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• Area of Study: Gene Regulatory Networks, Boolean Dynamics

B.S., Physics, June 2005, Middle East Technical University, Ankara, Turkey

• With Honors in Advanced Group

• Mathematical Physics specialisation

• Minor degree in Philosophy and History of Science (at Philosophy Department)



iv

List of Publications

*** = an outcome of this PhD thesis.
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7. Murat Tuğrul (2007), Thesis for M.S. in Computational Sciences & Engineerings: “The Structure

and Dynamics of Gene Regulation Networks”, available at http://arxiv.org/abs/0802.1989



v

Acknowledgments

This PhD thesis may not have been completed without the help and care I received from some peo-

ple during my PhD life. I am especially grateful to Tiago Paixão, Gašper Tkačik, Nick Barton, not only for
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Abstract

Evolution of gene regulation is important for phenotypic evolution and diversity. Sequence-specific

binding of regulatory proteins is one of the key regulatory mechanisms determining gene expression.

Although there has been intense interest in evolution of regulatory binding sites in the last decades, a

theoretical understanding is far from being complete. In this thesis, I aim at a better understanding of the

evolution of transcriptional regulatory binding sequences by using biophysical and population genetic

models.

In the first part of the thesis, I discuss how to formulate the evolutionary dynamics of binding se-

quences in a single isolated binding site and in promoter/enhancer regions. I develop a theoretical

framework bridging between a thermodynamical model for transcription and a mutation-selection-drift

model for monomorphic populations. I mainly address the typical evolutionary rates, and how they de-

pend on biophysical parameters (e.g. binding length and specificity) and population genetic parameters

(e.g. population size and selection strength).

In the second part of the thesis, I analyse empirical data for a better evolutionary and biophysical

understanding of sequence-specific binding of bacterial RNA polymerase. First, I infer selection on

regulatory and non-regulatory binding sites of RNA polymerase in the E. coli K12 genome. Second, I

infer the chemical potential of RNA polymerase, an important but unknown physical parameter defining

the threshold energy for strong binding. Furthermore, I try to understand the relation between the lac

promoter sequence diversity and the LacZ activity variation among 20 bacterial isolates by constructing

a simple but biophysically motivated gene expression model. Lastly, I lay out a statistical framework to

predict adaptive point mutations in de novo promoter evolution in a selection experiment.
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3.9 billion years of organic evolution has created an immense diversity on the earth. There are

millions of different species, each of which typically consists of characteristically differing populations,

which are likely to have individuals differing in phenotypic traits. Phenotypic diversity is not restricted to

overall body shapes, but ranges from molecular levels to behavioural patterns, and for humans, includes

medically important matters such as antibiotic resistance or susceptibility to cancer. One of the main

subjects of evolutionary biology is to elucidate the sources, mechanisms and conditions that drive the

evolutionary dynamics creating these variations.

An important observation has been that phenotypic traits typically show high heritability. In other

words, they are systemically passed over from parents to offspring (Barton and Keightley, 2002). The

importance of hereditary mechanisms was clear even for Darwin and Wallace’s evolutionary theory (Dar-

win, 1859), however, they lacked molecular insights for the mechanistic basis. The rediscovery of

Mendel’s work in the beginning of the twentieth century, followed by the discovery that chromosomes

are the carriers of heritable materials provided the first understanding of hereditary mechanisms and

established the science of genetics. As a concrete body of mathematical theory synthesising the Dar-

winian evolutionary theory and the Mendelian genetics, population genetics was founded mostly by

Fisher, Haldane, Wright around 1920 − 1930. It has been extremely successful but constrained to de-

scribe evolutionary dynamics of alleles in a population, without dealing much with molecular details

explaining how new alleles or genetic loci arise de novo and why they are beneficial or deleterious.

Clearly, a better understanding of the molecular details of the heritable material was required.

It took another half century to discover the structure of DNA, and that RNAs and proteins, the main

functional molecules in cells, are coded at certain loci of DNA called genes (hereafter referred to as

coding-DNA). Prokaryotic molecular biology, pioneered by Jacob and Monod around 1960’s, developed

the first methods to show that gene expression (i.e. RNA or protein levels) is regulated in the cell

in order to affect metabolic processes (for a historical review, see Beckwith (2011)). Developmental

biology studies followed to show the importance of gene regulation in eukaryotes. Different cell types

in complex multicellular organisms show different metabolic and structural properties, e.g. a human

eye cell versus a muscle cell, despite the fact that they share the same DNA content. The differences

between the cells of a single individual are coded in gene regulatory dynamics driving differentiation

during development. But what is the role of regulated gene expression for the phenotypic variation that

we observe across individuals, populations and species?

Gene expression, similar to other phenotypic traits, shows heritable variation, due mostly to non-

coding DNA regions (hereafter referred to as regulatory DNA) (Fay and Wittkopp, 2007; Zheng et al.,

2011; Romero et al., 2012). Yet, the contribution to larger scale phenotypic diversity from variation in

gene expression was largely ignored, mostly due to the difficulty in detecting precise regulatory DNA

loci and function. With the development of cheap sequencing techniques around the 1980’s, exam-

ples of coding sequence similarity between especially closely related species have been shown. In
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2000’s, the human genome project established that we have ∼ 25, 000 genes, surprisingly much less

than expected (Venter et al., 2001). This, together with the other genome projects, suggests that com-

plexities are not necessarily due to number of genes (coding DNA). Furthermore, regulatory changes

are thought to be less pleiotropic than coding sequence changes, allowing evolution to create diver-

sity easily (Prud’homme et al., 2006). Consequently, the hypothesis that most phenotypic diversity is

due to regulatory rather than structural variation was brought forward (Britten and Davidson, 1971) (for

a review, see Wittkopp (2013)). Especially in the last decades, there have been intensive descriptive

studies trying to lay out the nature of gene expression in terms of variation, and its relation to large scale

phenotypes. There have been clear examples showing the effect of losing/gaining regulatory DNA on

gene expression affecting large scale phenotypes, such as the pelvis adaptation of the stickleback fish,

caused by losing enhancer regions (Chan et al., 2010). Yet, the examples are not numerous and the

bridge between molecular variation to larger scale phenotypic variation is not at all clear. Structural

versus regulatory origins of phenotypic diversity are still debated in the literature (Hoekstra and Coyne,

2007). Clarification will only be possible with a better understanding of function and evolution of regula-

tory DNA, both from theoretical and empirical points of view (for a review, see Romero et al. (2012)).

Regulation of gene expression in the cell is performed at transcriptional, translational, and degrada-

tion levels. Complex relations between these different regulatory levels exist, and a complete mapping

from DNA to RNA and protein levels remains elusive (for a review, see Vogel and Marcotte (2012)). The

main focus of this thesis is on transcriptional regulation; to be more precise, on the initiation of tran-

scription, since it has been better studied from a biophysical and genetic point of view, and thereby is

more amenable to thorough evolutionary investigation. Although details differ, the core mechanisms for

transcription initiation are conserved across all living organisms. RNA polymerase (RNAP) binds specif-

ically to sequences upstream of the coding region, in order to transcribe the DNA sequence into RNA

molecules. Different RNAP binding sequences influence binding, and therefore, transcription initiation

rates (Gross et al., 1998; Paget and Helmann, 2003; Murakami, 2015). There also exist transcription

factor (TF) proteins that bind to DNA in a sequence specific manner, either in promoter regions (i.e. near

transcription start sites), or enhancer regions (i.e. far away from transcription start sites; only exist in

eukaryotes), modulating transcription (Dowell, 2010; Wittkopp and Kalay, 2012). A better understanding

of the evolution of sequence specific binding of RNAP and TFs is needed to understand the evolution

of gene regulation.

Especially in the last decades, there have been many comparative genomics studies in eukary-

otes that describe the evolution of regulatory binding (see Villar et al. (2014) for a recent review). It is

considered that most of the binding variation is due to cis-acting genetic elements (i.e. promoter and

enhancer regions) rather than trans-acting genetic elements (i.e. coding sequences of transcription

factors) (Dowell, 2010; Wittkopp and Kalay, 2012). In particular, by using mice carrying human chro-

mosome, Wilson et al. (2008) and Schmidt et al. (2010) have shown that characteristics of regulatory
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binding profiles are primarily due to sequence rather than cellular environment or regulatory proteins.

Moreover, fast evolution of binding in comparison to speciation time scales has been observed, even un-

der strong developmental constraints on gene expression (Ludwig et al., 1998). There is also evidence

from prokaryotes suggesting a similar flexible and fast evolution of regulatory DNA (Kim et al., 2012).

However, most of these studies were qualitative and descriptive, and do not explain the evolutionary

and molecular (biophysical) mechanisms driving the evolution of transcriptional regulatory sequences.

This thesis aims at a quantitative and predictive understanding of transcriptional regulatory binding

sequence evolution, as a complement to the aforementioned qualitative and descriptive approaches.

This necessarily requires a realistic but mathematically tractable description of how genotypes har-

bouring binding sequences are connected with mutations, and mapped to gene expression that is the

phenotype under selection. Throughout this thesis, I will address the basic mathematical principles of

the evolutionary dynamics of transcriptional binding sequences; how selective signatures on transcrip-

tional regulatory DNA can be inferred quantitatively; how simple genotype-phenotype mapping models

can be used to understand the mechanistic and evolutionary relation between regulatory DNA and gene

expression. These will be carried out by bridging the theoretical frameworks of biophysics and popula-

tion genetics, as briefly described below, before giving a more detailed overview of the exact questions

addressed in each chapter of this thesis.

In order to construct realistic genotype-phenotype mapping from DNA binding regions to gene ex-

pression, biophysical models of sequence-specific protein-DNA interaction are considered throughout

this thesis. In particular, I implement thermodynamical models for the binding probability (or the frac-

tion of bound time) of regulatory factors on DNA, which determine gene expression. Thermodynami-

cal models assume that the dynamics of binding and unbinding of RNAP and TF to DNA sequences

quickly reaches an equilibrium, relative to typical time scales of gene expression. By only knowing the

binding energies and the chemical potential (concentration) of the regulatory factors, binding probabil-

ities are expressed by considering the corresponding Boltzmann weights (i.e. stationary probabilities

of thermodynamical systems) of all possible molecular configurations on regulatory DNA. Statistical

thermodynamics goes back to Ludwig Boltzmann around 1870’s in Vienna, but the first applications

of thermodynamic equilibrium to protein-DNA interaction to model transcriptional gene regulation is, to

my knowledge, due to Shea and Ackers (1984). This was expanded by von Hippel and Berg (1986)

to lay out the essential understanding of regulatory factors’s specificity for DNA sequence. Since then,

different in vivo and in vitro molecular techniques and bioinformatic methods have been developed to

provide specificity of regulatory factors (for reviews, see Stormo and Fields (1998) and Stormo and

Zhao (2010)). In particular, chromatin immunoprecipitation (ChIP) followed by microarray (ChIP-chip)

and by sequencing (ChIP-Seq) enhanced the comparative genomic studies for TF binding (Dowell,

2010). Specificity of a regulatory factor is generally reported with a position weight or an energy ma-

trix where, respectively, the observed frequency or free energy contribution of each nucleotide at each
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position is given. This assumes the independency of positions, which is considered valid at least for

sequences a few mutations away the preferred (consensus) sequence (Maerkl and Quake, 2007). I

follow this additivity assumption in the entire thesis, and make use of the energy matrices of RNAP and

cAMP receptor protein (CRP) (Kinney et al., 2010). Overall, a quantitative framework of a biophysically

realistic genotype-phenotype mapping has already been initiated in the literature (for reviews, see Segal

and Widom (2009), or the textbooks by Bialek (2012) and Phillips et al. (2012).

In this thesis, the population genetics of regulatory DNA sequences is modelled under evolutionary

forces of mutation, selection and random genetic drift. Other evolutionary forces such as recombination

and migration are neglected. The first mathematical foundations of the population genetics of mutation,

selection, and genetic drift were provided by Fisher, Wright and Haldane in the early times of population

genetics. Kimura later provided rigorous derivations of the stationary and dynamical properties in the

diffusion theory formalism (see a review by Kimura (1964)). There are also recent studies for better un-

derstanding of the complexity of the mutation-selection-drift evolutionary dynamics; for example, Desai

and Fisher (2007) studied the question in a more general perspective. All together, a general treatment

for the population genetics of mutation, selection, and genetic drift is already mature enough to be used

for a theoretical understanding of regulatory DNA evolution (see the textbooks by Rice (2004), Crow

and Kimura (2009), Gillespie (2010), Charlesworth (2010) and Ewens (2012)).

There have been a number of key studies which paved the way for building a sound bridge between

biophysics and evolutionary theory to understand the evolution of regulatory binding sequences. Follow-

ing their seminal paper (von Hippel and Berg, 1986) on the thermodynamic equilibrium of protein-DNA

interactions, Berg and von Hippel (1987) discussed the interplay between the sequence specificity and

selection to understand the statistical deviations from the neutral distribution of the binding sequences

in real genomes. Gerland and Hwa (2002); Berg et al. (2004); Sella and Hirsh (2005), and Stewart and

Plotkin (2012) contributed along this line, elaborating the mutation, selection and genetic drift population

genetic model for the evolution of transcriptional regulatory sequences. Mustonen and Lässig (2005);

Mustonen et al. (2008), and Haldane et al. (2014) used the steady state distribution of mutation, se-

lection and genetic drift model to infer selection on the binding energies of several transcription factors.

However, the dynamical properties of evolution of transcriptional regulatory sequences have not been

addressed in detail which is the major focus of my thesis, as outlined below.

The first part of the thesis is devoted to a theoretical investigation of transcriptional regulatory se-

quences. Chapter 2 entitled “Dynamics of Transcription Factor Binding Site Evolution” addresses the

expected rates of binding sequence evolution under mutation, selection and genetic drift by considering

a thermodynamic model for fitnesses of binding sequences. By using exact mathematical expressions

which are confirmed by computational simulations, the chapter shows how evolutionary rates at a sin-

gle binding site scale with biophysical parameters such as binding length and specificity, as well as

with population genetic parameters such as population size and selection strength. Furthermore, it dis-
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cusses how fast the evolutionary dynamics at single site approach a stationary state. This chapter also

deals with the evolution of binding sites at larger DNA sequences, i.e. promoters and enhancers, by

using computational simulations and approximate mathematical expressions.

The second part of the thesis is reserved for my applied investigation of transcriptional regulatory

sequences. Chapter 3 entitled “Binding Site Evolution of Bacterial RNA Polymerase” deals with the

evolution of binding sequences of bacterial RNAP by using the reported biophysical characteristics of

sequence-specific interactions of RNAP with DNA. First, it analyses the whole genome, the promoter

regions and the experimentally verified transcription start sites of E.coli K12 to infer selection for RNAP

binding by using a population genetic theory. Secondly, it deals with inference of the chemical potential

of RNAP, an unknown but crucial thermodynamic parameter, from evolved sequences. Furthermore,

the chapter aims at understanding the coevolution of the LacZ protein activity and lac promoters among

20 bacterial species, diverged over millions of years. Lastly, the chapter lays out a statistical framework

for predictive understanding of the adaptive mutations in de novo promoter evolution in E.coli K12.

This thesis is organised cumulatively, i.e. each research chapter is written in the style of a research

article, which can be read without the knowledge of the rest of the thesis, at the expense of some

inevitable repetition. The reader will find a summary and a general discussion of the thesis together

with future research directions in Chapter 4 entitled “Conclusions”.
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The work presented in this chapter has been done in collaboration with Tiago Paixão, Nicholas H. Barton and

Gašper Tkačik. This chapter was published as Tuğrul et al. (2015) “Dynamics of Transcriptional Factor Binding Site

Evolution”, PLoS Genetics 11(11): e1005639.

2.1 Introduction

Evolution produces heritable phenotypic variation within and between populations and species on rela-

tively short timescales. Part of this variation is due to differences in gene regulation, which determines

how much of each gene product exists in every cell. These gene expression levels are heritable quantita-

tive traits subject to natural selection (Fay and Wittkopp, 2007; Zheng et al., 2011; Romero et al., 2012).

While the importance of their variability for the observed phenotypic variation is still debated (Hoekstra

and Coyne, 2007), it is believed to be crucial within closely related species or in populations whose

proteins are functionally or structurally similar (Wittkopp, 2013). The genetic basis for gene expression

differences is thought to be non-coding regulatory DNA, but our understanding of its evolution is still im-

mature; this is due, in part, to the lack of precise knowledge about the mapping between the regulatory

sequence and the resulting expression levels.

Transcriptional regulation is the most extensively studied mechanism of gene regulation. Transcrip-

tion factor proteins (TFs) recognize and bind specific DNA sequences called binding sites, thereby af-

fecting the expression of target genes. Eukaryotic regulatory sequences, i.e., enhancers and promoters,

are typically between a hundred and several thousand base pairs (bp) in length (Yao et al., 2015), and

can harbor many transcription factor binding sites (TFBSs), each typically consisting of 6 − 12 bp. The

situation is different in prokaryotes: they lack enhancer regions and have one or a few TFBSs which are

typically longer, between 10 to 20 bp in length (Wunderlich and Mirny, 2009; Stewart and Plotkin, 2012).

Differences in TF binding are thought to arise primarily due to changes in the regulatory sequence at the

TF binding sites rather than changes in the cellular environment or the TF proteins themselves (Schmidt

et al., 2010). Nevertheless, a theoretical understanding of the relationship between the evolution of the

regulatory sequence and the evolution of gene expression levels remains elusive, mostly because of

the complex interaction of evolutionary forces and biophysical processes (Stefflova et al., 2013).

From the evolutionary perspective, the crucial question is whether and when these regulatory se-

quences can evolve rapidly enough so that new phenotypic variants can arise and fix in the population

over typical speciation timescales. Comparative genomic studies in eukaryotes provide evidence for

the evolutionary dynamics of TF binding, highlighting the possibility for rapid and flexible TFBS gain

and loss between closely related species on timescales of as little as a few million years (Dowell, 2010;
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Villar et al., 2014). Examples include quick gain and loss events that cause divergent gene expres-

sion (Doniger and Fay, 2007), or the compensation of such events by turn-over at other genome lo-

cations (Moses et al., 2006); gain and loss events sometimes occur even in the presence of strong

constraints on expression levels (Ludwig et al., 1998; Paris et al., 2013). Furthermore, such events en-

abled new binding sites on sex chromosomes that arose as recently as 1− 2 million years ago (Ellison

and Bachtrog, 2013; Alekseyenko et al., 2013). There are examples of rapid regulatory DNA evolution

across and within populations requiring shorter timescales, i.e. 10.000− 100.000 years (Contente et al.,

2002; Kasowski et al., 2010; Zheng et al., 2011; Chan et al., 2010). On the other hand, strict conserva-

tion has also been observed at orthologous regulatory locations even in distant species (e.g., (Vierstra

et al., 2014)). Taken together, these facts suggest that the rates of TFBS evolution can extend over

many orders of magnitude and differ greatly from the point mutation rate at a neutral site. To study the

evolutionary dynamics of regulatory sequences and understand the relevant timescales, we set up a

theoretical framework with a special focus on the interplay of both population genetic and biophysical

factors, briefly outlined below.

