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ABSTRACT
Time-triggered (TT) switched networks are a deterministic com-
munication infrastructure used by real-time distributed embedded
systems. These networks rely on the notion of globally discretized
time (i.e. time slots) and a static TT schedule that prescribes which
message is sent through which link at every time slot, such that all
messages reach their destination before a global timeout. These
schedules are generated offline, assuming a static network with
fault-free links, and entrusting all error-handling functions to the
end user. Assuming the network is static is an over-optimistic view,
and indeed links tend to fail in practice. We study synthesis of TT
schedules on a network in which links fail over time and we assume
the switches run a very simple error-recovery protocol once they
detect a crashed link. We address the problem of finding a pk, `q-
resistant schedule; namely, one that, assuming the switches run a
fixed error-recovery protocol, guarantees that the number of mes-
sages that arrive at their destination by the timeout is at least `, no
matter what sequence of at most k links fail. Thus, we maintain the
simplicity of the switches while giving a guarantee on the number
of messages that meet the timeout. We show how a pk, `q-resistant
schedule can be obtained using a CEGAR-like approach: find a
schedule, decide whether it is pk, `q-resistant, and if it is not, use
the witnessing fault sequence to generate a constraint that is added
to the program. The newly added constraint disallows the schedule
to be regenerated in a future iteration while also eliminating several
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other schedules that are not pk, `q-resistant. We illustrate the appli-
cability of our approach using an SMT-based implementation.
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1. INTRODUCTION
Embedded systems can be found nowadays in almost every ac-

tivity of our daily life. Be it in transportation, automation, energy
or healthcare, the current tendency is to build more complex and
larger embedded systems. An increasing number of these systems
are distributed and rely on message exchange over switched com-
munication networks. The switches used in such networks are typ-
ically fast hardware devises with limited computational power, in-
terconnected with high-speed links that can accommodate a single
message at a time.

For distributed embedded systems requiring deterministic com-
munication, i.e. satisfaction of hard message deadlines, the so-
called Time-Triggered (TT) scheduling of messages has been ad-
vocated [27]. TT scheduling assumes the existence of a common
notion of time throughout the system, usually implemented with
some kind of clock synchronization protocol, therefore allowing a
globally consistent definition of time slots [19]. The switches fol-
low a schedule that prescribes which message is sent through each
link for every time slot. The schedule is synthesized offline, and
it is repeated cyclically during the system operation. Adopting the
TT scheduling for communication is compelling because it pro-
vides predictability (messages are known to arrive by the global
timeout) but also because it demands very little computation from
the switches; their functionality can be implemented with a simple
lookup table.

An important limitation of the TT scheduling is the computa-
tional complexity of synthesizing a schedule, which is known to
be an NP-complete problem. Much work has been done on opti-
mization and improving the scalability of schedule synthesis. Dif-
ferent techniques have been adopted for synthesis of time-triggered
schedules for medium size systems, such as constraint program-
ming (CP) solvers [25], integer linear programming (ILP) solvers
[14], and satisfiability modulo theory (SMT) solvers [18]. For sys-
tems or larger size, SMT solvers have been combined with itera-
tive/segmentation techniques yielding good results [11, 4, 26, 23,
12], even if compared to ILP.

A second limitation of TT scheduling is that it assumes a static
network. Namely, once a schedule is constructed, it does not adapt



to changes in the network. This assumption is optimistic, since
switched networks can change intentionally, for reconfiguration pur-
poses, or unintentionally, as a consequence of either link or switch
failures. Changes caused by failures are particularly challenging
and constitute the focus of this work.

In time-triggered networks, failures are typically handled in the
application layer by using redundancy [3]. Two common types of
redundancy are temporal and spatial redundancy. Temporal redun-
dancy consists in scheduling a message more than once per cycle,
with the time slots assigned to the message replicas conveniently
spread over the schedule. This provides good tolerance to tran-
sient faults of the links, but it does not provide tolerance to per-
manent crashes. To achieve tolerance to link crashes, spatial re-
dundancy has to be used. Here, a message should be scheduled
over at least two different paths, and the defined paths should be
as disjoint as possible, in order to prevent common-mode failures.
These solutions are simplistic and not exempt from problems. On
the one hand, the additional paths and retransmissions need to be
taken into consideration during the schedule synthesis, increasing
the complexity of this already demanding task. On the other hand,
the required additional resources (bandwidth at the links, and pro-
cessing time and memory at the switches) are allocated in a static
manner, thus decreasing the actual utilization of the network.

In this work we study an alternative approach to handling perma-
nent link failures, which aims at avoiding or reducing redundancy,
while maintaining the philosophy of using simple switches. Our
technique is a variation of the well known Primary/Backup (P/B)
approach to fault tolerance [9]. We assume the switches follow a
TT schedule. Once they observe a fault, the switches resort to a
simple error-recovery protocol for handling the situation. We de-
scribe two simple protocols to illustrate our concept.
The do-nothing protocol We refer to the simplest protocol we con-
sider as the do-nothing protocol. As its name suggests, when a
message is scheduled to be sent via a link that has crashed, then
no corrective action is taken by the switch, and the message is dis-
carded. Thus, the message does not arrive at its destination. This
approach relies exclusively on the faults being handled by the ap-
plication as described above. This simple protocol is often used in
practice [27].
The two-path protocol The second protocol we describe will be
our running example throughout this paper, and it is the protocol
that we have implemented. We refer to it as the two-path protocol.
We use M to refer to the set of messages. We assume that each
message m P M has a first path πm on which it is scheduled,
where a path is a complete route from the node sending m to the
destination (or target) of m. Thus a schedule only schedules m on
links that πm traverses. Such an assumption has been used often in
practice in order to find schedules in large networks [26, 23]. We
allow the switches on πm to have a second path to the target of m,
which can be thought of as a fallback path; systems using slight
variations of this protocol can be found in the literature [29, 21].
In our protocol, and similar to the first path, the second paths are
predetermined and given as input, i.e. the path is not found in an
online manner. If m is at a switch v on πm and the next link in
the path crashes, then v attempts to forward m on the second path
that starts from v. The schedule does not specify how a message
is forwarded along a second path. We assume that there is a total
order ă on the messages, and m uses a link e on the second path
only when it is free for the current slot, i.e., the schedule has not
assigned e to any message and no message m1 ă m also tries to
use e.

Our goal is to give a guarantee on the performance of the system
assuming that the degree of failure is reasonable. To formalize this

notion, we define a pk, `q-resistant schedule. The faults we consider
are fail stop. Namely, a link may crash and does not recover after
crashing. We note that once one fixes a schedule and a protocol for
the switches, the system’s response to failures is deterministic. We
say that a schedule is pk, `q-resistant if, assuming the switches run
a fixed error-recovery protocol and at most k crashes occur, at least
` messages are delivered by the global timeout.

In the context of embedded systems, the ability of a system to
perform reasonably well upon unexpected (yet reasonable) envi-
ronment changes is known as robustness; where environment refers
to the assumptions upon which the system has been built [16]. A
system is said to be robust if small disturbances of the environ-
ment can cause only small system errors, which corresponds as well
with the definition of graceful degradation in classical fault toler-
ance [5]. Robustness has been discussed in relation to predictabil-
ity as two “universal challenges” of embedded systems design [16],
even if they are seldom addressed together. Our definition of pk, `q-
resistant schedule can be interpreted as a variation of the notion of
k-robustness introduced in [5].

