networks
A feed-forward neural network consists of a finite set of neurons x1, . . . , xk partitioned into a
sequence of layers: an input layer with n neurons, followed by one or many hidden layers, finally
followed by an output layer with m neurons. Every pair of neurons xj and xi in respectively
subsequent layers is associated with a weight coefficient wij ∈ R; if the layer of xj is not
subsequent to that of xi, then we assume wij = 0. Every hidden or output neuron xi is
associated with a bias coefficient bi ∈ R. The real-valued semantics of the neural network
gives to each neuron a real value: upon a valuation for the neurons in the input layer, every
other neuron xi assumes its value according to the update rule

xi = ReLU-N(bi +
k∑︂

j=1
wijxj), (2.1)

where ReLU-N :R→ R is the activation function. Altogether, the neural network implements
a function f :Rn → Rm whose result corresponds to the valuation for the neurons in the
output layer.

The activation function governs the firing logic of the neurons, layer by layer, by introducing
non-linearity in the system. Among the most popular activation functions are purely non-linear
functions, such as the tangent hyperbolic and the sigmoidal function, and piece-wise linear
functions, better known as Rectified Linear Units (ReLU) [Nair and Hinton, 2010]. ReLU
consists of the function that takes the positive part of its argument, i.e., ReLU(x) = max{x, 0}.
We consider the variant of ReLU that imposes a cap value N , known as ReLU-N [Krizhevsky
and Hinton, 2010]. Precisely

ReLU-N(x) = min{max{x, 0}, N}, (2.2)

which can be alternatively seen as a concatenation of two ReLU functions (see Eq. 2.10). As
a consequence, all neural networks we treat are full-fledged ReLU networks; their real-valued
versions are amenable to state-of-the-art verification tools including Reluplex, but neither
account for the exact floating- nor fixed-point execution models.
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Quantizing consists of converting a neural network over real numbers, which is normally
deployed on floating-point architectures, into a neural network over integers, whose semantics
corresponds to a computation over fixed-point arithmetic [Jacob et al., 2018]. Specifically,
fixed-point arithmetic can be carried out by integer-only architectures and possibly over small
words, e.g., 8 bits. All numbers are represented in 2’s complement over B bits words and
F bits are reserved to the fractional part: we call the result a B-bits quantization in QF
arithmetic. More concretely, the conversion follows from the rounding of weight and bias
coefficients to the F -th digit, namely b̄i = rnd(2F bi) and w̄ij = rnd(2Fwij) where rnd(·)
stands for any rounding to an integer. Then, the fundamental relation between a quantized
value ā and its real counterpart a is

a ≈ 2−F ā. (2.3)

Consequently, the semantics of a quantized neural network corresponds to the update rule in
Eq. 2.1 after substituting of x, w, and b with the respective approximants 2−F x̄, 2−F w̄, and
2−F b̄. Namely, the semantics amounts to

x̄i = ReLU-(2FN)(b̄i + int(2−F
k∑︂

j=1
w̄ijx̄j)), (2.4)

where int(·) truncates the fractional part of its argument or, in other words, rounds towards
zero. In summary, the update rule for the quantized semantics consists of four parts. The first
part, i.e., the linear combination ∑︁k

j=1 w̄ijx̄j, propagates all neurons values from the previous
layer, obtaining a value with possibly 2B fractional bits. The second scales the result by 2−F

truncating the fractional part by, in practice, applying an arithmetic shift to the right of F bits.
Finally, the third applies the bias b̄ and the fourth clamps the result between 0 and 2FN . As
a result, a quantize neural network realizes a function f :Zn → Zm, which exactly represents
the concrete (integer-only) hardware execution.

We assume all intermediate values, e.g., of the linear combination, to be fully representable
as, coherently with the common execution platforms [Jacob et al., 2018], we always allocate
enough bits for under and overflow not to happen. Hence, any loss of precision from the
respective real-numbered network happens exclusively, at each layer, as a consequence of
rounding the result of the linear combination to F fractional bits. Notably, rounding causes
the robustness to adversarial attacks of quantized networks with different quantization levels
to be independent of one another, and independent of their real counterpart.

2.2 Robustness is Non-monotonic in the Number of
Bits

A neural classifier is a neural network that maps a n-dimensional input to one out of m classes,
each of which is identified by the output neuron with the largest value, i.e., for the output
values z1, . . . , zm, the choice is given by

class(z1, . . . , zm) = arg max
i

zi. (2.5)

For example, a classifier for handwritten digits takes in input the pixels of an image and
returns 10 outputs z0, . . . , z9, where the largest indicates the digit the image represents. An
adversarial attack is a perturbation for a sample input
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+ =

Figure 2.1: Illustration of an adversarial attack on a 8-bit quantized neural network trained on
the MNIST dataset. The image of the left is correctly classified as the digit "9", whereas the
image of the right is misclassified as "3".
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Figure 2.2: Neural network with non-monotonic robustness with respect to the precision it is
executed. The labels of the arrows indicate the weight of the connection. An arrow without
a source neuron represents a bias term. The network is executed with three different levels
of precision Q1, Q2, and Q3 in binary representation. The Q1 representation corresponds to
1 fractional bit, i.e., every neuron value is a fraction of 2, whereas the Q2 and Q3 precision
levels corresponds to 2 and 3 fractional bits respectively. The three rows of values within a
neuron correspond to the value of the neuron under the precision Q3, Q2, and Q1 from top to
bottom respectively.

original + perturbation = attack

that, according to some notion of closeness, is indistinguishable from the original, but tricks
the classifier into inferring an incorrect class. The attack in Figure 2.1 is indistinguishable from
the original by the human eye, but induces our classifier to assign the largest value to z3, rather
than z9, misclassifying the digit as a 3. For this example, misclassification happens consistently,
both on the real-numbered and on the respective 8-bits quantized network in Q4 arithmetic.
Unfortunately, attacks do not necessarily transfer between real and quantized networks and
neither between quantized networks for different precision. More generally, attacks and, dually,
robustness to attacks are non-monotonic with the number of bits.

We give a prototypical example for the non-monotonicity of quantized networks in Figure
2.2. The network consists of one input, 4 hidden, and 2 output neurons, respectively from
left to right. Weights and bias coefficients, which are annotated on the edges, are all fully
representable in Q1. For the neurons in the top row we show, respectively from top to bottom,
the valuations obtained using a Q3, Q2, and Q1 quantization of the network (following Eq. 2.4);
precisely, we show their fractional counterpart x̄/2F . We evaluate all quantizations and obtain
that the valuations for the top output neuron are non-monotonic with the number of fractional
bits; in fact, the Q1 dominates the Q3 which dominates the Q2 output. Coincidentally, the
valuations for the Q3 quantization correspond to the valuations with real-number precision
(i.e., never undergo truncation), indicating that also real and quantized networks are similarly
incomparable. Notably, all phenomena occur both for quantized networks with rounding
towards zero (as we show in the example), and with rounding to the nearest, which is naturally
non-monotonic (e.g., 5/16 rounds to 1/2, 1/4, and 3/8 with, resp., Q1, Q2, and Q3).
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2. How Many Bits Does it Take to Quantize Your Neural Network?

Non-monotonicity of the output causes non-monotonicity of robustness, as we can put the
decision boundary of the classifier so as to put Q2 into a different class than Q1 and Q3.
Suppose the original sample is 3/2 and its class is associated with the output neuron on the
top, and suppose attacks can only lay in the neighboring interval 3/2 ± 1. In this case, we
obtain that the Q2 network admits an attack, because the bottom output neuron can take
5/2, that is larger than 2. On the other hand, the bottom output can never exceed 3 and 4,
hence Q1 and Q3 are robust. Dually, also non-robustness is non-monotonic as, for the sample
9/2 whose class corresponds to the bottom neuron, for the interval 9/2 ± 2, Q2 is robust
while both Q3 and Q1 are vulnerable. Notably, the specific attacks of Q3 and Q1 also do not
always coincide as, for instance, 7/2.

Robustness and non-robustness are non-monotonic in the number of bits for quantized networks.
As a consequence, verifying a high-bits quantization, or a real-valued network, may derive
false conclusions about a target lower-bits quantization, in either direction. Specifically, for
the question as for whether an attack exists, we may have both (i) false negatives, i.e., the
verified network is robust but the target network admits an attack, and (ii) false positives, i.e.,
the verified network is vulnerable while the target network robust. In addition, we may also
have (iii) true positives with invalid attacks, i.e., both are vulnerable but the found attack
do not transfer to the target network. For these reasons we introduce a verification method
quantized neural network that accounts for their bit-precise semantics.

2.3 Verification of Quantized Networks using
Bit-precise SMT-solving

Bit-precise SMT-solving comprises various technologies for deciding the satisfiability of first-
order logic formulae, whose variables are interpreted as bit-vectors of fixed size. In particular, it
produces satisfying assignments (if any exist) for formulae that include bitwise and arithmetic
operators, whose semantics corresponds to that of hardware architectures. For instance, we can
encode bit-shifts, 2’s complementation, multiplication and addition with overflow, signed and
unsigned comparisons. More precisely, this is the quantifier-free first-order theory of bit-vectors
(i.e., QF_BV), which we employ to produce a monolithic encoding of the verification problem
for quantized neural networks.

A verification problem for the neural networks f1, . . . , fK consists of checking the validity of a
statement of the form

φ(y⃗1, . . . , y⃗K) =⇒ ψ(f1(y⃗1), . . . , fK(y⃗K)), (2.6)

where φ is a predicate over the inputs and ψ over the outputs of all networks; in other words, it
consists of checking an input–output relation, which generalizes various verification questions,
including robustness to adversarial attacks and fairness in machine learning, which we treat in
Section 2.4. For the purpose of SMT solving, we encode the verification problem in Eq. 2.6,
which is a validity question, by its dual satisfiability question

φ(y⃗1, . . . , y⃗K) ∧
K⋀︂

i=1
fi(y⃗i) = z⃗i ∧ ¬ψ(z⃗1, . . . , z⃗K), (2.7)

whose satisfying assignments constitute counterexamples for the contract. The formula consists
of three conjuncts: the rightmost constraints the input within the assumption, the leftmost
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Figure 2.3: Abstract syntax trees for alternative encodings of a long linear combination of the
form ∑︁k

i=1 wixi.

forces the output to violate the guarantee, while the one in the middle relates inputs and
outputs by the semantics of the neural networks.

The semantics of the network consists of the bit-level translation of the update rule in Eq. 2.4
over all neurons, which we encode in the formula

k⋀︂
i=1

xi = ReLU-(2FN)(x′
i) ∧ x′

i = b̄i + ashr(x′′
i , F ) ∧ x′′

i =
k∑︂

j=1
w̄ijxj. (2.8)

Each conjunct in the formula employs three variables x, x′, and x′′ and is made of three,
respective, parts. The first part accounts for the operation of clamping between 0 and 2FN ,
whose semantics is given by the formula ReLU-M(x) = ite(sign(x), 0, ite(x ≥M,M, x)).
Then, the second part accounts for the operations of scaling and biasing. In particular, it
encodes the operation of rounding by truncation scaling, i.e., int(2−Fx), as an arithmetic
shift to the right. Finally, the last part accounts for the propagation of values from the
previous layer, which, despite the obvious optimization of pruning away all monomials with
null coefficient, often consists of long linear combinations, whose exact semantic amounts to
a sequence of multiply-add operations over an accumulator; particularly, encoding it requires
care in choosing variables size and association layout.

The size of the bit-vector variables determines whether overflows can occur. In particular,
since every monomial wijxj consists of the multiplication of two B-bits variables, its result
requires 2B bits in the worst case; since summation increases the value linearly, its result
requires a logarithmic amount of extra bits in the number of summands (regardless of the
layout). Provided that, we avoid overflow by using variables of 2B + log k bits, where k is the
number of summands.

The association layout is not unique and, more precisely, varies with the order of construction
of the long summation. For instance, associating from left to right produces a linear layout,
as in Figure 2.3a. Long linear combinations occurring in quantized neural networks are
implemented as sequences of multiply-add operations over a single accumulator; this naturally
induces a linear encoding. Instead, for the purpose formal verification, we propose a novel
encoding which re-associates the linear combination by recursively splitting the sum into equal
parts, producing a balanced layout as in Figure 2.3b. While linear and balanced layouts are
semantically equivalent, we have observed that, in practice, the second impacted positively the
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performance of the SMT-solver as we discuss in Section 2.4, where we also compare against
other methods and investigate different verification questions.

2.4 Experimental Results
We set up an experimental evaluation benchmark based on the MNIST dataset to answer
the following three questions. First, how does our balanced encoding scheme impact the
runtime of different SMT solvers compared to a standard linear encoding? Then, how often
can robustness properties, that are proven for the real-valued network, transferred to the
quantized network and vice versa? Finally, how often do gradient based attacking procedures
miss attacks for quantized networks?

The MNIST dataset is a well-studied computer vision benchmark, which consists of 70,000
handwritten digits represented by 28-by-28 pixel images with a single 8-bit grayscale channel.
Each sample belongs to exactly one category {0, 1, . . . 9}, which a machine learning model
must predict from the raw pixel values. The MNIST set is split into 60,000 training and 10,000
test samples.

We trained a neural network classifier on MNIST, following a post-training quantization scheme
[Jacob et al., 2018]. First, we trained, using TensorFlow with floating-point precision, a network
composed of 784 inputs, 2 hidden layers of size 64, 32 with ReLU-7 activation function and 10
outputs, for a total of 890 neurons. The classifier yielded a standard accuracy, i.e., the ratio
of samples that are correctly classified out of all samples in the testing set, of 94.7% on the
floating-point architecture. Afterward, we quantized the network with various bit sizes, with
the exception of imposing the input layer to be always quantized in 8 bits, i.e., the original
precision of the samples. The quantized networks required at least Q3 with 7 total bits to
obtain an accuracy above 90% and Q5 with 10 bits to reach 94%. For this reason, we focused
our study on the quantizations from 6 and the 10 bits in, respectively, Q2 to Q6 arithmetic.

Robust accuracy or, more simply, robustness measure the ratio of robust samples: for the
distance ε > 0, a sample a is robust when, for all its perturbations y within that distance, the
classifier class ◦ f chooses the original class c = class ◦ f(a). In other words, a is robust if,
for all y⃗

|a− y⃗|∞≤ ε =⇒ c = class ◦ f(y⃗), (2.9)

where, in particular, the right-hand side can be encoded as ⋀︁m
j=1 zj ≤ zc, for z⃗ = f(y⃗).

Robustness is a validity question as in Eq. 2.6 and any witness for the dual satisfiability
question constitutes an adversarial attack. We checked the robustness of our selected networks
over the first 300 test samples from the dataset with ε = 1 on the first 200 and ε = 2 on the
next 100. We tested our encoding using the SMT-solver Boolector [Niemetz et al., 2015], Z3
[De Moura and Bjørner, 2008], and CVC4 [Barrett et al., 2011], off-the-shelf.

Our experiments serve two purposes. The first is evaluating the scalability and precision of
our approach. As for scalability, we study how encoding layout, i.e., linear or balanced, and
the number of bits affect the runtime of the SMT-solver. As for precision, we measured the
gap between our method and both a formal verifier for real-numbered networks, i.e., Reluplex
[Katz et al., 2017], and the IFGSM algorithm [Zhao et al., 2019], with respect to the accuracy
of identifying robust and vulnerable samples. The second purpose of our experiments is
evaluating the effect of quantization on the robustness to attacks of our MNIST classifier and,
with an additional experiment, measuring the effect of quantization over the gender fairness
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SMT-solver Encoding 6-bit 7-bit 8-bit 9-bit 10-bit

Boolector [Niemetz et al., 2015] Linear (standard) 3h 25m oot oot oot oot
Balanced (ours) 18m 1h 29m 3h 41m 5h 34m 8h 58m

Z3 [De Moura and Bjørner, 2008] Linear (standard) oot - - - -
Balanced (ours) oot - - - -

CVC4 [Barrett et al., 2011] Linear (standard) oom - - - -
Balanced (ours) oom - - - -

Yices2 [Dutertre, 2014] Linear (standard) oot - - - -
Balanced (ours) oot - - - -

Table 2.1: Median runtimes for bit-exact robustness checks. The term oot refers to timeouts,
and oom refers to out-of-memory errors. Due to the poor performance of Z3, CVC4, and
Yices2 on our smallest 6-bit network, we abstained from running experiments involving more
than 6 bits, i.e., entries marked by a dash (-).

QNN encoding Mean runtime ± std-dev Median runtime (0.1, 0.9 quantile)
in minutes in minutes

6-bit (linear) 228.0 ± 54.6 207.1 (184.7,303.7)
6-bit (balanced) 18.4 ± 1.7 18.2 (16.5,20.0)
7-bit (balanced) 89.7 ± 12.0 90.0 (73.9,101.2)
8-bit (balanced) 221.9 ± 52.5 221.9 (153.2,261.3)
9-bit (balanced) 342.4 ± 64.4 334.6 (267.7,416.1)
10-bit (balanced) 592.9 ± 135.8 538.5 (473.9,768.6)

Table 2.2: Observed runtime uncertainty of bit-exact robustness checks in minutes. The
column in the center shows the mean and the standard deviation. The column of the right
shows the median runtime and the 0.1 and 0.9 quantile in parenthesis. Timed out instances
and misclassified samples are not included.

of a student grades predictor, also demonstrating the expressiveness of our method beyond
adversarial attacks.

As we only compared the verification outcomes, any complete verifier for real-numbered
networks would lead to the same results as those obtained with Reluplex. Note that these tools
verify the real-numbered abstraction of the network using some form of linear real arithmetic
reasoning. Consequently, rounding errors introduced by the floating-point implementation of
both, the network and the verifier, are not taken into account.

2.4.1 Scalability and performance
We evaluated whether our balanced encoding strategy, compared to a standard linear encoding,
can improve the scalability of contemporary SMT solvers for quantifier-free bit-vectors (QF_BV)
to check specifications of quantized neural networks. We ran all our experiments on an Intel
Xeon W-2175 CPU, with 64GB memory and 16 hours of time budget per problem instance.
We encoded each instance using the two variants, the standard linear and our balanced layout.
We scheduled 14 solver instances in parallel, i.e., the number of physical processor cores
available on our machine.

While Z3, CVC4 and Yices2 timed out or ran out of memory on the 6-bit network, Boolector
could check the instances of our smallest network within the given time budget, independently
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of the employed encoding scheme. We note that we also tested CVC after enabling a 128
GB swap file and running only single SMT-solver instance on the entire machine to test
whether the instances could be solved on a machine with larger memory, but also observed an
out-of-memory error in this configuration. Our results align with the SMT-solver performances
reported by the SMT-COMP 2019 competition in the QF_BV division [Niemetz et al., 2019].
Consequently, we will focus our discussion on the results obtained with Boolector.

With linear layout Boolector timed-out on all instances but the smallest networks (6 bits),
while with the balanced layout it checked all instances with an overall median runtime of 3h
41m and, as shown in Table 2.1, roughly doubling at every bits increase, as also confirmed
by the histogram in Figure 2.4. The observed variability and uncertainty of the executed
robustness checks are shown in Table 2.2.

Our results demonstrate that our balanced association layout improves the performance of
the SMT-solver, enabling it to scale to networks beyond 6 bits. Conversely, a standard
linear encoding turned out to be ineffective on all tested SMT solvers. Besides, our method
tackled networks with 890 neurons which, while small compared to state-of-the-art image
classification models, already pose challenging benchmarks for the formal verification task.
In the real-numbered world, for instance, off-the-shelf solvers could initially tackle up to 20
neurons [Pulina and Tacchella, 2010], and modern techniques, while faster, are often evaluated
on networks below 1000 neurons [Katz et al., 2017, Bunel et al., 2018].

Additionally, we pushed our method to its limits, refining our MNIST network to a four-layers
deep Convolutional network (2 Conv + 2 Fully-connected layers) with a total of 2238 neurons,
which achieved a test accuracy of 98.56%. While for the 6-bits quantization we proved
robustness for 99% of the tested samples within a median runtime of 3h 39min, for 7-bits
and above all instances timed-out. Notably, Reluplex also failed on the real-numbered version,
reporting numerical instability.

2.4.2 Comparison to other methods
Looking at existing methods for verification, one has two options to verify quantized neural
networks: verifying the real-valued network and hoping the functional property is preserved
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Figure 2.4: Runtimes for bit-exact adversarial robustness checks of a classifier trained on the
MNIST dataset using Boolector and our balanced SMT encodings. Runtime roughly doubles
with each additional bit used for the quantization.
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when quantizing the network, or relying on incomplete methods and hoping no counterexample
is missed. A question that emerges is how accurate are these two approaches for verifying
robustness of a quantized network? To answer this question, we used Reluplex [Katz et al.,
2017] to prove the robustness of the real-valued network. Additionally, we compared to the
iterative fast gradient sign method (IFGSM), which has recently been proposed to generate
ℓ∞-bounded adversarial attacks for quantized networks [Zhao et al., 2019]; notably, IFGSM is
incomplete in the sense that it may miss attacks. We then compared these two verification
outcomes to the ground-truth obtained by our approach.

In our study, we employ the following notation. We use the term "false negative" (i) to
describe cases in which the quantized network can be attacked, while no attack exists that
fools the real-number network. Conversely, the term "false positive" (ii) describes the cases in
which a real-number attack exists while the quantized network is robust. Furthermore, we use
the term "invalid attack" (iii) to specify attacks produced for the real-valued network that
fools the real-valued network but not the quantized network.

Regarding the real-numbered encoding, Reluplex accepts only pure ReLU networks. For this
reason, we translate our ReLU-N networks into functionally equivalent ReLU networks, by
translating each layer with

ReLU-N(W · x⃗+ b⃗) = ReLU
(︂
− I · ReLU(−W · x⃗− b⃗+N)

)︂
. (2.10)

Out of the 300 samples, at least one method timed out on 56 samples, leaving us with 244
samples whose results were computed over all networks. We note that we limited our evaluation
to a single network and only these 244 samples due to the high computational runtime of
verifying a sample and the need for verifying robustness for five different quantization levels.
Consequently, our results are potentially subject to a high degree of uncertainty.

Table 2.3 depicts how frequently the robustness property could be transferred from the real-
valued network to the quantized networks. Not surprisingly, we observed the trend that
when increasing the precision of the network, the error between the quantized model and
the real-valued model decreases. However, even for the 10-bit model, in 0.8% of the tested
samples, verifying the real-valued model leads to a wrong conclusion about the robustness
of the quantized network. Moreover, our results show the existence of samples where the
10-bit network is robust while the real-valued is attackable and vice versa. The invalid attacks
illustrate that the higher the precision of the quantization, the more targeted attacks need to
be. For instance, while 94% of attacks generated for the real-valued network represented valid
attacks on the 7-bit model, this percentage decrease to 80% for the 10-bit network.

Next, we compared how well incomplete methods are suited to reason about the robustness of
quantized neural networks. We employed IFGSM to attack the 244 test samples for which we
obtained the ground-truth robustness and measure how often IFGSM is correct about assessing
the robustness of the network. For the sake of completeness, we perform the same analysis for
the real-valued network.

Our results in Table 2.4 present the trend that with higher precision, e.g., 10-bits or reals,
incomplete methods provide a stable estimate about the robustness of the network, i.e., IFGSM
was able to find attacks for all non-robust samples. However, for lower precision levels, IFGSM
missed a substantial amount of attacks, i.e., for the 7-bit network, IFGSM could not find a
valid attack for 10% of the non-robust samples.
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True False False True
Bits negatives negatives positives positives

(i) (ii)
6 66.4% 25.0% 3.3% 5.3%
7 84.8% 6.6% 1.6% 7.0%
8 88.5% 2.9% 0.4% 8.2%
9 91.0% 0.4% 0.4% 8.2%
10 91.0% 0.4% 0.4% 8.2%

Invalid
attacks

(iii)
8%
6%
10%
20%
20%

Table 2.3: Transferability of vulnerability from the verification outcome of the real-valued
network to the verification outcome of the quantized model. While vulnerability is transferable
between the real-valued and the higher precision networks, (9 and 10-bits), in most of the
tested cases, this discrepancy substantially increases when compressing the networks with
fewer bits, i.e. see columns (i) and (ii).

True False False True
Bits negatives negatives positives positives

(i) (ii)
6 69.7% 1.2 % - 30.3%
7 86.5% 1.6 % - 13.5%
8 88.9% 0.8 % - 11.1%
9 91.4% 0.8 % - 8.6 %
10 91.4% 0 % - 8.6 %
R 91.4% 0 % - 8.6 %

Table 2.4: Transferability of incomplete robustness verification (IFGSM [Zhao et al., 2019])
to ground-truth robustness (ours) for quantized networks. While for the real-valued and
10-bit networks our gradient based incomplete verification did not miss any possible attack, a
non-trivial number of vulnerabilities were missed by IFGSM for the low-bit networks. The row
indicted by R compares IFGSM attacking the floating-point implementation to the grouth-truth
obtained, using Reluplex, by verifying the real-valued relaxation of the network.

