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Abstract Multistable systems are characterized by
exhibiting domain coexistence, where each domain
accounts for the different equilibrium states. In case
these systems are described by vectorial fields, domains
can be connected through topological defects. Vortices
are one of the most frequent and studied topological
defect points. Optical vortices are equally relevant for
their fundamental features as beams with topological
features and their applications in image processing,
telecommunications, optical tweezers, and quantum
information. A natural source of optical vortices is the
interaction of light beams with matter vortices in liquid
crystal cells. The rhythms that govern the emergence of
matter vortices due to fluctuations are not established.
Here, we investigate the nucleation mechanisms of the
matter vortices in liquid crystal cells and establish sta-
tistical laws that govern them. Based on a stochastic
amplitude equation, the law for the number of nucleated
vortices as a function of anisotropy, voltage, and noise
level intensity is set. Experimental observations in a
nematic liquid crystal cell with homeotropic anchoring
and a negative anisotropic dielectric constant under the
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influence of a transversal electric field show a qualita-
tive agreement with the theoretical findings.
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1 Introduction

Out-of-equilibrium systems often exhibit multistabil-
ity, that is, by setting the parameters of the system,
and for different initial conditions, these systems can
exhibit different equilibrium states [1,2]. In the case
that these equilibria account for the orientation of some
physical quantities (vector fields), the union of three
different domains is characterized by exhibiting a vor-
tex [1,3]. These vortices correspond to points or lines
where the magnitude of the vector quantity is zero, and
its respective phase value is undefined, phase singular-
ity. Examples of everyday vortices are eddies or tor-
nadoes in fluids, hair whorl, umbilic defects in liquid
crystals, and skyrmions in magnetic systems.

In the last decades, a great effort has been devel-
oped to understand spiral-out light beams about their
axis of propagation, orbital angular momentum of light
or optical vortex [4–8]. These beams have a donut-
like structure, that is, the beam intensity cancels out
into the center, generating a phase singularity into the
envelope. In addition, the light beams are characterized
by fading asymptotically from the center. Around the
point of zero intensity, the phase distribution forms an
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N -armed spiral, with N being the topological charge
[3,5–8]. These optical vortices have aroused interest
from both the fundamental and applied point of view.
The photonic applications range from optical tweez-
ers [9–11], enhancement of astronomical images [12],
quantumcomputation [13],wavefront sensors [14], and
data transmission [15]. From a fundamental point of
view, the interchange of angular momentum between
light and matter has attracted attention (see the col-
lected articles [8] and references therein). Different
methods have been used to generate optical vortices
based on diffractive elements [16], deformable mirrors
[17], holograms [18], spiral phase plates [19], nanos-
tructured glass plates [20], planar chiral meta-surfaces
[21], wavelength-adaptable effective q-plates with pas-
sively tunable retardance [22], and helical structures of
liquid crystals [23–26]. In most of these methods, the
light beam interacts with amaterial object which has an
intrinsic helicity. Hence, to control the optical vortex,
it is important to have an adequate alignment between
the light beam, the helical target, and the geometry of
it. In the case of liquid crystals, the light induces a vor-
tex in the matter (umbilical defect), with which inter-
acts, generating an optical vortex by photoconductor
walls [26,27], photovoltaics walls [28], temperature
gradients [29], combination of a magnetic ring and
oscillatory electric field [30,31], combining an exter-
nal pressure and electric field on a homeotropic liq-
uid crystal cell [39], and azo dye dopants [33]. The
vortex-like defects have accompanied liquid crystals
since their discovery in 1889 by Lehmann [34]; later,
Friedel solved its detailed topological structure [35],
which was complemented by the elastic theory of crys-
tals by Frank [36]. Because of the topological struc-
ture of these defects corresponding to a rodlike object
in three dimensions, these defects are usually called
nematic umbilical defects [37]. Microstructured pillar
patterns [38], interaction between the vortices and the
excitation of stationarywaves [39], and low-frequency-
driven voltage [40] can induce patterns of tunable
umbilical defects. The dynamics and properties of
umbilic defects can be described employing the Frank–
Oseen free energy [41–43]. This description includes
an order parameter that accounts for molecular orienta-
tion, the director n. The dynamic behavior of the direc-
tor is based on the minimization of the free energy with
the restriction of the conservation of the director norm.
This minimization generates complex vector dynamics
to describe the defects of liquid crystals. However, a

