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Abstract 

Plant hormone auxin and its transport between cells belong to the most important 

mechanisms controlling plant development. Auxin itself could change localization of PINs and 

thereby control direction of its own flow. We performed an expression profiling experiment 

in Arabidopsis roots to identify potential regulators of PIN polarity which are transcriptionally 

regulated by auxin signalling. We identified several novel regulators and performed a detailed 

characterization of the transcription factor WRKY23 (At2g47260) and its role in auxin 

feedback on PIN polarity. Gain-of-function and dominant-negative mutants revealed that 

WRKY23 plays a crucial role in mediating the auxin effect on PIN polarity. In concordance, 

typical polar auxin transport processes such as gravitropism and leaf vascular pattern 

formation were disturbed by interfering with WRKY23 function.  

In order to identify direct targets of WRKY23, we performed consequential expression 

profiling experiments using a WRKY23 inducible gain-of-function line and dominant-negative 

WRKY23 line that is defunct in PIN re-arrangement. Among several genes mostly related to 

the groups of cell wall and defense process regulators, we identified LYSINE-HISTIDINE 

TRANSPORTER 1 (LHT1; At5g40780), a small amino acid permease gene from the amino 

acid/auxin permease family (AAAP), we present its detailed characterisation in auxin feedback 

on PIN repolarization, identified its transcriptional regulation, we propose a potential 

mechanism of its action. Moreover, we identified also a member of receptor-like protein 

kinase LRR-RLK (LEUCINE-RICH REPEAT TRANSMEMBRANE PROTEIN KINASE PROTEIN 1; 

LRRK1; At1g05700), which also affects auxin-dependent PIN re-arrangement. We described 

its transcriptional behaviour, subcellular localization. Based on global expression data, we 

tried to identify ligand responsible for mechanism of signalling and suggest signalling partner 

and interactors. Additionally, we described role of novel phytohormone group, strigolactone, 

in auxin-dependent PIN re-arrangement, that could be a fundament for future studies in this 

field. 

Our results provide first insights into an auxin transcriptional network targeting PIN 

localization and thus regulating plant development. We highlighted WRKY23 transcriptional 

network and characterised its mediatory role in plant development. We identified direct 

effectors of this network, LHT1 and LRRK1, and describe their roles in PIN re-arrangement and 

PIN-dependent auxin transport processes.  
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1 Introduction 

Plant hormone auxin and its transport between cells, which depends on PIN auxin 

transporters, belong to the most important mechanisms controlling plant development. 

Properties of auxin transport through cellular membranes were predicted by chemiosmotic 

hypothesis in late 70’s. This hypothesis consists of facts known about chemical attribute of 

Indole-3-acetic acid (IAA) – the basic auxin. IAA is a weak organic acid with indole ring and 

side carboxyl group moiety at C3 carbon of indole acquiring two molecular states in relation 

to pH level of their surrounding – dissociated (anionic) IAA- and undissociated (protonated) 

IAAH. These two states have different ability of diffusion through cell membrane (CM). Only 

undissociated state of auxin could be freely transported through CM. The pH of plant cell 

apoplast is by mechanism of ATP-dependent proton pumps set to 5.5 while in cytoplasm the 

pH is neutral, around pH 7.0, resulting in accumulation of dissociated form of auxin inside the 

cell. Therefore, chemiosmotic hypothesis predicted presence of active auxin transporters – 

auxin efflux proteins. Based on this assumption, there was though that if transporters are 

localized on one side of the membrane, if they are polarized, their action could direct auxin 

flow to one direction allowing the establishment of specific auxin gradients (Rubery & 

Sheldrake, 1974; Raven & Smith, 1976; Goldsmith & Cleland, 1978). Auxin transport is 

facilitated by carriers - auxin influx proteins from family AUX/LAX (Bennett et al., 1996), auxin 

efflux carriers from PIN family (Galweiler et al., 1998) and ABCB proteins (Noh et al., 2001). 

The most developmentally important and thoroughly studied are PIN (PIN-FORMED) proteins 

(Adamowski & Friml, 2015). These efflux carriers belong to a plant-specific family of probable 

proton gradient-driven secondary transporters lacking ATP-binding domain (Zazimalova et al., 

2010). According to the length of central hydrophilic domain, eight members of PIN proteins 

are divided into two groups: (A) shorter, intracellular PINs with partially or entirely reduced 

central domain and (B) long canonical PINs with long, hydrophilic domain localizing to the CM 

(Krecek et al., 2009). PIN proteins could be localized symmetrically along the membrane or 

proteins could be localized polarly – asymmetrically localized: on basal side of the cells in 

direction to root (rootward side), or localized apically (shootward side). PIN proteins could be 

localized also on lateral sides of the cells. An asymmetrical localization on membrane has been 

shown to determine direction of auxin flow within tissues (Wisniewska et al., 2006). Polarity 

of PIN protein is not generally same in all tissues, depends on cell type, development state of 



 
 

tissues (Benkova et al., 2003; Friml et al., 2003) but also on environmental stimuli (Friml et 

al., 2002; Kleine-Vehn et al., 2010; Ding et al., 2011; Rakusova et al., 2011; Rakusova et al., 

2015).  

Polarly localized PIN auxin exporters and subsequent auxin gradients act also as a 

polarity cue, establishing new polarity and growth axis of the tissue. Local auxin application 

induces vascular differentiation in plant tissue but in narrow strands running away from the 

source rather than in wide field of the cells (Jacobs, 1955). These observations led Tsvi Sachs 

to propose so called canalization hypothesis in order to explain patterns of vascular strand 

differentiation e.g. in leaf venation and in the reconnection of the stem vasculature strands 

that were interrupted by wounding (Sachs, 1975). Canalization is a self-organizing pattern of 

auxin transport in which initially broad domain of auxin-transporting cells is reduced to 

narrow ‘canal’ – initial flow of auxin from a source to sink is gradually canalized into files of 

cells upregulating and polarizing its auxin transport activity by positive feedback control 

(Bennett et al., 2014). The result of canalization is formation of cell files with high levels of 

auxin transport polarized towards the auxin sink, these cell files acts as auxin transport canals, 

connecting the source to the sink. This process has been proposed to mediate multiple key 

plant developmental processes i.e. in establishment of new vasculature (Berleth & Sachs, 

2001) and its regeneration after wounding (Sauer et al., 2006; Mazur et al., 2016), competitive 

control of apical dominance (Booker et al., 2003; Balla et al., 2011) but possibly also 

establishment of embryonic apical-basal axis (Robert et al., 2013; Wabnik et al., 2013) or 

organogenesis (Benkova et al., 2003). The mechanism underlying the auxin-mediated 

polarization is largely unknown but its key component is a feedback regulation of PIN polarity 

by auxin signalling (Sachs, 1975; Sauer et al., 2006; Bennett et al., 2014).  

As a proxy for canalization we used the auxin effect on PIN polarity in Arabidopsis root 

meristems (Sauer et al., 2006). In the root of model plant Arabidopsis thaliana are proteins 

PIN1 localized on basal sides of endodermal and pericycle cells and cells of the vascular tissue. 

Auxin carriers PIN2 have basal polarity in cells of cortex but apical polarity in epidermis. 

However, upon 4 hours of treatment by 10 μM auxin naphtyl-acetic acid (NAA), the 

localization of PIN1 proteins are changed from basal to inner-lateral side in endodermis and 

pericycle, while PIN2 auxin carriers undergo change of localization from basal to outer-lateral 

side of cells in cortex (Sauer et al., 2006). Auxin-dependent PIN lateralization in the root 

meristem requires a rather prolonged auxin treatment which suggests involvement of a whole 
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cascade of transcriptional processes. It was shown that this process is transcriptionally 

dependent on SCFTIR1-Aux/IAA-ARF signalling pathway. This pathway begins with auxin TIR1 

coreceptor, as a part of Skp1-Cullin-F-box complex (SCFTIR1/AFB1-5) of SCF E3 type ubiquitin 

ligase. Auxin acts as molecular glue providing interaction between TIR1 and  

Aux/IAA (AUXIN/INDOLE-3-ACETIC ACID) proteins (Tan et al., 2007), which are upon auxin 

binding ubiquitinated and then degraded in proteasome (Salehin et al., 2015). In the absence 

of auxin, AUX/IAA proteins inactivate ARF (AUXIN RESPONSE FACTOR) transcription factors by 

heterodimerization and consequently block expression of auxin-dependent genes (Guilfoyle 

& Hagen, 2007; Salehin et al., 2015). In conditionally expressed mutant line, HS::axr3-1, non-

degradable version of protein IAA17, as well as in other auxin signalling double mutant  

arf7 arf19, PIN proteins do not undergo the lateralization under the auxin treatment (Sauer 

et al., 2006). These results suggest that PIN lateralization is dependent on functional  

SCFTIR1-Aux/IAA-ARF auxin signalling pathway. 

Several mechanisms changing characteristics of auxin flow dependent on PIN proteins 

are known. On transcriptional level, auxin promotes expression of auxin carriers by tissue 

specific level (Schrader et al., 2003; Vieten et al., 2005). On other hand, the 

posttranscriptional regulation of auxin carriers by modulation of vacuolar trafficking 

mechanism indirectly involving also ubiquitination and proteasome activity was suspected in 

the affection of PIN2 protein stability at CM (Sieberer et al., 2000; Abas et al., 2006; Baster et 

al., 2013). Third, also posttranscriptional mechanism of clathrin-mediated endocytosis has a 

key role in decrease of internalization of PIN proteins from cell membrane and thus maintains 

PIN levels at membrane. Nevertheless, recent publication of Jasik and collaborators disprove 

this auxin effect on endocytosis (Paciorek et al., 2005; Robert et al., 2010; Xu et al., 2010; Jasik 

et al., 2016). However, none of these mechanisms influences the direction of intercellular 

auxin flow.  

Mechanism of PIN polarity establishment was thoroughly studied in past 15 years. PIN 

proteins are undergoing constant recycling between CM and endosomal compartments of the 

cell. PIN proteins are internalized from CM by clathrin-mediated endocytosis. After 

internalization, vesicles containing PIN proteins are targeted to a certain side of the 

membrane driven by ARF-GEF GNOM. ARFs (ADP-ribosylation factor) are a small guanine 

binding proteins, commonly driving protein transport in Eukaryotes (Geldner et al., 2001). At 

CM, ARF interacts with activators ARF-GEF (ARF-Guanine nucleotide exchange factor), or 



 
 

inhibitors ARF-GAP (ARF-GTPase activating proteins) respectively (Donaldson & Jackson, 

2000). ARF-GEF GNOM dependent endosomal exocytosis is largely important for 

establishment of basal PIN polarity (Kleine-Vehn et al., 2008). PIN polar targeting is based also 

on orchestrated function of protein kinases and phosphatases interacting with PIN auxin 

carriers. Three kinases phosphorylating PINs, ACG3 – PID (PINOID) and its homologues WAG1 

and 2 are known to target apolarly excreted PIN carriers to apical side of the cell (Friml et al., 

2004; Michniewicz et al., 2007). Dephosphorylation of PIN proteins depends on activity of 

protein phosphatase 2A (PP2A) (Michniewicz et al., 2007). Basal polarity is connected with 

apolar PIN protein excretion followed by clathrin endocytosis and basal endocytic recycling of 

unphosphorylated PIN proteins (Friml et al., 2004; Huang et al., 2010; Zhang et al., 2010). To 

avoid diffusion of PIN proteins in fluid membrane, PIN polarity is maintained in immobile 

clusters, polar microdomains, probably connected with cellulose compartments of the cell 

wall (Feraru et al., 2011; Kleine-Vehn et al., 2011). Until now none mechanism directly 

connecting auxin dependent PIN lateralization process and regulators of PIN polarity is 

known. In this work we want to describe so far unknown mechanisms by which auxin can 

modify PIN polarization.  
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2 WRKY23 is a component of the transcriptional network mediating auxin 
feedback on the PIN polarity  

 
Tomáš Prát, Wim Grunewald, Gergely Molnár, Ricardo Tejos, Markus Schmid, Michael Sauer, 

and Jiří Friml 

 

2.1 SUMMARY 

 Auxin is unique among plant hormones due to its ability to move between cells by 

directional transport, mediated by PIN auxin transporters localized polarly at the 

plasma membranes. The canalization hypothesis proposes the auxin feed-back on 

polar PIN localization as a crucial mechanism in mediating multiple developmental 

processes including vascular tissue formation and regeneration. 

 Here, we used the auxin effect on PIN polarity in Arabidopsis root meristems as a proxy 

for canalization and performed microarray experiments to find regulators of this 

process. 

 We identified genes transcriptionally regulated by auxin, which were downstream of 

SCFTIR1-Aux/IAA-ARF auxin signalling and transcriptionally modulated in an IAA17 

(AXR3)- and ARF7/ARF19-dependent manner. Apart from the known molecular 

players involved in correct PIN polar delivery, we identified and further characterized 

the WRKY23 transcription factor as a novel regulator. 

 Gain-of-function and dominant-negative mutants revealed that WRKY23 plays a 

crucial role in mediating the auxin effect on PIN polarity. In concordance, typical polar 

auxin transport processes such as gravitropism, organogenesis and leaf vascular 

pattern formation were disturbed by interfering with WRKY23 function. 

 Our results provide first insights into an auxin transcriptional network targeting PIN 

localization and regulating plant development mediated by canalization of PIN-

dependent auxin transport. 

 

2.2 INTRODUCTION 

The phytohormone auxin plays a key role in many aspects of a plant’s life cycle. A unique 

attribute of auxin is its polarized, intercellular movement which depends, among other 

components, on polarly localized PIN auxin exporters (Petrasek et al., 2006; Wisniewska et 



 
 

al., 2006; Adamowski & Friml, 2015). The so-called canalization hypothesis proposes that 

auxin acts also as a cue in establishing new polarity axes during the polarization of tissues 

(Sachs, 1975; Sachs, 1986). Canalization has been proposed i.e. to mediate multiple key plant 

developmental processes including formation of new vasculature (Berleth & Sachs, 2001), its 

regeneration after wounding (Sauer et al., 2006) and competitive control of apical dominance 

(Booker et al., 2003; Balla et al., 2011; Bennett et al., 2016). It is likely that the same 

mechanism plays also a role in the establishment of the embryonic apical-basal axis (Robert 

et al., 2013; Wabnik et al., 2013) and during organogenesis (Benkova et al., 2003). While the 

molecular details of auxin-mediated cell- and tissue polarization are largely unknown, one key 

constituent is feed-back regulation of PIN polarity by auxin signalling (Sachs, 1975; Sauer et 

al., 2006; Bennett et al., 2014). This auxin feed-back on PIN polarity may be related to a direct 

auxin effect on clathrin-mediated internalization of PIN proteins (Paciorek et al., 2005; Robert 

et al., 2010) but the connection is unclear so far (Wabnik et al., 2010). 