2.4.3 The effect of quantization on robustness

In Table 2.4 we show how standard accuracy and robust accuracy degrade on our MNIST
classifier when increasing the compression level. The data indicates a constant discrepancy
between standard accuracy and robustness; for real numbered networks, a similar fact was
already known in the literature [Tsipras et al., 2018]: we empirically confirm that observation
for our quantized networks, whose discrepancy fluctuated between 3 and 4% across all precision
levels. Besides, while an acceptable, larger than 90%, standard accuracy was achieved at 7
bits, an equally acceptable robustness was achieved at 9 bits.

One relationship not shown in Table 2.4 is that these 4% of non-robust samples are not equal
for across quantization levels. For instance, we observed samples that are robust for 7-bit
network but attackable when quantizing with 9- and 10-bits. Conversely, there are attacks for
the 7-bit networks that are robust samples in the 8-bit network.
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2.4.4 Network specifications beyond robustness
Concerns have been raised that decisions of an ML system could discriminate towards certain
groups due to a bias in the training data [Barocas et al., 2017]. A vital issue in quantifying
fairness is that neural networks are black-boxes, which makes it hard to explain how each input
contributes to a particular decision.

We trained a network on a publicly available synthetically created dataset consisting of 1000
students’ personal information and academic test scores [kaggle.com, (accessed December
1, 2021]. The personal features include gender, parental level of education, lunch plans, and
whether the student took a preparation course for the test, all of which are discrete variables.
We train a predictor for students’ math scores, which is a discrete variable between 0 and 100.
Notably, the dataset contains a potential source for gender bias: the mean math score among
females is 63.63, while it is 68.73 among males. The dataset is randomly split into 100 test
and 900 training samples.

The network we trained is composed of 2 hidden layers with 64 and 32 units, respectively. We
use a 7-bit quantization-aware training scheme, achieving a 4.14% mean absolute error, i.e.,
the difference between predicted and actual math scores on the test set.

We define the network as fair if the gender of a person influences the predicted math score by
at most the bias β. In other words, checking fairness amounts to verifying that⋀︂

i ̸=gender
si = ti ∧ sgender ̸= tgender =⇒ |f(s⃗)− f(t⃗)|≤ β, (2.11)

is valid over the variables s⃗ and t⃗, which respectively model two students for which gender
differs but all other features are identical—we call them twin students. When we encode the
dual formula, we encode two copies of the semantics of the same network: to one copy we give
one student s⃗ and take the respective grade g, to the other we give its twin t⃗ and take grade
h; precisely, we check for the unsatisfiability the negation of formula in Eq. 2.11. Then, we
compute a tight upper bound for the bias, that is the maximum possible change in predicted
score for any two twins. To compute the tightest bias, we progressively increase β until our
encoded formula becomes unsatisfiable.

We measure mean test error and gender bias of the 6- to the 10-bits quantization of the
networks. We show the results in Table 2.6. The test error was stable between 4.1 and 4.6%

Precision Standard accuracy Robust accuracy
6-bit 73.4% ± 2.8 69.7% ± 2.9
7-bit 91.8% ± 1.8 86.5% ± 2.2
8-bit 92.2% ± 1.7 88.9% ± 2.0
9-bit 94.3% ± 1.5 91.4% ± 1.8
10-bit 95.5% ± 1.3 91.4% ± 1.8
R 94.7% ± 1.4 91.4% ± 1.8

Table 2.5: Accuracy of the MNIST classifiers on the 244 test samples for which all quantization
levels could be check within the given time budget. The column indicated by R compares
the accuracy of the floating-point implementation to the robust accuracy of the real-valued
relaxation of the network. The uncertainty measures indicated after the ± correspond to the
standard deviation of the estimated accuracy, i.e.,

√
p(1−p)√

244 where p is the observed accuracy.
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Quantization Mean Tightest bias
level test error upper bound
6 bits 4.46 ± 3.36 22
7 bits 4.14 ± 3.25 17
8 bits 4.37 ± 3.45 16
9 bits 4.38 ± 3.43 15
10 bits 4.59 ± 3.51 15

Table 2.6: Results for the formal analysis of the gender bias of a students’ grade predictor.
Mean and standard deviation of the models’ errors on the test set. The maximum gender bias
of the network monotonically decreases with increasing precision.

among all quantizations, showing that the change in precision did not affect the quality of the
network in a way that was perceivable by standard measures. However, our formal analysis
confirmed a gender bias in the network, producing twins with a 15 to 21 difference in predicted
math score. The bias monotonically increased as the precision level in quantization lowered,
indicating that quantization can play a role in determining the bias.

2.5 Conclusion
We introduced the first complete method for the verification of quantized neural networks which,
by SMT solving over bit-vectors, accounts for their bit-precise semantics. We demonstrated,
both theoretically and experimentally, that bit-precise reasoning is necessary to accurately
ensure the robustness to adversarial attacks of a quantized network. We showed that robustness
and non-robustness are non-monotonic in the number of bits for the numerical representation
and that, consequently, the analysis of high-bits or real-numbered networks may derive false
conclusions about their lower-bits quantizations. Experimentally, we confirmed that real-valued
solvers produce many spurious results, especially on low-bit quantizations, and that also
gradient descent may miss attacks. Additionally, we showed that quantization can affect
not only robustness, but also other properties of neural networks, such as some notions of
fairness. We also demonstrated that, using our balanced encoding, off-the-shelf SMT-solving
can analyze networks with hundreds of neurons which, despite hitting the limits of current
solvers, establishes an encouraging baseline for future research.
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CHAPTER 3
Scalable Verification of Quantized

Neural Networks

There are many efficient methods for verification of neural networks (e.g. [Katz et al., 2017,
Tjeng et al., 2019, Bunel et al., 2018]), however most of them ignore rounding errors in
computations. The few approaches that can handle the semantics of rounding operations are
overapproximation-based methods, i.e., incomplete verification [Singh et al., 2018, 2019]. The
imprecision introduced by quantization stands in stark contrast with the idealization made by
verification methods for standard neural networks, which disregards rounding errors that appear
due to the network’s semantics. Consequently, verification methods developed for standard
networks are not sound for and cannot be applied to quantized neural networks. Indeed,
recently it has been shown that specifications that hold for a floating-point representation
of a network need not necessarily hold after quantizing the network [Giacobbe et al., 2020].
As a result, specialized verification methods that take quantization into account need to be
developed, due to more complex semantics of quantized neural networks. Groundwork on such
methods demonstrated that special encodings of networks in terms of satisfiability modulo
theories (SMT) [Clark and Cesare, 2018] with bit-vector [Giacobbe et al., 2020] or fixed-point
[Baranowski et al., 2020] theories present a promising approach towards the verification of
quantized networks. However, the size of networks that these tools can handle and runtimes
of these approaches do not match the efficiency of advanced verification methods developed
for standard networks like Reluplex [Katz et al., 2017] and Neurify [Wang et al., 2018a].

In this chapter, we provide first evidence that the verification problem for quantized neural
networks is harder compared to verification of their idealized counterparts, thus explaining the
scalability-gap between existing methods for standard and quantized network verification. In
particular, we show that verifying quantized neural networks with bit-vector specifications is
PSPACE-hard, despite the satisfiability problem of formulas in the given specification logic
being in NP. As verification of neural networks without quantization is known to be NP-
complete [Katz et al., 2017], this implies that the verification of quantized neural networks is
a harder problem.

We then address the scalability limitation of SMT-based methods for verification of quantized
neural networks, and propose three techniques for their more efficient SMT encoding. First,
we introduce a technique for identifying those variables and constraints whose value can be
determined in advance, thus decreasing the size of SMT-encodings of networks. Second, we
show how to encode variables as bit-vectors of minimal necessary bit-width. This significantly
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reduces the size of bit-vector encoding of networks in Giacobbe et al. [2020]. Third, we
propose a redundancy elimination heuristic which exploits bit-level redundancies occurring in
the semantics of the network.

Finally, we propose a new method for the analysis of the quantized network’s reachable value
range, which is based on abstract interpretation and assists our new techniques for SMT-
encoding of quantized networks. We evaluate our approach on two well-studied adversarial
robustness verification benchmarks. Our evaluation demonstrates that the combined effect of
our techniques is a speed-up of over three orders of magnitude compared to the existing tools.

The rest of this work is organized as follows: First, we provide background and discuss related
works on the verification of neural networks and quantized neural networks. We then start
with our contribution by showing that the verification problem for quantized neural networks
with bit-vector specifications is PSPACE-hard. In the following section, we propose several
improvements to the existing SMT-encodings of quantized neural networks. Finally, we present
our experimental evaluation to assess the performance impacts of our techniques.

3.1 Background and Related work
A neural network is a function f : Rn → Rm that consists of several layers f = l1 ◦ l2 ◦ · · · ◦ lk
that are sequentially composed, with each layer parameterized by learned weight values.
Commonly found types of layers are linear

l(x) = Wx+ b,W ∈ Rno×ni , b ∈ Rno , (3.1)

ReLU l(x) = max{x, 0}, and convolutional layers [LeCun et al., 1998]. A convolutional layer
is a special form of a linear layer in Equation (3.1) where weight values in W are shared
between some neurons within the layer and W are zeros except for a fixed local window that
correspond to a spatial location in input representation of the layer.

In practice, the function f is implemented by floating-point arithmetic instead of real-valued
computations. To distinguish a neural network from its approximation, we define an interpre-
tation JfK as a map which assigns a new function to each network, i.e.

JK : (Rn → Rm)→ (D → Rm), (3.2)

where D ⊂ Rn is the admissible input domain. For instance, we denote by JfKR : f ↦→ f the
idealized real-valued abstraction of a network f , whereas JfKfloat32 denotes its floating-point
implementation, i.e. the realization of f using 32-bit IEEE floating-point [Kahan, 1996] instead
of real arithmetic. Evaluating f , even under floating-point interpretation, can be costly in
terms of computations and memory resources. In order to reduce these resource requirements,
networks are usually quantized before being deployed to end devices [Jacob et al., 2018].

Formally, quantization is an interpretation JfKint-k that evaluates a network f which uses
k-bit fixed-point arithmetic [Smith et al., 1997], e.g. 4 to 8 bits. Let [Z]k = {0, 1}k denote
the set of all bit-vectors of bit-width k. For each layer l : [Z]ni

k → [Z]n0
k in JfKint-k, we define

its semantics by defining l(x1, . . . , xni
) = (y1, . . . , yn0) as follows:

x′
i =

ni∑︂
j=1

wijxj + bi, (3.3)

x′′
i = round(x′

i, ki) = ⌊x′
i · 2−ki⌋, and (3.4)

yi = max{0,min{2Ni − 1, x′′
i }}, (3.5)
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A) Idealized real-valued network JfKR
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B) Floating-point network JfKfloat32
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C) Quantized (fixed-point) network JfKint-8
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Figure 3.1: Illustration of how different interpretations of the same network run with different
numerical precision. A) JfKR assumes infinite precision. B) JfKfloat32 rounds the mantissa
according on the IEEE 754 standard. C) JfKint-8 rounds to a fixed number of digits before
and after the comma. (Note that this figure serves as a hypothetical example in decimal
format, the actual computations run with the base-2 representation.)

Here, wi,j and bi for each 1 ≤ j ≤ ni and 1 ≤ i ≤ n0 denote the learned weights and biases
of f , and ki and Ni denote the bit-shift and the cut-off value associated to each variable yi,
respectively. Eq. (3.3) multiplies the inputs xj with the weight values wij and adds the bias
bi, eq. (3.4) rounds the result to the nearest valid k-bit fixed-point value, and eq. (3.5) is a
non-linear ReLU-N activation function 1.

An illustration of how the computations inside a network differ based on the used interpretation
is shown in Fig. 3.1.

3.1.1 Verification of neural networks
The verification problem for a neural network and its given interpretation consists of verifying
some input-output relation. More formally, given a neural network f , its interpretation JfK and
two predicates φ and ψ over the input domain D and output domain Rm of JfK respectively,
we want to check validity of the following formula (i.e. whether it holds for each x ∈ D and
y ∈ Rm)

φ(x) ∧ JfK(x) = y =⇒ ψ(y). (3.6)

Note that y refers to the outputs of the network f . We refer to the formula in eq. (3.6) as
the formal specification that needs to be proved. In order to formally verify a neural network,
it is insufficient to just specify the network without also providing a particular interpretation.
A property that holds with respect to one interpretation need not necessarily remain true if we
consider a different interpretation. For example, robustness of the real-valued abstraction does

1Note that for quanitzed neural networks, the double-side bounded ReLU-N activation is preferred over
the standard ReLU activation function [Jacob et al., 2018]
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a)

x

y

y = JReLU(x)KR

b)

x

y

y = JReLU-N(x)Kint-k

Figure 3.2: Illustration of a) the ReLU activation function under real-valued semantics, and
b) ReLU-N activation under fixed-point semantics (right).

not imply robustness of the floating-point implementation of a network [Giacobbe et al., 2020,
Jia and Rinard, 2021].

Ideally, we would like to verify neural networks under the exact semantics that are used for
running networks on the end device, i.e., JfKfloat32 most of the time. However, as verification
methods for IEEE floating-point arithmetic are extremely inefficient, research has focused
on verifying the idealized real-valued abstraction JfKR of f . In particular, efficient methods
have been developed for a popular type or networks that only consist of linear and ReLU
operations (Figure 3.2 a) [Katz et al., 2017, Ehlers, 2017, Tjeng et al., 2019, Bunel et al., 2018].
The piecewise linearity of such ReLU networks allows the use of Linear Programming (LP)
techniques, which make the verification methods more efficient. The underlying verification
problem of ReLU networks with linear inequality specifications was shown to be NP-complete
in the number of ReLU operations [Katz et al., 2017], however advanced tools scale beyond
toy networks.

Although these methods can handle networks of large size, they are building on the assumption
that

JfKfloat32 ≈ JfKR, (3.7)

i.e. that the rounding errors introduced by the IEEE floating-point arithmetic of both the
network and the verification algorithm can be neglected. It has been recently shown that
this need not always be true. For example, Jia and Rinard [Jia and Rinard, 2021] crafted
adversarial counterexamples to the floating-point implementation of a neural network whose
idealized interpretation was verified to be robust against such attacks, by exploiting subtle
numerical differences between JfKfloat32 and JfKR.

3.1.2 Verification of quantized neural networks
The low numerical precision of few-bit fixed-point arithmetic implies that JfKint-k ̸= JfKR.
Indeed, Giacobbe et al. [2020] constructed a prototypical network that either satisfies or
violates a formal specification, depending on the numerical precision used to evaluate the
network. Moreover, they observed such discrepancy in networks found in practice. Thus, no
formal guarantee on JfKint-k can be obtained by verifying JfKR or JfKfloat32. In order to
verify fixed-point implementations of (i.e. quantized) neural networks, new approaches are
required.

Fig. 3.2 depicts the ReLU activation function for idealized real-valued ReLU networks and for
quantized ReLU networks, respectively. The activation function under fixed-point semantics
consists of an exponential number of piecewise constant intervals thus making the LP-based
techniques, which otherwise work well for real-valued networks, extremely inefficient. So the
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approaches developed for idealized real-valued ReLU networks cannot be efficiently applied to
quantized networks. Existing verification methods for quantized neural networks are based on
bit-exact Boolean satisfiability (SAT) and SMT encodings. For 1-bit networks, i.e., binarized
neural networks, Narodytska et al. [2018] and Cheng et al. [2018] proposed to encode the
network semantics and the formal specification into an SAT formula, which is then checked by
an off-the-shelf SAT solver. While their approach could handle networks of decent size, the
use of SAT-solving is limited to binarized networks, which are not very common in practice.

Giacobbe et al. [2020] proposed to verify many-bit quantized neural network by encoding their
semantics and specifications into quantifier-free bit-vector SMT (QF_BV) formulas. The
authors showed that, by reordering linear summations inside the network, such monolithic
bit-vector SMT encodings could scale to the verification of small but interestingly sized
networks.

Baranowski et al. [2020] introduced an SMT theory for fixed-point arithmetic and showed
that the semantics of quantized neural networks could be encoded in this theory very naturally.
However, as the authors only proposed prototype solvers for reference purposes, the size of
the verified networks was limited.

3.1.3 Limitations of neural network verification
The existing techniques for verification of idealized real-valued abstractions of neural networks
have significantly increased the size of networks that can be verified [Ehlers, 2017, Katz et al.,
2017, Bunel et al., 2018, Tjeng et al., 2019]. However, scalability remains the key challenge
hindering formal verification of neural networks in practice. For instance, even the largest
networks verified by the existing methods [Ruan et al., 2018] are tiny compared to the network
architectures used for object detection and image classification [He et al., 2016].

Regarding the verification of quantized neural networks, no advanced techniques aiming at
performance improvements have been studied so far. In this chapter, we address the scalability
of quantized neural network verification methods that rely on SMT-solving.

3.2 Hardness of Verification of Quantized Neural
Networks

The size of quantized neural networks that existing verification methods can handle is sig-
nificantly smaller compared to the real arithmetic networks that can be verified by the
state-of-the-art tools, i.e., compare Giacobbe et al. [2020] with Katz et al. [2017], Tjeng et al.
[2019], Bunel et al. [2018]. Thus, a natural question is whether this gap in scalability is only
because existing methods for quantized neural networks are less efficient, or if the verification
problem for quantized neural networks is computationally harder.

In this section, we study the computational complexity of the verification problem for quantized
neural networks. For idealized real arithmetic interpretation of neural networks, it was shown
in Katz et al. [2017] that, if predicates on inputs and outputs are given as conjunctions of
linear inequalities, then the problem is NP-complete. The fact that the problem is NP-hard
is established by reduction from 3-SAT, and the same argument can be used to show that
the verification problem for quantized neural networks is also NP-hard. In this work, we argue
that the verification problem for quantized neural networks with bit-vector specifications is in
fact PSPACE-hard, and thus potentially harder than verifying real arithmetic neural networks.
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We also show that our result holds even for the special case when there are no constraints on
the inputs of the network, i.e. when the predicate on inputs is assumed to be a tautology. The
verification problem for a quantized neural network f that we consider consists of checking
validity of a given input-output relation formula

JfKint-k(x) = y =⇒ ψ(y).

Here, JfKint-k is the k-bit fixed point arithmetic interpretation of f , and ψ is a predicate
in some specification logic over the outputs of JfKint-k. Equivalently, we may also check
satisfiability of the dual formula

JfKint-k(x) = y ∧ ¬ψ(y). (3.8)

In order to study complexity of the verification problem, we also need to specify the specification
logic to which formula ψ belongs. In this work, we study hardness with respect to the
fragment QF_BV2bw of the fixed-size bit-vector logic QF_BV2 [Kovásznai et al., 2016].
The fragment QF_BV2bw allows bit-wise logical operations (such as bit-wise conjunction,
disjunction and negation) and the equality operator. The index 2 in QF_BV2bw is used to
denote that the constants and bit-widths are given in binary representation. It was shown
in Kovásznai et al. [2016] that the satisfiability problem for formulas in QF_BV2bw is
NP-complete.

Even though QF_BV2bw itself allows only bit-vector operations and not linear integer
arithmetic, we show that by introducing dummy output variables in JfKint-k we may still
encode formal specifications on outputs that are boolean combinations of linear inequalities
over network’s outputs. Thus, this specification logic is sufficiently expressive to encode formal
specifications most often seen in practice. Let y1, . . . , ym denote output variables of JfKint-k.
In order to encode an inequality of the form a1y1 + · · · + amym + b ≥ 0 into the output
specification, we do the following:

• Introduce an additional output neuron ỹ and a directed edge from each output neuron
yi to ỹ. Let ai be the weight of an edge from yi to ỹ, b be the bias term of ỹ, k − 1 be
the bit-shift value of ỹ, and N = k be the number of bits defining the cut-off value of
ỹ. Then

ỹ = ReLU-N(round(2−(k−1)(a1y1 + · · ·+ amym + b))).

Thus, as we work with bit-vectors of bit-width k, ỹ is just the sign bit of a1y1+· · ·+asys+b
preceded by zeros.

• As a1y1 + · · ·+ asys + b ≥ 0 holds if and only if the sign bit of a1y1 + · · ·+ asys + b is
0, in order to encode the inequality into the output specification it suffices to encode
that ỹ = 0, which is a formula expressible in QF_BV2bw.

By doing this for each linear inequality in the specification and since the logical operations
are allowed by QF_BV2bw, it follows that we may use QF_BV2bw to encode boolean
combinations of linear inequalities over outputs as formal specifications that are to be verified.

Our main result in this section is that, if ψ in eq. (3.8) is assumed to be a formula in
QF_BV2bw, then the verification problem for quantized neural networks is PSPACE-hard.
Since checking satisfiability of ψ can be done in non-deterministic polynomial time, this means
that the additional hardness really comes from the quantized neural networks.
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Theorem 1 (Complexity of verification of QNNs). If the predicate on outputs is assumed
to be a formula in QF_BV2bw, the verification problem for quantized neural networks is
PSPACE-hard.

Proof. In order to prove that the verification problem for quantized neural networks is PSPACE-
hard, we exhibit a reduction from TQBF which is known to be PSPACE-complete [Arora and
Barak, 2009] to the QNN verification problem. TQBF is the problem of deciding whether a
quantified boolean formula (QBF) in propositional logic of the form
Q1x1. Q2x2. . . . Qnxn. ϕ(x1, x2, . . . , xn) is true, where each Qi ∈ {∃, ∀} and ϕ is a quantifier-
free formula in propositional logic over the variables x1, . . . , xn.

TQBF. Given Φ = Q1x1. Q2x2. . . . Qnxn. ϕ(x1, x2, . . . , xn) a QBF formula, for each variable
xi let u(i) be the number of universally quantified variables xj with j < i. Then, Φ is true if
it admits a truth table for each existentially quantified variable xi, where the truth table for xi

specifies a value in {0, 1} for each valuation of u(i) universally quantified variables that xi

depends on. Hence, the size of the truth table for xi is 2u(i). In particular, if k is the total
number of universally quantified variables, then to show that Φ is true it suffices to find n− k
truth tables with each of size at most 2k.

Ordering of variable valuations. Let U denote the ordered set of all universally quantified
variables in the QBF formula, where variables are ordered according to their indices. A
valuation of U is an assignment in {0, 1}k of each variable in U . As a truth table for each
existentially quantified variable xi is defined with respect to all variable valuations of universally
quantified variables on which xi depends, it will be convenient to fix an ordering ⊑ of all
2k valuations of U . For two valuations (y1, . . . , yk) and (y′

1, . . . , y
′
k) in {0, 1}k, we say that

(y1, . . . , yk) ⊑ (y′
1, . . . , y

′
k) if either they are equal or there exists an index 1 ≤ i ≤ k such

that yi < y′
i and yj = y′

j for j > i. Equivalently, (y1, . . . , yk) ⊑ (y′
1, . . . , y

′
k) if and only if

k∑︂
i=1

yi · 2i ≤
k∑︂

i=1
y′

i · 2i

Thus this is the lexicographic ordering on "reflected" valuations, i.e. the largest index having
the highest priority. For brevity, we will still refer to it as the lexicographic ordering. For an
existentially quantified variable xi, its truth table can therefore also be defined by specifying a
value in {0, 1} for each of the first 2u(i) valuations of U in the lexicographic ordering, since
these are the orderings in which we consider all possible valuations of the first u(i) universally
quantified variables in U with setting the remaining universally quantified variables to equal 0.

Reduction. We now proceed to the construction of our reduction.
Given Φ = Q1x1. Q2x2. . . . Qnxn. ϕ(x1, x2, . . . , xn) a QBF formula, we need to construct

1. a quantized neural network fΦ, and

2. a predicate ψΦ over the outputs of the neural network,

each of polynomial size in the size of Φ, such that Φ is true if and only if the neural networks
admits inputs that satisfy the verification problem.
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1. Construction of the quantized neural network. We construct fΦ to consist of n + 1
gadgets fΦ

1 , . . . , f
Φ
n , g

Φ. Each gadget can be viewed as a sub-neural network, and all
nodes in gadgets are of the bit-width 2k each. Since bit-widths in quantized neural
networks are given in binary representation, specifying bit-width is still of polynomial
size. Each gadget fΦ

i is associated to the variable xi in the QBF formula. The purpose
of each gadget is to produce the output of the following form:

• If xi is universally quantified in Φ, then fΦ
i will return the single output neuron

whose value is the constant bit-vector ci ∈ {0, 1}2k whenever the predicate ψΦ is
satisfied. For each 1 ≤ j ≤ 2k, the component ci[j] will be equal to 1 if and only
if the value of xi in the j-th valuation of U (w.r.t. the lexicographic ordering) is
equal to 1. Thus, ci will encode values of xi in each valuation of U when ordered
lexicographically.

• If xi is existentially quantified in Φ, then fΦ
i will return a single output neuron

which will encode a truth table for xi. Recall, xi depends only on the first u(i)
universally quantified variables in Φ, thus its truth table is of size 2u(i). As the
values of xi should remain invariant if the values remaining universally quantified
variables are changed, we will encode the truth table for xi by first extracting the
first 2u(i) bits from the input neuron to encode the truth table itself, and then
copying this block of bits 2k−u(i) times in order to obtain an output bit-vector of
bit-width 2k.

