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Abstract: We show that the fluctuations of the largest eigenvalue of a real symmetric
or complex Hermitian Wigner matrix of size N converge to the Tracy—Widom laws
at a rate O(N~!/3*®) as N tends to infinity. For Wigner matrices this improves the
previous rate O (N ~2/9+®) obtained by Bourgade (J Eur Math Soc, 2021) for general-
ized Wigner matrices. Our result follows from a Green function comparison theorem,
originally introduced by Erdds et al. (Adv Math 229(3):1435-1515, 2012) to prove
edge universality, on a finer spectral parameter scale with improved error estimates. The
proof relies on the continuous Green function flow induced by a matrix-valued Ornstein—
Uhlenbeck process. Precise estimates on leading contributions from the third and fourth
order moments of the matrix entries are obtained using iterative cumulant expansions
and recursive comparisons for correlation functions, along with uniform convergence
estimates for correlation kernels of the Gaussian invariant ensembles.

1. Introduction and Main Results

In this paper we study a quantitative version of the edge universality for Wigner random
matrices. Let Hy be a real symmetric or complex Hermitian Wigner matrix of size N.
Then the edge universality asserts that the largest eigenvalue, Ay, of Hy satisfies

lim P(Nm()w —2) < r) =TWs(r), reR, (1.1)
N—o0

where TW g are the cumulative distribution functions of the Tracy—Widom laws [44,45]
and B = 1, 2 indicates the symmetry class (8 = 1 for real symmetric and g = 2 for
complex Hermitian Wigner matrices). The universality of the Tracy—Widom laws was
first proved in [40,41] for Wigner matrices whose entries have symmetric distributions.
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This symmetry assumption was partially removed in [35,36]. Edge universality for
Wigner matrices whose entries have vanishing third moments was proved in [43]. Edge
universality without moment matching was proved in [19] for Wigner matrices and
in [2,6] for generalized Wigner matrices. A necessary and sufficient condition on the
entries’ distributions for the edge universality to hold was given in [31].

The main result of this paper is an estimate on the rate of convergence in (1.1) for
Wigner matrices. Theorem 1.3 below states that, for any fixed rop € R and small w > 0,

sup
r>ro

(N3 Gy —2) < r) = TWp(n)| = N713%, (1.2)

for N sufficiently large. For the Gaussian unitary ensemble (GUE, = 2) and Gaussian
orthogonal ensemble (GOE, 8 = 1) it was established in [25] that the convergence rate
for the largest eigenvalue on a proper scaling is of order O (N ~2/3); see Theorem 1.2
below. The first rate of convergence for non-invariant ensembles was recently given
by Bourgade in [5] where the upper bound O (N ~2/%*®) for the convergence rate was
obtained for generalized Wigner matrices.

The proof of the estimate in (1.2) is based on the Green function comparison method
for the edge universality by Erd6s et al. [19]. Our main technical result given in Theo-
rem 1.4 compares the expectation of a suitably chosen function of the Green function of
the Wigner matrix Hy with the corresponding quantity for the Gaussian invariant ensem-
bles. Instead of the traditional Lindeberg type swapping strategy [8,19,43], we use the
continuous Green function flow induced by a matrix-valued Ornstein—Uhlenbeck pro-
cess in combination with cumulant expansions [29,30] for the comparison. To achieve
the convergence rate O (N ~'/3) in (1.2) the comparison is required on a much finer spec-
tral scale than the typical O (N ~%/?) edge scaling. This requires in turn precise estimates
on the contributions to the Green function flow from third and fourth order moments of
the matrix entries.

Contributions from third moments can be estimated using the idea of unmatched
indices [19], however due to the finer spectral scale, we require expansions to arbitrary
order in terms of the control parameter of the strong local law for the Green function [19]
to implement this idea. This step relies on applying cumulant expansions iteratively to
Green functions and observing a cancellation to leading order [22,23,30]. The usefulness
of cumulant expansions in random matrix theory was recognized in [27] and has widely
been used since, e.g., [7,16,21,32].

Contributions from fourth moments are controlled by first showing that they can be
reduced to trace-like correlation functions of products of Green functions. This first step
is motivated by the Weingarten calculus [10] to compute Haar integrals of products of
eigenvector components for the invariant Gaussian ensembles. The actual reduction for
non-invariant ensembles relies on applying cumulant expansions iteratively. In a second
step we compare the resulting trace-like correlation functions between Wigner matrices
and the invariant ensembles using again the interpolating flow. This leads to a hierarchy
of correlation functions which, after expansion to arbitrary order, can be recursively
estimated by the local law for the Green function. Finally, we need to control the trace-
like correlation functions for the invariant ensembles. This is accomplished by using the
uniform asymptotics [13] for correlation kernels of the invariant ensembles in the edge
scaling.

Edge universality can also be studied through the dynamical approach of Erdds,
Schlein and Yau. The local relaxation time of Dyson’s Brownian motion (DBM) at the
edges is known [1,5,28] to be of order O (N —173y, Combining his quantitative local
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relaxation estimates for the DBM with a Green function comparison for short times,
Bourgade obtained in [5] the convergence rate O(N~2/°) to the Tracy—Widom laws
for generalized Wigner matrices. In view of the local relaxation time of the DBM at the
spectral edges, the convergence rate estimate in (1.2) may be optimal for Wigner matrices
in general, though numerical simulations in [20] indicate that certain Wigner matrices
exhibit faster convergence rates after a scaling and centering of the largest eigenvalue.
We suspect that such a centering would crucially depend on the fourth moments of the
entries and the symmetry type of the matrices.

The methods presented in this paper are rather robust and can be applied to other ran-
dom matrix models. Of interest in statistics are in particular convergence rate estimates
for sample covariance matrices. For the white Wishart ensemble the convergence rate
O (N~2/3) after a proper scaling were obtained in [14,33]. Edge universality for sample
covariance matrices was established in [37] and a first quantitative version appeared
recently in [46]. In the accompanying article [38] we establish the results corresponding
to (1.2) for sample covariance matrices. In this paper we focus on estimating the contri-
butions from third and fourth order moments of the matrix entries through assuming that
the variances are uniform as for the invariant ensembles. Studying generalized Wigner
matrices requires in addition new techniques to implement a variance profile and is thus
postponed to our upcoming work [39].

1.1. Setup and main results. Let H = Hy be an N x N Wigner matrix satisfying the
following.

Assumption 1.1. For areal symmetric (8 = 1) Wigner matrix, we assume the following.

1. The matrix entries {H;; |i < j} are independent real-valued centered random vari-
ables.

2. Fori # j, E[(\/NHU)Z] = 1, and E[(+~/N H;;)?] are uniformly bounded.

3. All moments of the entries of /N Hpy are uniformly bounded, i.e., for any k > 3,
there exists Cy independent of N such that, forall 1 <i, j <N,

E[VNH;j ] < Cy . (1.3)

For a complex Hermitian (8 = 2) Wigner matrix, we assume the following.

a. The matrix entries {H;; |i < j} are independent complex-valued centered random
variables.

b. Fori # j, E[|V/NH;;|*] = 1, E[(H;;)?] = 0, and E[(+/N H;;)?] are uniformly
bounded.

c¢. The bound (1.3) holds true.

The Gaussian ensembles, which we denote by GBE for short, are Wigner matrices with
Gaussian entries: For the Gaussian unitary ensemble (GUE, B = 2) the off-diagonal ma-
trix entries are standard complex-valued Gaussians (i.e., «/NH,-]- 4 N(0, %) +iN (0, %))
and the diagonal entries are standard real-valued Gaussians (i.e., VN Hj; 4 N0, 1)).
Similarly, for the Gaussian orthogonal ensemble (GOE, § = 1) the matrix entries are
real-valued Gaussians with «/NH;Q/ 4 N, 1) (i # j)and ~/NH;; 4 N(0,2).

Let (A)) ?]:1 be the eigenvalues of Hy arranged in a non-decreasing order. It is well
known that the largest eigenvalue Ay converges to the spectral edge 2 in probability.
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The typical spacing of the top eigenvalues near 2 is of order O(N~2/3), due to the
square-root behavior at the end points of the limiting spectral density and eigenvalue
rigidity. The limiting distribution of N/3 (A —2) for the Gaussian ensembles was found
by Tracy and Widom in [44,45]. The corresponding convergence rate was quantized by
Johnstone and Ma [25] in the following theorem.

Theorem 1.2 (Convergence rate for the Gaussian ensembles). Let Hy be the GUE. For
any fixed ro € R, there exists a constant C = C(ry) such that

<CN723. (1.4)

sup |PCUE <N2/3(AN —2) < r) — TW,(r)
r>ro
Moreover, considering the GOE with N even, we have

sup
r>ro

PG0E<(N - 1)‘/6dﬁ(xN 4 %)‘/2) < r) _ TWl(r)‘ < CN~2B. (15)

The first quantitative convergence rate O (N ~%/%*®) for generalized Wigner matrices
was obtained by Bourgade [5] using optimal local relaxation estimates for the Dyson
Brownian motion and a quantitative Green function comparison theorem for short times.

The main result of this paper is an improved bound for the convergence rate of the
distribution of N2/3(Ay — 2) for arbitrary Wigner matrices to the Tracy—Widom laws.

Theorem 1.3 (Convergence rate for Wigner matrices). Let Hy be a real or complex
Wigner matrix satisfying Assumption 1.1. For any fixed ry € R and small w > 0,

sup P<N2/3(AN —2) < r) — Twﬁ(r)‘ < N~ (1.6)

r>ro

for sufficiently large N > No(ro, w). The corresponding statement holds for the smallest
eigenvalue \1.

The proof of Theorem 1.3 relies on the Green function comparison method [18,19].
Let

G(z) =

(2) ! TrG(z) eCt (1.7)
, m = —=Tr , , .
Hy —2 N(Z N 2), 2

denote the resolvent or Green function of the Wigner matrix Hy and my its normalized
trace. The distribution of the rescaled largest eigenvalue can be linked to the expectation
(of smooth functions) of the imaginary part of m y (z) for appropriately chosen spectral
parameters z; see Sect. 2.3. The main technical result of this paper is the following
comparison theorem at the spectral edges.

Theorem 1.4 (Green function comparison theorem). Let F be a smooth function with
uniformly bounded derivatives. For any small € > 0, let N~'*¢ < n < N72/3*€ and
k1], k2] < CoN_z/3+€ for some Cy > 0. Then there exists some co > 0 that does not
depend on €, such that

()

K1

K2

ImmN(2+x+in)dx)” < N“3toc (1g)

for sufficiently large N > Ny(e, Cp).
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Remark 1.1. A first Green function comparison theorem at the spectral edges was ob-
tained in [19] for spectral parameters 7 of size O (N ~2/37¢) and with an error estimate
of size O (N ~1/6+co€),

The constant ¢ in the upper bound in (1.8) can be chosen as any number bigger than
one. An inspection of our proof in fact yields that the upper bound in (1.8) can be written
as

max{Ky, |My — 1|}N—%+coe + O(N_1/2+€),

where M> = max; |E[(«/ﬁhi,~)2] ; K4 = max; }0(4)(\/ﬁh,~j) ,forp=1,and K4 =
max; £ |c(2’2)(«/ﬁh,~‘,~) , for B = 2, with c(4)(\/ﬁhi./) the fourth cumulant of \/Nhij
given in (2.27) and @2 the corresponding (2, 2)-cumulant defined in (2.24).

Remark 1.2. The proof of the Green function comparison is based on a continuous inter-
polation given by a matrix-valued Ornstein—Uhlenbeck process; see (3.8). On the level of
the eigenvalues this evolution corresponds to Dyson’s Brownian motion (DBM). Bour-
gade’s proof of the convergence rate O (N ~%/°*€) consists of two parts: (1) the local
relaxation estimate for the DBM forz > N~1/3; (2)a quantitative version of the Green
function comparison theorem for small times ¢ < 1, which is not sharp. Optimizing
the errors from these two parts, the error N ~2/9 is obtained at t = N~1/?. In our proof,
we improve the Green function comparison even for long times # ~ log N and then use
standard perturbation theory to bridge to the Gaussian ensembles.

1.2. Organization of the paper and outline of proofs. The paper is organized as follows.
In Sect. 2, we provide the preliminaries for the proofs, e.g., local law for the Green
function and cumulant expansions; and recall some properties of the invariant ensem-
bles. In Sect. 3, following the approach of [19], we first reduce the proof of the main
result Theorem 1.3 to the Green function comparison in Theorem 1.4. We then prove
Theorem 1.4 using the interpolating Green function flow and the key estimates on the
resulting drift term stated in Proposition 3.1 below.

In Sect. 4, before we give the proof of Proposition 3.1 for arbitrary functions F,
we prove the corresponding Green function comparison theorem in the simplest case,
F (x) = x; see Proposition 4.1. To make the statements easier, we first consider complex
Hermitian Wigner matrices. The proof of Proposition 4.1 is carried out in Sects. 4, 5
and 6. We sketch the proof in the following.

1. We first set up the interpolation between a given Wigner matrix and the GUE using
the matrix Ornstein—Uhlenbeck process in (3.7). Using Ito’s formula, we derive the
stochastic evolution for the time-dependent normalized trace of the Green function
my (t, z) in (4.4). It then suffices to estimate the drift term given in (4.6). Using the
cumulant expansions of Lemma 2.4, we expand the expectation of the drift term up
to the fourth order. We observe a precise cancellation of the second order terms in
the cumulant expansions (4.5) for the off-diagonal entries. The cancellation of these
second order terms is due to Assumption 1.1 (b.), namely that the variances of our
Wigner matrices coincide with the invariant ensembles. It then suffices to estimate
the third and fourth order terms in (4.5) as well as the remaining second order terms
for the diagonal entries, which are averaged products of Green function entries.

2. All the third order terms, as well as the fourth order terms excluding the ones corre-
sponding to the (2,2)-cumulants of the off-diagonal entries are unmatched; see Def-
inition 4.1. The contributions from these unmatched terms are negligible, as stated
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in Proposition 4.2 which is proved in Sect. 6. For GUE matrices, corresponding esti-
mates can be established using the Weingarten calculus as discussed in Sect. 6.1. In
Sect. 6.2, we study an example of an unmatched term and introduce the expansion
mechanism used to prove Proposition 4.2 for general Wigner matrices. The key ob-
servation is that each time we perform the cumulant expansion on an unmatched term,
we gain an additional off-diagonal Green function entry which slightly improves the
estimate by the entrywise local law in (3.10). In Sect. 6.3, we give the proof of Propo-
sition 4.2 for any unmatched term using the above expansion mechanism iteratively
by counting the number of off-diagonal Green function entries.

3. The fourth order terms corresponding to the (2, 2)-cumulants of the off-diagonal
entries and the second order terms stemming from the diagonal entries are given in
terms of matched terms with a certain structure; see Definition 4.2. Motivated by
the GUE computations based on the Weingarten calculus in Sect. 5.1, we show that
such terms can be expanded into trace-like correlation functions of Green functions
referred to as type-0 terms in Definition 4.2, as stated in Proposition 4.3. The proof
of Proposition 4.3 is presented in Sect. 5.2 using cumulant expansions iteratively.
The resulting type-0 terms are then estimated in Lemma 4.1 which is proved using
recursive comparisons and iterative expansions in Sect. 5.3. The key observation is
that, after deriving the stochastic evolution in (5.27) under the Ornstein—Uhlenbeck
flow for any type-0 term containing d; off-diagonal Green function entries, we can
expand the corresponding drift term to arbitrary order using Propositions 4.2 and 4.3,
and end up with finitely many type-0 terms containing at least d; + 1 off-diagonal
Green function entries as in (5.32). By recursive comparison, Lemma4. 1 follows from
the local law in (3.10) for the Green function and the estimates of type-0 terms for
the GUE in Lemma 5.2. The last Sect. 5.4 is devoted to the proof of Lemma 5.2 using
the determinantal structure of the GUE and convergence properties of its correlation
kernel in the edge scaling.

In Sect. 7, we extend the above ideas to general functions F, and use the estimate
(4.3) from Proposition 4.1 as an input to prove Proposition 3.1. We then conclude with
the Green function comparison in Theorem 1.4 and hence our main result Theorem 1.3.
In the last Sect. 8, the real symmetric case is proved with the required modifications.

Notation: We will use the following definition on high-probability estimates from [15].

Definition 1.1. Let X = XY™ and Y = Y™ be two sequences of nonnegative random
variables. We say ) stochastically dominates &’ if, for all (small) r > 0 and (large) I' >
0,

P(x™ > NTYW™) < N1 (1.9)

for sufficiently large N > Ny(z, I'), and we write X < Y or X = O<()).

We often use the notation < also for deterministic quantities, then (1.9) holds with
probability one. Properties of stochastic domination can be found in the following lemma.

Lemma 1.1 (Proposition 6.5 in [17]).

1.X<YandY < Zimply X < Z;

2. IfX] < Y1 andX2 < Yz, then Xl +X2 < Yl +Y2 andX1X2 < Y1Y2;

3.If X < Y,EY > N™ and | X| < N almost surely with some fixed exponents c,
¢y > 0, then we have EX < EY.
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For any vector v € CV, let v(j) be the j-th entry of the vector. For any matrix
A € CVN*N the matrix norm induced by the Euclidean vector norm is given by ||Al2 :=
Omax (A), where omax (A) denotes the largest singular value of A. We denote the sup
norm of the matrix by || A|lmax := max; ; |A;;|. We use the notation A := %TrA for the
normalized trace.

Throughout the paper, we use ¢ and C to denote strictly positive constants that are
independent of N. Their values may change from line to line. We use the standard Big-O
and little-o notations for large N. For X, Y € R, we write X < Y if there exists a small
¢ > 0 such that | X| < N~¢|Y| for large N. Moreover, we write X ~ Y if there exist
constants ¢, C > 0 such that c|Y| < |X| < C|Y| for large N. Finally, we denote the
upper half-plane by C* := {z € C : Imz > 0}, and the non-negative real numbers by
Rt:={xeR: x>0}

2. Preliminaries

In the section, we collect some basic notations, tools and results required in the sub-
sequent sections, in particular we introduce the local law for the Green function of
Wigner matrices and eigenvalue rigidity estimates; relate the distribution function of the
largest eigenvalues to the normalized trace of the Green function; introduce the cuamulant
expansion formalism and finally recall properties of the GUE and the Airy kernel.

2.1. Local law for Wigner matrices. For a probability measure v on R denote by m,, its
Stieltjes transform, i.e.,

my(2) :=/ v e 2.1
R

X —2Z

We refer to z as spectral parameter and often write z = E +in, E € R, n > 0. Note that
m, : C* — C* is analytic and can be analytically continued to the real line outside the
support of v. Moreover, m, satisfies lim,, »o inm,(in) = —1. The Stieltjes transform

of the semicircle distribution pg.(x) := %\/ (4 — x2), is denoted by my.(z). It is well
know that m(z) is the unique solution to

1+ 2mge(z) +mi(2) =0, 2.2)

satisfying Im ms.(z) > 0, for Im z > 0. The Stieltjes transform of the empirical eigen-

value measure of a Wigner matrix Hy, uy := % Z;v:l 85, 1s then given by the nor-
malized trace of its Green function defined in (1.7).
Let « = «(E) be the distance from E € R to the closest edge point of the semicircle
law, i.e.,
k ;= min{|E — 2|, |E + 2|}. (2.3)

Define the domain of the spectral parameter z,
So:={z=E+in:|E| <5,0<n<10}. 2.4)

The Stieltjes transform my . has the following quantitative properties, for a reference,
see e.g., [17].