We study the problem of finding a pk, `q-resistant schedule for
a given set of messages in a network, assuming the switches run a
fixed protocol PROT. As a first step, we solve the problem of de-
ciding whether a given schedule S is pk, `q-resistant. We describe
an SMT program that is satisfiable iff S is not pk, `q-resistant. In
the case the program is satisfiable, a satisfying assignment corre-
sponds to a fault sequence F that can be thought of as a witness
to the non-resistance of S. Indeed, when the switches follow S
and run the protocol PROT, if the faults F occur, then less than `
messages arrive at their destination by the timeout.

We use our solution above to devise a CEGAR-like method1 to
find a pk, `q-resistant schedule. Consider a network N and a set of
messages M. We start with a program P that is satisfiable iff there
is a schedule for M in N . Note that a valid schedule is one that
delivers all messages when there is no link failure. If P is not sat-
isfiable, there is no schedule, and clearly there is no pk, `q-resistant
schedule, and we terminate. Otherwise, we find a schedule S, and
we use the method above to check whether S is pk, `q-resistant. If
it is, we are done. If it is not, we use the witness fault sequence to
generate a constraint  ψ, add it to P , and repeat the process.

The crux of the procedure involves choosing  ψ. On one hand,
we want  ψ to be as strong as possible, thereby eliminating as
many schedules as possible in one iteration. On the other hand,
we want it to be sound, i.e., we want to eliminate only schedules
that are not pk, `q-resistant. Recall that F is a fault sequence that
witnesses the non-resistance of S. We choose ψ as follows. Con-
sider a schedule S1 that satisfies ψ, and is thus eliminated when
adding  ψ to P . If the switches follow S1 and F occurs, then the
execution of the system, namely how the messages are directed in
the network over time, is identical to the one when they follow S.
In particular, since less than ` messages meet the timeout when the
switches follow S, less than ` messages meet the timeout when the
switches follow S1, thus S1 is not pk, `q-resistant.

Finally, we add an optimization. We note that the execution of
the system is discrete and can be thought of as snapshots; the i-
th snapshot includes the positions of the messages at time i. We

1Counter-example guided abstraction refinement (CEGAR, for
short) [10] is a well-known technique in model checking in which
an abstraction of a system is constructed and tested for correctness.
The abstraction is an over approximation, in the sense that if the
abstract system is correct, so is the concrete one. But, a counterex-
ample showing incorrectness of the abstract system might not have
a corresponding concrete counterexample. In that case, the trace is
spurious and it is used in order to refine the abstraction.



check whether there is a time point i such that the i-th snapshot is
doomed: assuming the faults in F occur, there is no schedule S1

whose execution matches the execution of S up to time i and is still
able to deliver at least ` messages. Thus, we can strengthen  ψ to
 ψi; if a schedule S1 satisfies ψi, then its execution matches that
of S up to time i. Since the i-snapshot is doomed, the schedule S1

is not pk, `q-resistant. In order to decide whether there exists such
a schedule we devise a third SMT program that can be thought of
as a mix between the two previous programs.

We have implemented our approach and evaluated it on ran-
domly generated networks. In our implementation, the switches
use the two-path protocol that is described above. We use Z3 as our
SMT solver [13]. We show that the optimization described above is
very useful. It significantly reduces the number of iterations needed
in the CEGAR loop, especially when the answer is that there is
no pk, `q-resistant schedule for the given input. Also, during the
evaluation, we found that the notion of a best schedule is helpful.
Namely, a schedule for a given setting that is pk, `q-resistant such
that no pk, ` ` 1q-resistant schedule exists. We suggest a simple
workflow for finding such a schedule, and show that it performs
well.

2. RELATED WORK
Message scheduling is only one of the problems in distributed

systems that is solved using TT-scheduling. Another important
problem is task scheduling, namely deciding which task is exe-
cuted by each processor in every time slot. Both these scheduling
problems are related, but they have been traditionally addressed
separately (c.f., [26, 18, 23]). In this paper we follow this tradi-
tional approach, where we focus on the message scheduling aspect
of the system while disregarding the task scheduling, thus we as-
sume reasoning on the second is performed separately. Solving the
two problems together is an interesting problem and positive results
have recently been shown [12].

We assume the switches in the network have very limited com-
putational power. Taking the other extreme are Software Defined
Networks (SDN), which are growing in popularity. These net-
works bring new opportunities regarding traffic management to dis-
tributed systems [20], including novel and advanced mechanisms
for handling link failures [24]. The problem we study here might
be useful for reasoning and comparing different forwarding rules
applied in the control plane of an SDN.

Traditional synthesis of TT schedules is a Boolean problem; a
schedule is correct if it satisfies all its requirements, and otherwise
it is incorrect. However, there may be many correct schedules for a
certain input. The schedules may differ in “quality”, and choosing
a schedule of high quality is an interesting problem. “Quality” is
an amorphous concept and can change according to the context.
For example, a schedule that spreads the messages and thus lowers
the memory consumption of the switches might be preferable in
contexts where memory is an issue, and may be undesirable when
there are many faults. Our pk, `q-resistant definition can be viewed
as a measure of quality, and thus as a method to compare correct
schedules.

A similar challenge is subject of increasing research in the for-
mal methods community [17]. There, the traditional notion of cor-
rectness of a system is Boolean; it either satisfies the specification,
or does not. In recent years there has been a growing effort to lift
the ideas of traditional formal methods to the quantitative setting.
So, for example, rather than asking whether the system satisfies
the specification, one might ask how well the system satisfies the
specification. The origin of the quantitative aspect can be in the
system [7], the specification [1], or both [6]. Similar to the exam-

ples above, it can be used to model consumption of resources by
the system or other systems using the same resources [2].

Our approach is inspired by Sabotage games [28]. The tradi-
tional game is played on a directed graph by two players that alter-
nate turns. The game starts by placing a token on the initial vertex.
Runner moves the token. In his turn, he chooses one of the outgo-
ing edges from the vertex on which the token is placed, and moves
the token to the endpoint of the edge. In his turn, Saboteur “breaks”
one of the edges and removes it from the graph. Runner wins iff
the token reaches a designated target vertex. The central question in
sabotage games is deciding which one of the players has a winning
strategy, namely a strategy such that no matter how the other player
plays, guarantees winning. This problem is PSPACE-complete al-
ready in the traditional game [22].

Our setting can be formalized as a type of sabotage game in
which Runner moves several tokens at once, where each token cor-
responds to a message, and thus has its own source and target ver-
tices. We think of a schedule as a Runner strategy and a fault se-
quence as a Saboteur strategy. Note that the high complexity of
the traditional game follows to our game, and we overcome it by
adding a timeout and by imposing strict restrictions on the possible
strategies of the players. Our Saboteur does not break an edge in
each turn, rather he has a limit (k) on the number of edges he is
allowed to break. Runner’s restriction is even stronger. Our restric-
tion that the switches computational power is limited corresponds
to a restriction that Runner has bounded rationality, and can select
only very simple strategies.

Now, the problem of finding a pk, `q-resistant schedule can be
rephrased as finding a winning strategy for Runner (that obeys the
restrictions above). The problem of deciding whether a schedule is
pk, `q-resistant can be rephrased as deciding whether a given Run-
ner strategy is winning. Note that if it is not, then there is a Saboteur
strategy that wins against it, which corresponds to a fault sequence.
Finally, in the optimization in the CEGAR loop, we alternate roles.
We fix a Saboteur strategy and ask whether it is winning against
every Runner strategy.

Recently, sabotage games where considered in weighted graphs
[8]. One of the challenges of lifting the Boolean setting to the quan-
titative setting as described above, is that often, there is not only one
possible way to lift a problem. The variant of sabotage games that
arises from our setting is a different approach to adding quantity to
these games. Namely we require that at least ` tokens (messages)
arrive on time.