• The gadget gΦ will return the constant bit-vector 1 consisting of all 1’s (thus
written in bold) whenever the predicate ψΦ is satisfied. Note, the constant bit-
vector whose each bit is 1 is exponential in k and thus exponential in the size of
the TQBF problem. Hence, as we will later need to encode 1 into the predicate
ψΦ over outputs of the quantized neural network, we cannot do it directly but use
the quantized neural network to construct 1.

We now describe the architecture of the gadgets that can perform the tasks described
above:

• The gadget gΦ consists only of the input and the output layer. The input layer
consists of the single neuron xg, and three output neurons yg, y′

g and y′′
g . Each

edge between the layers has weight 1, bias 0 and the cut-off value 2k. The bit-shifts
of the edges from xg to yg, y′

g and y′′
g are 0, 2k− 1 and 1, respectively. The gadget

gΦ is accompanied by the predicate ψΦ
g which is satisfied if and only if xg = yg = 1.

Formally, we define ψΦ
g via

ψΦ
g := ((y′

g = 1) ∧ (¬(y′′
g ) ∨ yg)).

To prove this, suppose first that ψΦ
g is true so we need to show that xg = yg = 1.

Clearly, by our definition of the gadget we have xg = yg. Furthermore, y′
g = 1

implies that the first bit of xg = yg is equal to 1. Finally, observe that

(¬(y′′
g ) ∨ yg) ≡ (y′′

g → yg)

≡ (0→ yg[1]) ∧
2k−1⋀︂
j=1

(yg[j]→ yg[j + 1]),

where the last inequality follows from the fact that y′′
g is obtained by shifting yg by

1 bit. Here we use yg[j] to denote the j-th bit in yg for each 1 ≤ j ≤ 2k, with
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yg[1] denoting the most significant bit in yg. Then, since we already showed that
the first bit of xg = yg is equal to 1, a simple induction on j shows that all bits of
xg = yg are equal to 1, i.e. xg = yg = 1.
Conversely, suppose that xg = yg = 1 so we need to show that ψΦ

g is true. The
formula ¬(y′′

g )∨yg is trivially true as yg = 1 and y′
g = 1 follows since y′

g is obtained
by shifting yg = 1 by 2k − 1 bits. This concludes the proof that ψΦ

g is true if and
only if xg = yg = 1.

• For fΦ
i corresponding to universally quantified variable xi, let Bi be the block of

bits starting with 2u(i) zeros followed by 2u(i) ones. The bit-vector ci should then
consist of 2k−u(i)−1 repetitions of the block Bi. The gadget fΦ

i will thus consist
of two sequentially composed parts. The first part fΦ

i,1 takes any bit-vector of
bit-width 2k as an input, and outputs a bit-vector of the same bit-width which
starts with the block Bi followed by zeros. The second part fΦ

i,2 takes the output
of the first part as an input, and outputs ci.
fΦ

i,1 consists of 3 layers: the input layer L0 with the single input neuron, layer L1
with two neurons, and output layer L2 with a single output neuron. The input
neuron in L0 is set to coincide with the output neuron of gΦ and thus equals 1.
The cut-off value of each neuron in fΦ

i,1 is N = 2k. The weights of edges from
the input neuron in L0 to neurons in L1 are set to w′

01 = w′′
01 = 1, the biases

b′
1 = b′′

1 = 0 and the bit-shifts F ′
01 = 2u(i) and F ′′

01 = 22u(i). Hence, the output
values of two neurons in L1 will be the bit-vectors of bit-width 2k that start with
2u(i) (resp. 22u(i)) zeros, followed by ones. Finally, the weights of edges from
neurons in L1 to the output neuron in L2 are set to w′

12 = 1 and w′′
12 = −1, the

bias b2 = 0 and the bit-shifts F ′
12 = F ′′

12 = 0. The output value of the neuron in
L2 will thus be a bit-vector of bit-width 2k which starts with the block of bits Bi

and followed by zeros, as desired.
fΦ

i,2 consists of 2(k − u(i) − 1) + 1 layers, where the input layer coincides with
the output layer of fΦ

i,1. Then for each 1 ≤ j ≤ k − u(i) − 1, the 2j-th layer
consists of two neurons and the (2j + 1)-st layer consists of a single neuron. The
cut-off value of each neuron is N = 2k. The weights of each edge in fΦ

i,2 is 1 and
the bias of each neuron is 0, thus we only need to specify the bit-shifts. For two
edges from the neuron in the (2j − 1)-st layer to neurons in the (2j)-th layer we
set bit-shifts to be F ′

2j−1,2j = 0 and F ′′
2j−1,2j = u(i) + j, respectively. For two

edges from neurons in the 2j-th layer to the neuron in the (2j + 1)-st layer both
bit-shits are set to 0. Given that the input fΦ

i,2 is a bit-vector of bit-width 2k which
starts with the block Bi of length 22u(i) followed by zeros, by simple induction one
can show that the output of the neuron in the (2j + 1)-st layer is a bit-vector of
bit-width 2k which starts with 2j copies of Bi which are followed by zeros. Hence,
the value of the output neuron of fΦ

i,2 will be ci, as desired.
• For fΦ

i corresponding to existentially quantified variable xi, the neural network
fΦ

i will also consist of two sequentially composed parts. The first part fΦ
i,1 takes

any bit-vector of bit-width 2k as an input, and outputs a bit-vector of the same
bit-width which starts with the same 2u(i) bits as the input bit-vector but which
are then followed by zeros. The second part fΦ

i,2 takes the output of the first part
as an input, and outputs a bit-vector obtained by copying 2k−u(i) times the block
of the first 2u(i) bits.
fΦ

i,1 consists only of the input and the output layer. The input layer consists of two
neurons, one of which coincides with the input neuron xg of the gadget gΦ. We
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denote the other input neuron by zi. The output layer consists of two neurons hi

and hg. The weights of edges from zi to hi and from xg to hg are set to 1, and
weights of edges from zi to hg and from xg to hi are set to 0. Biases and cut-off
values of all edges between the layers are set to 0 and 2k, respectively. All bit-shifts
are also set to 0, with the exception of the edge from xg to hg whose bit-shift is set
to 2u(i). These choices ensure that hi = zi and that hg is a bit-vector that starts
with 2u(i) 0-bits followed by 2k − 2u(i) 1-bits. The gadget fΦ

i,1 is accompanied by
the predicate ψΦ

i defined via

ψΦ
i := (hi = (hi ∧ ¬(hg)).

This choice of ψΦ
i together with the design of fΦ

i,1 enforce that ψΦ
i ∧ψΦ

g is satisfied
if and only if xi = zi and the last 2k − 2u(i) bits of xi = zi are equal to 0.
Since the goal of the second part is to just copy 2k−u(i) times the block of the first
2u(i) bits of the output hi of fΦ

i,1, the second part fΦ
i,2 is constructed analogously

as in the case of neural networks corresponding to universally quantified variables
above.

Recall, constant bit-vectors, bit-widths of bit-vectors as well as the number of bits used
for rounding (i.e. bit-shifts) are encoded in binary representation. Thus, each of the
values used in the construction of gadgets fΦ

i and gΦ is encoded using at most k bits,
and is polynomial in the size of Φ. On the other hand, from our construction one can
check that each gadget consists of at most 2k + 4 neurons. Therefore, as there are
n+ 1 gadgets the size of all networks combined is O(k · (2k + 4) · (n+ 1)) = O(n3).

2. Construction of the output predicate ψΦ. Denote by y1, . . . , yn, yg the outputs of
fΦ

1 , . . . , f
Φ
n , g

Φ, respectively. We define ψΦ as

ψΦ := (ϕbw(y1, . . . , yn) = yg) ∧ ψΦ
auxiliary, (3.9)

where ϕbw is the quantifier-free formula in QF_BV2bw identical to ϕ, with only
difference being that the inputs of ϕbw are bit-vectors of bit-width 2k instead of boolean
variables and logical operations are also defined over bit-vectors. The formula ψΦ

auxiliary
collects the auxiliary logical predicates that were introduced by our construction of each
gadget above, i.e.

ψΦ
auxiliary :=

n⋀︂
i=1

ψΦ
i ∧ ψΦ

g .

As yg = 1 if and only if ΨΦ
g is satisfied, the formula ψΦ is true if and only if the equality

ϕbw(y1, . . . , yn) = yg holds for each component. Intuitively, ψΦ performs bit-wise
evaluation of the formula ϕ on each component of bit-vector inputs, and then checks if
each output is equal to 1. The size of ψΦ is thus O(|ϕbw|) = O(|ϕ|·k + 3 · n + 3) =
O(|ϕ|·n), where the additional factor k comes from the fact that inputs of ϕbw are
bit-vectors of bit-width 2k, and bit-widths are encoded in binary representation.
Note that the above expression for ψΦ differs from that in the sketch proof of Theorem 1,
where we omitted the formula ψΦ

auxiliary to simplify the presentation.

Hence, the size of the instance of the quantized neural network verification problem to which
we reduced Φ is O(n3 + n · |ϕ|), which is polynomial in the size of Φ.
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Correctness of reduction. It remains to prove correctness of our reduction, i.e. that Φ is true
if and only if the corresponding quantized neural network verification problem is satisfiable.

Suppose first that Φ is true, i.e. that for each existentially quantified variable xi in Φ there
exists a truth table ti of size 2u(i), such that any valuation of universally quantified variables
U together with the corresponding values of existentially quantified variables defined by truth
tables form a satisfying assignment for the quantifier-free formula ϕ in Φ. Consider the
following set of inputs z1, . . . , zn, xg to gadgets fΦ

1 , . . . , f
Φ
n , g

Φ:

• If xi is universally quantified, then zi = 0.

• If xi is existentially quantified, consider ti as a bit-vector of bit-width 2u(i) with elements
ordered in such a way that corresponding valuations of universally quantified variables
on which xi depends in Φ are ordered lexicographically. Then zi starts with a block of
bits identical to ti, followed by zeros.

• zg = 0.

From our construction of neural networks and the predicate ψΦ we know that:

• gΦ(zg) = 1.

• If xi is universally quantified, then fΦ
i (zi) is equal to the bit-vector ci whose j-th

component is equal to 1 if and only if the value of xi in the j-th valuation of U in the
lexicographic ordering is equal to 1, where 1 ≤ j ≤ 2k.

• If xi is existentially quantified, then fΦ
i (zi) is the bit-vector obtained by copying the

block ti 2k−u(i) times. Thus, the j-th component of fΦ
i (zi) is equal to the value in the

truth table ti corresponding to the j-th valuation of U in the lexicographic ordering,
where 1 ≤ j ≤ 2k.

Finally, as ψΦ is obtained by considering a bit-vector version of formula ϕ and then checking
if each component of the output is equal to 1, it follows that the output of ψΦ on inputs
fΦ

1 (z1), . . . , fΦ
n (zn) is equal to 1, thus showing that the quantized neural network verification

problem is satisfiable.

Conversely, suppose that z1, . . . , zn, zg is a set of satisfying inputs to the quantized neural
network verification problems. Then for each existentially quantified variable xi, we construct a
truth table ti as follows. Again, consider ti as a bit-vector of bit-width 2u(i), where elements are
ordered in such a way that the corresponding valuations of universally quantified variables on
which xi depends are ordered lexicographically. Then we set ti to be equal to the block of first
2u(i) bits in zi. From our construction of the quantized neural network and ψΦ, and the fact
that z1, . . . , zn, zg is a satisfying inputs to the quantized neural network verification problem, it
follows that for any valuation of U the corresponding values of existentially quantified variables
defined by these turth tables yield a satisfying assignment for ϕ. Hence, the QBF formula Φ is
true, as desired.

Theorem 1 is to our best knowledge the first theoretical result which indicates that the
verification problem for quantized neural networks is harder than verifying their idealized real
arithmetic counterparts. It sheds some light on the scalability gap of existing SMT-based

37



3. Scalable Verification of Quantized Neural Networks

methods for their verification, and shows that this gap is not solely due to practical inefficiency
of existing methods for quantized neural networks, but also due to the fact that the problem
is computationally harder. While Theorem 1 gives a lower bound on the hardness of verifying
quantized neural networks, it is easy to see that an upper bound on the complexity of this
problem is NEXP since the inputs to the verification problem are of size that is exponential
in the size of the problem. Closing the gap and identifying tight complexity bounds is an
interesting direction of future work.

A potential blowup of the input is also the reason why the NP-completeness argument of the
real-valued verification problem of Katz et al. [2017] does not apply to the QNN verification
problem (assuming NP ̸= PSPACE). In particular, potential witnesses (x, y), i.e., assignments
to the input and output variables that make the formula in Equation 3.8 evaluate to true, can
be exponential in the size of the problem description. Consequently, there might not be an
efficient, i.e., in polynomial time of the problem description, way to check the witness (again,
assuming NP ̸= PSPACE).

Note though that the specification logic QF_BV2bw used to encode predicates over outputs
is strictly more expressive than what we need to express boolean combinations of linear integer
inequalities, which is the most common form of formal specifications seen in practice. This is
because QF_BV2bw also allows logical operations over bit vectors, and not just over single
bits. Nevertheless, our result presents the first step towards understanding computational
hardness of the quantized neural network verification problem.

3.3 Improvements to Bit-vector SMT-encodings
In this section, we study efficient SMT-encodings of quantized neural networks that would
improve scalability of verification methods for them. In particular, we propose three simplifica-
tions to the monolithic SMT encoding of eq. (3.3), (3.4), and (3.5) introduced in Giacobbe
et al. [2020], which encodes quantized neural networks and formal specifications as formulas in
the QF_BV2 logic : I) Remove dead branches of the If-Then-Else encoding of the activation
function in eq. (3.5), i.e., branches that are guaranteed to never be taken; II) Allocate only
the minimal number of bits for each bit-vector variable in the formula; and III) Eliminate
sub-expressions from the summation in eq. (3.3). To obtain the information needed by the
techniques I and II we further propose an abstract interpretation framework for quantized
neural networks.

3.3.1 Abstract interpretation analysis
Abstract interpretation [Cousot and Cousot, 1977] is a technique for constructing over-
approximations to the behavior of a system. Initially developed for software verification, the
method has recently been adapted to robustness verification of neural networks and is used
to over-approximate the output range of variables in the network. Instead of considering
all possible subsets of real numbers, it only considers an abstract domain which consists
of subsets of suitable form (e.g. intervals, boxes or polyhedra). This allows modeling each
operation in the network in terms of operations over the elements of the abstract domain,
thus over-approximating the semantics of the network. While it leads to some impreision,
abstract interpretation allows more efficient output range analysis for variables. Due to its
over-approximating nature, it remains sound for verifying neural networks.

38



3.3. Improvements to Bit-vector SMT-encodings

Interval [Wang et al., 2018b, Tjeng et al., 2019], zonotope [Mirman et al., 2018, Singh et al.,
2018], and convex polytope [Katz et al., 2017, Ehlers, 2017, Bunel et al., 2018, Wang et al.,
2018a] abstractions have emerged in literature as efficient and yet precise choices for the
abstract domains of real-valued neural networks. The obtained abstract domains have been
used for output range analysis [Wang et al., 2018b], as well as removing decision points
from the search process of complete verification algorithms [Tjeng et al., 2019, Katz et al.,
2017]. One important difference between standard and quantized networks is the use of
double-sided bounded activation functions in quantized neural networks, i.e., ReLU-N instead
of ReLU [Jacob et al., 2018]. This additional non-linear transition, on one hand, renders
linear abstractions less effective, while on the other hand it provides hard upper bounds to
each neuron, which bounds the over-approximation error. Consequently, we adopt interval
arithmetic (IA) on the quantized interpretation of a network to obtain reachability sets for
each neuron in the network. As discussed in Tjeng et al. [2019], using a tighter abstract
interpretation poses a tradeoff between verification and pre-processing complexity.

3.3.2 Dead branch removal
Suppose that through our abstract interpretation we obtained an interval [lb, ub] for the input
x of a ReLU-N operation y = ReLU-N(x). Then, we can substitute the formulation of the
ReLU-N by

y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if ub ≤ 0
2N − 1, if lb ≥ 2N − 1
x, if ub ≥ 0 and lb ≤ 2N − 1
max{0, x}, if 0 < ub ≤ 2N − 1.
min{2N − 1, x}, if 0 ≤ lb < 2N − 1.
max{0,min{2N − 1, x}}, otherwise,

which reduces the number of decision points in the SMT formula.

3.3.3 Minimum bit allocation
A k-bit quantized neural network represents each neuron and weight variable by a k-bit integer.
However, when computing the values of certain types of layers, such as the linear layer in eq.
(3.1), a wider register is necessary. The binary multiplication of a k-bit weight and a k-bit
neuron value results in a number that is represented by 2k-bits. Furthermore, summing up n
such 2k-bit integer requires

bnaive = 2k + log2(n) + 1 (3.10)

bits to be safely represented without resulting in an overflow.

Thus, linear combinations are in practice usually computed on 32-bit integer registers. Ap-
plication of fixed-point rounding and the activation function then reduces the neuron values
back to a k-bit representation [Jacob et al., 2018].

QF_BV2 reasons over fixed-size bit-vectors, i.e. the bit width of each variable must be fixed
in the formula regardless of the variable’s value. Giacobbe et al. [2020] showed that the
number of bits used for all weight and neuron variables in the formal affects the runtime of
the SMT-solver significantly. For example, omitting the least significant bit of each variable
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cuts the runtime on average by half. However, the SMT encoding of Giacobbe et al. [2020]
allocates bnaive bits according to eq. (3.10) for each accumulation variable of a linear layer.

Our approach uses the interval [lb, ub] obtained for each variable by abstract interpretation to
compute the minimal number of bits necessary to express any value in the interval. As the
signed bit-vector variables are represented in the two’s complement format, we can compute
the bit width b of variable x with computed interval [lb, ub] by

bminimal = 1 + log2(max{|lb|, |ub|}+ 1). (3.11)

Trivially, one can show that bminimal < bnaive, as |ub|≤ 22kn and |lb|≤ 22kn.

3.3.4 Redundant multiplication elimination
Another difference between quantized and standard neural networks is the rounding of the weight
values to the nearest representable value of the employed fixed-point format. Consequently,
there is a considerable chance that two connections outgoing from the same source neuron will
have the same weight value. For instance, assuming an 8-bit network and a uniform weight
distribution, the chance of two connections having the same weight value is around 0.4%
compared to the much lower 4 · 10−8% of the same scenario happening in a floating-point
network.

Moreover, many weight values express some subtle form of redundancy on a bit-level. For
instance, both multiplication by 2 and multiplication by 6 contain a shift operations by 1 digit
in their binary representation. Thus, computations

y1 = 3 · x1 y2 = 6 · x1 (3.12)

can be rewritten as

y1 = 3 · x1 y2 = y1 << 1, (3.13)

where << is a binary shift to the left by 1 digit. As a result, a multiplication by 6 is replaced
by a much simpler shift operation. Based on this motivation, we propose a redundancy
elimination heuristic to remove redundant and partially redundant multiplications from the
SMT formula. Our heuristic first orders all outgoing weights of a neuron in ascending order
and then sequentially applies a rule-matching for each weight value. The rules try to find a
simpler way to compute the multiplication of the weight and the neuron value by using already
performed multiplications. The algorithm aiming to remove bit-level redundancies is shown in
Algorithm 3.1. The rules for matching a weight value to the set of existing computations V of
a layer is Table 3.1.

Note that a similar idea was introduced by Cheng et al. [2018] in the form of a neuron factoring
algorithm for the encoding of binarized (1-bit) neural networks into SAT formulas. However,
the heuristic of Cheng et al. [2018] removes redundant additions, whereas we consider bit-level
redundancies in multiplications. For many-bit quantization, the probability of two neurons
having the same weight coming from more than one input neuron decreases exponentially with
the number of bits (assuming the additionally representable quantized weight values by an
increase in the number of bits are actually used). Consequently, the inter-neuron factoring of
multiple inputs as proposed in Cheng et al. [2018] becomes less effective in many-bit quantized
neural networks.
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Algorithm 3.1: Multiplication redundancy elimination
Input: Outgoing weights W = {wi|i = 1, . . . n} of neuron x, with n neurons in the

next layers
Output: Outgoing values wi · x of neuron x

1 Sort W in ascending order by absolute value;
2 V ← {}, Y ← {};
3 foreach wi ∈ W do
4 Find rule for wi according to Table 1 given V ;
5 if rule found then
6 Y ← Y ∪ {rule(wi, V )};
7 else
8 y ← wi · x;
9 V ← V ∪ {wi}, Y ← Y ∪ {y};

10 end
11 end
12 return Y ;

Condition Action
wi = 0 yi = 0
wi = 1 yi = x
∃wj : wi = wj yi = yj

∃wj : wi = −wj yi = −yj

∃wj : wi = wj · 2k yi = yj << k

Table 3.1: Rules used for the multiplication redundancy elimination heuristic

3.4 Experimental Evaluation

We create an experimental setup to evaluate how much the proposed techniques affect the
runtime and efficiency of the SMT-solver. Our reference baseline is the approach of Giacobbe
et al. [2020], which consists of a monolithic and "balanced" bit-vector formulation for the
Boolector SMT-solver. We implement our techniques on top of this baseline. We limited
our evaluation to Boolector, as other SMT-solvers supporting bit-vector theories, such as
Z3 [De Moura and Bjørner, 2008], CVC4 [Barrett et al., 2011], and Yices [Dutertre, 2014],
performed much worse in the evaluation of Giacobbe et al. [2020].

Our evaluation comprises of two benchmarks. Our first evaluation considers the adversarial
robustness verification of image classifier trained on the MNIST dataset [LeCun et al., 1998].
In particular, we check the l∞ robustness of networks against adversarial attacks [Szegedy
et al., 2013]. Other norms, such as l1 and l2, can be expressed in bit-vector SMT constraints as
well, although with potentially negative effects on the solver runtime. In the second evaluation,
we repeat the experiment on the slightly more complex Fashion-MNIST dataset [Xiao et al.,
2017] .

All experiments are run on a 14-core Intel W-2175 CPU with 64GB of memory. We used the
boolector [Niemetz et al., 2015] with the SAT-solvers Lingeling [Biere, 2017] (only for the
baseline) and CaDiCal [Biere, 2019] (baseline + our improvements) as SAT-backend.
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Attack Checked Baseline Baseline Ours
radius instances (+ Lingeling) (+ CaDiCal)
ε = 1 99 63 ± 4.8 (63.6% ± 4.8) 92 ± 2.6 (92.9% ± 2.6) 99 ± 0.0 (100.0% ± 0.0)
ε = 2 99 0 ± 0.0 (0.0% ± 0.0) 20 ± 4.0 (20.2% ± 4.0) 94 ± 2.2 (94.9% ± 2.2)
ε = 3 96 0 ± 0.0 (0.0% ± 0.0) 2 ± 1.4 (2.1% ± 1.5) 71 ± 4.3 (74.0% ± 4.5)
ε = 4 97 0 ± 0.0 (0.0% ± 0.0) 1 ± 1.0 (1.0% ± 1.0) 54 ± 4.9 (55.7% ± 5.0)

Table 3.2: Number of solved instances of adversarial robustness verification on the MNIST
dataset. Absolute numbers and in percentages of checked instances in parenthesis. Best
method in bold. The number of checked instances correspond to the correctly classified
samples out of the first 400 test samples. The uncertainty measures indicated after the ±
correspond to the standard deviation of the estimated fraction of solved instances, i.e.,

√
p(1−p)√

n

where p is the observed fraction of solved instances and n the number of checked instances.

Method MNIST Fashion-MNIST
Mean runtime Median runtime Mean runtime Median runtime

Baseline (+Lingeling) 146.5 ± 20.0 146.7 (123.1, 173.5) 115.5 ± 2.6 115.5 (113.4, 117.5)
Baseline (+ CaDiCal) 65.5 ± 43.5 46.6 (29.2, 142.2) 57.9 ± 26.1 51.8 (31.8, 99.3)

Ours 1.5 ± 9.7 0.1 (0.1, 0.1) 0.8 ± 5.7 0.1 (0.1, 0.1)

Table 3.3: Mean and median runtime of adversarial robustness verification process per sample
in minutes. The columns showing the mean also report the standard deviation after the ±.
The columns showing the median runtimes report the 0.1 and 0.9 quantile in parenthesis. The
reported values correspond to the non-timed-out samples out of 391 (for MNIST) and 264
(for Fashion-MNIST) checked instances.

Adversarial robustness specification can be expressed as

|x− xi|∞≤ ε ∧ y = JfKint-k(x) =⇒ y = yi, (3.14)

where (xi, yi) is a human labeled test sample and ε is a fixed attack radius. As shown in
eq. (3.14), the space of possible attacks increases with ε. Consequently, we evaluate with
different attack radii ε and study the runtimes individually. In particular, for MNIST we check
the first 100 test samples with an attack radius of ε = 1, the next 100 test samples with ε = 2,
and the next 200 test samples with ε = 3 and ε = 4 respectively. For our Fashion-MNIST
evaluation, we reduce the number of samples to 50 per attack radius value for ε > 2 due to
time and compute limitations.