Lemma 2.1. The Stieltjes transform of the semicircular law has the following properties:
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1. The imaginary part of mg. satisfies

JKk+n, if Ee[-2,2],

[Im e ()] ~ \/:Tn’ otherwise, (2.5)
uniformly in z € Sp.
2. There exists a strictly positive constant c, such that
¢ < |mse(2)| =1 —cn, (2.6)
hold for all z € So.
For any arbitrary small € > 0, introduce the following subdomain of Sy,
S=S(e):={z=E+in: |E| <5 N " <y <10} (2.7)
We also define the deterministic control parameter
W= w() = Wﬂ\% i=E+in. (2.8)
In particular, from (2.5), for any z € S(¢), we have
L —wo<one. (2.9)

VN

With these notations, we are now ready to state the following local law for the Green
function of a Wigner matrix.

Theorem 2.1 (Local law for Wigner matrices [19]). Let H be a symmetric or Hermitian
N by N matrix satisfying Assumption 1.1 and recall the Green function of H and its
normalized trace in (1.7). Then we have

1
| max 1Gij(2) = ijmse(2)| < W(2), |mn(z) —mye(2)] < o' (2.10)

uniformly in z € S.

2.2. Rigidity of eigenvalues. Thelocal law for the Green function in Theorem 2.1 implies
the following rigidity estimates for the eigenvalues of H. Recall that the eigenvalues of
H are denoted as (A j)?’:1 arranged in a non-decreasing order. For E| < E; (Eq, E> €

R U {#00}) denote the eigenvalue counting function by
N(Ei, Ey) :=#{j: E; <Lj < Ep}. (2.11)

We also define the classical location y; of the j-th eigenvalue A ; by

j i
N / Pse(x)dx. (2.12)
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Theorem 2.2 (Eigenvalue rigidity [19]). For any E| < E3, we have

Ey
N(E1, E2) —N/ ,osc(x)dx’ <. 2.13)
E;
In addition, for any 1 < j < N, we have
-2/3 P . —1/3
nj— il < N (mln{J,N i+ 1}) . (2.14)

In particular, fix any C1 and C,, then for any small € > 0 and large I' > 0 we have
Ay —2| < N2 N@Q = C N33 2+ C,N72/3+¢) < N2, (2.15)

with probability bigger than 1 — N¥, for N sufficiently large.

2.3. Relating the distribution of the largest eigenvalue to the Green function. Fix a small
€ > 0 and set
Ep :=2+4N72/3+ (2.16)

For any E < E;, we define
xe = Lig g1, 2.17)

and note that N'(E, Er) = Trxg(H). For n > 0, we define the mollifier 6, by setting
n 1 1

0 = =1 . 2.18
n() 7(x2+n?) =« mx—in (2.18)

We canrelate Tr x g x0,, (H ) to the normalized trace of the Green function by the following
identity,

N ) N [EL )
Trxg *0,(H) = - / xe(WImmy (y +indy = ;/ Immpy(y +in)dy. (2.19)
E

The following lemma assures that Tryg(H) can be sufficiently well approximated
by Trxg * 0,(H) for n < N —2/3_ Relying on this approximation, the lemma after,
Lemma 2.3, then yields the desired link between the distribution function of the rescaled
largest eigenvalue of H and the normalized trace of the Green function using a cleverly
chosen observable. This line of arguments was used first in [19] to prove the edge uni-
versality of Wigner matrices, where 7 is chosen slightly smaller than the typical edge
eigenvalue spacing N ~%/3. In order to obtain a quantitative convergence rate, we aim to
choose here 1 much smaller with n > N~!. A similar argument was used in [5]. The
proofs of Lemmas 2.2 and 2.3 are modifications of [19] in order to accommodate the
small n regime, and are postponed to Appendix.

Lemma 2.2. Let E, ) and |l be scale parameters satisfying N™' < n < lj <« Ep—E <
CN72/3*¢_ Then, for any T > 0,

Tryp(H) — Trxg *en(H)) < C(N(E —ILE+D)+ gzvzf), (2.20)

holds with probability bigger than 1 — N~ for N sufficiently large.
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Let F : R — R be a smooth cut-off function such that
Fx)=1, if |x|<1/9; Fkx)=0, if |x]>2/9, 2.21)

and we assume that F'(x) is non-increasing for x > 0. Then one obtains from Lemma
2.2 the following result.

Lemma 2.3. Set [} = N3y andl = NI, suchthat N~' <« n < 1} €« | < Ef —E <
CN2/3*_ Then for any T' > 0, we have

Trxgs * 6y (H) — N~ < N(E, 00) < Tryg_; 6, (H) + N, (2.22)

with probability bigger than 1 — N~F, for N sufficiently large. Furthermore, we have

]E[F(TrXE—z*Qn(H))]—N—F < P(N(E, 00) = 0) < E[F(TrXE+l*9n(H))]+N_F,
where F (x) is the cut-off function given in (2.21). (223)

Hence, recalling (2.19), we have established the desired link to the normalized trace
of the Green function.

2.4. Cumulant expansion formulas. A key tool of this paper are the following cumulant
expansion identities. For reference, we refer to Lemma 3.1 in [21].

Lemma 2.4. Let h be a complex-valued random variable with finite moments. Define
the (p, q)-cumulant of h to be

p+q

0
P . (—i)p“f( log Ee (2.24)

ish+izﬁ>
dsPotd

s5,t=0
Let f : C x C — C be a smooth function and denote its derivatives by
FOD e ) = o, ).
327023
Then for any fixed | € N, we have

1
E[hf(h,h)] = Z Lc(’”q“)E[f(”’q)(h,ﬁ)]+R1+1, (2.25)

1g!
p+g+1=1 p-q:

where the error term Ry can be bounded as

IRl < CER™ max { sup 709, 5]
prq=l L iz1<m

+ CE[ ™ e | max 1FP9 (2. Dl (2.26)

and M > 0 is an arbitrary fixed cutoff.
Moreover, we have the analogous cumulant expansion formula for a real-valued
random variable h with finite moments. Define the k-th cumulant of h to be

(k) k dk ith
o 3 1
C = (—1) (@ logIEe )

(2.27)

=0
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Let f : R —> C be a smooth function and denote by f® its k-th derivative. Then for
any fixed | € N, we have
Lo
E[hf()] = " —c®VEfO 0]+ R, (2.28)

|
k+1=1 k!

where the error term satisfies

|Ri+1] < C/E|h|™! sup 1FO ) + C]E[|h|l+11\h|>Mi|||f(l)||00a
x|<M

and M > 0 is an arbitrary fixed cutoff.

2.5. GUE and the Airy kernel. Let H = Hy belong to the GUE and denote the eigen-
values of the rescaled matrix ~/NH by (,u.,')?]:1 in non-decreasing order. The joint
eigenvalue density is explicitly given by

1 _BSN 2
p(ﬂ],-~-,MN)=_l_[|Mi_Mj|ﬂe 421:1“17 ﬂ:2,
ZNﬂi<j

with Zy g be the normalization constant.
The process of the eigenvalues is well known to be a determinantal point process
[24,42]. The n-point correlation function of the eigenvalue process is given by

Pn(1s ooy ) = det[ Ky (i, i) li<i,j<ns (2.29)
with the reproducing kernel given by

N-1

_an?
KnG,y) =) ar@aq(e” +
k=0

where gy, is the k-th Hermite polynomial given by

[N

X

2 dk
gr(x) == (—DkeT —e 7.
dxk

x2
The Hermite polynomials are orthogonal with respect to the weight e~ 2 over R. We
further define the k-th Hermite function by

1 2
P (x) = ——=2" * qr(x), (2.30)
V2mk!
which is a solution to the differential equation
p 1 x2
O (x) + (k+ >~ Z)d);{(x) =0. (2.31)

One then checks that {¢ } form an orthonormal basis of L2(R). The Christoffel-Darboux
formula then states that
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N-1
Koy = 3 u0e(y) = VHELEDI0) =By 10 G)

— X F Y,
k=0 oy
(2.32)
as well as
K (x50 = VN (9 (0dn-1(0) = $jy_ (0w () ). (2.33)
We also have the trace identity for the kernel
/ Kn(x,x)dx =N, (2.34)
R
and the reproducing formula
Ky(x,y) = A;KN(X,Z)KN(Z,)’)dZ- (2.35)

More details can be found in [3,12].
Recall that the eigenvalues (A j)j‘vzl of the GUE are given by A; = T Then the

corresponding kernel for the eigenvalue process (4 ;) is given by
Kyn(x,y) = VNKN(Nx,vNy). (2.36)

In the edge rf:gime, werescale the eigenvaluesas A; = 2+ # and the corresponding
kernel is then given by

edge . 1 y
KN y) = kv (24 537524 757
1
= Sk (VN + S 2VN + ). (2.37)
Next, recall that the Airy kernel is defined by
Ai(x)Ai'(y) — Ai'(x)Ai(y)
Kairy(xv y) = , (2.38)
X =Yy
with Ai be the Airy function of first kind, which is the solution of

Ai”(x) — xAi(x) =0, x €R, (2.39)

satisfying the boundary condition Ai(x) — 0 as x — 00. As x — y, the Airy kernel
reduces to

Kairy (x, X) 1= (Ai'(x))? — Ai” (x)Ai(x) = (AI'())? — x(Ai(x))*. (2.40)

Lemma 2.5 (Lemma 3.9.33 in [3]). For fixed Lo € R, there exists a constant C, such
that one has uniformly in x, y € [Lg, +00) that

3400 Kairy(x, y)| < C, a,b € {0,1}. (2.41)

Furthermore, we have the asymptotics

([

e 3%
Kairy (x, X) ~yxsoo . i Kairy(x, X) ~xo oo V IXI. (2.42)

(SR
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The following result of Deift and Gioev [13] quantizes the convergence rate of the
edge kernel in (2.37) to the limiting Airy kernel in (2.38).

Theorem 2.3 (Theorem 1.1 in [13]). For fixed Lo € R, there exists constants C,c > 0
depending on Ly, such that one has uniformly for x, y € [Lg, +00),

a;‘a;’[K;dge(x, ¥) — Kairy (X y)]‘ < CN~2Be™e a be{0,1). (2.43)

3. Proof of Theorem 1.3

In this section we give the proof of Theorem 1.3 from the main technical result, the
Green function comparison theorem, Theorem 1.4.

Proof of Theorem 1.3. Because of the rigidity of the eigenvalues in (2.15), one easily
verifies that, for any € > O and I > 2/3,

sup P<N2/3(AN )< r) _ IPG’BE(NZ/3(AN )< r)‘ <N T, @31

[r|=N¢€

for sufficiently large N. Hence in order to prove Theorem 1.3, it suffices to focus on
ro < r < N€ with rg as in Theorem 1.2 and Theorem 1.3.
Set as in (2.16)

E:=2+N"Pr, and Ep :=2+4N"2/**

Fix n = N~*¢ and [ = N~'*7¢ as in Lemma 2.3. Here we choose € > 0 sufficiently
small such that / <« N~2/3. From (2.19) and (2.23), we can relate the distribution of the
largest eigenvalue to the normalized trace of the Green function as follows,

E[F(N f;j:/:/: Immy (2 +x +in)dx)] _NT< IP(NZ/3(AN —2) < r) - IP(N(E, 00) = 0)

4N-2/3+e
SIE[F(N/ ImmN(2+x+in)dx>]+N_F. (3.2)
N=283r+l

By shifting the value of r in the second inequality of (3.2) and combining with the first
inequality of (3.2), we obtain

AN-2/3+e
]P)<N2/3()LN —2) <r— 2N2/3l) _ N—F < E[F(N/ ImmyR2+x +177)dx):|
N-2/3r—1

< P(N2/3(AN —2) < r) +N T (33)

Note that the above inequalities hold true for 8 = 1, 2 and any Wigner matrices, including
the Gaussian ensembles. From the known convergence rates for the Gaussian ensembles
in Theorem 1.2 (for the GUE, and GOE with N even), and the convergence rate N —1/3
obtained in Theorem 1.2 of [9] for the GOE with N odd, we find

AN-2/+e
TWj(r = 2N%31) = CN71V3 < EGﬁE[F(Nf
N-23r—1

<TWg(r)+ CN~'/3.

Immy2+x +ir/)dx)]
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A similar upper and lower bound can be obtained in the same way when we consider +/
in the integral domain instead of —/. Since the Tracy—Widom distributions have smooth

and uniformly bounded densities and [ = N —1+7¢ \ve have
AN-2/3+e
sup EGﬂE[F(N/ Immy2+x + in)dx)] - wa,(r)‘ — O(N~1/3+7¢y,
ro<r<N¢€ N=2/3r41

(3.4)

Using the Green function comparison theorem, Theorem 1.4, there exists some co > 0
independent of € such that

4N 23+
sup (E _ ]EGﬂE) [F(N/ Tmmy (2 +x + in)dx)]‘ < N-U/3+c (3 5)
N-2/3r%i

ro<r<nN¢

for sufficiently large N. In combination with (3.2) and (3.4), we choose € < in

the setting of Theorem 1.3 and obtain

__w
max{cop,7}

sup [P(NPGy —2) < r) = TW,(r)| = N7V, (3.6)

ro<r<N¢
Together with (3.1), we have hence completed the proof of Theorem 1.3.

We now move on to the proof of the Green function comparison theorem, Theo-
rem 1.4. In the following, we first consider complex Hermitian Wigner matrices, as the
complex Hermitian case is slightly easier than the real symmetric case. The proof of the
Green function comparison theorem in the real symmetric setup is presented in Sect. 8.

Proof of Theorem 1.4. Consider the matrix Ornstein—Uhlenbeck process (ha b (t))flV b1’
1
VN

are independent complex standard Brownian motions, (,BW (t))

1
dhap(t) = dBap(®) = Shap(®)dt,  hap(0) = (HN)ab. (3.7)

where (,Bub(t))ib

are independent real standard Brownian motions, (ﬁab (t))a< , are independent from

N
a=1

(Baa (t))ivzl, and Bpa(t) = Pap(t). The initial condition Hy is a complex Hermitian
Wigner matrix satisfying Assumption 1.1. In distribution the above is equivalent to
writing

H(t) 2 e tHy+V1—e'GUEy, feR", (3.8)
where GUEy belongs to the GUE. For any ¢ € R*, z € C\ R, we define
1 1
G(t,z) i= ——; t,z) .= =TrG(t, 2). 3.9
(,2) HO) —2 mp(t,2) N (t,2) (3.9)

Recalling the local law Theorem 2.1 and Lemma 2.1, we obtain that the local law for
G, 2),

1
max |Gij(t,2) = 8ijmsc(2)| < W(2); |mn(t,2) —mye(2)] < o' (3.10)

holds uniformly in z € S given in (2.7) and + > 0. Indeed, we choose a mesh of the
interval 0 <t < T := 8log N of size N19 and obtain that (3.10) holds uniformly in
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z € §,t € [0, 8log N] from the continuity of the process (3.8) in time. Moreover, (3.10)
also holds uniformly in t > 8log N from (3.34) below.
In the following, we often ignore the parameters and write for short

HEH(I)v habEhab(t)’ GEG(t,Z), mNEmN(t’Z)’ t€R+, ZGC\R
For a fixed small ¢ > 0 and some Cy > 0, let
N~M€ < < N7* iy, [ka] < CoN 23, (.11)

with k1 < k3. In view of (2.19) and (2.23), we are interested in the quantity
K2
X=X :=N/ Immp(t,2+x +in)dx, teR*. (3.12)
K1

Hence X is a function of ¢, n as well as k1 and «».

Let F : R — R be an arbitrary smooth function with uniformly bounded deriva-
tives. The next lemma determines the evolution of the observable F (X (t)) under the
Ornstein—Uhlenbeck flow in (3.7). To alleviate the notation, we introduce the following
abbreviations. Let P : R* x C\ R —> C be an arbitrary function, then we introduce

—~ ~ 1
ImP =ImP(t,z) := ?(P(t, ) — P(t,7), teR", zeC\R. (3.13)
i
For example, for complex Wigner matrices, Im Gij(t,z) #ImG;j(t,z), unless i = j.
Further, we abbreviate, for t € R, and z1,z2 € C\ R,

Alm P = (AIm P)(¢, 21, 22)

= %(P(t, 22) — P(t,i)) - %(P(t, 71) — p(,,m>, (3.14)

where the spectral parameters are given as
71 =2+k1+1n, 70 =2+kp +1n, 3.15)

with «y, «2, and n from (3.11). In particular, we have z1, 22 € Sedge defined in (4.1)
below.

Returning to F (X)), Ito’s lemma yields the following result.

Lemma 3.1. The observable F (X)) satisfies the following stochastic differential equa-
tion:

dF(X) =dM + ©dr, (3.16)
with the diffusion term
LN
dM = ——— F'(X)AIm Gy )dBap, (3.17)
\/N a;] ( ba) ,Bab

and the drift term © = O(t, 21, z2) is explicitly given in (3.25) below. Moreover, E[O]
can be written as

4
E[O@]= Y Kpgu+Er+0 (N3, (3.18)
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for N sufficiently large, with

N ~
1 D[0P F' (X)AIm Gy,
Kp.q+1 :_W Z séi’tﬁ )]E[ P 474 a]; (3.19)
2plg!N 27 4 p=1 Oy, Oh gy,
a#b
N ~
1 OF' (X)AIm G
E) =— (2) -1 E[—M], 3.20
2= ;< ) S (3.20)
where s(f; AR (i’qﬂ)(t) and séza) = sé%,) (t) are the cumulants of the rescaled time

dependent entries V' Nhg, defined in (2.24) and (2.27).

Remark 3.1. The diffusion term dM in (3.17) yields a martingale M (¢) upon integra-
tion. Note that the operator norm of the Green function has the deterministic bound
G2 <+ < Ni-e, given z = E +in withn > N~¢_Since F has bounded deriva-

tives, |F’(X)AIm Gpa| = O(N'=¢). Thus M(¢) is a true martingale with vanishing
expectation.

Remark 3.2. In (3.18), only cumulants of order three and higher appear, i.e. p+g+1 > 3.
This is a consequence of our assumption that the second moments of the off-diagonal
matrix entries match with the Gaussian ensembles; see item b.) in Assumption 1.1.