more accessible approach that captures the dynamics
of umbilic defects is through the dynamics of a criti-
cal mode of the director, which satisfies the Ginzburg–
Landau amplitude equation with real coefficients [27,
45].When a sufficiently large electric field is applied to
a nematic liquid crystal cell with homeotropic anchor-
ing and a negative anisotropic dielectric constant, a gas
of umbilical defects emerges (see Fig. 1). These defects
later begin to be annihilated by pairs with opposite
charges to minimize the free energy [41]. Figure 1c
shows two vortices of opposite charge under circular
crossed polarizers. To our knowledge, the emergence
process and statistical rules governing this phase sin-
gularity gas have not been established.

The paper aims to establish the nucleation mech-
anisms of the matter vortices in nematic liquid crys-
tal cells and provide statistical laws that govern them.
Basedona stochastic amplitude equation, theGinzburg–
Landau equation with additive noise, we establish the
law for the number of nucleated vortices as a function
of anisotropy, bifurcation parameter, and intensity of
the noise level. Experimentally, we consider a nematic
liquid crystal cell with homeotropic anchoring and a
negative anisotropic dielectric constant under the influ-
ence of a transverse electric field. The average number
of umbilical defects as a function of the applied voltage
and temperature shows a qualitative agreementwith the
theoretical findings.

The article has the following structure: Liquid crys-
tal cells, the experimental setup, and experimental
vortices nucleation and annihilation are described in
Sect. 2. The amplitude equation that accounts for the
reorientationdynamics of a nematic liquid crystal cell is
presented in Sect. 3. In addition, a numerical and exper-
imental analysis of vortex nucleation is presented. Our
conclusions and comments are left for the final section.

2 Nematic liquid crystal cell

Nematic liquid crystals are nonlinear optical media
[41–43], composed of rodlike molecules that have a
preferential orientation order but not a positional one.
This state ofmatter shares features of solids and liquids,
such as fluidity and birefringence. Introducing a liquid
crystal inside a cell, that is, it is sandwiched between
two confining glass layers, the molecules are ori-
ented according to anchoring conditions. Homeotropic
anchoring is characterized by molecules that are ori-
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Fig. 1 Vortex nucleation in a nematic liquid crystal light cell
with homeotropic anchoring and negative dielectric anisotropic
constant. The rods represent schematically the typical direction
in which the molecules are oriented. a Schematic representation
of the experimental setup. The setup consists of white light, a
thermal control chamber (thermal stage) with a nematic liquid
crystal cell (NLC) inside to which a vertical voltage is applied.
The thermal control chamber is between two cross-polarizers
(linear or circular). An objective of magnification N (5 or 50)
and a CMOS camera monitor the nematic liquid crystal cell. b
Snapshot of a vortex gas obtained in a nematic liquid crystal
cell between linear cross-polarizer, using an objective of magni-
fications N = 5. The lower inset is a schematic representation
of the director and its associated complex amplitude. c Vortices
of positive and negative charge observed with crossed circular
polarizers and using an objective of magnifications N = 50. d
Snapshot of a vortex gas obtained in a nematic liquid crystal cell
between circular cross-polarizer, using an objective of magnifi-
cations N = 5

ented orthogonal to cell walls, as illustrated in Fig. 1a
by rods. If the dielectric anisotropic constant of the liq-
uid crystal is negative, when applying a vertical electric
field, the molecules tend to orient orthogonal to it. The
elastic and electric energy determines the equilibrium
angle of the average molecular orientation to the verti-
cal axis. This generates different domains connected
by orientation defects or phase singularities, matter
vortices [41]. Figure 1b shows the umbilical defects

observed in a liquid crystal nematic cell. The defects
correspond to the intersection of two black fringes.