Auxin feed-back on PIN polarity can be experimentally approximated by PIN polarity 

re-arrangement following auxin treatment in roots of Arabidopsis thaliana. Under standard 

conditions, PIN1 is localized on the basal sides of endodermal and pericycle cells and cells of 

the vascular tissue (Friml et al., 2002), whereas PIN2 exhibits basal polarity in the young cells 

of the cortex but apical polarity in epidermal cells (Muller et al., 1998; Kleine-Vehn et al., 

2008). After auxin treatment, both PIN1 and PIN2 appear to be localized also at the lateral 

cell side. PIN1 changes from predominantly basal to basal and inner-lateral in endodermis and 

pericycle cells, while PIN2 undergoes a localization shift from the basal to the basal and outer-

lateral side of young cortex cells (Sauer et al., 2006). The exact molecular mechanism and 

biological significance of this effect is unclear but it depends on the transcriptional  

SCFTIR1-Aux/IAA-ARF auxin signalling pathway (Chapman & Estelle, 2009). In brief, upon auxin 

binding to the TIR1/AFB receptor family, transcriptional repressors and co-receptors of the 

Aux/IAA class are degraded, in turn releasing auxin response transcription activators of the 

ARF family (Salehin et al., 2015). 

In a heat-shock (HS) inducible HS::axr3-1 line expressing a mutated, non-degradable 

version of the IAA17 transcriptional repressor (Knox et al., 2003; Salehin et al., 2015), as well 

as in the arf7 arf19 double mutant defective for these two transcriptional activators 

expressed in primary root and functionally redundant in organogenic processes (Wilmoth et 

al., 2005), auxin is no longer effective to mediate PIN polarity re-arrangements in the root 
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meristem (Sauer et al., 2006). These results suggest that transcriptional auxin signalling 

regulates the cellular abundance of so far unknown regulators, which in turn modify 

subcellular sorting or trafficking pathways and other polarity determinants, ultimately leading 

to changes in polar PIN distribution.  

In this work, we performed an expression profiling experiment in Arabidopsis roots to 

identify potential regulators of PIN polarity which are transcriptionally regulated by auxin 

signalling. We identified several novel regulators and performed a more detailed 

characterization of the transcription factor WRKY23 and its role in auxin feed-back on PIN 

polarity. 

2.3 MATERIALS AND METHODS 

 Plant material and growth conditions 

All Arabidopsis thaliana lines were in Columbia-0 background. The arf7 arf19 double mutant 

and HS::axr3-1 transgenic line have been described previously (Knox et al., 2003; Okushima 

et al., 2005). For RPS5A>>WRKY23 analyses, the F1 generation of a RPS5A::GAL4VP16 (Aida 

et al., 2004) × UAS::WRKY23 (Grunewald et al., 2012) cross was analysed and compared with 

the F1 generations from UAS::WRKY23 × Wt Col-0 and RPS5A::GAL4VP16 × Wt Col-0 crosses. 

WRKY23::GUS, 35S::WRKY23-GR, WRKY23::WRKY23-SRDX and 35S::WRKY23-SRDX were 

described previously (Grunewald et al., 2008; Grunewald et al., 2012). Seeds were surface 

sterilized overnight by chlorine gas, sown on solid Arabidopsis medium (AM+; half-strength 

MS basal salts, 1% Sucrose, and 0.8% phytoagar, pH 5.7), and stratified at 4°C for at least 2 

days prior to transfer to a growth room with a 16-h-light/8-h-dark regime at 21°C. The 

seedlings were grown vertically for 4 or 6 days depending on the assay. 

 

 Pharmacological treatments  

Arabidopsis treatments with auxin or chemicals were done in liquid AM+ medium at 21°C in 

a growth room using the following concentrations and times: for α-naphthaleneacetic acid 

(NAA; Sigma Aldrich) at 10 μM for 4h; dexamethasone (DEX; Sigma Aldrich) 10 μM for 24h. 

Mock treatments were performed with equivalent amounts of DMSO. 

 



 
 

 Microarray Analysis 

Wild type Col-0 and HS::axr3-1 seeds were grown vertically on AM+ plates for 5 days. We 

applied to the seedlings a 40 minute heat shock at 37°C, allowed 1.5 h to recover at normal 

growth temperature and subsequently transferred to liquid AM+ medium and treated with 

10 µM NAA or DMSO for 4 h. Afterwards, the lower third of 100-130 roots from each 

treatment was cut off, frozen in liquid N2, and RNA was extracted with a Quiagen RNAeasy 

mini kit. Probe preparation and hybridization to Arabidopsis ATH1–121501 gene expression 

array (Affymetrix) was performed as described (Leal Valentim et al., 2015).Expression data for 

Col-0, HS::axr3-1, both NAA and mock treated had been deposited under the ArrayExpress 

number E-MEXP-3283. Expression data for arf7 arf19 (ArrayExpress: E-GEOD-627) have been 

published previously (Okushima et al., 2005). Raw data were pairwise analysed using the logit-

t Algorithm (Lemon et al., 2003) with a cutoff of p=0.05.  

 

 RNA Extraction, cDNA Synthesis and Quantitative RT-PCR and Analysis 

RNA extraction, cDNA Synthesis, and quantitative RT-PCR (qRT-PCR) were performed as 

described (Tejos et al., 2014). Selected candidate gene transcript levels were quantified with 

qRT-PCR using specific primer pairs designed with Primer-BLAST 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Transcript levels were normalized to 

GAMMA-TUBULIN 2 (TUB2; At5g05620), which was constitutively expressed and auxin-

independent across samples. All PCRs were run in three technical repeats, and the data were 

processed with a qRT-PCR analysis software (Frederik Coppens; Applied Bioinformatics & 

Biostatistics group; PSB VIB). Primers used in this study are listed in Supporting Table S2-1.  

 

 Whole-mount in situ immunolocalization, microscopy and quantitative 
analysis of PIN relocalization 

PIN immunolocalizations of primary roots were performed as described (Sauer & Friml, 2010). 

The antibodies were used in the following dilutions: anti-PIN1, 1:1000 (Paciorek et al., 2005); 

anti-PIN2, 1:1000 (Abas et al., 2006). In all cases, the secondary goat anti-rabbit antibody 

coupled to Cy3 (Sigma-Aldrich) was diluted 1:600. Confocal microscopy was performed using 

a Zeiss LSM 700 confocal microscope. Quantitative analysis of PIN relocalization was 

performed as described (Sauer et al., 2006). 
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 Phenotypic analysis 

All measurements were done with ImageJ (http://rsb.info.nih.gov/ij). For root length analysis, 

seedlings were scanned and root lengths were measured. To quantify direction of the root 

growth, we used vertical growth index (VGI), ratio between the root tip ordinate and the root 

length (Grabov et al., 2005). Short term root gravistimulation was done by 6 hours 

 of 90 degree induction. The seedlings were scanned and root angles were measured.  

 

 Histological analyses and microscopy 

To detect β-Glucuronidase (GUS) activity, seedlings were incubated in reaction buffer 

containing 0.1 M sodium phosphate buffer (pH 7), 1 mM ferricyanide, 1 mM ferrocyanide, 

0.1% Triton X-100 and 1 mg/ml X-Gluc for 2 h in dark at 37 °C. Afterwards, chlorophyll was 

removed by destaining in 70% ethanol and seedlings were cleared.  

Clearing of tissues (seedlings, cotyledons) was performed in a solution containing 4% HCl and 

20% methanol for 15 min at 65 °C, followed by 15 min incubation in 7% NaOH and 70% ethanol 

at room temperature. Next, seedlings were rehydrated by successive incubations in 70, 50, 

25 and 10% ethanol for 5 min, followed by incubation in a solution containing 25% glycerol 

and 5% ethanol. Finally, seedlings were mounted in 50% glycerol and monitored by 

differential interference contrast microscopy DIC (Olympus BX53) or stereomicroscope 

(Olympus SZX16). 

 

2.4 RESULTS 

 Identification of components mediating auxin effect on PIN polarity with 
microarray analysis 

The rationale behind the approach was to search for genes which were (i) auxin regulated in 

roots under conditions when auxin changes PIN polarity and (ii) their auxin regulation is 

mediated by IAA17 (AXR3) transcriptional repressor. First, to search for auxin induced genes, 

we matched data from NAA treated and untreated heat shocked wild-type Col-0 control 

seedlings, resulting in 523 auxin induced genes. Since in HS::axr3-1 under the same conditions 

auxin fails to induce PIN polarity changes (Fig.2-1 A – B), we compared heat shocked and 

auxin-treated Col-0 seedlings to similarly handled HS::axr3-1 seedlings, expressing the auxin 



 
 

resistant version of the transcriptional repressor IAA17 (AXR3) and we identified 667 genes 

(Fig.2-1 C). The overlap of this set with 523 auxin induced genes yielded 244 genes (A 

Appendix Table S1 A – B), which were induced by auxin and regulated downstream of IAA17. 

Further comparison with published microarray data on arf7 arf19 mutant seedlings 

(Okushima et al., 2005), which are also ineffective to re-arrange PIN polarity (Sauer et al., 

2006) yielded a final list of 125 genes (A Appendix Table S2 A – B). Some of them were 

previously shown to be involved in the regulation of PIN polarity. The AGC3 kinase PID 

(PINOID) and its homologues WAG1 and 2 are known to phosphorylate PINs (Michniewicz et 

al., 2007) contributing to the control of their polar distribution (Friml et al., 2004; Huang et 

al., 2010; Zhang et al., 2010). Nevertheless, overexpression of PID was shown to be dominant 

over auxin-induced PIN lateralization (Sauer et al., 2006). Other identified candidate with a 

known role in PIN polar distribution was the phosphatidylinositol-4-phosphate 5 kinases 

PIP5K1. This protein, together with and its close homologue PIP5K2, is enriched on basal and 

apical membrane domains and they are required for PIN trafficking (Mei et al., 2012; Ugalde 

et al., 2016) and localization (Ischebeck et al., 2013; Tejos et al., 2014). Other candidates for 

polarity determinants include several previously known players in auxin-mediated plant 

development, e.g. RUL1, a leucine-rich repeat receptor-like kinase regulating cambium 

formation, a process linked to PIN polarity control (Agusti et al., 2011) (A Appendix Table S2 

B). 

Auxin-dependent PIN lateralization in the root meristem requires a rather prolonged 

auxin treatment (Sauer et al., 2006) which suggests involvement of a whole cascade of 

transcriptional processes. Therefore, we looked for transcription factor genes (TFs) induced 

by auxin in the list of putative polarity regulators as they may be transcriptionally regulating 

the process of PIN lateralization. The list contains MIF1 (MINI ZINC FINGER1), affecting auxin 

responses during ectopic meristem formation (Hu et al., 2011) but also WRKY23 (At2g47260). 

WRKY genes belong to a plant-specific family of 72 transcription factors in Arabidopsis, being 

typically associated with plant defense processes and plant-pathogen interactions (Eulgem & 

Somssich, 2007). These genes were named by a shared sequence motif of 60 amino acid 

containing a conserved domain of seven invariant amino acids (WRKYGQK) (Eulgem et al., 

2000). The WRKYGQK motif provides high binding preference and contacts a 6 bp DNA 

sequence element - W-box (/TTGACT/C) contained in target gene promoters (Ulker & 

Somssich, 2004; Eulgem & Somssich, 2007). Distinct WRKY TFs have distinct selective binding 
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preferences to certain W-box variants (Ciolkowski et al., 2008). The role of WRKY23 was 

shown in plant defense processes during plant-nematode interaction but also in regulation of 

auxin transport by flavonol biosynthesis affecting root- and embryo development. In 

Arabidopsis embryos, WRKY23 expression attenuates both auxin-dependent and auxin-

independent signalling pathways towards stem cell specification (Grunewald et al., 2008; 

Grunewald et al., 2012; Grunewald et al., 2013). Therefore, in this work, we focused on the 

role of WRKY23-dependent transcriptional regulation in auxin-dependent PIN repolarization. 

 

Figure 2-1 Auxin-dependent PIN re-arrangement and scheme of microarray experiment. 

A. Immunolocalization of PIN1 and PIN2 proteins in HS::axr3-1 plants. Lateralization of PIN proteins is dependent 

on functional SCFTIR1-Aux/IAA-ARF signalling pathway. Heat-shock-induced overexpression of axr3-1 abolishes 

lateral PIN relocation after auxin treatment. Arrowheads highlight PIN lateral localization. Bar size 10 µm. B. 

Quantitative evaluation confirms reduction of auxin-dependent relocation of PIN1 (upper graph) and PIN2 

(lower graph), respectively in the induced HS::axr3-1 line. Graph shows mean ratio of lateral to basal signal 

intensity of PIN1 in endodermis and PIN2 in cortex cells, error bars indicates standard error. A two-tailed 

Student’s t test compared marked sets of data. (***) P < 0.0001. n ˃ 35 cells corresponding to roots imaged 

under comparable conditions. C. Scheme of microarray experiment. A dataset of auxin regulated genes in Wt 

Col-0 seedlings under conditions where PIN repolarization occurs was overlaid with a second set of genes which 

are no longer auxin regulated in an induced HS::axr3-1 background. Experiments in C. were designed by M.Sau., 

performed by M.Sch. and statistical analysis was performed by M.Sch. and G.M.. 



 
 

 WRKY23 expression is auxin-dependent and is regulated by auxin 
signalling 

First, we confirmed and analysed auxin regulation of WRKY23 expression. Promoters of auxin-

inducible genes typically contain tandem localised auxin response elements (AuxREs) which 

are recognised by auxin response factors (ARFs) (Ulmasov et al., 1997; Boer et al., 2014). ARFs 

dimerize to act as molecular callipers providing specificity to auxin-dependent gene regulation 

by measuring the distance of AuxREs in the element pair at the promoter (Boer et al., 2014). 

Length of the intergenic region between the 3’UTR of the previous gene UPBEAT (UPB; 

At2g47270) and the 5’UTR of WRKY23 (At2g47260) is 4.5 kbp. The predicted 2.4 kbp WRKY23 

promoter by the AGRIS tool (Yilmaz et al., 2011) contains 10 AuxRE and AuxRE-like sites and 

the extended promoter of 3.2 kbp used for native promoter fusion constructs contains two 

additional AuxRE sites (Grunewald et al., 2008) (Fig.2-2 A). Such density of auxin regulatory 

sequences in the promoter strongly suggests direct regulation by ARF-dependent auxin 

signalling (Boer et al., 2014). 