Sequence innovations originate from diverse mutational mechanisms in the genome. While tandem

repeats (Gemayel et al., 2010) or transposable elements (Feschotte, 2008) may be important in evolu-

tion, the better studied and more widespread mutation types still need to be better understood in the

context of TFBS evolution. Specifically, we ask how the evolutionary dynamics are affected by single

nucleotide (point) mutations, as well as by insertions and deletions (indels). New mutations in the popu-

lation are selected or eliminated by the combined effects of selection and random genetic drift. Although

the importance of selection (Hahn et al., 2003; He et al., 2011; Arnold et al., 2014) and mutational close-

ness of the initial sequences (MacArthur and Brookfield, 2004; Nourmohammad and Lässig, 2011) for

TF binding site evolution has already been reported, the belief in fast evolution via point mutations with-

out selection (i.e., neutral evolution) persists in the literature (e.g.,(Wittkopp, 2013; Villar et al., 2014)),

mainly due to Stone and Wray (2001)’s misinterpretation of their own simulation results (see MacArthur

and Brookfield (2004)). This likely reflects the current lack of theoretical understanding of TFBS evo-

lution in the literature, even under the simplest case of directional selection. Basic population genetics

shows that directional selection is expected to cause a change, e.g., yield a functional binding site, over

times on the order of 1/(NsUb), where N is the population size, s is the selection advantage of a bind-

ing site, and Ub is the beneficial mutation rate (Berg et al., 2004). This process can be extremely slow,

especially under neutrality, if several mutational steps are needed to reach a sequence with sufficient

binding energy to confer a selective advantage. As already pointed out by Berg et al. (2004), this places

strong constraints on the length of the binding sites, if they were to evolve from random sequences.

Several biophysical factors, such as TF concentration and the energetics of TF-DNA and TF-TF

interactions, might play an important role in TFBS evolution. Quantitative models for TF sequence

specificity (von Hippel and Berg, 1986; Berg and von Hippel, 1987; Stormo and Fields, 1998; Stormo
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and Hartzell, 1989; Stormo and Zhao, 2010; Zhao et al., 2009) and for thermodynamic (TD) equilibrium

of TF occupancy on DNA (Shea and Ackers, 1984; Berg and von Hippel, 1987; Bintu et al., 2005a,b;

Hermsen et al., 2006, 2010) were developed in recent decades and, in parallel with developments

in sequencing, have contributed to our understanding of TF-DNA interaction biophysics. These bio-

physical factors can shape the characteristics of the TFBS fitness landscape over genotype space in

evolutionary models (Gerland et al., 2002; Gerland and Hwa, 2002; MacArthur and Brookfield, 2004;

Berg et al., 2004; Stewart and Plotkin, 2012, 2013; Payne and Wagner, 2014). There are also intensive

efforts to understand the mapping from promoter/enhancer sequences to gene expression (Segal et al.,

2008; Hermsen et al., 2006; Samee and Sinha, 2014; He et al., 2010). Despite this recent attention,

there have been relatively few attempts to understand the evolutionary dynamics of TFBS in full pro-

moter/enhancer regions (MacArthur and Brookfield, 2004; He et al., 2012; Hermsen et al., 2010; Duque

et al., 2013; Duque and Sinha, 2015), especially using biophysically realistic but still mathematically

tractable models. Such models are necessary to gain a thorough theoretical understanding of binding

site evolution.

Our aim in this study is to investigate the dynamics of TFBS evolution by focusing on the typical

evolutionary rates for individual TFBS gain and loss events. We consider both a single binding site at

an isolated DNA region and a full enhancer/promoter region, able to harbor multiple binding sites. In

the following section, we lay out our modeling framework, which covers both population genetic and

biophysical considerations, as outlined above. Using this framework, we try to understand i) what typi-

cal gain and loss rates are for a single TFBS site; ii) how quickly populations converge to a stationary

distribution for a single TFBS; iii) how multiple TFBS evolve in enhancers and promoters; iv) how early

history of the evolving sequences can change the evolutionary rates of TFBS; and v) how cooperativity

between TFs affects the evolution of gene expression. We find that, under realistic parameter ranges,

both gain and loss of a single binding site is slow, slower than the typical divergence time between

species. Importantly, fast emergence of an isolated TFBS requires strong selection and favorable initial

sequences in the mutational neighborhood of a strong TFBS. The evolutionary process approaches

the equilibrium distribution very slowly, raising concerns about the use of equilibrium assumptions in

theoretical work. We proceed to show that the dynamics of TFBS evolution in larger sequences can

be understood approximately from the dynamics of single binding sites; the TFBS gain times are again

slow if evolution starts from random sequence in the absence of strong selection or large regulatory

sequence “real estate.” Finally, we identify two factors that can speed up the emergence of TFBS: the

existence of an initial sequence distribution biased towards the mutational neighborhood of strongly

binding sequences, which suggests that ancient evolutionary history can play a major role in the emer-

gence of “novelties” (Villar et al., 2015); and the biophysical cooperativity between transcription factors,

which can partially account for the lack of observed correlation between identifiable binding sequences

and transcriptional activity (Stefflova et al., 2013).
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2.2 Models & Methods

2.2.1 Population genetics

We consider a finite population ofN diploid individuals whose genetic content consists of an evolvable L

base pair (bp) contiguous regulatory sequence σ to which TFs can bind. Given that σi ∈ {A, C, G, T}

where i = 1, 2, ..., L indexes the position in regulatory sequence, there are 4L different regulatory

sequences in the genotype space. Each TF is assumed to bind to a contiguous sequence of n bp within

our focal region of L bp (Fig. 2.1A,B). Regulatory sequences evolve under mutation, selection, and

sampling drift. The rest of the genome is assumed to be identical for all individuals and is kept constant.

In the first part of our study we consider the regulatory sequence comprised of a single TFBS (i.e.

L = n). Later, we consider the evolution of a longer sequence (i.e. L� n) in which more than one TFBS

can evolve. For simulations, we use a Wright-Fisher model where N diploid individuals are sampled

from the previous generation after mutation and selection. Our analytical treatment is general and

corresponds to setups where a diffusion approximation to allele frequency evolution is valid. We neglect

recombination since typical regulatory sequences are short, L ≤ 1000. To be consistent with most of the

population genetics literature we assume diploidy, but since we do not consider any dominance effects,

our results also hold for a haploid population with 2N individuals.

Evolutionary dynamics simplify in the low mutation limit where the population consists of a single

genotype during most of its evolutionary history (the fixed state population model). Desai and Fisher

(2007) have shown that the condition log 4N∆f
∆f � 1

4NUb∆f
needs to hold for a fixed state population

assumption to be accurate. The term on the left is the establishment time of a mutant allele with a

selective advantage ∆f relative to the wild type; the term on the right-hand side is the waiting time

for such an allele to appear, where Ub is the beneficial mutation rate per individual per generation.

Note that, in binding site context, Ub refers to the rate of mutations which increase the fitness, for

instance, by increasing binding strength. Its exact value depends on the current state of the genotype;

nevertheless, typical value estimates help model the evolutionary dynamics. In multicellular eukaryotes,

where most evidence for the evolution of TFBSs has been collected and which provide the motivation

for this manuscript, the number of mutations per nucleotide site is typically low, e.g. 4Nu ∼ 0.01 in

Drosophila and 4Nu ∼ 0.001 in humans (Lynch and Conery, 2003), where u is the point mutation rate

per generation per base pair. For a single binding site of typical length n ∼ 5−15, one therefore expects

the fixed state population model to be accurate. For longer regulatory sequences, one expects that

beneficial mutations are rare among all possible mutations, so that the fixed state population model can

be assumed to hold as well.

Evolution under the fixed state assumption can be treated as a simple Markovian jump process. The

transition rate from a regulatory sequence σ to another regulatory sequence σ′ in a diploid population
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is

Rσ′,σ = 2N Uσ′,σ Pfix(N, ∆fσ′,σ) (2.1)

where ∆fσ′,σ = f(σ′) − f(σ) is the fitness difference and Uσ′,σ is the mutation rate from σ to σ′. The

fixation probability Pfix of a mutation with fitness difference ∆f in a diploid population of N individuals is

Pfix(N, ∆f) =
1− e−2∆f

1− e−4N∆f
≈ 2∆f

1− e−4N∆f
, (2.2)

which is based on the diffusion approximation (Kimura, 1962). Note that the fixation probability scaled

with 1/N approximates to 2N∆f when N∆f � 1. Evolutionary dynamics therefore depend essentially

on how regulatory sequences are mutationally connected in genotype space, and how fitnesses differ

between neighboring genotypes, i.e., on the fitness landscape.

2.2.2 Directional selection on biophysically motivated fitness landscapes

In this study, we focus on directional selection by assuming that fitness f is proportional to gene expres-

sion level g which depends on regulatory sequence, i.e.

f(σ) = s g(σ) (2.3)

where s is the selection strength. It is important to note that this choice does not imply that directional

selection is the only natural selection mechanism. It simply aims at obtaining the theoretical upper limits

for the rates of gaining and losing binding sites.

To analyze a realistic but tractable mapping from the regulatory sequence to fitness, we primarily

assume that the proxy for gene expression is the binding occupancy (binding probability) π at a single

TF binding site, or the sum of the binding occupancies within an enhancer/promoter region (based on

limited experimental support (Giorgetti et al., 2010)). This corresponds to

f(σ) = s
∑
i

π(i)(σ) (2.4)

where π(i) is the binding occupancy of a site starting at the nucleotide i in sequence σ, and s can be

interpreted as the selective advantage of a strongest binding to a weakest binding at a site. We assume

all binding sites have equal strength and direction in their contribution towards total gene activation.

Sites acting as repressors in our simple model would enter into Eq. (2.4) with a negative selection

strength, s. Future studies developing mathematically tractable models should consider more realistic

case of unequal contribution with combined activator and repressor sites responding differentially to

various regulatory inputs (Duque and Sinha, 2015). Although one can postulate different scenarios that

map TF occupancies in a long (L� n) promoter to gene expression, we chose the simplest case which

allows us to make analytical calculations. Later we relax our assumption on noninteracting binding sites
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and consider the effects of several kinds of interactions on gene expression and thus on evolutionary

dynamics.

The occupancy of the TF on its binding site is assumed to be in thermodynamic (TD) equilib-

rium (Shea and Ackers, 1984; Berg and von Hippel, 1987; Bintu et al., 2005a,b; Hermsen et al., 2006,

2010). While this might not always be realistic (Hammar et al., 2014; Cepeda-Humerez et al., 2015),

there is empirical support for this assumption (particularly in prokaryotes) (Segal et al., 2008; Brew-

ster et al., 2012; Razo-Mejia et al., 2014), and more importantly, it is sufficient to capture the essential

nonlinearity in this genotype-phenotype-fitness mapping (Haldane et al., 2014). In thermodynamic equi-

librium, the binding occupancy at the site starting with the i-th position in regulatory sequence is given

by

π
(i)
TD(Ei) =

(
1 + eβ(Ei−µ)

)−1

. (2.5)

Here, µ is the chemical potential of the TF (related to its free concentration) (Gerland et al., 2002;

Weinert et al., 2014); Ei is the sequence specific binding energy, where lower energy corresponds to

tighter binding, and β = (kBT )−1. We compute the binding energy Ei by adopting an additive energy

model which is considered to be valid at least up to a few mismatches from the consensus sequence

(Maerkl and Quake, 2007; Zhao et al., 2009; Stormo and Zhao, 2010; Kinney et al., 2010), i.e.

Ei(σ) =
i+n−1∑
j=i

ξσj ,j (2.6)

where ξ stands for the energy matrix whose ξσj ,j element gives the energetic contribution of the nu-

cleotide σj appearing at the j-th position within TFBS. With this, Eq. (2.4) can be rewritten more formally

as

f(σ) = s
∑
i

π
(i)
TD(Ei(σ)) (2.7)

To allow analytical progress, we make the “mismatch assumption,” i.e., the energy matrices contain

identical ε > 0 entries for every non-consensus (mismatch) base pair; the consensus entries are set

to zero by convention. A single binding sequence with k mismatches therefore has the binding en-

ergy E = kε. We will refer to ε as “specificity.” Specificity is provided by diverse interactions between

DNA and TF, including specific hydrogen bonds, van der Waals forces, steric exclusions, unpaired polar

atoms, etc. (McKeown et al., 2014). ε is expected to be in the range 1 − 3 kBT , which is consistent

with theoretical arguments (Gerland et al., 2002) as well as direct measurements (Fields et al., 1997;

Kinney et al., 2010; Maerkl and Quake, 2007). Note that we explicitly check the validity of the analytical

results based on the mismatch assumption by comparing them against simulations using realistic en-

ergy matrices. The redundancy (i.e., normalized number of distinct sequences) of a mismatch class k

at a single site in a random genome can be described by a binomial distribution φ (Fig. 2.1C) where the

probability of encountering a mismatch class k is

φk(n, α) =

(
n

k

)
αk
(
1− α

)n−k (2.8)
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where α = 3/4 in the case of equiprobable distribution over the four nucleotides.

We focus on selection in a single environment, which in this framework corresponds to a single

choice for the TF concentration. We therefore fix the chemical potential to a baseline value of µ = 4 kBT ,

which maps changes in the sequence (mismatch class k) to a full range of gene expression levels, as

shown in Fig. 2.1D. We subsequently vary µ systematically and report how its value affects the results.

After these preliminaries, the equilibrium binding probability of Eq. (2.5) reduces to

πTD(k) =
(

1 + eβ(ε k−µ)
)−1

. (2.9)

This function has a sigmoid shape whose steepness depends on specificity ε and whose midpoint

depends on the ratio of chemical potential to specificity, µ/ε (Fig. 2.1D). To simplify discussion, we intro-

duce two classes of sequences: genotypes are associated with “strong binding” S and “weak binding”

W if πTD > 2/3 and πTD < 1/3, respectively. The thresholds that we pick are arbitrary, while still placing

the midpoint of the sigmoid between the two classes; our results do not change qualitatively for other

choices of thresholds. In the mismatch approximation, the genotype classes k = {0, 1, ..., kS} ∈ S and

k = {kW , kW + 1, ..., n} ∈ W correspond to strong and weak binding, respectively. kS and kW are

defined as the closest integers to the thresholds defined above; these values depend on ε and µ. We

also define a “presite” as the mismatch class that is 1 bp away from the threshold for strong binding, i.e.,

a class with kS + 1 mismatches. Note that binding length n extends the tail of the fitness landscape for

a single site and shifts the center of redundancy rich mismatch classes (Fig. 2.1C).

The formulation in Eq. (2.7) reduces to

f(k) = s πTD(k) (2.10)

in a mismatch approximation at a single site, which we will investigate extensively for Ns scaling of

TFBS gain and loss rates. We consider a wide range of Ns values: Ns < 0 for negative selection,

Ns = 0 for neutral evolution, Ns ∼ 1 for weak positive selection, Ns � n log(2)/2 for strong positive

selection (see below for this particular choice of the threshold).

In order to study the effects of interacting TFBSs in large regulatory sequences, we relax our as-

sumption of non-interacting TFBS in Eq. (2.7) and study three simple models. In the main text, we

report the cooperative physical interaction between two TF molecules binding two nearby sites where

the binding probability at a site is modified as

πcoop(k, kc) =
e−β(εk−µ) + e−β(ε(k+kc)−2µ−Ec)

1 + e−β(εk−µ) + e−β(εkc−µ) + e−β(ε(k+kc)−2µ−Ec)
, (2.11)

where kc stands for the mismatch class at the co-binding site and Ec for cooperativity. In this study we

consider that cooperative energy ranges from an intermediate strength (Ec = −2 kBT ) to a high strength

(Ec = −4 kBT ) (Hermsen et al., 2006). Fig. 2.1D shows an example of the binding probability when

a strong co-binding site exists. As a function of k alone, at fixed kc, this formulation of cooperativity is
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consistent with the zero-cooperativity (Ec = 0) case but with a changed effective chemical potential. We

take cooperative interactions into account if the two TFs are binding within 3 bp of each other, and we

only consider the strongest binding of the cooperative partner (i.e., the proximal location with the lowest

kc).

In Supporting Information, we discuss the other two models of interacting TFBS. In one model, gene

expression is determined only by the binding probability of the strongest site in the regulatory sequence.

In the other model, gene expression is determined by the probability of the joint occupancy of 2 strongest

binding sites, anywhere in the regulatory sequence; this model is a toy version of synergistic “non-

physical” interaction of TFs which compete with nucleosomal binding for the occupancy of regulatory

regions in eukaryotes (see Mirny (2010) for a detailed model).

2.2.3 Point and indel mutations

Point mutations and indels are the only mutational processes in our framework. Point mutations with

a rate u convert the nucleotide at one position into one of the 3 other nucleotide types. For a single

binding site, the probability that a point mutation changes the mismatch class from k to k′ is

P
(point)
k′,k =

(
1− k/n

)
δk′,k+1 +

(
k/3n

)
δk′,k−1 +

(
2k/3n

)
δk′,k (2.12)

where δa,b = 1 if a = b and 0 otherwise.

We define the indel mutation rate per base pair such that it occurs with rate θ u at a position where

a random nucleotide sequence is either inserted, or an existing nucleotide sequence is deleted. For

mathematical simplicity, we assume that insertions and deletions are equally likely; in fact, a slight bias

towards deletions is reported in the literature with a ratio of deletion to insertion ∼ 1.1−3.0 (Taylor et al.,

2004; Brandström and Ellegren, 2007; Park, 2015). Parameter θ is the ratio of indel mutation rate to

point mutation rate, and is reported to be in the range 0.1 − 0.2 (Cartwright, 2009; Chen et al., 2009;

Lee et al., 2012). We consider two cases: the baseline of θ = 0 for no indel mutations, and θ = 0.15 for

the combined effect of indel and point mutations. Since we fix the length of the regulatory sequence,

indels shift existing positions away from or inwards to some reference position (e.g., transcription start

site). For consistency, we fix the regulatory sequence at its final position and assume that sequences

before the initial position are random. Indel lengths vary, with reports suggesting a sharply decreasing

but fat-tail frequency distribution (Keightley and Johnson, 2004). For simulations we consider only very

short indels of size 1 − 2 bp, occurring proportional with their reported frequencies of 0.45 and 0.18,

respectively. We do not need to assume any particular indel length for analytical calculations (below).