3. PRELIMINARIES
We model a network as a directed2 graph N “ xV,Ey. A collec-

tion M of messages are sent through the network. Each message
m PM has a source and a target vertex, which we refer to as spmq
and tpmq, respectively. There is a global timeout t P N and a
message meets the timeout if it arrives in its destination by time t.

Schedule
A schedule is a function S : E ˆ N Ñ pM Y tKuq, where N
are the positive integers. Having Spe, iq “ m P M means that
message m is forwarded from speq to tpeq at time i, and having
Spe, iq “ K means that no message is assigned to e at time i. We
require the schedule to satisfy the following constraints:

1. Path: Every message originates from its source vertex and
reaches its target vertex, and a switch cannot forward a mes-
sage that has not arrived in it.

2We choose a directed graph rather than undirected graph for ease
of notation.



2. Contention free: Two messages cannot be sent on the same
link at the same time.

3. Timeout: All messages arrive by a global timeout t.

Theorem 3.1. The problem of finding a correct schedule can be
solved using a SAT solver.

Proof: Consider a network N “ xV,Ey, a set of messages
M, and a timeout t P N. Let X “ txe,m,i : e P E,m P

M, 0 ď i ă tu be a set of variables, which we refer to as sched-
ule variables. We describe the constraints of the program, which
match the requirements on schedules above, so that a truth assign-
ment f : X Ñ ttt,ffu corresponds to a schedule in a natural
manner; For e P E and 0 ď i ă t, we have Spe, iq “ m, if
fpxe,m,iq “ tt, and if for everym PM we have fpxe,m,iq “ ff,
then Spe, iq “ K.

We start with the path requirement. For every vertex v P V , let
outpvq Ď E be the outgoing edges from v. Consider a message
m P M. Recall that we require that m originates from its source
spmq and that it is scheduled on an edge e “ xu, vy only after it
arrived in u. Further recall that we view an assignment of tt to
xe,m,i as a schedule that schedules m on e at time i. So, if xe,m,i
gets tt, there should be an edge e1 with tpe1q “ speq and a time
j ă i such that xe1,m,j gets tt. That is, m “arrives” in speq on
e1 before it is sent on e. We leave out outgoing edges from spmq
thereby allowing m to originate from spmq. Formally, for every
message m, edge e that is not in outpspmqq, and time i ą 1, we
have the constraint

xe,m,i Ñ
ł

e1PE s.t. tpe1q“speq and jăi

xe1,m,j

. Note that the constraint above does not take care of the first time
step. Thus, we add, for every message m and edge e such that
speq ‰ spmq, the constraint  xe,m,0.

Next, we handle the contention-free requirement. Recall that we
require that two messages are not sent on the same link at the same
time, thus if m P M is scheduled on an edge @e P E at time
1 ď i ď t, no other message should be scheduled on it:

xe,m,i Ñ  
`

ł

m‰m1PM

xe,m1,i

˘

.

Finally, we require that every message m PM arrives by the time-
out t:

ł

1ďiďt and e“xu,tpmqyPE

xe,m,i.

We view an assignment of tt to a variable xe,m,i as scheduling
m on e at time i. Each of the constraints above correspond to a
requirement on schedules. Thus, there is a one-to-one correspon-
dence between assignments that satisfy all the constraints to correct
schedules.

Fault model
We consider fail stop failures: if an edge crashes, it does not re-
cover. We assume that the switches are aware of crashes immedi-
ately when they occur. A failure sequence is a sequence of subsets
of edges F “ T0, . . . , Tt´1, where Ti Ď E, for 0 ď i ď t ´ 1.
Having e P Ti means that e has crashed at time i. Since edges that
crashed do not recover, we have Ti Ď Ti`1, for 0 ď i ă t´ 1. We
say that a fault sequence performs k faults if |Tt´1| “ k.

Error-recovery protocol
Switches react to link failures. In the absence of faults, they follow
the schedule. When they detect a crash, they resort to a predefined

error-recovery protocol that dictates how to forward the messages
given the failed edges. An error-recovery protocol is an algorithm
that is run in a switch. It takes as input the messages in the switch’s
queue, the crashed edges, and the time, and returns through which
link the messages are to be forwarded3. While forwarding the mes-
sages, the protocol needs to satisfy the constraints of the system.
Namely, two messages cannot use the same link at the same time,
and a message cannot use a link that has crashed. In the presence
of a link failure, it cannot however be guaranteed that all messages
will reach their destinations before the global timeout.

Forwarding depends on several parameters; the messages in v’s
queue, the crashed edges, and the time. We think of the schedule
as being “hard coded” into the protocol. We consider very simple
protocols as we assume the switch’s computational power is very
limited. Namely, we consider protocols that are given as a set of
propositional rules of the form ϕ ùñ u. Such a rule corresponds
to a message m P M. If ϕ is satisfied, then m is forwarded from
v to u in the next time step. We consider deterministic protocols,
thus we assume that for every message at a given time point there
is exactly one assertion that is satisfied.

Formally, we use PROT to denote a protocol, we use PROTS,v to
indicate that PROT is run at vertex v P V with respect to a schedule
S. A rule for a messagem PM at v P V , is of the form ϕ ùñ u,
where we refer to u P V as the target vertex of the rule, and to ϕ
as the assertion of the rule, where the assertion ϕ is given by the
following grammar:

ϕ ::“ m | e | Spe, $q “ µ, for µ PMY tKu |  ϕ | ϕ_ ϕ

We denote by PROTmS,v the subset of rules that corresponds to a
message m PM.

The semantics of ϕ is with respect to the input to the protocol,
namely, a set of messages M Ď M, which can be thought of as
the messages in v’s queue, a set of crashed edges T Ď E, and a
time point 0 ď i ď t ´ 1. Consider a rule ϕ ùñ u in PROTS,v .
We use pM,T, iq |ùS ϕ to denote the fact that pM,T, iq satisfies
the assertion ϕ, in which case m is forwarded to u at the next time
step. In particular, we assume that ϕ is satisfiable only when m
is in v, i.e., m P M. The semantics is defined inductively on the
structure of ϕ. If ϕ “ m, then pM,T, iq |ùS ϕ iff m P M , if
ϕ “ e, then pM,T, iq |ùS ϕ iff e P T , if ϕ “

`

Spe, $q “ µ
˘

, for
µ P M Y tKu, then pM,T, iq |ùS ϕ iff Spe, iq “ µ, and the two
inductive cases are as expected.

Also, recall that the switches first forward according to the sched-
ule, and only if a crash occurs, the protocol is used. For conve-
nience, we assume this policy is included as rules in the protocol.
For example, in the two-path protocol, we assume that for every
m PM, v P πm, and e “ xv, uy P E that is an edge that πm tra-
verses, we have two rules in PROTmS,v . The first rule indicates that if
m is scheduled on e and e has not crashed, it should be forwarded
on it:

`

Spe, $q “ m
˘

^ e ùñ u. The second rule indicates that
if e has not crashed and m is not scheduled on e, it should wait for
its turn and stay in v:  

`

Spe, $q “ m
˘

^ e ùñ v.