In accordance with these findings, we found that WRKY23 is auxin inducible in a dose- 

and time-dependent manner. When we treated Arabidopsis seedlings with 100 nM NAA for  

4 hours, WRKY23 transcription increased 2-fold, and 1 µM NAA led to a 6-fold increase (Fig.2-

2 B). Time response experiments at the consensus concentration of 10 µM NAA used in PIN 

lateralization experiments (Sauer et al., 2006) showed that WRKY23 responds relatively 

slowly, with an expression increase after 4 hours of auxin treatment (Fig.2-2 C). This delay is 

in accordance with the observed timing of PIN lateralization (Sauer et al., 2006). The 

dependence on auxin signalling was further supported by compromised WRKY23 auxin 

inducibility in HS::axr3-1 and arf7 arf19 mutants (Fig.2-2 D and E). These results confirm 

WRKY23 as a candidate gene arising from our microarray results and show the dependence 

of WRKY23 transcription on the SCFTIR1 - Aux/IAA - ARF auxin signalling pathway.  

A transgenic line harbouring the uidA reporter gene (or GUS coding gene) under the 

control of a 3.2 kb upstream sequence from WRKY23 showed that auxin induces ectopic 

expression of WRKY23 in the root tissues, partly overlapping also with root regions where PIN 

lateralization can be observed. Without auxin treatment, the expression pattern of WRKY23 

partially overlaps with the DR5rev auxin response reporter (Fig.2-2 F) (Friml et al., 2003; 

Grunewald et al., 2008; Grunewald et al., 2012). Previously, we demonstrated that WRKY23 

is expressed in all apical cells of an octant stage embryo and at heart stage the expression of 
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WRKY23 is detected in both the root and the shoot stem cell niches (Fig.2-2 G) (Grunewald et 

al., 2013). This might indicate that WRKY23 has - besides its role in root development - also a 

function in shoot development. We detected WRKY23 expression in shoot apical meristem as 

well as at the hydathodes of the cotyledons (Fig.2-2 H – I) coinciding with auxin response 

maxima (Scarpella et al., 2006). Additionally, promoter activity could be detected in the 

vascular tissue of cotyledons and leaves (Fig.2-2 I) again coinciding with auxin response 

maxima (Scarpella et al., 2006). In both tissues WRKY23 expression is associated with the 

vasculature in a patchy pattern and seems to be also higher in the bundle sheath cells 

surrounding the mature vascular bundles (Fig.2-2 J). Moreover, in young leaves WRKY23 

expression precedes differentiation of the vascular strands (Fig.2-2 K) and thus might point 

to a role for WRKY23 in venation patterning of leaves. GUS staining could be detected in the 

shoot apical meristem (SAM) (Fig. S2-1 A – B). Sectioning the SAM revealed specific WRKY23 

expression in the L1, L2 and L3 layers (Fig. S2-1 B). GUS staining could also be observed in the 

vasculature of flowers and in pollen grains (Fig. S2-1 C – D). 

The presence of auxin responsive elements in the promoter, the dose- and time 

dependence of auxin regulation of WRKY23 expression, its modulation by AXR3 and 

dependence on ARF7 and ARF19, together with ectopic expression in specific cell files of root 

tip following auxin treatment is consistent with a possible involvement of WRKY23 in the 

process of auxin-mediated PIN lateralization.  

 



 
 

 

Figure 2-2 WRKY23 expression is auxin-dependent and is regulated by auxin signalling. 

A. Schematic depiction of WRKY23 promoter; AuxRE and AuxRE-like response elements are shown as triangles. 

Numbers represent distance from WRKY23 start codon. B – C. WRKY23 transcript level is dependent on auxin 

dose and time of treatment. qRT-PCR analysis of WRKY23 expression using different concentrations of NAA (B) 

and treatment time (C).Points represent relative fold change of expression. Error bars represent standard 

deviation .D. – E. WRKY23 transcript levels are dependent on auxin SCFTIR1-Aux/IAA-ARF signalling pathway. Data 

from qRT-PCR confirmation of microarray experiment shows WRKY23 transcript levels and genes previously 

connected to PIN polarity in heat-shock-induced and not-induced HS::arx3-1 plants (D) and in double mutant of 

arf7 arf19 compared to Wt Col-0 (E). Bars represent relative fold change of transcript levels. Error bars represent 

standard deviation.F. WRKY23 promoter activation by auxin treatment. Expression pattern of WRKY23:: GUS in 

the root is changed upon 6 h of auxin treatment. WRKY23 expression became generally stronger and ectopically 

expressed in meristematic and transition zone of the root tip (Arrowhead). Bar size 10 µm. G. – H. GUS staining 

of WRKY23::GUS embryos showing promoter activity in all apical cells of an early globular embryo and in SAM 

and RAM of an early torpedo stage embryo. I. WRKY23::GUS cotyledon showing GUS staining at the hydathode 

and in the vasculature. J. Patchy expression of WRKY23 in the vasculature of leaves. K. In young leaves, WRKY23 

expression precedes xylem formation. GUS staining in G – K were performed by W.G.. 
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 WRKY23 gain-of-function causes PIN2 lateralization 

Next, we tested whether altered WRKY23 expression or activity had effects on the auxin 

regulation of PIN1 and PIN2 protein localization. We achieved strong constitutive 

overexpression of WRKY23 using a GAL4VP16-UAS transactivation system (RPS5A>>WRKY23) 

(Aida et al., 2004; Grunewald et al., 2012; Grunewald et al., 2013), and we also used a 

dexamethasone-glucocorticoid (DEX/GR) receptor system for inducible gain-of-function as 

previously described (Grunewald et al., 2012; Grunewald et al., 2013). Strong overexpression 

of WRKY23 had a strong effect on PIN polarity by itself. Constitutively active overexpression 

in RPS5A>>WRKY23 caused PIN2 lateralization in the root cortex cells, to some extent 

mimicking the application of auxin (Fig.2-3 A – B), while polar PIN1 localization in endodermis 

cells was not visibly changed (Fig. S2-2 A – B). Subsequent treatment with NAA further 

increased lateralization of PIN2 in cortex cells (Fig.2-3 A – B). An inducible WRKY23 gain-of-

function line showed a similar effect on PIN2 polarity: seedlings of a 35S::WRKY23-GR line 

treated with dexamethasone to induce WRKY23-GR translocation to the nucleus, resulted in 

PIN2 lateralization in the cortex cells. Again, NAA treatment and DEX had an additive effect in 

this line (Fig.2-3 C – D). Thus, both constitutive and inducible WRKY23 gain-of-function 

consistently leads to PIN2 lateralization in cortex cells, and the effect is enhanced by NAA 

treatment. 

 

 Repression of WRKY23 activity abolishes the auxin effect on PIN2 
polarization 

In complementary experiments, we tested the effect of downregulation of WRKY23 function. 

The large WRKY family of homologous proteins has extensive functional redundancy among 

individual members (Schluttenhofer & Yuan, 2015). Because compensation of loss of WRKY23 

by other members is, given the large size of the WRKY gene family, expected, we decided to 

use a dominant-negative approach with the chimeric repressor silencing technology (Hiratsu 

et al., 2003). This technology is based on a translational fusion of an activating transcription 

factor with the repressor domain SRDX, thus inhibiting the expression of target genes. 

Transactivation activity of WRKY23, which is necessary to test before use of chimeric 

repressor silencing technology, was previously verified in a tobacco transient expression 



 
 

assay, where the activating or repressing potential of TF fused with GAL4 was tested in 

presence of a UAS::Luciferase construct (Grunewald et al., 2012). 

Plants expressing WRKY23-SRDX under both the native and constitutive promoters 

showed a clear insensitivity to auxin in PIN lateralization. Without auxin, plants had an 

increased basal localization of PIN2 in cortex cells (Fig. S2-2 C). Auxin treatment did not lead 

to PIN2 lateralization as compared to the controls (Fig.2-3 E – F). 

The observed opposite effects of WRKY23 gain- and loss-of-function on PIN2 polarity 

confirmed that WRKY23 plays an important role in the process of auxin-mediated PIN2 

lateralization. 

 

Figure 2-3 WRKY23 influences auxin-dependent PIN2 re-arrangement. 

A. – B. Treatment with NAA increases lateralization of PIN2 in cortex cells of Wt Col-0. Arrowheads highlight PIN 

polarity. Graph shows mean ratio of lateral to basal signal intensity of PIN2 in cortex cells, error bars indicates 

standard error. A two-tailed Student’s t test compared marked sets of data. (***) P < 0.0001. n ˃ 35 cells. C. – D. 

Inducible gain-of-function of WRKY23 caused by dexamethasone (DEX) treated 35S::WRKY23-GR influence PIN2 

polarity. Arrowheads highlight PIN polarity. Graph shows mean ratio of lateral to basal signal intensity of PIN2 

in cortex cells, error bars indicates standard error. A two-tailed Student’s t test compared marked sets of data. 

(*) P < 0.05; (***) P < 0.0001. n ˃ 35 cells. E. – F. Dominant-negative WRKY23-SRDX plants driven by native and 

constitutive promoter abolishes lateral PIN relocation after auxin treatment. Arrowheads highlight PIN polarity. 

Graph shows mean ratio of lateral to basal signal intensity of PIN2 in cortex cells, error bars indicate standard 

error. A two-tailed Student’s t test compared marked sets of data. (***) P < 0.0001. n ˃ 28 cells corresponding 

to roots imaged under comparable conditions. Bar sizes: 10 µm. 
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 Misregulation of WRKY23 expression affects growth, responses to 
environmental stimuli and development in Arabidopsis 

The importance of tight regulation of PIN polarity for directional auxin fluxes and plant growth 

and development has previously been shown (Wisniewska et al., 2006; Adamowski & Friml, 

2015). Therefore, we analysed PIN polarity- or auxin transport-related phenotypes in 

transgenic lines with altered expression or activity of WRKY23. RPS5A>>WRKY23 

overexpressing plants show growth retardation and collapse of root meristem architecture 

(Fig. S2-3 A) (Grunewald et al., 2012). Epinastic cotyledons of RPS5A>>WRKY23 (Fig.2-4 A) 

phenocopy external application of auxin or auxin transport inhibitors; additionally, similar 

phenotypes were observed in the auxin overproducing yuc1 mutant (Zhao et al., 2001) as well 

as in auxin transport mutants like mdr1/abcb1 (Noh et al., 2001). Blocking of WRKY23 action 

also led to severe effects on root growth. Plants with native promoter driven dominant-

negative WRKY23-SRDX as well as strong constitutive promoter driven lines had shortened 

roots in comparison to Col-0 (Fig.2-4 B; Fig. S2-3 B).  

Another physiological process connected to auxin transport and PIN polarity is root 

gravitropism. Therefore, we first analysed the direction of root growth relative to the gravity 

vector. WRKY23::WRKY23-SRDX lines showed no or very weak defects, while strong 

35S::WRKY23-SRDX lines phenocopy the defective gravitropism of auxin transport mutants 

like those observed in pin2/eir1 (Fig.2-4 C) (Luschnig et al., 1998). In a test for gravistimulated 

reorientation, native promoter-driven SRDX lines show a decreased ability to reorient their 

growth, a defect which is even more pronounced in lines expressing WRKY23-SRDX under 

 a strong promoter (Fig.2-4 D). 

The pattern of leaf venation crucially depends on the auxin feed-back on PIN polarity as 

proposed by the canalization hypothesis (Scarpella et al., 2006). In plants strongly expressing 

WRKY23-SRDX, we observed vasculature patterning defects in more than 80% of the 

cotyledons (Fig.2-4 E). Most effects were observed in the first and second loops of veins (l1 

and l2) which failed to connect to the midvein. In addition to cotyledon venation, we analysed 

true leaf venation complexity in WRKY23 dominant-negative and gain-of-function lines. The 

midvein of RPS5A>>WRKY23 leaves hardly branched and almost no secondary venation loops 

could be detected. In some leaves two midveins could be detected and these corresponding 

leaves were split (Fig.2-4 F). WRKY23-SRDX leaves revealed a rudimentary venation pattern 



 
 

compared to wild-type (Fig.2-4 G). These results are consistent with compromised PIN-

mediated canalization during venation development.  

 

 

Figure 2-4 Misregulation of WRKY23 expression affects growth, responses to environmental stimuli and 
development in Arabidopsis. 
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A. Epinastic cotyledons of RPS5A>>WRKY23 phenocopy auxin application or auxin transport inhibitors 

(arrowheads). B. Roots of 6 DAG old plants expressing WRKY23-SRDX was significantly shorter than Wt Col-0. 

Graph show root length, centre lines show the medians; box limits indicate the 25th and 75th percentiles as 

determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles; 

data points are plotted as open circles. A two-tailed Student’s t test compared plants expressing WRKY23-SRDX 

and control Wt Col-0. (***) P < 0.0001. nmin = 30 sample points. C. – D. Gravitropism related phenotypes observed 

in chimeric repressor silencing WRKY23-SRDX lines. Under native WRKY23 promoter, SRDX lines show no or very 

weak phenotype, while strong 35S::WRKY23-SRDX lines phenocopy agravitropism of auxin transport mutants. C. 

Graph show vertical growth index (VGI), ratio between the root tip ordinate and the root length(Grabov et al., 

2005). Box-whisker plot parameters as in B. A two-tailed Student’s t test compared plants expressing WRKY23-

SRDX and control Wt Col-0. (***) P < 0.0001. nmin = 30 sample points. D. Short term gravistimulation by 6 hours 

of 90 degree induction shows decreased ability of the root to follow new direction of the gravity vector. WRKY23-

SRDX lines driven by native promoter had weaker effects than lines with strong promoter. Graph show root tip 

angle. Box-whisker plot parameters as in B. A two-tailed Student’s t test compared plants expressing WRKY23-

SRDX and control Wt Col-0. (**) P < 0.01, (***) P < 0.0001. nmin = 30 sample points. E. Cotyledon venation pattern 

is severely affected by WRKY23 misregulation (arrowheads). Percentage represent distribution of primary leaves 

venation pattern defects. Bar sizes: A, E 1 mm. F. – G. Leaf morphology and venation is affected by WRKY23 

misregulation. F. Cleared leaves of WRKY23 overexpression. Arrowheads point to the two main veins. G. 

WRKY23-SRDX plants show aberrant leaf morphology and/or venation patterns (Arrowheads). Clearing of 

primary leaf in F – G were performed by W.G.. 