While sufficient for our purposes, this setup would need to be modified when working with real sequence

alignments of orthologous regions.
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For a single binding site (i.e. L = n) one can exactly calculate the probability of an indel mutation

changing the mismatch class from k to k′ as

P
(indel)
k′,k =

n∑
i=1

(1/n)
k′∑
x=0

p(Xi = x | k) p(Yi = k′ − x). (2.13)

Here, i is the index for the position of an indel mutation within the binding site. The distribution over

possible positions is uniform (hence 1/n). The indel mutation defines two distinct parts in the binding

site in terms of mismatches: nucleotides behind the indel mutation preserve their mismatch information,

yet the nucleotides within and after indel mutation completely lose it. The new mismatches at these

distinct parts Xi and Yi are binomial random variables,

p(Xi = x | k) = φx(i− 1, α = k/n)

p(Yi = y) = φy(n− i+ 1, α = 3/4)
(2.14)

where φk(n, α) is defined in Eq. (2.8). Fig. 2.6 shows that Monte Carlo sampling of indel mutations at

a single binding site matches the analytical expression in Eq. (2.13).

The two types of mutations can be combined into the mutation rate matrix as follows:

Uk′,k =

n u
(
P

(point)
k′,k + θ P

(indel)
k′,k

)
k′ 6= k

−
∑
k′ 6=kUk′,k k′ = k

. (2.15)

2.2.4 Evolutionary dynamics of single TF binding sites

For a sequence that consists of an isolated TFBS (i.e., L = n), analytical treatment is possible under

the fixed state assumption. Let ψ(t) be a distribution over an ensemble of populations, whose k-th

component, ψk(t), denotes the probability of detecting a genotype with k mismatches at time t. In the

continuous time limit, the evolution of ψ(t) is described by

d

dt
ψ(t) = R ·ψ (2.16)

which accepts the following solution:

ψ(t) = eR t ·ψ(0). (2.17)

Here, R is the transition rate matrix defined as

Rk′,k =

2N Uk′,k Pfix(N, ∆fk′,k) k′ 6= k

−
∑
k′ 6=kRk′,k k′ = k

. (2.18)

This dynamical system is a continous-time Markov chain and there exists a unique stationary distri-

bution ψ̂ corresponding the genotype distribution over an ensemble of populations at large time points.

It can be calculated by decomposing the transition rate matrix R into its eigenvalues and eigenvectors.
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The normalised left eigenvector with zero eigenvalue corresponds to the stationary distribution. This

can also be expressed analytically as

ψ̂k ∝ eF (k,N)+H(k | n,α), (2.19)

where F (k,N) = 4Nf(k) captures the relative importance of selection to genetic drift, and H(k | n, α)

is the mutational entropy, describing how a particular mismatch class k is favored due to redundancy

and connectivity of the genotype space. For point mutations alone (θ = 0), H = log φk(n, α), with

the binomial distribution φk(n, α) as defined in Eq. (2.8). Obtaining a closed form expression for H is

difficult when considering indel mutations (θ > 0), yet the eigenvalue method solution suggests a similar

shape for θ in the range of interest. The form of the stationary distribution was known for a long time

in population genetics literature for a single locus or many loci with linkage equilibrium (Wright, 1931).

It has recently been generalised to arbitrary sequence space under the fixed state assumption (Berg

et al., 2004; Sella and Hirsh, 2005), resulting in the form of Eq. (2.19) with a close analogy in the energy-

entropy balance of statistical physics (Barton and Coe, 2009), and become a subject of theoretical

interest (Mustonen and Lässig, 2005; Mustonen et al., 2008; Manhart et al., 2012; Haldane et al.,

2014).

Under weak directional selection for high expression (and thus high binding site occupancy), the

stationary distribution shows a bimodal shape, with one peak located around the fittest class, k ∼ 0,

and another at the core of mutational entropy, k ∼ αn (recall that α = 3/4 for a completely random

genome). This bimodal shape collapses to a unimodal one, either at no selection or at strong selec-

tion. The threshold value for Ns distinguishing strong and weak selection regimes primarily depends

on the TFBS binding length, n. In a sigmoidal fitness landscape and approximating the binomial distri-

bution by a normal distribution as appropriate, the sizes of these two peaks are roughly proportional to

exp (4Ns− n log 4) and
√

2πα(1− α)n, respectively. Therefore, we expect the threshold Ns to scale as
1
4

(
n log 4− 1

2 log 2πα(1− α)n
)

. For typical n, the linear term is dominant, suggesting that

Ns ∼ n log(2)/2 (2.20)

corresponds to the threshold for strong selection in TFBS evolution (cf. Fig. 2.7). Note that this n

scaling differs from the log(n) scaling which is expected in simple fitness landscapes (Paixao et al.,

2015). Our argument assumes that the system is at evolutionary equilibrium, which, as we will see,

is not necessarily the case even under strong selection, providing further motivation for focusing on

dynamical aspects of evolution.

We define the time needed to gain (or lose) a TFBS as the time it takes for a strong binding site to

emerge from a weak one (and vice versa), as schematized in Fig. 2.1D. For an isolated TFBS, these

times can be computed from the Markovian properties of the evolutionary dynamics, by calculating the
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average first hitting times (Otto and Day, 2007). We will use the notations 〈t〉S←k and 〈t〉W←k, re-

spectively, for average gain and loss times when evolution starts from mismatch class k. Obviously,

〈t〉S←k = 0 if k is among the strong binding classes (k ∈ S) and 〈t〉W←k = 0 if k is among the weak

binding classes (k ∈ W). The average gain times from other mismatch classes can be found by consid-

ering the relation 〈t〉S←k = 1 +
∑
k′ /∈S P k,k′〈t〉S←k′ , where P k,k′ is the probability of transition from k′ to

k in one generation. One can compute the average gain times by writing it in terms of linear algebraic

equation:

T S← = (R/∈S)
−T · (−1) (2.21)

where T S← is a column vector listing non-trivial gain times, i.e. {〈t〉S←k} for k = kS + 1, ..., n. R/∈S is

the R matrix with all rows and columns corresponding to k ∈ S deleted and −T is the matrix operator

for the transpose after an inverse operation. 1 is a vector of ones. Similarly one can find the loss times,

TW← = (R/∈W)
−T · (−1) (2.22)

where TW← is a column vector listing non-trivial loss times, i.e. {〈t〉W←k} for k = 1, 2, ... kW − 1. R/∈W

is the R matrix with all rows and columns corresponding to k ∈ W deleted.

In the case of point mutations alone (θ = 0), the R matrix is tri-diagonal and one can deduce simpler

formulae for gain and loss times:

〈t〉(point)
S←k =

∑k
i=kS+1

1
Ri−1, i

1−Ψ̂i−1

ψ̂i

〈t〉(point)
W←k =

∑kW
i=k+1

1
Ri−1, i

Ψ̂i−1

ψ̂i

(2.23)

where we use Ψ̂i =
∑i
j=0 ψ̂j to denote the cumulative stationary distribution. For very strong selection,

the second term in the sums approaches unity, resulting in even simpler formulae (Berg et al., 2004),

called the “shortest path” (sp) solution:

〈t〉(sp)
S←k =

∑k
i=kS+1

1
Ri−1, i

〈t〉(sp)
W←k =

∑kW
i=k+1

1
Ri−1, i

. (2.24)

These equations can be used to quickly estimate gain and loss rates of interest. For example, the gain

rate from presites under strong selection is approximately 2NsukS+1
3 (f(kS)− f(kS + 1)). Although the

exact value depends on the binding specificity and chemical potential, one can see that it is about Nsu

for the parameter range of interest. Similarly, one can see that the rate of loss from strong sites is about

2n |Ns|u when there is strong negative selection.
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2.3 Results

2.3.1 Single TF binding site gain and loss rates under mutation-selection-drift

are typically slow

We first studied the evolutionary rates for a single TF binding site at an isolated DNA sequence of

the same length under mutation, genetic drift, and directional selection for high gene expression level

(i.e., tighter binding). As detailed in the Models & Methods section, we combined a thermodynamically

motivated fitness landscape with the mismatch approximation, and assumed that the mutation rate is

low enough for the fixed state population approximation to be valid. Under these assumptions, we could

calculate the inverse of the average TFBS gain and loss times as a function of the starting genotype,

using either an exact method or Wright-Fisher simulations. We considered point mutations alone, or

point mutations combined with short indel mutations, in order to understand under which conditions the

rates of gaining and losing binding sites can reach or exceed the rates 2−3 orders of magnitude greater

than point mutation rate, and thus to become comparable to rates observed in comparative genomic

studies.

Fig. 2.2A shows the dependence of the TFBS gain rate on the selection strength (with respect

to genetic drift), Ns. For parameters typical of eukaryotic binding sites (length n = 7 bp, specificity

ε = 2 kBT ), the TFBS gain rates are extremely slow (practically no evolution) when there is negligible

selection pressure (Ns ∼ 0), indicating the importance of selection for TFBS emergence. Indeed, the

effective selection needs to be very strong, e.g., Ns > 100, for TFBS evolution to exceed the per-

nucleotide mutation rate by orders of magnitude and become comparable to speciation rates.

Even if strong selection were present, the gain rate depends crucially on the initial genotype. While

gain rates from presites, i.e., genotypes one mutation away from the threshold for strong binding, are

roughly Nsu for the strong Ns regime (as estimated by Berg et al. (2004)), they decrease dramatically

if more mutational steps are needed to evolve a functionally strong binding site. This is illustrated in the

inset to Fig. 2.2A, showing an exponential-like decay in the gain rates as a function of the number of

mismatches, even for a TFBS of a modest length of 7 bp. As argued in the Models & Methods section

(see Eq. (2.20)), we confirmed that the threshold for the strong Ns regime scales as n log(2)/2 and not

as log(n) which is the case for simple fitness landscapes (Paixao et al., 2015).

The availability of a realistic fraction of indel mutations (here, θ = 0.15) can speed up evolution

when starting from distant genotypes (cf. solid and dashed red line in Fig. 2.2A). This is because indels

connect the genotype space such that paths from many to few mismatches are possible within a single

mutational step. Nevertheless, the improvement due to indel mutations does not alleviate the need for

very strong selective pressure and the proximity of the initial to strongly-binding sequence, in order to

evolve a functional site.
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Biophysical parameters—the binding site length n, the chemical potential µ, and the specificity ε—

influence the shape of the fitness landscape and thus the TFBS gain rates. This is especially evident

when we consider de novo evolution starting from random sequence. As shown in Figures 2.2B, C,

increases in specificity or length cause a sharp drop in the gain rates from initial sequences in the most

redundancy rich class, which can be only partially mitigated by the availability of indel mutations. This

especially suggests that adaptation of TFBS from random sequences for TF with very large binding

lengths and very strong specificities is unlikely with point and indel mutations which can constrain the

evolution of TF lengths and TF specificity, which is consistent with Berg et al. (2004)’s earlier numeric

observation. Importantly, the binding specificity and length show an inverse relation with the logarithm

of the gain rates. This is due to the fact that a decrease in specificity allows more genotypes to generate

appreciable binding and therefore fitness (see Fig. 2.1D), which partially compensates the increase in

mutational entropy at larger binding site lengths. Variation of the chemical potential µ corresponding to

an order-of-magnitude change in the free TF concentration does not qualitatively affect the results.

Typically slow TFBS evolution is a consequence of the sigmoidal shape of the thermodynamically

motivated fitness landscape, where adaptive evolution in the redundant but weakly binding classes

W must proceed very slowly due to the absence of a selection gradient. To illustrate this point, we

generated alternative fitness landscapes that agree exactly with the thermodynamically motivated one

from the fittest class to the threshold class for strong binding, kS , but after that decay as power laws,

πpl, with a tunable exponent (see SI text). As seen in Fig. 2.8, this exponent is a major determinant of

the gain rates, suggesting that a biophysically realistic fitness landscape is crucial for the quantitative

understanding of TFBS evolution.

To check that the assumption of the fixed state population is valid at Nu = 0.01, the value used

here that is also relevant for multicellular eukaryotes (Lynch and Conery, 2003), we performed Wright-

Fisher simulations as described in the Models & Methods section. Fig. 2.2A shows excellent agreement

between the analytical results and the simulation. We further increased the mutation rate to Nu = 0.1,

a regime more relevant for prokaryotes where polymorphisms in the population are no longer negligible,

to find that the analytical fixed state assumption systematically overestimates the gain rates, as shown

in Fig. 2.9. In the presence of polymorphism, therefore, evolution at best proceeds as quickly as in

monomorphic populations, and generally proceeds slower, so that our results provide a theoretical

bound on the speed of adaptive evolution under directional selection. This is expected since the effects

of clonal interference kick in after a certain Nu, where two different beneficial mutants start competing

with each other, and eventually decrease the fixation probability in comparison to one beneficial mutant

sweeping to fixation as in the monomorphic population case.

To check that the mismatch assumption does not strongly affect the reported results, we analyzed

evolutionary dynamics with more realistic models of TF-DNA interaction. Different positions within the

binding site can have different specificities, and one could suspect that this can significantly lower the
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evolutionary times. First, some positions within the TFBS may show almost no specificity for any nu-

cleotide, most likely due to the geometry of TF-DNA interactions (e.g, when the TF can contact the

nucleic acid residues only in the major groove); we have not simulated such cases explicitly, but simply

take the binding site length n to be the effective sequence length where TF does make specific contacts

with the DNA. Second, the positions that do exhibit specificity might do so in a manner that is more

inhomogeneous than our mismatch assumption, which assigns zero energy to the consensus and a

constant ε to any possible mismatch. We thus generated energy matrices where ε was drawn from a

Gaussian distribution with the same mean 〈ε〉 = 2 kBT as in our baseline case of Fig. 2.2A, but with a

standard deviation 0.5 kBT . Fig. 2.10 shows that both equal and unequal energy contributions produce

statistically similar behaviors, indicating that inhomogeneous binding interactions cannot substantially

enhance the evolutionary rates.

We further investigated the rate of TFBS loss (Fig. 2.11). Here too strong (negative) selection is

needed to lose a site on reasonable timescales, and it is highly unlikely that a site would be lost in

the presence of positive selection. In contrast to the TFBS gain case, however, negative selection

and mutational entropy act in the same direction for TFBS loss, reducing the importance of the initial

genotype and making selection more effective at larger n and ε.

Taken together, these results suggest that the emergence of an isolated TFBS under weak or no

selection is typically slow relative to the species’ divergence times, and gets rapidly slower for sites

that are either longer or whose TFs are more specific than the baseline case considered here. This

suggests that biophysical parameters themselves may be under evolutionary constraints; in particular,

if point mutations and indels were the only mutational mechanisms, the evolution of long sites, e.g.

n � 10 − 12, would seem extremely unlikely, as has been pointed out previously (Berg et al., 2004).

Absent any mechanisms that could lead to faster evolution and which we consider below, isolated

TFBS are generally only likely to emerge in the presence of strong directional selection and a favorable

distribution of initial sequences that is enriched in presites.

2.3.2 Convergence to the stationary distribution is slow and depends strongly

on initial conditions

A number of previous studies (e.g., (Mustonen and Lässig, 2005; Mustonen et al., 2008; Haldane et al.,

2014)) assumed that a stationary distribution of mismatch classes is reached in the evolution of isolated

TFBS and thus an equilibrium solution, Eq. (2.19), is informative for binding sequence distributions. In

contrast, our results for average gain and loss times suggest that the evolution of an isolated TFBS is

typically slow. To analyze this problem in a way that does not depend on arbitrary thresholds defining

“strong” and “weak” binding classes S and W, we first examined the evolution of the distribution ψ(k)

over the mismatch classes as a function of time in Fig. 2.3A. For typical parameter values it takes on
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still happen, adaptation from the most random mismatch classes becomes extremely slow, even under

strong selection (see Fig. 2.15).

These results suggest that stationary distributions of isolated TFBS sequences may not be realizable

on the timescales of speciation, which should be a cause of concern when stationarity is assumed

without prior critical assessment. For example, applications assuming the stationary distribution might

wrongly infer selection on regulatory DNA.

2.3.3 Evolution of TF binding sites in longer sequences

So far we have shown that the evolution of isolated TFBS is typically slow. How do the results change

if we consider TFBS evolution in a stretch of sequence L bp in length, where L � n, e.g., within a

promoter or enhancer? Here we focus on de novo evolution under strong directional selection for high

gene expression, by simulating the process in the fixed state population framework. Compared to the

isolated TFBS case, we need to make one further assumption: that the expression level of the selected

gene is proportional to the summed TF occupancy on all sites within the regulatory region of length L

(see Models & Methods for details). While this is the simplest choice, it is neither unique nor perhaps the

most biologically plausible one, although limited experimental support exists for such additivity (Gior-

getti et al., 2010); it does, however, represent a tractable starting point when the interactions between

individual TF binding sites are not strong and the contribution of each site is equal and of the same

sign. To address the interactions, we look at the cooperative binding case in the following section. In

Supporting Information, we also discuss the competition of TFBSs for the strongest binding, and the

“nonphysical” synergetic interaction by two strongest TFBSs.

We propose a simple analytical model for the time evolution of the number of strongly binding sites,

z(t), in the promoter, derived from isolated TFBS gain and loss rates, λgain and λloss. Assuming constant

rates, one can write
d

dt
z(t) = λgain

(
zmax − z(t)

)
− λlossz(t) (2.25)

where zmax is the maximum number of TFBS that can fit into the regulatory sequence of length L bp. If

the sites can overlap, zmax = L− n+ 1, otherwise zmax ≈ L/n. The solution for Eq. (2.25) is

z(t) =
(
zo −

B

A

)
e−At +

B

A
(2.26)

where A =
(
λgain + λloss

)
, B = zmaxλgain and zo = z(t = 0). Under strong positive selection, i.e.

Ns � n log(2)/2, the loss rate λloss can be ignored. If the distribution of the initial mismatch classes in

the promoter is ψk, one can approximate zmax − zo = zmax

∑n
k=kS+1 ψk to obtain:

z(t)− zo =
(
1− e−λgaint

)
zmax

n∑
k=kS+1

ψk. (2.27)
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There are two limiting regimes in which we can examine the behavior of Eq. (2.27). Over a short

timescale, evolutionary dynamics will search over all possible positions, zmax = L−n+ 1, to pull out the

presites, since they are fastest to evolve into the strong binding class S, i.e.:

λgain ≈ λpresite
gain =

(∑
k/∈S

ψk

)−1

ψkS+1/〈t〉S←kS+1 (2.28)

As the process unfolds and new sites are established, new TFBS will only be able to emerge at a

smaller set of positions due to possible overlaps, so that zmax ≈ L/n. On the other hand, evolution from

higher mismatch classes will also start to contribute towards new sites:

λgain ≈ λall
gain =

(∑
k/∈S

ψk

)−1 ∑
k/∈S

ψk/〈t〉S←k (2.29)

Fig. 2.4 shows how new TFBSs with length n = 7 bp emerge over time in a promoter of L = 30

bp in length. Consistent with the predictions of our simplified model, we can distinguish the early,

intermediate, and late epochs. In the early epoch, t < 0.01u−1, presites are localized among all possible

locations and are established as binding sites. During this period, the growth in the expected number

of new TFBSs is linear with time. The importance and predictive power of presites at early epoch

remain even under different models of gene expression, including interaction between TFBSs (see

Fig. 2.14). In the intermediate epoch, new binding sites accumulate at the rate that is slightly above

that expected by establishment from presites alone, as the mutational neighborhood is explored further.