The network studied in our benchmark consists of four fully-connected layers (784,64,32,10),
resulting in 52,650 parameters in total. It was trained using a quantization-aware training
scheme with a 6-bit quantization.

The results for the MNIST evaluation in terms of solved instances and solver runtime are
shown in Table 3.2 and Table 3.3 respectively. Table 3.4 and Table 3.3 show the results for
the Fashion-MNIST benchmark.

3.4.1 Ablation analysis
We perform an ablation analysis where we re-run our robustness evaluation with one of our
proposed techniques disabled. The objective of our ablation analysis is to understand how the
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Attack Checked Baseline Baseline Ours
radius instances (+ Lingeling) (+ CaDiCal)
ε = 1 87 2 ± 1.4 (2.3% ± 1.6) 44 ± 4.7 (50.6% ± 5.4) 76 ± 3.1 (87.4% ± 3.6)
ε = 2 90 0 ± 0.0 (0.0% ± 0.0) 7 ± 2.5 (7.8% ± 2.8) 73 ± 3.7 (81.1% ± 4.1)
ε = 3 43 0 ± 0.0 (0.0% ± 0.0) 1 ± 1.0 (2.3% ± 2.3) 27 ± 3.2 (62.8% ± 7.4)
ε = 4 44 0 ± 0.0 (0.0% ± 0.0) 0 ± 0.0 (0.0% ± 0.0) 18 ± 3.3 (40.9% ± 7.4)

Table 3.4: Number of solved instances of adversarial robustness verification on the Fashion-
MNIST dataset. Absolute numbers and in percentages of checked instances in parenthesis.
Best method in bold. The number of checked instances correspond to the correctly classified
samples out of the first 300 test samples. The uncertainty measures indicated after the ±
correspond to the standard deviation of the estimated fraction of solved instances, i.e.,

√
p(1−p)√

n

where p is the observed fraction of solved instances and n the number of checked instances.

Method Total solved Mean runtime Cumulative
instances (minutes) runtime

No redundancy eliminiation 316 ± 7.8 (80.8% ± 2.0) 1.5 ± 13.0 7.7 h
No minimum bitwidth 315 ± 7.8 (80.6% ± 2.0) 1.0 ± 9.8 5.1 h
No ReLU simplify 88 ± 8.3 (22.5% ± 2.1) 56.8 ± 29.9 83.2 h
No Abstract interpretation 107 ± 8.8 (27.4% ± 2.3) 70.7 ± 45.1 126.0 h
All enabled 318 ± 7.7 (81.3% ± 2.0) 1.5 ± 9.7 7.9 h

Table 3.5: Results of our ablation analysis on the MNIST dataset (n = 391). The uncertainty
measures indicated after the ± correspond to the standard deviation of the estimated quantities.
The reported runtimes only account for non-timed-out samples.

individual techniques affect the observed efficiency gains. Due to time and computational
limitations we focus our ablation experiments to MNIST exclusively.

The results in Table 3.5 show the highest number of solved instances were achieved when
all our techniques were enabled. Nonetheless, Table 3.5 demonstrate these gains are not
equally distributed across the three techniques. In particular, the ReLU simplification has a
much higher contribution for explaining the gains compared to the redundancy elimination
and minimum bitwidth methods. The limited benefits observed for these two techniques may
be explain by the inner workings of the Boolector SMT-solver.

The Boolector SMT-solver [Niemetz et al., 2015] is based on a portfolio approach which
sequentially applies several different heuristics to find a satisfying assignment of the input
formula [Wintersteiger et al., 2009]. In particular, Boolector starts with fast but incomplete
local search heuristics and falls back to slower but complete bit-blasting [Clark and Cesare, 2018]
in case the incomplete search is unsuccessful [Niemetz et al., 2019]. Although our redundancy
elimination and minimum bitwidth techniques simplify the bit-blasted representation of the
encoding, it introduces additional dependencies between different bit-vector variables. As a
result, we believe these extra dependencies make the local search heuristics of Boolector less
effective and thus enabling only limited performance improvements.
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3.5 Conclusion
We show that the problem of verifying quantized neural networks with bit-vector specifications
on the inputs and outputs of the network is PSPACE-hard. We tackle this challenging problem
by proposing three techniques to make the SMT-based verification of quantized networks more
efficient. Our experiments show that our method outperforms existing tools by several orders of
magnitude on adversarial robustness verification instances. Future work is necessary to explore
quantized neural network verification’s complexity with respect to different specification logics.
On the practical side, our methods point to limitations of monolithic SMT-encodings for
quantized neural network verification and suggest that future improvements may be obtained
by integrating the encoding and the solver steps more tightly.
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CHAPTER 4
Case Study: Adversarial Training for

Robot Learning

In this chapter, we study the suitability of adversarial training methods as an ad-hoc replacement
of standard empirical risk minimization (ERM) in robot learning applications. Adversarial
training robustifies the learned model against visually imperceptible perturbations changing
the model’s decision. This process trades nominal performance gained by standard learning
techniques, with worst-case performance under norm-bounded input perturbations [Kurakin
et al., 2017, Madry et al., 2018, Xie et al., 2019].

Adversarial training has been mainly studied in static image classification [Biggio et al., 2013,
Szegedy et al., 2013, Goodfellow et al., 2014b, Carlini and Wagner, 2017a, Stutz et al., 2019,
Salman et al., 2020, Sietzen et al., 2021], which exclusively focused on how much it trades
nominal for robust test accuracy. However, whether this trade is justified in practice and how
much the gained robustness is reflected in real-world benefits remains unclear.

Here, we set out to investigate this tradeoff for robotic control tasks. These tasks are
characterized by an open-loop supervised training, followed by a closed-loop deployment.
Consequently, pure accuracy might not accurately reflect a robotic system’s underlying
performance. Moreover, as robots interact with real-world environments, there are additional
requirements on the safety and robustness of the controller, e.g., stability of closed control
loop. For example, Figure 4.1 shows an image perceived by a robot and the image overlayed
by an adversarial attack mask of various magnitude. From a pure safety point of view, we
may require image processing networks deployed in safety-critical applications to be robust
regarding manipulating each pixel by up to 3%, i.e., an infinity-norm perturbation of 8 in
Figure 4.1, as such a change would not impair the decision of a human controlling the system.

Another aspect missing in existing works on the robust-accuracy tradeoff is how the drop in
nominal performance is distributed across the data domain. In particular, accuracy measures
that a sample is misclassified but not how ”bad” the sample is misclassified. Consider an
image of a car correctly classified by a model trained with standard training but misclassified
when learning the classifier with adversarial training. When using the classifier in a robot
application, how the image is misclassified matters. For instance, it might be tolerable if the
adversarially trained model classifies the image of the car by an adjacent class, e.g., a truck,
but unacceptable if the image is classified as a pedestrian.
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4. Case Study: Adversarial Training for Robot Learning

Original sample x ∥x− x̃∥∞ ≤ 1 ∥x− x̃∥∞ ≤ 2 ∥x− x̃∥∞ ≤ 4

∥x− x̃∥∞ ≤ 8 ∥x− x̃∥∞ ≤ 16 ∥x− x̃∥∞ ≤ 32 ∥x− x̃∥∞ ≤ 64

Figure 4.1: Visualization of a sample image x and corresponding images x̃ attacked by FGSM
[Goodfellow et al., 2014b] and different perturbation norms. Attacks with a norm less than or
equal to 2 are visually indistinguishable from the original sample. Attacks with a norm of 4
and 8 appear as low magnitude noise. From a safety requirement perspective, if a human’s
decision is not affected by such low magnitude perturbations, why should we trust a network
whose decision will change?

This chapter first proposes safety-domain training, a generalization of adversarial training,
which allows us to incorporate more general forms of safety specifications as secondary training
objectives. We then formalize a framework for characterizing error behaviors of learned
controllers for robotic tasks. We then carry out a case study examining the error profiles
introduced by adversarial and safety-domain training on three robot learning tasks. Finally, we
test whether recent advances in robust training methods and theory can help overcome the
robustness-accuracy tradeoff in practice.

Our results are negative in the sense that replacing standard ERM with adversarial ERM does
not appear as a fair tradeoff but a net loss. More precisely, our experiments suggest that
models trained by standard empirical risk minimization yield the best robotic performance
in real-world scenarios. Counterintuitively, the best-performing agents are also vulnerable to
making the robot crash under adversarial patterns. Conversely, while the models learned via
our safety-domain training are guaranteed never to crash, they significantly perform worse in
real-world scenarios. In particular, we observed that the strictness of the specifications enforced
using adversarial or safety-domain training is a dominant factor in determining the expected
real-world robotic performance. Finally, our results indicate that while advances in robust
learning provide incremental relative improvements on the tradeoff, the negative side-effects
caused by adversarial training still outweigh the improvements by an order of magnitude. Our
empirical evaluations suggest that adversarial training of neural controllers requires rethinking
before reliably using it as an ad-hoc replacement of standard ERM in robot learning schemes.
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4.1. Background

4.1 Background
A neural network is a function fθ : X → Y parameterized by θ. In supervised learning, the
training objective is to fit the function to a given dataset in the form of {(x1, y1), . . . (xn, yn)}
assumed to be i.i.d. sampled from a probability distribution over X × Y . This fitting process
is done via empirical risk minimization (ERM) that minimizes

1
n

n∑︂
i=1
L(fθ(xi), yi) (4.1)

via stochastic gradient descent. The differentiable loss function L : Y × Y → R characterizes
how well the network’s prediction fθ(xi) matches the ground truth label yi.

An adversarial attack is a sample (xi, yi) from the data distribution and a corresponding attack
vector µ with ∥µ∥ ≤ ε such that f(xi) ̸= f(xi +µ) with ε being a thresholds. As illustrated in
Figure 4.1, for image data small thresholds δ are usually not recognizable or appear as noise for
human observers. Typical norms used in adversarial attacks are the ℓ1, ℓ2, and the ℓ∞ norm. In
this work, we focus on the ℓ∞ norm. A network is robust on a given sample if no such attack µ
exists within a neighborhood ε. The robust accuracy is the standard metric for measuring the
robustness of a network aggregated over an entire dataset {(x1, y1), . . . (xn, yn)} by counting
the ratio of correctly classified samples that are also robust.

In practice, deciding whether a network is robust for a sample is an NP-hard problem [Katz
et al., 2017] and, therefore, cannot be computed for typically sized networks in a reasonable
time. Instead, the robustness of networks is often studied with respect to empirical gradient
and black-box-based attack methods. The fast gradient sign method (FGSM) [Goodfellow
et al., 2014b] computes an attack by

µ = ε sign
(︂∂L(fθ(xi), yi)

∂xi

)︂
. (4.2)

Despite its simplicity, adversarial training often uses the FGSM method due to its speed. The
iterative fast gradient sign method (I-FGSM) [Kurakin et al., 2017] is a more sophisticated
generalization of the FSGM. It computes an attack iteratively in k steps starting from µ0 = 0
and updating it by

µi = ε

k
sign

(︂∂L(fθ(xi + µi−1), yi)
∂xi

)︂
. (4.3)

DeepFool [Moosavi-Dezfooli et al., 2016], the C&W method [Carlini and Wagner, 2017b], and
projected gradient descent [Madry et al., 2018] are other common iterative attack methods
that are used for evaluating robustness but are too computationally expensive to incorporate
in adversarial training. DeepFool [Moosavi-Dezfooli et al., 2016] linearizes the network in each
iteration of updating µi. Projected gradient descent [Madry et al., 2018] applies unconstraint
gradient descent but divides each µi by its norm and multiplies the results with ε to project it
back into the given threshold. The C&W method [Carlini and Wagner, 2017b] avoids such
projection by parametrizing the attack vector µ by another variable and a transformation that
already normalizes the attack to stay within a given threshold. Any empirical attack method
can be further enhanced by restarting the method several times from slightly perturbed samples
via random noise. Experimentally results suggest that any network of non-trivial size is, at
least in parts, vulnerable to such attacks [Madry et al., 2018].
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4. Case Study: Adversarial Training for Robot Learning

Robust learning methods aim to train networks that are robust. One of the most common
robust learning methods is adversarial training which changes the standard ERM objective to
minimize

1
n

n∑︂
i=1

max
µ:∥µ∥≤ε

L(fθ(xi + µ), yi), (4.4)

where ε > 0 is some attack budget controlling how much each input can be perturbed. Due
to the computation overhead by this training objective, fast attack generating methods are
typically used for computing the max in Equation 4.4, e.g., the FGSM or I-FGSM.

Alternative approaches to adversarial training make minor modifications to the objective term
in Equation 4.4. For instance, the TRADES algorithm [Zhang et al., 2019] replaces the label yi

in Equation 4.4 with the network’s prediction of the original input, i.e., fθ(xi), and optimizes
a joint objective of the standard ERM term and the robustness term. The approach of Shafahi
et al. [2019a] removes the overhead imposed by the maximization step in Equation 4.4 by
pre-computing µ in the previous gradient descent step. Although, such pre-computed µ can
become inaccurate, i.e., stale, Shafahi et al. [2019a] showed that it improves robustness in
practice.

The major limitation of adversarial training methods is that they negatively affect the network’s
standard accuracy (or other performance metrics). For example, medium-sized networks
achieve an accuracy of 96% on the CIFAR-10 dataset when trained with standard ERM
[Zagoruyko and Komodakis, 2016]. However, in Zhang et al. [2019] the best performing
network trained with the TRADES algorithm could only achieve a standard accuracy of 89%
on this dataset. This phenomenon of an antagonistic relation between accuracy and robustness
was first studied in Tsipras et al. [2018] and is known as the accuracy-robustness tradeoff.

4.2 Related Works
Adversarial Training. Adversarial training has led to significant improvements of deep models’
resiliency to imperceptible perturbations. This was shown both empirically [Madry et al., 2018,
Miyato et al., 2018, Balaji et al., 2019, Zhang et al., 2019] and with certification [Lecuyer
et al., 2019, Weng et al., 2018, Wong and Kolter, 2018, Raghunathan et al., 2018, Cohen
et al., 2019, Salman et al., 2019, Yang et al., 2020]. An emerging line of work suggests
that the representations learned by adversarially trained models resemble visual features as
perceived by humans more accurately compared to standard networks [Ilyas et al., 2019,
Engstrom et al., 2019, Santurkar et al., 2019, Allen-Zhu and Li, 2022, Kim et al., 2019,
Kaur et al., 2019]. In contrast, a large body of work characterized the tradeoff between a
model’s robustness and accuracy when trained by adversarial training [Tsipras et al., 2018,
Bubeck et al., 2019, Su et al., 2018, Raghunathan et al., 2019]. Some issues such as gradient
obfuscation [Athalye et al., 2018, Uesato et al., 2018], during training, seemed to play a role
in the mediocre performance of the models. Nevertheless, adversarially trained networks also
showed to maintain their robustness properties [Shafahi et al., 2019b] as well as their accuracy
[Utrera et al., 2021, Salman et al., 2020] in transfer learning settings.

This work shows that despite the vast success of adversarially trained models in obtaining
robustness properties on image classification datasets, they can introduce novel error profiles
in robot learning tasks. Our work aims to identify and report these profiles to guide future
research directions on robust learning methods that provide robustness benefits in practical
applications.
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4.2. Related Works

Robustness requires over-parametrization. Theoretical contributions to the robustness-
accuracy tradeoff recently discovered that overparametrization is necessary for smoothly fitting
the training data [Bubeck et al., 2021, Bubeck and Sellke, 2021]. While empirical results
already suggested that the accuracy of larger models suffers less from adversarial training than
for small models, the critical insight is that such large models are necessary. In particular,
the authors proved that for a dataset of n samples with d-dimensional features, a model with
n parameters can fit the training samples but cannot smoothly interpolate between them.
Moreover, the authors show that a model needs at least nd parameters to fit the training data
and interpolate them smoothly. The authors also demonstrated that contemporary models
for standard datasets do not contain enough parameters with respect to their proven results.
Consequently, the theory of Bubeck and Sellke [2021] suggests that adversarial training of a
non-over-parametrized network must introduce errors somewhere in the data domain. Our
work aims to study where these errors may occur.

Attention-based architectures might be more robust than convolutional networks.
The vision transformer (ViT) [Dosovitskiy et al., 2020] is a powerful machine learning ar-
chitecture that represents an image as a sequence of patches and processes this sequence
using a self-attention mechanism [Vaswani et al., 2017]. Detailed experimental comparisons
between vision transformer and convolutional neural networks suggest that ViTs are naturally
more robust with respect to object occlusions and distributions shifts [Naseer et al., 2021].
Concurrent work on comparing ViTs to CNNs with respect to adversarial attacks has found
that vision transformers seem to be naturally more robust to adversarial attacks as well [Bai
et al., 2021].

Hyperparameters affecting robustness. Recent work suggests that the common ReLU
activation function, i.e., max{0, x}, is not well suited for adversarial training methods [Singla
et al., 2021]. Instead, the authors observed that activation functions with smooth curvatures
provide better robustness at roughly the same standard accuracy. Specifically, the sigmoid-
weighted linear unit (SiLU) activation function [Elfwing et al., 2018], i.e., x · 1

1+exp(−x) , was
highlighted as having a smooth second derivative and observed to improve robustness compared
to alternative activations. We note that the SiLU activation was concurrently proposed as
swish activation function in Ramachandran et al. [2017].

The work of Pang et al. [2021] investigated how hyperparameters of the learning process
affect adversarial training compared to standard ERM. For example, the authors experiment
with learning rate schedules, early stopping, and batch size, among other settings. The
authors observed that adversarial training benefits from a higher weight decay factor than
standard training. Moreover, the authors confirmed that a smooth activation function improves
robustness over the ReLU activation.

Adversarial Training for Safe Robot Learning. Related approaches can be grouped into
three categories; i) adversarial learning as a data augmentation technique; ii) Hand-crafted
perturbation distribution; and iii) Task-specific models.

(i) Adversarial learning as a data augmentation technique – A couple of recent works
characterized generative adversarial networks (GAN) [Goodfellow et al., 2014a] as a data
augmentation method to enhance neural controllers’ transferability. For example, Chen
et al. [2020] used GAN-based training for robotic visuomotor control, and Porav et al.
[2018] explored GANs to determine robust metric localization by using appearance transfer
(e.g., day to night transformation of input images). These methods fundamentally differ
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from safety-related adversarial training frameworks [Szegedy et al., 2013] that we explore
in this chapter, as they refer to methods useful for data augmentation.

(ii) Hand-crafted perturbation distribution – invariant sets, i.e., hand-crafted changes
in underlying data distribution such as change of a gripper’s appearance and objects’
color used in task-relevant adversarial imitation learning [Zolna et al., 2021]. These
approaches require a simulator capable of generating domain-specific perturbations and
are mainly designed for training performant agents. Our work discusses a more general
setting where we do not require domain-specific attributes.

(iii) Task-specific models – Adversarial training in task-specific domains such as motion
planning [Janson et al., 2018, Shi et al., 2020, Innes and Ramamoorthy, 2020] and
localization [Yang and Huang, 2020] has been used for enhancing robustness. Moreover,
in reinforcement learning (RL) environments, adversarial training benefited agents in
competitive scenarios such as active perception [Shen and How, 2019], interaction-
aware multi-agent tracking, and behavior prediction [Li et al., 2019] and identifying
weaknesses of a learned policy [Pan et al., 2019, Kuutti et al., 2020]. These works do
not evaluate existing general methods but propose tailored solutions for the specific task
under-test. Our work focuses on the broad vision-based robot learning problems that
use contemporary adversarial training for enhancing robustness.

4.3 Safety-domain Training
This section defines a generalization of adversarial training by relaxing the ε-neighborhood for
arbitrary domains. We call this approach Safety-Domain Training. We then explain how to
solve the inner optimization loop of safety-domain training, either by empirical or certified
safety methods, and illustrate the resulting method in Algorithm 4.1.

We generalize adversarial training to a more generic safety-domain training. In particular, we
replace the ε-neighborhoods of the training samples with arbitrary domains, i.e., labeled sets.

Definition 1 (Safety-domain training). Let fθ be a neural network, {(xi, yi)|i = 1, 2, . . . n}
the training samples, L the loss function, and {(Di, zi)|i = 1, 2, . . . k} the safety domains.
Then safety-domain training optimizes the criterion

min
θ

[ 1
n

n∑︂
i=1
L(yi, fθ(xi)) + λ

1
k

k∑︂
i=1

max
x̃∈Di

L(zi, fθ(x̃))], (4.5)

where the hyperparameter λ specifies the tradeoff between optimizing the empirical training
risk and the worst-case risk on the safety-domains.

Safety-domain training generalizes adversarial training by defining Di := {x̃ : ||x̃− xi||< ε}
with zi := yi and the training samples {}.

Empirical vs. certified safety In practice, we have two options for solving the inner
maximization step of safety-domain training. The first option is to apply gradient descent-based
optimization methods. While this approach is computationally efficient and straightforward to
implement, it provides no true worst-case guarantees as SGD does not ensure convergence to
the global optimum. In practice, empirical approaches are often used for adversarial training
of classifiers to account for computational complexity.
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A more rigorous approach, albeit expensive, is to compute an upper bound of the loss of
each safety domain and minimize the upper bound via stochastic gradient descent [Lecuyer
et al., 2019]. While computing an upper bound of a network’s output is difficult and may
overestimate the true maximum, it guarantees the worst-case loss. Abstract interpretation
methods fall into the category in which the upper bound of the loss is computed by using
abstract domains instead of individual points [Gowal et al., 2019, Huang et al., 2019]. The
main difficulty of such certified methods is to scale the training to large networks. To obtain
formal safety or robustness guarantees with this approach is to continue the training process
until the upper bound of the loss over all safety domains is below a certain threshold as
outlined in Algorithm 4.1.

4.4 Error Profiles in Robot Learning
Limited or stochastic training data, noise in the learning process, and inadequate causal
modeling [Schölkopf, 2019] prevent the network from achieving a perfect mapping of the
ground truth dependency between x and y. Consequently, these imperfections lead to
errors during test time. Moreover, adversarial training methods have been shown to introduce
additional errors to the model [Tsipras et al., 2018] in practice. Here, we propose to characterize
these errors made by a neural controller by three categories: Systematic errors, transient errors,
and conditional errors. Our objective is to analyze which error profiles occur when the neural
controller is trained by safety-domain or adversarial training methods. We define these error
types formally with respect to data that follows a functional relation, i.e., a single "perfect"
decision. Particularly,

Assumption 1. We assume the ground-truth data D ⊂ X × Y has finite cardinality and
follows a functional relation ∃g: (x, y) ∈ D =⇒ y = g(x).

We note that our assumption of D being finite reflects sensor values and motor commands
having finite precision.

First, we define transient errors as single points and corresponding neighborhoods with a higher
loss than a broader neighborhood. Formally,

Algorithm 4.1: Safety-domain training with guarantees
Input: Training data {(xi, yi)|i = 1 . . . n}, Safety domains {(zi, Di)|i = 1 . . . k}
Parameters: safety threshold δ, batch sizes bt, bs

Learning rate α, minimum training epochs imin.
safety_bound =∞
while i < imin and safety_bound > δ do

i = i+1
(x̃, ỹ) = sample_batch(bt, {(xi, yi)|i = 1 . . . n})
(z̃, D̃) = sample_batch(bs, {(zi, Di)|i = 1 . . . k})
∇ = ∂

∂θ
1
bt

∑︁bt
i=1 L(ỹi, fθ(x̃i)

∇ = ∇+ ∂
∂θ
λ 1

bs

∑︁bs
i=1 maxx∈D̃i

L(z̃i, fθ(x))
θ = θ − α∇
safety_bound = maxi=1...k maxx∈Di

L(zi, fθ(x))
end while
return θ
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Definition 2 (Transient error). Given a loss function L, a neural network fθ, a thresholds
η > 0, two neighborhoods ε1 > ε2 > 0, and assume the , we call a point (x′, y′) ∈ D transient
error if

L(y′, fθ(x′)) > η and L(ỹ, fθ(x̃)) < η, (4.6)

for all (x̃, ỹ) ∈ D with ε1 ≥ ||x̃− x′||≥ ε2.

This type of error characterizes sharp spikes in the loss landscape as illustrated in Figure 4.2
schematically for a single-dimensional regression problem. In terms of robot performance, if
the network’s output is aggregated or filtered over time, e.g., by electrical filters or dampening
physical components, transient errors may be tolerable. Contrarily, if the network’s decision
triggers some downstream changes in the system, e.g., switching modes of a robot, such errors
may dramatically decrease the robot’s performance.

Our next error type is systematic errors, which characterize a loss uniformly distributed across
the entire input domain. Formally, we define systematic error by the ratio of the average loss
and the global worst case loss,

Definition 3 (Systematic error). Given a continuous loss function L, a neural network fθ,
then we say the systematic error η ratio of fθ is defined as

η =
1

|D|
∑︁

(x,y)∈D L(y, fθ(x))
max(x,y)∈D L(y, fθ(x)) , (4.7)

if max(x,y)∈D L(y, fθ(x)) > 0. Otherwise, we say fθ is free of any error.