Proof of Lemma 3.1. Recall the dynamics of the Orstein—Uhlenbeck process in (3.7)
and that G is a function of the matrix entries 4,,. Using the first Ito’s lemma and then
the relation

3G;;
ahab ~Gi4Gpj, (3.21)
we compute
dG;j(t,z) = 82;[” dr + Z BG” dhaa + = Z 8;;;}; dhaadhaa
32
hap + Z O dhab > —dhabdhab
a<b a<b ab hab

N
1
_ﬁ Z Giaijd,Bab
b=1

N
1 | |
+3 a;1 (habG,-uij + GG Gaa + NGiaGaijb)dt. (3.22)

In view of X from (3.12), we take the normalized trace of the Green function and the
imaginary part. Using the symmetry of H and

Gij(z) = G;i(2),

we obtain the following stochastic differential equation:

N
a(mmy ) = 5257 3 (GiaGu(@) — GiaGni @) )by
i,a,b=1
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N
1 -
tavi 2 [han(GiaGni(0) = GraGui )
i,a,b=1
1 -
+ (G161 Gaa(2) = GinGriGaa(d)

1 i
+ 7 (GiaGaiGiv(2) = GiaGui Gun() ) [a
N N
__ 3" Im (GiaGri)dB b 3 [h ™ (GiuGi)
= iaYIbi ab N ab iaYUbi

N3/2
i,a,b=1 i,a,b=1

|~
+ 1 (Giy Gpi G + GiaGaibe)]dt

where we use the notation from (3.13).
Using Ito’s formula similarly on F(X) and combining with (3.22), we obtain the
stochastic differential Eq. (3.16), with the diffusion term given by

K2

N
dM = —F/(X)(/Kl JLN i’aZb::lel (GiaGbi (2 +x + in))dx>dﬁab, (3.23)

and the drift term given by (we omit the parameters ¢ and z = 2 + x + in of the Green
functions)

N o
> s (P [ (GiuGrira)
ia,b=1 o

1< @

o Y F’(X)[ Im (GithiGaa + GiaGaibe>dx

ZNLHb 1

+o F”(X)— Z Z (/

ljlabl K1

I\)\'—‘

K2 __
Im (Gme,)dx)(/ Im (Gj,,Gaj)dx). (3.24)
Using G2(z) = d%G(z) and the definition of Tm in (3.13), we write

Z/ M ((GiaGpi) (1,24 x +im) )dx

dGpq
=f Im( . 2+x+1n)>dx — (AIM Gpo) (2, 21, 22),
«1 dx

with Alm defined in (3.14) and z;, 22 given in (3.15). Applied to the martingale
term (3.23) we find (3.17). Applied to the drift term (3.24), we find

N

- — — _
o ; (F/(X)Alm (GaaGop) + F"(X)(AIM Gop)(ATm G;,a)>. (3.25)

a,b=1
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Next, we take the expectation of ® and apply the cumulant expansions in Lemma 2.4
with respect to the independent entries /4, in the first term on the right of (3.25). Using
the relation (3.21), we compute

IF' (X) _ ) Z/Kz a(I;ZG,,
ba

K2 __ ~
=—F"(X) Z/ Im (G Ggi)dx = —F"(X)AIm G p,. (3.26)

We first apply cumulant expansions to the complex-valued off-diagonal entries /p,
i.e., let a # b in the summations in (3.25). Then by direct computations and using
Assumption 1.1 (b.), the second order terms in the cumulant expansions corresponding
to sé}j b (t) = 1 are canceled with the second term on the right of (3.25) with @ # b. The
third and fourth order terms in the cumulant expansions, correspondingto p+¢g + 1 €
{3, 4}, are givenin (3.19). We stop the cumulant expansion at/ = 4 and the corresponding
truncation error Rs =y ab Rgab) is estimated as follows.
‘We have from (2.26) that
+
IRED| < CE[h ]]E[ max { su o

p
lw|<N—1/2+y

o fa(H Y+ wE® 4 )| ]
on? and I (

+C]E[lhab|51|hab‘>N71/z+y]

gpra
IE[ max { sup ﬁfab(H(“b) +wE®D 4 J)E(”b))‘}], (3.27)
pra=4Lyec 10y, 0h,,

with a fixed small y > 0, and where we use the notation E@b) .— ((Sab)le:l, H@b) .=
H — hyp E@Y — phyp ECD ag well as

fab(H) := F'(X)Alm G (3.28)

Using the second resolvent identity, we can write

Gg(am _ G,-7 + (GH(“h) (habE(”b) +hb“E(ba))GH),-j' (3.29)

From the local law in (3. 10) we have max;x; |G | < V¥ and max; |G | < 1. In
addition, we have |h;;| < T from the moment condltlon (1.3). Therefore, we have

from (3.29) that max; |GH( )| < W and max; |GH( )| < 1. Similarly, we have
Gl[-{(“b>+wE("b)+1I)E(ba) — Gif((ab) . (GH<“b>+wE(ah)+u‘;E<b“>(wE(ab) " u_)E(b“))GH("b))”,
ij
(3.30)

and thus

)GH("”)+wE(“”)+wE("”)

sup { max
‘w|<N—l/2+y

} <1 3.31)
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Combining with (3.21), (3.26), and the fact that F in (3.28) has bounded derivatives, we
obtain that
gpP+a

sup —5 g Jab (H(ab) +wE®D 4 wE(“b))‘ < 1.
|w|<N—1/2+y ahbaahab

Together with E|h;; |5 < CN™5/2 under Assumption 1.1 and Lemma 1.1, the first term

on the right side of (3.27) is bounded by O~ (N~>/?). Note that for z = E + in with

n > N~1*¢, we have the deterministic upper bound for max; ; |Gj| < |Gll2 < % =

O(N'~¢). So the conditions of statement (3) of Lemma 1.1 are satisfied, and we can
directly bound the expectation of the first term on the right side of (3.27).

We next estimate the second term on the right side of (3.27). Using the deterministic
bound max; ; |G;;| = O(N'=), we have from (3.21), (3.26) and the fact that F in
(3.28) has bounded derivatives that

orta
{ sup

520 | g, S (A7 + wE® + DE )| = 00,
a a

max
p+q=4

Combining with the moment condition (1.3) and Holder’s inequality, the second term
on the right side of (3.27) can also be bounded by O (N —5/2). Thus the truncation error
Rs5 in the cumulant expansions satisfies |Rs| = O<(N —1/2y, Throughout the paper, we
will use similar arguments as above to estimate the error terms stemming from cutting
cumulant expansions at some fixed order without specifically mentioning it.

Concerning the terms involving the diagonal entries 4., in (3.25), we apply the
cumulant expansion for real-valued random variables in Lemma 2.4 and stop at the
second order /[ = 2. The resulting second order term in combination with the second
sum in (3.25) with @ = b is given by E» in (3.20) and the truncation error is similarly
bounded by O (N~1/%). We have hence finished the proof of Lemma 3.1.

Having established Lemma 3.1, we next estimate the expectation of the drift term
E[®] in (3.18) in the next proposition, whose proof is postponed to Sect. 7.

Proposition 3.1. The drift term E[®] in (3.18) has the following bound:
IE[O(t, 1. 22)]| < N7/, (3.32)

uniformly int > 0 and z1, zo given in (3.15), for a numerical constant ¢ > 0 that does
not depend on € and sufficiently large N > Ny(e, Cp).

In order to finish the proof of Theorem 1.4, we now choose 7 := 8log N and integrate
(3.16) over [0, T]. Then taking the expectation, the diffusion term vanishes (see Remark
3.1) and the drift term is bounded using (3.32). We hence find by writing out X" in (3.12)
that

(v |

— O(N~7*log N). (3.33)

KD K2

ImmN(O,2+x+ir])dx)]—IE[F(N/ ImmN(T,2+x+ir/)dx>]‘

1 K1

Using the inequality ||A|lmax < l|All2 < N||A|lmax, the second resolvent identity, that

IG(E +in)|2 < %, and (3.8), one shows that G (T, z) is sufficiently close to the Green
function of the GUE, i.e.,
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IG(T, 2) — GSYE(2)llmax < IG(T, 2)(GUE — H(T))GVE(2)
N 1
< ?n(GUE — H(T)) llmax < e (3.34)

Since F is a smooth function with uniformly bounded derivatives, we have

K2
’F(N[ Immy (T, 2+ x +in)dx)
K

1
€

K2
— F(N/ ImmSUEQ + x +i77)dx>‘ (3.35)
K

< —.
1 N3/332

Combining (3.33) and (3.35), we conclude the proof of Theorem 1.4.

Remark 3.3. In the traditional approach to the Green function comparison theorem [19]
a Lindeberg type replacement strategy is used. In (3.8) we use a continuous flow to
interpolate between Wigner matrices and the invariant ensembles. This is notationally
easier than the Lindeberg replacement, especially when we do recursive comparisons to
estimate the contributions from the fourth order cumulants in Sect. 5.

4. A Special Case: Estimates on [E [Im m y]

In this section, we prove the simplest version of the Green function comparison theorem,
Theorem 1.4, when F'(x) = x. It then suffices to compare the expected normalized trace
of the Green function of a Wigner matrix E[m y (z)] with ECYE[m y (z)]. The ideas in this
section will also be used to prove Proposition 3.1, which is a key ingredient to establish
the Green function comparison theorem for a general function F. The proof for general
functions F will rely on the estimate (4.3) in Proposition 4.1 below as an input.

Proposition 4.1. Let Hy be a complex Wigner matrix satisfying Assumption 1.1 and
recall the time dependent matrix H(t) in (3.7). For any € > 0 and Cy > 0, define the
domain of the spectral parameter 7 near the upper edge,

Sedge = Sedge(ﬂ Co)
={z=E+ine S:|E—2| < CoN723 N~I* <y < N723* (4.1)

with S given in (2.7). Then for any T > 0, we have
Efmy (1, )] = B my ()] < N7V, 42)

uniformly in z € Sedge and t > 0, for sufficiently large N > No(Co, €, T). Furthermore,
there exists some C > 0 independent of €, such that

E[lmmy(t, z)] < CN~1/3%€, (4.3)

uniformly in z € Sedge and t > 0, for sufficiently large N > N(/)(CO, €).

In the rest of this section we prove Proposition 4.1; its proof is split into several parts
organized in subsections.
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4.1. Interpolation between a Wigner matrix and the GUE. Following the proof of
Lemma 3.1 in Sect. 3, we start by applying Ito’s lemma to the time dependent nor-
malized trace of the Green function, my (¢, z), from (3.9). We find using (3.22) that

1 N
dony(t,2) = =277 Y GuaGrodban

v,a,b=1
N
+iz(hGG+lGGG+lGGG)dz
N abYvaYby N vbYUbvUaa N vaYavUbb
v,a,b=1
= dMy + Ondr, (4.4)

with diffusion term d M and drift term ®ydt = O¢(¢, z)dt; here we use the subscript 0
to indicate that we are considering the simple case F(x) = x. The diffusion term d M
yields a martingale after integration; see Remark 3.1. Taking the expectation of the drift
term and applying the cumulant expansions in Lemma 2.4, we have the analogue of
(3.18),

v,a=1
(P g+l) gpP+a (va

b Gua) 1
Z Z a P+11+1 E[ ahgaath :| + 0<(ﬁ)

!
vab 1 p+g+1= 3pq
a#b

- 2N2 Z(S(z)_l)]E[ 8hG2 ]

v,a=1
4 ap+q+1G 1
-y — Z st [—p q:’l’] +0.(—), @45
prgr1=3 2p'q! vl Oy, 0hyy VN
a

where the error stems from the truncation of the cumulant expansions at fourth order.
Recalling the arguments in Sect. 3, in order to establish Proposition 4.1 it suffices to
show that for any 7 > O,

IE[@o(t, 2)]| < N~1/3+, (4.6)

uniformly in z € Seqge(€, Co) and ¢ > 0, for sufficiently large N > No(Co, €, 7).
Admitting (4.6), for T = 8log N and any 0 < ¢’ < T, we integrate (4.4) over [/, T]
and take the expectation to get

‘E[m;v(t’, z)] - E[mN(T, z)]‘ = 0<N_1/3” log N). 4.7)

Combining with (3.34), we obtain the comparison estimate in (4.2) between the GUE
and the time dependent H (¢) in (3.7) staring from the Wigner matrix H. The bound (4.3)
will follow directly from the comparison result (4.2) and the corresponding estimate for
the GUE in Lemma 5.2 below.

In the remaining part of this section, we will hence prove (4.6). For that it suffices to
estimate the terms on the right side of (4.5).
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4.2. Third and fourth order terms with unmatched indices. Using the differential rule
for the Green function entries in (3.21), each term in the cumulant expansion (4.5) can
be written out in terms of an averaged product of the Green function entries. The first
group of terms on the right side of (4.5) is given by

N
2
_m Z (Sc(f,) - I)E[GvaGavGaa] .

v,a=1

In the second group of terms on the right side of (4.5), one example of a third order term
with p = 1, ¢ = 1 and one example of a fourth order term with p = 2, ¢ = 1 are given
by,

(1,2) 2,2)
— 1 N 1 Ky
Nm Z al; E[GvavaGuabe], _m Z %E[GvaGavGaabebe]'

v,a,b v,a,b

We remark that the third order terms with p +¢ + 1 = 3 are averaged products of Green
function entries with an additional leading factor v/N.

To study these averaged products of the Green function entries in (4.5), we introduce
the general form in (4.8) below. We will use the letters v; to denote the free summation
indices running from 1 to N, and the letters x;, y; as the row and column indices of the
Green function entries. In order to avoid confusion, we clarify that x; = y; = v; means
that both x; and y; represent the same summation index v;. Further we write x; # y;
if x; and y; represent two distinct summation indices, say v; and v;/. They could have
the same value as the summation indices v; and v run from 1 to N.

We are now ready to introduce the general form of averaged products of the Green
function entries:

N N n n
1 1
W § Cvl ..... vm(HGx,-yi(t’ Z)) = W § CI(HGxiyi(t, Z)>7
i=1 A i=1

vi=l  vy=l1

t e RY, z e CH, (4.8)

for m,n € N, where 7 := {v j};'.’zl is a free summation index set which may include
a, b, v from (4.5), m := #{Z} is the number of the free summation indices, and the
coefficients {cz := cy,,... v, } are uniformly bounded complex numbers. Moreover, n is
the number of Green function entries in the product, and each row index x; and column
index y; (1 <i < n) of the Green function entries represent some element in the free
summation index set Z.

We further define the degree of such a term in (4.8) to be the number of off-diagonal
terms in the product of the Green function entries, i.e.,

d:=#{1<i<n:x; #y}. 4.9)

In particular, we have 0 < d < n. We use Qg = Q,(¢, z) to denote the collection of the
averaged products of the Green function entries of the form in (4.8) of degree d. For any
Qa4 = Q4(t,2) € Qq, itis clear from the local law in (3.10) that

1
1Qa(t, )| < W9 + ¥ (4.10)
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uniformly in z € S givenin (2.7) and ¢t > 0. We will often omit the parameters z and ¢ for
notational simplicity. The last error N ! is from the coincidence of distinct summation
indices.

Now we first look at the third order terms in the cumulant expansion (4.5) with
p +¢q + 1 = 3. Using the differential rule for the Green function entries in (3.21), all
the third order terms with p + ¢ + 1 = 3 can be written out in the form in (4.8), with an
extra factor /N in front. We observe that these terms are unmatched, see Definition 4.1
below, since the indices a, b both appear an odd number of times in the product of the
Green function entries.

In a similarly way, the fourth order terms in the cumulant expansion (4.5) with
p+q+1 =4, except the ones corresponding to p = 2, g = 1, are also unmatched terms
of the form in (4.8) from Definition 4.1, since the number of times the index a (or b)
appears in the row index set does not agree with the number of times it appears in the
column index set of the product of Green function entries.

Definition 4.1 (Terms with unmatched indices). Given any Qg € Qg of the form in
(4.8) of degree d, let v;r), vgc), be the number of times the free summation index v; € 7
appears as the row, respectively column, index in the product of the Green function
entries, i.e.,

" .

=l <i<nix =), vj.c):

v =#{l<i<n:yi=vj}, 1<j=<m

4.11)
We define the set of the unmatched summation indices as
={1<j<m:v) #v} L.

If Z° is empty, i.e., all the free summation indices appear the same number of times
in the row index set {x;} and the row column index set {y;}, then we say that Qg is
matched. Otherwise, we say Q is an unmatched term, denoted by Q;’,. The collection
of the unmatched terms of the form in (4.8) of degree d is denoted by QZ C Qq.

Given any unmatched term Q¢ € QJ, we define the unmatched index set for both
row and column as

R? = {1 §j§m:v§r> >v](.c)}CI”; c? :={1§j§m:v;.r) <v§c)}cf’.
4.12)

Neither of R? and C? is empty. Moreover, R° N C? is empty, and R’ U C° = I°.

Next, we give two examples of unmatched terms, which appear as fourth order terms
in (4.5),

1,3)

1 s
- — ab E[GwavaaGgaGhb] € Qg,
N 4
v,a,b
1 S(O’4)
S “lbz E[GvaGhthaGhaGha] € 95; (4.13)
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and two examples of the unmatched terms from the third order terms on the right side
of (4.5),

(1,2) ©.3)
1 s 1 5
5 2 “LE[CuuGrGuiCm) € O =5 Y. “2—E[GuuGriGruGira | € 5.
v,a,b v.a,b
(4.14)
up to a factor of v/N.

The following proposition states that the expectations of the unmatched terms are
much smaller than their naive size obtained by the power counting from the local law as
in (4.10). The proof is postponed to Sect. 6.

Proposition 4.2. Consider any unmatched term Q¢ € QY of degree d with fixed n (the
number of Green function entries in the product) given in (4.8). For any fixed D € N,
we have

1
E[QY(t, 2)] = 0<(N + wD), (4.15)

uniformly in z € S givenin (2.7) and t > 0.

Remark 4.1. In the observable QY (z, z) in (4.15) the Green function entries from (4.8)
are all chosen at the same spectral parameter z € S. Our proofs can be extended to the
setting where the Green function entries are evaluated at different spectral parameters
in the domain S with the estimate in (4.15) holding true. As we do not require this
generalization to prove Proposition 4.1 we do not pursue this direction here.

Therefore, using Proposition 4.2, the third order terms in the cumulant expansion
(4.5) are all bounded as O (N~1/2 + VNwP ). Moreover all the fourth order terms
in the cumulant expansion (4.5), except the one corresponding to p = 2,9 = 1, are
bounded by O_(N~! + WP). By choosing D > é with € > 0 as in (2.9), we hence
obtain from (4.5) that

R 9G R ¥G
2,2) Vv
E[O0] = —55 D (i — I)E[ 2UU] v Sub E[ 2 o3 ]
2N v,a=1 811““ 4N v,a,b=1 3hbaahab
a#b
1
+0<(—). (4.16)

JN

The remaining terms on the right side of (4.16) are matched under Definition 4.1. It is
thus sufficient to estimate these matched terms, as presented in the next subsection.

4.3. Terms with matched indices. Applying the differentiation rule (3.21) to the right
side of (4.16), the index v appears once as a row index and once as a column index of
the Green function entries of the resulting terms on the right side of (4.16). In addition,
the indices a, b from (4.16) will take a special role and appear twice as a row index and
twice as a column index of the Green function entries. After differentiation by (3.21),
we write out these products of Green function entries and observe that they are of the
following form which we call type-AB terms.



Convergence Rate to the Tracy—Widom Laws 863

Definition 4.2 (Type-AB terms, type-A terms, type-0 terms). For arbitrary m, n € N, we
consider averaged products of Green functions of the form

N N N

Nm+2 X:l ZIX;};Cabvl vm<1_[Gx,,,(l Z)) N#I+2 Z CflbI(HGM}x)’
v vp=la
4.17)

for t € R*, z € C*, where each x; and y; represent the free summation indices a, b or
v;j (1 < j < m). Here the coefficients {c,,5.7 := Ca,b,vy,...,u, } are uniformly bounded
complex numbers. Note that the form in (4.17) is a special case of the form given in
(4.8) with the two indices a and b singled out. The degree, denoted by d, of such a term
is defined as in (4.9) by counting the number of the off-diagonal Green function entries.

Recall vj.’), uj.“) defined in (4.11). We further define similarly
v =i =a), v = #i i =a), v =i x = b), v = #{i : y; = b},

for the special indices a, b.

A type-AB term, denoted by PdAB, is of the form in (4.17) with each v; appearing
once in the row index set {x;} and once in the column index set {y;} in the product of the
Green function entries, i.e., v\ = v = 1. The indices a and b both appear the same
number of times (more than once) in the row index set {x;} and column index set {y;}
in the product of the Green function entries, i.e., 1" = v{ > 2 and v(r) = v(‘) > 2.
We denote by PAB = P‘?B (t, z) the collection of the type-AB terms of degree d. We
remark that type- AB terms are matched in the sense of Definition 4.1.

A type-A term, denoted by P4, is of the form in (4.17) with vm éc
v(r) _ (C) _ (r) _ (C)
b =Ve =V TV

> 2, and
= 1for 1 < j < m. We denote the collection of the type-A
terms of degree d by Pj = 73;;‘ (t,2).

Finally, a type-0 term, denoted by Py, is of the form in (4.17) with all the free
summation indices appearing once in the row index set {x;} and once in the column
index set {y;} in the product of the Green function entries, i.e., v\” = v\ = vl(f) =

IEC) =" =39 — 1 for1 < j < m. We denote the collection of the type-0 terms of
degree d by Py = Py(t, 2).

We remark that the index b does no longer play a special role in type-A terms, as
well as the indices a and b are not special in type-0 terms. We keep them in the notation
in order to emphasize the inheritance from the form in (4.17).