2.1 Experimental setup

Let us consider a 15-µm-thick cell (SB100A150uT180
manufactured by Instec), filled with nematic liq-
uid crystal LC BYVA- 01 (Instec) with dielectric
anisotropy εa = −4.89, birefringenceΔn = ne−no =
0.1, rotation viscosity γ = 204 mPas, splay and bend
elastic constant, respectively, K1 = 17.65 pN and
K3 = 21.39 pN. To guarantee the thickness of the liq-
uid crystal cell, there are randomly distributed 15-μm-
thick glass beads inside it. This liquid crystal is nematic
in the −20–92 ◦C; at 92 ◦C, it exhibits a nematic–
isotropic transition. This liquid crystal cell is placed
inside a thermal control chamber (Linkam LTS420),
which in turn is inserted inside a microscope (Leica
DM2700P), in between the crossed linear or circular
polarizers. Figure 1a shows a schematic representation
of the experimental setup. To monitor the images, an
objective of magnification N (5 and 50) and a CMOS
camera is connected to the microscope. A sinusoidal
voltage with a frequency of 100 Hz is applied to the
sample.

2.2 Experimental vortices nucleation

Maintaining the temperature at 26 ◦C, the voltage is
turned on and the dynamics of vortex nucleation and
annihilation are recorded. Figure 2 depicts the tempo-
ral evolution of the observed umbilical defects. To fig-
ure out vortex evolution, we have considered a volt-
age sweep between 9.0 Vpp and 30.0 Vpp. Likewise,
keeping the voltage at 15 Vpp it is switched on and
sweeping the temperature between 25 and 80 ◦C, the
dynamics of vortex nucleation is analyzed. From the
chart in Fig. 2a, we infer that there is an abrupt process
of vortex nucleation. Once the voltage is turned on,
we immediately observe the appearance of domains.
These domains are separated by interfaces that are rec-
ognized by the camera. All these different and com-
plicated domains are a consequence of inert thermal
fluctuations and spatial inhomogeneity (spacer and
cell imperfections), which cause the molecules to ori-
ent themselves in different directions transverse to the
applied electric field. Later, the domain interfaces are
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Fig. 2 Nucleation and evolution of umbilical defects in a
nematic liquid crystal cell driven by an electric field. a Experi-
mental temporal evolution of the number of vortices as a func-
tion of time. The painted and unpainted region accounts for
the vortex nucleation and annihilation regime. b Panels account
for a temporal sequence of snapshots of a liquid crystal cell
driven by an electric field, under cross-circular polarizers, and
constant temperature (t1 = 0 s, t2 = 1 s, t3 = 4 s, and
t4 = 7 s). c Numerical temporal sequence of polarized field
Ψ (r, t) = Re(A)Im(A) obtained by the numerical simula-
tions of the stochastic Ginzburg–Landau Eq. (4) with μ = 1.0,
δ = 0.0, and T = 0.01 (t1 < t2 < t3 < t4)

destabilized, through the emergence of vortices. The
above process occurs in fractions of a second. Hence,
vortices quickly emerge, as illustrated in Fig. 2. Once
established a vortex gas, the vortices are subsequently
annihilated by pairs of opposite charges (see insets in
Fig. 2b), generating a coarsening processes character-
ized by a power law [46].

In brief, once the voltage is applied to the nematic
liquid crystal cell, vortices are generated rapidly by
thermal agitation and evolve through a pair interaction
process.