 

2.5 DISCUSSION 

Classical experiments led to the formulation of the so called canalization hypothesis, which 

proposes auxin feed-back on auxin transport as the central element of patterning events 

(Berleth & Sachs, 2001). In canalization, auxin transport through an initially homogeneous 

tissue follows a self-organizing pattern leading from initially broad fields of auxin-transporting 

cells to eventually a narrow transport channel, consequently establishing the position of 

future vascular veins (Bennett et al., 2014). Sachs’s hypothesis is further supported by 

successful modelling efforts based on the concerted polarization of cells via a feedback 

mechanism, by which auxin influences the directionality of its own flow (Rolland-Lagan & 

Prusinkiewicz, 2005; Smith et al., 2006; Wabnik et al., 2010; Wabnik et al., 2011; Bennett et 

al., 2014; Cieslak et al., 2015). Most of these models rely on hypothetical propositions, such 

as auxin flux sensors or direct cell-to-cell communication giving testimony to our lack of 

understanding how canalization mechanistically works. However, canalization has been 

experimentally proven by visualizing re-arrangement of cellular polarity of PIN auxin 



 
 

transporters by auxin treatment or local auxin maxima and it has been shown that this effect 

relies on the transcriptional activation of gene expression through auxin signalling (Sauer et 

al., 2006).  

Our transcriptional profiling experiments provide insight into transcriptional 

reprogramming during auxin-mediated PIN polarity re-arrangement and identify potential 

downstream molecular components of this process. Those include e.g. established regulators 

of PIN polarity like PID and PIP5K (Michniewicz et al., 2007; Stenzel et al., 2008; Tejos et al., 

2014), which proves that the experimental concept is sound. Among a number of novel 

components awaiting further characterization, we also found the transcriptional activator 

WRKY23. 

WRKY23 is an auxin responsive gene. The local upregulation of WRKY23 expression 

during auxin application is consistent with a possible involvement in the process of PIN 

repolarization. Auxin induces WRKY23 transcription in a dose- and time dependent manner 

and follows the expression pattern of the DR5rev auxin signalling reporter. WRKYs are 

traditionally known as genes involved in defensive processes in plants. More and more, this 

limited functional spectrum is broadened by studies uncovering the involvement of these 

transcription factors in developmental and other physiological processes than plant defense 

(Grunewald et al., 2012; Grunewald et al., 2013; Bakshi & Oelmuller, 2014; Guan et al., 2014). 

In the case of WRKY23, apart from a role in plant-nematode interaction with subsequent 

upregulation of DR5rev, participation in auxin transport through flavonol synthesis in the root 

as well as function in a mp/bdl dependent pathway in embryo development have been 

demonstrated (Grunewald et al., 2008; Grunewald et al., 2012; Grunewald et al., 2013).  

We show that WRKY23 is a crucial factor required for auxin-mediated PIN polarity re-

arrangement since gain-of-function and dominant-negative WRKY23 lines were strongly 

affected in this process. The observed defects at the cellular level are also developmentally 

relevant, as we encountered phenotypes in lines with both upregulated and downregulated 

WRKY23 function that are typical for altered auxin homeostasis and/or canalization such as 

changes in the leaf vasculature. 

Our results strongly suggest that WRKY23 is a critical player in auxin feed-back on PIN 

polar localization. As a transcription factor, a direct mechanistic involvement of WRKY23 in 

the localization of transmembrane proteins such as PINs is highly unlikely. Instead, our work 

opens avenues for future studies revealing the WRKY23-dependent transcriptional network 
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and identifying cellular components executing the auxin effect on PIN polarity. Ultimately, 

this will provide insights into the canalization-dependent regulation of plant development. 
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2.9 SUPPORTING INFORMATION 

 

Figure S 2-1 Expression pattern of WRKY23. 

A. Expression of WRKY23 in shoot apical meristem (SAM) and in the vasculature of leaves. B. Section of a GUS 

stained SAM shows specific WRKY23 expression in the L1, L2 and L3 layers. C. WRKY23 expression in the 

vasculature of the pistil. D. WRKY23::GUS anther showing WRKY23 promoter activity in pollen (inset). GUS 

staining in Figure S 2-1 were performed by W.G.. 
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Figure S 2-2 WRKY23 influences auxin-dependent PIN2 re-arrangement. 

A – B. Immunolocalization of PIN1 and PIN2 proteins in RPS5A>>WRKY23 overexpression lines changes polarity 

of PIN2 but not PIN1. Arrowheads highlight PIN polarity. Graph shows mean ratio of lateral to basal signal 

intensity of PIN1 in endodermis and PIN2 in cortex cells in RPS5A>>WRKY23, error bars indicates standard error. 

A two-tailed Student’s t test compared marked sets of data. (***) P < 0.0001. n ˃ 35 cells corresponding to roots 

imaged under comparable conditions. C. Immunolocalization of PIN2 in dominant-negative WRKY23-SRDX plants 

driven by native and constitutive promoter. Without auxin, plants have increased basal localization of PIN2 on 

their membranes in cortex. 

 

 

 



 
 

 

Figure S 2-3 Morphological phenotypes of WRKY23 missregulation. 

A. Collapse of root meristem architecture of RPS5A>>WRKY23 (arrowheads) (Grunewald et al., 2012). B. Overall 

phenotype of WRKY23 overexpressor and dominant-negative line seedlings. Bar sizes: A 10 µm, B 1 mm. 
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The list of qRT PCR primers used in this study: 

PID_FOR  5’-TGCCGACTCTTTACGCTGAG-3’ 

PID_REV  5’-CTTCGGCGGCATAAAATCTGG-3’ 

 

Grunewald et al., 2013 

WRKY23_FOR  5’-AGTCTCGGTAATGGTTGCTTTGG-3’ 

WRKY23_REV  5’-TGTTGCTGCTGTTGGTGATGG-3’ 

TUB-2_FOR  5’-ACTCGTTGGGAGGAGGAACT-3’ 

TUB-2_REV  5’-ACACCAGACATAGTAGCAGAAATCAAG-3’ 

 

Shkolnik-Inbar and Bar-Zvi, 2010 

IAA14_FOR  5’-CCTTCTAAGCCTCCTGCTAAAGC-3’ 

IAA14_REV  5’-CCGCTCTTCTGATTAGCCATAAC-3’ 

 

Tejos et al., 2014 

PIP5K1_FOR  5’-GGAACATTGTGAATCGAGGACTG-3’ 

PIP5K1_REV  5’-CCGTCTCGTCTCTCTACTTCTT-3’ 

PIP5K2_FOR  5’-ATGATGCGTGAACCGCTTG-3’ 

PIP5K2_REV  5’-TTCCATGCTGCAGGTTGAGCA-3’ 

Table S 2-1 List of primers used in this study. 
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3 WRKY23 downstream target LHT1 transporter mediates auxin-dependent 
PIN polarization 

 
Tomáš Prát, Wim Grunewald, Gergely Molnár, and Jiří Friml 
 

3.1 SUMMARY 

• Different lifestyle of plants lead to unique cell biology and physiology strategies in 

comparison with animals, e.g. in plant cell polarity regulations. This process is tightly 

connected with self-organizing pattern of auxin transport proposed by canalization 

hypothesis.  

• Here we used the auxin effect on PIN polarity in Arabidopsis root meristems as a proxy 

for canalization and performed microarray experiments to find regulators of the auxin effect 

on PIN polarity. Recently, we identified WRKY23 TF transcriptionally regulated by auxin 

downstream of SCFTIR1-Aux/IAA-ARF auxin signalling in an IAA17 (AXR3)- and ARF7/ARF19-

dependent manner in the process of auxin-dependent PIN repolarization.  

• In order to identify direct targets of WRKY23, we performed expression profiling 

experiments using an inducible WRKY23 overexpression and auxin-treated dominant-

negative WRKY23 line. The obtained gene list was further filtered with publicly available 

expression datasets. We identified 14 possible regulators of auxin-dependent PIN 

repolarization. 

• Based on polarity-related phenotypes we selected LYSINE-HISTIDINE TRANSPORTER 1 

(LHT1; At5g40780), a small amino acid permease.  

• We characterised the role of LHT1 in auxin feedback on PIN repolarization, identified 

its transcriptional regulation, we proposed a potential mechanism of its action. Our results 

highlighted WRKY23 transcriptional network targeting PIN with a consequence of regulation 

of plant development via PIN-dependent auxin transport processes. 

 

3.2 INTRODUCTION 

Plants evolved a unique developmental program in comparison with animals. Absence of cell 

movement in a scaffold of a rigid cell wall results in and leads to an utterly different concept 

of cell polarization and on site determined cell fate. How plants achieve the adaptability and 

self-organizing properties of their development is still not sufficiently understood but in many 



 
 

of these aspects, the plant hormone auxin and its directional transport between cells plays a 

central role.  

A classic example of patterning process in plants is canalization. Canalization is a self-

organizing pattern of auxin transport leading from an initially broad domain of auxin-

transporting cells to narrow channel, consequently establishing e.g. the position of future 

vascular veins (Bennett et al., 2014). This hypothesis came as an outcome from pioneer 

experiments of Tsvi Sachs who proposed auxin feedback on auxin transport as the main 

mechanism during canalization (Sachs, 1975; Sachs, 1986). Sachs’s hypotheses were further 

supported by successful modelling efforts assuming a coordination between polarizing cells 

via a feedback mechanism by which auxin influences the directionality of its own flow 

(Rolland-Lagan & Prusinkiewicz, 2005; Smith et al., 2006; Heisler et al., 2010; Wabnik et al., 

2010; Wabnik et al., 2011; Bennett et al., 2014; Cieslak et al., 2015). Most of these models 

rely on hypothetical assumptions such as flux sensors or direct cell-to-cell communication; 

however, there is no experimental evidence for their existence. Canalization has been 

experimentally shown by visualizing the re-arrangement of cellular polarity of PIN auxin 

transporters by auxin treatment or local auxin maxima. It also has been shown that this 

repolarization relies on activation of gene expression through auxin signalling (Sauer et al., 

2006).  

We aim to identify the molecular players behind the auxin-dependent PIN 

repolarization. PIN1 is localized on the basal sides of endodermal and pericycle cells and cells 

of the vascular tissue in the root (Friml et al., 2002a) whereas PIN2 has basal polarity in the 

cells of young cortex but apical polarity in epidermis (Kleine-Vehn et al., 2008). After auxin 

treatment, the localization of PIN1 changes from basal to inner-lateral in endodermis- and 

pericycle cells, while PIN2 undergoes a basal – outer lateral localization shift in young cortex 

cells (Sauer et al., 2006). The molecular mechanism of this effect is unclear but it depends on 

the transcriptional SCFTIR1-Aux/IAA-ARF signalling pathway (Sauer et al., 2006; Salehin et al., 

2015). Expression profiling on mutants in the SCFTIR1-Aux/IAA-ARF pathway in Arabidopsis 

roots identified WRKY23, a transcription factor as an auxin-dependent regulator of PIN 

polarity (Prat et al., unpublished data). WRKY23 belongs to plant-specific family of 

transcription factors in Arabidopsis, being typically but not exclusively associated with plant 

defense processes and plant-pathogen interactions (Eulgem & Somssich, 2007). We 

previously described a role of WRKY23 in plant-nematode interactions, in regulating auxin 



37 
 

transport by flavonol biosynthesis affecting root development, in Arabidopsis embryo 

development by attenuation of both auxin-dependent and -independent signalling pathways 

towards stem cell specification and recently, in the auxin feedback regulation of PIN polarity 

(Grunewald et al., 2008; Grunewald et al., 2012; Grunewald et al., 2013; Prat et al., 

unpublished data). We demonstrated that transcriptional auxin signalling control cellular 

abundance of WRKY23 and thus mediate so far unknown regulators which change the 

subcellular polarity sorting or trafficking pathways ultimately re-arranging the polar PIN 

distribution (Prat et al., unpublished data). 

In order to identify direct targets of WRKY23, we performed expression profiling 

experiments using an inducible gain-of-function line (35S::WRKY23-GR; (Grunewald et al., 

2012)). To sort out WRKY23-independent auxin-induced genes, we used an auxin-treated 

dominant-negative WRKY23 line (35S::WRKY23-SRDX; (Grunewald et al., 2012)) that is 

defunct in PIN re-arrangement. The obtained gene list was further filtered with publicly 

available expression datasets. Among several genes mostly related to the groups of cell wall 

and defense process regulators, we identified LYSINE-HISTIDINE TRANSPORTER 1 (LHT1; 

At5g40780), a small amino acid permease gene from the amino acid/auxin permease family 

(AAAP). Here, we present its detailed characterization in auxin feedback on PIN repolarization 

and we propose a potential mechanism of its action. 

 

3.3 MATERIALS AND METHODS 

 Plant material and growth conditions 

All Arabidopsis thaliana lines were in Columbia-0 background. T-DNA mutants were acquired 

from the Nottingham Arabidopsis Stock Centre (NASC; http://www.arabidopsis.info). T-DNA 

mutants used in this study are SALK_062169 (exp20-1), SALK_124968 (exl3-1), SALK_048655 

(pmei1-1), SALK_092291 (chr1-1), SAIL_761_D09 (chr2-1) and SALK_034566 (lht1-1). Primers 

used in genotyping are listed in Supporting information (Table S3-1). The arf7 arf19 double 

mutant (Okushima et al., 2005), HS::axr3-1 (Knox et al., 2003), 35S::WRKY23-GR and 

35S::WRKY23-SRDX (Grunewald et al., 2008; Grunewald et al., 2012), Col-0::EARLI1 RNAi [1-

1] (Cecchini et al., 2015) and LHT1::ΔLHT1-GUS (Hirner et al., 2006) have been described 

previously. Seeds were sterilized overnight by chlorine gas, sown on solid Arabidopsis medium 

(AM+: half-strength MS basal salts, 1% Sucrose, and 0.8% phyto-agar, pH 5.7), and stratified 



 
 

at 4°C for at least 2 days prior to transfer to a growth room with a 16-h-light/8-h-dark 

illumination regime at 21°C. Seedlings were grown vertically for 4 or 6 days, depending on the 

assay. 

 

 Construction of transgenic lines 

DNA constructs was created with the Gateway cloning technology (Karimi et al., 2007) 

(Invitrogen). For the RPS5A::LHT1 construct, a 3260-bp-long LHT1-specific  

fragment was amplified from a genomic DNA template with iProof  

High-Fidelity DNA Polymerase (BioRad) with primer LHT1_attB1_Fw  

(5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGTAGCTCAAGCTCCTCA-3′) and primer 

LHT1_attB2_Rv (5′-GGGGACCACTTTGTACAAGAAAGCTGGGTTTTATGAGTAAAACTTGTATC-3′) 

and recombined by BP reaction with pDONR221 to yield pEN-L1-LHT1-R2. Latter vector was 

then recombined by LR MultiSite reaction with pEN_L4_RPS5A_R1, pEN-L1-LHT1-R2 and the 

binary gateway vector pB7m24GW,3. The obtained vectors were transformed to 

Agrobacterium tumefaciens strain C58C1 (pMP90), which was used in a floral dip 

transformation of Arabidopsis thaliana (L.) Heyhn Columbia-0 (Col-0) (Clough & Bent, 1998). 

At least two independent transgenic lines were examined. Overexpression of these lines was 

confirmed by qRT-PCR, primers are included in Supporting Table S3-1. 