Example 3.1. Recall that in the do-nothing protocol, when a mes-
sage is scheduled on an edge that has crashed, no corrective action
is taken and the message stays in the vertex. The rules that describe
3The assumption that switches are aware of all the crashes in
the network is strong and impractical. It allows, for example, to
strengthen the two-path protocol to forward messages on their sec-
ond path if a crash occurs somewhere on the first path, which is
particularly helpful if there are switches with no backup path. We
can easily weaken this global assumption to a local one in which
switches are only aware of crashes in their outgoing edges. But, we
keep the strong global assumption for ease of presentation.



the do nothing protocol are simple. Consider a message m P M
and a vertex v P V . Let e P E be the outgoing edge from v on
which S forwards m at some time point. The rule for m in v in do
nothing protocol states that if m is at v and e crashes, then stay in
v. Written as a propositional rule it is m^ e ùñ v.

Example 3.2. We describe some of the rules of the two-path pro-
tocol. Recall that we assume that each message m PM has a first
path πm on which it is scheduled, and we allow each vertex on πm
to have a second path to tpmq, which is taken from v P πm if the
next outgoing edge from v that πm traverses, crashes. We assume
the paths are given using partial functions FP, SP : Mˆ V Ñ V ,
where FPpm, vq, for v P πm, returns the vertex following v on πm,
and SPpm, vq returns the fallback vertex from v for message m.

Consider a vertex v P V and a message m P M for which v is
on one of the second paths of v. Let e P E be the second choice
edge from v, thus e “ xv, SPpm, vqy. We describe an assertion
freepe,mq that gets a true value iff e is free for m. Namely, no
message is scheduled on it in the schedule S, and no messagem1 ă

m tries to use it. The second restriction is harder to state, and we
do it in a few steps.

Let Prc ĎM be the messages that have precedence over m and
have the same second choice edge e from v, thus Prc “ tm1 P
M : m1 ă m and SPpm1, vq “ SPpm, vqu. Thus, if no message
is scheduled by S on e, the edge e is free for m if no message in
Prc tries to use e. Consider a message m1 P Prc. We distinguish
between two cases. If v is on the first path πm1 , thenm1 attempts to
use e ifm1 is on v, and the next edge on the path has crashed. Writ-
ten as an assertion it is attempt-FPpv,m1q “ m1^xv, FPpm1, vqy.
If v is not on the first path, then m1 attempts to use e if it is on v as
there is no first choice edge leaving v. Written as an assertion it is
attempt-SPpv,m1q “ m1.

We can now write the full assertion freepe,mq. Recall that e is
free if there is no message scheduled on it and no message in Prc
attempts to use it:

freepe,mq “
`

Spe, $q “ K
˘

^
ľ

m1PPrc s.t. vPπm1

 attempt-FPpv,m1q^

ľ

m1PPrc s.t. vRπm1

 attempt-SPpv,m1q.

We use freepe,mq in the forwarding rules for m P M at a
vertex v P V . Again, we distinguish between the case that v is on
the first path ofm and the case where it is on a second path. For the
first, we have

`

m^xv, FPpm, vqy^freepe,mq
˘

ùñ SPpm, vq.
For the second, recall that there is no first-choice edge leaving v
for message m, so the rule is simpler:

`

m ^ freepe,mq
˘

ùñ

SPpm, vq.

Outcomes
Given a schedule S, a protocol PROT, and a fault sequence F “

T0, . . . , Tt´1, there is a unique outcome to the network, which we
denote by outpS, PROT, F q. Intuitively, the outcome is a sequence
of snapshots of the system at each time point. Each snapshot in-
cludes the positions of all the messages. The value of an outcome
outpS, PROT, F q, denoted valpS, PROT, F q, is the number of mes-
sages that arrive at their destination by the timeout t.

Formally, we refer to the snapshots as configurations, so we
have outpS, PROT, F q “ C0, C1, . . . , Ct. A configuration in-
cludes the positions of all the messages in the network, thus it is
a set of the form Ci “ txm, vy : m P M and v P V u. Hav-
ing xm, vy P Ci means that message m is at vertex v at time i.

In particular, for every m P M there is a unique v P V such
that the pair xm, vy is in Ci. In the initial configuration, the mes-
sages are at their origin, thus C0 “ txm, spmqy : m P Mu.
The other configurations are defined inductively as follows. Con-
sider a time point 0 ď i ď t ´ 1. Recall that the edges that
crashed at time i are Ti. For v P V , let Mpv, Ciq Ď M be
the messages that are in v’s queue in Ci, thus m P Mpv, Ciq
iff xm, vy P Ci. Consider a message m P Mpv, Ciq. Recall
that PROTmS,v is a collection of forwarding rules for m at v. Let
ϕmi ùñ u be the unique rule that has pMpv, Ciq, Ti, iq |ùS ϕmi .
Then, m is forwarded from v to u, and we have xu,my P Ci`1.
We use outmpS, PROT, F q “ v0, v1, . . . , vt to denote the positions
of a message m P M throughout the outcome outpS, PROT, F q,
thus, for 0 ď i ď t, we have xvi,my P Ci. The positions
outmpS, PROT, F q correspond to a sequence ϕm1 , . . . , ϕmt of as-
sertions. For 1 ď i ď t, the assertion ϕmi is the unique assertion
that is satisfied for m at time i. So, message m is forwarded ac-
cording to the rule ϕmi ùñ u. The value of outpS, PROT, F q
is the number of messages that arrive at their destination on time,
thus valpS, PROT, F q “ |txm, tpmqy P Ctu|.

We are interested in finding schedules that have a guarantee on
the number of messages that reach their destinations before the
timeout, no matter what sequence of faults occur. We formalize
this notion as follows.

Definition 3.1. Assuming the switches run the protocol PROT, a
schedule S is pk, `q-resistant, if for every fault sequence F with at
most k faults, at least ` messages arrive at their destination by time
t, thus valpS, PROT, F q ě `.

4. DECIDING RESISTANCE
In this section we study the problem of deciding whether a given

schedule is pk, `q-resistant. Apart from its practical importance, it
is an important ingredient in the solution of the more interesting
problem of synthesizing a resistant schedule, which we study in
the next section. Recall that given a schedule, a protocol, and a
fault sequence, there is a unique outcome for the network. Its value
is the number of messages that arrive before the timeout. In order
to decide whether a given schedule is pk, `q-resistant, we search
for a fault sequence that witnesses its non-resistance. We construct
an SMT program whose solutions correspond to such witnesses,
thus the program is satisfiable iff the given schedule is not pk, `q-
resistant.

Before solving the problem, we illustrate its intricacy in the fol-
lowing example.

Example 4.1. One might suspect that when using a simple protocol
as the ones described in the introduction, it suffices to consider im-
mediate crashes, namely fault sequences in which edges only crash
at time 0. In the do-nothing protocol, this is indeed the case: if
there is a fault sequence with k crashes that causes γ ă `messages
to arrive on time, then having the crashes happen at time 0, causes
at most γ messages to arrive on time. However, we show that for
the two-path protocol this is not the case. That is, we describe a
setting in which k crashes occur. If they all occur at time 0, at least
` messages arrive on time. However, if we allow crashes at a later
time, less than ` messages arrive on time.

Consider the network that is depicted in Figure 1. Let M “

tm1,m2,m3,m4u, where the source of all messages is s and the
target for message mi is ui, for 1 ď i ď 4. The order of the
messages is m1 ă m2 ă m3 ă m4. The first path of mi, for i “
1, 2, 3, is s, a, b, ui, and for m4 it is s, a, u4. Thus, all messages
use the edge e and the paths are disjoint after using it. We consider
a schedule that schedules mi on e at time i´ 1, for 1 ď i ď 4, and
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Figure 1: A network in which the switches run the two-path
protocol and immediate crashes are less damaging than non-
immediate crashes.

the other edges on the first path at the immediate time afterwards.
So, if there are no crashes, message m1 traverses e at time 0, the
edge xa, by at time 1, and the edge xb, u1y at time 2. We set the
timeout at 5, and clearly all messages meet it if there are no crashes.