3 Theoretical description of the vortices nucleation

Nematic liquid crystals are a state of the matter char-
acterized by present molecular orientation, but not
a positional order [41,42]. Considering a fixed tem-
perature, this molecular orientation is characterized
and described by the normalized director vector field
n(r, t) [41,42]. The dynamics of the director n satis-

fies a Frank–Oseen free energy minimization princi-
ple [41,42]

F [n] =
∫ (

K1

2
(∇ · n)2 + K2

2
(n · ∇ × n)2

+ K3

2
(n × ∇ × n)2 + εa

2
(E · n)2

)
dV, (1)

with the restriction |n|2 = 1, where K1, K2, and K3 are
the elastic constants that account for the splay, twist,
and bend deformation of the liquid crystals, respec-
tively. εa is the anisotropic dielectric constant, and
E is an electric field. Hence, the director equation
reads [41,42]

γ n × ∂n
∂t

= −n × δF
δn

, (2)

where γ is the rotation viscosity.
When one considers a nematic liquid crystal cell

with homeotropic anchoring (molecules are oriented
perpendicular to the walls), as a result of elastic inter-
action, all molecules are oriented orthogonal to thewall
cells. Hence, the homeotropic state satisfies n = ẑ,
where ẑ accounts for the unitary vector orthogonal to
the wall cells. In the case that the liquid crystal has
a negative anisotropic dielectric constant (εa < 0),
when applying a sufficiently large vertical electric field

E = Ec = √−K3π2/d2εa ẑ, molecules become mis-
aligned with the direction of the electric field, reorien-
tation instability [41,42,44]. This instability is known
as the Freédericksz transition [44]. Close to the ori-
entational instability of molecules, the director can be
approached by [27]

n(r, θ, z) ≈
⎛
⎜⎝

u(r, θ, t) sin(π z
d )

w(r, θ, t) sin(π z
d )

1 − (u2+w2)
2 sin2(π z

d )

⎞
⎟⎠ , (3)

where d is the thickness of the cell and {r, θ, z} are
the cylindrical coordinates. Introducing the complex
order parameter A = u+iw in the director equation (2)
close to the reorientational instability and imposing the
solvability condition for small director corrections after
straightforward calculations, the amplitude equation of
the order parameter reads (the stochastic Ginzburg–
Landau equation) [27,45,47]

∂t A = μA−a|A|2A+∇2A+δ∂η,η Ā+√
T ζ(r, t), (4)
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where the complex field A(r, t) accounts for the ampli-
tude of the critical elastic mode that describes the devi-
ation of the molecular director with respect to the verti-
cal direction. Ā accounts for the complex conjugate of
A. μ is the bifurcation parameter that is proportional
to the voltage minus the critical Frédericksz voltage
VFT ≡ √

K3π2/|εa | [27,45,47], which is related to
the physical parameters as follows:

μ = −K3
π2

d2
− εaE2

c = K3
π2

d2

(
V 2

V 2
FT

− 1

)
, (5)

where d is the cell thickness and V = −||E||/d is
the voltage applied to the liquid crystal cell. The tem-
poral and spatial scales are in units of rotation vis-
cosity γ and elastic constants K1 + K2, respectively.
δ = K1−K2/(K1+K2) is the parameter that accounts
for the elastic anisotropy of the nematic liquid crystal.
∂η ≡ ∂x + i∂y is the Wirtinger differential operator;
note that the Laplacian operator satisfies ∇2 = ∂η,η̄.
a = −K3π

2/d24−3εaE2/4 accounts for the nonlinear
saturation coefficient. Our system presents noise due to
the inherent fluctuations of the liquid crystal cell as a
result of thermal fluctuations and noise in the electrical
control and measurement system; particularly, the lat-
ter is difficult to control. Hence, we have included an
additive noise in the amplitude Eq. (4), where ζ(r, t) is
a Gaussian white noise with zero mean value 〈ζ 〉 = 0
and correlation 〈ζ(r, t)ζ̄ (r′, t ′)〉 = δ(t−t ′)δ(r−r′). T
accounts for the noise intensity level. A detailed deriva-
tion of the model Eq. (4) and its parameters from the
dynamics of the director is presented in Ref. [27]. Note
that the bifurcation parameter μ close to the Fréeder-
icksz voltage behaves linearly, and as one increases the
voltage, this parameter depends nonlinearly on it.