 

 Phenotypic analysis 

All measurements were done with ImageJ (http://rsb.info.nih.gov/ij). For root length analysis, 

seedlings were scanned and root lengths were measured. To quantify direction of the root 

growth, we used vertical growth index (VGI), ratio between the root tip ordinate and the root 

length (Grabov et al., 2005). Short term root gravistimulation was done by 6 hours of  

90 degree induction. The seedlings were scanned and root angles were measured. For 

hypocotyl length and gravitropism were seeds stratified for 2 days at 4°C, exposed to light for 

5-6 h at 21°C, and cultivated in the dark at 21°C. Four days old etiolated seedlings were 

scanned for length measurements or plates with seedlings were rotated 90° and measured 

after 24 h.  

 

http://rsb.info.nih.gov/ij
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 Pharmacological treatments  

Arabidopsis treatments with auxin or chemicals were done in liquid AM+ medium at 21°C in 

a growth room. For auxin treatment, plants were incubated with 10 μM α-naphthaleneacetic 

acid (NAA; Sigma Aldrich) for 4h or 6h; while dexamethasone (DEX; Sigma Aldrich) was applied 

in 10 μM concentration for 6h or 24h. Mock treatments were performed with equivalent 

amounts of DMSO. 

 

 Microarray analysis 

Roots of 5-day-old 35S::WRKY23-GR were treated with 10 μM DEX for 6 hours or DMSO, 

respectively. Wt Col-0 and 35S::WRKY23-SRDX plants were treated with 10 μM NAA or DMSO 

for 6 hours. The roots were subsequently collected for RNA isolation. All points were sampled 

in three independent experiments. Total RNA (200 μg per array) was used to hybridize ATH1 

Affymetrix Arabidopsis arrays in accordance with standard procedures at VIB Nucleomics 

Core. Data files containing the probe level intensities (.cel files) were used for background 

correction and normalization using the log2 scale RMA procedure (Irizarry et al., 2003) with R 

(http://www.r-project.org) and the Bioconductor package affylmGUI 

(http://bioinf.wehi.edu.au/affylmGUI/). Genes with the same or contrasting WRKY23 

expression profiles were selected by Pavlidis template matching in TMeV 4.0 (TIGR) (Saeed et 

al., 2003). Finally, genes with a significant P value (< 0.001), denoting expression above 

background, with minimum 2-fold change compared to the respective control, were retained 

for further analysis. 

 

 RNA extraction, cDNA synthesis, and quantitative RT-PCR and analysis 

RNA extraction, cDNA Synthesis, and quantitative RT-PCR was performed as described by 

Tejos et al. (2014). Targets were quantified with specific primer pairs designed with Primer-

BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Expression levels were normalized 

to GAMMA-TUBULIN 2 (TUB2; At5g05620) which was constitutively expressed across 

samples. All PCRs were run in three technical repeats and the data were processed with qRT 

PCR analysis software (Frederik Coppens; Applied Bioinformatics & Biostatistics group; PSB 

VIB, Belgium). Primers used in the study are listed in Supporting information (Table S3-1). 

 



 
 

 Whole-mount in situ Immunolocalization, microscopy and quantitative 
analysis of PIN relocalization 

PIN immunolocalizations in primary root were performed as described by Sauer and Friml 

(2010). The antibodies were used in the following dilutions: anti-PIN1, 1:1000 (Paciorek et al., 

2005) and anti-PIN2, 1:1000 (Abas et al., 2006). In all cases, the secondary goat anti-rabbit 

antibody coupled to Cy3 (Sigma-Aldrich) was diluted 1:600. Confocal microscopy was 

performed using a Zeiss LSM 700 confocal microscope. Quantitative analysis of PIN 

relocalization was performed as described by Sauer et al. (2006). 

 

 Histological analyses and microscopy 

To detect β-Glucuronidase (GUS) activity, seedlings were incubated in reaction buffer 

containing 0.1 M sodium phosphate buffer (pH 7), 1 mM ferricyanide, 1 mM ferrocyanide, 

0.1% Triton X-100 and 1 mg/ml X-Gluc for 2 h in dark at 37 °C. Afterwards, chlorophyll was 

removed by destaining in 70% ethanol and seedlings were cleared.  

Clearing of tissues (seedlings, cotyledons) was performed in a solution containing 4% HCl and 

20% methanol for 15 min at 65 °C, followed by 15 min incubation in 7% NaOH and 70% 

ethanol at room temperature. Next, seedlings were rehydrated by successive incubations in 

70, 50, 25 and 10% ethanol for 5 min, followed by incubation in a solution containing 25% 

glycerol and 5% ethanol. Finally, seedlings were mounted in 50% glycerol and monitored by 

differential interference contrast microscopy DIC (Olympus BX53) or stereomicroscope 

(Olympus SZX16). 

 

 Basipetal auxin transport assay 

Seeds were sown on AM+ plates, stratified for 2 days at 4°C, exposed to light for 5-6 h at 21°C, 

and grown in the dark at 21°C for 5 days. Etiolated hypocotyls were decapitated to avoid the 

effect of cotyledon auxin biosynthesis. A droplet of AM+-agar (1.25%) with 1 µM 3H-IAA 

(American Radiolabeled Chemicals, Inc.) and DMSO, or 1 µM 3H-IAA and 50 µM IAA was 

applied to the apical part of the hypocotyls, respectively. After 6 hours, hypocotyls were 

collected, homogenized in liquid nitrogen and incubated overnight in Opti-Fluor scintillation 

cocktail (Perkin Elmer). Content of transported 3H-IAA was then measured in a scintillation 

counter (Hidex 300SL) for 120 s with three technical repetitions. 
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3.4 RESULTS AND DISCUSSION 

 Identification of WRKY23 downstream targets by microarray analysis 

To identify downstream targets of WRKY23, i.e. genes potentially regulating PIN 

repolarization, we designed a microarray experiment using lines where WRKY23 is either 

inducibly nuclear targeted (35S::WRKY23-GR) or where WRKY23 is turned into a 

transcriptional repressor (35S::WRKY23-SRDX) (Grunewald et al., 2012) (Fig.3-1 A). First, we 

obtained a gene set by comparing 35S::WRKY23-GR seedlings with and without 

Dexamethasone (Dex) treatment A total of 111 genes, which were up-regulated in 

dexamethasone treated seedlings are targets of WRKY23. Next, we identified WRKY23-

dependent genes in their auxin response. We found 950 genes which lost responsiveness to 

auxin treatment in 35S::WRKY23-SRDX compared to control. The overlap between two gene 

sets identified a list of 61 genes. The list was confronted with previously published microarray 

data on auxin-treated seedlings of solitary root1 (slr-1) mutant (Vanneste et al., 2005) 

because WRKY23 acts downstream of the SLR/IAA14 transcriptional repressor (Fig.3-1 B) 

(Grunewald et al., 2008). Genes, which were up-regulated in Wt Col-0 but not in slr-1 

seedlings after auxin treatment, were used to filter the set of genes from our microarray 

experiment. Using this approach, we identified 14 genes as putative polarity determinants 

(Fig.3-1 C). Obtained data from expression profiling were further verified by qRT-PCR 

measurement of transcript levels (Fig. S3-1 A – B). 



 
 

 

Figure 3-1 Expression profiling experiments to identify WRKY23-dowstream regulators of PIN repolarization. 

A. Scheme of the microarray experiments and filtering strategy. Selected genes in each filtering step show a 

minimum 2-fold change compared to the respective control with a p value lower than 0,001. B. Candidate list 

overlap with auxin-inducible genes in an SLR1-dependent manner (Vanneste et al., 2005). C. Final list of putative 

polarity determinants identified in the microarray experiments. Experiments in Figure 3-1 were designed and 

statistical analysis was performed by W.G..  

 Defense and stress related genes 

The highest fold changes of the expression were observed in the group of bifunctional 

inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily proteins commonly 

termed as AZI1-like genes or EARLI1-like genes (AZI1, EARLI1, AZI3, AZI4; At4g12470 to 

At4g12500) (Fig.3-1 C and Fig. S3-1 A – B). EARLI1-like genes belong to a superfamily of 

proteins containing 8 cysteine residues, so called eight-cysteine-motif (8CM), and they are 

further sub-grouped into the HyPRP family of hybrid proline-rich proteins by the presence of 

a proline-rich domain (PRD) before the 8CM motif in their amino acid sequence (Jose-Estanyol 
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et al., 2004). The EARLI1-like gene group forms a cluster on the chromosome 4 of Arabidopsis. 

Paralogous genes within this cluster share high sequence similarity and therefore they have 

probably similar functions (Jose-Estanyol et al., 2004). The AZI1 protein (AZELAIC ACID 

INDUCED 1; At4g12470) is a component of both systemic acquired resistance (SAR) and 

induced systemic resistance. These processes act through mobile priming signal by uptake of 

lipid-derived azelaic acid (Jung et al., 2009; Cecchini et al., 2015). Together with EARLI1 (EARLY 

ARABIDOPSIS ALUMINUM INDUCED 1; At4g12480) they contain a putative signal sequence 

followed by a hydrophilic PRD similar to HyPRPs and to the N-terminus of extensins located 

in the plant cell wall. The C-terminal hydrophobic 8CM motif was suggested to have a 

functional connection to the cell membrane (Zhang & Schlappi, 2007). Microsomal 

fractionation experiments demonstrated that AZI1 and its close paralogue EARLI1 have strong 

association with membranes while the SAR induction targets EARLI1-like proteins associate 

with plastids (Cecchini et al., 2015). It was suggested that EARLI1 is secreted to the cell wall 

but its 8CM motif anchors it to the cell membrane. EARLI1, classified as a putative lipid-

transfer protein, has been thought to be involved in maintenance of membrane- or cell wall 

stability (Bubier & Schlappi, 2004) where it forms high order complexes and/or aggregates in 

the extracellular space to protect the cell from damage (Zhang & Schlappi, 2007). 

Our microarray selection contains also a pair of genes encoding Cysteine/Histidine-

rich C1 domain proteins (hereby named as CHR1; At3g50010 and CHR2; At5g40590) (Fig. 3-1 

C and Fig. S3-1 A – B). These genes belong to the family of tandem CCCH-zinc finger proteins 

characterized by three cysteines followed by one histidine (Blackshear, 2002). Some of the 

members of this plant-unique family were shown to mediate plant growth, development and 

stress responses by regulation of gene expression at both transcriptional and post-

transcriptional levels (Pomeranz et al., 2010; Pomeranz et al., 2011). As an example, CaDC1 

proteins bind RNA and DNA and are required for plant defense responses to microbial 

pathogens in pepper (Hwang et al., 2014). 

 

 Cell wall related genes 

Another group of candidate genes that could be generalized by functional similarity, being 

commonly involved in defense processes in the cell wall, are members of the expansin- , and 

exordium-like families (EXP20; At4g38210 and EXL3; At5t51550, respectively), together with 



 
 

a plant invertase/pectin methylesterase inhibitor superfamily protein gene (PMEI; 

At2g26440) (Fig. 3-1 C and Fig. S3-1 A – B). Expansins are proteins mediating cell wall 

loosening: they enable the local sliding of polymers by reducing adhesion between adjacent 

cell wall polysaccharides. They act e.g. in cell wall remodelling after cytokinesis or during 

syncytium formation by parasitic nematodes (Wieczorek et al., 2006; Marowa et al., 2016). 

Dynamics of the cell wall determines cell shape and function during development (Fukuda, 

2014). Expansins have the ability to trigger non-enzymatically pH-dependent relaxation of the 

cell wall and thus to allow cell expansion, a phenomenon called acid growth (Rayle & Cleland, 

1992; Cosgrove, 2000). Expansins can be influenced by various environmental factors but also 

by plant hormones including auxin (McQueen-Mason et al., 1992; Zhao et al., 2012). 

EXORDIUM and EXORDIUM-LIKE genes (EXO; EXL) were identified as brassinosteroid 

(BR) induced genes. The function of EXO genes is essential for cell expansion in leaves; they 

potentially coordinate responses of BR with environmental and developmental signals and 

adaptation to low nutrition stress (Schroder et al., 2009; Schroder et al., 2011). EXO proteins 

are conserved, both topologically and in their sequence, in evolutionary distinct green plants 

(Schroder et al., 2009). EXO, EXL and other members of the family carry an N-terminal signal 

peptide. In silico analyses as well as experimental evidence indicate an extracellular 

localization of these proteins as a part of cell wall proteome (Jamet et al., 2006; Schroder et 

al., 2011). 

Plant invertase/pectin methylesterase inhibitor superfamily proteins (PMEi) are 

regulators of plant methylesterases (PMEs) either during growth and development (Reca et 

al., 2012; Rocchi et al., 2012) or during plant-pathogen interactions (Lionetti et al., 2012). 

PMEs remove methyl esters from pectin and thus make the cell wall susceptible for the action 

of microbial polygalacturonases and pectin lyases (Arancibia & Motsenbocker, 2006). 

Overexpression of PMEis reduces PME activity, leading to a higher level of pectin esterification 

and to a concomitant increase in resistance to fungal and bacterial pathogens (Lionetti et al., 

2007; Raiola et al., 2011). The sugar beet cyst nematode Heterodera schactii infects 

Arabidopsis roots and exploits the host-encoded PME3. Overexpression of PME3 causes 

increased susceptibility to the nematode. It was proposed that PME3 locally reduces the 

pectin esterification and improves the cell wall loosening of pre-syncytial cells during early 

stages of syncytium formation (Hewezi et al., 2008). Interestingly, WRKY23 is expressed 

during the early stages of feeding site establishment (Grunewald et al., 2008).  
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 Residual candidates 

From the rest of the candidates in our list, attention was focused on an actin-binding FH2 

(FORMIN HOMOLOGY 2; FH2; At3g07540) family protein (Fig. 3-1 C, Fig. S3-1 A – B). Formins 

(FH2 domain-containing proteins) are key eukaryotic cytoskeletal regulators (Blanchoin & 

Staiger, 2010). In some plants, formin interacts with microtubules (Wang et al., 2012). 

Angiosperm formins can be divided into two clades (Class I and Class II) exhibiting 

characteristic domain organisation. Class I formins are often transmembrane proteins 

(Cvrckova et al., 2004). The most abundant Class I formin, FH1 (Hruz et al., 2008) can nucleate 

and bundle actin (Michelot et al., 2005; Michelot et al., 2006). Mutation of FH1 causes 

stabilization of the actin cytoskeleton and increases microtubule end dynamics possibly as 

result of microtubule-actin cross-talk (Rosero et al., 2013). 