In the late epoch, t > 0.1u−1, initial sites in the immediate mutational vicinity have been exhausted,

and established sites have constrained the number of positions where new sites can evolve from more

distant initial sequences, leading to the saturation in the number of evolved TFBS.

Using the simple analytical model, we explored in Fig. 2.4B,C how the binding length n and specificity

ε affect the number of newly evolved TFBS. Increasing n leads to a steep decrease in the number of

expected sites, with a somewhat weaker dependence on ε, especially at early times. Simulations at

other values of biophysical and evolutionary parameters confirm the qualitative agreement between the

analytical model and the simulation (Fig. 2.12); given that the model is a simple heuristic, it cannot be

expected to match the simulations in detail, yet it nevertheless seems to capture the gross features

of evolutionary dynamics. Together, these results show that at early times under strong selection,

the number of newly evolved sites will grow linearly with time and proportional to L, before evolution

from higher mismatch classes can contribute and ultimately before the sites start interacting, with a

consequent slowdown in their evolution. Thus, evolution in longer regulatory regions (L = 102 − 103

bp) could feasibly give rise to tens of binding sites at Ns = 102 − 103 within a realistic time frame

t ∼ 0.001u−1, if the sites are sufficiently short (n ∼ 7 bp). Explaining the evolution of longer sites, e.g.,

n > 10−12 bp, especially within short promoters found in prokaryotes, would likely necessitate invoking

new mechanisms.
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Figure 2.4: TF binding site evolution in a longer sequence of L = 30 base pairs. The expected number

of newly evolved TF binding sites with length n = 7 bp, under strong directional selection (Ns = 100) and both point and indel

mutations (θ = 0.15). Time is measured in inverse mutation rates; the number of newly evolved sites is scaled to the selection

strength and the sequence length. 1000 replicate simulations were performed with different initial sequences. Average number

of sites shown by a solid black line; the gray band shows ±2 SEM (standard error of the mean) envelope. Dashed curves are

analytical predictions based on single TFBS gain rates at an isolated DNA region, given by Equations (2.27,2.28,2.29). Biophysical

parameters used: ε = 2 kBT , µ = 4 kBT . Insets: Expected number of newly evolved sites from a random sequence of length

L at t = 0.001u−1 (left) and t = 0.1u−1 (right) for different binding length and specificity values, computed using the analytical

predictions. Crosshairs denote the values used in the main panel.
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2.3.4 Ancient sites and cooperativity between TFs can accelerate binding site

emergence

Finally, we briefly examine two mechanisms that can further speed up the evolution of TF binding sites

in longer sequences.

The first possibility is that the sequence from which new TFBS evolve is not truly random; as dis-

cussed previously, presites have a strong influence on the early accumulation of new binding sites.

There are a number of mechanisms that could bias the initial sequence distribution towards presites:

examples include transposable elements, DNA repeats, or CG content bias. Here we consider an al-

ternative mechanism that we refer to as the “ancient TFBS scenario,” in which a strong TFBS existed

in the sequence in the ancient past, after which it decayed into a weak binding site, possibly due to the

relaxation of selection (i.e., Ns ∼ 0).

As we demonstrated in the context of isolated sites, TFBS loss rates are slow and the remains of

the binding site will linger in the sequence for a long time before decaying into the most redundancy

rich mismatch classes. This biased initial distribution of mismatches Ψ in a sequence of length L with a

single ancient site can be captured by writing:

Ψ =
1

L− n+ 1
ψ(t′) +

L− n
L− n+ 1

φ (2.30)

where φ is the binomial distribution, Eq. (2.8), characteristic of the random background, and ψ(t′) is the

distribution of mismatches due to the presence of the ancient site. Time t′ refers to the interval in which

the isolated ancient TFBS has been decaying under relaxed selection, and the corresponding ψ(t′) can

be solved for using Eq. (2.17).

Fig. 2.5A shows that the ancient site scenario can enhance the number of newly evolved sites by

resurrecting the ancient site, even after it has decayed for t′ = 0.1u−1. Simulation results agree well with

the simple analytical model using the biased initial sequence distribution of Eq. (2.30). Importantly, such

a mechanism is particularly effective for longer binding sites of high specificity, indicating that regulatory

sequence reuse could be evolutionarily beneficial in this biophysical regime (see Fig. 2.13).

Fig. 2.5A and Fig. 2.13 also show the emergence of new sites when the ancient site was not a full

consensus (preferred) sequence but differed from it by a certain number of mismatches. The results

qualitatively agree with the case of perfect consensus. Importantly, this shows that the applicability

of the ancient site scenario extends to cases where the ancient site belonged to a different TF (albeit

with a preferred sequence similar to the studied TF), which has recently been reported to be a fre-

quent phenomenon by Payne and Wagner (2014), possibly due to evolution of TFs by duplication and

divergence (Weirauch et al., 2014).

The second mechanism that we consider is the physical cooperativity between TFs: when one site

is occupied, it is favorable for the nearby site to be occupied as well. We extended the thermodynamic
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model to incorporate cooperativity (see the Models & Methods, Eq. (2.11) and Fig. 2.1D). The geno-

type of a nearby site will then influence whether a given site acts as a strongly or weakly binding site.

The presence of a cooperative site acts as a local shift in the chemical potential, which changes the

weak/strong threshold, so that an individually weak site can become a strongly binding site. Simulations

using cooperative binding presented in Fig. 2.5B illustrate how cooperativity can increase the speed of

evolution. This is specifically effective for short binding sites of intermediate or low specificity, where a

cooperative energy contribution can strongly influence the number of sites in the strong binding class

(see Fig. 2.13).

2.4 Discussion

In this study, we aimed at a better theoretical understanding of which biophysical and population genetic

factors influence the fast evolution of TFBSs in gene regulatory DNA, making sequence specific TF bind-

ing a plausible mechanism for the evolution of gene regulation and for generating phenotypic diversity.

Following Berg et al. (2004), we combined a biophysical model for TF binding with a simple population

genetic model for the rate of sequence evolution. The key assumptions are that binding probability is

determined by a thermodynamic equilibrium; that fitness depends linearly on binding probability; and

that populations are typically homogeneous in genotype, and so evolve by substitution of single point

and short insertion/deletion (indel) mutations. Remarkably, the biophysical and the evolutionary models

take the same mathematical form: in the biophysical model, binding probability depends on the binding

energy, relative to thermal fluctuations, βE, whilst in the evolutionary model, the chance that a mutation

fixes depends on its selective advantage, relative to random sampling drift, Ns.

For single TFBS evolution, we calculated the average transition time between genotypes, the inverse

being a measure for the speed of the evolution. Our results indicate that TFBS evolution is typically slow

unless selection is very strong. It is important to emphasize that gaining a TFBS by point mutations un-

der neutral evolution is very unlikely, contrasting with the belief in the current literature (e.g., (Wittkopp,

2013; Villar et al., 2014)). This is mainly due to Stone and Wray (2001)’s argument that functional

sites could readily be found by a random walk; however, their argument assumed that individuals fol-

low independent random walks, which grossly overestimates the rate of evolution (see MacArthur and

Brookfield (2004)). Indeed, fast rates of gaining a single TFBS require not only strong selection but

also initial sequences in the mutational neighborhood of the functional sites. Especially, “presites,” i.e.

sequences 1 bp away from threshold sequences, can be crucial since they can evolve to functional

sites by single mutations. Indel mutations can increase the rate of gaining a single TFBS from distant

sequences, since they connect the genotype space extensively, but their effect is limited under realistic

indel mutation rates (Cartwright, 2009; Chen et al., 2009). Future studies should consider the updates
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in estimates of indel mutation rates, since they are currently not as precise as point mutation rates,

although we do not expect big qualitative departures from our results.

Considering the evolution of a single TFBS from random sequence, we showed that biophysical

parameters, binding length and specificity, are constrained for realistic evolutionary gain rates from the

most redundant mismatch classes. The rates drop exponentially with binding length, making TF whose

binding length exceeds 10 − 12 bp difficult to evolve from random sites, at least under the point and

indel mutation mechanisms considered here. As a consequence of the biophysical fitness landscape,

binding specificity and length show an inverse relation for the same magnitude of the gain rate from

the most redundant mismatch class. Such an inverse relation is observed in position weight matrices

of TFs collected from different databases for both eukaryotic and prokaryotic organisms, by Stewart

and Plotkin (2012). In the same study, they reproduce this observation using a simple model which

assumes that a trade-off between the selective advantage of binding to target sites, versus the selective

disadvantage of binding to non-target sequence. Their model assumes a stationary distribution, and

that sites are functional if they are mismatched at no more than one base. It would be interesting to

explore a broader range of models that account for the dynamical coevolution between transcription

factor binding specificity, its length, and its binding sites (Lynch and Hagner, 2015). One idea can be to

combine the evolutionary dynamical constraints (against large binding length and high specificity, which

we show here) with simple physical constraints of TF dilution in non-target DNA (against short binding

length and low specificity, again in an inverse relation (Gerland et al., 2002)).

For a single TF binding site, the stationary distribution for the mismatch with the consensus binding

sequence depends on the binding energy, but also on the sequence entropy – that is, the number of

sequences at different distances from the consensus. Typically, the distribution is bimodal: either the

site is functional, and is maintained by selection, or it is non-functional, and evolves almost neutrally.

We show that it may take an extremely long time for the stationary distribution to be reached. Functional

sites are unlikely to be lost if selection is strong (i.e., Ns � 1), whilst function is unlikely to evolve from

a random sequence by neutral evolution, even if predicted under stationarity assumption. Therefore,

typical rapid convergence to stationary distribution should be considered with caution in theoretical

studies.

We showed that the dynamics of TFBS evolution in longer DNA sequences can be understood from

the dynamics of single TFBS. The rate of evolution of new binding sites will be accelerated in proportion

to the length of the promoter/enhancer sequence in which that can be functional; however, because this

increase is linear in promoter/enhancer length, it will have a weaker influence than the exponential effect

changes in specificity or length of binding site. Especially the earlier dynamics (relevant for speciation

timescales) are determined by the availability of presite biased sequences. Any process that allowed

selection to pick up more distant sequences or that increased presite ratio among non-functional sites

would accelerate adaptation from “virgin” sequences.
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A key factor for an enrichment in presite ratio may arise through variation in GC content or through

simple sequence repeats (especially if the preferred sequence has some repetitive or palindromic struc-

ture). In this study, we showed that it may also arise from ancient sites, i.e. sites that were functional in

earlier evolutionary history and decayed into nonfunctional classes in evolution. Since loss of function

is slow (comparable to the neutral mutation rate once selection becomes ineffective), this is plausible

for sites that are under intermittent selection, or where there is a shift to binding by a new TF with

similar preferred sequence (Payne and Wagner, 2014; Weirauch et al., 2014). This effect of the ear-

lier evolution can be especially important for long binding TFs as convergence to a truly randomized

sequence distribution requires much longer times. MacArthur and Brookfield (2004) showed that real

promoter sequences may acquire functional sites more quickly than random sequence, but it is not clear

whether that is due to a different general composition, or to the ghosts of previous selection. New stud-

ies are required to test our enriched presite-biased sequence hypothesis, especially for orthologous

regions where functional TFBS is observed in sister populations or species. In a recent study, Villar

et al. (2015) provide evidence that enhancer DNA sequence structure is older than other DNA portions,

suggesting the reuse of such regions in evolution, plausibly by gaining and losing TFBSs in repeti-

tive manner. Nourmohammad and Lässig (2011) showed evidence suggesting that local duplication

of sequences followed by point mutations played important role in binding site evolution in Drosophila

species (but surprisingly, not in yeast species). Another interesting option would be the existence of

“mobile” presites or their fragments, e.g., as sequences embedded into transposable elements that

could be inserted before the gene under selection for high expression (Feschotte, 2008). Presites can

be considered as concrete examples of cryptic sequences (Rajon and Masel, 2013), potential source of

future diversity and evolvability. We believe that understanding the effects of presites would contribute

to the predictability of genetic adaptations regarding gene regulation, especially in important medical

applications such as antibiotic resistance or virus evolution.

We also showed that the evolution of a functional binding site in longer DNA can be accelerated by

cooperativity between adjacent transcription factors. When a TF occupies a co-binding site, sufficient

transcriptional activity can be achieved from sequences of larger mismatch classes, an effect similar to

a local increase in TF concentration. This mechanism permits faster evolution towards strongly binding

sequences, and seems most effective for short TFBS where it creates a selection gradient already

in the redundancy rich mismatch classes. Cooperative physical interactions might allow the evolution

of binding occupancy and thus expression without large underlying sequence changes, which might

be a reason for the observed weak correlation between sequence and binding evolution at certain

regulatory regions. Importantly, TFBS clustering in eukaryotic enhancers can be a consequence of the

fast evolution with cooperativity, as also supported by a recent empirical study (Stefflova et al., 2013).

Our theoretical framework is relevant more broadly for understanding the evolution of gene regula-

tory architecture. Since the speed of TFBS evolution from random sequences is proportional to NsL,
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our results suggest that population size N and the length of regulatory sequences L can compensate

for each other in terms of the rate of adaptation. This is exactly what is observed: eukaryotes typically

have longer regulatory DNA regions but small population sizes, while prokaryotes evolve TFBS within

shorter regulatory sequence fragments but have large population sizes. Similarly, prokaryotes might

have achieved longer TF binding lengths n, as large population size allowed them to overcome the ex-

ponential decrease in the gain rates with increasing n. If relevant, these observations would suggest

that an important innovation in eukaryotic gene regulation must have been the ability of the transcrip-

tional machinery to integrate the simultaneous occupancy of many low-specificity transcription factors

bound over hundreds of basepairs of regulatory sequence, a process for which we currently have no

good biophysical model.

2.5 Supporting Information

2.5.1 Other fitness models for comparison & for interacting TFBSs

Power-law decaying fitness models for comparison:

In order to understand the importance of the thermodynamically-motivated sigmoid shape for the binding

probability, we compare our results to those obtained with power-law functions that decay with exponent

γ (note that γ =∞ corresponds to a step-like fitness landscape), formally defined as

πpl(k) =

πTD(k) k ≤ kS(
kS/k

)γ
πTD(kS) k > kS

. (2.31)

Fig. 2.8 shows that the power-law exponent is a major determinant of the gain rates, suggesting that a

biophysically realistic fitness landscape is crucial for the quantitative understanding of TFBS evolution.

Fitness models of interacting TFBSs in larger regulatory sequence:

In addition to physical cooperativity between nearby TFs on promoter/enhancers (see the Models &

Methods, Fig. 2.5 and Fig. 2.13), here we also consider two other models. The first additional model

assumes that the binding occupancy of the strongest binding site in the regulatory sequence is the

proxy for the gene expression level and the fitness, i.e.

f(σ) = sMAX{π(i)(σ)}. (2.32)

Note that different TFBSs interact with each other to compete for the strongest binding within a promoter

or an enhancer.
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The second additional model addresses synergistic interaction between the two strongest-binding

TFBS, located anywhere in the regulatory sequence. This example is a simplified version of a bio-

physical model where TFs, binding anywhere in a regulatory region, compete for the occupancy of that

region with a nucleosome (for a more elaborative modeling framework, see Mirny (2010)). We call this

type of interaction between two TFs “non-physical” because TFs don’t interact directly; their interaction

is effectively mediated by some other biophysical process. The probability of the joint occupancy of the

two TFs at promoter or enhancer can be used as the proxy for gene expression level and the fitness,

i.e.

f(σ) = s
e−β(ε(k1+k2)−2µ)

1 + e−β(εk1−µ) + e−β(εk2−µ) + e−β(ε(k1+k2)−2µ)
, (2.33)

where k1 and k2 correspond to the genotypes of two TFBSs with the smallest mismatches in the regu-

latory sequence.

Do these models yield different result for the emergence of strong binding sites from random se-

quences at early evolutionary times (∼ speciation time scales), in comparison to our main model, where

the sum of binding occupancies is used as a proxy for gene expression level [Eq.(2.7) in the main text]?

For typical biophysical parameters (binding lenght: n = 7 bp, binding specificity: ε = 2 kBT and chemi-

cal potential: µ = 4 kBT ), we show in Fig. 2.14 that these modified models do not differ extensively from

results of our main model.
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Figure 2.6: Indel mutations connect the mismatch genotype space differently from point muta-

tions. a) Probability that a binding site with k mismatches mutates to k′ mismatches, for a single binding site of length n = 7 bp,

according to our indel mutation model in a fixed genomic window (see the Models & Methods section). Dashed curve = analytical

prediction according to Eq. (2.13). Red points = mean ±1 std of 103 replicate realizations of the frequency distribution (for each

replicate, 1 consensus suence is created and 104 mutations are simulated for each k). b) The same analysis as in a), but allowing

for a flexible genomic window for alignment after insertion mutations. We pick the minimal mismatch case to asses the quality of

our approximation. As expected, this creates a bias towards smaller mismatch classes, but suggests that our approximation is

still reasonable.
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Figure 2.12: TFBS evolution in longer sequences. Example simulations (black solid line) and analytic predictions

based on single TFBS gain/loss rates (black dashed line), for different binding length n and specificity ε. Details are identical to

Fig. 2.4.
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Figure 2.15: Comparison rates of TFBS gain rates and sequence turnover rates within functional

TFBSs Average first hitting times to particular mismatch kj state can be calculated with a minor modification to Eq. (2.21)

by replacing S with kj . The figures compare the rates of evolution of TFBS within the functional sites (i.e. 1/〈t〉k=0←k=1 and

1/〈t〉k=1←k=0). Plot conventions are the same as in Fig. 2.2-A. Biophysical parameters used: n = 7 bp (left), n = 10 bp (right)

ε = 2 kBT , µ = 4 kBT . It shows that for weak selection, the rates to evolve from k = 0 to k = 1 can be relatively faster. Also,

although adaptation from random sites slows down with increasing n, we see that the adaptation rate to evolve from k = 1 to

k = 0 can stay high.
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Polymerase
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The work presented in this chapter has been done in collaboration with Fabienne Jesse, Magdalena Steinrück,

Jonathan P. Bollback, Calin C. Guet, Tiago Paixão, Gašper Tkačik and Nicholas H. Barton. The experimental data

were produced and kindly shared by F. Jesse and M. Steinrück. The data are made available in the repository IST

DataRep (DOI: 10.15479/AT:ISTA:43).