3.1 Theoretical vortices nucleation

For μ � 0, the Ginzburg–Landau Eq. (4) has a null
solution A = 0 as a stable equilibrium, which corre-
sponds to that the molecules are not reoriented, that
is, homeotropic state is the stable configuration. For
μ > 0, the homeotropic state A = 0 becomes unstable
by means of a degenerate pitchfork bifurcation, giving
rise to the appearance of vortices [47]. This instabil-
ity is a second-order transition that originates differ-
ent domains of equilibria A = √

μ/aeiθ0 where θ0 is
an arbitrary constant. This instability is well known

as the Fréedericksz transition [48]. In this regime of
parameters, the stochastic fluctuations induce differ-
ent domains connected by point defects (phase sin-
gularities). Figure 2b shows the emergence of vor-
tices in model Eq. (4) as a result of stochastic fluc-
tuations. To compare with the experimental observa-
tions, Fig. 2b shows a color map of the auxiliary field
Ψ ≡ Re(A)Im(A), usually called the polarization
field [27]. Note that Ψ (r, t) vanishes for any of null-
clines of A, Re(A) = 0 or Im(A) = 0. The intersec-
tion of two nullclines, black fringes in Fig. 2b, accounts
for a vortex. As in the experiment, initially the noise
nucleates a large number of vortices (see the inset t1 in
Fig. 2b), which are subsequently annihilated by oppo-
site pairs. Thedynamics of vortex annihilation followed
a coarsening process [3], which is illustrated in the
sequence of colormaps in Fig. 2b. It is important to note
that the amplitude equation does not fully describe all
the dynamics observed experimentally. In particular,
model Eq. (4) does not account for the initial creation
of domains. However, it gives an adequate description
of the vortices and their respective dynamics. Numeri-
cal simulations of the model Eq. (4) were implemented
using a finite differences scheme in space that uses a
centered stencil of five grid points with Runge–Kutta
order-4 algorithm, with a 500 × 500 points grid tem-
poral step dt = 0.0004 and Neumann boundary condi-
tions.

Numerically, we have monitored the number of vor-
tices at a given instant as a function of the bifurca-
tion parameter μ. Figure 3a summarizes the results
found. From these charts, we infer that the number
of vortices grows to a good approximation linearly
with the bifurcation parameter. Likewise, we note that
this behavior is not substantively modified when we
change the anisotropy δ. To compare and validate this
numerical result, we have experimentally studied the
number of umbilical defects N at an instant as a func-
tion of the voltage applied to the liquid crystal sample.
We found that the number of defects grows with the
voltage, which shows a qualitative agreement with the
numerical results (cf. Fig. 3b). From these experimen-
tal charts, one can infer that the tendency to the number
of defects increases as a function of the applied voltage.
For an instant of premature elapsed time, we observe a
trend of the linear type (see the top panel of cf. Fig. 3b);
however, we observe a more nonlinear trend as a func-
tion of applied voltage for longer elapsed times (see the
bottompanel of cf. Fig. 3b). Thismay be a consequence
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Fig. 3 The number of defects in a given instant as a function of
the bifurcation parameter. aThe number of defects obtained from
numerical simulations of Eq. (4) withμ = 1.0 and a=1, different
anisotropy δ and intensity of the level of noise T at t = 12 (top
panel) and t = 60 (bottom panel). The points with a bar account
for mean value and standard deviation obtained after carrying
out for each parameter 30 realizations. The continuous curves
account for the linear trend exhibited by the numerical data. b
Number of umbilical defects as a function of the driven voltage
at t = 0.5 s (top panel) and t = 1.0 s (bottom panel). The points
with a bar account for mean value and standard deviation divided
by the square root of the realization number of measurements,
which were obtained after five experimental realizations. The
dashed curves (linear fits) account for the linear trend exhibited
by the experimental data. In the lower panel, two zones have also
been considered in which a parabolic one (local fit 1) follows a
linear fit (local fit 2)

of the strong nonlinear response of the system that we
have ignored in our simple model, which is approx-
imated by taking the first dominant nonlinearities [cf.
Eq. (4)]. The dependency of these high nonlinear terms
and the voltage has a complex relation, as illustrated by
the cubic coefficient formula (4).