The systematic error η captures whether there are peaks in the loss surface. η ≈ 1 indicates
a uniformly distributed error, whereas η ≈ 0 captures an error concentrated at a single
point. Note that the systematic error defines a relative error, i.e., how the error is distributed,
but discards its magnitude. In Figure 4.2 we visualize such error type in the bottom plot.
Systematic errors may be preferable for robot tasks over other error types in applications where
we want the robot to provide acceptable performance in all conditions.

Finally, we define conditional error to capture regions of the input domain with a higher average
loss than the rest of the domain. Formally,

Definition 4 (Conditional error). Given a loss function L, a neural network fθ and a threshold
η > 0, then we call a set D ⊂ D a conditional error if

1
|D|

∑︂
(x,y)∈D

L(y, fθ(x)) > η, (4.8)

and
1

|D \ D|
∑︂

(x,y)∈D\D
L(y, fθ(x)) < η. (4.9)

Conditional errors, as illustrated in Figure 4.2, characterize certain conditions making a robot
that otherwise performs well fail.

We note that the error type Definitions 2, 3, and 4 are subjective regarding the choice of the
threshold and neighborhood values η, ε1, and ε2. Nonetheless, they allow us characterize and
describe the distribution of errors in a straightforward way.
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Figure 4.2: Different types of errors that can occur when fitting a network f(x) = y.

While the types of errors are independent of their contribution to the magnitude of the expected
test loss, they can have a large effect on the closed-loop performance of the robot system.
For example, transient errors may be filtered out over time if the controller runs with a high
frequency, e.g., an autonomous vehicle that fails to detect another car in 1 out of 30 frames
processed per second. Conversely, transient errors may have fatal consequences in applications
where a single decision is enough to trigger downstream effects, e.g., a robot arm that releases
a heavy object after erroneously classifying that space below the object is free. Similarly, to
what degree conditional and systematic errors are tolerable or lead to catastrophic results
depends on the specific application.

4.5 Case Study
In this section, we conduct a case study consisting of three robotic learning tasks. Our
objective is to I) study the robustness-accuracy tradeoff in practical applications II) investigate
what types of erroneous side-effects are introduced by an adversarial or safety-domain training
scheme. We train neural networks on labeled datasets using open-loop data (supervised
learning) for each of the three tasks. We then deploy the network in closed-loop scenarios
and measure holistically if the robot can solve the given scenarios. Besides optimizing for
high accuracy, we train with secondary robustness and safety specifications applied on the
networks using adversarial training or our safety domain training algorithm. Moreover, we vary
the strictness level of the specifications, e.g., adversarial attack radius, and study how the
strictness affects the network’s error characteristics incrementally.

Case Study task 1 - Visual gesture recognition
In the first task of our case study, we develop a controller for a mobile robot. A human operator
enables and disables the mobile robot via visual gestures. Once activated, the robot navigates
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Idle
motor=∅

Active
motor=NN2

Figure 4.3: State machine of the high-level controller. Transitions between states are triggered
by a ResNet50 image classifier. In the active state the second neural network translates the
LiDAR inputs to motor outputs.

Idle Enable Disable

Figure 4.4: Example images corresponding to the three categories of the visual gesture
recognition task.

to follow the operator such that it always faces the human operator at a distance of roughly
one meter. The control software consists of two neural networks and a state machine with two
states. State transitions are triggered by a neural network (the vision network) processing the
camera inputs. Fig. 4.3 shows an illustration of the state-machine and its transition profiles.
The robot’s active behavior is realized via a second neural network (the follow network) that
continuously translates a 2D-LiDAR scan of the environment into motor commands. The
robot’s behavior is entirely determined by the networks’ decisions, making the controller well
suited for our empirical robot learning study. Our physical robot is equipped with a Sick
LMS1xx 2D-LiDAR rangefinder, a Logitech RGB camera, and a 4-wheeled differential drive.

In our first part, we study the vision network of our robot controller. The visual gesture
recognition task concerns classifying images perceived from the robot’s camera in three
categories, i.e., idle, enable, and disable gestures, as illustrated in Fig. 4.4. We collect a
total of 2029 sample images, i.e., idle (905 samples), enable (552 samples), and disable (572
samples), which we split into a training and a validation set with a 90%:10% ratio. We
follow the standard practice for low data image classification problems of using a pre-trained
network instead of learning one from scratch. In particular, we use a ResNet50 [He et al.,
2016] pre-trained on ImageNet [Russakovsky et al., 2015] that maps input images to 2048
dimensional feature vectors. We then train a linear classifier that maps the feature vector to
a three-dimensional softmax output corresponding to our three categories. After the linear
top layer is trained, we fine-tune all layers for two epochs to further increase the accuracy of
the network, i.e., we use a linear-probing then full fine-tuning protocol [Kumar et al., 2022].
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Table 4.1: Evaluation of the image recognition networks.

# Scenario Adversarial training radius
description ε = 0 ε = 1 ε = 2

1 Forward-backward 1 - 5
2 With surgical mask - 1 3
3 Against direct sunlight - - 1
4 Staying idle 1 - 4
5 Summon out of garage - 1 1
6 Artificial lighting (idle) - - 3
7 Artificial lighting (follow) - - 1

Total 2 2 18
Note: Evaluation of the image recognition networks trained with and without adversarial training on seven
test scenarios. Numbers indicate number of misclassified gestures that triggered a change in operation mode,
i.e., errors without an effect are not counted. Dash represent zero misinterpretations.

Table 4.2: Training and validation accuracy of the vision network trained with different
adversarial perturbation radii. Training accuracy represents adversarial accuracy and validation
accuracy represents clean accuracy.

Level Training acc. (adversarial) Validation acc. (clean)
0 99.7 % 98.4%
1 52.0% 92.8%
2 32.5% 71.9%

For the training, we use the Adam optimizer [Kingma and Ba, 2015] with a learning rate of
0.0005 for the first phase and learning rate of 0.00001 for the second phase. The batch size is
set to 64.

We train the vision network by adversarial training with the fast-gradient-sign method [Good-
fellow et al., 2014b] and three different values for ϵ, i.e., l∞ neighborhoods with ε ∈ {0, 1, 2},
see Fig. 4.7 for an example. Note that adversarial training with ε = 0 is equivalent to a
standard empirical risk minimization training. The training and validation accuracy is reported
in Table 4.2.

We evaluate each of the three vision networks in seven real-world benchmark scenarios with
some situations not present in the training data. Each scenario consists of a sequence of
enabling, disabling, idle, and following commands. The first scenario consists of a sequence of
enabling, forward motion, disable, enabling, backward motion, and disabling commands by the
human operator. The second scenario is the same as the first, except the human operator
wears a surgical mask not present in the training data. In the third scenario, the robot faces
direct sunlight. In the fourth scenario, the robot has to stay idle while the human operator
moves in front of the robot without providing the robot with any enabling gesture command.
The fifth scenario starts with the robot placed below a desk, which limits the robot’s field
of view. The sixth scenario repeats the first scenario, except that the room is illuminated by
artificial lighting instead of sunlight coming from the windows. The final scenario is the same
as the fourth scenario except for the lighting, which equals the sixth scenario.
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Layer Hyperparameters
Conv1D f=32,k=5,s=1,relu
Conv1D f=96,k=5,s=2,relu
Conv1D f=96,k=5,s=2,relu
Conv1D f=96,k=5,s=2,relu
Conv1D f=96,k=5,s=2,relu
Conv1D f=96,k=5,s=2,relu
Flatten

Fully-connected 128 units, relu
Dropout p=0.4

Fully-connected 7, softmax

Table 4.3: Architecture of the 1D convolutional follow network. f represents the number of
filters, k the kernel size, and s the strides of the convolution layers. The network has a total
of 361,127 trainable parameters.

We report the number of misinterpreted gestures for each tested scenario-network pair, i.e.,
enabling or disabling the controller without the operator’s command. Consequently, some
types of errors are masked out (e.g., "enabling when the controller is already enabled").

The results for the adversarially fine-tuned vision network are shown in Table 4.1. While
the network trained with ε = 1 performed as well as the model trained by standard ERM,
the performance significantly dropped when increasing the adversarial attack radius. Given
that adversarial perturbations with ε = 2 are imperceptible for human observers, our results
indicate that current training methods as ad-hoc replacement of standard ERM cannot enforce
non-trivial adversarial robustness on an image classifier in a real-world robotic learning context.
Moreover, the errors occurring sporadically across different scenarios suggest that adversarial
training tends to cause transient errors.

Case Study task 2 - Following robot with safety guarantees
In the second task of our case study, we investigate the follow network of our robot controller
from part 1 of our study. The task of the follow model is to map 541-dimensional laser range
scans to 7 possible categories, i.e., stay, straight forward, left forward, right forward, straight
backward, left backward, and right backward. An illustration of samples of this classification
problem is shown in Fig. 4.6. We collected a total of 2705 training and 570 validation samples
uniformly across the seven classes.

Our command-following network is a 1D convolutional neural network with the full architecture
shown in Table 4.3.

As the follow network directly controls the motors, it potentially crashes into the human
operator or an obstacle causing physical damage. To avoid such worst-case outcomes, we
enforced safety specifications on the network. In particular, we want to avoid the forward
movement of the robot in case an object is in front of it. In Table 4.4, we define four
levels of safety domains that characterize our safety requirements with increasing strictness.
For example, in safety level 1, we require that at least three consecutive rays give a laser
scan reading of 20cm or closer while the remaining rays can measure an arbitrary distance
up to 3 meters, then the model should never output any class corresponding to a forward
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Table 4.4: Specification of the safety domains Di for the different safety levels.

Level Description of safety domains Di

0 Di = ∅
1 Di = {x|0 ≤ xj ≤ 0.2 for j ∈ {i− 1, i, i+ 1} and

0 ≤ xj ≤ 3 for j /∈ {i− 1, i, i+ 1}}
2 Di = {x|0 ≤ xi ≤ 0.2 and

0 ≤ xj ≤ 3 for j ̸= i}
3 Di = {x|0 ≤ xi ≤ 0.2 and

0 ≤ xj ≤ 4 for j ̸= i}
Setup Details: For each level there are 240 domains, i.e., i = 150 . . . 390. The corresponding labels zi are
defined as a any non-forward moving category, i.e., zi ∈ {stay, backward, left backward, right backward}. The
domains with increase safety level represent super-set of the lower safety level, e.g. the conditions considered
at level 1 are a strict subset of the level 2 safety. Level 1 safety only considers cases where at least three
consecutive LiDAR rays are less than 20 cm, whereas one ray is enough for level 2 and 3. Level 3 differs from
level 2 in terms of the upper bounds on the other rays.

motion. Safety level 2 drops the three consecutive rays requirement for a single reading that
gives a distance of 20cm or closer. Safety level 3 then relaxes the remaining rays’ 0-3 meters
requirement to the range 0-4 meters. Safety level 0 contains no safety domain and is equivalent
to standard empirical risk minimization. A visualization of a safety domain from the level 1
specification is shown in Fig. 4.5 on the left.

We train the follow networks using our safety domain training in Algorithm 4.1. We use
interval arithmetic to bound the inner maximization step of the training objective in Eq. 4.5,
i.e., certified safety compared to the empirical safety of the vision network in part 1 of our case
study. For the training, we use the Adam optimizer [Kingma and Ba, 2015] with a learning
rate of 0.0001 and a batch size of 64. The safety level 0 model is trained for 20 epochs, while
safety-domain training is applied for 2000 epochs.

The training and validation accuracies for the follow networks are shown in Table 4.5.

We evaluate each follow network in seven standardized scenarios in which the robot has to
follow the human operator across a given path in an environment. The scenarios differ in
complexity, e.g., operator path, obstacles (boxes or tables), environment. We report a holistic
metric for each scenario depending on if the robot maneuvers correctly for the entire scenario.

The results are shown in Table 4.6. Only the network trained with standard ERM could
successfully handle all scenarios. Interestingly, Fig. 4.5 (right image) shows that this network
is vulnerable to adversarial misclassifications and would output a forward decision and crash

Table 4.5: Training and validation accuracy of the follow network trained when enforcing
different safety-levels.

Level Training accuracy Validation accuracy
0 98.8% 84.7%
1 99.7% 76.8%
2 97.1% 73.4%
3 57.3% 53.2%
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Output = Stay
Safety-domain

Output = Forward
(adversarial)

Figure 4.5: Left: Visualization of a safety-domain. No LiDAR signal in green area should be
classified as a ”forward” decision. Right: The network trained with standard ERM can be
attacked to output a ”forward” despite the LiDAR signal indicating a large object 10cm in
front of the robot.

Stay Left forward Backward

Figure 4.6: Three training samples of the follow network. The network has to detect the
position of the human operator relative to the robot’s pose in laser range scans. In total there
are seven possible positions.

the robot if the large object is directly in front of the robot.

While the networks with safety-level one and above are immune to such attacks, they perform
significantly worse on the seven test scenarios. With increasing specification levels, the
performance monotonously decreases until the network trained with the most rigorous safety
specification cannot handle any scenario at all. In contrast to part 1, where we observed
transient errors, the defects made by the certified networks appear to be conditioned on specific
scenarios. In particular, if a network with specification level 1 could not solve a scenario, then
a network with 2 and 3 could not either, e.g., the "Around boxes" and "Narrow hallway"
scenario. Moreover, the failure of the level 1 and level 2 networks happened only during forward
locomotion, while no fault in a backward motion was observed. Our observation suggests that
safety-domain training causes conditional errors in parts of the input space close to the safety
domains.

Case Study task 3 - Autonomous driving from camera images
Finally, we study an autonomous vehicle on a lane-keeping task. In particular, a network is
trained to predict the curvature of the road ahead of a car. The network is fed by images
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+ =

Output = Stop Adversarial mask Output = Go

Figure 4.7: Visualization of an adversarial attack on our vision network. Adding an adversarial
mask flips the decision from a stop command to an activation command.

Table 4.6: Evaluation of the LiDAR follow networks

# Scenario Standard Safety Safety Safety
Description training Level 1 Level 2 Level 3

1 Plain ✓ ✓ ✓ Fail
2 Around boxes ✓ Fail Fail Fail
3 Out of corner ✓ ✓ ✓ Fail
4 Through gate ✓ ✓ Fail Fail
5 Around table ✓ ✓ ✓ Fail
6 Garage parking ✓ ✓ ✓ Fail
7 Narrow hallway ✓ Fail Fail Fail

Total 7/7 5/7 4/7 0/7
Note: Evaluation of the LiDAR follow networks with various safety specification enforced on seven standardized
test scenarios. Successful navigation of a scenario is marked by a ✓. Fail indicates unsuccessful tests.

Layer Parameter
Conv2D F=32, K=5, S=2, ReLU
Conv2D F=64, K=5, S=1, ReLU
Conv2D F=96, K=3, S=2, ReLU
Conv2D F=128, K=3, S=1, ReLU

GlobalAveragePool2D
Fully-connected 1000 units, ReLU
Fully-connected 100 units, ReLU
Fully-connected 1 unit

Table 4.7: Convolutional neural network baseline architecture for our autonomous driving case
study task.

received at a camera on top of the vehicle as input [Amini et al., 2020a]. The predicted
curvature can then be used for controlling the steering wheel of the car to keep the vehicle on
the road. The training data is collected by a human driver who maneuvers the car around a
test track. The networks are then trained on collected data using supervised learning. Finally,
we deploy the networks in a closed-loop autonomous driving simulator. We use the VISTA
simulation environment [Amini et al., 2021] for this purpose.

We evaluate a convolutional neural network with the architecture listed in Table 4.7. The
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Summer
(in training distribution)

Winter
(in training distribution)

Autumn
(not in training distribution)

Night
(not in training distribution)

Figure 4.8: Test conditions of our closed-loop driving task using a data-driven simulation
environment [Amini et al., 2021]. The training data are collected in summer and winter
conditions (separated from the testing data).

inputs are 160-by-48 RGB images that are normalized per image such that the sample of all
pixel values have zero mean and unit standard deviation. For the training, we use the Adam
optimizer [Kingma and Ba, 2015] with a learning rate of 0.0003 and a batch size of 64. The
weight decay is set to 10−5, and training was performed for a total of 900,000 steps. We train
all models with standard and adversarial training with increasing attack budget (ε = 0, 1, . . . 8)
and I-FGSM as attack methods.

For each model, we run a total of 400 simulations, split into 200 in-training-distribution and
200 not-in-training-distribution condition runs. The in-training distribution data were collected
in summer and winter and were separated from the training data, i.e., there is no overlap
between the training data and the evaluation data. The not-in-training-distribution data were
collected in autumn and during the night, with no such condition present in the training data.
The four conditions are visualized in Figure 4.8. As an evaluation metric, we report the number
of crashes during the simulation, i.e., when the vehicle leaves the road.

The results in Table 4.8 shows that, while the network trained with a low attack budget
provides acceptable performance in the in-training-distribution conditions (summer and winter),
the number of crashes is substantially larger for the adversarially trained model on the not-in-
training distribution runs (autumn and night). For example, the network trained with standard
training failed only in 1 out of 100 runs in autumn conditions, whereas the crashes jump to 30
when the network is trained with adversarial ERM. A similar jump by doubling the number of
crashes is observed in the night simulations. This observation suggests that the adversarial
training process introduces conditional errors that affect regions with a shifted distribution
than the training data. Similar to our observations in the previous tasks of our case study, for
larger training attack budgets, the models yield very poor performance even on the in-training
distribution simulation runs.

4.6 Experiments on the Case Study Datasets
In this section, we assess whether recent advances reported in the literature on the robustness of
neural networks can overcome the limitations observed in the previous section. In particular, we
test overparametrized models, vision transformers, and smooth curvature activation functions
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Environment Adversarial training budget ε
condition 0 1 2 3 4 5 6 7 8
Summer (in-training-distribution) 0 0 0 1 2 6 10 14 12
Winter (in-training-distribution) 0 0 4 9 12 35 41 40 51
Autumn (not-in-training-distribution) 1 30 40 61 61 64 91 89 85
Night (not-in-training-distribution) 36 78 78 90 93 86 94 97 87

Table 4.8: Number of crashes out of 100 simulation runs per environment condition of our
CNN trained with adversarial training under various attack budgets. Best values for each
condition are highlighted in bold.

on the robot datasets from our case study in section 4.5. Due to the large number of models
tested, we perform our experiments offline or in simulation instead of on the physical robots.

Visual gesture recognition dataset
Our first experiment investigates whether overparametrized networks improve the accuracy-
robustness tradeoff on the visual gesture recognition dataset from case study task 1. The
physical robot experiments suggest that a validation accuracy of above 90% is necessary for
acceptable robot performance.

In this experiment, we resort to transfer learning of a pre-trained classifier using the big-transfer
(BiT) fine-tuning protocol of initializing the output layer with all zeros and training all layers
even from the first epoch on [Kolesnikov et al., 2020]. All pre-trained models are trained on
the ImageNet dataset [Russakovsky et al., 2015]. We train networks of different sizes using
adversarial training with increasing attack budget (ε ∈ {1, 2, 4, 8}) and report the clean and
robust validation accuracy under I-FGSM attacks with various attack budgets. For increasing
the size of the model, we test a ResNet50 (24M), ResNet101 (43M), and ResNet152 (58M)
with the number of trainable parameters reported in parenthesis [He et al., 2016]. We also
evaluate the vision transformer models ViT-Small (22M), ViT-Base (86M), and ViT-Large
(304M) that process the images in the form of 16-by-16 pixel patches [Dosovitskiy et al.,
2020]. For the training, we use the Adam optimizer [Kingma and Ba, 2015] with a learning
rate of 0.00005 and a batch size of 64, except for the ResNet152, ViT-Base, and ViT-Large
models where a batch size of 32, 32, and 16 respectively is used due to out-of-memory errors.
We repeat each training run with 5 random seeds and report the mean and standard deviation.

As a proxy for the real-world test accuracy, we collect a test datasets comprising of 190 idle
samples, 129 enable samples, and 140 disable samples. An example visualizing how the two
data sources differ is shown in Figure 4.9. Our motivation for collecting this dataset is that
the validation set might be temporally and spatially correlated with the training data, i.e.,
collected at the same time and location. Consequently, the validation set may not capture the
actual real-world accuracy of our trained models due to robust overfitting [Rice et al., 2020].
We use the clean accuracy of the new test set as our test metric to estimate the real-world
performance.

The results in Table 4.9 and Table 4.10 show that adversarial training with a small attack
budget, e.g., ε ∈ {1, 2} can have positive effects on the robustness while maintaining a
good clean accuracy compared the networks trained with standard training. Interestingly, the
models trained with such small attack budget express a non-trivial robust accuracy even for
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Validation data Test data

Figure 4.9: Comparison of sample images of validation and test set. The test data was
collected with a different time and location than the original data, thus avoiding potential
data leakage and making it capture real-world performance more accurately.

Model Adversarial Validation Validation accuracy under I-FGSM [Kurakin et al., 2017] attack Test
training budget accuracy ε = 1 ε = 2 ε = 4 ε = 8 accuracy

ResNet50

ε = 0 99.5% ± 0.0 85.3% ± 2.1 49.5% ± 6.6 8.7% ± 2.0 2.3% ± 1.9 93.5% ± 3.8
ε = 1 99.0% ± 0.4 98.1% ± 0.4 93.6% ± 1.0 72.4% ± 3.4 18.9% ± 3.2 86.1% ± 3.1
ε = 2 98.7% ± 0.6 97.7% ± 0.7 96.0% ± 0.5 89.5% ± 1.9 55.3% ± 3.1 76.0% ± 2.5
ε = 4 96.8% ± 0.8 95.4% ± 1.3 93.9% ± 0.9 90.7% ± 2.0 77.0% ± 3.8 68.6% ± 3.2
ε = 8 70.3% ± 5.1 68.9% ± 2.4 67.9% ± 4.2 66.3% ± 5.0 60.7% ± 2.7 51.8% ± 6.6

ResNet101

ε = 0 99.2% ± 0.4 90.1% ± 2.9 54.1% ± 7.6 10.9% ± 2.3 3.8% ± 1.3 85.9% ± 7.3
ε = 1 99.5% ± 0.0 97.8% ± 0.5 93.6% ± 1.2 74.4% ± 4.0 20.7% ± 2.2 82.9% ± 4.4
ε = 2 98.7% ± 1.1 96.2% ± 1.4 94.7% ± 1.0 87.3% ± 3.0 54.8% ± 1.4 76.1% ± 2.6
ε = 4 44.2% ± 0.4 44.4% ± 0.5 43.9% ± 0.5 44.2% ± 0.7 44.4% ± 0.2 41.5% ± 1.2
ε = 8 44.4% ± 0.5 44.1% ± 0.6 43.6% ± 0.5 43.9% ± 0.5 43.9% ± 0.5 41.7% ± 0.0

ResNet152

ε = 0 98.8% ± 0.8 86.8% ± 4.0 57.3% ± 4.8 14.8% ± 6.2 4.4% ± 4.4 87.2% ± 4.2
ε = 1 99.0% ± 0.4 97.6% ± 0.4 95.2% ± 1.4 83.0% ± 1.4 29.6% ± 5.7 82.1% ± 7.0
ε = 2 98.1% ± 0.8 97.6% ± 0.6 95.5% ± 0.7 90.9% ± 1.6 66.7% ± 4.2 75.8% ± 4.4
ε = 4 60.5% ± 18.9 60.3% ± 18.4 60.0% ± 18.0 58.4% ± 16.4 52.6% ± 9.8 50.8% ± 12.4
ε = 8 44.4% ± 0.4 44.3% ± 0.2 44.4% ± 0.4 43.9% ± 0.4 44.5% ± 0.4 41.7% ± 0.0

Table 4.9: Accuracies on the visual gesture recognition dataset of various pre-trained residual
neural networks fine-tuned via standard and adversarial training. Validation accuracies greater
than 90% and test accuracies greater than 80% are highlighted in bold. The different column
show the standard accuracy and accuracy-under-attack with respect to the I-FGSM method
and different attack budgets.

larger attack budgets under I-FGSM attacks. However, the performance drop significantly
to an unacceptable performance when the networks are trained with a larger attack budget
of ε = 8. A surprising observation is that our results contradict to some degree that larger
models provide a better robustness in practice. In particular, out of all adversarially trained
convolutional networks, the ResNet50 trained with ε = 1 provides the best test accuracy.
Moreover, the ResNet50 also achieves the best test and validation accuracy under stronger
training attack budgets, e.g. ε ∈ {4, 8}. In contrast, the vision vision transformer architecture
seems to benefit from a larger model. The largest ViT provides the best test accuracy under
adversarial training with an attack budget of ε ∈ {1, 2, } out of all tested models. These
results suggest that the type of learned representation, e.g. convolutional vs attention-based,
plays a role in whether overparameterization improves robustness or not. In both convolutional
and attention-based models, we observed a double descent phenomenon with respect to the
model size [Nakkiran et al., 2019]. Particularly, both the mid-size ResNet101 and ViT-Base/16
performed worse than their smaller and larger counterparts.
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Model Adversarial Validation Validation accuracy under I-FGSM [Kurakin et al., 2017] attack Test
training budget accuracy ε = 1 ε = 2 ε = 4 ε = 8 accuracy

ViT-Small/16

ε = 0 99.0% ± 0.3 84.5% ± 4.7 50.4% ± 6.7 15.6% ± 8.6 0.8% ± 1.5 94.1% ± 2.1
ε = 1 99.5% ± 0.0 97.7% ± 1.2 91.8% ± 2.0 70.3% ± 1.6 21.3% ± 5.6 84.6% ± 6.0
ε = 2 99.4% ± 0.2 98.9% ± 0.2 97.6% ± 0.9 89.2% ± 2.3 48.0% ± 4.8 83.3% ± 4.7
ε = 4 99.3% ± 0.5 98.8% ± 0.4 97.0% ± 0.8 94.4% ± 1.4 72.3% ± 5.0 75.2% ± 3.1
ε = 8 44.1% ± 0.4 44.0% ± 0.4 43.6% ± 0.2 44.1% ± 0.4 43.9% ± 0.4 41.1% ± 1.9

ViT-Base/16

ε = 0 98.4% ± 1.1 89.4% ± 4.7 67.0% ± 6.2 28.7% ± 5.2 11.7% ± 4.5 82.3% ± 5.7
ε = 1 98.9% ± 0.6 99.2% ± 0.5 92.1% ± 5.9 72.8% ± 11.8 37.9% ± 8.4 79.4% ± 1.7
ε = 2 99.5% ± 0.0 99.5% ± 0.3 97.9% ± 0.9 92.5% ± 1.0 61.4% ± 3.8 84.5% ± 4.6
ε = 4 97.4% ± 2.3 94.5% ± 4.8 93.5% ± 5.4 86.7% ± 7.5 67.1% ± 11.7 76.0% ± 1.9
ε = 8 53.4% ± 7.3 53.2% ± 7.6 52.2% ± 7.2 50.0% ± 5.1 48.0% ± 3.7 54.6% ± 10.2

ViT-Large/16

ε = 0 98.7% ± 0.5 92.1% ± 1.6 74.7% ± 4.3 44.1% ± 11.0 20.8% ± 11.0 85.9% ± 2.5
ε = 1 99.3% ± 0.2 98.1% ± 0.0 95.0% ± 0.7 77.6% ± 0.7 35.3% ± 1.2 89.9% ± 3.6
ε = 2 99.5% ± 0.0 98.6% ± 0.5 97.6% ± 1.0 92.3% ± 2.4 67.1% ± 9.9 89.6% ± 3.2
ε = 4 98.6% ± 1.0 97.6% ± 1.0 96.0% ± 1.6 93.3% ± 2.8 77.4% ± 6.6 71.0% ± 15.9
ε = 8 64.6% ± 22.9 64.4% ± 22.3 63.8% ± 23.0 63.0% ± 21.3 58.0% ± 17.5 47.2% ± 9.8

Table 4.10: Accuracies on the visual gesture recognition task of various pre-trained vision
transformer fine-tuned via standard and adversarial training. Validation accuracies greater
than 90% and test accuracies greater than 80% are highlighted in bold. The different column
show the standard accuracy and accuracy-under-attack with respect to the I-FGSM method
and different attack budgets.