3.1 Introduction

Regulation of gene expression is a heritable process contributing to overall phenotypic diversity (Wit-

tkopp, 2013). Yet, little is known about the principles governing the evolutionary genetics of gene reg-

ulation. Bacterial transcriptional regulatory mechanisms and elements have been relatively well under-

stood, particularly due to the studies on the lac operon in E.coli (Beckwith, 2011), and are amenable

to an evolutionary investigation. Bacterial regulation of gene expression is due partly to sequence spe-

cific binding of RNA polymerase (RNAP), which has been shown to be an important genetic locus of

adaptation (Blank et al., 2014). Better understanding of the physical and evolutionary characteristics

of bacterial RNAP binding would contribute to the functional and evolutionary understanding of gene

regulation.

Bacterial RNAP’s core complex, consisting of five subunits, is sufficient to elongate the DNA, and

to terminate transcription. However, it requires a sixth subunit, sigma factor, to form a holoenzyme that

binds to DNA in a sequence-specific manner. After forming a closed complex with DNA, the RNAP

holoenzyme isomerases double stranded DNA into single strands, forming an open complex to initiate

transcription. Having transcribed approximately ten nucleotides, the RNAP holoenzyme disassociates

the sigma factor, and the core RNAP continues elongation and transcription. Sigma70 is the principal

(housekeeping) sigma factor in E.coli, and has been studied well (for reviews, see Gross et al. (1998);

Paget and Helmann (2003); Murakami (2015)). The binding specificity of sigma70 dependent RNAP is

primarily due to the two well conserved domains contacting two distinct hexamers on the DNA (Paget

and Helmann, 2003). They are named, respectively, the −35 and −10 boxes referring to their bp posi-

tions (typically, from −36 to −31 and from −12 to −7) measured from transcription start site (+1). The

strongest binding (consensus) sequences of the −35 and −10 boxes are “TTGACA” and “TATAAT.” The

spacer length between two hexamers is known to be flexible in a short range of 15−21 bp, with the most

typical value of 17 bp, based on bioinformatic studies (Harley and Reynolds, 1987) and more elaborate

experiments (Mulligan et al., 1985; Dombroski et al., 1996). Although the spacer length can impose

an energetic cost on the RNAP binding, on which there is a limited direct study (Weindl et al., 2007),

the spacer region is considered to have no specificity to DNA, i.e. no binding difference for different
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nucleotides. The exceptions are the −15 and −14 contacts where in some promoters a specificity to

“TG” is observed, which now defines the extended −10 box. The general view is that binding deficiency

at the −35 box can be compensated by the extended −10 box (Paget and Helmann, 2003), but there

is also evidence exhibiting the complex interaction of the extended −10 and −35 boxes (Hook-Barnard

et al., 2006). Overall, it is difficult to model the sequence specific binding of sigma70 dependent RNAP

holoenzyme (hereafter simply referred to as RNAP) in every detail, and therefore simple mathematical

approaches are favoured.

Thermodynamic equilibrium models have been widely used to understand sequence-specific protein-

DNA interactions. With an additivity assumption, an energy matrix is generally used to represent the

specificity, where the free energy contribution of each nucleotide across the binding interface is reported.

Recently, Kinney et al. (2010) provided an energy matrix for RNAP, largely consistent with the known

consensus sequences and with earlier models. Their experiment was based on high-throughput muta-

genesis of the E.coli lac promoter sequence around the principal RNAP binding site (which is known to

have a spacer length of 18 bp), and on followed-up measurements of gene expression. The specificity

values were inferred by an information theoretic method combined with a thermodynamical model of

transcription. However, it is not only the binding energy but also the chemical potential of a regulatory

factor which determines the binding occupancy (probability) (Stormo and Zhao, 2010). Although Kinney

et al. (2010) successfully provided the binding energy matrix model, their approach was uninformative

about the chemical potential of the RNAP, which defines the threshold energy for their energy matrix.

The absolute numbers of core RNAP (2.600−13.000 per cell) and sigma70 (4.700−17.000 per cell) have

already been reported (Grigorova et al., 2006), but it is difficult to estimate the number of free RNAP

determining the chemical potential.

Sequence-specific binding of RNAP is expected to leave selective signatures in genomes by shifting

the sequence distribution from a neutral expectation. Hahn et al. (2003) have analysed the underrepre-

sentation of the number of consensus sequences of the −10 and −35 boxes in 41 different eubacteria.

They have inferred the average values for Ns across genomes per site as −0.09 and −0.15 for the −10

and −35 boxes, respectively, where N is the (effective) population size and s is the selection strength.

They have concluded that a weak negative selection acts to reduce the number of RNAP bindings at

off-targets, which is expected if spurious bindings are costly for the cell, e.g. by lowering the RNAP

concentrations at target sites, and by producing non-functional transcripts. These results need to be

inspected with different methods taking into account all sequence information, not only the consensus

one. Because the consensus sequences are known to be stably bound by RNAP in some cases, limit-

ing the successful formation of an open complex and transcription initiation (Knaus and Bujard, 1988).

Mustonen and Lässig (2005) have developed such a method to infer selection for binding energies. It

has been used for different transcription factors, mostly documenting positive selection (Mustonen and

Lässig, 2005; Mustonen et al., 2008; Haldane et al., 2014), but not for RNAP so far, plausibly due to the
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difficulties in modelling of the binding energy of RNAP. By using an energetic approach, Weindl et al.

(2007) have analysed the promoters of E.coli and showed a decrease of RNAP binding energies around

the transcription start sites, yet they did not attempt to analyse them from an evolutionary perspective.

Multiple RNAP binding sites exist in some promoters (Huerta and Collado-Vides, 2003; Mendoza-

Vargas et al., 2009). They lead to transcription of the same gene differing in the 5’ noncoding sides of the

mRNAs. This fact should be accounted for the understanding of the regulatory code, i.e. the mapping

from a promoter sequence to the gene expression. This will likely help unravel the coevolution of a pro-

moter region and the corresponding gene expression. So far studies have mostly focused on the relation

between a specific site and gene expression. Early studies showed that mutations towards consensus-

like sequences of a RNAP binding site increase gene expression (Hawley and McClure, 1983). Using

the energy matrix of Kinney et al. (2010), Brewster et al. (2012) have synthesised several lac promoter

constructs of varying RNAP binding strengths at the principal site, and have consistently shown a good

correlation with their predictions from a thermodynamic model of transcription. Understanding the di-

versity in homologous promoter regions and the corresponding gene expression in natural organisms

has proved to be a more difficult task. Recently, Razo-Mejia et al. (2014) have studied the variation in

lac promoter sequence and LacZ protein (i.e. β-galactosidase) among bacterial isolates, but they did

not find a convincing correlation with the predictions from a thermodynamic model of transcription. One

reason might be that their model did not take into account the multiple RNAP binding sites within lac

promoter, which is also widely ignored in textbook descriptions (Reznikoff, 1992). Understanding the

multiple and flexible locations of RNAP binding for the regulatory code is also important to understand

de novo promoter evolution, which is expected to primarily depend on RNAP binding evolution in an

initially non-functional promoter sequence. There are theoretical studies on de novo promoter evolution

(e.g. Tuğrul et al. (2015), i.e. Chapter 2 in this thesis). However, empirical knowledge about bacterial de

novo promoter evolution is currently limited, mostly confined to genome rearrangement of the functional

or semi-functional DNA with duplications and insertion elements (M. Steinrueck & C.C. Guet, personal

communication), or studied in different contexts, e.g. evolution of expression noise (Wolf et al., 2015).

In this study, we aim to understand the binding sequence evolution of RNAP by analysing the data

from an existing database and two collaborative projects in the light of the theoretical tools of biophysics

and population genetics. We try to understand i) what selection signatures are inferred for regulatory

and non-regulatory DNA sequences; ii) whether we can infer the chemical potential of RNAP from

evolved sequences; iii) whether the multiple and alternative RNAP binding sites can explain the ob-

served diversity of the lac promoter and LacZ protein activity among bacterial isolates; and iv) whether

biophysics and population genetics theory can bring a predictive understanding of de novo promoter

evolution in an experimental setup. We find that a moderate positive selection on regulatory regions,

and a weak negative selection on non-regulatory regions (i.e. off-targets) have likely been acting on the

genome of E.coli K12 throughout its evolutionary history. We inferred the chemical potential of RNAP
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corresponding to a binding energy of∼ 4±1 mismatches from the consensus sequences of the−35 and

−10 boxes of RNAP. Moreover, we show that an alternative RNAP site is the main locus of lac promoter

region causing the variation in the LacZ activity levels. Finally, we show that part of de novo evolution

can be understood and predicted, at least better than by a neutral model, by considering biophysics and

population genetics of RNAP binding.

3.2 Models & Methods

3.2.1 Thermodynamic modelling of RNA polymerase binding

We assume that a thermodynamical equilibrium model estimates the binding occupancy (probability) πi

at a particular position i in a sequence σ (Shea and Ackers, 1984; Berg and von Hippel, 1987; Bintu

et al., 2005a,b), i.e.

πi(σ) = πi(Ei, µ) =
(

1 + eβ(Ei−µ)
)−1

. (3.1)

Here, Ei and µ are the binding energy and the chemical potential, respectively, and β = (kBT )−1. The

chemical potential is related to the free concentration (Gerland et al., 2002; Weinert et al., 2014) and

defines the threshold energy determining which sequences are strongly/weakly bound (Fig. 3.1C). Its

value for RNAP is not known, therefore we consider it as the free parameter in our model, and check

our results over a wide parameter range.

We assume that the DNA binding sequence determines the binding energy with an additive contri-

bution model across the contact interface, i.e. an energy matrix model. Kinney et al. (2010) inferred the

matrices of RNAP and CRP with physical energy units, and kindly provided them for our use1. To allow a

more general binding energy model with a flexible spacer length l in a range of 15-21 bp (Mulligan et al.,

1985; Harley and Reynolds, 1987; Dombroski et al., 1996), we only use the -35 and -10 boxes which

carry the most of the sequence specificity (Fig. 3.1B). We denote these separate matrices as ξ(−10) and

ξ(−35) where the element ξσj ,j gives the energetic contribution of the nucleotide σj appearing at the j-th

position at the binding sequence. The average value of the non-consensus entries of the ξ(−10) and

ξ(−35) is ε = 2.83 kBT . In representation of our results, we show the binding energies in the scale of

ε, in order to get an insight into the approximate number of mismatches from the consensus sequence.

We will also consider a mismatch energy model (i.e. an energy matrix using a simple energetic value ε

for each non-consensus entry) to evaluate the importance of the homogenous energy matrix elements.

We extend the RNAP binding energy model to include an energetic cost of spacer length c(l). Weindl

et al. (2007) estimated a cost function for a spacer length range of 15 − 19 bp, together with energy

1We downloaded the matrices from https://github.com/jbkinney/09_sortseq on December 6, 2015 and use the

ones from the experiment labelled as ”full-wt”.
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Figure 3.1: Biophysics and evolution of bacterial RNA polymerase binding. A) We study the binding

sequence evolution of bacterial RNAP by using a biophysical model of sequence-specificity in a population genetics framework.

We consider that multiple RNAP binding sites in a promoter sequence determine gene expression. B) We utilise Kinney et al.

(2010)’s energy matrix for RNAP. The figure shows the energetic contribution of each nucleotide (A,C,G,T) at each contact

position. Black curve shows the mean of the non-consensus entries at each contact position. inset: we consider and extended

Weindl et al. (2007)’s inference for the energetic cost of the spacer length. C) We consider the thermodynamic model for the

binding probability which depends on the binding energy and the chemical potential. In this study, we aim D) to infer selection

on the binding energies of RNAP, and a realistic range of the chemical potential of RNAP from evolved sequences of the E.coli

K12; E) to study how lac promoter evolution gives rise to lacZ protein activity variation among 20 bacterial isolates; F) to study

de novo promoter evolution in E.coli K12 by focusing on a selection experiment for higher expression of an antibiotic resistance

gene, whose original promoter sequence has been replaced by a random promoter sequence.
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matrices of the −35 and −10 boxes with an arbitrary unit (au) from a microarray binding assay. Although

their energy matrix shows discrepancy with the known consensus sequence, their estimate of the spacer

energy cost, to our knowledge, is the only one in the literature, and therefore we utilise it here. We

gleaned their estimate of the spacer cost function from their Figure 1. In order to convert it to a physical

unit, we make use of the fact that both their cost function and their energy matrices take values in a range

of ∼ 0.57 au. By equating this to the physical energy range of Kinney et al. (2010)’s energy matrix, i.e. ∼

2.00 ε (Fig. 3.1B), we obtained c(l) = 1.51ε, 1.19ε, 0, 0.56ε, 2.00ε kBT, respectively for l = 15, 16, ..., 19

bp. We also extended it to include 20 and 21 bps by consulting the related studies (Mulligan et al., 1985;

Harley and Reynolds, 1987; Dombroski et al., 1996), and chose an ad hoc value of c(l) = 2.25ε for both

l = 20 and 21 (Fig. 3.1B). We checked and confirmed that our results do not change drastically with

slight perturbations on the values of c(l) we assigned. Although we do not expect a large deviation from

our conclusions, future studies should aim at obtaining more accurate values of the energetic cost of

the spacer length. Furthermore, we explicitly assume that the conformation of RNAP determines the

spacer length such that the sum of the binding energy at the -35 box and the cost energy of the spacer

length is minimised. Therefore, the RNAP binding energy Ei when the -10 box’s rightmost (3’) side

contacts at the (i− 6)th position in the sequence σ is expressed as

Ei(σ) =
6∑

j=1

ξ
(−10)
σi−12+j,j

+ MIN
{

c(l) +
6∑

j=1

ξ
(−35)
σi−18+j+l,j

}
l=15,...,21

(3.2)

Apart from checking our results with a simple mismatch model, we will also consider c(l) = 0 to under-

stand the importance of the spacer cost model.

3.2.2 Inferring selection

The distribution of different states of binding sequences under an equilibrium of the mutation-selection-

genetic drift within a monomorphic population follows a Boltzmann-like distribution (Wright, 1931; Berg

et al., 2004; Sella and Hirsh, 2005; Barton and Coe, 2009; Manhart et al., 2012). Mustonen and Lässig

(2005) showed that this is also valid if the states of the binding sequences are taken to be continuous

values of binding energy E as molecular phenotype i.e.

ψ(E) ∝ φ(E) e2Nf(E) (3.3)

where N is the population size, and f(E) is the fitness of the binding sequences with the binding energy

E. The φ(E) is the expected distribution under no selection, i.e. neutral evolution. This representation

not only allows for a continuous biophysical (instead of a discrete bioinformatic) description of binding

sequences, but also provides a method to infer selection (Mustonen and Lässig, 2005). Under the

observed distributions of binding energies ψ(E) and hypothesising a realistic φ(E), one can estimate

the product of the population size and fitness up to a constant, i.e.

2Nf(E) = log[ψ(E)/φ(E)]− constant (3.4)
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In order to eliminate the constant term, we focus on the differences between the inferred fitness. We

define the selection strength s as the difference between the maximum and minimum fitness ∆f(E), so

that we can report Ns values for the inference of selection.

In this study, we obtain the φ(E), i.e. neutral distribution, by randomising the corresponding se-

quences so that the A,C,G,T content is kept constant on average. This serves as the simplest model for

a neutral evolution, and future studies should check our results with more realistic models.

Note that this method to infer selection should be used with caution. We showed in our earlier

work (Tuğrul et al., 2015) (i.e. Chapter 2 in this thesis) that the convergence to the stationary-state of

binding sequences is typically slow, taking on the order of inverse point mutation rate. Here, we use this

method to infer selection along the E.coli K12’s evolutionary history over a larger time scales than the

inverse point mutation rate. A modification to the method is needed if the divergence times are much

less than the inverse point mutation rate, e.g. homologous loci among different strains or species, which

we do not deal in this study.

3.2.3 A simple mapping from promoter sequence to gene expression

In this study, we want to understand how multiple binding sites in a promoter region can jointly affect

gene expression. We construct a genotype-phenotype mapping from promoter sequence to gene ex-

pression by assuming that each RNAP binding in a promoter can transcribe a mRNA with equal weight,

and that the transcription rate at each binding position is proportional to the binding probability at this

position. Therefore, the dynamics of the amount of mRNA whose 5’ end corresponds (i+ 1)th position

in the promoter sequence can be expressed by a simple differential equation, i.e.,

d

dt
mi(σ) =

(
γπ πi(σ)− γdegmi(σ)

)
(3.5)

where γπ and γdeg represent the rate constants of binding and degradation. The steady state of these

dynamics dictate a direct proportionality between mi and πi. Furthermore, if mRNAs with different

length of the 5’ end do not change protein expression dynamics, the sum of the binding probabilities

across the promoter can be used as a proxy for the level of gene expression, i.e.

g(σ) =
∑
i

mi(σ) = γπ/γdeg
∑
i

πi(σ). (3.6)

We neglect the proportionality term (i.e. γπ
γdeg

= 1), and use this gene expression model to understand

the correlation between variation of promoter sequence and gene expression. We also check our results

when a weight for each binding site position is introduced, i.e.

g(σ) =
∑
i

αi πi(σ). (3.7)

For this study, we infer the positional weights αi from the observed distributions of the functional RNAP

binding sites (Huerta and Collado-Vides, 2003; Mendoza-Vargas et al., 2009). Most of the TSSs fall
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into a typical promoter length of 200 bps. The distribution of the distances between the TSSs and the

first codon (AUG) sites exhibits a scattered and long-tailed exponential-like distribution with the optimal

distance at 26 bp (see SI Fig. 3.12).

3.2.4 Probability of observing a particular point mutation under directional se-

lection for higher gene expression

We also interpret our gene expression model in a relevant evolutionary experiment for de novo evolution.

We consider a mutation-selection-drift population genetic model. In case of directional selection for

higher gene expression, which will be an appropriate selection scheme for our experimental evolution

set-up, the Malthusian fitness of a promoter sequence σ can be modelled as

f(σ) = s g(σ) (3.8)

where s is the selection strength.

Transversion and transition mutation rates differ which needs to be accounted for calculating sub-

stitution rates. We consider a recent report of the spontaneous point mutation rates in E.coli K12 by

Lee et al. (2012), i.e. A:T>C:G = 0.65; A:T>G:C = 0.80; A:T>T:A = 0.30; C:G>A:T = 0.51; C:G>G:C

= 0.30; C:G>T:A = 1.37 where the values are ×10−10 per generation, and we use the notations : and

> to refer the base pair and the direction of the mutation, respectively. Although mutations rates vary

depending on conditions and organisms, we assume that the relative ratios, and the low mutation rate

per population (see below) still hold in our experimental setup.