We describe the second paths. From a, only message m1 has a
second path and it is depicted in red. The other messages have a
second path of length 4 from s to their target vertex. Each second
path traverses one red edge. Let ` “ 2 and k “ 2. It is not hard
to see that every fault sequence with immediate crashes makes at
most 2 messages miss the timeout. However, consider the fault se-
quence in which xa, by and e crash at time 1. At time 0, message
m1 traverses e and the other messages wait in s. Then, the crashes
cause m1 to use the red path and the other messages to use their
second path from s. Let i “ 2, 3, 4. Message mi reaches the red
edge on its second path at the same time as message m1. Mes-
sage m4 reaches the red edge on its path at time 2, message m3 at
time 3, and message m2 at time 4. Since m1 ă mi, it has prece-
dence over the other message and it traverses the red edge before
them. Thus, messages m2,m3, and m4 reach their target at time 6,
thereby missing the timeout.

We proceed to describe our solution for the problem.

Theorem 4.1. Consider a network N “ xV,Ey, a set of messages
M, a schedule S, a protocol PROT, a timeout t, and values k and
`. We construct an SMT program that has a satisfying assignment
iff S is not pk, `q-resistant, thus there is a fault sequence F that
makes at most k crashes and for which valpS, PROT, F q ă `.

Proof: Recall that a configuration is a snapshot of the network
at a certain time point, and that outpS, PROT, F q is a sequence of
t` 1 configurations. The variables in the SMT program consist of
two types of variables. The first type are crash variables of the form
xe,i, for e P E and 0 ď i ă t. We add constraints so that a truth as-
signment f to the variables that satisfies these constraints, naturally
corresponds to a fault sequence Ff “ T0, . . . , Tt´1, which is de-
fined by Ti “ te P E : fpxe,iq “ ttu, for 0 ď i ă t. The second
type of variables are configuration variables of the form xm,v,i, for
m PM, v P V and 0 ď i ď t. Again, we add constraints, so that a
truth assignment f to these variables simulates outpS, PROT, Ff q.
Namely, we have fpxm,v,iq “ tt iff the position of m at time i
is v in the outcome outpS, PROT, Ff q. This allows us to count the
number of messages that arrive on time in outpS, PROT, Ff q and
require that it less than ` (recall that we want to show that S is not
pk, `q-resistant).

We describe the program in more detail. There are two con-
straints on the crash variables: (1) If an edge crashes, it stays down:
@e P E and 1 ď i ă t, we have xe,i ùñ xe,i`1, and (2) there
are at most k faults:

ř

ePE xe,t ď k.
We describe the constraints on the configuration variables. Re-

call that they allow us to simulate the outcome of the network, given

the fault sequence that the crash variables correspond to. For a mes-
sage m P M, a vertex v P V , and a time 0 ď i ď t, we use the
proposition Uniqpm, v, iq to state that m is on v and on no other
vertex at time i, thus Uniqpm, v, iq “ xm,v,i ^

Ź

u‰v  xm,u,i.
We have constraints that ensure that messages start at their origin:
for every m PM, we have Uniqpm, spmq, 0q.

Next, we add constraints to match the forwarding rules in PROT.
Consider a vertex v P V and a message m P M. Recall that a
forwarding rule is of the form ϕ ùñ u, where ϕ is a proposi-
tional assertion and u P V is the target vertex of the rule. If ϕ is
satisfied and m is at v, then it is forwarded to u in the next time
point. We have t constraints that correspond to a rule ϕ ùñ u.
Consider 0 ď i ď t ´ 1. The i-th constraint is of the form
ψi Ñ Uniqpm,u, i`1q, thus if f satisfiesψi, then fpxm,u,i`1q “

tt, meaning that m is on u at time i ` 1. We define ψi induc-
tively on the structure of ϕ. The base cases are: If ϕ “ m1, then
ψi “ xm1,v,i, if ϕ “ e, then ψi “ xe,i, and if ϕ “

`

Spe, $q “ µ
˘

,
for µ P M Y tKu, then ψi “ tt if Spe, iq “ µ, and ψi “ ff
otherwise. The two inductive cases are as expected. To conclude
the description of the program, we require that less than `messages
arrive at their destination before the timeout, thus we add the con-
straint

ř

mPM xm,tpmq,t ă `.
The following observation connects the program we describe

above with outcomes of the network. The correctness of the pro-
gram immediately follows from it.

Observation 4.2. Consider a truth assignment f to the variables
that satisfies all the constraints, and let Ff be the corresponding
fault sequence. Consider the sequence of configurations Cf “
C0, C1, . . . , Ct that is defined by xm, vy P Ci iff fpxm,v,iq “ tt.
Then, outpS, PROT, F q “ Cf .

Example 4.2. Consider a network with two messages m1 and m2

having m1 ă m2. The network includes a vertex v that has three
outgoing edges e1, e2, and e3. Let e3 “ xv, uy. The first path
for m1 traverses e1 and the first path for m2 traverses e2. Both
their second paths from v traverse e3. Thus, there is a rule at v
for m1 that states that if m1 is on v and e1 crashes, forward m1

to u if it is free: m1 ^ e1 ^ freepe3,m3q ùñ u. A similar
rule is at v for m2. We write these rules as constraints at time
0 ď i ă t. Recall that an edge is free for a message m if no
message is scheduled on it, and if no message m1 ă m tries to use
it. Since e3 is not on a first path, a message is never scheduled on
it. For m1, there is no preceding message, so e3 is always free for
it, and the constraint that matches the rule is: xm1,v,i ^ xe1,i Ñ
xm1,u,i`1. For m2, the edge e3 is free when m1 does not try to
use it. First, m1 uses e3 when m1 is on v and its first choice edge
e1 has crashed: xm1,v,i ^ xe1,i. Thus, the forwarding rule for m2

is xm2,v,i ^ xe3,i ^ pxm1,v,i ^ xe1,iq ùñ xm2,u,i`1.

Remark 4.3. It is possible to devise a different program than the
one in Theorem 4.1 by defining a variable for every configuration.
On one hand, this allows us to settle for a SAT program rather than
an SMT one. But, on the other hand, it results in an explosion
in the number of variables, which makes the approach impractical
even for very small examples.

Remark 4.4. The program we devise in Theorem 4.1 simulates the
forwarding of messages throughout the network. This simulation
enables us to verify other forms of resistance of schedules. For
example, assigning different importance to messages (e.g., critical
vs. non-critical) is common in practice [14]. We can easily adapt
the constraint that at least ` messages arrive, to a (SAT) constraint
that requires all critical messages to arrive and at least ` non-critical
messages arrive.



5. FINDING A RESISTANT SCHEDULE
In this section we study the problem of finding a pk, `q-resistant

schedule, which is the main problem that we intend to solve in
this paper. Recall that such a schedule guarantees that if at most k
edges crash, then, assuming that the switches run a fixed protocol,
the number of messages that arrive on time is at least `.

We devise a CEGAR-like procedure to find a pk, `q-resistant
schedule. Let P be the program that is described in Theorem 3.1
to find a schedule. We run this program to find an initial sched-
ule S. We then check if S is pk, `q-resistant by running the SMT
program that is described in Theorem 4.1. If the second program
returns UNSAT, then S is a pk, `q-resistant schedule and we return
it. Otherwise, the program returns a “counterexample”, which is a
fault sequence F that witnesses the fact that S is not resistant, thus
less than ` message arrive when the faults F occur, and we have
valpS, PROT, F q ă `. We generate a constraint using F , add it
to P , and repeat the process. The algorithm is described in detail
below, where the crux of the approach, namely the method GEN-
ERATECONSTRAINT, is described in the next section.