Following robot dataset

In this experiment, we study the safety-domain training procedure of the follow task of the
case study in more detail. In particular, we test the overparametrization, increased weight
decay (from 0 to 10−5), and smooth activation function methods on this task. As a baseline,
we use the 1D-CNN from the case study but define a widening factor w to modulate the size
of the network as listed in Table 4.12. We use the exponential linear unit (ELU) activation
function [Clevert et al., 2019] to represent a smooth activation due to the non-monotonically
of SiLU being less compatible with the used interval abstract interpretation domains. We train
all models with the Adam optimizer [Kingma and Ba, 2015] with a learning rate of 0.0001 and
a batch size of 64. The safety level 0 models are trained for 20 epochs, while the networks are
trained using safety-domain training for 2000 epochs.

We report the validation accuracy as an evaluation metric. Our case study on the physical
robot suggests that a validation accuracy above 80% is necessary to achieve an acceptable
real-world performance. Note that all models, except those trained with safety level 0, provide
some form of formal safety guarantees. Therefore, this experiment studies how much validation
accuracy is traded for the ensured safety. We repeat each training run with 5 random seeds
and report the mean and standard deviation.

The result in Table 4.11 shows that safety-domain training benefits from an increased number
of parameters (width). However, the improvement over the baseline is rather incremental and
accounts only for a few percent. In contrast, the accuracy reduction caused by the safety-
domain training is several times more significant, e.g., around 10%, and no network trained
with safety-domain training exceeds the threshold of 80% accuracy. The networks with smooth
activation function and increased weight decay performed worse than the baseline when using
safety-domain training. This suggests that certified training methods such as safety-domain
training may require different hyperparameters and learning settings than adversarial training.
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Safety Validation accuracy
level Width 1 Width 2 Width 3 Width 4

0
Baseline 83.2% ± 0.8 84.7% ± 1.6 83.9% ± 1.9 85.2% ± 0.8

ELU 73.3% ± 1.5 72.5% ± 3.3 73.3% ± 0.8 71.3% ± 1.3
wd+ 82.5% ± 2.0 84.0% ± 2.1 85.7% ± 1.3 85.7% ± 1.2

1
Baseline 75.1% ± 2.6 78.6% ± 3.7 77.4% ± 2.1 78.7% ± 3.4

ELU 53.1% ± 0.6 53.5% ± 0.4 52.9% ± 0.6 52.3% ± 0.8
wd+ 74.2% ± 3.4 75.0% ± 1.8 65.9% ± 10.7 67.4% ± 12.0

2
Baseline 76.3% ± 3.1 76.8% ± 4.9 76.1% ± 2.8 78.5% ± 3.2

ELU 53.6% ± 0.3 53.1% ± 0.3 53.2% ± 0.4 52.9% ± 0.6
wd+ 72.9% ± 3.3 75.5% ± 2.1 68.4% ± 8.6 70.7% ± 10.0

3
Baseline 51.8% ± 0.9 52.8% ± 0.5 53.3% ± 0.1 53.9% ± 0.3

ELU 53.2% ± 0.8 53.8% ± 0.5 53.1% ± 0.1 53.2% ± 0.4
wd+ 51.4% ± 1.1 52.8% ± 0.7 52.8% ± 0.6 53.4% ± 0.4

Table 4.11: Validation accuracy on the robot follow task of 1D-convolutional NNs with various
hyperparameters and trained with standard and safety-domain training. Values greater than
80% are highlighted in bold. Safety level 0 corresponds to standard training, while the network
trained with safety level 1 and above provide formal safety guarantees of never crashing the
robot into an obstacle. The columns show networks with different widening factor and consist
of an increasing amount of learnable parameters, i.e., width 1 (360k), width 2 (1.4M), width
3 (3.2M), and width 4 (5.7M).

Layer Parameter
Conv1D F=w*32, K=5, S=1, ReLU
Conv1D F=w*96, K=5, S=2, ReLU
Conv1D F=w*96, K=5, S=2, ReLU
Conv1D F=w*96, K=5, S=2, ReLU
Conv1D F=w*96, K=5, S=2, ReLU
Conv1D F=w*96, K=5, S=2, ReLU
Flatten

Fully-connected w*128 units, ReLU
Fully-connected 7 softmax

Table 4.12: Network architecture of the 1D-CNN trained with safety-domain training. (F=
number of filters, K = kernel size, S = stride). w is the widening factor which controls the
size and number of parameters of the network.
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Autonomous driving dataset
Our final experiment considers an autonomous driving task.

We compare the performance of the baseline CNN used in the case study with four variations.
First, we compare with an enlarged variant of the baseline CNN listed in Table 4.13 to validate
the necessity of overparametrization for robustness empirically. Next, we equip the baseline
with the smoother SiLU activation and increase the weight decay. Finally, we test a vision
transformer model. The baseline model consists of 440k, the enlarged CNN of 7.7M, and the
tested vision transformer of 2.0M trainable parameters. Our vision transforms splits the input
image into non-overlapping patches of 16-by-12 pixels, uses a latent dimension of 256, with 4
attention heads, 384 feed-forward dimension, and 4 layers in total. For the training, we use
the Adam optimizer [Kingma and Ba, 2015] with a learning rate of 0.0003 and a batch size of
64. The weight decay is set to 10−5, except for the wd+ variant, which is trained with a decay
factor of 5 · 10−5. We train all networks for a total of 900,000 steps. We train all models with
standard and adversarial training with increasing attack budget (ε = 0, 1, . . . 8) and I-FGSM
as attack methods.

We deploy the trained networks in the VISTA simulator [Amini et al., 2021] using different
data conditions, similar to our case study evaluation. We report the number of crashes during
the simulation.

Table 4.14 and Table 4.15 show the crashes during the summer and winter simulations
respectively. The best values are highlighted in bold. The results show that an overparametrized
model and a vision transformer indeed provide better performance at a larger adversarial
training budget. An increased weight decay improved the performance only at lower attack
budget training, while the networks with SiLU activation performed worse in the closed-loop
tests. No model could drive the car safely at larger training attack budgets, while most models
learned by standard ERM could drive all 200 runs flawlessly.

The no-in-training-distribution simulation results for autumn and night conditions are shown
in Table 4.16 and Table 4.17. We observe that adversarial training significantly hurt the
no-in-training-distribution performance of all models, i.e., especially in the autumn data. In
summary, the best driving performance across all four tested conditions was observed with
networks trained with standard ERM.

4.7 Conclusion
In principle, adversarial training and its generalization, safety-domain training can learn robust
and safe deep learning models. However, the benefits of these methods do not come for
free but with a reduction of nominal performance, e.g., a tradeoff between robustness and
accuracy. In this chapter, we provided empirical evidence that this tradeoff might not be a
tradeoff but has overall net negative effects. In particular, we conducted a case study on three
real-world robot learning tasks for which we trained the controller with and without adversarial
and safety domain training. We then characterized the error profiles introduced by these
training methods when deploying the networks in closed-loop robot controllers. Our results
suggest that adversarial training methods require rethinking before being used as an ad-hoc
replacement of standard training procedures in real-world robot learning tasks. Finally, we
tested whether methods reported in the literature that enhance robustness can overcome this
problem without sacrificing accuracy. We observed that while these methods provide relative
gains in terms of both accuracy and robustness, the negative side-effects of adversarial training
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Layer Parameter
Conv2D F=32, K=5, S=2

BatchNorm2D ReLU (post BN)
Conv2D F=128, K=5, S=1

BatchNorm2D ReLU (post BN)
Conv2D F=256, K=3, S=2

BatchNorm2D ReLU (post BN)
Conv2D F=512, K=3, S=1

BatchNorm2D ReLU (post BN)
Conv2D F=1024, K=3, S=1

GlobalAveragePool2D
Fully-connected 1024 units, ReLU
Fully-connected 256 units, ReLU
Fully-connected 1 unit

Table 4.13: Enlarged neural network architecture for our autonomous driving experiment (7.7M
parameters).

Model Adversarial training budget ε
0 1 2 3 4 5 6 7 8

CNN 0 0 0 1 2 6 10 14 12
CNN-Large 0 0 0 0 0 1 2 4 19

ViT 0 0 0 0 0 1 9 4 4
CNN (SiLU) 0 0 2 16 25 42 46 71 77
CNN (wd+) 0 0 0 0 7 13 27 34 31

Table 4.14: Number of crashes out of 100 simulation runs using data collected in summer.

Model Adversarial training budget ε
0 1 2 3 4 5 6 7 8

CNN 0 0 4 9 12 35 41 40 51
CNN-Large 0 0 0 2 2 5 9 13 20

ViT 0 2 1 0 4 2 6 5 5
CNN (SiLU) 3 5 19 38 42 59 57 78 82
CNN (wd+) 0 0 0 2 9 20 41 51 55

Table 4.15: Number of crashes out of 100 simulation runs using data collected in winter.

Model Adversarial training budget ε
0 1 2 3 4 5 6 7 8

CNN 1 30 40 61 61 64 91 89 85
CNN-Large 1 14 42 55 67 83 81 80 86

ViT 0 43 65 67 74 91 69 84 78
CNN (SiLU) 1 45 60 86 87 91 80 89 91
CNN (wd+) 7 32 59 62 59 70 88 89 87

Table 4.16: Number of crashes out of 100 simulation runs using data collected in autumn.
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Model Adversarial training budget ε
0 1 2 3 4 5 6 7 8

CNN 36 78 78 90 93 86 94 97 87
CNN-Large 52 90 88 92 87 93 95 94 94

ViT 68 69 80 73 81 79 88 91 64
CNN (SiLU) 71 79 79 95 90 93 95 94 94
CNN (wd+) 62 60 68 69 91 95 93 92 95

Table 4.17: Number of crashes out of 100 simulation runs using data collected during the
night.

still outweigh the improvements. Our results indicate that the type of learned representation,
specifically transformer-based and pre-trained models, poses the most promising direction
toward training robust models.
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CHAPTER 5
Infinite Time Horizon Safety of

Bayesian Neural Networks

Bayesian neural networks (BNNs) are a family of neural networks that place distributions over
their weights [MacKay, 1992, Hinton and Van Camp, 1993, Barber and Bishop, 1998, MacKay,
1995, Neal, 2012]. This allows learning uncertainty in the data and the network’s prediction,
while preserving the strong modelling capabilities of neural networks. In particular, BNNs are
flexible in the class of data distributions they can learn. This makes BNNs very appealing for
robotic and medical applications [Herzog and Ostwald, 2013, McAllister et al., 2017, Amini
et al., 2020b, Michelmore et al., 2020] where uncertainty is a central component of data.

Despite the large body of literature on verifying safety of neural networks, the formal safety
verification of BNNs has received less attention. Notably, Cardelli et al. [2019], Wicker et al.
[2020], Michelmore et al. [2020] have proposed sampling-based techniques for obtaining
probabilistic guarantees about BNNs. Although these approaches provide some insight into
BNN safety, they suffer from two key limitations. First, sampling provides only bounds on the
probability of the BNN’s safety which is insufficient for systems with critical safety implications.
For instance, having an autonomous vehicle with a 99.9% safety guarantee is still insufficient
for deployment if millions of vehicles are deployed. Second, samples can only simulate the
system for a finite time, making it impossible to reason about the system’s safety over an
unbounded time horizon.

In this chapter, we study the safety verification problem for BNN policies in safety-critical
systems over an infinite time horizon. Formally, we consider discrete-time closed-loop systems
defined by a dynamical system and a BNN policy. Given a set of initial states and a set of
unsafe (or bad) states, the goal of the safety verification problem is to verify that no system
execution starting in an initial state can reach an unsafe state. Unlike existing literature which
considers probability of safety, we verify sure safety, i.e. safety of every system execution of
the system. In particular, we present a method for computing safe weight sets for which every
system execution is safe as long as the BNN samples its weights from this set.

Our approach to restrict the support of the weight distribution is necessary as BNNs with
Gaussian weight priors typically produce output posteriors with unbounded support. Conse-
quently, there is a low but non-zero probability for the output variable to lie in an unsafe
region, see Figure 5.1. This implies that BNNs are usually unsafe by default. We therefore
consider the more general problem of computing safe weight sets. Verifying that a weight set
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is safe allows re-calibrating the BNN policy by rejecting unsafe weight samples in order to
change the BNN’s predictive distribution in a way that ensures safety.

UnsafeSafe

Posterior

UnsafeSafe

Posterior
(+ rejection sampling)

Figure 5.1: BNNs are typically unsafe by de-
fault. Top figure: The posterior of a typical
BNN has unbounded support, resulting in a
non-zero probability of producing an unsafe ac-
tion. Bottom figure: Restricting the support of
the weight distributions via rejection sampling
ensures BNN safety.

A common choice for BNN architectures is
to approximate the weight distribution via
a parametrized class of simple distributions,
e.g., typically independent Gaussian distribu-
tions. We, therefore, adopt weight sets in the
form of products of intervals centered at the
means of the BNN’s independent Gaussian
distributions. To verify safety of a weight set,
we search for a safety certificate in the form
of a safe positive invariant (also known as
safe inductive invariant). A safe positive in-
variant is a set of system states that contains
all initial states, is closed under the system dy-
namics and does not contain any unsafe state.
The key advantage of using safe positive in-
variants is that their existence implies the
infinite time horizon safety. We parametrize
safe positive invariant candidates by (deter-
ministic) neural networks that classify system
states for determining set inclusion. More-
over, we phrase the search for an invariant as a learning problem. A separated verifier module
then checks if a candidate is indeed a safe positive invariant by checking the required properties
via constraint solving. In case the verifier finds a counterexample demonstrating that the
candidate violates the safe positive invariant condition, we re-train the candidate on the found
counterexample. We repeat this procedure until the verifier concludes that the candidate is a
safe positive invariant ensuring that the system is safe. We note that the verification step
requires the deterministic dynamics of the system to be given.

The safe weight set obtained by our method can be used for safe exploration reinforcement
learning. In particular, generating rollouts during learning by sampling from the safe weight
set allows an exploration of the environment while ensuring safety. Moreover, projecting the
(mean) weights onto the safe weight set after each gradient update further ensures that the
improved policy stays safe.

Contributions Our contributions can be summarized as follows:

1. We define a safety verification problem for BNN policies which overcomes the unbounded
posterior issue by computing and verifying safe weight sets. The problem generalizes
the sure safety verification of BNNs and solving it allows re-calibrating BNN policies via
rejection sampling to guarantee safety.

2. We introduce a method for computing safe weight sets in BNN policies in the form of
products of intervals around the BNN weights’ means. To verify safety of a weight set,
our novel algorithm learns a safe positive invariant in the form of a deterministic neural
network.

3. We evaluate our methodology on a series of benchmark applications, including non-linear
systems and non-Lyapunovian safety specifications.
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5.1 Related Works
Verification of feed-forward neural networks Verification of robustness and safety proper-
ties in feed-forward neural networks has received much attention but remains an active research
topic [Katz et al., 2017, Henzinger et al., 2021, Gehr et al., 2018, Ruan et al., 2018, Bunel
et al., 2018, Tjeng et al., 2019]. As the majority of verification techniques were designed
for deterministic NNs, they cannot be readily applied to BNNs. The safety verification of
feed-forward BNNs has been considered in Cardelli et al. [2019] by using samples to obtain
statistical guarantees on the safety probability. The work of Wicker et al. [2020] also presents a
sampling-based approach, however it provides certified lower bounds on the safety probability.

The literature discussed above considers neural networks in isolation, which can provide
input-output guarantees on a NN but are unable to reason holistically about the safety of
the system that the NN is applied in. Verification methods that concern the safety of NNs
interlinked with a system require different approaches than standalone NN verification, which
we will discuss in the rest of this section.

Finite time horizon safety of BNN policies The work in Michelmore et al. [2020] extends
the method of Cardelli et al. [2019] to verifying safety in closed-loop systems with BNN policies.
However, similar to the standalone setting of Cardelli et al. [2019], their method obtains only
statistical guarantees on the safety probability and for the system’s execution over a finite
time horizon.

Safe RL Safe reinforcement learning (RL) has been primarily studied in the form of constrained
Markov decision processes (CMDPs) [Altman, 1999, Geibel, 2006]. Compared to standard
MDPs, an agent acting in a CMDP must satisfy an expected auxiliary cost term aggregated
over an episode. The CMDP framework has been the base of several RL algorithms [Uchibe and
Doya, 2007], notably the Constrained Policy Optimization (CPO) [Achiam et al., 2017]. Despite
these algorithms providing a decent performance, the key limitation of CMDPs is that the
constraint is satisfied in expectation, which makes violations unlikely but nonetheless possible.
Consequently, the CMDP framework is unsuited for systems where constraint violations are
critical.

Lyapunov-based stability Safety in the context of ”stability”, i.e. always returning to a
ground state, can be proved by Lyapunov functions [Berkenkamp et al., 2017]. Lyapunov
functions have originally been considered to study stability of dynamical systems [Khalil and
Grizzle, 1996]. Intuitively, a Lyapunov function assigns a non-negative value to each state, and
is required to decrease with respect to the system’s dynamics at any state outside of the stable
set. A Lyapunov-based method is proposed in Chow et al. [2018] to ensure safety in CMDPs
during training. Recently, the work of Chang et al. [2019] presented a method for learning a
policy as well as a neural network Lyapunov function which guarantees the stability of the
policy. Similarly to our work, their learning procedure is counterexample-based. However,
unlike Chang et al. [2019], our work considers BNN policies and safety definitions that do not
require returning to a set of ground states.

Barrier functions for dynamical systems Barrier functions can be used to prove infinite
time horizon safety in dynamical systems [Prajna and Jadbabaie, 2004, Prajna et al., 2007].
Recent works have considered learning neural network barrier functions [Zhao et al., 2020],
and a counterexample-based learning procedure is presented in Peruffo et al. [2021].

Finite time horizon safety of NN policies Safety verification of continuous-time closed-
loop systems with deterministic NN policies has been considered in Ivanov et al. [2019],
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Gruenbacher et al. [2020, 2021, 2022], which reduces safety verification to the reachability
analysis in hybrid systems [Chen et al., 2013]. The work of Dutta et al. [2019] presents a
method which computes a polynomial approximation of the NN policy to allow an efficient
approximation of the reachable state set. Both works consider finite time horizon systems.

Our safety certificate most closely resembles inductive invariants for safety analysis in pro-
grams [Floyd, 1967] and positive invariants for dynamical systems [Blanchini and Miani,
2008].

5.2 Preliminaries and Problem Statement
We consider a discrete-time dynamical system

xt+1 = f(xt,ut), x0 ∈ X0.

The dynamics are defined by the function f : X × U → X where X ⊆ Rm is the state
space and U ⊆ Rn is the control action space, X0 ⊆ X is the set of initial states and
t ∈ N≥0 denotes a discretized time. At each time step t, the action is defined by the
(possibly probabilistic) positional policy π : X → D(U), which maps the current state xt to
a distribution π(xt) ∈ D(U) over the set of actions. We use D(U) to denote the set of all
probability distributions over U . The next action is then sampled according to ut ∼ π(xt),
and together with the current state xt of the system gives rise to the next state xt+1 of the
system according to the dynamics f . Thus, the dynamics f together with the policy π form a
closed-loop system (or a feedback loop system). The aim of the policy is to maximize the
expected cumulative reward (possibly discounted) from each starting state, i.e., ∑︁∞

i=1 rtγ
i

where rt is a reward value provided by the environment in step t and 0 < γ < 1 a discount
factor. Given a set of initial states X0 of the system, we say that a sequence of state-action
pairs (xt,ut)∞

t=0 is a trajectory if x0 ∈ X0 and we have ut ∈ supp(π(xt)) and xt+1 = f(xt,ut)
for each t ∈ N≥0.

A neural network (NN) is a function g : Rm → Rn that consists of several sequentially
composed layers g = l1 ◦ . . . ◦ lk. A NN induces a policy by mapping each system state to
a Dirac-delta distribution which picks a single action with probability 1. Each layer li for
i = 1, . . . k is parametrized by learned weight values of the appropriate dimensions and an
activation function ai,

li(x) = ai(Wix + bi),Wi ∈ Rni×ni−1 ,bi ∈ Rni ,

where Wi and bi denote the weights of layer i, n0 and ni correspond to the input dimension
and the dimension of layer i respectively. In this work, we consider ReLU activation functions
ai(x) = ReLU(x) = max{x,0}, although other piecewise linear activation such as the
leaky-ReLU [Jarrett et al., 2009] and PReLU [He et al., 2015] are applicable as well. Note
that for the last layer k, no activation function is applied, i.e., ak(x) = x.

In Bayesian neural networks (BNNs), weights are random variables and their values are
sampled, each according to some distribution. Then each vector of sampled weights gives
rise to a (deterministic) neural network. Given a training set D, in order to train the BNN
we assume a prior distribution p(w,b) over the weights. The learning then amounts to
computing the posterior distribution p(w,b | D) via the application of the Bayes rule. As
analytical inference of the posterior is in general infeasible due to non-linearity introduced
by the BNN architecture [MacKay, 1992, Hinton and Van Camp, 1993], practical training
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algorithms rely on approximate inference, e.g. Hamiltonian Monte Carlo [Neal, 2012], Langevin
dynamics [Welling and Teh, 2011], variational inference [Blundell et al., 2015], dropout [Gal
and Ghahramani, 2016], and stochastic weight averaging [Maddox et al., 2019]. In this work
we consider BNN where the weight posterior p(w,b | D) is approximated parametrically by
independent Gaussians distributions, e.g., such as in Blundell et al. [2015] and Maddox et al.
[2019]. Nonetheless, our approach of computing safe weight sets as subsets of the weight
posteriors’ support can be naturally extended to other forms of weight posteriors.