When the mutation rate per population is small and the selection is strong, one can realistically

model the evolution of populations as successive sweeps of genotypes through a typically monomor-

phic population (Desai and Fisher, 2007). In the selection experiment we consider, the population size

during the bottle-neck is expected to be in the range of N = 105 − 108 which suffices the low mutation

assumption if we consider the point mutation rate in E. coli as u ∼ 10−10 per generation (Lee et al.,

2012). We explicitly assume that typical time to sweep is shorter than the selection experiment, which

is confirmed by observations in the experiment. The evolutionary dynamics in the monomorphic pop-

ulation model can be treated as a Markovian jump process. The substitution rate from a regulatory

sequence σ to another regulatory sequence σ′ in a haploid population can be expressed as

Rσ′,σ = N Uσ′,σ Pfix(N, ∆fσ′,σ) (3.9)

where ∆fσ′,σ = f(σ′) − f(σ) is the fitness difference and Uσ′,σ is the mutation rate from σ to σ′. The

fixation probability Pfix of a mutation with fitness difference ∆f in a haploid population of N individuals

is

Pfix(N, ∆f) =
1− e−2∆f

1− e−2N∆f
≈ 2∆f

1− e−2N∆f
, (3.10)
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which is based on the diffusion approximation (Kimura, 1962). Note that N Pfix(N, ∆f) approximates

to 2N∆f when N∆f � 1 which is valid in our selection experiment.

In our modelling framework, we consider single point mutations in the evolution of the promoter

sequence. Using the above substitution rates for all possible point mutation rates, one can simply

express the probability of observing a particular point mutation as a function of the relative selection

strength Ns and the chemical potential µ, i.e.

Pσ′,σ(Ns, µ) =
Rσ′,σ∑
σ′′ Rσ′′,σ

. (3.11)

Note that the denominator takes into account all possible point mutations in the promoter sequence. Us-

ing this probability of observing a particular point mutation, one can set a statistical framework to predict

the outcome of any promoter evolution under directional selection. For example, one can calculate the

likelihood of a data set S of the observed single point mutations, i.e.

L(Ns, µ) =
∏
σ′∈S

Pσ′,σ(Ns, µ). (3.12)

This can be also used to infer the evolutionary and biophysical parameters.

3.3 Data

3.3.1 Dataset A: Whole genome and experimentally verified RNAP binding sites

of E.coli K12

First, we consider the existing sequence data of E.coli K12, in order to infer the selective signatures

and the chemical potential of RNAP. The whole genome of E.coli K12 (MG1655) has been already

sequenced (Blattner et al., 1997) and consists of 4.641.652 bps2. Therefore, there are around 9.3 mil-

lion potential binding sites in the forward and backward directions. The regulatory information for the

sigma70 factor dependent RNAP binding was obtained from the RegulonDB database3 (Salgado et al.,

2013). In our study, we consider the data of 788 transcription start sites (TSSs) that have been experi-

mentally verified, in order to avoid any artificial bias in bioinformatic inferences. The distance between

the TSS and the position of the −10 box can vary from 4 to 12 bp (the most common value is 7 bp). To

obtain the exact location of the RNAP binding sites, we search the sequences in this range and assume

that the sequence with the minimum (i.e. the strongest) binding energy corresponds to the experimen-

tally verified binding site. Confirming multiple binding sites in promoters (Huerta and Collado-Vides,

2The genome of E.coli K12 (MG1655 U00096 .3) was downloaded from Ecogene.org http://www.ecogene.org on Novem-

ber 27, 2015
3Downloaded from http://regulondb.ccg.unam.mx on March 5, 2015
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2003; Mendoza-Vargas et al., 2009), these 788 binding sites correspond to 735 different promoter re-

gions, which we arbitrarily define as the 200 bps upstream of the first codon (ATG) following each TSS.

We also arbitrarily define the non-regulatory regions as the 500 bps upstream and 200 bps downstream

from the first codon following the experimentally verified binding sites. Let us note that other TSSs that

are not known are likely placed in the non-regulatory regions in our definition, which can cause the

inferences of selection to be underestimated in our analysis.

In short, we explicitly consider four different ensembles of binding sequences in the E.coli genome: i)

788 experimentally verified binding sites, ii) all possible binding sequences in the 735 promoter regions,

which we define as the 200 bps upstream from the first codon sites following the experimentally verified

binding sites, iii) all possible binding sequences in the whole genome except the regulatory regions,

which we define as the 500 bps upstream and 200 bps downstream from the first codon sites following

the experimentally verified binding sites, iv) all possible binding sequences in the whole genome.

3.3.2 Dataset B: lac promoter and LacZ activity diversity in 20 bacterial isolates

Secondly, we consider the genetic diversity of lac promoters where RNAP binding acts to determine

gene expression, and the phenotypic diversity of LacZ activity among 20 natural bacterial isolates from

Escherichia genus. The data used here were curated or experimentally generated by Fabienne Jesse4

(to appear also in F. Jesse and J. P. Bollback). She kindly shared her data, which we made available in

a repository5.

Apart from using K12 for E.Coli K12 (MG1655), we use the existing nomenclature for the short

names as appeared in the references where the information regarding the strain, species, location of iso-

lation, and ecological origin of these organisms can also be found: M1, M2, M3, M6, M7 (Cravioto et al.,

1990), G8, A5, F10, G10, H3 (Ishii et al., 2006), TW10509, TW15838, TW09276, TW09231, TW11588,

TW14182,TW15844, TW09308 (Walk et al., 2009). Importantly, some of these species/strains have

diverged over millions of years (Walk et al., 2009; Luo et al., 2011), and differ in the environments of

their isolation suggesting the difference in the lactose availability as carbon source. Therefore, one

can expect that selection for lactose metabolism, or genetic drift in the absence of selection may have

caused genetic and phenotypic differences among these organisms, which we study here by focusing

on the lac promoter sequences and LacZ activity.

Lac operons of these organisms were isolated and inserted into a plasmid in E.coli K12 with a

deletion of its natural lac operon in the chromosome serving as a common genetic background. A Miller

assay method, as a quantitative measure of lactose metabolism, was performed for LacZ activity as a

proxy for LacZ gene expression (Dodd et al., 2001). 0 mM and 1.00 mM of the inducer IPTG were used,

4PhD student in Jon Bollback’s group at IST Austria
5in the repository IST DataRep, DOI: 10.15479/AT:ISTA:43



55

Figure 3.2: Genetic variation of lac promoters and phenotypic variation of LacZ protein activity

Left: Nucleotides are shown with a color code (A:yellow, C:green, G:red, T:blue) for E.coli K12. For other strains/species, we

only show the differentiating nucleotides. Rigth: The correlation between the lac promoter variation and lacZ activity variation,

assayed for 20 strains/species at 0 mM (black) and 1.00 mM (red) of the inducer IPTG levels. Dots show each LacZ activity assay

(243 and 229 data points for 0 mM and 1.00 mM, respectively); curves and shades represent mean and 2 SEM over essays.

where the latter is expected to fully suppress the lac repressor protein, and make the lac promoter a

functional regulatory element for RNAP binding. Fig. 3.2 shows the data of the promoter sequences

and LacZ activity which show variation among these 20 bacterial isolates. We will consider the average

LacZ activity level as a molecular phenotype, ranging from 400 − 2000 Miller units. Mutations in the

coding regions exist (not shown) and might constitute an additional source of variation which needs

to be investigated in further studies. Here, we focus on to investigate the sources of the LacZ activity

variation due to RNAP binding in lac promoter regions, i.e. the 122 bp between the coding regions of

the lac repressor protein and the LacZ protein.

3.3.3 Dataset C: Adaptive and random point mutations in an initially non-functional

promoter in E.coli K12

Lastly, we consider RNAP binding in an initially non-functional promoter region. We consider both

evolution of the promoter under a selection experiment, and synthesis of promoter constructs by mu-

tagenising the promoter. Magdalena Steinrück6 designed and performed all experiments, and kindly

shared the data. Evolutionary data are a small subset of her main study (to appear in M. Steinrück

and C. C. Guet); the synthetic data were produced for this study. They are made available in a data

repository7.

6PhD student in Calin Guet’s group at IST Austria
7in the repository IST DataRep, DOI: 10.15479/AT:ISTA:43
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A 194 bp sequence was randomly generated and followed by a 14 bp sequence including a strong

ribosomal binding site8. This complete 208 bp sequence is referred here as (p0), and serves as a non-

functional promoter region that drives a basal level of expression in the E. coli K12 chromosome. p0 is

followed by a tetracycline resistance gene (tetA). The p0-tetA construct is translationally fused to a YFP

marker gene for fluorescent measurements. Both adaptive and random point mutations on the promoter

sequence p0 were obtained, referred to as evolutionary and synthetic datasets, respectively.

For evolutionary data, several replicate populations of the construct were subjected to a selection for

approximately 100 generations with exponentially increasing antibiotic tetracycline. The antibiotic level

was adjusted such that it starts at a subinhibitory concentration and ends at levels above the minimum

inhibitory concentration so that the ancestral genotype diminishes in ratio and practically goes extinct,

and only the adapted mutations remain. This assumption of the evolutionary rescue by increasing

expression of the tetA-YFP was checked and confirmed. From surviving populations, 1 kb of the tetA-

upstream region was sequenced from single clones. Among other mutations (mobile element insertions,

deletions, amplifications), point mutations (single substitutions), both inside and further upstream of p0,

were repeatedly observed. For this study, we consider 14 independent replicates adapted with single

point mutations within p0, i.e. −24 T>A (5), −24 T>C (1), −31 C>T (2), −92 G>T (3), −149 T>A (2),

−183 C>T (1), where the first number shows the position of the mutation with respect to the translation

start site, and the numbers in the parentheses show the number of independent observations.

For synthetic data, 76 mutants with different single point mutations, which largely covers the point

mutational neighbourhood of the p0 between 20 bp and 80 bp tetA-upstream, were generated. The

mutant library was obtained by a site directed mutagenesis method which uses a pool of primers having

a single and random nucleotide change across the target region. As a proxy for transcription of the

tetA-YFP gene fusion, the YFP fluorescence of a photographical image of spotted mutant cultures was

used (Chait et al., 2010).

3.4 Results

3.4.1 Positive selection on regulatory sites and negative selection on non-regulatory

sites (off-targets)

We first studied the inference for the selection of RNAP binding in E.coli K12. In an earlier study, Hahn

et al. (2003) have shown the underrepresentation of the consensus sequences of RNAP in eubacteria,

and inferred a weak negative selection with Ns ∼ −0.1 to eliminate the consensus sequences (N is the

population size and s is the selection strength). Following this study, here we want to obtain the selective

8i.e. AGGAGGAATTCACC where the first 6 bp corresponds to the strong ribosomal binding site
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signatures more quantitatively on all binding sequences (not only on the consensus sequences) in both

regulatory and non-regulatory DNA regions using Dataset A (the Data section 3.3.1). As explained in

the Models & Methods, we represent the binding sequences with binding energies calculated by using

the models of the energy matrix (Kinney et al., 2010) and the energetic cost of the spacer length (Weindl

et al., 2007). In a similar energetic method, Weindl et al. (2007) have shown that the binding energies

steadily decrease around transcription start sites (TSSs), which we confirmed to be also valid around

translation start sites (see SI Fig. 3.12), suggesting that selection is acting on the regulatory regions.

To detect the selective signatures quantitatively, we follow the inference method proposed by Mustonen

and Lässig (2005) (see the Models & Methods).

We calculated the binding energy distributions of real and randomised sequences for different cat-

egories of binding regions of the E.coli K12 genome (Fig. 3.3A). Randomised sequences serve as the

model for neutral evolution in our study, and using Eq. (3.4), we computed the inferred selection (fitness)

profiles with the binding energy (Fig. 3.3B). Recall that we define the selection strength s as the max-

imum depth of the fitness landscape, i.e. the difference between the maximum and minimum fitness.

First of all, the experimentally verified binding sequences, as expected, exhibit a positive selection to-

wards sequences with lower binding energies (i.e. stronger binding) with a selection strength Ns ∼ 3.

This selection strength and the profile with binding energy are similar to the estimates for several tran-

scription factors (Mustonen and Lässig, 2005; Mustonen et al., 2008; Haldane et al., 2014). Secondly,

for the promoter regions (i.e. 200 bp upstream from the first codon sites), we observe a weak selection

towards the binding energies corresponding to the values around one mismatch from the consensus

sequence. Importantly, there is weak selection to eliminate the consensus sequence in the promoter

regions. Lastly, for both the whole genome and the non-regulatory regions (i.e. whole genome except

the regulatory regions), we observe a weak negative selection Ns ∼ −0.5 to eliminate the sequences

with the lower binding energies.

Removing the spacer length cost (i.e. c(l) = 0), as expected, slightly shifts and squeeze the binding

energy distributions (roughly (0.5− 1.0) ε) towards lower energy values (not shown). Nevertheless, this

did not change the characteristics of the inferred selection, which is also the case when a mismatch

assumption (i.e. all non-zero elements in the energy matrix is replaced with the average energy ε) is

used for binding energy calculations (not shown).

3.4.2 The chemical potential of RNA polymerase likely corresponds to an aver-

age energy of ∼ 4 mismatches from the consensus sequence

Above we inferred selection on the binding energy of RNAP, as a biophysically more relevant measure

of a binding sequence. However, it is not only the binding energy but also the chemical potential which

determines the binding probability of RNAP, and as consequence, gene expression (see Eq. (3.1) and
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Figure 3.3: Distribution of the binding energies, and the inference of selection for RNA poly-

merase binding in E.coli A: Binding energy distributions of evolved (black) and randomised (red) sequences are shown

for four different categories of the binding sequences in E.coli K12 (see the figure headings). The bin size of ε (i.e. the average

of the non-zero elements in the −35 and −10 boxes of the RNAP energy matrix) is used to estimate the approximate number of

mismatches from the consensus sequence. Red curves also include 2 SEM which is smaller than the marker size. The number of

binding sequences in each category is indicated in the right-below corner of the figure where the number of replica for generating

random sequences is given in the parentheses. B: Using Eq. 3.4, the selection is inferred. Black curves also include 2 SEM,

indicating that the deviations from 0 is significant.
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Figure 3.4: Inferred the Chemical Potential of RNA polymerase in E.coli. To calculate the difference

between the distributions of the binding probability for the evolved and random sequences of the experimentally verified RNAP

binding sites, we consider the Kullback-Leibler divergence DKL[Pevolved(π) ||Prandom(π)]. The probability distributions are

obtained by using different number of bins for the binding probability π. Different bin sizes consistently indicate µ ∼ 4 ε kBT as

maximising the KL divergence.

Fig. 3.1). Yet, the chemical potential µ, i.e. the energetic threshold which defines the strongly and

weakly binding sequences, have not been provided for RNAP (Kinney et al., 2010). Here, we estimate

this important biophysical parameter from the evolved sequences by considering the experimentally

verified RNAP binding sites in E.coli K12 using Dataset A (the Data section 3.3.1). For that, we mapped

the binding energies of the evolved and neutral (randomised) sequences onto the binding probability

values using Eq. (3.1), and searched for the parameter values of µ that best differentiate the evolved and

neutral distributions. Fig. 3.4 shows that µ ∼ 4 ε kBT maximises the Kullback-Leibler (KL) divergence of

these two distributions, and suggests that (4±1)ε kBT can be a realistic range of the chemical potential

of RNAP.

Consistent to the earlier statement, we observe that the optimal parameter of the chemical potential

maximising the KL divergence shifts slightly (µ ∼ 3.5 ε kBT ) when we remove the spacer length cost,

i.e. using c(l) = 0 (not shown). Surprisingly, adding also a mismatch assumption for binding energy

calculation brings back the optimality to µ ∼ 4 ε, although the smoothness of KL divergence scaling with

the parameter is lost (not shown).
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3.4.3 An alternative binding site in lac promoter is responsible for LacZ activity

variation

Multiple RNAP binding sites can be functional in a single promoter region. Genotype-phenotype map-

ping from promoter sequence to gene expression should include this largely ignored fact. In the Mod-

els & Methods, we constructed the simplest such model for gene expression which is the sum of the

RNAP binding probabilities across a promoter region (Eq. (3.6)). To test this model, we analyse the

Dataset B (the Data section 3.3.2) regarding the lac promoter sequence and the LacZ protein activ-

ity variation among 20 bacterial isolates (Fig. 3.2). We apply our gene expression model to the lac

promoter sequences across a wide range of the chemical potential parameter µ, and search for a cor-

relation with the average LacZ activity. Fig. 3.5 shows that the correlation is significantly high (Pearson

test: R2 > 0.5, p < 0.01; SpearmanRank test ρ > 0.55, p < 0.01) in the chemical potential range of

∼ (3 − 4.5)ε kBT, consistent with our earlier inference. These results suggests that at least 50% of the

variation in the LacZ activity can be explained by sequence-specific RNAP binding. The same figure

shows an example plot of the model prediction versus the LacZ activity levels for the optimal value of

∼ 4.3ε kBT (see also SI Fig. 3.13 for supplementary plots for different µ values). Our model is based

on a linear relation between RNAP occupancy on promoter and expression. Therefore, Pearson test,

a linear correlation test, can be considered more appropriate than Spearman test, a rank ordering test,

which misses the optimum in this case.

We further ask which RNAP binding positions influence the variation in our gene expression model.

The variance of binding probabilities at each promoter position across 20 bacterial isolates was cal-

culated for different values of µ (Fig. 3.6). The 39th bp upstream promoter position corresponding to

the principal (canonical) RNAP binding site does not show any binding difference among the isolates.

Surprisingly, we see that a single position, the 54th bp upstream promoter position, is responsible for

almost all binding variance. Consistently, this position corresponds to one of the three alternative RNAP

binding sites which have been experimentally verified (Xiong et al., 1991; Reznikoff, 1992).

We checked the effect of some of our modelling choices. First of all, we found that a null spacer

cost (i.e. c(l) = 0) reduces the correlation (the figure not shown; Pearson test: R2 < 0.5, p > 0.02;

SpearmanRank test ρ < 0.43, p > 0.05), and does not exhibit a clear optimal range of µ. This can be

expected since the multiple binding sites in the lac promoter are known to have different spacer lengths,

and a spacer cost energy is needed to assign the binding sites location. We observed a similar effect

of losing the optimality range of µ and reducing the correlation (figure not shown; Pearson test: R2 <

0.5, p > 0.024; SpearmanRank test ρ < 0.34, p > 0.1) when we use a mismatch assumption for binding

energy, suggesting the importance of the inhomogeneity of the elements in the RNAP energy matrix.