Input: A network N , a set of messages M, a protocol PROT, a
timeout t, and ` and k.

Output: A pk, `q-resistant schedule or “False” if no such schedule
exists.
Let P be the program described in Theorem 3.1 to find a sched-
ule for M in N .
while true do

if UNSAT(P ) then
Return False

Let S be the schedule that corresponds to a model of P .
if S is pk, `q-resistant then

Return S.
Let T1, . . . , Tt be a sequence of edge crashes for which less

than ` messages arrive.
ψ Ð GENERATECONSTRAINTpT1, . . . , Ttq
Add  ψ to P and solve P .

end while

5.1 Generating a Constraint
We describe how to generate a constraint from a given fault se-

quence. Note that by adding a constraint to the program we elimi-
nate the schedules that do not satisfy it. We maintain soundness in
that we add a constraint that only eliminates schedules that are not
resistant.

Recall that the SMT program we construct in Theorem 3.1 finds
a schedule. We refer to the variables in this program as schedule
variables and they are of the form xe,m,i, for e P E, m P M,
and 1 ď i ď t. Let X be the set of all schedule variables. The
constraints in the program guarantee that there is a one-to-one cor-
respondence between schedules and truth assignments to X that
satisfy the constraints. Such an assignment f : X Ñ ttt,ffu cor-
responds to the schedule that schedules a message m on e at time
i iff fpxe,m,iq “ tt. We sometimes abuse notation and refer to a
schedule that satisfies constraints over X .

Consider a schedule S that is not pk, `q-resistant, and let F “

T0, . . . , Tt´1 be a fault sequence that witnesses this fact. Recall
that outpS, PROT, F q is a sequence C0, C1, . . . , Ct of configura-
tions. Consider a message m P M. Recall that we denote by
outmpS, PROT, F q the sequence of positions ofm in each configu-
ration Ci, where 0 ď i ď t. A sequence of assertions ϕm1 , . . . , ϕmt
corresponds to outmpS, PROT, F q, whereϕmi is the assertion of the
rule according to which m is forwarded at time i, for 0 ď i ă t.

We describe the intuition of the construction. For m P M and
1 ď i ď t, we construct a constraint ψmi from ϕmi , where ψmi

is over schedule variables, thus it constraints schedules. Consider
a schedule S1 that satisfies all of these constraints. We define the
constraints so that, assuming the sequence of crashes that occur
are F , then the outcome of the schedule S1 matches that of the
non-resistant schedule S. It follows that S1 is not resistant. The
argument is inductive. For the base case, recall that all outcomes
start from the same initial configuration. Assume the two outcomes
match upto time 0 ď i ă t. Forwarding depends on three param-
eters: the crashes, the protocol, and the schedule. The first two
match in the two outcomes and the fact that S1 satisfies the ψmi
constraints, for every m PM, implies that the schedules S and S1

forward in the same manner. Thus, the pi ` 1q-th configuration in
the two outcomes also matches. It follows that every schedule that
satisfies all the ψmi constraints is not resistant, thus we add to the
SMT program the constraint  ψ “  

Ź

mPM, 0ďiăt ψ
m
i .

We define ψmi formally. Recall that m is at vertex vi at time i,
and ϕmi is a rule at that vertex. We define ψmi inductively on the
structure of ϕmi . If ϕmi “ m1, then ψmi “ tt if message m1 PM
is in vi’s queue at time i, thus xm1, viy P Ci, and otherwise ψmi “
ff. If ϕmi “ e, then ψmi “ tt if edge e P E has crashed at time i,
thus e P Ti, and otherwise ψmi “ ff. If ϕmi “

`

Spe, $q “ m1
˘

,
then we define ψmi “ xe,m1,i. The two inductive cases are as
expected.

Example 5.1. Consider the setting that is described in Example 3.2:
the network that is depicted in Figure 1, there are four messages
m1,m2,m3, and m4, and the first edge on their first path is e.
Consider the schedule S that is described in Example 3.2, which
has Spe, i ´ 1q “ mi, for i “ 1, 2, 3, 4. For the timeout 5, re-
call that S is not p2, 2q-resistant. The witnessing fault sequence
has two crashes at time 1: the edge e and the edge xa, by that m1

uses. In the first configuration of the counterexample, all the mes-
sages are at their origin. Since no edges crash at time 0, forwarding
is done according to the schedule, thus message m1 traverses e,
and the other messages wait for their turn at s. Thus, m1 follows
the rule ϕm1

0 ùñ a, where ϕm1
0 “

`

Spe, $q “ m1

˘

^  e.
Since e R T0, we have ψm1

0 “ xm1,e,0 ^ tt, which we shorten
to ψm1

0 “ xm1,e,0. Similarly, message mi, for i “ 2, 3, 4, stays
in s according to the rule  

`

Spe, $q “ mi

˘

^  e ùñ s, thus,
after shortening, we have ψmi

0 “  xmi,e,0. At time 1, the edges
crash and the messages enter their second paths. Since the edges
on the second path do not participate in first choice paths, there are
no constraints on the schedule, and all the constraints can be short-
ened to tt. Thus, the constraint we add to the program is essentially
 xm1,e,0. The meaning of this constraint is that all the schedules
in whichm1 is scheduled at time 0 on e are not p2, 2q-resistant, and
we eliminate them all in the first iteration of the CEGAR loop.

We formally prove that the constraint we add is sound.

Lemma 5.1. Let S be a schedule that is not pk, `q-resistant. Let F
be a fault sequence that witnesses its non-resistance, and let ψ “
Ź

mPM, 0ďiăt ψ
m
i be the generated constraint from F . Let S1 be a

schedule that satisfiesψ. Then, outpS, PROT, F q “ outpS1, PROT, F q,
and in particular S1 is not pk, `q-resistant.

Proof: Let outpS, PROT, F q “ C0, . . . Ct and outpS1, PROT, F q “
C 10, . . . , C

1
t. We prove by induction on time 0 ď i ď t that

Ci “ C 1i. For the base case, all messages start from their origin,
thus C0 “ C 10. For the inductive step, we assume that Ci “ C 1i,
and we prove that Ci`1 “ C 1i`1. Consider a message m PM and
let its position in the i-th configuration be v P V , thus xm, vy P Ci.
Recall that Mpv, Ciq Ď M is the set of messages in v’s queue in
Ci. Let ϕmi be the assertion according to which m is forwarded
in outpS, PROT, F q, thus

`

Mpv, Ciq, Ti, i
˘

|ùS ϕmi . We prove



that m is also forwarded according to ϕmi in outpS1, PROT, F q,
thus

`

Mpv, C 1iq, Ti, i
˘

|ùS1 ϕmi . The proof is by induction on the
structure of ϕmi . The base cases in which ϕmi “ e and ϕmi “ m
are immediate as we have Mpv, Ciq “ Mpv, C 1iq. The last case
is ϕmi “

`

Spe, $q “ m
˘

. Thus, we have ψmi “ xe,m,i. Now, S
models ϕmi iff S1 |ù ψmi . The inductive cases are immediate, and
we are done.

Completeness of the CEGAR algorithm follows from the fact
that all correct schedules are solutions for the initial program P .
Thus, we have the following.

Theorem 5.2. The CEGAR algorithm is sound and complete.