When the policy in a dynamical system is a BNN, the policy maps each system state xt to
a probability distribution π(xt) over the action space. This distribution is defined implicitly
by the following sampling process. First, BNN weights w, b are sampled according to the
posterior BNN weight distribution, and the sampled weights give rise to a deterministic NN
policy gw,b. The action of the system is then defined as ut = gw,b(xt).

Problem statement We now define the two safety problems that we consider in this work.
The first problem considers feed-forward BNNs, and the second problem considers closed-loop
systems with BNN policies. While our solution to the first problem will be a subprocedure in
our solution to the second problem, the reason why we state it as a separate problem is that
we believe that our solution to the first problem is also of independent interest for the safety
analysis of feed-forward BNNs.

Let π be a BNN. Suppose that the vector (w,b) of BNN weights in π has dimension p+ q,
where p is the dimension of w and q is the dimension of b. For each 1 ≤ i ≤ p, let µi denote
the mean of the random variable wi. Similarly, for each 1 ≤ i ≤ q, let µp+i denote the mean
of the random variable bi. Then, for each ϵ ∈ [0,∞], we define the set W π

ϵ of weight vectors
via

W π
ϵ =

p+q∏︂
i=1

[µi − ϵ, µi + ϵ] ⊆ Rp+q.

We now proceed to defining our safety problem for feed-forward BNNs. Suppose that we are
given a feed-forward BNN π, a set X0 ⊆ Rm of input points and a set Xu ⊆ Rn of unsafe
(or bad) output points. For a concrete vector (w,b) of weight values, let gw,b to be the
(deterministic) NN defined by these weight values. We say that gw,b is safe if for each x ∈ X0
we have gw,b(x) ̸∈ Xu, i.e. if evaluating gw,b on all input points does not lead to an unsafe
output.

Problem 1 (Feed-forward BNNs). Let π be a feed-forward BNN with independent
Gaussian weight distributions, X0 ⊆ Rm a set of input points and Xu ⊆ Rn a set of
unsafe output points. Let ϵ ∈ [0,∞]. Determine whether each deterministic NN in
{gw,b | (w,b) ∈ W π

ϵ } is safe.

Next, we define our safety problem for closed-loop systems with BNN policies. Consider a
closed-loop system defined by a dynamics function f , a BNN policy π and an initial set of
states X0. Let Xu ⊆ X be a set of unsafe (or bad) states. We say that a trajectory (xt,ut)∞

t=0
is safe if xt ̸∈ Xu for all t ∈ N0, hence if it does not reach any unsafe states. Note that this
definition implies infinite time horizon safety of the trajectory. Given ϵ ∈ [0,∞], define the set
Trajf,π

ϵ to be the set of all system trajectories in which each sampled weight vector belongs to
W π

ϵ .
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Problem 2 (Closed-loop systems with BNN policies). Consider a closed-loop system
defined by a dynamics function f , a BNN policy with independent Gaussian weight
distributions π and a set of initial states X0. Let Xu be a set of unsafe states. Let
ϵ ∈ [0,∞]. Determine whether each trajectory in Trajf,π

ϵ is safe.

Note that the question of whether a BNN policy π with independent Gaussian weight
distributions is safe (i.e. whether each trajectory of the system is safe) is a special case
of the above problem which corresponds to ϵ =∞.

5.3 Main Results
In this section we present our method for solving the safety problems defined in the previous
section, with Section 5.3.1 considering Problem 1 and Section 5.3.2 considering Problem 2.
Both problems consider safety verification with respect to a given value of ϵ ∈ [0,∞], so in
Section 5.3.3 we present our method for computing the value of ϵ for which our solutions to
Problem 1 and Problem 2 may be used to verify safety. We then show in Section 5.3.4 how
our new methodology can be adapted to the safe exploration RL setting.

5.3.1 Safe weight sets for feed-forward BNNs
Consider a feed-forward BNN π with Gaussian weight distributions, a set X0 ⊆ Rm of inputs
and a set Xu ⊆ Rn of unsafe output of the BNN. Fix ϵ ∈ [0,∞]. To solve Problem 1, we
show that the decision problem of whether each deterministic NN in {gw,b | (w,b) ∈ W π

ϵ } is
safe can be encoded as a system of constraints and reduced to constraint solving.

Let g be the neural network that underlines the BNN π. Suppose g = l1 ◦ . . . ◦ lk consists of k
layers, with each li(x) = ReLU(Wix + bi). Denote by Mi the matrix of the same dimension
as Wi, with each entry equal to the mean of the corresponding random variable weight in
Wi. Similarly, define the vector qi of means of random variables in bi. The real variables of
our system of constraints are as follows, each of appropriate dimension:

1. x0 encodes the BNN inputs, xl encodes the BNN outputs;

2. xin
1 , . . . , xin

l−1 encode vectors of input values of each neuron in the hidden layers;

3. xout
1 , . . . , xout

l−1 encode vectors of output values of each neuron in the hidden layers;

4. x0,pos and x0,neg are dummy variable vectors of the same dimension as x0 and which
will be used to distinguish between positive and negative NN inputs in x0, respectively.

We use 1 to denote the vector/matrix whose all entries are equal to 1, of appropriate dimensions
defined by the formula in which it appears. Our system of constraints is as follows:

x0 ∈ X0, xl ∈ Xu (Input-output conditions)

xout
i = ReLU(xin

i ), for each 1 ≤ i ≤ l − 1 (ReLU encoding)

(Mi − ϵ · 1)xout
i + (qi − ϵ · 1) ≤ xin

i+1, for each 1 ≤ i ≤ l − 1
xin

i+1 ≤ (Mi + ϵ · 1)xout
i + (qi + ϵ · 1), for each 1 ≤ i ≤ l − 1

(BNN hidden layers)
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x0,pos = ReLU(x0), x0,neg = −ReLU(−x0)
(M0 − ϵ · 1)x0,pos + (M0 + ϵ · 1)x0,neg + (q0 − ϵ · 1) ≤ xin

1

xin
1 ≤ (M0 + ϵ · 1)xout

0 + (M0 − ϵ · 1)x0,neg + (q0 + ϵ · 1)
(BNN input layer)

Denote by Φ(π,X0,Xu, ϵ) the system of constraints defined above. The proof of Theorem 2
shows that it encodes that x0 ∈ X0 is an input point for which the corresponding output point
of gw,b is unsafe, i.e. xl = gw,b(x0) ∈ Xu. The first equation encodes the input and output
conditions. The second equation encodes the ReLU input-output relation for each hidden layer
neuron. The remaining equations encode the relation between neuron values in successive
layers of the BNN as well as that the sampled BNN weight vector is in W π

ϵ . For hidden layers,
we know that the output value of each neuron is nonnegative, i.e. xout

i ≥ 0 for the i-th hidden
layer where 1 ≤ i ≤ l − 1, and so

(Mi − ϵ · 1)xout
i ≤ (Mi + ϵ · 1)xout

i .

Hence, the BNN weight relation with neurons in the successive layer as well as the fact that
the sampled weights are in W π

ϵ is encoded as in equations (3)-(4) above. For the input
layer, however, we do not know the signs of the input neuron values x0 and so we introduce
dummy variables x0,pos = ReLU(x0) and x0,neg = −ReLU(−x0) in equation (5). This allows
encoding the BNN weight relations between the input layer and the first hidden layer as well as
the fact that the sampled weight vector is in W π

ϵ , as in equations (6)-(7). Theorem 2 shows
that Problem 1 is equivalent to solving the system of constraints Φ(π,X0,Xu, ϵ).

Theorem 2. Let ϵ ∈ [0,∞]. Then each deterministic NN in {gw,b | (w,b) ∈ W π
ϵ } is safe if

and only if the system of constraints Φ(π,X0,Xu, ϵ) is not satisfiable.

Proof. We prove the equivalent claim that there exists a weight vector (w,b) ∈ W π
ϵ for which

gw,b is unsafe if and only if Φ(π,X0,Xu, ϵ) is satisfiable.

First, suppose that there exists a weight vector (w,b) ∈ W π
ϵ for which gw,b is unsafe

and we want to show that Φ(π,X0,Xu, ϵ) is satisfiable. This direction of the proof is
straightforward since values of the network’s neurons on the unsafe input give rise to a
solution of Φ(π,X0,Xu, ϵ). Indeed, by assumption there exists a vector of input neuron values
x0 ∈ X0 for which the corresponding vector of output neuron values xl = gw,b(x0) is unsafe,
i.e. xl ∈ Xu. By defining xin

i , xout
i to be the vectors of the corresponding input and output

neuron values for the i-th hidden layer for each 1 ≤ i ≤ l−1 and by setting x0,pos = ReLU(x0)
and x0,neg = −ReLU(−x0), we easily see that these variable values satisfy the Input-output
conditions, the ReLU encoding conditions and the BNN input and hidden layer conditions,
therefore we get a solution to the system of constraints Φ(π,X0,Xu, ϵ).

We now proceed to the more involved direction of this proof and show that any solution to
the system of constraints Φ(π,X0,Xu, ϵ) gives rise to weights (w,b) ∈ W π

ϵ for which gw,b is
unsafe. Let x0, xl, x0,pos, x0,neg and xin

i , xout
i for 1 ≤ i ≤ l − 1, be real vectors that satisfy

the system of constraints Φ(π,X0,Xu, ϵ). Fix 1 ≤ i ≤ l − 1. From the BNN hidden layers
constraint for layer i, we have

(Mi − ϵ · 1)xout
i + (qi − ϵ · 1) ≤ xin

i+1 ≤ (Mi + ϵ · 1)xout
i + (qi + ϵ · 1). (5.1)
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We show that there exist values W∗
i ,b∗

i of BNN weights between layers i and i + 1 such
that each weight value is at most ϵ apart from its mean, and such that xin

i+1 = W∗
i xout

i + b∗
i .

Indeed, to formally show this, we define W π
ϵ [i] to be the set of all weight vectors between

layers i and i+ 1 such that each weight value is distant from its mean by at most ϵ (hence,
W π

ϵ [i] is a projection of W π
ϵ onto dimensions that correspond to the weights between layers i

and i+ 1). We then consider a continuous function hi : W π
ϵ [i]→ R defined via

hi(Wi,bi) = Wixout
i + bi.

Since W π
ϵ [i] ⊆ Rmi×ni ×Rni is a product of intervals and therefore a connected set w.r.t. the

Euclidean metric and since hi is continuous, the image of W π
ϵ [i] under hi is also connected in

R. But note that

hi(Mi − ϵ · 1,qi − ϵ · 1) = (Mi − ϵ · 1)xout
i + (qi − ϵ · 1)

and
hi(Mi + ϵ · 1,qi + ϵ · 1) = (Mi + ϵ · 1)xout

i + (qi + ϵ · 1),
with (Mi − ϵ · 1,qi − ϵ · 1), (Mi + ϵ · 1,qi + ϵ · 1) ∈ W π

ϵ [i]. Thus, for the two points to be
connected, the image set must also contain xin

i+1 which lies in between by eq. (5.1). Thus,
there exists (W∗

i ,b∗
i ) ∈ W π

ϵ [i] with xin
i+1 = W∗

i xout
i + b∗

i , as desired.

For the input and the first hidden layer, from the BNN input layer constraint we know that

(M0−ϵ·1)x0,pos+(M0+ϵ·1)x0,neg+(q0−ϵ·1) ≤ xin
1 ≤ (M0+ϵ·1)x0,pos+(M0−ϵ·1)x0,neg+(q0+ϵ·1).

Again, define W π
ϵ [0] to be the set of all weight vectors between the input and the first hidden

layer such that each weight value is distant from its mean by at most ϵ. Consider a continuous
function h0 : W π

ϵ [0]→ R defined via

h0(W0,b0) = W0x0 + b0.

Let Msign(x0) be a matrix of the same dimension as M0, with each column consisting of 1’s
if the corresponding component of x0 is nonnegative, and of −1’s if it is negative. Then note
that

h0(M0 − ϵ ·Msign(x0),q0 − ϵ · 1) = (M0 − ϵ · 1)x0,pos + (M0 + ϵ · 1)x0,neg + (q0 − ϵ · 1)

and

h0(M0 + ϵ ·Msign(x0),q0 + ϵ · 1) = (M0 + ϵ · 1)x0,pos + (M0 − ϵ · 1)x0,neg + (q0 + ϵ · 1).

Since (M0 − ϵ ·Msign(x0),q0 − ϵ · 1), (M0 + ϵ ·Msign(x0),q0 + ϵ · 1) ∈ W π
ϵ [0], analogous

image connectedness argument as the one above shows that there exist values W∗
0,b∗

0 of BNN
weights such tha (W∗

0,b∗
0) ∈ W π

ϵ [0], and such that xin
1 = W∗

0x0 + b∗
0.

But now, collecting W∗
0,b∗

0 and W∗
i ,b∗

i for 1 ≤ i ≤ l − 1 gives rise to a BNN weight vector
(W∗,b∗) which is contained in W π

ϵ . Furthermore, combining what we showed above with the
constraints in Φ(π,X0,Xu, ϵ), we get that:

1. x0 ∈ X0, xl ∈ Xu, from the Input-output condition in Φ(π,X0,Xu, ϵ);

2. xout
i = ReLU(xin

i ) for each 1 ≤ i ≤ l − 1, from the ReLU-encoding;
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3. xin
1 = W∗

0x0 + b∗
0 and xin

i+1 = W∗
i xout

i + b∗
i for each 1 ≤ i ≤ l − 1, as shown above.

Hence, xl ∈ Xu is the vector of neuron output values of πW∗,b∗ on the input neuron
values x0 ∈ X0, so as (W∗,b∗) ∈ W π

ϵ we conclude that there exists a deterministic NN in
{gw,b | (w,b) ∈ W π

ϵ } which is not safe. This concludes the proof.

Solving the constraints Observe that ϵ, Mi and qi, 1 ≤ i ≤ l − 1, are constant values
that are known at the time of constraint encoding. Thus, in Φ(π,X0,Xu, ϵ), only the ReLU
constraints and possibly the input-output conditions are not linear. Depending on the form
of X0 and Xu and on how we encode the ReLU constraints, we may solve the system
Φ(π,X0,Xu, ϵ) in several ways:

1. MILP. It is shown in Lomuscio and Maganti [2017], Dutta et al. [2018], Tjeng et al.
[2019] that the ReLU relation between two real variables can be encoded via mixed-
integer linear constraints (MILP) by introducing 0/1-integer variables to encode whether
a given neuron is active or inactive. Hence, if X0 and Xu are given by linear constraints,
we may solve Φ(π,X0,Xu, ϵ) by a MILP solver. The ReLU encoding requires that each
neuron value is bounded, which is ensured if X0 is a bounded set and if ϵ <∞.

2. Reluplex. In order to allow unbounded X0 and ϵ =∞, we may use algorithms based
on the Reluplex calculus [Katz et al., 2017, 2019] to solve Φ(π,X0,Xu, ϵ). Reluplex is
an extension of the standard simplex algorithm for solving systems of linear constraints,
designed to allow ReLU constraints as well. While Reluplex does not impose the
boundedness condition, it is in general less scalable than MILP-solving.

3. NRA-SMT. Alternatively, if X0 or Xu are given by non-linear constraints we may solve
them by using an NRA-SMT-solver (non-linear real arithmetic satisfiability modulo
theory), e.g. dReal [Gao et al., 2012]. To use an NRA-SMT-solver, we can replace the
integer 0/1-variables of the ReLU neuron relations encoding with real variables that
satisfy the constraint x(x− 1) = 0. While NRA-SMT is less scalable compared to MILP,
we note that it has been used in previous works on RL stability verification [Chang et al.,
2019].

Safety via rejection sampling As discussed above, once the safety of NNs in {gw,b |
(w,b) ∈ W π

ϵ } has been verified, we can “re-calibrate” the BNN to reject sampled weights
which are not in W π

ϵ . Hence, rejection sampling gives rise to a safe BNN.

5.3.2 Safe weight sets for closed-loop systems with BNN Policies
Now consider a closed-loop system with a dynamics function f : X × U → X with X ⊆ Rm

and U ⊆ Rn, a BNN policy π, an initial state set X0 ⊆ X and an unsafe state set Xu ⊆ X .
Fix ϵ ∈ [0,∞]. In order to solve Problem 2 and verify safety of each trajectory contained
in Trajf,π

ϵ , our method searches for a positive invariant-like safety certificate that we define
below.

Positive invariants for safety A positive invariant in a dynamical system is a set of states
which contains all initial states and which is closed under the system dynamics. These
conditions ensure that states of all system trajectories are contained in the positive invariant.
Hence, a positive invariant which does not contain any unsafe states can be used to certify
safety of every trajectory over infinite time horizon. In this work, however, we are not trying
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to prove safety of every trajectory, but only of those trajectories contained in Trajf,π
ϵ . To that

end, we define W π
ϵ -safe positive invariants. Intuitively, a W π

ϵ -safe positive invariant is required
to contain all initial states, to be closed under the dynamics f and the BNN policy π when
the sampled weight vector is in W π

ϵ , and not to contain any unsafe state.

Definition 5 (W π
ϵ -safe positive invariants). A set Inv ⊆ X is said to be a W π

ϵ -positive
invariant if X0 ⊆ Inv, for each x ∈ Inv and (w,b) ∈ W π

ϵ we have that f(x, gw,b(x)) ∈ Inv,
and Inv ∩ Xu = ∅.

Theorem 3 shows that W π
ϵ -safe positive invariants can be used to verify safety of all trajectories

in Trajf,π
ϵ in Problem 2.

Theorem 3. If there exists a W π
ϵ -safe positive invariant, then each trajectory in Trajf,π

ϵ is
safe.

Proof. Let Inv be a W π
ϵ -safe positive invariant. Given a trajectory (xt,ut)∞

t=0 in Trajf,π
ϵ , we

need to show that xt ̸∈ Xu for each t ∈ N≥0. Since Inv ∩ Xu = ∅, it suffices to show that
xt ∈ Inv for each t ∈ N≥0. We prove this by induction on t.

The base case x0 ∈ Inv follows since x0 ∈ X0 ⊆ Inv. As an inductive hypothesis, suppose now
that xt ∈ Inv for some t ∈ N≥0. We need to show that xt+1 ∈ Inv.

Since the trajectory is in Trajf,π
ϵ , we know that the BNN weight vector (wt,bt) sampled at

the time-step t belongs to W π
ϵ , i.e. (wt,bt) ∈ W π

ϵ . Thus, since xt ∈ Inv by the induction
hypothesis and since Inv is closed under the system dynamics when the sampled weight vector
is in W π

ϵ , it follows that xt+1 = f(xt,ut) = f(xt, gwt,bt(xt)) ∈ Inv. This concludes the proof
by induction.

Learning positive invariants We now present a learning algorithm for a W π
ϵ -safe positive

invariant. It learns a neural network gInv : Rm → R, where the positive invariant is then
defined as the set Inv = {x ∈ X | gInv(x) ≥ 0}. The pseudocode is given in Algorithm 5.1.

The algorithm first samples X0̃ from X0 and Xũ from Xu and initializes the specification set
Dspec to Xũ × {0} ∪ X0̃ × {1} and the counterexample set Dce to an empty set. Optionally,
the algorithm also bootstraps the positive invariant network by initializing Dspec with random
samples from the state space X labeled with Monte-Carlo estimates of reaching the unsafe
states. The rest of the algorithm consists of two modules which are composed into a loop:
the learner and the verifier. In each loop iteration, the learner first learns a W π

ϵ -safe positive
invariant candidate which takes the form of a neural network gInv. This is done by minimizing
the loss function L that depends on Dspec and Dce:

L(gInv) = 1
|Dspec|

∑︂
(x,y)∈Dspec

Lcls(gInv(x), y) + λ
1
|Dce|

∑︂
(x,x′)∈Dce

Lce(gInv(x), gInv(x′)), (5.2)

where λ is a tuning parameter and Lcls a binary classification loss function, e.g. the 0/1-loss
L0/1(z, y) = 1[1[z ≥ 0] ̸= y] or the logistic loss Llog(z, y) = z − z · y + log(1 + exp(−z)) as
its differentiable alternative. The term Lce is the counterexample loss which we define via

Lce(z, z′) = 1[z > 0]1[z′ < 0]Lcls(z, 0)Lcls(z′, 1). (5.3)

Intuitively, the first sum in eq. (5.2) forces gInv to be nonnegative at initial states and negative
at unsafe states contained in Dspec, and the second term forces each counterexample in Dce
not to destroy the closedness of Inv under the system dynamics.
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Algorithm 5.1: Learning algorithm for W π
ϵ -safe positive invariants

Input Dynamics function f , BNN policy π, Initial state set X0, Unsafe state set Xu,
ϵ ∈ [0,∞]
X0̃,Xũ ← random samples of X0,Xu

Dspec ← Xũ × {0} ∪ X0̃ × {1}, Dce ← {}
Optional (bootstrapping): Sbootstrap ← sample finite trajectories with initial state sampled
from X

Dspec ← Dspec ∪ {(x, 0)| ∃s ∈ Sbootstrap that starts in x ∈ X and reaches Xu}

∪ {(x, 1)| ∃s ∈ Sbootstrap that starts in x ∈ X and does not reach Xu}
Pre-train neural network gInv on datasets Dspec and Dce with loss function L
while timeout not reached do

if ∃(x,x′,u,w,b) s.t. gInv(x) ≥ 0, gInv(x′) < 0, (w,b) ∈ W π
ϵ , u = gw,b(x),

x′ = f(x,u) then
Dce ← Dce ∪ {(x,x′)}

else if ∃(x) s.t. x ∈ X0, gInv(x) < 0 then
Dspec ← Dspec ∪ {(x, 1)}

else if ∃(x) s.t. x ∈ Xu, gInv(x) ≥ 0 then
Dspec ← Dspec ∪ {(x, 0)}

else
Return Safe

end if
Train neural network gInv on datasets Dspec and Dce with loss function L

end while
Return Unsafe

Once gInv is learned, the verifier checks whether Inv is indeed a W π
ϵ -safe positive invariant. To

do this, the verifier needs to check the three defining properties of W π
ϵ -safe positive invariants:

1. Closedness of Inv under system dynamics. The verifier checks if there exist states
x ∈ Inv, x′ ̸∈ Inv and a BNN weight vector (w,b) ∈ W π

ϵ such that f(x, gw,b(x)) = x′.
To do this, it introduces real variables x,x′ ∈ Rm, u ∈ Rn and y, y′ ∈ R, and solves:

maximize y − y′ subject to
y ≥ 0, y′ < 0, y = gInv(x), y′ = gInv(x′)
x′ = f(x,u)
u is an output of gw,b on input x and weights (w,b) ∈ W π

ϵ

The conditions y = gInv(x) and y′ = gInv(x′) are encoded by using the existing techniques
for encoding deterministic NNs as systems of MILP/Reluplex/NRA-SMT constraints.
The condition in the third equation is encoded simply by plugging variable vectors x
and u into the equation for f . Finally, for condition in the fourth equation we use our
encoding from Section 5.3.1 where we only need to omit the Input-output condition.
Note that the strict inequality y′ < 0 may be slightly tightened as y′ ≤ −δ with
some small slack δ > 0 in case the constraint solving method does not support strict
inequalities. The optimization objective is added in order to search for the “worst”
counterexample. We note that MILP [Gurobi Optimization, 2021] and SMT [Gao et al.,
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2012] solvers allow optimizing linear objectives, and recently Reluplex algorithm [Katz
et al., 2017] has also been extended to allow solving optimization problems [Strong
et al., 2021]. If a counterexample (x,x′) is found, it is added to Dce and the learner
tries to learn a new candidate. If the system of constraints is unsatisfiable, the verifier
proceeds to the second check.

2. Non-negativity on X0. The verifier checks if there exists x ∈ X0 for which gInv(x) < 0.
If such x is found, (x, 1) is added to Dspec and the learner then tries to learn a new
candidate. If the system of constraints is unsatisfiable, the verifier proceeds to the third
check.

3. Negativity on Xu. The verifier checks if there exists x ∈ Xu with gInv(x) ≥ 0. If such x
is found, (x, 0) is added to Dspec and the learner then tries to learn a new candidate. If
the system of constraints is unsatisfiable, the veririfer concludes that Inv is a W π

ϵ -positive
invariant which does not contain any unsafe state and so each trajectory in Trajf,π

ϵ is
safe.

Theorem 4 shows that neural networks f Inv for which Inv is a W π
ϵ -safe positive invariants are

global minimizers of the loss function L with the 0/1-classification loss. Theorem 5 establishes
the correctness of our algorithm.

Theorem 4. The loss function L is nonnegative for any neural network g, i.e. L(g) ≥ 0.
Moreover, if Inv is a W π

ϵ -safe positive invariant and Lcls the 0/1-loss, then L(gInv) = 0. Hence,
neural networks gInv for which Inv is a W π

ϵ -safe positive invariant are global minimizers of the
loss function L when Lcls is the 0/1-loss.