Furthermore, we checked the effect of the CRP which binds to DNA and activates the RNAP binding.
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Figure 3.5: Model prediction versus observed LacZ activity. Right: The chemical potential is the free

parameter in our gene expression model. We show how the Pearson and SpearmanRank correlation statistics scale with this

parameter (top: the correlation coefficients, bottom: the significance level). Left: An example plot of the model prediction versus

the observed lacZ activity for the optimal value of the chemical potential parameter.
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Figure 3.6: Variance of the RNAP binding probability at each promoter binding position Our gene

expression model is the sum of the binding probability across the lac promoter and shows good correlation with the LacZ protein

activity level variation. Therefore, the variance of the binding probability could point to the genetic source of the variation. The

figure shows that the most of the variance is due to the binding at the 54th upstream position, which is a known alternative binding

site that has been experimentally verified. The 39th bp upstream promoter position, which corresponds to the principal (canonical)

RNAP binding site, does not show any binding difference.

This cooperation can be captured in a modified thermodynamic model for RNAP binding probability, i.e.

πi(Ei, µ,Ecrp, µcrp,Ecoop) =
e−β(Ei−µ) + e−β(Ei+Ecrp−µ−µcrp−Ecoop)

1 + e−β(Ei−µ) + e−β(Ecrp−µcrp) + e−β(Ei+Ecrp−µ−µcrp−Ecoop)
, (3.13)

where we utilised Kinney et al. (2010)’s inferences of the CRP energy matrix9 (to calculate the CRP

binding energy Ecrp), the chemical potential of CRP10 µcrp and the cooperativity11 with RNAP Ecoop.

The results (not shown) do not exhibit a visible statistical difference in the correlations. Close inspection

shows that the genetic alterations in the lac promoters of these bacterial isolates do not significantly

affect the CRP binding affinities (i.e. e−β(Ecrp−µcrp)), and therefore do not influence the RNAP binding.

Furthermore, we also checked the effect of post-transcriptional regulatory mechanisms. First, we used

the Salis ribosomal binding site calculator12 (Salis et al., 2009; Salis, 2011) to estimate the translation

rate differences due to the variation in the promoter sequences. The results (not shown) do not yield a

correlation between the estimated translation rate and the observed LacZ activity levels (Pearson test:

9We downloaded the CRP matrix from https://github.com/jbkinney/09_sortseq on December 6, 2015 and use the

one from the experiment labelled as ”full-wt”. As described in Kinney et al. (2010), we added an energy shift of −11.18 kBT for

each binding energy.
10As given in Kinney et al. (2010), we use µcrp = −2.76 kBT
11As given in Kinney et al. (2010), we use Ecoop = −5.28 kBT . We use the interaction distance window as 6 − 12 bp and

consider the smallest binding energy
12https://salislab.net/
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R2 = 0.01, p = 1.0; SpearmanRank test ρ = 0.08, p = 0.7). Secondly, we implemented an ad hoc weight

for the contribution of each RNAP binding position to include the transcription or translation efficiency

(see the Models & Methods, Eq. (3.7)). However, it did not change the results (not shown), as expected

from the existence of a dominant RNAP binding at a single position determining the variation.

3.4.4 Can we understand and predict de novo promoter evolution?

Modelling multiple RNAP binding sites in a promoter can be also important to understand de novo pro-

moter evolution, i.e. emergence of a transcribing RNAP binding in an initially non-functional promoter.

In Models & Methods section, we developed a gene expression model (Eq. (3.6), the one used above),

and a statistical framework to predict the adaptive point mutations (Eq. (3.11)). Our framework is based

on a biophysical model of sequence-specific binding of RNAP with a free parameter for the chemical

potential µ, and on a population genetic model with a free parameter for the selection strength Ns. To

test this approach, we used Dataset C (the Data section 3.3.3) from an evolution experiment where a

higher expression of an antibiotic resistance gene with an initially non-functional (random) promoter is

selected for approximately 100 generations in independent replicates. 14 replicates resulted in single

adaptive point mutations, comprising the data set S13. We first calculated the likelihood of S accord-

ing to our model (Eq. (3.12)) in a wide parameter range of Ns and µ, and compared it with a neutral

model (Ns = 0) (Fig. 3.7). As expected, strong selection (i.e. Ns >> 1) values are needed to ex-

plain the observed data set. However, this is not sufficient, the chemical potential parameter range of

µ ∼ (3.0 − 4.5) ε kBT is also needed for high likelihood ratios (∼ 107). This µ range is consistent with

our earlier inferences above. The optimal parameter values are Ns = 66 and µ = 3.8 ε kBT , having

a likelihood ratio of ∼ 108.46, i.e. explaining the observed dataset almost one billion times better than

the neutral evolution model. This high likelihood ratio in the optimal range of the chemical potential pa-

rameter is due to the model prediction of gene expression increase for all the observed point mutations

(SI Fig. 3.14). Although the model predicts the observed set of adaptive point mutations better than the

neutral model, the Pearson chi-square test suggests that the observed data set is unlikely to be drawn

from the expected distribution produced by the model (Eq. (3.11)) at any parameter value (p < 0.01;

figure not shown). To understand the reasons, we separate the population genetic model, and continue

to evaluate the power of the biophysically motivated genotype-phenotype mapping model in predicting

the levels of gene expression.

In order to collect synthetic data for de novo promoter activity, 76 mutant promoters with single point

mutations were generated, and their YFP florescence were measured as a proxy for the level of gene

expression (Dataset C in the Data section 3.3.3)). We checked the correlation statistics of our gene

13S = { -24 T>A (5), -24 T>C (1), -31 C>T (2), -92 G>T (3), -149 T>A (2), -183 C>T (1) } , where the first number shows the

position of the mutation with respect to the translation start site, and the numbers in the parentheses show the number of such

mutations observed in the independent replicas.
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Figure 3.8: Comparison of our main model’s predictions and the YFP measurements. A) We show

how the Pearson, SpearmanRank and Fisher’s Exact test statistics scale with the chemical potential µ (top: the correlation

coefficients, bottom: the significance level (p-value)). B) We show an example plot of the model prediction versus the observed

YFP level for µ = 3.5 ε kBT . For convenience, the model and the observations are scaled so that the values of the promoter

sequence p0 are 1. Those mutations with clear deviations from p0’s are labeled above the data points.

expression model (Eq. (3.6) versus the measured YFPs over a wide range of the chemical potential

µ (Fig. 3.8). A weak but statistically significant correlation is observed in the parameter range of µ ∼

(3−4) ε kBT (Pearson Correlation test: R2 ∼ 0.2−0.3, p < 0.05, SpearmanRank test: ρ ∼ 0.3, p < 0.01,

Fisher’s Exact Test: p < 0.01). The weak correlation suggests a limited predictive power of the model,

but note that the best parameter range is consistent with the earlier results in this study.

Our gene expression model is based on the transcriptional effect of the sequence-specific bind-

ing of RNAP. Other regulatory mechanisms are also influenced by promoter mutations, such as post-

transcriptional regulation by ribosomal binding. This can be a reason why the correlation between the

model predictions and the observed YFP levels is weak. In order to address this, we use the Salis

ribosomal binding site calculator14 to estimate the translation rates of the promoter constructs (Salis

et al., 2009; Salis, 2011). Fig. 3.9 shows the comparison of these estimated translation rates with the

observed YFP levels. Although the correlation is still weak (and even not significant in a SpearmanRank

test or a Fisher’s Exact test, i.e. p > 0.05), we observe that some mutations which cannot be explained

14https://salislab.net/



66

in our main model (e.g. -31C>T) do have high estimates of translation rate. This suggests to us that a

better predictive power can be obtained by combining the transcriptional and translational effects. For

that, we expand our model by considering a simple differential equation for the cellular dynamics of the

protein expression level r as a function of the regulatory sequence σ, i.e.

d

dt
r(σ) =

(
γp τ(σ)g(σ)− γpdeg r(σ)

)
. (3.14)

where τ(σ) is the sequence dependent translation rate estimated by the Salis’s ribosomal binding site

calculator (Salis et al., 2009; Salis, 2011), and γp and γpdeg are the rate constants. Recall that g is

the mRNA expression level whose steady state expressed in Eq. (3.6). In steady-state, the protein

expression level can be expressed as

r(σ) ∝
(
τ(σ) g(σ)

)
(3.15)

In other words, the multiplication of the transcription rate estimated by our main model with the trans-

lation rate estimated by the Salis ribosomal binding site calculator becomes the new model prediction

for the protein expression level. Fig. 3.10 shows how the correlation statistics scales with the chemical

potential parameter µ, and gives an example plot for the model versus observation. Importantly, the

Pearson test (R2 ∼ 0.4 − 0.6, p ∼ 10−3 − 10−7) indicates a significant improvement for a linear corre-

lation in a similar parameter range (i.e. µ ∼ (2 − 4) ε kBT ). However, the SpearmanRank and Fisher’s

Exact test indicate an opposite trend (ρ ∼ 0.25, p > 0.01 and p > 0.05, respectively).

Lastly, we checked some of our modelling assumptions to test for a better correlation (results not

shown). We did not observe any improvement by using a null spacer cost (i.e. c(l) = 0) or a mismatch

assumption (i.e. all non-zero elements in the energy matrix is replaced with the average energy ε).

Positional weights of the RNAP binding in promoter region (see the Models & Methods, Eq. (3.7)) did

not improve the model’s prediction, either. We also checked whether the binding of the −10 box alone

can improve our predictive power as an alternative mechanism, but did not observe any significant

signature.

3.5 Discussion

In this study, we aimed to understand the evolutionary and biophysical characteristics of bacterial RNAP

binding by analysing empirical data. We constructed a biophysical and population genetic framework

to model a mapping from sequence to binding, gene expression, and fitness. The key assumptions are

that a thermodynamic equilibrium determines binding probability; additive energetic contributions at the

binding interface (Kinney et al., 2010) and the spacer length of RNAP (Weindl et al., 2007) determine

the binding energy of RNAP; gene expression is the sum of RNAP binding probabilities across each

promoter binding position; and fitness is proportional to the gene expression.
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Figure 3.9: Comparison of Salis’s model predictions for translation rate and the YFP measure-

ments. We use the Salis ribosomal binding site calculator (Salis et al., 2009; Salis, 2011) to estimate the translation rates

of the promoter constructs which can be used as a proxy to the protein expression levels. For convenience, the model and the

observations are scaled so that the values of the promoter sequence p0 are 1. Those mutations with clear deviations from p0’s

are labeled above the data points.
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Figure 3.10: Comparison of the combined model (our main model and Salis’s model) predictions

and the YFP measurements. A) We show how he Pearson, SpearmanRank and Fisher’s Exact test statistics scale with

the chemical potential µ (top: the correlation coefficients, bottom: the significance level (p-value) B) We show an example plot

of the model prediction versus the observed YFP level for µ = 3.5 ε kBT . For convenience, the model and the observations are

scaled so that the values of the promoter sequence p0 are 1. Those mutations with clear deviations from p0’s are labeled above

the data points.
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We determined the selective signatures of RNAP binding in E.coli K12. We used the inference

method proposed by Mustonen and Lässig (2005) which is based on the comparison of binding energy

distributions in evolved and neutral sequences. We assumed that randomised sequences (keeping

the same nucleotide A, C, G, T content) represent neutral evolution. We estimated Ns values where

we define the selection strength s as the maximum depth of the fitness landscape. We inferred a

positive selection towards stronger binding (Ns ∼ +3) for the experimentally verified RNAP binding

sites (curated in RegulonDB database (Salgado et al., 2013)). For the whole genome, we inferred a

weak negative selection to eliminate strong binding sites (Ns ∼ −0.5). This is most likely a result of the

long time evolution reducing off-target bindings in the genome which can be costly to the organisms.

Note that our inference is slightly larger than what Hahn et al. (2003) stated for eubacteria (Ns ∼ −0.1).

This might be due to their inference method which is based on counting the consensus sequences,

which might be misleading since extreme levels of binding strength are expected to inhibit transcription

initiation in some cases (Knaus and Bujard, 1988). This fact can also explain why we observe a small

fitness reduction from a linear fitness scaling at the lowest energy of the regulatory sequences. Although

our results are not entirely surprising, the inferred strengths of Ns are interestingly moderate, especially

for the regulatory sites. Such a weak selection in bacteria have been also reported in different contexts,

e.g. the selection for codon bias (Bulmer, 1991; Brandis and Hughes, 2016). Our analyses are based on

the assumptions of an averaging over many sites (Ns might change for different RNAP binding sites);

an averaging over long time period (selection might have been strong but changing sign); a simple

sequence randomising model of neutral evolution, and future studies should address these concerns.

We inferred the effective chemical potential of the RNAP, an important but unknown physical param-

eter, by maximising the divergence of the evolved and neutral distributions of the binding probability for

experimentally verified sites. We determined that a realistic parameter range corresponds to an energy

of ∼ 4± 1 mismatches from the consensus sequence. One caveat in our analysis is that the existence

of activator and repressor transcription factors would change the thermodynamics and distributions of

the binding probability of RNAP. Therefore, our inference method should only be seen as a crude es-

timation of the (effective) chemical potential of the RNAP. However, it is still interesting that an actual

physical parameter can be inferred from evolved sequences, which is not a usual approach in biology

(e.g. Morcos et al. (2011)). One can expect that, with ever increasing number of genome sequencing

projects, population genetics and comparative genomics studies will be more in use of inferring bio-

physical parameters, especially with small effects which are difficult to measure in the lab in short time

scales. Our inference of the chemical potential and selection should be updated in future since new

developments in technology (e.g. Vvedenskaya et al. (2015)) will likely document frequent transcription

events in precise genome position.

We tried to mechanistically understand the relation between the observed variation of LacZ protein

activity and the lac promoters among 20 bacterial isolates. Mechanisms of the lac operon driving the
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regulatory function can be very complex with different factors, e.g. DNA looping (Kuhlman et al., 2007).

Here we used a simple approach taking into account multiple RNAP binding sites in a promoter, which

are widely ignored even in textbook explanations (Reznikoff, 1992). We constructed a biophysically mo-

tivated mapping from promoter sequence to gene expression, i.e. the sum of RNAP binding probabilities

across the lac promoter. It is simple but still epistatic since the binding probabilities are calculated with

a (non-linear) thermodynamical model using the chemical potential and the binding energy. We showed

that the model predictions correlate well with the observed protein activity at a range of RNAP chemical

potential consistent with our earlier inference in this study. We identified that a single RNAP binding po-

sition is responsible for almost all the variation in the binding probabilities. Surprisingly, this position is

one of the known and experimentally verified alternative RNAP binding sites (Xiong et al., 1991). Razo-

Mejia et al. (2014) aimed at a similar project but they only considered the principal RNAP binding in their

modelling, which resulted in poor correlations. We propose that they can recover the correlations by

repeating their analysis with including the alternative RNAP sites. Indeed, they even realised that mu-

tations on the principal binding region of CRP affect the gene expression but the concentration of CRP

does not. These mutations most likely correspond to the alternative RNAP binding site overlapping with

the CRP binding site. Our findings suggest that the lac promoter evolution influencing the regulation of

the LacZ expression in the wild have been carried out by tuning the strength of this alternative RNAP

binding site, instead of the principal (canonical) site. The reason for such evolutionary mode of action

is a topic of ongoing research. But it is tempting to speculate that such “shadow” or secondary sites

are more prone to evolve since they might have the capacity to tune gene regulation in small amounts

rather than big effects caused by the principal sites.

Our quantitative modelling needs to be further tested. One idea is to check the lacZ activity when a

SNP in an isolate is genetically engineered to the E.coli K12 variant (see the predictions in Fig. 3.11).

We also plan to design the constructs where only the lac promoter regions show variation, in order to

test our modelling approach more directly.

In this study, we also aimed at a predictive and quantitative understanding of de novo promoter

evolution. We combined our simple genotype-phenotype mapping with a population genetic model to lay

out the probability of observing all possible single point mutations. We used this framework to interpret

the data from an evolution experiment where an antibiotic gene preceded by an initially random (non-

functional) promoter region is selected for higher gene expression. We showed that our model explains

the evolutionary data many orders of magnitude better than a neutral evolution model in a range of the

chemical potential of RNAP that is consistent with our earlier inference. This suggests that our modelling

assumptions based on multiple RNAP binding capture some parts of the actual mechanisms for de novo

promoter evolution. However, the model does not explain all characteristics of the distribution of these

observed evolutionary data (e.g. why we see repetitions of certain mutations). For a better testing our

gene expression model, we created random single point mutations on the same initial promoter, and
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Figure 3.11: Further predictions for the fold change of the lacZ activity levels under directed

mutations. Our modelling approach allows us to estimate the effect of genetic engineering in the lac promoters for the lacZ

activity level. We show here the predicted fold-change for further planned directed point mutation experiments.

measured the effect on gene expression. The model possesses some correlation with the observed

gene expression in the consistent parameter range, but currently it cannot be taken as a very convincing

mechanistic explanation for a mapping from non-functional promoter to gene expression. In future,

the sample sizes can be increased for a better evaluation (we had 14 evolutionary data points; 76

synthetic data points for 1 random promoter construct), One concern about our modelling is that we

use an energy matrix of RNAP which have been inferred from the mutational effects around a functional

promoter (Kinney et al., 2010). Future studies should aim to describe the sequence-specificity of RNAP

far away from the consensus sequence. It is also likely that our gene expression model is too simplistic

and should take into account other regulatory mechanisms. We obtained some preliminary results by

combining our gene expression model with a model to estimate translation rates (Salis et al., 2009;

Salis, 2011), indicating a statistically significant improvement, but further work should be followed for

this and other regulatory factors.
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Figure 3.12: Supplementary Information: The binding energy profiles, and the positions of the

experimentally verified transcription start sites for the Sigma70 dependent RNA polymerase in

E.coli. 735 regulatory regions which includes the reported experimentally verified of transcription start sites (TSSs) in the

RegulonDB database (Salgado et al., 2013) are aligned with respect to the first codon (AUG) site. The binding energies are

assayed by using a sliding window approach (see the Models & Methods). We show the average energy (black curve) and 2

SEM (gray shading) profiles in comparison with the average binding energy expectation for randomised sequence (dashed red

line). Inset: The frequency distribution of the distance between the experimentally verified TSSs and the first codon (AUG) site is

shown in black dots. It exhibits a scattered and long-tailed exponential-like distribution with the optimal distance as 26 bp. Most

of the TSSs fall into a typical promoter length of 200 bps, but there are also larger distances with the extremest as 353 bp. An

exponential fit (∝ e−0.03 |x−26|) is shown in red. The blue circle shows the binning with 10 bp.
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Figure 3.13: Supplementary Information: the model prediction versus the observed LacZ activity.

As a supplementary to Fig. 3.3, we show the model prediction versus the observed lacZ activity for different chemical potential

parameters.
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4

Conclusions
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Evolution of gene regulation is important for phenotypic differences between species, populations

and individuals. Sequence-specific binding of regulatory proteins is a key regulatory mechanism deter-

mining transcription of gene expression and hence heritable phenotypic variation. In this thesis, I aimed

at a better understanding of evolution of the transcriptional regulatory sequences. I used a biophysical

(i.e. thermodynamic) model to map from regulatory binding sequence to gene expression and fitness.