 We identified also previously not described genes i.e. a gene encoding an unknown 

protein (UNK1; At1g28400) (Fig.3-1 C, Fig. S3-1 A – B). The gene has a very close homolog 

(UNK2; At2g33850). However, their biological function is currently not known and no T-DNA 

mutants are available. The LEGUME LECTIN FAMILY PROTEIN (LLP; At1g53070) is not very 

well-described protein, either. Legume lectins are known to bind carbohydrates in the cell 

wall but further characterisation of this particular protein has never been done due to missing 

T-DNA mutant lines in public databases. 

 

 LHT1 transporter 

WRKY23 also regulates LYSINE-HISTIDINE TRANSPORTER 1 (LHT1; At5g40780) (Fig.3-1 C, Fig. 

S3-1 A – B). LHT1 is a transport protein from the AAAP (amino acid/auxin permease) 

superfamily, consisting of lysine-histidine transporters (LHTs), amino acid permeases (AAPs), 

proline transporters (ProTs), γ-aminobutyric acid transporters (GATs), ANT1-like aromatic and 

neutral amino acid transporters and auxin transporters (AUXs (Bennett et al., 1996; Wipf et 

al., 2002; Rentsch et al., 2007)). The LHT family consists of 10 members (LHT1 to 10) in 

Arabidopsis (Tegeder & Ward, 2012). LHT1 was originally described as a lysine and histidine 

selective transporter (Chen & Bush, 1997). Subsequent studies on LHT1 and LHT2 suggest that 

LHTs preferentially transport neutral and acidic amino acids with high affinity (Lee & Tegeder, 

2004; Hirner et al., 2006; Svennerstam et al., 2007; Svennerstam et al., 2008). Functional 

analysis proved that LHT1 has much higher affinity to amino acids than the transporters of 



 
 

the related AAP subfamily (Hirner et al., 2006). LHT1 is a CM-localised transmembrane protein 

that is expressed in the root epidermis and leaf mesophyll cells and has been suggested to be 

involved in import of organic nitrogen in the amino acid form from the soil solution (Hirner et 

al., 2006). Homologous genes to LHT1 exhibit distinct and partially overlapping spatio-

temporal expression patterns (Hirner et al., 2006; Forsum et al., 2008). A forward genetic 

screen revealed that a mutation in LHT1 caused resistance to ACC (1-aminocycopropane-1-

carboxylic acid), an ethylene precursor (Shin et al., 2015). Several nitrate/peptide transporter 

family members have been shown to transport plant hormones (Krouk et al., 2010; Kanno et 

al., 2012). For example, NRT1.1 has dual transport specificity for the endogenous hormone 

auxin and for the exogenous nutrient nitrate. The two substrates seem to compete for NRT1.1 

transport activity: at low nitrate concentrations, auxin-transport capacity of NRT1.1 is high, 

whereas at high nitrate concentrations, the auxin uptake into cells is low (Krouk et al., 2010). 

 

 Polarity related phenotype analysis narrows down the list of putative 
regulators 

To narrow down the list of genes from our microarray experiment, we decided to employ 

thorough analysis of the PIN polarity/auxin transport-related phenotypes. The importance of 

tight regulation of PIN polarity for growth and development has previously been shown 

(Wisniewska et al., 2006 reviewed in Adamowski & Friml, 2015). 

At first, we decided to study leaf venation pattern in mutant lines. Leaf venation 

crucially depends on the polarity of PIN proteins and in particular on the auxin feedback on 

PIN polarity as proposed by the canalization hypothesis (Scarpella et al., 2006). As we have 

shown previously, dominant–negative downregulation of WRKY23 causes venation defects 

and morphological changes in cotyledons (Prat et al., unpublished data). Therefore, we looked 

for uniquely appeared or enriched abnormal patterns in available mutants and transgenic 

lines. In Wt Col-0 cotyledons, veins form closed circles, at the beginning two and then four 

lobes (Fig.3-2 A). This almost unvarying pattern is formed by the self-regulatory auxin 

canalization mechanism, depending on correct PIN1 polarity (Scarpella et al., 2006). We 

screened a set of publicly available T-DNA mutants; nevertheless, no T-DNA insertion lines 

could be found for FH2 (At3g07540), LLP (At1g53070) and UNK1 and UNK2 (At1g28400; 

At2g33850). First, we checked venation patterning in knock-out mutants in our cell wall-
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related candidates. We observed no or very little abnormalities in cotyledon vascularization 

(exp20-1: 15%; exl3-1: 14%; and pmei1-1: 20.3%) (Fig.3-2 A). Similarly, the defense- and 

stress-related chr1-1 and chr2-1 mutants did not show any obvious venation phenotype, 

neither in single nor in double homozygous form (Fig.3-2 A). Since EARLI1-like genes form a 

gene cluster and they share a high sequence similarity (Jose-Estanyol et al., 2004), analysis of 

single mutants is useless and formation of multiple mutants is impossible due to tight linkage. 

Therefore, we used RNAi targeting all members of this group (Col-0::EARLI1 RNAi [1-1]) 

(Cecchini et al., 2015) (Fig.3-2 A). Although transcript levels of each targeted EARLI1-like 

homologues was substantially diminished (Fig. S3-1 C), we observed only very mild changes 

in vascularization pattern with slightly increased frequency (25%) in comparison with control. 

On the other hand, we observed strong venation patterning defects in lht1-1, a loss-of-

function T-DNA mutant of LHT1 (Fig.3-2 A, Fig. S3-1 D). In more than 41% of cotyledons, 

vascularization was not connected to the midvein and loops were not finished. To gain further 

insight, we overexpressed LHT1 under the constitutive RPS5A promoter (Fig. S3-1 E). 

Interestingly, a similar effect as of null-mutant was observed in the LHT1 overexpressors (48%) 

(Fig. 3-2 A). Taken together, a combination of results from gain-of-function and loss-of-

function lines demonstrated the effect of LHT1 in leaf venation patterning. 

As was previously demonstrated, regulation of root growth is fundamentally 

connected with auxin transport. For that reason, we checked root length in our promising 

candidates characterized as having deviated cotyledon vascularization (Fig.3-2 B). While 

pmei1-1 and Col-0::EARLI1 RNAi [1-1] had no or very little effect on root length, astonishingly, 

roots of lht1-1 plants grew longer than Col-0. Oppositely, RPS5A::LHT1 plants had shorter 

roots (Fig.3-2 B). As was previously shown, vertical growth of the root in accordance to gravity 

vector depends on correct auxin transport and PIN polarity (Wisniewska et al., 2006), 

unfortunately, vertical root growth observed in mutants of candidate gene lines shows no or 

very weak phenotypes (Fig. S3-3). 

We noticed that RPS5A::LHT1 had a normal closed apical hook but shortened 

hypocotyl in comparison with control (Fig.3-2 C). PIN polarity is also very important in 

hypocotyl negative gravitropism (Rakusova et al., 2011; Rakusova et al., 2015). Hypocotyl 

negative gravitropism is caused by asymmetric growth due to unequal auxin distribution that 

is generated by mainly PIN3-mediated lateral transport. Gravity stimulation polarizes PIN3 to 

the bottom side of endodermal cells resulting in auxin accumulation in adjacent tissues at the 



 
 

lower side of the stimulated organ where auxin induces cell elongation and eventually 

hypocotyl bending (Friml et al., 2002b; Rakusova et al., 2011; Rakusova et al., 2015). We found 

in stimulated etiolated hypocotyls that lht1-1 hypocotyls were hypersensitive to gravity, while 

overexpression of LHT1 caused inability to react to gravity direction (Fig.3-2 D). 

Altogether, we found in our physiological tests that expression of LHT1 affected leaf 

venation pattern, root growth and hypocotyl gravitropism. Therefore we conclude that LHT1 

may regulate auxin transport and/or PIN protein polarity. 

 

Figure 3-2 Polarity-related phenotype analysis of mutants in putative regulators. 

A. Cotyledon venation pattern analysis of mutants in putative regulators. Percentages represent quantity of 

defect cotyledons. Bar size 1 mm. B. Root length analysis of mutants in putative regulators. Centre lines show 

the medians; box limits indicate the 25th and 75th percentiles as determined by the R software; whiskers extend 

1.5 times the interquartile range from the 25th to 75th percentiles; data points are plotted as open circles. 

 nmin = 20 sample points. C. Hypocotyl length analysis of mutants in putative regulators. Box-whisker plot 
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parameters are as in B. nmin = 30 sample points. D. Hypocotyl response to gravistimulation of mutants in putative 

regulators. Box-whisker plot parameters are as in B. nmin = 30 sample points. 

 Effect of LHT1 gene expression on PIN2 lateralization 

Expression profiling experiments were focused on identification of molecular players 

responsible for auxin-dependent PIN repolarization. Therefore we tested the effect of auxin 

on PIN2 polarity in the root tip of lht1-1 and RPS5A::LHT1 lines.  

We analysed PIN2 abundance at basal and outer lateral membrane domains of cortex 

cells by immunolocalization. NAA treatment increased PIN2 lateralization in cortex cells of  

Wt Col-0 (Fig.3-3 A). In contrast, lht1-1 showed lower ability to auxin-dependent PIN 

repolarization. Without auxin application, PIN2 polarity was not affected (Fig.3-3 B and D). In 

contrast to the observed lateralization defect in lht1-1, we observed increased PIN2 

lateralization in RPS5A::LHT1 plants without hormone application. Interestingly, plants 

responded to NAA similar to Wt Col-0 and no difference in the PIN2 polarity index could be 

detected (Fig.3-3 C and E). These results showed that correct expression level of LHT1 is 

necessary for successful repolarization of PIN2 but LHT1 itself is not indispensable for polarity 

establishment. 

 

Figure 3-3 Immunolocalization of PIN2 protein in root of LHT1 loss- and gain-of-function lines.  



 
 

A. Cortex cells of Wt Col-0 treated with Mock/NAA. Arrowheads highlight PIN polarity. B. Cortex cells of lht1-1 

treated with Mock/NAA. Arrowheads highlight PIN polarity. C. Cortex cells of RPS5A::LHT1 treated with 

Mock/NAA. Arrowheads highlight PIN polarity. D. Visualization of mean ratio of lateral to basal signal intensity 

of PIN2 in cortex cells in Wt Col-0 and lht1-1 treated plants with 10 µM NAA for 4 hours. Error bars indicates 

standard error. A two-tailed Student’s t test compared marked sets of data. (***) P < 0.0001. n ˃ 50 cells 

corresponding to roots imaged under comparable conditions. E. Visualization of mean ratio of lateral to basal 

signal intensity of PIN2 in cortex cells in RPS5A::LHT1 plants treated with 10 µM NAA for 4 hours. Error bars 

indicates standard error. A two-tailed Student’s t test compared marked sets of data. (***) P < 0.0001. n ˃ 50 

cells corresponding to roots imaged under comparable conditions. 

 

 Expression of LHT1 is regulated by WRKY23 and depends on auxin 
signalling pathway  

Next, we investigated the expression regulation of LHT1. In our previous study, we 

demonstrated that dexamethasone-induced nuclear localization of WRKY23-GR increased 

PIN2 lateralization in the cortex, comparably to NAA treatment (Prat et al., unpublished data). 

Therefore, we tested whether LHT1 expression is WRKY23-dependent. Indeed, LHT1 showed 

increased expression levels after activation of WRKY23-GR. From the other side of microarray 

selection criteria, we confirmed that LHT1 is auxin inducible. After NAA application, 

expression of LHT1 increased, while after the same auxin treatment in dominant-negative 

35S::WRKY23-SRDX line LHT1 expression was downregulated in comparison with control  

Wt-Col0 (Fig.3-4 A).  

As it was shown previously, auxin is unable to mediate PIN polarity re-arrangements 

in induced HS::axr3-1 and in arf7 arf19 double mutant backgrounds (Sauer et al., 2006). We 

also showed WRKY23 expression dependence on auxin signalling. According to our results, 

expression of LHT1 gene follows the logic of gene regulation involved in PIN repolarization 

(Fig.3-4 B). Auxin acts through its signalling pathway to activate expression of the WRKY23 

transcription factor. WRKY23 transactivation then regulates expression of LHT1, in agreement 

with our microarray results. Whether the not on/off-like effect of LHT1 on PIN repolarization 

is due to its extensive redundancy or to a rather modulator than effector function, remains to 

be elucidated. 

 Next, we analysed auxin-dependence of LHT1 expression in more detail. Similar to 

WRKY23 (Prat et al., unpublished data), expression of LHT1 depends on the concentration of 

applied auxin. In comparison with WRKY23, after 4 hours of 10 nM NAA treatment, we 
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observed mRNA levels had increased three times (Fig.3-4 C). This sensitivity to auxin 

application lead to hypothesis that this gene is also directly activated by auxin signalling and 

WRKY23 acts as fine tuner of this process. This hypothesis is further supported with time 

regulation of the LHT1 expression. We observed that already 60 minutes of 10 µM NAA 

increased expression of LHT1 (Fig.3-4 D). In contrast, 10 µM NAA used in PIN lateralization 

experiments increased expression of WRKY23 between 120 and 240 minutes of auxin 

treatment. 

 Auxin application expanded the expression domain of LHT1. We applied effective 

amount of NAA to reporter lines expressing transcription fusion of LHT1 with GUS. 

LHT1::ΔLHT1-GUS (Hirner et al., 2006) is expressed in the root tip including the columella, 

lateral root cap, epidermis and probably also cortex and endodermis. Six hours of NAA 

treatment generally increased LHT1 expression and expanded the expression pattern to the 

entire root tip (Fig.3-4 E). 

 The observed transcriptional behaviour demonstrated dual dependency of LHT1 

expression on both auxin signalling and on WRKY23. On the one hand, LHT1 expression was 

activated in Dex-induced 35S::WRKY23-GR plants, while LHT1 lost its auxin-inducibility in 

35S::WRKY23-SRDX background. Furthermore, LHT1 is more sensitive to auxin application 

than WRKY23, both in time as well as in concentration dependence. This could be understood 

that LHT1 plays a role in complex regulation network with consequence of increasing 

modulation variety. Unambiguous PIN polarity regulation as was shown e.g. in PID 

overexpression cannot explain very tiny polarity oscillation during plant growth and 

development. Involvement of additional step in regulatory process, e.g. in modulation of 

auxin signalling or transport in cells undergoing PIN repolarization remained to be clarified. 

 



 
 

 

Figure 3-4 Transcript levels and expression of LHT1 during auxin treatments. 

A. LHT1 transcript level depends on WRKY23. qRT-PCR experiment showed dependence of LHT1 transcript levels, 

normalized to mRNA levels in controls. Bars represent relative fold change of expression. Error bars represent 

standard deviation (see Materials and Methods for detailed description). B. LHT1 transcript level is dependent 

on auxin through the SCFTIR1-Aux/IAA-ARF signalling pathway. qRT-PCR experiment showed transcript levels of 

LHT1 in auxin signalling mutants HS::axr3-1 and arf7 arf19. Bars represent relative fold change of expression. 