Next, we give two examples for type-AB terms, which are generated from the fourth
order expansion terms in (4.16) corresponding to the (2, 2)-cumulants,

2,2
s Z 37 (61uGaaGaGrvGry) € PAE:

4N3 Z 2.2) (GvaGabiUG,meh) e PIB.

and an example of a type—A term, which is from the second order terms of diagonal
entries in the cumulant expansion (4.16),

Z(S(Z) - 1)<GquaaGav> € ,PzAs
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where the index b no longer takes the special role.
In the following, we only consider special type-AB terms with both indices a and b

appearing in the product of the Green function entries four times (i.e., vf,’) = vc(f) =

v,ir) = véc) = 2) and the corresponding type-A terms. For the general case, see Re-
mark 4.2.

The next proposition claims that, in expectation, any type-AB term as well as any
type-A term of degree d can be expanded into linear combinations of type-0 terms of

degrees at least d up to negligible error. The proof of Proposition 4.3 is presented in
Sect. 5.2.

Proposition 4.3. Consider any type-AB term P;B € P;B of the form in (4.8) of degree

d with fixed n € N, and vér) = véc) = vl(,r) = vl(f) = 2. Then for any fixed D € N, we
have

1
BP0l = Y ElPy(t. )]+ 0 (—=+¥P), 4.18)
Pd/e’Pd/ <\/N )
d<d <D

uniformly in z € S (see (2.7)), t € R*, where we use ZPd/EPd/,dfd’<D E[Py(t,2)] to
denote a sum of finitely many type-0 terms of the form in (4.17) of degrees d’ satisfying
d < d' < D. Moreover, the number of type-0 terms in the sum above is bounded by
(6(n + 8D))*P and the number of the Green function entries in each type-0 term is
bounded by n + 8D.

Similarly, for any type-A term Pf € 77[‘? of the form in (4.17) with v,ﬂ’) = véc) =2,
we have

1
B[P}t 0l= Y ElPy(t. 0]+ 0-(—=+WP), (4.19)
Pd/ePd/ (ﬁ )

d<d' <D

uniformly in 7 € S and t € R*. The number of the type-0 terms in the sum above is at
most (6(n +4D))P, and the number of the Green function entries in each type-0 term is
at mostn +4D.

Remark 4.2. The above expansions also hold true if we consider a slightly generalized
setup when both indices a and b appear arbitrary even number of times, not limited to

i =8 = vlgr) = ”t(;C) = 2. Then the number of expansions generated on the right

side also depends on the values v(ﬁ”(: vc(,c)) and v}(;r)(: v}gc)); see also Remark 5.1.
Furthermore, in the above all the Green function entries are taken at the same spectral
parameter z € S. The expansion results may be generalized to the setting when the Green
functions are taken at different spectral parameters in the domain S, c.f. Remark 4.1.

Armed with Proposition 4.3, we return to (4.16). Recalling Definition 4.2 and using
(3.21), the second group of terms on the right side of (4.16) can be written out as type-AB
terms of the form in (4.17) of degrees satisfying d > 2, where the number of Green
function entries in each type-AB term is n = 5, the summation index set Z = {v} and
the coefficients ¢, 5, = Sg;z). Similarly, the first group of terms on the right side of
(4.16) can be written as a type-A term with degree d = 2 and the number of Green
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function entries n = 3. Therefore, from Proposition 4.3, we can expand (4.16) as a sum
of finitely many type-0 terms of degrees at least two, i.e.,

1
E[@o(t, )= Y E[Ps(t, )]+ 0(—=+¥"), (4.20)
)

uniformly in z € S and 7 € R*, where the number of type-0 terms in the sum above can
be bounded by (C D)CD , for some numerical constants C, c.

Having expanded E[®(z, z)] into type-0 terms, we next estimate the size of type-0
terms of the form in (4.17) of degree d > 2 in the edge scaling, i.e., when the spectral
parameter z is chosen in the domain Seqge defined in (4.1). The proof of Lemma 4.1 is
presented in Sect. 5.3.

Lemma 4.1. For any type-0 term Py € Py of the form in (4.17) of degree d > 2 with
fixedn € N, we have

IE[Pa(t, )]l = O<(N~'/3), 4.21)

uniformly in z € Sedge given by (4.1) and t > 0.

We hence obtain the estimate of E[® (%, z)] in (4.6) by combining (4.20) and (4.21),
and by choosing D > é and using the upper bound in (2.9). This yields the proof of
Proposition 4.1.

5. Product of Green Function Entries with Matched Indices

In this section, we prove Proposition 4.3 and Lemma 4.1. Before diving into their proofs,
we outline in the next subsection the intuition stemming from the GUE.

5.1. Intuition from the GUE. In this subsection, we focus on the special case of the GUE.
The idea of eliminating the indices appearing more than twice and reducing type-AB to
type-0 terms as in Proposition 4.3 stems from explicit computations for the GUE based
on the Weingarten calculus for Haar unitary matrices. To simplify the arguments, we
only consider the following example of a type-AB term of the form in (4.17),

1
~7 2_(Gaa(@)* (G () € PP (5.1)
a,b

Thanks to the unitary conjugation invariance, we know that the eigenvalues (A;) and
the corresponding orthonormal eigenvectors (u;) of a GUE matrix are independent, and
that the collection of eigenvectors U := (uy, ..., uy) is distributed according to Haar
measure on the unitary group U (N).

Further, using the spectral decomposition
1 Y ujut
G(2) = 7 ;)\j_z, z€eSs, (5.2)
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we write the expectation of (5.1) as

1
~7 2 Bl(Gua@)* (G (2))’]
a,b

1 Z Z ]E[uj(a)uj(a)uk(a)uk(a)up(b)up(b)uq(b)uq(b)]

N2 e Aj— 2D —2D)(hp — 2D (g — 2)
1
N2 Z 2 [ (hj— 2Dk —2)(hp — ) (g — z)]
a,b j.k,p.q
X E[Uq4jUakUppUpqUajUak UppUpg . (5.3)

In order to estimate the expectations of the eigenvectors above, we use the following
result for the Weingarten calculus on the unitary groups [10,11].

Lemma 5.1 (Corollary 2.4, Proposition 2.6 in [11]). Let U = (U,j)l V=1 be a Haar

unitary random matrix of size N. Let n € N and denote by S, the symmetric group of
order n. Then, for arbitrary column and row indices iy, i,’{, Jk» j,i el,N], 1 <k <n,
we have

ElWiyjy -+ Uiju Uit jr -+ Uiy i
- a,;:Sn Biviigry **Binsigey Oitdpy * Sinedpy W EWN o). G4
where Wg(N, y) is the Weingarten function given by
Wg(N.y) :=E[Ui1 - UnUiyy- - Unyml. v € Sn. (5.5)

In the limit of large N, the Weingarten function Wg(N, y) has the following asymptotic

behavior: Let {c;};_ (y) denotes the cycles of y € S, with#(y) the total number of cycles.
Then

#(y)
WeN.y) =N""72 TT(=D Cat(lei = 1) + ON'P72072) - (5.6)
i=1
where |c;i| denotes the length of the cycle c; and Cat(k) = % is the k-th Catalan
number.

Now we are ready to evaluate, for large N, E[U;jUak Upp UpgUajUak UppUpy ] from
(5.3) using Lemma 5.1 with n = 4. We may assume that a # b, as the case a = b only
contributes O (N ") to the expectation of (5.1) uniformly for z € S, using the local law
3. 10)andLemma21 Wesetn =4, i _12_11 _lz_a i3 _14_13 _14_b
hv=Jji=J.2=Jy=k j3=j3=p,and js = j; = q. Since max,cs, #(y) = 4,
the leadmg term in (5.4), corresponding to Wg(N, y) with y =1 (a"'B =1),is of size

( 1) from (5.6) and the rest terms are bounded by 0( =). Moreover, the coefficient
in front of Wg(N, 1) is given by the number of permutatlons o € S4 such that

i = i;-(l)ﬂ Ji= ]'(/;(1)7 [=1,2,3,4. (5.7



Convergence Rate to the Tracy—Widom Laws 867

We then separate into the following five cases: (1.) all indices j, k, p, g are distinct,
(2.) only two of them coincide while the other two are distinct, (3.) two pairs of them
coincide, (4.) three of them coincide and the rest one is different, and (5.) all the indices
are the same. As a # b, the number of permutations satisfying (5.7) is given by 1, §, 6,
8 and 4, respectively. Therefore, for a # b, we obtain

2 2 1 1
El(Gaa () (G ()] = 7 ijij E[(/\j T T v o _Z)]

all distinct
1
x (1+ o(ﬁ))

8 1 1
TN Zq E[(x, 020 — ) — z)](l * O(ﬁ))

all(iis’tinct
6 r 1 1
+W§]E-o\j — 020, —Z)2](1+0(ﬁ)>
8 r 1 1
+F§1E-(Aj — )30 —Z)]<1+0(ﬁ))
4 -1 |

For example, by direct computation, the first term on the right side of (5.8) can be
written using the spectral decomposition (5.2) as

1 1
DY E[ ]
N* A =2 — 2Dy —2)(Ag — 2)
J-k,p.q
all distinct

1 6
= mIE[(TrG)“] — mIE[(Ter)(TrG)?]
+ %]E[(TrG%(TrG)] — %E[TrG“] + %E[(Trcz)(TrG%]. (5.9)

Observe that the resulting terms on the right side are type-0 terms under Definition 4.2.
We further write the other terms on the right side of (5.8) similarly by type-0 terms using
the spectral decomposition. To sum up, averaging over a, b and adding the subleading
diagonal terms, (5.3) eventually becomes,

e ;E[(Gua)z(cbb)z] = mE[(TrG)“] + mIE[(TrGZ)(TrG)Z]

+ %]E[(Ter)(Tr(ﬂ)] +O(N™Y,

uniformly in z € S, after exact cancellations between the terms.

In this way, we have eliminated one pair of a-indices and b-indices from the type-AB
term (5.1) and shown that they can be written as linear combinations of type-0 terms,
which involves only products of traces.
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For Wigner matrices, the above does not apply anymore as the eigenvectors are
no longer exactly Haar distributed on U (N), further the expectation in (5.3) does not
factorize. Yet successively applying cumulant expansions, we can reduce type-AB terms
to sums of type-A terms up to negligible error, and then finally reduce type-A terms to
sums of type-0 terms. This procedure is explained in the next subsection.

5.2. Proof of Proposition 4.3. In this subsection, we give the proof of Proposition 4.3
for arbitrary Wigner matrices using cumulant expansions.

Proof of Proposition 4.3. We consider a type-AB term of the form in (4.17) with both
indices a and b appearing twice as arow index and twice as a column index in the product
of the Green function entries. There are two steps as follows. We first expand the type-
AB term as a linear combination of type-A terms by eliminating one pair of the index b.
Then in a second step we expand the resulting type-A terms as linear combinations of
type-0 terms by further eliminating a pair of the index a.

Step 1: Reduction to type-A terms. Given a type-AB term, we will eliminate one pair of
the index b using the relation

Gij =6ijG+GijHG — G(HG)jj, (5.10)

and then applying cumulant expansions. The identity may be checked directly from the
definition of the Green function. In (5.10) we use the notation A := %TrA, for any
A € CN*N _to denote the normalized trace. Similar ideas were used in [22,30].
Consider now a type-AB term P8 € P28 of the form in (4.17). We split into the
following two cases.
Case 1: If there exists some i such that x; = y; = b, i.e., there is a factor Gy, in the
product of Green function entries, we may then assume i = 1. Applying (5.10) to Gpp
and performing cumulant expansions for the resulting terms H G and (H G)pp, we obtain

E[P}P] = N#I+2 Z Ca.b IE[(G +GwHG — G(HG)w) [] Gm']

2<i<n
N#I+2 Z CabIE[G H ml]
Z,a,b 2<i<n
+ 1 Z E abeij 1_[25[9. Gy
NH#I+4 CabT h it
T.a,b,jk J
,a,b, j,

1 0G ;G Gy,
Z Ca,b,IE[ JJ kbnzglgn Xi Yi (5.11)

1
- +0<(—=),
N#I+4Iabjk Al :I <(\/ﬁ)

where the error O (\/LN) is from the truncation of the cumulant expansions. Using (3.21),
the first order of the second group of terms above corresponding to 3,?7G jk 1s precisely

canceled by that of the third group of terms corresponding to %Gkb. Then we write

E[P}P] = N#I+2 Z ¢an7E[G [] Guy]

2<i<n
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1 aGb <i G i Vi
Z Cu,b,IlEl: bl_[2_z§n Xiy ij]

N7 .
NS ik Ohji
+ 1 Z c ]E[anj H2§i§n Gy G ]
N#I+4 LS a,b,T ahkb kb
1
+ O0<(—). (5.12)
< «/N

The first term on the right side above is obtained by replacing G, by the normalized
trace G in the expression of PdAB . In this way we have eliminated one pair of the index
b. Since the index b originally appeared twice as a row index and twice as a column
index in the product of the Green function entries, the first term has become a type-A
term of degree d. Moreover, from (3.21) and the fact that j, k are fresh indices, the other
terms on the right side of (5.12) can be written out as a sum of 2n type-AB terms of
the form in (4.17), where the corresponding free summation index setis Z' = {Z, j, k},
m’' = #7' = m + 2, and the number of Green function entries is n’ = n + 2.

We next study the degrees of these terms in detail. In the second group of summation
in (5.12), if 9/0h ji acts on Gpp, then the degree of the resulting term is increased by
three, since j and k are fresh indices. If 9/0hj; acts on Gy;y;, (2 < i < n), then the
degree is increased by at least two for the same reason. In the last group of summation
in (5.12),if 3/dhyp acts on G j;, then the degree is increase by three. When 9/94h i acts
on Gy, (2 <i < n), we split the discussion into three cases: 1) if Gy,,, is diagonal
and x; = y; # b, then the degree is increased by three; 2) if G,,, is off-diagonal with
yi # b, then the degree is increased by two; 3) if G,y is off-diagonal with y; = b, then
the degree is increased by one.

Hence the degrees, denoted by d’, of all the terms on the right side of (5.12) except
the first one, satisfy d’ > d + 1. We use ZP;)BEIP;\,B’d/Ed_'_l IE[P;}B] to denote the finite

sum of these terms, i.e., we write

I
E[PAB] = N#I+2 3 cabIE[ ]_[leyl] 3 EIPpEI+ O<(«/__)'
Z,a,b i=2 pA/Be’p;/B N
d'>d+1

(5.13)

Therefore, the combination of the identity (5.10) and the cumulant expansion gives a
cancellation to first order, and the only leading term left is obtained by replacing a
factor Gy, with the normalized trace G of the product of Green function entries in the
expression of the original P;\5.

Case 2: If there is no i such that x; = y; = b, i.e., there is no factor as Gy in the
product of Green function entries in (4.17), we may then assume that x; = b and y; # b.
Since the index b appears exactly twice in {y;}7_,, we may assume that y, = y3 = b
and x2 # b and x3 # b. Then there is no b in the remaining column index set {y;}}_,
Using the 1dent1ty (5.10) on Gpy, and applying cumulant expansions, We find

E[P}P] = N#m > Can7E[(Gpy HG — G(HG)bM)GbeGmHGx,},]
Z.,a,b i=4

N#Z+2 Z Cab ZE[(S’W' G H sz]

Z,a,b i=2
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1 0Gpy, GG " Gy
Z Ca,b,IE[ by Yxab X3b1_[:_4 Xi i ij]

T T N#HIH4 .
NP ek O jk
N#I+4 L5 J . a,b,I ahkb kyl < \/ﬁ 3

(5.14)

where in the second step, we observe a cancellation to first order similarly as in (5.12),
and the last error O~ (N ~1/2) is from the truncation of the cumulant expansions at the
third order, while the contribution from the diagonal case b = yy, i.e., the second line
of (5.14), can be bounded by O-(N~hH using the local law in (3.10). From (3.21), the
right side of (5.14) can again be written as a sum of 2n type-AB terms of the form in
4.17) withZ' = {Z, j, k}, m’ = m+2,and n’ = n + 2. Since j, k are fresh indices,
the resulting type-AB terms have degrees d’ > d + 1 (the finite sum of such terms is
denoted by > PABEPAB 41> dx1 E[P4AB]), except the following two terms corresponding

to taking 8}% of a Green function entry whose column index coincides with b, i.e.,

1 n
2 CabTE[GjiGnkGsGup [ | Gan Gin | (5.15)
T.a,b,jk i=4
and
1 n
i €a.TE[ G GrpGrakGion | | Gy, G | (5.16)
T,a,b,jk i=4

Compared with the original term Pf‘B , one observes that the terms in (5.15) and (5.16)
are obtained by replacing one pair of the index b by a fresh index k and adding a factor
G for the replaced index b. These terms are again type-AB terms in 735‘3 with a factor
G pp in the product of Green function entries considered in Case 1. Using (5.13) on these
terms and combining with (5.14), we hence obtain

1 n
BIP}" =7 D €abB| GGGy GrakGay [ | G
T.a,b,jk i=4

1 n
+ W Z Ca,b,IE[ijQka1 zebegk 1_[ Gxiyi]

Z,ab,jk i=4
1
+ Y EBIPYR1+ ) E[Pj,3]+0<(ﬁ), (5.17)
PyBepaB paBePiP
d’'>d+1 d">d+1

where the first two lines above are type-A terms in PJ‘, obtained from the original term
PfB by replacing a pair of index b, i.e., (x1, y2) or (x1, y3) by a fresh index k and
multiplied by (G)?. The first group of sum on the last line of (5.17) comes from (5.14)
excluding two terms (5.15) and (5.16), and the number of the type-AB terms in the sum
is at most 2n — 2. The second group of sum on the last line of (5.17) is obtained from
expanding (5.15) and (5.16) by (5.13). The corresponding type-AB terms are of the form
in (4.17) with m” = m’ + 2 and n” = n’ + 2, and the number of the terms in the sum is
at most 4n’.
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Combining with Case 1, for any type-AB term Pj‘B € PjB, we rewrite (5.13) and
(5.17) in the short form

1
ElPfP1= Y E[PM+ E[PjB]+0<(ﬁ), (5.18)
PrePs PdA,BeP;,B
d'>d+1

where the summations above denote a sum of at most two type-A terms of degree d and
a sum of at most (6n + 8) type-AB terms of degree not less than d + 1. The number of
the Green function entries in the product (see (4.17)) of each term is at most n + 4.

Remark 5.1. In general, if the number of the index b appearing in the Green function
entries of Pj‘B is not limited to four, i.e., v(r) = UZEC) = s > 3, then the terms in the first

group of sum on the right side of (5.18) are of the form in (4.17) with v\ = v =

s — 1 > 2. Moreover, the number of such terms in the first group of the sum is at most
s. We can repeat the expansion procedure in (5.18) for s times until v}gr) (C) =1.We

then end up with at most s! type-A terms in 73[?, and at most 6s° (n +4s) type -AB terms
of degrees not less than d + 1 generated in the above expansion procedures.

Iterating the expansion procedure (5.18) D — d times, the resulting type-AB terms
have degrees at least D. Using the local law in (3.10), we expand an arbitrary type-AB
term P(fB € PjB as a finite sum of type-A terms of degrees at least d, up to negligible
error. We hence arrive at

1
ElPP1= > Y E[P;]+0<(ﬁ+wD). (5.19)
d<d'<D pf/epj/

The number of the Green function entries in the product of each type-A term above is
bounded by n +4D, and the number of these type-A terms is bounded by (6(n +4D))?.
Step 2: Reduction to type-0 terms. For the expanded type-A terms on the right side
of (5.19), we follow the idea in Step 1 to expand the resulting type-A terms as linear
combinations of type-0 terms by further eliminating one pair of the index a.