This was combined with a population genetic (i.e. mutation, selection, and genetic drift) model to com-

prehend the evolutionary characteristics of the regulatory binding sequence. I obtained a number of

conclusions which are summarised below, followed by the anticipated directions of a further research.

The first part of the thesis was devoted to the theoretical understanding of the evolutionary dynam-

ics of transcriptional regulatory sequences. I estimated the rates of gain and loss of regulatory binding

sequences in finite populations under both point and insertion/deletion mutations. If selection is not

very strong, these rates are typically slow for a single regulatory binding site in an isolated DNA region.

Clearly, there are also biophysical constraints on these rates. They decrease with increasing speci-

ficity of protein-DNA interactions, or with increasing binding length, making the evolution of sites longer

than ∼ 10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the

stationary distribution of binding sequences very slowly. Therefore, the equilibrium assumption should

be used in theory and applications with caution. We identified some factors that can facilitate gain of

regulatory binding sites and reconcile theoretical calculations with timescales inferred from comparative

genomics. These are the availability of longer regulatory sequences in which multiple binding sites can

evolve simultaneously, the presence of “pre-sites” which can be caused by partially decayed ancient

(old) sites in the initial sequence, and biophysical cooperativity between transcription factors.

The second part of the thesis is reserved for application to understand the evolutionary and biophys-

ical characteristics of sequence-specific binding of bacterial RNA polymerase (RNAP) from empirical

data. First, we inferred selection acting on the binding sequences of RNAP by analysing the genome of

E.coli K12 and using population genetic theory. As expected, there is an intermediate level of positive

selection towards the lower binding energies at the experimentally verified transcription start sites. The

selective signatures differ in the non-regulatory parts, suggesting a weak negative selection to remove

strong binding sequences which is likely costly for the cell by reducing the RNAP concentration. We

also inferred that the chemical potential of RNAP from the evolved sequences, and it corresponds to an

energy value of∼ 4±1 mismatches from the consensus sequence. Furthermore, we tried to understand

the relation of the observed variations in the lac promoter sequence and in the LacZ activity among 20

bacterial isolates by constructing a simple but biophysically motivated gene expression model includ-

ing multiple RNAP bindings in promoter regions. Our model correlates well with the observed gene

expression in a parameter range of the chemical potential of RNAP which is consistent with our infer-

ence. This mechanistic model indicates that the variation in protein activity is mediated by an alternative

(non-principal) but experimentally verified RNAP binding in the lac promoters. Lastly, we laid out the
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statistical framework for a predictive and quantitative approach to de novo promoter evolution in E.coli

K12 in an experimental setup where an initially random and non-functional promoter preceding to an

antibiotic resistance gene is selected for higher gene expression. We showed that our model predicts

the adapted point mutations many orders of magnitudes better than a neutral model in a parameter

range consistent with our inference of the chemical potential and our expectation of a strong selection

applied in the experiment. However, the full distribution of the observed mutations does not match our

expectation from the model. This is partially also the case in our more direct experiment with random

mutagenesis of the promoter and measurement of the gene expression, although a weak correlation

still exists at the consistent range of the chemical potential. We conclude that our modelling has lim-

ited capacity to understand de novo evolution of a promoter from evolution of RNAP binding. This can

be due partly to the energy matrix of RNAP not being a good model for sequences far away from the

consensus sequence. Certainly, further improvements of the mapping from promoter sequence to gene

expression level is necessary.

Future studies can directly follow from the content of this thesis, especially as presented in the first

part. First of all, existing data from comparative genomic studies on TF binding sequences in enhancers

and promoters can be reanalysed to check whether an enrichment of sequence classes near and at a

pre-site is observed, as expected from our theoretical calculations with ancient site hypothesis or from

other considerations such as mobile elements carrying near functional sites. Furthermore, the modelling

framework in this thesis can be extended to investigate coevolution of binding length, binding specificity

and promoter/enhancer sequence, in order to see whether a coevolution of protein and DNA sequence

can accelerate the evolutionary rates. Such an extended modelling framework can also help understand

evolvability principles of regulatory proteins such as the observed trade-off between binding length and

binding specificity; and more profoundly, why we see different strategies of regulatory architecture and

mechanisms in eukaryotes and prokaryotes.

A number of issues were not addressed in this thesis, which can be considered in the future. First of

all, the modelling throughout this thesis was limited to directional selection towards higher or lower gene

expression to simplify the mathematics and to focus on the evolution from non-functional to functional

binding sequences (and vice versa). However, gene expression under stabilising selection would also

be an interesting scenario from a theoretical perspective, but certainly also a realistic case to model

enhancers and promoters of developmental genes. One can think of calculating the turn-over rates in

evolution from a functional sequence to another functional sequence with population genetic consid-

erations of crossing fitness valleys. The results should be compared with Chapter 2 to see whether

the evolutionary rates are accelerated. Such a mathematical treatment can be applied also to obtain

the expected rewiring rates in regulatory interactions defined by binding sequences, as a first step to

understand the evolutionary dynamics of gene regulatory networks. Overall, it will be necessary in

future research to combine the transcriptional models and analyses of this thesis with other regula-
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tory mechanisms, such as post-transcriptional regulation or epigenetic control, in order to improve our

understanding of the evolution of gene regulation.
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Cepeda-Humerez, S. A., Rieckh, G., Tkačik, G., Apr. 2015. Stochastic proofreading mechanism allevi-

ates crosstalk in transcriptional regulation. arXiv:1504.05716 [q-bio]ArXiv: 1504.05716.

Chait, R., Shrestha, S., Shah, A. K., Michel, J.-B., Kishony, R., Dec. 2010. A Differential Drug Screen

for Compounds That Select Against Antibiotic Resistance. PLOS ONE 5 (12), e15179.

Chan, Y. F., Marks, M. E., Jones, F. C., Villarreal, G., Shapiro, M. D., Brady, S. D., Southwick, A. M.,

Absher, D. M., Grimwood, J., Schmutz, J., Myers, R. M., Petrov, D., Jonsson, B., Schluter, D., Bell,

M. A., Kingsley, D. M., Jan. 2010. Adaptive Evolution of Pelvic Reduction in Sticklebacks by Recurrent

Deletion of a Pitx1 Enhancer. Science 327 (5963), 302–305.

Charlesworth, B., 2010. Elements of Evolutionary Genetics. Roberts and Company Publishers.

Chen, J.-Q., Wu, Y., Yang, H., Bergelson, J., Kreitman, M., Tian, D., Jul. 2009. Variation in the Ratio

of Nucleotide Substitution and Indel Rates across Genomes in Mammals and Bacteria. Molecular

Biology and Evolution 26 (7), 1523–1531.



81

Contente, A., Dittmer, A., Koch, M. C., Roth, J., Dobbelstein, M., Mar. 2002. A polymorphic microsatellite

that mediates induction of PIG3 by p53. Nature Genetics 30 (3), 315–320.

Cravioto, A., Reyes, R. E., Trujillo, F., Uribe, F., Navarro, A., Roca, J. M. D. L., Hernandez, J. M., Perez,

G., Vazquez, V., May 1990. Risk of Diarrhea During the First Year of Life Associated with Initial and

Subsequent Colonization by Specific Enteropathogens. American Journal of Epidemiology 131 (5),

886–904.

Crow, J. F., Kimura, M., Jan. 2009. An Introduction to Population Genetics Theory. Blackburn Press.

Darwin, C., 1859. On the Origin of Species. John Murray.

Desai, M. M., Fisher, D. S., Jul. 2007. Beneficial Mutation-Selection Balance and the Effect of Linkage

on Positive Selection. Genetics 176 (3), 1759–1798.

Dodd, I. B., Perkins, A. J., Tsemitsidis, D., Egan, J. B., Nov. 2001. Octamerization of λ CI repressor is

needed for effective repression of P RM and efficient switching from lysogeny. Genes & Development

15 (22), 3013–3022.

Dombroski, A. J., Johnson, B. D., Lonetto, M., Gross, C. A., Aug. 1996. The sigma subunit of Escherichia

coli RNA polymerase senses promoter spacing. Proceedings of the National Academy of Sciences

93 (17), 8858–8862.

Doniger, S. W., Fay, J. C., May 2007. Frequent Gain and Loss of Functional Transcription Factor Binding

Sites. PLoS Comput Biol 3 (5), e99.

Dowell, R. D., Nov. 2010. Transcription factor binding variation in the evolution of gene regulation. Trends

in Genetics 26 (11), 468–475.

Duque, T., Samee, M. A. H., Kazemian, M., Pham, H. N., Brodsky, M. H., Sinha, S., Oct. 2013. Simu-

lations of Enhancer Evolution Provide Mechanistic Insights into Gene Regulation. Molecular Biology

and Evolution 31 (1), 184–200.

Duque, T., Sinha, S., Jun. 2015. What Does It Take to Evolve an Enhancer? A Simulation-Based Study

of Factors Influencing the Emergence of Combinatorial Regulation. Genome Biology and Evolution

7 (6), 1415–1431.

Ellison, C. E., Bachtrog, D., Nov. 2013. Dosage Compensation via Transposable Element Mediated

Rewiring of a Regulatory Network. Science 342 (6160), 846–850.

Ewens, W. J., Oct. 2012. Mathematical Population Genetics 1: Theoretical Introduction. Springer Sci-

ence & Business Media.



82

Fay, J. C., Wittkopp, P. J., 2007. Evaluating the role of natural selection in the evolution of gene regula-

tion. Heredity 100, 191–199.

Feschotte, C. e., May 2008. Transposable elements and the evolution of regulatory networks. Nature

Reviews Genetics 9 (5), 397–405.

Fields, D. S., He, Y.-y., Al-Uzri, A. Y., Stormo, G. D., Aug. 1997. Quantitative specificity of the Mnt

repressor 1. Journal of Molecular Biology 271 (2), 178–194.

Gemayel, R., Vinces, M. D., Legendre, M., Verstrepen, K. J., 2010. Variable Tandem Repeats Accelerate

Evolution of Coding and Regulatory Sequences. Annual Review of Genetics 44 (1), 445–477.

Gerland, U., Hwa, T., Oct. 2002. On the selection and evolution of regulatory DNA motifs. Journal of

Molecular Evolution 55 (4), 386–400.

Gerland, U., Moroz, J. D., Hwa, T., Sep. 2002. Physical constraints and functional characteristics of

transcription factor-DNA interaction. Proceedings of the National Academy of Sciences of the United

States of America 99 (19), 12015–12020.

Gillespie, J. H., Dec. 2010. Population Genetics: A Concise Guide. JHU Press.

Giorgetti, L., Siggers, T., Tiana, G., Caprara, G., Notarbartolo, S., Corona, T., Pasparakis, M., Milani, P.,

Bulyk, M. L., Natoli, G., Feb. 2010. Noncooperative Interactions between Transcription Factors and

Clustered DNA Binding Sites Enable Graded Transcriptional Responses to Environmental Inputs.

Molecular Cell 37 (3), 418–428.

Grigorova, I. L., Phleger, N. J., Mutalik, V. K., Gross, C. A., Apr. 2006. Insights into transcriptional regu-

lation and σ competition from an equilibrium model of RNA polymerase binding to DNA. Proceedings

of the National Academy of Sciences 103 (14), 5332–5337.

Gross, C. A., Chan, C., Dombroski, A., Gruber, T., Sharp, M., Tupy, J., Young, B., Jan. 1998. The

Functional and Regulatory Roles of Sigma Factors in Transcription. Cold Spring Harbor Symposia on

Quantitative Biology 63, 141–156.

Hahn, M. W., Stajich, J. E., Wray, G. A., Jun. 2003. The Effects of Selection Against Spurious Transcrip-

tion Factor Binding Sites. Molecular Biology and Evolution 20 (6), 901–906.

Haldane, A., Manhart, M., Morozov, A. V., Jul. 2014. Biophysical Fitness Landscapes for Transcription

Factor Binding Sites. PLoS Comput Biol 10 (7), e1003683.

Hammar, P., Walldén, M., Fange, D., Persson, F., Baltekin, O., Ullman, G., Leroy, P., Elf, J., Apr. 2014.

Direct measurement of transcription factor dissociation excludes a simple operator occupancy model

for gene regulation. Nature Genetics 46 (4), 405–408.



83

Harley, C. B., Reynolds, R. P., Mar. 1987. Analysis of E.Coli Pormoter sequences. Nucleic Acids Re-

search 15 (5), 2343–2361.

Hawley, D. K., McClure, W. R., Apr. 1983. Compilation and analysis of Escherichia coli promoter DNA

sequences. Nucleic Acids Research 11 (8), 2237–2255.

He, B. Z., Holloway, A. K., Maerkl, S. J., Kreitman, M., Apr. 2011. Does Positive Selection Drive Tran-

scription Factor Binding Site Turnover? A Test with Drosophila Cis-Regulatory Modules. PLoS Genet

7 (4), e1002053.

He, X., Duque, T. S., Sinha, S., Mar. 2012. Evolutionary Origins of Transcription Factor Binding Site

Clusters. Molecular Biology and Evolution 29 (3), 1059–1070.

He, X., Samee, A. H., Blatti, C., Sinha, S., 2010. Thermodynamics-Based Models of Transcriptional

Regulation by Enhancers: The Roles of Synergistic Activation, Cooperative Binding and Short-Range

Repression. PLOS Computational Biology.

Hermsen, R., Tans, S., ten Wolde, P. R., Dec. 2006. Transcriptional Regulation by Competing Transcrip-

tion Factor Modules. PLoS Comput Biol 2 (12), e164.

Hermsen, R., Ursem, B., ten Wolde, P. R., Jun. 2010. Combinatorial Gene Regulation Using Auto-

Regulation. PLoS Comput Biol 6 (6), e1000813.

Hoekstra, H. E., Coyne, J. A., May 2007. The locus of evolution: evo devo and the genetics of adaptation.

Evolution; International Journal of Organic Evolution 61 (5), 995–1016.

Hook-Barnard, I., Johnson, X. B., Hinton, D. M., Dec. 2006. Escherichia coli RNA Polymerase Recog-

nition of a sigma70-Dependent Promoter Requiring a −35 DNA Element and an Extended −10 TGn

Motif. Journal of Bacteriology 188 (24), 8352–8359.

Huerta, A. M., Collado-Vides, J., Oct. 2003. Sigma70 Promoters in Escherichia coli: Specific Transcrip-

tion in Dense Regions of Overlapping Promoter-like Signals. Journal of Molecular Biology 333 (2),

261–278.

Ishii, S., Ksoll, W. B., Hicks, R. E., Sadowsky, M. J., Jan. 2006. Presence and Growth of Naturalized

Escherichia coli in Temperate Soils from Lake Superior Watersheds. Applied and Environmental Mi-

crobiology 72 (1), 612–621.

Kasowski, M., Grubert, F., Heffelfinger, C., Hariharan, M., Asabere, A., Waszak, S. M., Habegger, L.,

Rozowsky, J., Shi, M., Urban, A. E., Hong, M.-Y., Karczewski, K. J., Huber, W., Weissman, S. M.,

Gerstein, M. B., Korbel, J. O., Snyder, M., Apr. 2010. Variation in Transcription Factor Binding Among

Humans. Science 328 (5975), 232–235.



84

Keightley, P. D., Johnson, T., Mar. 2004. MCALIGN: Stochastic Alignment of Noncoding DNA Sequences

Based on an Evolutionary Model of Sequence Evolution. Genome Research 14 (3), 442–450.

Kim, D., Hong, J. S.-J., Qiu, Y., Nagarajan, H., Seo, J.-H., Cho, B.-K., Tsai, S.-F., Palsson, B., Aug. 2012.

Comparative Analysis of Regulatory Elements between Escherichia coli and Klebsiella pneumoniae

by Genome-Wide Transcription Start Site Profiling. PLoS Genet 8 (8), e1002867.

Kimura, M., Jun. 1962. On the Probability of Fixation of Mutant Genes in a Population. Genetics 47 (6),

713–719.

Kimura, M., Dec. 1964. Diffusion Models in Population Genetics. Journal of Applied Probability 1 (2),

177.

Kinney, J. B., Murugan, A., Callan, C. G., Cox, E. C., May 2010. Using deep sequencing to characterize

the biophysical mechanism of a transcriptional regulatory sequence. Proceedings of the National

Academy of Sciences 107 (20), 9158–9163.

Knaus, R., Bujard, H., Sep. 1988. PL of coliphage lambda: an alternative solution for an efficient pro-

moter. The EMBO Journal 7 (9), 2919–2923.

Kuhlman, T., Zhang, Z., Saier, M. H., Hwa, T., Apr. 2007. Combinatorial transcriptional control of the

lactose operon of Escherichia coli. Proceedings of the National Academy of Sciences 104 (14), 6043–

6048.

Lee, H., Popodi, E., Tang, H., Foster, P. L., Oct. 2012. Rate and molecular spectrum of spontaneous mu-

tations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proceedings

of the National Academy of Sciences 109 (41), E2774–E2783.

Ludwig, M. Z., Patel, N. H., Kreitman, M., 1998. Functional analysis of eve stripe 2 enhancer evolution

in Drosophila: rules governing conservation and change. Development, 949–958.

Luo, C., Walk, S. T., Gordon, D. M., Feldgarden, M., Tiedje, J. M., Konstantinidis, K. T., Apr. 2011.

Genome sequencing of environmental Escherichia coli expands understanding of the ecology and

speciation of the model bacterial species. Proceedings of the National Academy of Sciences 108 (17),

7200–7205.

Lynch, M., Conery, J. S., Nov. 2003. The Origins of Genome Complexity. Science 302 (5649), 1401–

1404.

Lynch, M., Hagner, K., Jan. 2015. Evolutionary meandering of intermolecular interactions along the drift

barrier. Proceedings of the National Academy of Sciences 112 (1), E30–E38.

MacArthur, S., Brookfield, J. F. Y., Jun. 2004. Expected Rates and Modes of Evolution of Enhancer

Sequences. Molecular Biology and Evolution 21 (6), 1064–1073.



85

Maerkl, S. J., Quake, S. R., Jan. 2007. A Systems Approach to Measuring the Binding Energy Land-

scapes of Transcription Factors. Science 315 (5809), 233–237.

Manhart, M., Haldane, A., Morozov, A. V., Aug. 2012. A universal scaling law determines time reversibil-

ity and steady state of substitutions under selection. Theoretical Population Biology 82 (1), 66–76.

McKeown, A. N., Bridgham, J. T., Anderson, D. W., Murphy, M. N., Ortlund, E. A., Thornton, J. W., Sep.

2014. Evolution of DNA Specificity in a Transcription Factor Family Produced a New Gene Regulatory

Module. Cell 159 (1), 58–68.

Mendoza-Vargas, A., Olvera, L., Olvera, M., Grande, R., Vega-Alvarado, L., Taboada, B., Jimenez-
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