Error bars represent standard deviation (see Materials and Methods for detailed description). C. – D. LHT1 

expression is auxin dose and time dependent. qRT-PCR experiment showed transcript levels of LHT1 in Wt  

Col-0 seedlings treated with respective concertation of NAA for respective time. Points represent relative fold 

change of expression. Error bars represent standard deviation (see Materials and Methods for detailed 

description). E. LHT1 promoter activation after auxin treatment. Expression pattern of LHT1::ΔLHT1-GUS (Hirner 

et al., 2006) in cleared root tips was visualized with a DIC microscope (see Materials and Methods for detailed 

description). Bar size 10 µm. 

 LHT1 expression regulates auxin abundance/signalling in the root tip 

To analyse the function of LHT1 during repolarization, we crossed RPS5A::LHT1 with the auxin 

reporters DR5rev and R2D2 (Benkova et al., 2003; Liao et al., 2015). We observed defects in 

local auxin maxima formation in the root tip. DR5rev::GFP signal spread to the outer tiers in 

columella cells and lateral root cap suggesting that auxin transport was affected (Fig.3-5 A). 

Therefore, we further analysed auxin response in the root tip by quantitative measurement 

of ratiometric auxin reporter R2D2 (Fig.3-5 B). In R2D2, the DII auxin degradable domain is 

fused to n3×Venus and a stabilised mDII domain fused to ntdTomato on a single transgene. 

Reduction of yellow relative to red signal measures auxin accumulation in this system (Liao et 

al., 2015). In control R2D2 plants, average ratio between fluorescent channels was equal to 

1, while in the crossed gain-of-function lines of LHT1 to R2D2 the fluorescent ratio was shifted 
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in favour of the stabilised mDII domain represented by the red channel (Fig.3-5 C). These 

results indicate a possible change in auxin transport with a consequence of increased level of 

auxin in the cells of the root tip. 

To date, several permeases were shown to exhibit dual transport activity for 

structurally different substrates (Krouk et al., 2010; Kanno et al., 2012). Since LHT1 is 

expressed in the hypocotyl too (Fig.3-5 D – E), we tested auxin transport ability in hypocotyls 

by radioactively labelled basipetal auxin transport assay. We observed a significant decrease 

in transported 3H-IAA in lht1-1 null-mutant. In contrast, hypocotyls of gain-of-function lines 

transported three times more radioactively labelled IAA than the control line did. In a 

complementary experiment, we added excessive amounts of non-labelled IAA to the drop of 

3H-IAA in order to check substrate competitiveness of auxin transport. In all of the cases, in 

control, null-mutant, and gain-of-function lines, we detected decreased levels of 3H-IAA 

suggesting that non-labelled IAA is competing for active transport with 3H-IAA (Fig.3-5 F). All 

these results proposed a hypothesis, that LHT1 has a role in cellular auxin transport important 

for auxin-dependent PIN repolarization. 

 

 

Figure 3-5 Auxin abundance/signalling in the root tip of LHT1 loss- and gain-of-function lines. 



 
 

A. Defects in formation of local auxin maxima in the root tip. Note the GFP signal spread to the outer tiers in 

columella cells and lateral root cap in the LHT1 overexpressor. B. – C. LHT1 overexpression caused shift of 

fluorescent ratio in root cells of ratiometric R2D2 auxin reporter in favour of the stabilised mDII domain. Chart 

represents quantification of fluorescent channel measurements of the R2D2.  D. – E. GUS staining of etiolated 

hypocotyl of LHT1::ΔLHT1-GUS (Hirner et al., 2006). LHT1 promoter is active in cotyledons, apical hook and also 

in etiolated hypocotyls. F. Measurement of basipetal transport of radioactively labelled auxin in LHT1 loss- and 

gain-of-function etiolated hypocotyls. Adding of non-labelled auxin decreased transport activity due to substrate 

inhibition. Graph shows counts per minutes (CPM) of radioactivity in hypocotyls of Col-0 and lht1-1 and 

RPS5A::LHT1 treated with 3H-IAA for 6 hours. Error bars indicates standard deviation. A two-tailed Student’s t 

test compared marked sets of data. (**) P < 0.01 (***) P < 0.0001. 

 

Observed mechanism of LHT1 function opens a question about physiological relevance 

of auxin transport and/or auxin levels in the cells during auxin-dependent PIN repolarization. 

In transgenic lines with ectopic expression of PIN1 and PIN2 proteins, lateralization was cell 

type-specific but not affected. Strong constitutive expression of PIN1 in 35S::PIN1 transgenic 

line did not change character of PIN1 lateralization to outer-lateral side either was PIN1 

ectopically expressed in cortex cells (Sauer et al., 2006). We can speculate that auxin levels 

decreased inside the cells ectopically expressing PIN efflux carriers. Similarly, in mutants of 

auxin influx carriers, intracellular auxin levels should be affected. Protein family of influx 

carriers consists of four genes in Arabidopsis: AUX1, LAX1, LAX2, and LAX3, which are non-

polarly localized on the CM. They play a role in keeping auxin in the transporting cells, thereby 

overcoming its leakage from the transport channels (Petrasek & Friml, 2009). Mutations in 

auxin influx carriers result in developmental defects. In aux1 mutants root gravitropism is 

severely affected and have a decreased number of lateral roots. lax3 mutants show 

postponed lateral root emergence. Double mutants aux1 lax3 act alongside to regulate lateral 

root development by regulating the emergence and initiation (Marchant et al., 2002; Swarup 

et al., 2008). Mutations in multiple members of the AUX/LAX family cause irregular divergence 

angles between successive primordia and thus affect phyllotactic patterning in aerial parts of 

Arabidopsis (Bainbridge et al., 2008). These findings highlight the effect of auxin intake in 

developmental processes. Nevertheless, PIN re-arrangement in roots of aux1-21 lax1 lax2 

lax3 quadruple mutant was not affected (Fig. S3-4).  

 However, we demonstrated that LHT1 mediated auxin-dependent PIN polarity re-

arrangement since gain-of-function and loss-of-function LHT1 lines were affected in this 
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process. The phenotypes on cellular level were also developmentally relevant, as we observed 

defects typical for altered auxin homeostasis and/or canalization such as changes in the leaf 

vasculature and hypocotyl gravitropism. Phenotypes in root, with exception of PIN re-

arrangement, were rather mild. Whether the causative effect of LHT1 is due to its extensive 

redundancy among members of AAAPs or to a rather modulator than effector function, 

remains unclear. Therefore, characterisation of auxin and its conjugates content and 

experimental evidence of auxin transport also in heterologous systems would be necessary 

for understanding of LHT1 action. Physiological function of plant permeases with dual 

transport activity for structurally different substrates may represent missing part in regulation 

of complex developmental processes, e.g. auxin-nitrate competition moderated by NRT1.1 in 

lateral root initiation (Krouk et al., 2010). Hence we propose that integrative mathematical 

models of self-regulatory auxin feedback on canalization should take in account also these 

dual substrate transporters. 
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3.8 SUPPORTING INFORMATION 

 

Figure S 3-1 Transcript level confirmation of microarray experiment. 

A. Candidate genes are upregulated by WRKY23-GR DEX induction. Bars represent relative fold change of 

expression. Error bars represent standard deviation B. Candidate genes are downregulated in auxin treated 

dominant-negative WRKY23-SRDX line compared with auxin treated Wt Col-0. Bars represent relative fold 

change of expression. Error bars represent standard deviation C. EARLI1-like gene transcript level was decreased 

in Col-0::EARLI1 RNAi [1-1] (Cecchini et al., 2015). Bars represent relative fold change of expression. Error bars 

represent standard deviation D. LHT1 transcript was almost absent in lht1-1 T-DNA mutant line. Bars represent 

relative fold change of expression. Error bars represent standard deviation (see Materials and Methods for 

detailed description). E. LHT1 was overexpressed in transgenic lines under control of constitutive RPS5A 

promoter. Bars represent relative fold change of expression. Error bars represent standard deviation (see 

Materials and Methods for detailed description). 



 
 

 

 

Figure S 3-2 Vertical root growth in accordance to gravity vector observed in mutants of candidate gene line. 

A. Vertical root growth in accordance to gravity vector observed in mutants of candidate gene lines shows no or 

very weak phenotype. Graph shows vertical growth index (VGI), the ratio between the root tip ordinate and the 

root length (Grabov et al., 2005). Box-whisker plot parameters are as in Fig. 2 B. nmin = 20 sample points. 

 

 

Figure S 3-3 PIN2 re-arrangement in cortex cells in Wt Col-0 and aux1-21 lax1 lax2 lax3. 

Graph shows mean ratio of lateral to basal signal intensity of PIN2 in cortex cells in Wt Col-0 and aux1-21 lax1 

lax2 lax3 treated plants with 10 µM NAA for 4 hours. Error bars indicates standard error. 
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Table S 3-1 List of primers used in this study for T-DNA genotyping and qRT-PCR. 
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4 LRRK1, a leucine-rich repeat receptor-like kinase and its role in auxin-
dependent PIN re-arrangement 

 
Tomáš Prát, Wim Grunewald, Gergely Molnár, Elwira Smakowska, Youssef Belkhadir, Bert De 

Rybel, and Jiří Friml 

 

4.1 INTRODUCTION 

The auxin feed-back on polar PIN localization was proposed by canalization hypothesis as a 

crucial mechanism in mediating multiple developmental processes. We used the auxin effect 

on PIN polarity in Arabidopsis root meristems as a proxy for canalization and performed 

microarray experiments to find regulators of this process. Recently, we identified a novel 

regulator downstream of SCFTIR1-Aux/IAA-ARF auxin signalling pathway, transcription factor 

WRKY23, and demonstrated its crucial role in mediating the auxin effect on PIN polarity (Prat 

et al., unpublished data). To describe WRKY23 transcriptional network targeting PIN 

localization and thus regulating plant development, we performed expression profiling 

experiments using an inducible gain-of-function line (35S::WRKY23-GR; Grunewald et al., 

2012) and an auxin-treated dominant-negative WRKY23 line (35S::WRKY23-SRDX; Grunewald 

et al., 2012) that is defunct in PIN re-arrangement. Acquired list of putative polarity 

determinants was further narrowed down by polarity-related phenotype analysis of 

insertional mutants. We identified LYSINE-HISTIDINE TRANSPORTER 1 (LHT1; At5g40780), a 

small amino acid/auxin permease affecting auxin-dependent PIN repolarization. 

Nevertheless, observed imperfect phenotypes of gain- and loss-of-function line in LHT1 gene 

suggest involvement also other putative players accomplishing regulatory pathway of auxin-

dependent PIN repolarization. 

Besides other candidates, our microarray focused on identification of putative PIN 

polarity determinants revealed also a member of leucine-rich repeat receptor-like protein 

kinase (LRR-RLK) (hereby named as LRRK1; LEUCINE-RICH REPEAT TRANSMEMBRANE 

PROTEIN KINASE PROTEIN 1; At1g05700). Some Eukaryotes, like yeast or animals, use to sense 

extracellular signals, they activate intracellular signalling pathways and regulate cellular 

responses via transmembrane G-protein-coupled receptors (GPCRs). However, the existence 

of GPCRs has never been sufficiently demonstrated in plants (Taddese et al., 2014). Instead, 

there are 610 RLKs and related receptor-like cytoplasmic kinases in Arabidopsis (Shiu & 



 
 

Bleecker, 2001). Based on extracellular domain structures, RLKs are divided into 21 

subfamilies. The most abundant and studied subfamily, leucine-rich repeat LRR-RLKs, contains 

223 members in Arabidopsis. LRR-LRKs are further grouped into 14 subfamilies (I – XIV) based 

on protein sequence similarity. Even though LRR-RLKs are best-characterized RLKs, only 89 

LRR-RLKs have been described based on their biological function, expression profiles, protein-

protein interaction or sequence similarity to known LRR-RLKs and only about 60 of them have 

been functionally characterized (Wu et al., 2016). LRR-RLKs are cell surface receptors carrying 

an extracellular LRR domain, a transmembrane domain, and a cytoplasmic kinase domain. The 

LRRs are involved in ligand binding, whereas the kinase domain can be involved in auto- 

and/or trans-phosphorylation and is potentially able to initiate a signal transduction cascade 

(Liebrand et al., 2014). LRR-RLKs play a fundamental role in cell-to-cell and plant-environment 

communications in plant development and defense responses (Li & Tax, 2013). The best 

described LRR-RLKs are BR receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and coreceptor 

BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) (Li & Chory, 1997; Hothorn et al., 2011; 

Santiago et al., 2013). BAK1 belongs to subfamily II of LRR-RLK containing signal peptide at 

the N-terminus followed by four leucine zippers, five LRRs, a proline-rich region, a single 

transmembrane domain, and serine/threonine protein kinase domain (Li et al., 2002). In 

contrast, BRI1 is a member of distinct subfamily X with 25 LRRs separated by unique 70 amino 

acid loop-out “island” between 21st and 22nd LRR, a single transmembrane domain, and an 

intracellular serine/threonine protein kinase domain (Li & Chory, 1997). A combination of 

receptor with numerous repeats of LRRs and rather short BAK1 is also present in signalling 

pathways regulating plant innate immunity. BAK1 acts as coreceptor interacting with LRR-

RLKs FLAGELLIN SENSTITIVE 2 (FLS2) flagellin receptor (Chinchilla et al., 2007b; Sun et al., 

2013), EF-Tu RECEPTOR (EFR) EF-Tu peptide receptor, PEPTIDE RECEPTOR 1 and 2 (PEPR1 and 

PEPR2) endogenous Pep peptides receptors in defense processes (Heese et al., 2007; Postel 

et al., 2010; Roux et al., 2011). Extracellular LRRs conformation suggest that the ligands of 

receptors may be likely peptides either from plant cells or pathogens, with exception of the 

BR receptor complex BRI1-BAK1 mediated BR signalling pathway (Wu et al., 2016). Spectra of 

potential ligands could be extended by interaction with leucine-rich repeat-receptor-like 

proteins (LRR-RLPs) that carry an extracellular LRR ligand-binding domain but lack any obvious 

cytoplasmic signalling competent moiety, as was shown in case of SUPPRESSOR OF BIR1-1 

(SOBIR1) LRR-RLK interacting with RLP30 (Zhang et al., 2013; Liebrand et al., 2014).  
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Identified LRR-RLK belongs to subfamily I of LRR-RLK. Amino acid sequence analysis 

revealed a predicted signal peptide at its N-terminus followed by relatively long extracellular 

domain containing three LRR repeats, a single helical transmembrane domain, and 

intracellular serine/threonine protein kinase domain. Sequence alignment of extracellular 

domain of LRRK1 showed very low identity (max. 50 – 52.9%; E-value: 24E-168 - 120E-156) to 

other LRR-RLKs, neighbor-joining phylogenetic tree visualizes an isolated position within 

subfamily I of LRR-RLKs (Fig. S4-1 A). LRRK1 is topologically analogous to LIGHT-REPRESIBLE 

RECEPTOR PROTEIN KINASE (LRRPK; At3g21340) (Deeken & Kaldenhoff, 1997), even though 

they are sequentially different (Fig. S4-1 B).  