Given a type-A term PdA € Pj of the form in (4.17), we split into two cases: 1) there
exists a factor G, in the product of Green function entries; 2) there is no factor G4, in
the product of the Green function entries. We utilize similar arguments as in Case 1 and
Case 2 of Step 1 above and obtain the analogue of (5.18), namely that

1

E[Pf1= > Ps+ Y E[P] +0<(«/ﬁ) (5.20)
PaePy P4, P,
d">d+1

where the summations above denote a sum of at most two type-0 terms of degree d and
a sum of at most (6n + 8) type-A terms of degrees at least d + 1. The number of the
Green function entries in the product of each term is bound by n + 4.

Iterating the above expansion for D — d times, we then expand an arbitrary type-A
term Pj‘ € 73;,4 as a sum of at most (6(n + 4D)) type-0 terms of degree d’ satisfying
d < d' < D, up to negligible error. As the analogue of (5.19), we write

1
ElPM = Y > E[Pd/]+0<(ﬁ+WD), (5.21)
d=<d'<D PyePy
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where the number of the Green function entries in the product of each type-0 term above
is bounded by n +4D.
Combining with the first step (5.19), we finish the proof of Proposition 4.3.

Remark 5.2. The expansion procedures in the proof of Proposition 4.3 are not unique
in the sense that at each step the resulting expansion will depend on the choice of
the Green function entry we pick to be replaced by the identity (5.10) and perform
cumulant expansions. However in view of Lemma 4.1 this is not pertinent to the proof of
Proposition 4.1. This arbitrariness can be used to derive relations among Green function
correlation functions. We finally remark that the errors O~ (N ~1/2) in (5.19) and (5.21)
stemming from truncating the cumulant expansions at second order, can be improved to
O~ (N~1) because of the negligibility of third order terms; see Proposition 4.2.

5.3. Proof of Lemma 4.1. In the subsection, we estimate the expectations of the type-0
terms and prove Lemma 4.1. We start with the following lemma for the GUE.

Lemma 5.2. Let H belong to the GUE. For any € > 0 and Cy > 0, recall the domain
Sedge = Sedge (€, Co) defined in (4.1). Then there exists a constant C independent of €
such that

1
N]EGUE[Im TrG(z)] < CN-1/3+, (5.22)

holds uniformly for all z € Seqge, for sufficiently large N > No(Co, €). Furthermore,
forany v > 0, all the type-0 terms Py € Py (d > 2) of the form in (4.17) have the upper
bound

IESUE[P,(2)]] < N™V/3*, (5.23)

uniformly for all z € Seage, for sufficiently large N > N|(Co, €, 7).

The proof of Lemma 5.2 is postponed to Sect. 5.4. Using the above lemma for the
GUE and the comparison method, we are now ready to prove Lemma 4.1 for arbitrary
Wigner matrices.

Proof of Lemma 4.1. Consider any type-0 term P; € P, of the form in (4.17) of degree
d > 2.1fd > D for some large D, then by the local law in (3.10), |[E[P;]| = O~ (¥P +
N~ ). Else, if d is smaller, we estimate [E[ P;] using the comparison method iteratively
and the corresponding estimates for the GUE in (5.23).

We start the iteration by denoting the type-0 term P, of the form in (4.17) as Py =

P;ll), where the superscript (1) and degree d = d; will be used to indicate the iteration
step. We hence consider a term of the form

n
M _ p . ! N
Pd] =Pd1 (t,2): NAT2 E Cal,b1,11<1_[Gxiyi(t7Z))» 1 € R", 7 € Sedge,
Ty,a1,by i=1

(5.24)

with n; = #7; + 2, where each summation index in {a1, b1, Z1} appears exactly once in
the row index set {x;} and exactly once in the column index set {y;}. In the following,
we often omit the parameters 7, z and the errors below are always bounded uniformly in
7 € Sedge and > 0.
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We next derive the stochastic differential equation for the type-0 term P;l) under the

Ornstein—Uhlenbeck flow in (3.7), similarly to (4.4). In general, for any {x;, y;};_, with
some n € N, using Ito’s formula and the stochastic differential equation for the Green

function entries in (3.22), we have

n n n
1
d(l_[ ze')‘i) = Z 1_[ GXiyidGijj + 5 Z l_[ GxiYidej)’jdek,Vk
i=1 j=lisj Jik=li#jk
1 N n
-~ JN Z Z GxjaGby; H Giy;dPab
a,b=1 j=1 i#j

n

N

1 1 1
E ( bej Gbyj Nijbiijaa + NGx/-aGaijbb)
a,b=

i)
1j=1
Hze-yidt
i#)
1 N n
TN Z GujaGhy,GrpGay, || Gyt :=dM + 8 dt,
a,b=1 jk=1 iy

(5.25)

with diffusion term d and drift term © d. Applying cumulant expansions to the drift
term, we observe cancellations of the second order expansions as in (4.5) and obtain that

‘ 8(ij Ga}’/ l—ll;ﬁj xz)’z)]

TN Z(S(Z) -D ZE[ Ohaa

N 4 (p g+1)

I
+3 2 Z“b—pw

a,b=1 prg+1=3 P'q!N
ab

8[7 l](G i Gb” [ G ,",') 1
Y E| T e S o (o
j=1 ahbaahab \/N
N 2 n
1 (T, Gy
= 2 _q E[&]
N ; @ =D 7o
4 N
S Ly q+1>E[3P+q“(Hz 1Gx,y,)]
p+q+1 1
p+q+1=3 217 CI'N] ? a,b=1 3]’111;8/’13;
a#b
+0«( . ) (5.26)
< \/ﬁ . .

From (5.25) and (5.26), we find that P;l” in (5.24) satisfies the stochastic differential

equation
APy = dmS) + 0 dr, (5.27)
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where the diffusion term dei:) yields a martingale after integration (see Remark 3.1)

and the drift term @flll)dt satisfies the following analogue of (4.5),

N (1
s 2(Py)
1
B0 = —5 3062, - DE[ S50
az 1 azaz
4 N gp+a+l p(
B Z 1 Z s(p,q+1)E[ T (Py)
| p+q+l aby anP 8hq+1
pg+l= 32qu ar,br=1 bray” "arby
ar#bs
F O (1) (5.28)
< \/ﬁ , .

where ay, by are fresh summation indices, as a, b in (5.26). The subscript 2 is used to
indicate the iteration step and distinguish from ay, by in (5.24).

From (3.21), all the third order terms for p + ¢ + 1 = 3 in the cumulant expansion
above can be written out in the form in (4.8), with an extra factor /N in front. Since
the fresh indices az, by both appear an odd number of times in the product of the Green
function entries, they are unmatched from Definition 4.1. Using Proposition 4.2, these
term are bounded by O_(N~'/2 + /NWP),

The fourth order terms in the cumulant expansion with p + g + 1 = 4 in (5.28), with
the exception of those corresponding to p = 2, ¢ = 1, are also unmatched terms of the
form in (4.8), since the number of times the index a, (or b,) appears in the row index
set {x;} does not agree with the number of times it appears in the column index set {y; }.
Using Proposition 4.2, these term are bounded by O (N~! + wP).

By choosing D > é with € as in (2.9), we hence obtain the following analogue of
(4.16)

b 1 2%(P{)
BlOg == 5 D (56 — mE[w]

ar=1 aaz
N 4 (1)
1 " (P; ")
_ (2,2) —1/2
W L SB[ 0.v ). (5.29)
ap,bry=1 byay ™~ " axby

ar#b,

It then suffices to estimate the remaining matched terms above. Using (3.21) and (5.24),
the second group of terms on the right side of (5.29) can be written out in the form:

ni+4

1
m Z Cay,by,az,b2, T, ( 1_[ Gx,'y,')v (530)

Zi,a1,by,a2,by

where the coefficients {ca1 bi.ar.by, T} are determined by {c,, »,.7,} and {9 )} and
each summation index in {ay, b1, Z} appears once in the row index set {xl} and once
in the column index set {y; }. Moreover, both indices a, b> appear exactly twice in the
row index set {x;} and exactly twice in the column index set {y;}. We define the degree
of the form in (5.30) as in (4.9) by counting the number of off-diagonal Green function
entries. Recall the definition of the type-AB, type-A and type-0 terms from Definition
4.2. The definitions can be adapted naturally with respect to the fresh indices a; and by,
for the form given in (5.30).
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Thus the second group of terms on the right side of (5.29) are ny (n1+1)(n1+2)(n1+3)
type-AB terms considered in Proposition 4.3 of degrees not less than d + 1, from (3.21)
and the fact thatay, b; are fresh indices. Similarly, the first group of terms on the right side
of (5.29) are ny(n1 + 1) type-A terms of degrees not less than d; + 1. Using Proposition
4.3, we expand each of these terms as a sum of finitely many type-0 terms of degrees at
least dy + 1, which are in the form:

1 =
2 .
sz © N#D+H Z Cal,bl,az,bz,fg(l_[ Gx,-y,->a (5.31)

1r.a1,b1,a2,by i=l

where 7 is a set of free summation indices, the coefficients {c,, b, 4,,b,,7,} are uniformly
bounded complex numbers, and each index in {a>, b2, a1, b1, Z>} appears once in {x;}
and once in {y;}. In particular, n, = #7, +4. The degree of such a term, denoted by >, is
given as in (4.9). The collection of the type-0 terms of the form in (5.31) of degree d> is

denoted by 7352). Here we use the subscript 2 to indicate the iteration step. Note that the
formin (5.31) 1s a special case of the form given in (4.8) and the indices ay, b1, az, by do
not take special roles. We keep them in the notation to emphasize the inheritance from
(5.30). Then from Proposition 4.3, we expand (5.29) and write for short

1 2 _
EOY1= > EPI1+0(N2+wP), (5.32)
PRep?
di+1<dr<D
uniformly in # > 0 and z € Sedge, Where the summation above is over finitely many

type-0 terms of the form in (5.31), and the number of these terms is determined by D
and nj.

We now return to the stochastic differential equation for Péll) in (5.27). Integrating

(5.27) over [t/, T]forany 0 < ¢ < T = 8log N and taking the expectation similarly to
(4.7), we find from (5.32) that

T
BP0l -EP @ 1= Y [ EPP . 2

t/
2) 2
Py ePd2
di+1<dy<D

+ O (logN(N~V2 4+ wD)y). (5.33)

Using the local law in (3.10), (3.34) and (5.23), IE[P;II)(T, z)] is sufficiently close (up
to an error O(N~H) to EGUE[P;P(z)], which can be bounded by O~ (N~1/3). Hence

it suffices to estimate E[P;zz) (¢, z)] on the right side of (5.33), for ¢ € [0, T], z € Sedge
in (4.1).
Given any Pd(zz) € Pg) (dy > dy + 1) of the form in (5.31), if d; = D — 1, we find

|]E[PI§22) (t,2)]] = O<(¥P + N1 using the local law in (3.10). We then obtain from
(5.33) that

ELPYY (¢, 2)]| = 0<(10g N(N~V2 4 wP) 4 N’]/3), (5.34)

uniformly in #" € [0, 7] and z € Sedge-
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Else, if di < D — 2, we repeat the above arguments for the resulting type-0 terms
P;Z) € ’Pg) (dy = d; + 1) on the right side of (5.33) as in (5.27). Using (5.25) and
(5.26), we then create two fresh summation indices, denoted by a3, b3, to derive the

evolution under the Ornstein—Uhlenbeck flow of any P(z) € 735 ) . Similarly as in (5.29),
the expectation of the corresponding drift terms is glven by

2
2N az=1 e ahlznug
N 4 (2)
1 " (P,”)
— 2.2) d —12
N Sash E[ ] +O0<(N"'?), (5.35)
4% 03%::1 o 8h/273a38h33h3

a3#bs

From Definition 4.2, the right side above can be written out as linear combinations of
type-A terms and type-AB terms, with respect to fresh summation indices a3 and b3, of
degrees not less than d; + 1. Using Proposition 4.3, these terms can further be expanded
by the type-0 terms of degrees at least d» + 1. In this way, we obtain an estimate similar
to (5.34) ford; = D — 2.

Next, we discuss the iterative mechanism to extend to any small d; > 2. In general,
for any s > 1, we define a type-0 term in the s-th iteration step to be in the form of

1 o
GRS DR IES | | (R O) NECE D)
Ix,al,bl,...,ax,bx i=1

where Z; is a set of free summation indices, the coefficients {c,, p,....a,.5,.7,} are uni-
formly bounded complex numbers, and each free summation index in
{a1, b1, ..., as, bs, I} appears once in {x;} and once in {y;}. In particular, we have
ng = #Z; + 2s. The degree, denoted by d;, of such a term in (5.36) is given as in (4.9)
by counting the number of off-diagonal Green function entries. We denote by Pdv) the
collection of the type-0 terms in the s-th step of the form in (5.36) of degree d;. Note
that the form in (5.36) is a special case of the form given in (4.8), in order to emphasize
the s-th iteration step and the dependence on {a;, bs}.

We then derive the stochastic evolution for any ngf) € Pz(lf) (s > 1), using (5.25) and
(5.26) similarly as in (5.27) and (5.32). That is, ’ A

APy =dm + 0 dr, (5.37)

where dM;S) yields a martingale after integration, and E[@S)] satisfies

B0y al= Y EPIV@ 0]+ 0.2 wP), (5.38)
(s+ s+
P €Pa)
di+1<doy <D

uniformly in¢ > 0 and z € Sedge, Where the sums in (5.38) are over finitely many type-0
terms in the (s + 1)-th step given in (5.36) and the number of such terms is determined
by D and ng. Moreover, the number of Green function entries in the product of each
type-0 term is finite and determined by D, ng.
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We run the dynamics of P(S) in (5.37) upto T = 8log N as chosen previously. We
next estimate the size of E[P(A)(t )] at the terminal time T for any Pd(é) € P(f), with
s > 1 and d; > 2. Indeed, from (3.34) and the local law in (3.10), we have

B[P (T, )] — ESUF[P ()] = o(N 7). (5.39)
Together with the estimate (5.23) for the GUE, we obtain that, forany s > 1 and d; > 2,
B[P (T, 1] = 0-(N7'F3). (5.40)

Next, we return to the stochastic differential equation of P;:) in (5.37). Integrating

(5.37) over [t/, T] for any 0 < ¢’ < T and taking the expectation as in (5.33), we have
from (5.38) and (5.40) that

E[P;j)(r’,z)] > / P(H])(t 2)]ds

(y+|) (3+1)
s+1 s+l

dy+1<d\~+| <D

+0<<1ogN(N*1/2+\yD)+N*1/3). (5.41)

Now, we are ready to iterate using (5.41). In the first step, we start by Pdl)(t z) in
(5.24) and have (5.41) for s = 1. The number of the terms Py € P\>) with dy > dy +1
on the right side of (5.41) is finite and depends on n| and D Then we further estimate
these type-0 terms P;z) using (5.41) for s = 2 as the second step. The resulting type-0
terms P(3) € P(z) withds > dp+1 > di+2 will be estimated again using (5.41) fors = 3
as the th1rd step Since in each step of using (5.41), the degrees of the corresponding
type-0 terms P(SH) € Psﬁl) on the right side of (5.41) are increased by at least one,

we have dyy > d1 +5. We hence stop at step s = 5o := D — d. For any P(SO) € P(SO)

with dy, > D — 1, the resulting terms P(S(?“) € P(SOH) on the right side of (5.41) have
degrees ds,+1 > D. The number of these terms is ﬁnite and depends on D, ny. Using

the local law in (3.10), all these terms can be bounded by O (W + N~!). This implies
that the finite sum of these terms after integration over [/, T] can be absorbed into the

error term on the right side of (5.41). That is, for any P(SO) € 73(50) withdy, > D — 1,

BRSO ) = 0~ (log NN T12 4+ wP) + N713).
We hence plug the above estimate back to the previous step, i.e., (5.41) fors = so— 1.
We then obtain a similar estimate for any Péf(?jll) € Psfgjll) withdy,—1 > D — 2,
BP0 (2] = 0~ (log? NN T2+ wP) 4+ NP log V).
Repeating the above process until s = 1, we hence obtain that, for d; > 2,

[ELRS (@ )] = 0<((N71+ wP) log” N),

uniformly in # € [0, T'] and z € Sedge. By choosing D > % with € > 0 as in (2.9), we
prove (4.21) fort € [0, T]. If > T, a similar estimate can be obtained by using (5.39)
and (5.40). We have hence finished the proof of Lemma 4.1.
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5.4. Proof of Lemma 5.2. We end this section with the proof of Lemma 5.2 considering
the GUE.

Proof of Lemma 5.2. Using the spectral decomposition (5.2), we write
| N
GUE GUE
~E [Im TrG(z)] Tk [X_: Y le] 2 € Sedge. (5.42)
Then it suffices to estimate the following linear eigenvalue statistics, which can be written

from (2.29), (2.36) and then (2.37) as

N

L Py I Ay g T B
N -zl N2 Jplx -2 -k —inl?
dge
1 K% (x, x)
B F./;{ [x — N2/3K —iN2/3y2 dx, (5.43)

where z = 2 + k +11 € Seqge, With || < CoN72/3*€ and N™1*€ <y < N72/3+<,

To control the integral on the right side of (5.43), we choose a fixed Lo < 0
(see Lemma 2.5 and Theorem 2.3) and split the real line in the parts, (—oo, —N 23,
(=N?3, Lo] and (Lg 00).

For the integration domain (—oo, —N 2/ 3], we find that

1 KS%(x, x)

_ dx = O(N7 Y, 5.44
T Doy e = N — iy T O G40

using the trace identity (2.34) for the kernel K and that || < CoN —2/3+€
Moreover, from Theorem 2.3 and Lemma 2.5, we have on (L¢, 00), that

1 edge(x X) 1 /‘ alry(x X)+O(N~ 2/3)
N? x>Lg |X—N2/3K—1N2/3)7|2 N3 x>Lo |x_N2/3K—1N2/3)’]|2
1
= 0( Z ) (5.45)
N3n

It hence suffices to focus on the regime (—N 2/3, Lo]. Recall from (2.32) and (2.37)
that

N-1
. 2 . edge _ 1
KN(x,x)_X_:(pk(x), KN x) = oK (2f+ ]/6,2«/_+N1/6>
(5.46)
From (2.31) and (2.33), the derivative of Ky (x, x) is given by
Kj(x,x) = —/Noy_1(x)¢n (x) .
The Hermite functions satisfy, for all k,
sup | (x)] < Ck—1/12. (5.47)

xeR
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for some constant C independent of k, as was proved in [4]. Therefore, the derivative of
the edge kernel K f\;lge (x, x) is given by

(K;dge(x,x)) 17 KN<2«/_+ 2N + l/6):0(1). (5.48)

N1/6’

For any x € (—N?/3, Lo, we have from (5.48) and Lemma 2.5 that

L
K% (x, x) = edg"'(Lo,Lo)—f 0( S, x)) dx < C'(1+x]).  (5.49)

Therefore, we obtain from (5.49) that

1 K5 (x, x)
F/N2/2<X<L0 |x — N2k — N2/377|2 &

e 1+ x|

T N3 JonBaxar, (6 — N2BK)? + (N2/3p)?

€

Iévgn)=0(N;_€n), (5.50)

= 0(N72/310gN+

where we used that || < CoN ~2/3*€,
Plugging (5.44), (5.45) and (5.50) into (5.43), there exists some constant C indepen-
dent of € such that

1

N
1 CN¢
TEGUE[Z 2] <=, (5.51)
N o [A; —z] Nip

uniformly inz € Sedge, for sufficiently large N > No(e, Cp). In combination with (5.42),
we hence have proved (5.22).