5.2 Improving the constraint
In the previous section we describe how to generate a constraint

ψ from a given fault sequence F that witnesses the non-resistance
of a schedule S. We showed that if a schedule S1 satisfies ψ, then
the fault sequence F that witnesses the non-resistance of S also
witnesses the non-resistance of S1. Specifically, we showed that
assuming the sequence of crashes F occurs, then the outcomes of
S and S1 coincide. We added  ψ to our program, thus we elimi-
nate all the schedules that do not satisfy it. Since we want to elim-
inate as many schedules as possible in an iteration, we would like
the constraint we add to be as strong as possible. We suggest an
optimization that attempts to weaken ψ, thus strengthening  ψ.

We describe the approach. Let outpS, PROT, F q “ C0, . . . , Ct.
Recall thatψ is of the formψ “

Ź

1ďjďt ψj . Letψi “
Ź

1ďjďi ψj ,
for 1 ď i ď t, and ψ0

“ tt. Using the same argument as in
Lemma 5.1, we can show that if a schedule S1 satisfies ψi and the
fault sequence F occurs, then the outcome following S1 shares a
prefix of length i with the outcome of S, thus outpS1, PROT, F q “
C0, C1, . . . , Ci, C

1
i`1, . . . , C

1
t.

Intuitively, we check if it is possible to “recover” from the i-
th configuration, for 0 ď i ď t. We fix the fault sequence F ,
which can be thought of as knowing the sequence of failures in
advance. We check whether there is a schedule S1 whose outcome
coincides with the outcome of S in the first i configurations, and
is “resistant” to the specific sequence F . That is, even though its
outcome reaches the configuration Ci, it still manages to deliver at
least ` messages on time, thus valpS1, PROT, F q ě `. Note that
for i “ t, there is no such schedule. On the other hand, if it is not
possible to recover from configuration C0, then there is no pk, `q-
resistant schedule4. Formally, we have the following.

Observation 5.3. If it is not possible to recover from Ci and a
schedule S1 satisfies ψi, then S1 is not a pk, `q-resistant schedule
and F witnesses this fact.

So, rather than adding the constraint  ψ, we look for the mini-
mal i such that it is not possible to recover from Ci, and add  ψi

to the program. To find this minimal i, we construct the following
program.

Theorem 5.4. Consider a schedule S that is not pk, `q-resistant, a
witnessing fault sequence F , and an index 0 ď i ď t. We construct
an SMT program that is satisfiable iff it is possible to recover from
the i-th configuation, thus there is a schedule S1 that satisfies ψi

and has valpS1, PROT, F q ě `.

Proof: The program is a combination of the program to find a
schedule in Theorem 3.1 and the program that finds a fault sequence
in Theorem 4.1. The variables of the program include schedule
4In the sabotage-game terminology, the fault sequence F is a win-
ning strategy for the saboteur.

variables of the form xe,m,j , for e P E,m PM, and i ď j ď t´1,
and configuration variables of the form xm,v,i, for m PM, v P V
and i ď j ď t. The constraints on the schedule variables are
as in Theorem 3.1 apart from the constraint that requires that all
messages arrive on time, which we relax to require that at least `
messages arrive on time.

As in Theorem 4.1, we use the configuration variables to simu-
late the outcome. For a message m P M, a vertex v P V , and a
time i ď j ď t, recall that the proposition Uniqpm, v, iq states that
m is on v and on no other vertex at time j. We add constraints that
ensure that messages start at their position in Ci: for everym PM
and v P V such that xm, vy P Ci, we have Uniqpm, v, iq.

Next, we add constraints to match the forwarding rules in PROT.
Consider a vertex v P V and a message m P M. Recall that a
forwarding rule is of the formϕ ùñ u, whereϕ is a propositional
assertion and u P V is the target vertex of the rule. If ϕ is satisfied
and m is at v, then it is forwarded to u in the next time point. We
have t ´ pi ` 1q constraints that correspond to a rule ϕ ùñ u.
Consider i ď j ď t ´ 1. The j-th constraint is of the form ψj Ñ
Uniqpm,u, j ` 1q, thus if f satisfies ψj , then fpxm,u,j`1q “ tt,
meaning that m is on u at time j ` 1. The difference between
the definition of the constraint here and that in Theorem 4.1 is in
the inductive definition of ψj . There, the “unknown” is the fault
sequence whereas the schedule was known, and here the situation
is opposite. The base cases are: If ϕ “ m1, then ψj “ xm1,v,j ,
if ϕ “ e, then ψi “ tt iff e P Tj , and if ϕ “

`

Spe, $q “

m
˘

, for m P M, then ψj “ xe,m,i, and if Spe, iq “ K, then
ψj “  

Ź

m xe,m,j . The two inductive cases are as expected.
To conclude the description of the program, recall that we check
whether it is possible to recover from Ci, thus we require that at
least ` messages arrive at their destination before the timeout, and
we add the constraint

ř

mPM xm,tpmq,t ě `.

s a

b

u
e1 e2

Figure 2: A network in which the optimization can strengthen
the added constraint.

Example 5.2. Consider the network that is depicted in Figure 2.
There are two messages m1 and m2 with source s and target u.
Only m2 has a second choice path from a, and the path proceeds
through b. Consider the schedule S in which m1 is scheduled on e
at time 0 followed by m2 at time 1. Let ` “ 1, k “ 1, and t “ 3.
Consider the fault sequence in which e2 crashes at time 0. We
claim that F witnesses the non-resistance of S. Indeed, since m1

has no second path from a, it gets stuck there, thus the positions of
m1 in outpS, PROT, F q are s, a, a, a. Recall that m1 uses e1 first,
so the positions of m2 are s, s, a, b, and it also misses the timeout.
The constraint corresponding to the rule according to which m1

is forwarded is ψm1
0 “ xe1,m1,0, and the constraint according to

which m2 is forwarded at time 1 is ψm2
1 “ xe1,m2,1. Thus, ψ is

essentially ψm1
0 ^ψm2

1 . Note that it is not possible to recover from
the configuration C1. On the other hand, it is possible to recover
from the configuration C0. Indeed, if m2 is scheduled on e1 first,
then if e2 crashes at time 0, m2 will still reach u by time 3. Thus,
we add to the program the constraint  ψ1

“  ψm1
0 .

6. EVALUATION
We have implemented the CEGAR loop for finding a pk, `q-

resistant schedule, which is described in Section 5, assuming that
the switches run the two-path protocol. Our implementation is in



Python and relies on Z3 [13] as an SMT solver. We ran our exper-
iments on a personal computer, Intel Core i5 quad core 1.75 GHz
processor, with 8 GB memory.
Network and path generation We evaluate the algorithm on net-
works that were generated randomly by the Python library Net-
workx [15]. The networks are generated in the following manner.
We fix the number of vertices, edges, and messages. We generate
a random directed graph. Once we have a graph, we randomly se-
lect a source and a target for each message, while guaranteeing that
these are different nodes. We refer to a graph and messages with
the source and the target vertices, as the setting. The computations
on a setting are all deterministic.