The defects emerge from the homeotropic state, due
to the inherent fluctuations of the system. The imper-
fections in the experiment, electronic noise, and ele-
ments ignored in our theory, such as black flow and
movements of charges, may be responsible for the dif-
ferences in fine-tuning between simulations and exper-
iments.

3.2 Statistical law of vortex nucleation

To figure out the nucleation process, we approximate
the model Eq. (4) by its deterministic linear part and

consider the Fourier mode decomposition

A(x, y, t) = Ake
σ t+i(kx x+ky y), (6)

after straightforward calculations, we get

σ = μ − k2x (1 + δ) − k2y(1 − δ) ± 2iδkxky, (7)

where Re[σ ] ≡ μ−k2x (1+δ)−k2y(1−δ) is the growth
rate mode, and kx and ky are wavenumber modes
in the horizontal directions. The Im[σ ] = ±2δkxky
accounts for the dispersion relation. The condition
Re[σ(kx , ky)] > 0 corresponds to unstable spatial
modes. Notice that white noise is characterized by
excited in the same manner all modes [49]. Indeed,
the stochastic fluctuations of a white noise on average
excite all spatialmodes in the samemanner. The bound-
ary conditions and geometric dimensions of the system
determine thewavenumbers ofmodes. For simplicity, if
we consider periodic boundary conditions and a square
domain wavenumbers take the form kx = 2πn/L and
ky = 2πm/L , where L is the size of the box and {n,m}
are integer numbers. Then, the amplitude of a mode
(n,m) can be written in the form

Re
[
A(n,m)

]

= a0 cos

(
2πn

L
x + φ0

)
sin

(
2πm

L
y + φ1

)
, (8)

where a0, φ0, and φ1 are constants characterizing the
spatial mode. The nodes of the spatial modes corre-
spond to zeros of the amplitude, A(n,m) = 0; that is,
these nodes correspond to phase singularities for the
spatial modes. The spatial mode with the maximum
number of vortices (nodes) corresponds to Re(σ ) = 0.
To calculate this maximum number of vortices, we pro-
ceed by calculating the number of nodes in one direc-
tion

Re[σ(nc, ky = 0)] = μ −
(
2πnc

L

)2

(1+ δ) = 0. (9)

Then, the critical number of nodes is

nc =
(

L

2π

) √
μ

(1 + δ)
. (10)
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for the linear trend exhibited by the experimental data

Applying the same condition in the other direction, that
is, Re[σ(kx = 0,mc)] = 0, we get

mc =
(

L

2π

)√
μ

(1 − δ)
. (11)

Finally, we determine themaximumnumber of vortices
(nodes) of the critical spatial modes by

N = ncmc =
(

L

2π

)2
μ√

(1 − δ2)
. (12)

Notice that all other unstable modes also have a
number of nodes proportional to the previous expres-
sion multiplied by a proper fraction. As we have men-
tioned, the stochastic fluctuations generated by white
noise excite both the stable and unstable modes in the
same manner. On the other hand, the stable modes are
damped, and the unstable ones grow as a consequence
of the linear dynamics of the model Eq. (4). Hence,

the number of vortices is proportional to the previous
expression, in particular to the bifurcation parameter,
which is consistent with what is observed numerically
and experimentally (see Fig. 3). Then, Formula (12)
predicts that the number of vortices grows linearly with
the voltage close to the Frédericksz voltage (experi-
mentally VFT = 6.57 Vpp). This result is consistent
with the linear fit considered in Figure 3b (upper panel).
For higher voltage values, it has nonlinear corrections
due to nonlinear saturation. However, for longer times,
the interaction of the vortices and their dependence on
the voltage change this tendency, which could explain
what was observed experimentally (lower panel). A
more detailed study of this phenomenon is in progress.