Finally, we consider any type-0 term P;(z) € P4(z) of the form in (4.17) of degree
d > 2 for the GUE. For notational simplicity, we no longer emphasize the indices a,b
and write

N N n
i =13 Y e ([TGan @), (5.52)
i=1

vi=1 v, =1

withn > 2, where each summation index v; (1 < j < n) appears once in the row index
set {x; };’:1 and once in the column index set { y,-}l'.’: | and the coefficients {cy, ... y,} are
uniformly bounded complex numbers. For any 1 < j < n, if there exists | < i <n
such that x; = y; = v}, then we say that v; is isolated. For any 1 < j # Jj' < n, if there
exists 1 < i < n such that either x; = v;, y; = vjs or y; = vj, x; = vjs, then we say
that v; and v are connected indices. Because the degree of (5.52) is at least two, there
exists at least one cluster of connected indices containing at least two elements. We may
assume that vy, ..., v,, (2 < ng < n) form a cluster of connected indices. Using the
local law in (3.10), we have

[ il
= N™o Z Z |GU1U2GU2U3"'Gvnovl(z)|’

vi=1 vnO:l

| Py(2)]
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If ng = 2, from Young’s inequality and the Ward identity

1 Immpy(z .
mZ'GU(Z)'ZZN—g()’ c=E+igeCt, (5.53)
i,J

which follows from the spectral decomposition (5.2), we then obtain

1 1
Pa@1 < 555 221G @G @] = 525 3 (1Gun, @F + G (2)P)

V1,02 V1,02
I .
— mm—N(z) (5.54)
Nn
For ng > 3, we have similarly from the local law (3.10) that
51
|Py(z)] < po zm Z ‘Gu1vz(Z)Gv2v3(Z)}
v1,v2,03
< \pno—2L Z (|G @>+1|G (Z)|2) — 0(%) (5.55)
- 2N3 oo viv2 V3 (Nn)”o_l ’ :

where in the last two steps we use Young’s inequality, the Ward identity (5.53), and that
Y(z) = O(N%’) for any z € Sedge. Therefore, combining with the estimate (5.22) for
the expectation of Im m y (z), the properties of stochastic domination in Lemma 1.1, and
that n > N~1*¢ we have, for any 7 > 0,

EGUEUPd(s)(Z)” < N_1/3+T, d > 2’

uniformly in z € Sedge, for sufficiently large N > N(’)(Co, €, 7). This completes the
proof of (5.23), and hence the proof of Lemma 5.2.

6. Product of Green Function Entries with Unmatched Indices

In this section, we prove Proposition 4.2. Before stating the proof for Wigner matrices,
we first consider the GUE for the intuition why expectations of unmatched terms are
much smaller than the naive size obtained using power counting and the local law as in
(4.10).

6.1. Intuition from the GUE. In this subsection, we focus on the special case of the
GUE, as in Sect. 5.1. Consider any Q¢ € Qf of the form (4.8). Using the spectral
decomposition (5.2) and the unitary invariance of the GUE similarly as in (5.3), we
write the expectation of the unmatched Q¢ as

N n n
B0 = o Ser Y E[[] =] % B[ [Jwicom0n]. 6
N T Jleeesjn=1 i:l( i =) i=1

with (A ;) the eigenvalues and the corresponding normalized eigenvectors (u;), and each
Xi, y; represent some free summation index in Z. In order to estimate the expectations
of the eigenvectors, we recall the Weingarten calculus formula in Lemma 5.1. Under
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Definition 4.1 for unmatched indices, if the values of the free summation indices in Z
are distinct, then &y, Yoy * Oy, Yoy = 0, for any permutation o € S,. Thus from (5.4),
forany 1 < ji,..., j, < N, we have

E[]i[u,,.(xi)W] = 0.
i=1

The non-vanishing contributions come from the diagonal cases when the values of some
free summation indices in Z coincide. Because of the averaged form of QF in (4.8) and
the local law in (3.10) one works out that, forany z € S and ¢ > 0,

E[Q] = O(N"). (6.2)

For Wigner matrices, the above argument does not apply anymore. We hence use
similar expansions as in Sect. 5.2 to extend to arbitrary Wigner matrices. Before we give
the proof of Proposition 4.2, we start by considering an example of the unmatched term
in QF to illustrate the mechanism.

6.2. Example of an unmatched term. We look at the following example of an unmatched
term

1
m Z GuprGpaGap € Qg» (6.3)
a,b

with a € R? and b € C?; see (4.12) in Definition 4.1. Using the local law in (3.10), the
expectation of this term can be naively bounded by O (W3 + N ~!). The idea to improve
this bound is similar to the proof of Proposition 4.3. Note that the combination of the
identity (5.10) and the cumulant expansion gives a cancellation to the leading order.
Thus we can improve the upper bound to O (W + :/I’—% + N~1). We next discuss the
details.

Using the identity (5.10) on the off-diagonal entry G, with unmatched a as the row
index and applying cumulant expansions, we have

1
7 2_FlGarGraGan]
a,b

S E[(GuHG — GHOY)GraGun) + 1 3 E(Gu
a=1

a#b
_ L4 Z E[aGabC;Z<¢baGabi| _ % Z E[anj(zk;l,GbaGab]
a,b,jk Jk ab ok ka
11 1 302G aupG 1k Gpa G
teaE 2 e o R ]
W ptq+1=3 P-q: ab,j.k ahjkahkj
1 1 1 932G ::GinGr G 1
_ — Z - Sz(zi’qH)E[ jj pkb :a ab]+0-<(_), (6.4)
VNN prani=3 P ok g Oh gy N
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where the last error term comes from the truncation of the cumulant expansions at the
third order and the diagonal case a = b.

Using (3.21) and that j, k are fresh summation indices, all the third order expansions
for {p + g + 1 = 3} can be written out using the terms of the form in (4.8) of degree at
least three, with an additional factor \/Lﬁ in front. Since both the fresh indices j, k appear

in the product of the Green function entries for an odd number of times, the resulting
terms are unmatched from Definition 4.1. From the local law in (3.10), they are bounded

3
by 045 + 54).
Now we return to the second order terms in the cumulant expansions in (6.4), i.e.,
s Z E[aGabijGbaGab] R E[3ijGkbiaGab]

4 ah; N4 ah
ab, .k Jk ab.jk ka

(6.5)

Using (3.21), the fresh indices j, k are then matched and the index a remains to be an
unmatched row index. The key observation here is that the leading sub-term from the
first term above, corresponding to taking 77— h of G jk, will be canceled premsely by the

leading sub-term from the second term above, resulting from taking m of Gyp. We
hence rewrite (6.5) as

4 Z [aGabiaGab jk] 4 Z [aG]]Gba akab] (6.6)
a,b,j.k

The degrees of the resulting terms from the first part above are five as j, k are fresh
indices. Similarly, the ones from the second part have degrees at least four, except one
sub-term from taking % of Gp,, whose column index coincides with the unmatched
row index a:
1
N Z E[ijGkaaaGakab] .
a,b,j.k

Compared with the original term in (6.3), one replaces one pair of the index a by a
fresh index k and adds a factor G,, for the replaced index a. The good news is that
this leading term of degree three remains unmatched with an unmatched row index a.
We then expand it further as in (6.4) and obtain that

1
7 2 E[G1iGuuGarGiiGu]
ab.jk
1 0G;jGaaGarGpikGrp
=y 2 E o Gf'/"’]
ab.jkj K J'k

B L Z E 0G;iGuaGj jGpiGrp
ohy,

. o]

a,b,jk,j k'

1
+ {third order terms} + O (N), (6.7)

with j’, k" another two fresh summation indices. Here, the third order terms are also
unmatched terms of the form in (4.8) of degree at least three with an extra \/LN in front,

similarly as in (6.4). From (3.21), the resulting terms from the first part on the right side
of (6.7) have degrees at least five. As for the second part above, even though the column
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index of the diagonal entry G, coincides with the unmatched row index a, the resulting
terms have degrees at least four.
In this way, we improve the upper bound of the unmatched term given in (6.3) to

1 VE
— IE[G GpaG ]‘<\IJ4+—+N_1.
N2§ abUbaUab \/N

Indeed, we expand this unmatched term as

1 1 —1
5 2 E[CarGraGurl = Y. EIQ)1+ 7% 2 EIQgI+ 0N,
ab 0, €97, 9, €9
a o h
d;>4 djy>3

(6.8)

where we write ZQ()/ €Q, >4 QZ, as a sum of finitely many unmatched terms of the
dy " =ap = 1

form in (4.8) of degrees increased by at least one, which comes from the second order
. . 1 0 .
expansions. Moreover, we write I ZQZ’ GQZQ’ 43 0 4,32 finite sum of unmatched

terms of the form in (4.8) with an extra factor \/]_ﬁ in front, which corresponds to the third
order expansions. The last error term O (N ~!) is from the truncation of the cumulant
expansion and the diagonal cases. By repeating the above expansion procedure in (6.8)
for arbitrary D times, we improve the upper bound to O~ (¥ + % +N~1). The full
proof is presented in the following section.

6.3. Proof of Proposition 4.2. In this section, we give the proof of Proposition 4.2 for
Wigner matrices using the cumulant expansions as explained above.

Proof of Proposition 4.2. Consider an arbitrary unmatched term Q9 € Q¢ of the form
(4.8). Because it is equivalent to expand a Green function entry Gy in the row index x
or column index y, we focus on the unmatched row indices in the following.

We may assume that the index v; belongs to the unmatched row index set R (which
cannot be empty) from Definition 4.1. Then there exists an off-diagonal factor in the
product of Green function entries with v; as the row index. Without loss of generality,
we set x| = vy, and y; # v;. Using (5.10) on the off-diagonal entry G, y, and applying
cumulant expansions similarly as in (6.4), we have

1 n
E[Qg] = N ZCI]E[Gmyl l_[ ze'}’i:l
T i=2
l n
= N¥T ZCI]EI:(SUI)’IGUI)'I l_[ GxiYi]
A i=2

1 Gy, y, Gk [125 Gy,
+ E[ Ykl li= i i ]

1 3G jiGiy, [1'2r Gu,y,
_ E[ JiYky iz zyz]
N2HT ;CI;; Ny,
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1 1
+——F=—= ) T
T T

§P q+1)E[82GX1y1 Gk iz Gy, ]

P apd
pq+l= 3]76]' 8h ah J
Z Z Z (», q+1)]E[3 GjiGiy [1i Gmt]
N2+HT k
N2+# f et P! 61' i Oy, Oy
+ O<(N)

1 aGUlyl 1_[?=2 Gxiyi

= N2HI ZCIZEI: o ik ij]

z Jk 1

1 3G jj H?:z Gy

- N2+HIT ZCI ZE[ i ka1]

z Jik vl
1
+ { third order terms for p + g + 1 = 3} + 0<(ﬁ)’ (6.9)

where j, k are fresh summation indices, the last error 0<(%) is from the truncation of
the cumulant expansions at the third order and the diagonal case v| = y;.

We first look at the third order expansions for p +¢ + 1 = 3, which are much smaller
because we gain an extra % from the third order cumulants. Since both j, k are fresh

indices, it is straightforward to check from (3.21) that the resulting terms are also of the
form in (4.8) with an extra — Jﬁ in front. Their degrees, denoted by d’, satisfy d’ > d,

the corresponding free summation index set is Z' = {Z, j, k} and the number of Green
function entries is n’ = n + 3. In addition, the number of such terms is at most 6(n + 3)2.
Comparing these terms with the original Q9, we add in total an odd number of j’s (or
k’s) into the original row index set and column index set of the product of the Green
function entries. Then all these terms are unmatched terms from Definition 4.1. We use
\/L» ZQZ/EQZ” d'>d E[Qfl,] to denote the finite sum of these unmatched terms from the

third order expansions.

Next, we estimate the second order expansion terms, i.e., the second but last line on
the right side of (6.9). Using (3.21) we write them as a sum of at most 2n terms of the
formin (4.8) withZ' = {Z, j, k} and n’ = n+2. The degrees of these terms are estimated
as follows.

For the first group of terms in the second but last line of (6.9), comparing with the
original Qf, we have added one fresh index j and one fresh index k into both the original
row index set and column index set. Then j and k are both matched indices. Moreover,
v1 from Gy, y, remains an unmatched row index. After taking % by (3.21), the degrees
are then increased by at least two. '

Similarly, we compare the second group in the second but last line of (6.9) with the
original Q9. We find again that both j and k are matched, and the index vy is still an
unmatched row index. However, the degrees of the resulting terms from taking ﬁ
may not be increased. This is because the column index of some Green function entry
G,y (2 < i < n) may coincide with the unmatched row index vy. The number of such
Green function entries with vy as column index is given by v{ (< n) from Definition 4.1.
So we split the discussion into three cases.

Case 1: If y; # vy, then after taking % of Gy, y;, the degree of the resulting term

is increased by at least one.
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Case 2: If y; = x; = v1, then after taking ﬁ of Gy, y,, the degree is then increased
v

by exactly one.

Case 3: If y; = vy, but x; # vy, then, for simplicity, we may assume that y, = v
and x; # vy. From Definition 4.1 for unmatched indices, there exists some 3 < i’ <n
such that x;; = v and y;; # vy, because else vy cannot be an unmatched row index of
the original Q. We may assume x3 = vy and y3 # v;. Then the corresponding term

after taking % of Gy,,», becomes
vl

1 n
() i= 577 O CZE[ijGv]v]ka1 GskGo, ys ]_[Gx,.y,.], (6.10)
Z,j.k i=4

with y; # v1, x2 # v, and y3 # v1, and the degree of this term is still d. Compared
with the original QZ, we have replaced one pair of the index vy, i.e., the row index of
Gy, and the column index of G,,y,, by the fresh index k. Further we get an additional
diagonal Green function entry G, for the replaced pair of index v;. Since the index vy
from G, y, remains an unmatched row index, we can further expand the term in (6.10)
using the unmatched row index vy, as in (6.9). We write

9G jjGvjv; Guyy; Giok Gy ( 1_[?=4 Gy yi)

1 0GjGui0, G j Gk Gy, (1_[?:4 GXIYI)
| T G
+ { third order expansions for p + g + 1 = 3} + 0<(%) . (6.11)

Similar as (6.9), the third order expansions contains at most 6(n + 5)2 unmatched
terms of the form in (4.8) with an additional factor \/LN in front, of degrees d” > d, with

17" ={Z, j, k, j',k'} and n” = n + 5. We next estimate the second order expansions on
the right side of (6.11). From (3.21), they become a sum of at most 2n terms of the form
in (4.8), withZ” ={Z, j, k, j',k'}and n”" = n + 4.

If for any 4 <i < n, either y; # v or x; = y; = v1 holds, as considered in Cases 1
and 2 above, then the degrees of these resulting terms are increased by at least one, i.e.,
d">d+1.

Else we may assume that y4 = v; and x4 # v;. The resulting leading term of
degree d, as the analogue of (6.10), is obtained from replacing one pair of the index vy,
i.e., the row index of G,,,, and the column index of Gy,y,, by the fresh index k" and
adding an additional diagonal Green function entry G,,,,. Moreover, there exists some
5 < i” < nsuchthat x;» = vy and y;» # v| to make sure v; is an unmatched row index
of the original Q¢ in (6.9), as explained at the beginning of Case 3. We may assume
i"" =5 for simplicity. Then the index v| from G, y5 is again unmatched. We can expand
this leading term of degree d for the third time by applying (5.10) on G, s and applying
cumulant expansions, similarly as in (6.11).

We continue this procedure of expanding in the unmatched row index v; repeatedly
for s times, until there is no off-diagonal Green function entry with column index y; = v
in the remaining product of the Green function entries [ [;_,; Gy;y;. Then from Case 1
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and Case 2 above, the resulting terms have degrees increased by at least one. The number

of iteration s is at most v; )(< n), where v(C) defined in (7.5) is the number of times the
unmatched row index v; appears in the column index set of the original QY.

In this way, we expand the original unmatched Q¢ in terms of finitely many un-
matched terms in the form (4.8) of degrees at least d + 1, as well as the third order
cumulant expansion terms generated in the iterations, plus an error O-(N~!) from
the truncation of the cumulant expansion and the diagonal cases. In summary, for any
unmatched QZ € QZ, we write the following expansions for short:

1
ElQjl= ) EIQyl+ f Z E[Qd/ +0() (6.12)
5<%, 4
dj>d+1 dzzd

where the number of unmatched terms in the summations above is bounded by (Cn)<",
and the number of the Green function entries in the product of each the unmatched term
is bounded by Cn for some numerical constants C, ¢ > 0.

We finally iterate the expansion in (6.12) for D — d times. Then the unmatched terms
in the first summation have degrees at least D, and the unmatched terms with \/LN in

the second summation have degrees at least D — 1. Note that the total number of the
terms generated in the iteration of the expansions is bounded by ((CD n)"D”) D, and the

number of the Green function entries in the product of each term is bounded by C”n.
‘We hence obtain from the local law in (3.10) that

le 1 1
M~ N) o-(¥?+ ). (6.13)

E[Q)] = O (WP N
We hence have finished the proof of Proposition 4.2.

7. Proof of Proposition 3.1

In this section, we prove Proposition 3.1, which is a key ingredient in the proof the Green
function comparison theorem, Theorem 1.4. The special case of Proposition 3.1 consid-
ering F(x) = x was stated in (4.6), which leads to the corresponding Green function
comparison theorem for F'(x) = x in Proposition 4.1. The proof of Proposition 3.1 relies
on the analogues of Proposition 4.3 (expansion in type-0 terms) and Proposition 4.2 (the
negligibility of unmatched terms), as well as the estimate (4.3) obtained in Proposition
4.1 to bound the resulting type-0 terms.

Proof of Proposition 3.1. We extend the ideas from the proofs of (4.6) to the setup of
Proposition 3.1. Recall E[® (¢, z1, z2)] from (3.18), i.e.,

4
E[O@, 21,2 = B[Ol = ) Kpge1+Ex+ O (N7'/?), (7.1)

prq+1=3
p.qeN

with K, 441 given in (3.19) and E; given in (3.20).
Using the differentiation rules (3.21) and (3.26), each term on the right side of (7.1)
can be written out in terms of an average product of Green function entries with Alm
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acting on it and multiplied by derivatives of F. We give one example of a third order
termwith p =1, =1,

L(1.2)
JN-L 5 L[ F'(X) AT (Gua G GaaGim) |

v,a,b
and one example of a fourth order terms with p =2,qg =1,

22
Z " [ F(2) AT (Gua Gu) AT (Gaa Gi) |

v,a,b

We point out that the third order terms with p + ¢ + 1 = 3 have an additional leading
factor ~/N.

To estimate these averaged products of Green function entries multiplied by deriva-
tives of F', we introduce the following form of terms generalizing the definition in (4.8):

N N
Ot 21.22) #Z-~-chl ..... o [F“"(X)]‘[AIm(]‘[G<,> )] 02

vi=1 Uy =1 i=1

with a, m, ig,n; € N, F©@ be the a-th derivative of a smooth function F which has
uniformly bounded derivatives, Afm : R* x (C\ R)? — C defined in (3.14), where
T:={v ]} '_; is a free summation index set, and the v;’s may also represent a, b from
(3.19) and (3.20). The coefficients {cz = cy,,...,v,,} are uniformly bounded complex
numbers, and each xl(’) and y(') represent some element in the free summation index set
7. The total number of the Green function entries in (7.2) is then given by

ni=Yy n. (7.3)

We further define the degree of a term in the form (7.2) by counting the number of
off-diagonal Green function entries, i.e.,

.....

io
d::Z#{lflfni :xl(i);éyl(i)}. (7.4)

i=1

In particular, we have 0_< d < n. The collection of the terms in the form (7.2) of
degree d is denoted by Qd = Qd (t, 21, z2). From the definition of Alm in (3.14), the
local law in (3.10) and the fact that F" has bounded derivatives, we have, for any term

Qa = Qu(t, z1,22) € Qu,

~ 1
10a(t, 21, 22)| = O (¥ + ﬁ),

uniformly in ¢ € R*, and z;, zo € S given in (2.7). In the following, we often omit the
parameters ¢, z1, z> for notational simplicity.
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7.1. Unmatched terms K ;, 441 in (3.19). In this subsection, we follow the idea in Sect. 6
to show the negligibility of the terms K, 441 given in (3.19) with unmatched indices as
defined next, c.f,, Proposition 4.2. Recall Definition 4.1 for unmatched terms of the form
in (4.8).