Proof. Recall, the loss function L for a neural network g is defined via

L(g) = 1
|Dspec|

∑︂
(x,y)∈Dspec

Lcls(g(x), y) + λ
1
|Dce|

∑︂
(x,x′)∈Dce

Lce(g(x), g(x′)), (5.4)

where λ is a tuning parameter and Lcls a binary classification loss function, e.g. the 0/1-loss
L0/1(z, y) = 1[1[z ≥ 0] ̸= y] or the logistic loss Llog(z, y) = z − z · y + log(1 + exp(−z)) as
its differentiable alternative. The term Lce is the counterexample loss which we define via

Lce(z, z′) = 1[z > 0]1[z′ < 0]Lcls(z, 0)Lcls(z′, 1). (5.5)

The fact that L(g) ≥ 0 for each neural network g follows immediately from the fact that
summands in the first sum in eq. (5.4) are loss functions which are nonnegative, and summands
in the second sum are products of indicator and nonnegative loss functions and therefore also
nonnegative.

We now show that, if Lcls is the 0/1-loss, L(gInv) = 0 whenever Inv is a W π
ϵ -safe positive

invariant, which implies the global minimization claim in the theorem. This follows from the
following two items:

1. For each (x, y) ∈ Dspec, we have Lcls(gInv(x), y) = 0. Indeed, for (x, y) to be added
to Dspec in Algorithm 1, we must have that either x ∈ X0 and y = 1, or that x ∈ Xu

and y = 0. Thus, since Inv is assumed to be a W π
ϵ -safe positive invariant, gInv correctly

classifies (x, y) and the corresponding loss is 0.
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2. For each (x,x′) ∈ Dce we have Lce(gInv(x), gInv(x′)) = 0. Indeed, since

Lce(gInv(x), gInv(x′)) = 1[gInv(x) > 0]1[gInv(x′) < 0]Lcls(gInv(x), 0)Lcls(gInv(x′), 1),

for the loss to be non-zero we must have that gInv(x) ≥ 0 and gInv(x) < 0. But this
is impossible since Inv is assumed to be a W π

ϵ -safe positive invariant and (x,x′) was
added by Algorithm 1 as a counterexample to Dce, meaning that x′ can be reached
from x by following the dynamics function and sampling a BNN weight vector in W π

ϵ .
Therefore, by the closedness property of W π

ϵ -safe positive invariants when the sampled
weight vector is in W π

ϵ , we cannot have both gInv(x) ≥ 0 and gInv(x) < 0. Hence, the
loss must be 0.

Theorem 5. If the verifier in Algorithm 5.1 shows that constraints in three checks are unsat-
isfiable, then the computed Inv is indeed a W π

ϵ -safe positive invariant. Hence, Algorithm 5.1
is correct.

Proof. The fact that the first check in Algorithm 1 correctly checks whether there exist
x,x′ ∈ X0 and a weight vector (w,b) ∈ W π

ϵ such that x′ = f(x, gw,b(x)) with gInv(x) ≥ 0
and gInv(x′) < 0 follows by the correctness of our encoding in Section 4.1, which was proved
in Theorem 1. The fact that checks 2 and 3 correctly check whether for all x ∈ X0 we have
gInv(x) ≥ 0 and for all x ∈ Xu we have gInv(x) < 0, respectively, follows immediately from
the conditions they encode.

Therefore, the three checks together verify that (1) Inv is closed under the system dynamics
whenever the sampled weight vector is in W π

ϵ , (2) Inv contains all initial states, and (3) Inv
contains no unsafe states. As these are the 3 defining properties of W π

ϵ -safe positive invariants,
Algorithm 1 is correct and the theorem claim follows.

Safety via rejection sampling As discussed above, once the safety of all trajectories in
Trajf,π

ϵ has been verified, we can “re-calibrate” the BNN policy to reject sampled weights
which are not in W π

ϵ . Hence, rejection sampling gives rise to a safe BNN policy. Note that
sampling and rejecting weight values jointly for all weights suffers from a rejection rate that
increases exponentially with the number of weights. However, we can substantially speedup
the rejection sampling process by exploiting the independence of the weight distribution and
resampling only the subset of weights whose sample have actually landed outside the safe
weight set.

5.3.3 Computation of safe weight sets and the value of ϵ
Problems 1 and 2 assume a given value of ϵ for which safety needs to be verified. In order
to compute the largest value of ϵ for which our approach can verify safety, we start with a
small value of ϵ and iteratively increase it until we reach a value that cannot be certified
or until the timeout is reached, in order to compute as large safe weight set as possible. In
particular, our Algorithm 5.1 starts with ϵ = 0 and then increases ϵ according to a given
schedule, e.g., ϵ ∈ {0.1, 0.2, 0.5, 1, 1.5, 2, 3, 4, . . . }. The search for a largest ϵ terminates
if the entire schedule has been successfully verified or a timeout signal is reached. In each
iteration of the search for the largest ϵ, our Algorithm 5.1 does not start from scratch but is
initialized with the gInv and Dspec from the previous successful iteration, i.e. attempting to
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Algorithm 5.2: Safe Exploration Reinforcement Learning
Input Initial policy π0, learning rate α, number of iterations N
for i ∈ 1, . . . N do
ϵ← find safe ϵ for πi−1
collect rollouts of πi−1 with rejection sampling ϵ
compute ∇µi−1 for parameters µi−1 of πi−1 using DQN/policy gradient
µi ← µi−1 − α∇µi−1 (gradient descent)
project µi back to interval [µi−1 − ϵ, µi−1 + ϵ]

end for
Return πN

enlarge the current safe weight set. Our iterative process significantly speeds up the search
process compared to naively restarting our algorithm in every iteration.

5.3.4 Safe exploration reinforcement learning
Given a safe but non-optimal initial policy π0, safe exploration reinforcement learning concerns
the problem of improving the expected return of π0 while ensuring safety when collecting
samples of the environment [Uchibe and Doya, 2007, Achiam et al., 2017, Nakka et al.,
2020]. Our method from Section 5.3.2 for computing safe weight sets can be adapted to this
setting with minimal effort. In particular, the safety bound ϵ for the intervals centered at the
weight means can be used in combination with the rejection sampling to generate safe but
randomized rollouts on the environment. Moreover, ϵ provides bounds on the gradient updates
when optimizing the policy using Deep Q-learning or policy gradient methods, i.e., performing
projected gradient descent.

Algorithm 5.2 shows our sketch of how standard RL algorithms, such as policy gradient
methods and deep Q-learning, can be adapted to a safe exploration setup by using the safe
weight sets computed by our method.

5.4 Experiments
We perform an experimental evaluation of our proposed method for learning positive invariant
neural networks that prove infinite time horizon safety. Our evaluation consists of an ablation
study where we disable different core components of Algorithm 5.1 and measure their effects
on the obtained safety bounds and the algorithm’s runtime. First, we run the algorithm
without any re-training on the counterexamples. In the second step, we run Algorithm 5.1
by initializing Dspec with samples from X0 and Xu only. Finally, we bootstrap the positive
invariant network by initializing Dspec with random samples from the state space labeled
with Monte-Carlo estimates of reaching the unsafe states. We consider environments with a
piecewise linear dynamic function, initial and unsafe state sets so that the verification steps of
our algorithm can be reduced to MILP-solving using Gurobi [Gurobi Optimization, 2021].

We conduct our evaluation on three benchmark environments that differ in terms of complexity
and safety specifications. We train two BNN policies for each benchmark-ablation pair, one
with Bayesian weights from the second layer on (with N (0, 0.1) prior) and one with Bayesian
weights in all layers (with N (0, 0.05) prior). Recall, in our BNN encoding in Section 5.3.1, we
showed that encoding of the BNN input layer requires additional constraints and extra care,
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(a) Vector field of the system
when controlled by the poste-
rior’s mean. Green/red arrows
indicate empirical safe/unsafe
estimates.

(b) First guess of gInv. Green
area shows gInv > 0, orange
area gInv < 0. Red markers
show the found counterexam-
ple.

(c) Final gInv proving the safety
of the system. Previous coun-
terexamples marked in red.

Figure 5.2: Invariant learning shown on the inverted pendulum benchmark.

Table 5.1: Results of our benchmark evaluation. The epsilon values are multiples of the
weight’s standard deviation σ. We evaluated several epsilon values, and the table shows
the largest that could be proven safe. A dash ”-” indicates an unsuccessful invariant search.
Runtime in seconds.

Environment No re-training Init Dspec with X0 and Xu Bootstrapping Dspec

Verified Runtime Verified Runtime Verified Runtime
Unstable LDS - 3 1.5σ 569 2σ 760
Unstable LDS (all) 0.2σ 3 0.5σ 6 0.5σ 96
Pendulum - 2 2σ 220 2σ 40
Pendulum (all) - 2 0.2σ 1729 1.5σ 877
Collision avoid. - 2 - - 2σ 154
Collision avoid. (all) - 2 - - 1.5σ 225

since we do not know the signs of input neuron values. Hence, we consider two BNN policies
in our evaluation in order to study how the encoding of the input layer affects the safe weight
set computation.

Our first benchmark represents an unstable linear dynamical system of the form xt+1 =
Axt + But. A BNN policy stabilizes the system towards the point (0, 0). Consequently,
the set of unsafe states is defined as {x ∈ R2 | |x|∞≥ 1.2}, and the initial states as
{x ∈ R2 | |x|∞≤ 0.6}.

Our second benchmark is the inverted pendulum task, which is a classical non-linear control
problem. The two state variables a and b represent the angle and angular velocity of a
pendulum that must be controlled in an upward direction. The actions produced by the policy
correspond to a torque applied to the anchor point. Our benchmark concerns a variant of
the original problem where the non-linearity in f is expressed by piecewise linear functions.
The resulting system, even with a trained policy, is highly unstable, as shown in Figure 5.2.
The set of initial states corresponds to pendulum states in an almost upright position and
with small angular velocity. The set of unsafe states represents the pendulum falling down.
Figure 5.2 visualizes the system and the learned invariant’s decision boundary for the inverted
pendulum task.
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Experiment Input dimension Hidden size Output dimension
Linear dynamical system 2 16 1

Inverted pendulum 2 16 1
Collision avoidance 3 16 3

Table 5.2: Number of dimensions of the policy network for the three experiments.

While the previous two benchmarks concern stability specifications, we evaluate our method
on a non-Lyapunovian safety specification in our third benchmark. In particular, our third
benchmark is a collision avoidance task, where the system does not stabilize to the same set
of terminal states in every execution. The system is described by three variables. The first
variable specifies the agent’s own vertical location, while the other two variables specify an
intruder’s vertical and horizontal position. The objective is to avoid colliding with the intruder
who is moving toward the agent by lateral movement commands as the policy’s actions. The
initial states represent far-away intruders, and crashes with the intruder define the unsafe
states.

Experimental details
Each policy is a ReLU network consisting of three layers. The first layer represents the input
variables, the second one is a hidden layer with 16 neurons, and the last layer are the output
variables. The size of the first and the last layer is task dependent and is shown in Table
5.2. The W π

ϵ -safe positive invariant candidate network differs from the policy network in that
its weights are deterministic, it has a different number of hidden units and a single output
dimension. Particularly, the invariant networks for the linear dynamical system and the inverted
pendulum have 12 hidden units, whereas the invariant network for the collision avoidance task
has 32 neurons in its hidden layer. The policy networks are trained with a N (0, 0.1) (from
second layer on) and N (0, 0.05) (all weights) prior for the Bayesian weights, respectively.
MILP solving was performed by Gurobi 9.03 on a 4 vCPU with 32GB virtual machine.

Linear dynamical system The state of the linear dynamical system consists of two variables
(x, y). The update function takes the current state (xt, yt) with the current action ut and
outputs the next states (xt+1, yt+1) governed by the equations

yt+1 = yt + 0.2 · clip±1(ut)
xt+1 = xt + 0.3yt+1 + 0.05 · clip±1(ut),

where the function clip±1 is defined by

clip±z(x) =

⎧⎪⎪⎨⎪⎪⎩
−z if x ≤ −z
z if x ≥ z

x otherwise.

The set of unsafe states is defined as {(x, y) ∈ R2 | |(x, y)|∞≥ 1.2}, and the initial states as
{(x, y) ∈ R2 | |(x, y)|∞≤ 0.6}.
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Inverted pendulum The state of the inverted pendulum consists of two variables (θ, θ̇).
The non-linear state transition is defined by

θ̇t+1 = clip±8(θ̇t + −3g · angular(θt + π)
2l + δt

7.5clip±1(ut)
(m · l2) )

θt+1 = θt + θ̇t+1 ∗ δt,

where g = 9.81, l = 1, δt = 0.05 and m = 0.8 are constants. The function angular is defined
using the piece-wise linear composition

angular(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

angular(x+ 2π) if x ≤ π/2
angular(x− 2π) if x > 5π/2
x−2π
π/2 if 3π/2 < x ≤ 5π/2

2− x
π/2 if π/2 < x ≤ 3π/2.

The set of initial states are defined by {(θ, θ̇) ∈ R2 | |θ|≤ π/6 and |θ̇|≤ 0.2}. The set of
unsafe states are defined by {(θ, θ̇) ∈ R2 | |θ|≥ 0.9 or |θ̇|≥ 2}.

Collision avoidance The state of the collision avoidance environment consists of three
variables (px, ax, ay), representing the agent’s vertical position and the vertical and the
horizontal position of an intruder. The intruder moves toward the agent, while the agent’s
vertical position must be controlled to avoid colliding with the intruder. The particular state
transition is given by

px,t+1 = px,t + ut

ax,t+1 = ax,t

ay,t+1 = ay,t − 1.

Admissible actions are defined by ut ∈ {−1, 0, 1}. The set of initial states are defined as
{(px, ax, ay) ∈ Z3 | |px|≤ 2 and |ax|≤ 2 and ay = 5}. Likewise, the set of unsafe states are
given by {(px, ax, ay) ∈ Z3 | |px − ax|≤ 1 and ay = 5}.

Results
Table 5.1 shows the results of our evaluation. Our results demonstrate that re-training with
the counterexamples is the key component that determines our algorithm’s success. In all
cases, except for the linear dynamical system, the initial guess of the invariant candidate
violates the invariant condition. Moreover, boostrapping Dspec with random points labeled by
empirical estimates of reaching the unsafe states improves the search process significantly.

5.5 Conclusion
In this chapter we formulated the safety verification problem for BNN policies in infinite time
horizon systems, that asks to compute safe BNN weight sets for which every system execution
is safe as long as the BNN samples its weights from this set. Solving this problem allows
re-calibrating the BNN policy to reject unsafe weight samples in order to guarantee system
safety. We then introduced a methodology for computing safe weight sets in BNN policies in
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the form of products of intervals around the BNN weight’s means, and a method for verifying
their safety by learning a positive invariant-like safety certificate. We believe that our results
present an important first step in guaranteeing safety of BNNs for deployment in safety-critical
scenarios. While adopting products of intervals around the BNN’s weight means is a natural
choice given that BNN priors are typically unimodal distributions, this is still a somewhat
restrictive shape for safe weight sets. Thus, an interesting direction of future work would
be to study more general forms of safe weight sets that could be used for re-calibration of
BNN posteriors and their safety verification. Another interesting problem would be to design
an approach for refuting a weight set as unsafe which would complement our method, or to
consider closed-loop systems with stochastic environment dynamics. Extending our approach
to other types of uncertainty learning models, such as Amini et al. [2020b], is yet another
promising future work direction.

Any verification method for neural networks, even more so for neural networks in feedback
loops, suffers from scalability limitations due to the underlying complexity class [Katz et al.,
2017, Ivanov et al., 2019]. Promising research directions on improving the scalability of our
approach by potentially speeding up the constraint solving step are gradient based optimization
techniques [Henriksen and Lomuscio, 2020] and to incorporate the constraint solving step
already in the training procedure [Zhang et al., 2020].
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CHAPTER 6
Conclusion

This thesis studied the problem of learning neural networks with formal guarantees on their
functional specification beyond test accuracies such as adversarial robustness or safety. In
particular, we considered a number of different types of networks and the specification,
including static feedforward networks and closed-loop systems with neural network control
policies. Moreover, we investigated how including formal guarantees in the training process
can negatively impact the original task.

• In Chapter 2, we investigated how quantization affects neural networks’ robustness to
adversarial attacks. We showed that neither robustness nor adversarial vulnerability is
monotonic with respect to the number of bits of its representation and that neither
is preserved by quantization of a real-numbered network. We introduced the first
verification method for quantized neural networks, which accounts for their exact, bit-
precise semantics using SMT solving over bit-vectors. We demonstrate that, compared
to our approach, existing methods for analyzing real-numbered networks often derive
false conclusions about the robustness of their quantized representation in practice.

• In Chapter 3, we proposed more efficient bit-vector SMT encodings of quantized neural
networks. In particular, our method prunes variables and constraints from the SMT
encoding for which their numeric or truth value can already be determined by a fast
abstract interpretation reachability analysis of internal variables of the quantized network.
We experimentally demonstrated that our improved encodings speed up the verification
time up to three orders of magnitude over our naive encodings from the previous chapter.
Additionally, we prove that verifying the bit-exact implementation of quantized neural
networks with bit-vector specifications is PSPACE-hard, even though verifying idealized
real-valued networks and satisfiability of bit-vector specifications alone are each in NP.

• In Chapter 4, we empirically studied the robustness-vs-accuracy tradeoff that arises when
learning a robust network using adversarial training methods. We specifically focused on
the tradeoff in robot learning settings, where the robot’s holistic performance depends
on accuracy and robustness. We introduced several error profiles to better characterize
the difference of a network’s mispredictions. Our results indicated that standard training
yields better-performing robots than adversarial training.

• In Chapter 5, we considered the safety of closed-loop control systems with Bayesian neural
networks as control policies. We proposed computing safe weight sets for recalibrating
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the Bayesian neural network’s posterior to form a distribution over safe decisions only.
For determining which decision is safe and which is not, we learned positive invariant
networks that classify system states depending on safety and invariances, i.e., closed
under the system’s dynamics. We proved that our learned invariant network certifies the
system’s safety and experimentally demonstrated that our method works in practice.

6.1 Future Directions
In this section, we highlight promising future research directions based on the results and
observations of this thesis.

Real arithmetic based verification of quantized neural networks The work of Bara-
nowski et al. [2020] has shown that the fixed-point arithmetic for running quantized neural
networks can be expressed as real arithmetic. Using such real arithmetic representation for
verifying quantized neural networks potentially allows using more efficient linear programming-
based solving methods. However, as discussed in Baranowski et al. [2020], the rounding
involved in fixed-point arithmetic requires non-linear operations. Similarly, Zohar et al. [2022]
have observed a promising performance increase when reducing certain bit-vector formulas to
integer SMT instead of handling them with traditional bit-vector SMT solver approaches. Thus,
future work might consider efficiently expressing the rounding steps inside a quantized neural
network as real or integer arithmetic SMT or mixed-integer linear programming constraints.

Robustness and quantization-aware training Quantized neural networks are typically
trained with quantization-aware training, which models a reduced precision already during the
forward pass of a training iteration [Jacob et al., 2018]. Similarly, interval bound propagation
[Gowal et al., 2019] directly optimizes a network’s abstract interpretation during the training
phase for learning robust networks. Future work may combine these techniques in a quantization-
aware interval bound propagation training algorithm that learns robust quantized networks.

Closing the robustness-vs-accuracy tradeoff gap Our experiments in Chapter 4 empir-
ically confirmed that some approaches from the literature to enhance both robustness and
accuracy provide improvements on robot learning tasks. Hence, research on advancing the
robustness of network architectures, adversarial training settings, and theoretical insights might
further close the robustness-vs-accuracy tradeoff gap.

New metrics for the robustness-vs-accuracy tradeoff For making progress on learning
robust networks despite the accuracy vs robustness tradeoff, we suggest the adoption of
new metrics that measure both values in a meaningful manner. For instance, robustness at
≥90% accuracy could capture advances in robust training methods while ensuring the learned
networks have relevant standard accuracy.

Probabilistic closed-loop safety guarantees Neural network supermartingales have been
recently introduced for verifying stability in stochastic closed-loop systems with deterministic
neural network control policies [Lechner et al., 2022b]. Future work might consider such
supermartingales for verifying stability with Bayesian neural networks and other types of
specifications, including probabilistic safety, persistence, and recurrence.
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GPU- and ASIC-based verification methods The enormous size of modern neural net-
works results in a large amount of floating-point operations required to train them. Consequently,
training such networks in a reasonable time is only feasible using graphics processing units
(GPUs) or application-specific integrated circuits (ASICs), e.g., Google’s Tensor processing
units (TPUs), to parallelize and accelerate the computations. Contrarily, most existing tool-
chains for verifying neural networks do not use such accelerators but run entirely on the central
processing unit (CPU). The SMT and MILP solvers used in this thesis are examples of such
purely CPU-based tools. Adapting SMT and MILP solvers to custom neural network hardware
is non-trivial as these accelerators are based on an inherently parallel programming model. As
a result, naive ports of existing algorithms may suffer from poor hardware utilization.

To scale neural networks verification methods, new algorithms based on this parallel program-
ming model are required to make full use of the available hardware. For example, Gowal et al.
[2019] proposed an abstract interpretation method for verifying the robustness of feed-forward
networks that runs on GPUs and TPUs. Similarly, Lechner et al. [2022b] introduced an
inherently parallel algorithm for verifying the stability of closed-loop systems with neural
network policies. We believe that the most impactful future verification approaches will be the
ones that use hardware accelerators such as GPUs and TPUs.

6.2 Reflections and Broader Outlook
Although our work and existing literature provide thorough insights and algorithms toward
learning neural networks with formal guarantees, the adoption of these methods in practice
remains sparse.

In particular, the two major challenges preventing a more widespread use are the limited
scalability of verification methods and the problem of learning networks that jointly satisfy
multiple specifications, e.g., accuracy and robustness, as we outlined in Chapter 4. Without
addressing these two issues, we predict that the formal verification of learned components will
remain a pure research area without much practical significance.

Although researchers often claim that improvements in computing power will eventually make
verification methods scale to practical applications, they neglect that the complexity of real-
world systems also increases. For example, while the hardware for running neural network
verification methods has become faster in the past years, the size of networks deployed in
practice has also increased significantly [Brown et al., 2020]. As a result, we argue that
algorithmic advances in the scalability of neural network verification methods are necessary to
adopt these methods more broadly in practice.

One characteristic specific to the research area of neural network verification is that the
research community is relatively fragmented. For instance, advances in verification methods for
neural networks have been published in the proceedings of conferences from the programming
language [Singh et al., 2019], formal methods [Giacobbe et al., 2020], robotics [Lechner et al.,
2021a], control theory [Gruenbacher et al., 2020], artificial intelligence [Henzinger et al., 2021],
computer vision [Gowal et al., 2019], and the machine learning [Lechner et al., 2021b] research
domains. In contrast, advances in deep learning methods usually rely on the same notation
[Goodfellow et al., 2016] and are published in a handful of conferences and journals. The
resulting differences in terminology, research values, and preferences of publications on neural
network verification from these different research communities creates friction. Moreover, the
distributed character of the field makes it difficult to grasp its current state.
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To overcome this friction and address the mentioned challenges, we suggest the development
of universal benchmarks and competitions. For instance, the ImageNet Large Scale Visual
Recognition Challenge [Russakovsky et al., 2015], better known as ImageNet, has sparked a
revolution in computer vision and fueled many recent advances in machine learning. Similarly,
in the formal methods domain, Boolean satisfiability (SAT solving) competitions [Froleyks
et al., 2021] enabled significant progress in the scalability of SAT solvers. The International
Verification of Neural Networks Competition (VNN-COMP) [Bak et al., 2021], although in an
early stage and limited in exposure, provides the first step toward this paradigm.

Another factor that hinders progress in the field is the weighting of the novelty of machine
learning models and algorithms, which is often confused as scientific significance by the
machine learning research community [Sambasivan et al., 2021]. We believe the high weighting
of novelty is misaligned from the real-world relevance of research results. This imbalance is
manifested by algorithms and neural network architectures that are considered novel, having
an easier time passing the peer-review process and gaining more citations. Research funding is
often tied to the number of accepted conference papers and citation counts, so researchers are
incentivized to introduce new methods instead of adding breadth and depth to existing ones.
This leads to an excess of new methods and models with limited experimental and shallow
mathematical contributions and a shortcoming of follow-up studies that reproduce proposed
algorithms and study them in more detail. Many researchers have said that machine learning
and computer vision suffer from a reproducibility crisis.

We believe the research community has to reevaluate the importance of algorithmic novelty
and emphasize on rigorous results. One possible way to achieve this balance is by creating
separate submission tracks for journals and conferences. For instance, a scientific conference
could have a separate submission track to reproduce existing methods and algorithms. As
a result, the peer-reviewers can judge a submission by its significance to the values of the
specific submission track. In particular, the 2022 Annual Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL 2022) introduced such a
reproducibility track for precisely this reason. Similarly, the thirty-fifth Conference on Neural
Information Processing Systems (NeurIPS 2021) introduced a dataset and benchmark track
separated from the main track to avoid dataset and benchmark submissions being marked as
"not novel". We believe that these two examples are the first steps in the right direction.
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