As a last step before finding a schedule, we find first- and second-
paths for each message. We note that the problem of finding “good”
paths is a crucial component of the protocol. It is a challenging
problem both theoretically and practically, and it is out of the scope
of this paper. We now describe the path-finding algorithm we use.
We start with a simple approach. Consider a message m P M.
Recall that spmq and tpmq denote the source vertex and the target
vertex of message m, respectively. The first path is the shortest
path between spmq and tpmq. To find the second path, we remove
the edges that the first path traverses. For each vertex v on the first
path, we set the second path from v to be the shortest path from v to
tpmq in the new graph, if it exists. The problem with this simple ap-
proach is that the second paths are of similar lengths for the differ-
ent messages, making it hard to evaluate the CEGAR loop. Thus,
we improve the approach by, intuitively, having messages avoid
heavily loaded edges when selecting the two paths. Technically, the
graph is now weighted. The weight of an edge refers to the num-
ber of times it appears in a first or second path. We construct the
weights in the graph incrementally. The weights start from 0. We
order the messages arbitrarily and choose them one by one. When
a message is chosen, it selects its first and second paths similarly to
the above (only running Dijkstra’s algorithm rather than a BFS for
finding shortest paths). The weight of every edge on the first and
second path is incremented by 1.
Execution time measurements We elaborate on the pseudo-code
that is described in Section 5. An execution starts with an initial-
ization phase (or Setup), in which the method DSCHED, implement-
ing the program described in Theorem 3.1, is called; followed by
the iterative phase, which we refer to as the CEGAR loop. Method
DSCHED returns the initial schedule to be used in the CEGAR loop.
An iteration starts with a call to the method ISRESIST, which is an
implementation of the program that is described in Theorem 4.1.
Method ISRESISTpS, k, `q returns tt and concludes the iterations
if schedule S is pk, `q-resistant, or otherwise it returns a fault se-
quence that witnesses the non-resistance of S. If the schedule is not
pk, `q-resistant, the second method that is run in the CEGAR itera-
tion is DSCHEDGIVCONF, which implements the optimization that
is described in Theorem 5.4. A call to DSCHEDGIVCONFpF,Ciq
returns tt if it is possible to recover from the configuration Ci, as-
suming the sequence of faults F occurs. This check is performed
for every time point 0 ď i ď t´ 1 such that the i-constraint is not
tt. If for some time i, it finds that it is not possible to recover from
Ci then ψi is added to the SMT program. The iteration ends with
a call to the SMT solver. If it is SAT, then we generate a sched-
ule for the next iteration, whereas if it is UNSAT, we terminate and
return that no pk, `q-resistant schedule exists.

Our goal in the implementation is to evaluate the performance
of our CEGAR loop rather than focusing on scalability. In our ex-
periments we considered small settings (S) with 30 vertices, 50
messages, 40 edges, a timeout of 10, and ` “ 45 while considering
different values for k, and a larger setting (L) with 100 vertices,

150 messages, 200 edges, a timeout of 12, and ` “ 150. For
each setting, we measured three different aspects: the time needed
for the Setup phase, the average time needed to execute one itera-
tion and the average number of iterations required before finding a
pk, `q-resistant schedule. The iteration execution times were mea-
sured first without applying the optimization, in what we call the
Basic loop, and then with the optimization. Our intention was un-
derstanding the contributions in terms of execution time of the dif-
ferent methods of the approach and assess the improvement caused
by the optimization.

Table 1 shows the execution time of the Setup phase and of the
basic iteration (I-Bas) and the optimized iteration (I-Opt). The val-
ues have been averaged over 3-5 executions.

Size: k Setup (sec) I-Bas (sec) I-Opt (sec)
S: k “ 1 2.03 11.3 27.17

S: k “ 2 2.04 17.64 31.5

S: k “ 3 2.07 17.42 31.08

L: k “ 1 11.92 142.18 261.91

Table 1: Execution times of the Setup phase and the iterations
(without and with optimization) of the CEGAR loop.

It is interesting to observe that the execution time of one iteration
with optimization is sensibly longer than the one of a basic itera-
tion. Nevertheless, considering the overall time needed for finding
a pk, `q-resistant schedule, the optimization yields much better re-
sults than the basic loop. In Table 2 we show the average number
of iterations till the CEGAR loop terminates when the optimization
is used: typically, the CEGAR loop terminates after one or two it-
erations. If the optimization finds that it is not possible to recover
from the first configuration C0, it adds the constraint ff to the pro-
gram, thereby indicating that no pk, `q-resistant schedule exists and
terminating the CEGAR loop. We find that this generally occurs in
the first few iterations. In contrast, when running the CEGAR loop
with no optimization, the performance is poor. The run either finds
the first schedule to be pk, `q-resistant or it does not terminate.

Size: k Number of iterations
S: k “ 1 1.4
S: k “ 2 1.2
S: k “ 3 1.4
S: k “ 4 1
L: k “ 1 1.3

Table 2: The average number of iterations till the CEGAR loop
terminates.

Additional results We found the following workflow convenient
and useful in practice. We assume the network is typically fixed
as well as the number of faults k. For a fixed setting, and fixed k,
we refer to the best ` as the highest ` such that a pk, `q-resistant
schedule exists and no pk, ` ` 1q-resistant schedule exists. If the
best ` is too low, the designer can use redundancy and increase
m. We observe that it is convenient to run the CEGAR loop with
` “ m. Since we assume k ą 0, it is rare that a pk,mq-resistant
schedule exists. But, an initial schedule S is typically found.

We implemented a method, which we call CALC-`, that finds the
largest `S such that S is pk, `Sq-resistant. This `S gives us a guess
on the best `. The method we implement is a binary search that per-
forms calls to the method ISRESIST. That is, for 0 ď c ď `, we call
ISRESISTpS, k, cq. If it returns tt, then S is pk, `q-resistant and
we increase c, and otherwise we decrease c. As mentioned above,



the programs in the binary search differ in exactly one constraint;
the constraint that guarantees that less than ` messages arrive on
time. Amortizing the construction helps, but the running time of
this method is significant („ 823s for S:k “ 3 and „ 9386s for
L:k “ 1) mostly due to calls to ISRESIST that are UNSAT.

We observe one phenomenon that is surprising for us. Often
the first schedule is the “best” schedule. That is, if S is the first
schedule that is found and its guarantee is `S , then `S is often the
best `. To verify that `S is indeed the best `, we run the CEGAR
loop with the same setting and set ` “ `S ` 1. The reason behind
this result remains unknown and will require further investigation.

7. CONCLUSION
In this paper, we propose a new method for guaranteeing re-

silience in TT-scheduling switched networks with link failures. Our
approach maintains the assumption that the switches have limited
computational power while allowing the network some fault toler-
ance by having the switches run a simple error recovery protocol.

We introduced the definition of a pk, `q-resistant schedule, which
formalizes a notion of a guarantee of a schedule, given an assump-
tion on the degree of failures in the network. In order to find
a pk, `q-resistant schedule we devised a CEGAR-like approach,
which we have implemented. We evaluated the approach and found
that our algorithm for generating pk, `q-resistant schedules can be
successfully used for small and moderately sized networks with a
few hundred nodes. Our results are promising: the CEGAR loop
typically terminates within several iterations.

There are many directions for future work and we list some here.
First, we considered one type of failures, namely permanent link
crashes. Other relevant fault models for switched networks include
omission faults and delayed messages. Our definition of a resistant
schedule as well as our solution, does not immediately follow to
networks suffering from such failures, and both need to be adapted.
Second, we assume that the switches run a fixed protocol. An in-
teresting extension would be to synthesize a protocol that is good
for a given network as well as an accompanying schedule. Third,
the constraints of our scheduler are based on a simple traffic model,
and it is interesting to integrate our approach with schedulers that
handle more complex constraints, like mixed-criticality or appli-
cation constraints. Finally, we would like to investigate how our
algorithm scales with even bigger networks possibly by adapting
techniques such as segmented scheduling [23], which allow find-
ing TT-schedules in extremely large networks.
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