Definition 7.1. Given any Qd € Qd of the form in (7.2), let v(r)

(.C), be the number of

times the free summation index v; € 7 appears in the the row index set {xl(i)} and the

column index set {yl )} of the Green function entries, i.e.,

<’) Z#{l<l<n, X =, (C) Z#{1<l<n W =v;). (1.5

Definition 4.1 for unmatched terms can be adapted naturally to the general form given
in (7.2). Define the set of unmatched summation indices as

7° = {1 gjgm:v;r);évi.c)}cf.

If 79 is not empty, then we say Qg is an unmatched term, denoted by é; We denote by
Qf C Qg the collection of unmatched terms in the form (7.2) of degree d.

The combination of the identity (5.10) and the cumulant expansion formula Lemma
2.4 used previously in the proof of Proposition 4.2 still applies similarly to the form in
(7.2), using that {h;;} commute with Alm given in (3.14), the differentiation rules (3.21)
and (3.26), and the assumption that the function F has bounded derivatives. Therefore,
for fixed D > 1 and any unmatched term Q¢ € Q¢ of the form in (7.2) with fixed n
given in (7.3),

~ 1
E[Q7(t, 21,21 = O<(5 + wP), (7.6)

holds uniformly in ¢ € R* and z;, z2 € S, as in Proposition 4.2.
Now we return to the right side of (7.1). Using (3.21) and (3.26), all the third order
expansion terms K, 411 in (3.19) for p+¢g +1 = 3 can be written out as a sum of finitely

many unmatched terms of the form in (7.2) with an extra factor VN in front, since both
the indices a and b appear an odd number of times in the product of the Green function
entries. We hence have from (7.6) that

|Ko1+ K12+ Kozl = O(N"'2+/NwP). (1.7)

Similarly, the fourth order expansion terms K, ;+1, p+q +1 = 4,1in (3.19), with the
exception of K> 2, can also be written as a finite sum of unmatched terms of the form
in (7.2), since the number of times the index a (or b) appears in the row index set {xl(l)}
does not agree with the number of times it appears in the column index set { yl(') }. We
then find from (7.6) that

K31+ K13+ Koal = O<(N"'+WwP). (7.8)

It hence suffices to estimate the remaining matched terms K> 7 and E»> on the right
side of (7.1) as follows. We first consider K> » given in (3.19), E> in (3.20) can then
be estimated similarly. The proof contains two parts: 1) expanding matched terms into
type-0 terms defined as below (c.f., Proposition 4.3); 2) estimating the resulting type-0
terms whose degrees are at least two (c.f., Lemma 4.1) and the rest type-0 terms of degree
zero using the estimate (4.3) in the edge scaling.



Convergence Rate to the Tracy—Widom Laws 889

7.2. Expanding K> >. We start by K given in (3.19), corresponding to the (2,2)-
cumulants. Using the differentiation rules (3.21) and (3.26), we first write K> > as the
following sum

Kor= Y10 (19)
with
ho= s ;‘7 sV E[F (A ((Ga)(G)?) |
b= =5 E ] P 0MTR (GG
b= i R 0AT G AT (GG
- 2N2aj§bs<z2>E[F~(X>(Ah~n(Gaa%y];
== > SEPE[ () AT (Ga) AR (Gr) AT (Gaa G |
== i S 0 (16,7 ()]
b= = oo YR F 0 (AR (Gan) A (Gh0?) ]
Iy = — 4N2£ SR P70 (A Ga) (8 Gr) | @10)

where s(ﬁ’z) (a # b) are the (2,2)-cumulants of the rescaled entries ~/N7gp given in
(2.24).

Observe that for the terms given in (7.10), both indices a and b appear exactly twice
as the row index and exactly twice as the column index of a Green function entry.
We hence consider the special case of the form in (7.2) with the two indices a, b singled
out, namely,

N#m > CahIE[F(“)(X)]_[AIm(]_[G 0 m)] (7.11)

a,b, T i=1

where each xl ) and yl(') represent a, b or some element in the free summation index
set Z = {v ]} " 1> and {c, p 7} are uniformly bounded complex numbers. The number
of Green funétion entries in the product, denoted by n, is given as in (7.3). The degree,
denoted by d, is given as in (7.4) by counting the number of off-diagonal Green function
entries in the product.
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Definition 7.2. Given any term of the form in (7.11), Definition 4.2 for the type-AB,
type-A and Type-0 terms of the form in (4.17) can be adapted naturally. Recall v](.r), pl©
given in (7.5) for any free summation index v; € Z. We further define similarly for the

special summation indices a and b, i.e.,

i io
vér) = Z#{l <l <n; :xl(l) =al, vé") = Z#{l <l <n; :yl(’) =al;

i=1 i=1

io i
n =l <l=n i =k v =) #l<l<ny =)
i=1 i=1

If the following two conditions are satisfied,

1. all the free summation indices in {Z} appear once in the row index set {xl(i)} and once
r) (c)
= V. = 1

in the column index set { yl(i)} of the Green function entries, i.e., v§. i

(I=j=m;
2. both the special indices a and b appear twice in the row index set {xl(')} and twice in

the column index set {yl(i)} of the Green function entries, i.e., v = v = vlgr) =

vl(f) =2,

then such a term is a type-AB term. We denote a type-AB term in the form (7.11) of
degree d by TdAB =T dAB (t, 21, z2). The collection of all the type-AB terms of degree d

is denoted by T8 = TAB(1, 21, 20).
(r)

A type-A term in the form (7.11) of degree d, denoted by TA hasv,’ = vc(,c) =2,

and vlgr) = vlgc) = v;.r) = u;c) =1 (1 < j < m). Moreover, a type-0 term, denoted by

Ty, is of the form (7.11) of degree d with vS” = v{? = v = v = v;r) =9 =1

(1 < j < m). In addition, the collections of the type-A terms and the type-0 terms of
the form in (7.2) of degree d are denoted by ’ZZJA = ’]:iA (t,z1,z2)and Ty = T5(t, 71, 22),
respectively. We finally remark that the index b in a type-A term, as well as both indices
a, b in a type-0 term, do not take special roles. We keep them in the notation in order to
emphasize the inheritance from the form (7.11).

Under Definition 7.2, we observe that all the terms givenin (7.10) are type-AB terms in
the form (7.11) with Z = ¢ and the coefficients given by ¢, ,, = séi’z) 8. In particular,
we have that I}, Iy € ’ZBAB, I, I3, 15 € TzAB, and Ig, I7, I3 € ’]Z‘AB. In the following,
we use, as in the proof of Proposition 4.3, the combination of the identity (5.10) and
cumulant expansion formula Lemma 2.4 to eliminate one pair of the index » and also
one pair of the index a, and thus expand the type-AB terms as linear combinations of
type-0 terms up to negligible error.

Lemma 7.1. For any fixed D € N, we have
Koy =— %“{E[F’(X)(Aﬁﬁ (6)Y)] +E[F"(X)(Alm (Q)Z)z]}

N TX; T, + 0<(ﬁ +wP), (7.12)
d€14

2<d<D
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uniformly int € R*, and z1,zo € S given in (2. 7), with

s =s54(0) = Zs@ D), (7.13)
a#b

where sﬁ’z) (t) are the (2,2)-cumulants defined in (2.24) of the time-dependent scaled off-

diagonal entries ~/ N hyy, given in (3.7). In addition, the number of type-0 terms appearing
in the sum in (7.12) can be bounded by (C D)P, for some numerical constants C, ¢ > 0.

Proof. We first consider I; € ’]E)AB given in (7.10) and expand it into a sum of finitely
many type-0 terms. The expansion procedure consists of two steps: (1) eliminating one
pair of the index b and expanding /; in terms of type-A terms; (2) further eliminating
one pair of the index a in the resulting type-A terms from (1) and then expanding them
in terms of type-0 terms.

Recall the definition of Afm in (3.14). Replacing Gpp by the relation (5.10) and
using the cumulant expansion formula in Lemma 2.4, since {£;;} commute with Alm,
we have

=gz Z GVE[ () A ((Ga)*Gin (G + GmHG — G(HG)w ) )|
- ZNQZ sGVE[F (0 AT ((Gan* GG |

IF'(X)Alm ((Gaa)z(be)szk)

i oy ]

a,b,j.k
ot 2
| OF'(X)AM ((Gaa)* GG 1 G
+ 557 Z sﬁ’z)E[ ]
2N abk dhyp
1
+ 0<(ﬁ)’ (7.14)

where the error is from the truncation of the cumulant expansion, as in the proof of
Lemma 3.1. The first term on the right side of (7.14) is a type-A term in ’]E)A of the form
(7.11) obtained by replacing G, with G in the product of the Green function entries. We
observe as in (5.12), the leading sub-term from the second term above, corresponding
to taking % of G ji, is exactly canceled by the leading sub-term from the third term

resulting from taking 5, — hk of Ggp. Thus using the differentiation rules (3.21) and (3.26),
the second and third term on the right side of (7.14) can be written as a sum of at most ten
type-AB terms of the form in (7.11) with degrees d’ > 2, the number of Green function
entries n’ = 6, and 7’ = {j, k}. We denote the finite sum as ZTﬁBefZ;ﬁB;d,>2 Tdf}B’ and

write

I =- 2N22 s VB[ F/(0) A ((Ga)* GG ) |

+ > T;,‘B+0<(\/LN). (7.15)

TABeTAB:d'>2
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Next, we further replace Gpp in the first terms on the right side of (7.15) by G
using (5.10) and the cumulant expansion formula as in (7.14) to obtain

-5 gsgi’”lﬁ[ﬂwmﬁ‘n ((Gaa?*GiiG) |
- —2—;,2 §s;i’2)E[F’(X)Aﬁ (Ga*G7)]

OF'(X) A ((Gaa)* GGG )

1
@2

- 2l ]

2N4 u,ij:,k Sab oh jk

Ly (wE[aF%xmel ((Guar*GG ,-J-Gkb)]

2N* o ks‘”’ dhip

1

+ 0<(ﬁ) . (7.16)

Observe similarly to above that the leading sub-term from the second term will be can-
celed exactly by the leading sub-term from the third term. The remaining sub-terms form
a sum of at most ten type-A terms of degrees at least two, denoted as ZT;) eThd=2 T df,‘.

Combining with (7.15), we have

=50 > B[P0 (Go )

1
+ YT+ Y Td’?B+O<(ﬁ). (7.17)
ThTS  TPeT)P
d'>2 d'>2

In general, for an arbitrary type-AB term TdAB € 'Z;AB of the form (7.11) with fixed n
givenin (7.3), we extend the arguments as in Step 1 in Sect. 5.2, using the differentiation
rules (3.21) and (3.26) and that {4;;} commute with AIm in (3.14). We hence obtain the
analogue of (5.18),

1
AB A AB

T AZATd + ABZABT, +0<(Jﬁ)’ (7.18)

T e/ Ty 67:1,

d'>d+1
where the summations above denote a sum of at most two type-A terms of degree d and
a sum of at most 6(n + 4) type-AB terms of degrees not less than d + 1. The number of
the Green function entries in each term above is at most n + 4. Iterating the expansion
procedure (7.18) D — d times and using the local law in (3.10), we expand TdAB € TdAB

as a sum of at most (6(n + 4D))? type-A terms of degrees at least d, up to negligible
error. We write for short

M= > > Th+ 0<(L +wP), (7.19)
d<d'<D TAcT VN
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where the number of the Green function entries in each type-A term above is bounded
by (n +4D).

Therefore, from (7.17) and (7.19), the first term I; € %AB given in (7.10) can be
reduced into the following sum of type-A terms,

Zs(“)]E[F/(X)AITﬁ((Gaa)z(gf)]+ >y T;‘+0<(%+w0),

2<d<D T(f‘ ET({A
(7.20)

where the number of type-A terms above is bounded by (C;D)“'? and the number of
the Green function entries in each type-A term is bounded by Ci D for some constants
Cl, C 1> 0.

Next, we expand the resulting type-A terms on the right side of (7.20) into linear
combinations of type-0 terms by further eliminating one pair of the index a. In general,
for any type-A term 7' € 7 of the form (7.11), using similar arguments as in Step 2
in Sect. 5.2, we obtain the analogue of (5.21),

Z Z Ty + O T+\p Dy, (7.21)

d<d'<D TyeTy

where the number of these type-0 terms is bounded by (6(n + 4D))P, and the number
of the Green function entries in each type-0 term is bounded by (n +4D).

Similar to (7.15) and (7.17), we further eliminate the index a and expand /| € ’]E)AB
in (7.20) into type-0 terms using (7.21), i.e.,

54 / i~ 4 ! D
I} = ——E|F'(X)(Alm (G)*) | + Ta+ O(—=+V"), (122
S EF@(am @]+ 335 s o5

with s4 givenin (7.13), where the number of the type-0 terms in the sum above is bounded
by (C2D)2P.

We now turn to the remaining terms in (7.10). We only sketch the arguments for sake
of brevity. We start with I € %AB in (7.10). Similarly to 1] € ’Z[)AB , 14 can be expanded
as

I = —S—“E[F”(X)(Al?n (Q)2> ] Y3 1o —+\I/D) (7.23)
2 2<d<D T;eTy \/_

Further, using (7.19) and (7.21), I, I3, Is € TZAB from (7.10) can also be expanded
as sums of finitely many type-O terms of degrees at least two up to negligible error.
Moreover, the last three terms Ig, I7, Ig € ’Z;AB can be expanded similarly into type-0
terms of degrees at least four.

In sum, we have expanded K> 7 given in (7.9) as a finite sum of type-0 terms,

Kop=— —{]E[F (X)(AIm(G) )] +E[F”(X)<Alm (G) ) ]}

where the number of the type-0 terms in the sum above is bounded by (C3D)“*? for
some c¢3, C3 > 0. This completes the proof of Lemma 7.1.

It then suffices to estimate the resulting type-0 terms on the right side of (7.12) in
Lemma 7.1.
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7.3. Estimate of type-0 terms. In this subsection, we first show that all the resulting
type-0 terms of degrees d > 2 on the right side of (7.12) are bounded by O (N~!/3).
Using the estimate in (4.3) and similar arguments as in the proof of (5.23) in Lemma 5.2,
we establish the following analogue of Lemma 4.1.

Lemma 7.2. For any type-0 term Ty € 14 of the form (7.11) of degree d > 2, we have
1Tu(t, 21, 22)| = O<(N'/3), (7.24)
uniformly int € RY, z1, 22 € Sedge given in (4.1).

Proof. Given any type-0 term Ty € 7; of the form (7.11), we no longer emphasize the
indices a,b for notational simplicity. We then write 7, from the definition of AIm in
(3.14) as

B[00 w3
io ni

H(HG 0) (,)(t Zl)—HG o, <z)(t Zl)_HG ® (z)(t 22)

i=1 =1
l
+ﬂ ze(i)yfi) (t, Zz)],

with t > 0, 21,22 € Sedge, and o, m, ip, n; € N, where each summation index v; €

T :={v j} 1 appears exactly once in the row index set {x, @ )} and once in the column

index set {x } of the Green function entries. In particular, we have #Z = n = Zi(’zl n;.

For 1 < j < m, if there exist x() = yl(l) = v;, then we say v; is isolated. For any

1 <j#j <m,ifthereexist 1 <i < ip, 1 <1 < n; such that either xl(i) = vj,

yl(l = v or yl(l) = vj, xl(’) = vjs, then we say that v; and v;s are connected indices.

We then write out 7; as a linear combination of the terms in the following form, which

are rearranged using clusters of connected indices, denoted by {v(q), el vl(q)}q,

(x%) 1= ]E[F(“)(X) Zcz

1_[ (Gviq)véq) (, Z1 )Gvémv;q) (t, Zéq)) e le(;nviw (t, Zl(j))>], (7.25)
q

where > 1 g = n, zlq) for any ¢ and 1 < I < I, takes the values z1, 71, 22, Or 22.
Because the degree d > 2, there exists at least one cluster of connected indices such
that /[, > 2. We may assume that g = 1. Recall that the coefficients {cz} are uniformly
bounded and that the function F has bounded derivatives. Then using the local law in
(3.10) and the properties of stochastic domination in Lemma 1.1, we have that

|Ge)] < B | =
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In combination with Young’s inequality and the Ward identity (5.53), we find, similarly
to (5.55), that

Ellmmy(t,z1)] E[llmmy(z, z2)]

GOl =~ i T (upyi]

sl =22, 21,22 € Sedge- (7.26)
Together with the estimate (4.3) on E[Im m y (¢, z)] in the edge scaling and the fact that
n > N~1*¢, we obtain the estimate in (7.24).

Applying Lemma 7.2 to (7.12), we find that

Ko == 2H{E[F(0)(alm ©)*) | + E[F(x) (Alm (Q)Z)z]}
+ O (N3 4 wD), (7.27)

uniformly in # > 0 and z1, z2 € Seqge. It then suffices to estimate the remaining type-0

terms of degree zero on the right side of (7.27). Using the definition of Alm in (3.14),
the estimate in (4.3) of E[Im G (¢, z)] for z € Segge and ¢ > 0, the properties of stochastic
domination Lemma 1.1 and that the function F has bounded derivatives, we conclude,
for any fixed D > 1, that

|K2o| = O<(N713+ 4w, (7.28)

uniformly in 7 € R* and z1, 22 € Sedge-

7.4. Estimate of E>. In this subsection, we estimate the second order term E» given in
(3.20) similarly as K2 3. Using (3.26) and (3.21), we write E3 as

N
1 _
__ 5o ) )
Ey=— = E_l(saa 1)]E[F (X)AIM (G o) ]

e i(s;? ~ DE[F"(0) (AT (Gan)) | (7.29)
a=1

Observe that the above two terms are both type-A terms in TE)A of the form (7.11), where
the index b no longer plays a special role. Using the combination of the identity (5.10)
and the cumulant expansion formula, we expand E; into a sum of finitely many type-0
terms, similarly to (7.12). That is,

52
E) =—

- ] {E[F’(X)Affﬁ (Q)z] +E[F”(X)<Affﬁ (Q))z]}
+ Td;:i Ty + 0<(ﬁ + \IJD), (7.30)

2<d<D

uniformly in ¢ > 0 and z1, z2 € S, with

N
1
=50 =5 > s, (7.31)
a=1
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where sc(,za’z) (t) are the second order cumulants given in (2.27) of the time-dependent
scaled entries +/N. hqq. Moreover, the number of the type-0 terms in the summation on
the right side of (7.30) is bounded by (C D)“? for some numerical constants ¢, C > 0.

Similarly to (7.28), we conclude from Lemma 7.2 and the estimate in (4.3) that, for
any D > 1,

|Ea| = O-(N7'3% 4 wP), (7.32)

uniformly in 7 € R* and z1, 22 € Sedge-
Plugging (7.28), (7.32), (7.7), and (7.8) into (3.18) and by choosing D > % with
€ > 0 as in (2.9), we hence finish the proof of Proposition 3.1.

8. Real Symmetric Wigner Matrices

In this section, we prove the Green function comparison theorem, Theorem 1.4, for real
Wigner matrices, using similar ideas as for the complex Hermitian case. To simplify the
discussion, we will only address the differences.