Likewise, we note that expression (12) predicts that
the number of vortices diverges when δ tends to 1.
This result is natural from a physical point of view,
because if δ2 = 1, then some of the elastic constants
diverge or disappear, which corresponds to a transi-
tion from a nematic liquid crystal to another matter
state [41]. Figure 4 shows the number of vortices at a
given moment as a function of the anisotropy parame-
ter δ. This type of result shows an excellent agreement
with analytical expression (12). To study its trend, we
have used a more general fitting function of the form
N = A/(1−δ2)b +C , which can take into account the
nonlinear effects and errors of the vortex measurement
method. From charts, Fig. 4a, b, notices that the criti-
cal exponent b evaluated at higher times is dissimilar
that predicted theoretically. This effect is due to the fact
that nonlinear terms begin to play a non-negligible role.
Note that Formula (12) only contains the effects of lin-
ear theory. Experimentally, we cannot carry out a simi-
lar analysis since elastic anisotropy δ is determined by
intermolecular interactions that we cannot control. One
possibility of carrying out the experimental study of the
dependence of the number of vortices as a function of
anisotropy N (δ) would be to use different liquid crys-
tals with different elastic constants. However, different
liquid crystals have different rotational viscosities and
dielectric anisotropic constants [41–43]; therefore, the
noise level would change, not allowing an adequate
analysis. Likewise, one could study the nucleation of
vortices close to a nematic–smectic transition of the
liquid crystal, where the constants K2 and K3 increase
significantly [41]. However, the more overwhelming
growth of K3 generates important modifications in the
size of the vortex and in the voltage applied to generate
the orientation transition, producing, in turn, an uncon-
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trolled increase in noise in the system. Therefore, it
makes the study of vortex nucleation equally complex.

Formula (12) does not depend on the noise intensity
level T . Indeed, the number of vortices (nodes) does
not depend on the intensity of the noise; however, their
presence is essential to stimulate unstable modes. Fig-
ure 4c shows that effectively the noise intensity level
does not affect the number of vortices created. When
the noise intensity is large, T > 20, the determin-
istic linear theory is no longer valid and the vortices
are no longer related to the linear modes (see Fig. 4c).
Indeed, for these levels of noise values the system can
be approximated by a purely stochastic one. Experi-
mentally to study the effect of the inherent fluctuations
of our physical system, we have studied the number
of vortices in a given moment as a function of tem-
perature. Figure 4d summarizes the results found. We
infer that there is a tendency to increase the number of
vortices with temperature. The increase in temperature
has a double effect; on the one hand, it increases the
thermal fluctuations and, in turn, modifies the elastic
constants [50]. This combined effect is responsible for
the increase found in the number of vortices.

4 Conclusions and remarks

During the last decades, much effort has been focused
on understanding topological defects and their dynam-
ics. However, the emergency processes of these intrigu-
ing solutions have been scarcely addressed. Based on
linear theory and stochastic fluctuations, we can estab-
lish that the matter vortices are a consequence of the
different excited unstable spatial modes. The above is
summarized by Formula (12) multiplied by a constant
that accounts for the effect of all unstablemodes. There-
fore, we can establish that the number of vortices grows
proportional to the bifurcation parameter; it is inverse to
the square of the elastic anisotropy and does not depend
on the level of the noise intensity. Experimental obser-
vations show a qualitative agreement with theoretical
findings. Discrepancies between experimental obser-
vations and theoretical predictions are mainly due to
vortex interactions, spatial inhomogeneities, imperfec-
tions, and glass beads (spacers), inherent in all experi-
ments, which are not considered in our simplified the-
ory. Incorporating these effects in theory and their
respective experimental analysis is in progress.

An interesting result of Formula (12) is the diver-
gence of the nucleation of vortices when the anisotropy
δ = 1. Experimentally carried out, this study is com-
plex since themodifications of δ (change of liquid crys-
tal, nematic–smectic transitions) entail strong fluctua-
tions due to the fluctuation–dissipation relationship.

The number of vortices for long times, where the
nonlinear theory governs the dynamics of the system,
can no longer be given by Formula (12) since the inter-
action of the vortex pair begins to annihilate vortices,
as illustrated in Fig. 2. The complete expression of the
number of vortices as a function of time is an open
problem.
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