Consider the real-valued matrix Ornstein—Uhlenbeck process (hab(t));V bt

1+68ap 1
dhap (@) =\ —5—dBan(t) — Shap(@)dt. hap(0) = (HN)ab. (8.1)

where (,3,1;, (t))a - are independent real standard Brownian motions with Bp,(t) =

Bap(t). The initial condition Hy is a real symmetric Wigner matrix satisfying Assump-
tion 1.1. In distribution this is equivalent to writing

H(t)=e "Hy +y/1—e'GOEy, teR". (8.2)

As the analogue of (3.21), we have a new differentiation rule for the Green function
entry of a real symmetric matrix,

0Gij B GiaGpj + GipGyj

= (8.3)
3hab 1+ (Sah
Then using Ito’s formula similarly to (3.22), we obtain
dG;j(t, z) = dM;; + ©;;dt, (8.4)
where the diffusion term dM;; := _«/LN Zasb ﬁ(Gmej + G,-bGaj>d,3ab, and

the drift term
1 1
O =5 ;;hahcmcbj o ij (2GiaGarGrj + GivGrjGaa + GiaGai G ) -

Recall F in (2.21) and X in (3.12). Applying Ito’s formula on F'(X) and using (8.4),
we derive the dynamics of F (X)) in the real symmetric case,

dF(X) = dM + Odt,
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where the diffusion term dM yields a martingale after integration, see Remark 3.1, and
the drift term is given by (we omit the parameters ¢ and 2 +x + 17 of the following Green
function entries)

) “ 2
O=F@Wm | =3 (haGiaGri + 1 GiaGas G
K1

i,a,b

1 1
+5GivGiGaa+ - GiaGai G )dx

1 K2 K2
+FN(X)NZZ<Imf G,-aGbidx><Im/ G jGajdx)
ij ab «

1 K1

= % Zhab(F/(X)AIm Gba) + % Z (F/(X)Alm (Gaabe))
a,b

a,b

+ % 3 (F’(X)Alm (Gab)z))

a,b

+ 1  (F0(AIm Gy (Al G ). 8.5)

a,b
where we abbreviate, for any function P : R* x C\R — C,

Alm P = (Alm P)(¢, z1, z2) :=Im P(t, z0) — Im P(¢, z1), (8.6)
witht e RT, 21 =24k +in, 20 =2 +kp +in € Sedge» as in (3.15). In fact, comparing
with the drift term in (3.24) for complex Hermitian matrices, the notation Im in (3.13)
is replaced with the imaginary part Im . This is because {/,;} commute with taking the
imaginary part, and the Green function of a real symmetric matrix satisfies

Gij(z) =Gji(z), zeC\R. 8.7)

Moreover, using (8.3), it is easy to find the analogous differentiation rule to (3.26),

IF'(X) 2 Y
— F') Y Im /
ohap 1+ d4p ; ( p

2
= F"(X)AIm Ggp, (8.8)
1+ (Sab

K2

GiaGpi(2+x + in)dx)

1

with AIm given in (8.6).

Next, we return to the right side of (8.5). Applying the real cumulant expansion
formula in Lemma 2.4 for the independent entries {/4p}q<p in the first term up to the
fourth order and using the differentiation rules (8.3) and (8.8), the second order terms
in the cumulant expansions are canceled exactly by the last three terms on the right side
of (8.5). We hence obtain the real analogue of (3.18),

N

E[O] :% Y@ - z)E[

a=1

IF'(X)AIm Gaa] 1 3)[ 02 F/(X)AIm Gpg
+ Zs b IE[ ]
dhaa 4N3/2 e an2,
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1 @ [P F'(X)AIm Gy, 1
+ s ]E[ ]+0 —), 8.9
12N? Xb: ab o, <(ﬁ) 59

where the error 0<(«/_1N) is from the truncation of the cumulant expansion, and S(YZ) is

the k-th cumulant defined in (2.27) of the rescaled entries VN hap.

We now claim that Proposition 3.1 holds true in the real case, which leads to Theorem
1.4 for B = 1. The arguments in the complex case discussed before can be applied
similarly, using the modified differentiation rules (8.3) and (8.8), and the real cumulant
expansion formula in Lemma 2.4.

To simplify the statement, we only consider the simplest version of the Green function
comparison theorem for F(x) = x, as proved in Proposition 4.1 for complex Hermitian
Wigner matrices. The Green function comparison theorem for general functions F' can
be proved using the same idea, following the arguments in Sect. 7 for the complex
Hermitian case.

Applying (8.4) to the time dependent normalized trace of the Green function, m y (¢, z),
we find the real analogue of (4.4), i.e.,

d(mpy(t, z)) =dMo + Oodt, (8.10)

with the diffusion term dM, = % Zi\; 1 dMy, which yields a martingale term after

integration; see Remark 3.1, and the drift term ®dr := % ijvzl ®,,dt. Applying the
real cumulant expansion formula as in (8.9), the drift term satisfies the real analogue of
(4.9), i.e.,

1 3(GuaGi) 1 3)[02(GoaGio)
E[O] = —— (2)—2E[ ]+ (E[—]
[ 0] IN2 UZa(saa ) ahaa 4N5/2 vazbsab 8h(21b

1 33(GaGpy) 1

“4) vaYbv .
D st[—3]+0<(—)=. o+ Js+ Js+ 0
N3 £ an3, VN

1
().
8.11)

+

12

It then suffices to prove the estimate (4.6) in the real symmetric case. Using (8.3), the
terms J, J3, J4 above can be written out again in the form (4.8). The degree of a term in
the form (4.8) is defined as in (4.9). We recall from (8.7) that the row and column index
of a Green function entry can be switched.

Following the idea from complex Hermitian case, the proof of (4.6) consists of three
steps: 1) the third order terms from J3 are unmatched and thus negligible (c.f., Proposition
4.2); 2) expanding the fourth order terms from J4 (as well as the second order terms in
J2) as linear combinations of type-0 terms of degrees at least two up to arbitrary order
(c.f., Proposition 4.3); 3) estimating the resulting type-0 terms in 2) of degrees at least
two (c.f,, Lemma 4.1).

We start with the first step. Recall Definition 4.1 for unmatched terms in the complex
Hermitian case. Because of (8.7), we can ignore the difference from the row and column
index of a Green function entry of a real symmetric matrix.

Definition 8.1 (Terms with unmatched indices in the real case.) Given any term, denoted
by Qg, of the form (4.8) of degree d, let v; be the number of times the free summation
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index v; € Z appears as the row or column index in the product of the Green function
entries, i.e.,

vi=#Hl<i<n:x=vj}+#H{l<i<n:y=v;}, 1<j<m. (8.12)
We define the set of the unmatched summation indices as
I°={1<j<m:vjisodd } C T.

Note that #7° is even. If Zy = @, then we say Qg is matched. Otherwise, Qg is an
unmatched term, denoted by QZ. The collection of the unmatched terms in the form
(4.8) of degree d is denoted by Q.

Then the third order terms from J3 on the right side of (8.11) are of the form (4.8)
with an extra +/N in front and are unmatched with v, = v, = 3 defined in (8.14)
below. Following the arguments in Sect. 6, using the relation (5.10), the real cumulant
expansion formula, and the new differentiation rule of the Green function entry (8.3),
we observe a similar cancellation to the first order and then expand a unmatched term of
the form (4.8) iteratively and prove that Proposition 4.2 holds true in the real symmetric
case. Therefore, we have

|3l = O<(N7V2+V/NwP). (8.13)

Next, in the second step, we expand the remaining terms of the form (4.8) from J»
and J4 that are matched. Recall a special case of matched terms as in (4.17) with two
summation indices a, b singled out and Definition 4.2 for type-AB, type-A, type-0 terms
in the complex case.

Definition 8.2 (Type-AB terms, type-A terms, type-0 terms.) Given any term of the form
in (4.17) of degree d with two special indices a and b, recall v; in (8.12) forany v; € Z
and define similarly

Ve:=#l<i<n:xi=a}+#{1 <i<n:y =a},
vwi=#l<i<n:xi=bl+#{1<i<n:y =b}. (8.14)

If forany 1 < j <m,v; =2and v, = v, = 4, then such a term is a type-AB term. A
type-Atermhas v, = 4,and vy, = v; =2 (1 < j < m). Finally, a type-0 term is defined
to be in the form (4.17) with v, = v, = v; =2 (1 < j < m). The collection of the
type-AB, type-A, type-0 terms of degree d is denoted by 73;?3 , 79;? , and Py, respectively.

Following the arguments in Sect. 5, using the relations (5.10) and (8.3), and the real
cumulant expansion formula, we expand any type-AB (or type-A) term iteratively and
prove that Proposition 4.3 holds true in the real symmetric case. Therefore, expanding
the type-AB terms from J> and the type-A terms from J4 and then combining with (8.13),
we write (8.11) as

1
E[@(t.2)]= Y  E[Pa(t. )]+ O0(—=+¥P), (8.15)
<D v
<d<D-—

where the summation on the right side above denotes a linear combination of at most
(CD)°P type-0 terms of degrees at least two, for some numerical constants C, c.

In the last step, we aim to show that any type-0 term of degree d > 2 can be bounded
by O<(N~!/3) for real symmetric Wigner matrices, as in Lemma 4.1. This reduces to
prove Lemma 5.2 for the GOE.



900 K. Schnelli, Y. Xu

Lemma 8.1. For any z € Seqge(€, Co) given in (4.1) and t > 0, we have the following
uniform estimate:

1 —1/3+¢
N]EGOE[ImTrG(z)] = (N~ (8.16)

The corresponding estimate (5.23) of the type-0 terms of degree d > 2 considering
the GOE follows directly from Lemma 8.1. Following the iterative comparison idea in
the proof of Lemma 4.1, one proves Lemma 4.1 similarly in the real case, using (8.3),
(8.4) and the real cumulant expansion formula. Therefore, we obtain from (8.15) that
(4.6) holds true in the real case and we hence finish the proof of Proposition 4.1 for real
Wigner matrices.

Proof of Lemma 8.1. The proof is similar to that of Lemma 5.2. For the one-point cor-
relation function of the GOE and the corresponding diagonal kernel Ky 1, we refer to
[3,34]. From Chapter 3.9 in [3], we write

N o0
Kyi(x,x) =Kya(x,x)+ §¢N—1(X)</ sgn(x — t)¢N(t)dt>

+ ON—1 () U N=2m+1, (8.17)
2IN_1

where Ky 2(x, x) is the one-point correlation function for the GUE given by (2.33),

{¢r} are the Hermite functions in (2.30), and we use 8 = 1, 2 to denote the symmetry

class. Moreover, we set

S omt
Lo = fo Gom (D)1 = f ot =278 [ U, (519

by the Stirling approximation; see Proposition 3.9.28 in [3]. In addition, from Lemma 1
in [26], we have

Dms1 = / Oo¢zm+1(r)dt =0(m %, (8.19)
0

Note that the trace identity for the kernel K i still holds as in (2.34). Next, we change
the variable as in (2.37) and define

edge( X) =

— Kn. 1(2f + > _ 2N+ (8.20)

1
N1/6 1/6’ N1/6>

From Theorem 1.1 in [13], as the real analogue of Theorem 2.3, for any Lo € R, we
have, in the limit of large N, that

edg"(x x) =Kairy (X, X) + = Al(x)/ Ai(t)dt + o(1), (8.21)

uniformly in x € [Lg, 00). In addition, the right side of (8.21) is uniformly bounded for
x > Lo; see Chapter 3 in [3] for a reference. Now we are ready to estimate

%]EGOE [Im TG (z)] ~ 1 gGoE [ i

j=1 A = Z|2]
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edge
N 1 (x, %)
_2/ [x — N2/3K _ N2/3r;|2dx’ (8.22)

forz = 2+k +in € Sedge, in a similar way as in the proof of Lemma 5.2. Note that (5.44)
and (5.45) still hold true for the GOE. We will focus on the regime —N 23 < x < Ly,

for some fixed Ly < 0. Recalling the estimate (5.50) for the GUE, it suffices to prove,
for any x € (—N2/3, Lo], that
‘Kedg‘“' Jx) — Ko (x, x)‘ — o), (8.23)

which then leads to

! /LO Ky .0 dx 0( ! ) (8.24)
N2 | s Ix — N2Px +iN2Pq 2 N/ '

We hence obtain (8.16) for the GOE. In order to prove (8.23), we split into two cases
below and follow ideas from [26].

Case 1: N is even. Let N = 2m and the last term in (8.17) is vanishing. Since ¢y is
even, we write

KR (e =K 0,0 + 5N Pgn 1) / Py (), (8.25)
where we set for simplicity,

y=2VN+—— 1/6, with — N3 < x < Ly, (8.26)

which implies that /N < y < 2+/N + LoN /6. From [26] and references therein, we
have the following asymptotic formula of ¢ (¢). In the domain

1] < ﬁ((2N+ D2 — 2N + 1)—1/6), (8.27)
we have as N — o,
dn (1) = An(t) + 0(N1/2(4N 42— tz)”/“), (8.28)
with
An() == @(41\7 +2— 12V cos ((2N + Doy - sinZay) = @ ). 829

and ay := arccos(t (4N +2)~1/2). We choose Lo < 0in (8.26) sufficiently small so that
the upper bound y of the integral in (8.25) satisfies (8.27). Thus we have from (8.28)
that

/y¢N(t)dt=/y AN(t)dt+O(\/ﬁ/y(41v+2_t2)77/4dt)
0 0 0

- /y An(D)dt + O(N~%), (8.30)
0
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Integrating Ay given in (8.29) and using integration by parts, it was shown in (14) in
[26] that

y
‘ / AN(t)dt’ < CUN +2—y2) 34 = o(N~1/4, (8.31)
0

with v/N < y < 2N + LON_I/G. Thus we have from (8.30) that ‘foy d)N(t)dt‘ =

O(N~'/%), for y givenin (8.26). Combining with (5.47), the estimate (8.23) then follows
from (8.25).
Case 2: N isodd. Let N = 2m + 1. Since ¢ is an odd function, we write

1 y
K30 =K35 G + 5N 1) /0 px ()it

- EN Gom () Lom+1 + mqu()’),
with y given in (8.26). Using (5.47), (8.18), and (8.19), the last two terms above are
bounded by O(1). The second term can be estimated similarly as in the case N = 2m.
Thus (8.23) also hold true for N = 2m + 1.
We hence have finished the proof of Lemma 8.1.
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Appendix

In this appendix we prove Lemma 2.2 and Lemma 2.3. To prove Lemma 2.2, we follow
the arguments in [19].
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Proof of Lemma 2.2. Recall the mollifier 6, given in (2.18) and the indicator function
X givenin (2.17), where N™! « n « Ep — E < CN72/3*¢ with € > 0 as in (2.7).
It suffices to estimate the linear eigenvalue statistics

N
Trye(H) — Trxe = 0,(H) = Trg(H) = »_ g(A)),
j=1

where

E;—x

8) = XB () = X *0,(x) = (fR]l[E,EL]m—f

E—x

)9,7 Mdy. (A1)

We first consider the function g. Note that for any E > 0, we have

°° 1 [ C
o 5/ 9n<y>dy=—/ T dy < —L.
E+n E 7 Jg y2+n? E+n
Because of the symmetry of the integrand, we have a similar estimate for the integral
over (—oo, E] with E < 0. Thus, if x € [E, E ], we have from (A.1) that

|<x>|—(fE_x+/°o Jondy < (v )
R AN A A U T Ay AT

Else, if x € [E, Er]¢, we have from the positiveness of 6, (y) that

Ep—x L, if x<E,
lg(x)| = / Oy (dy < { FERm " - (A2)
E—x W—E e T X > EL
It is easy to check that
lg(x)| <2C, for x e R. (A.3)

Now we choose a parameter /1 suchthatn < [} K Ef — E <CN —2/3+¢_1f we further
assume min{|x — E|, |[x — Er|} > [1, then we have

Ig(x)llec—ln, for |x—E|>1h, |x—EL| <. (A4)
Plugging (A.3) and (A.4) into (A.1), we hence obtain
Tryg(H) — Tryz *Gn(H)‘ < C(N(E 1, E+1) +N(EL — 14, 00)
+£./\/(E, EL)+Tef(H)),

where

F(x) == (xE *0y) (x) Lx<py; -

Using the rigidity of eigenvalues in (2.15), we obtain that

Trye(H) — Trye *en(H)’ < C(N(E 1L, E+D)+ %Nk +Trf(H)), (A5)
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with high probability, i.e., with probability bigger than 1 — N~ for any large I' > 0,
for N sufficiently large. It is then sufficient to estimate Tr f (H). We write

Tef(H)= Y fO)=Y Y fOu), Ti:=(E=3*"1,E-31] (A6)
rM<E—-I k=0 )Ll'EIk

Ifx <E—I,then Ef —x > E —x >1; > n, and we have

fx) = /EE_LXX 0, (y)dy = arctan (ELU_ x> — arctan (E 77_ x)

= arctan (E ix) — arctan <ELn— x> = (Ein—(ExL)(;Z lj)x)
<Cmin{(EL_E)’7 1 }
B (E—x)? "E—x

In combination with (A.6), we have

o0
. ((EL—E)n 1 ) .

TI'f(H) < C];mm 32—k1%’ ﬁ}/\/’k, Nk = #{l TAi € Ik} (A.7)

We next estimate N, using the local law in (3.10). Consider

N
1 3k 1 M
I E—2-3 +i3%) = — > — .
mmy( i =g ;: M — (E—2-3MDP+ 352 = N2 3,

(A.8)

Using the local law in (3.10) and (2.5), for any small T > 0 and large I > 0, we find an
upper bound for the left hand side above as

€+T

Immy(E —2 -3 +i3%1) < Immye(E — 2 - 351 +13%1) +

N3k
\/ €+T
< Cy/3% +|E —2-3k) — 2] +
< 1+ 1—2 N3,
E€E+T
<c( 3+ N +N’1/3+€),
- N3k,

with probability bigger than 1 — N~I. By choosing 7 < €, we hence obtain from (A.8)
that

-/\/k S C<(3k11)3/2N + NZE + 3kl]N2/3+E>,
with high probability. Combining with (A.7), we have

(EL—E)n 7

J (3kl )3/2N+N2€ +3kl N2/3+€
3223k }( ! ! )

Trf(H) <C Y min {
k=0

- CN1/3+€T} . CN2€n - C/NZGn
YA L~ L
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with high probability. Together with (A.5), we hence obtain
Tryp(H) — Trxg *On(H)‘ < c’(N(E UL E+D)+ lﬁNk),
1

with high probability. This completes the proof of Lemma 2.2. O
Next, we use Lemma 2.2 to prove Lemma 2.3.

Proof of Lemma 2.3. Under the same assumption in Lemma 2.2, we choose a parameter
[ satisfying N™! « n « I} « | < Ep — E < CN~?/3*¢_We have from Lemma 2.3
that

E
Trxe(H) < l—lf Tryy(H)dy
E—I

E

E
51—1f Tr)(y*e,,(H)dy+Cl_1/
) E

(N(y Lyl + £N2€>dy
B . I

!
< Tryp_; * 0y (H) + C(Nk% + TIN(E 2 E+ 1)), (A.9)

with high probability. Using the rigidity result (2.13) and I <« N ~2/3*¢_ we have

E+l
N(E=2,E+I]) < Npse(x)dx + N¢ < CN€,
E-21

with high probability. Thus we obtain from (A.9) that with high probability
26 (N 1
Trxp(H) —Trxg_; x0,(H) < CN (l— + 7)
1

One obtains a lower bound similarly. Therefore, for any large I' > 0, we have

2 l_l 2¢ 1 l_l
Iy + 1) < Trxe(H) < Trxg—; »6,(H) + CN <ll * l>’

with probability bigger than 1 — N7 We pick [; = N3¢y and I = N3¢I; such that
N2€<ﬁ + IT') = N¢. Since the counting function N'(E, E;) = Tryxg(H) is integer
valued, we have

Try et % 6y (H) — CNze(

]P’(N(E, EL) = o) < ]I”(TrXE+1 %6, (H) < 1/9) +NT

< ]E[F(TrXE+1 . G,I(H)>] +N°T,

where F is the cut-off function given in (2.21). In the other direction, we have
E[F(TrXE_, *9,,(11))] < ]P’(TrXE_l %6, (H) < 2/9) < IP’(N(E, EL) = 0) +N T,
Therefore, together with (2.15), we obtain

E[F(TrXE,,*en(H))]—N—F < ]P’(N(E, 00) = 0) < E[F(TrXE+1*0,,(H))]+N_F.

This completes the proof of Lemma 2.3. O
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