In this work, we characterized the role of LRRK1 in auxin-dependent PIN re-

arrangement. We described its transcriptional behaviour, subcellular localization and studied 

its role in PIN protein recycling. Based on global expression data, we tried to identify ligand 

responsible for mechanism of signalling and suggested plausible signalling partners. 

 

4.2 MATERIALS AND METHODS 

 Plant material and growth conditions 

All Arabidopsis thaliana lines were in Columbia-0 background. T-DNA mutants were acquired 

from the Nottingham Arabidopsis Stock Centre (NASC; http://www.arabidopsis.info). T-DNA 

mutants used in this study are SALK_025603C (lrrk1-1), SALK_055351C (pxc2-1) and 

SALK_018730C (pxc2-2). Primers used in genotyping are listed in Supporting information 

(Table S4-1). The arf7 arf19 double mutant (Okushima et al., 2005), HS::axr3-1 (Knox et al., 

2003), 35S::WRKY23-GR and 35S::WRKY23-SRDX (Grunewald et al., 2008; Grunewald et al., 

2012), LRRK1::GUS, PXC2::GUS and RHS16::GUS (Wu et al., 2016) have been described 

previously. Seeds were sterilized overnight by chlorine gas, sown on solid Arabidopsis medium 

(AM+: half-strength MS basal salts, 1% Sucrose, and 0.8% phyto-agar, pH 5.7), and stratified 

at 4°C for at least 2 days prior to transfer to a growth room with a 16-h-light/8-h-dark 

illumination regime at 21°C. Seedlings were grown vertically for 4 or 6 days, depending on the 

assay. 

 



 
 

 Construction of transgenic lines 

DNA constructs was created with the Gateway cloning technology (Karimi et al., 2007) 

(Invitrogen). For the RPS5A::LRRK1 construct, a 3450-bp-long LRRK1-specific  

fragment was amplified from a genomic DNA template with  

iProof High-Fidelity DNA Polymerase (BioRad) with primer LRRK1_attB1_Fw (5′-

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGAAGAGTTTCGTTTTCTC-3′) and primer 

LRRK1_attB2_Rv (5′-GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAATAGTTCTTGTTACTCT-

CTTC-3′) and recombined by BP reaction with pDONR221 to yield pEN-L1-LRRK1-R2. Latter 

vector was then recombined by LR MultiSite reaction with pEN_L4_RPS5A_R1, pEN-L1-LRRK1-

R2 and the binary gateway vector pB7m24GW,3. For the 35S::LRRK1-GFP construct  

a 3459-bp-long LRRK1-specific fragment was amplified from a genomic DNA template with 

primer LRRK1_attB1_Fw mentioned above and stop codon was substituted  

by three amino acid linker (Trp; Asp; Pro) with primer LRRK1ns_attB2_Rv 

 (5′-GGGGACCACTTTGTACAAGAAAGCTGGGTTTGGTTCCCAATAGTTCTTGTTACTCTCTTC-3’) and 

recombined by BP reaction with pDONR221 to yield pEN-L1-LRRK1ns-R2. Latter vector was 

then recombined by LR reaction with the binary gateway vector pB7FWG2.0. The obtained 

vectors were transformed to Agrobacterium tumefaciens strain C58C1 (pMP90), which was 

used in a floral dip transformation of Arabidopsis thaliana (L.) Heyhn Columbia-0 (Col-0) 

(Clough & Bent, 1998). At least two independent transgenic lines were examined. 

Overexpression of these lines was confirmed by qRT-PCR, primers are included in Supporting 

information (Table S4-1). 

 

 Pharmacological treatments 

Arabidopsis treatments with auxin or chemicals were done in liquid AM+ medium at 21°C in 

a growth room. For auxin treatment, plants were incubated with 10 μM α-naphthaleneacetic 

acid (NAA; Sigma Aldrich) for 4h or 6h; while dexamethasone (DEX; Sigma Aldrich) was applied 

in 10 μM concentration for 6h or 24h. For BFA and NAA/BFA experiments, seedlings were 

incubated in 25 μM of Brefeldin A (BFA; Sigma Aldrich) for 90 min, 10 μ M NAA for 30 min for 

pre-treatments and with 25 μM BFA/10 μM NAA for 90 min for co-treatments. For flg22 

application, seedlings were treated with 10 μM of flg22 peptide by 5min vacuum infiltration 
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and then observed after 30 min. Mock treatments were performed with equivalent amounts 

of DMSO. 

 

 IP and MS 

IP experiments were performed as described previously (Zwiewka et al., 2011) using 3 g of 

seedlings of 35S::LRRK1-GFP transgenic line in Col-0 background. Interacting proteins were 

isolated by applying a total protein extracts to anti-GFP-coupled magnetic beads (Milteny 

Biotech). Three biological replicates of each sample were compared with three nontransgenic 

Col-0 samples. MS and statistical analysis using MaxQuant and Perseus software were 

performed as described previously (Hubner et al., 2010; Lu et al., 2011) with minor 

modifications. 

 

 RNA extraction, cDNA synthesis, and quantitative RT-PCR and analysis 

RNA extraction, cDNA Synthesis, and quantitative RT-PCR was performed as described by 

Tejos et al. (2014). Targets were quantified with specific primer pairs designed with Primer-

BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Expression levels were normalized 

to GAMMA-TUBULIN 2 (TUB2; At5g05620) which was constitutively expressed across 

samples. All PCRs were run in three technical repeats and the data were processed with qRT 

PCR analysis software (Frederik Coppens; Applied Bioinformatics & Biostatistics group; PSB 

VIB, Belgium). Primers used in the study are listed in Supporting information (Table S4-1). 

 

 Whole-mount in situ Immunolocalization, microscopy and quantitative 
analysis of PIN relocalization 

PIN immunolocalizations in primary root were performed as described by Sauer and Friml 

(2010). The antibodies were used in the following dilutions: anti-PIN1, 1:1000 (Paciorek et al., 

2005) and anti-PIN2, 1:1000 (Abas et al., 2006). In all cases, the secondary goat anti-rabbit 

antibody coupled to Cy3 (Sigma-Aldrich) was diluted 1:600. Confocal microscopy was 

performed using a Zeiss LSM 700 confocal microscope. Quantitative analysis of PIN 

relocalization was performed as described by Sauer et al. (2006). 

 



 
 

 Transient expression in Arabidopsis mesophyll protoplasts 

Mesophyll protoplasts were isolated from rosette leaves of 4-week-old Arabidopsis plants 

grown in soil under controlled environmental conditions in a 16:8 h light/dark cycle or under 

continuous light at 21 °C. Protoplasts were isolated and transient expression assays were 

carried out as described (Wu et al., 2009) with minor modifications. Protoplasts were 

transfected with 10 or 20 μg of a reporter plasmid DNA of the binary gateway vector 

pB7FWG2.0 that contained LRRK1-GFP under the control of the 35S promoter. Protoplasts 

were overnight dark incubated at room temperature in glucose-mannitol GM medium. Next 

day protoplasts were observed using Zeiss LSM 700 confocal microscope. 

 

 Histological analyses and microscopy 

To detect β-Glucuronidase (GUS) activity, seedlings were incubated in reaction buffer 

containing 0.1 M sodium phosphate buffer (pH 7), 1 mM ferricyanide, 1 mM ferrocyanide, 

0.1% Triton X-100 and 1 mg/ml X-Gluc for 2 h in dark at 37 °C. Afterwards, chlorophyll was 

removed by destaining in 70% ethanol and seedlings were cleared.  

Propidium iodide staining was performed by incubating roots samples in 10 μg/ml propidium 

iodide (PI; Sigma Aldrich) solution for 5 min. For FM6-64 staining, seedlings were stained in 2 

µM of FM4-64 (FM4-64; Sigma Aldrich) solution for 1 min at room temperature. 

Clearing of tissues (seedlings, cotyledons) was performed in a solution containing 4% HCl and 

20% methanol for 15 min at 65 °C, followed by 15 min incubation in 7% NaOH and 70% 

ethanol at room temperature. Next, seedlings were rehydrated by successive incubations in 

70, 50, 25 and 10% ethanol for 5 min, followed by incubation in a solution containing 25% 

glycerol and 5% ethanol. Finally, seedlings were mounted in 50% glycerol and monitored by 

differential interference contrast microscopy DIC (Olympus BX53) or stereomicroscope 

(Olympus SZX16). 

 

4.3 RESULTS AND DISCUSSION 

 LRRK1 gain-of-function causes PIN2 lateralization 

LRRK1 gain-of-function caused increased lateralization of PIN2 protein in young cortex cells 

of root. To confirm involvement of LRRK1, we cloned genomic DNA and expressed under 

constitutive promoter RPS5A to get strong overexpression (Fig. S4-2). In young cortex cells, 
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application of NAA changed localization of PIN2 from basal to outer lateral side (Fig.4-1 A). 

PIN2 proteins in gain-of-function lines were immunolocalised and fluorescent signal on basal 

and lateral membrane of cortex cells was measured. We observed increase in lateral 

localization of PIN2 proteins in plants overexpressing LRRK1 (Fig.4-1 B, D). Treatment of auxin 

further increased laterality of PIN2 proteins to levels similar in auxin treated Wt Col-0 (Fig.4-

1 B, D). In contrast to observed lateralization in gain-of-function plants, T-DNA knock-out 

mutant lrrk1-1 (Fig. S4- 2) showed lower ability of auxin-dependent PIN repolarization (Fig.4-

1 C, E). Mutation in candidate gene LRRK1 had consequence in less pronounced lateralization 

of the PIN2 protein in cortex cell. Without auxin application, PIN2 polarity was not altered 

(Fig.4-1 C, E). These results showed that LRRK1 gene is necessary for successful repolarization 

of the PIN proteins but polarity establishment is not affected. 

 

 

Figure 4-1 Immunolocalization of PIN2 protein in root of LRRK1 gain- and loss-of-function lines.  

A. Cortex cells of Wt Col-0 treated with Mock/NAA. Arrowheads highlight PIN polarity. B. Cortex cells of lrrk1-1 

treated with Mock/NAA. Arrowheads highlight PIN polarity. C. Cortex cells of LRRK1 gain-of-function line treated 

with Mock/NAA. Arrowheads highlight PIN polarity. D. Visualization of mean ratio of lateral to basal signal 

intensity of PIN2 in cortex cells in Wt Col-0 and lrrk1-1 treated plants with 10 µM NAA for 4 hours. Error bars 

indicates standard error. A two-tailed Student’s t test compared marked sets of data. (***) P < 0.0001. n ˃ 50 



 
 

cells corresponding to roots imaged under comparable conditions. E. Visualization of mean ratio of lateral to 

basal signal intensity of PIN2 in cortex cells in RPS5A::LRRK1 plants treated with 10 µM NAA for 4 hours. Error 

bars indicates standard error. A two-tailed Student’s t test compared marked sets of data. (***) P < 0.0001. n ˃ 

50 cells corresponding to roots imaged under comparable conditions. 

 WRKY23 influences auxin signalling-dependent transcription regulation 
of LRRK1 

In our previous study, we demonstrated that dexamethasone-inducible gain-of-function 

35S::WRKY23-GR increased re-arrangement of PIN2 in the young cortex cells of the root 

comparably to auxin NAA treatment (Prat et al., unpublished data). Therefore, we checked 

expression of LRRK1 in this line. LRRK1 gene has increased expression level after activation of 

dexamethasone inducible gain-of-function 35S::WRKY23-GR (Fig.4-2 A). After NAA 

application, transcript level of LRRK1 increased, while after the same auxin treatment in 

dominant-negative 35S::WRKY23-SRDX line, mRNA level of LRRK1 decreased in comparison 

with the control line Wt-Col0 (Fig.4-2 A). These results suggested that WRKY23 TF regulates 

transcription of LRRK1. 

As was previously shown, in the inducible HS::axr3-1mutant line expressing a non-

degradable version of the IAA17 transcriptional repressor, as well as in the arf7 arf19 double 

mutant defective in these two transcriptional activators, auxin was ineffective to mediate PIN 

polarity re-arrangements (Sauer et al., 2006). We also showed WRKY23 dependence on auxin 

signalling that was supported by a compromised WRKY23 auxin inducibility in these auxin 

signalling mutants. In auxin signalling mutants, activated HS::axr3-1 and arf7 arf19, 

application of NAA was not able to increase transcript level of LRRK1 (Fig.4-2 B). Based on 

these results, auxin acts through its signalling pathway to activate expression of WRKY23 

transcriptional factor and subsequently, WRKY23 transactivation regulates expression of 

effector, LRRK1, identified in the microarray experiment (Fig.4-2 B).  

 We used the same approach to describe transcriptional regulation of candidate genes 

as in the previous study of WRKY23 action in PIN repolarization. As well as WRKY23, LRRK1 

expression depended on concentration of applied auxin. Four hours of 10 nM NAA already 

increased LRRK1 mRNA amount three times while WRKY23 gene had higher expression in 100 

nM NAA (Fig.4-2 C). This sensitivity to auxin application lead to hypothesis that expression of 

these genes is also directly activated by auxin signalling and WRKY23 acts as a tight regulator. 

This is further supported by temporal regulation of the LRRK1 expression. We observed that 
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30 minutes of 10 µM NAA already increased LRRK1 gene expression while WRKY23 gene had 

higher expression in 10 µM NAA between 120 and 240 minutes of auxin treatment (Fig.4-2 

D). Therefore, we suppose that expression of LRRK1 is tightly regulated by auxin. 

 

 

Figure 4-2 Transcript levels of LRRK1 during auxin treatments. 

A. LRRK1 transcript level depends on WRKY23. qRT-PCR experiment showed dependence of LRRK1 transcript 

levels on WRKY23 normalized to mRNA levels in controls. Bars represent relative fold change of expression. Error 

bars represent standard deviation (see Materials and Methods for detailed description). B. LRRK1 transcript level 

is dependent on auxin through the SCFTIR1-Aux/IAA-ARF signalling pathway. qRT-PCR experiment showed 

transcript levels of LRRK1 in auxin signalling mutants HS::axr3-1 and arf7 arf19. Bars represent relative fold 

change of expression. Error bars represent standard deviation (see Materials and Methods for detailed 

description). C. – D. LRRK1 expression is auxin dose- and time-dependent. qRT-PCR experiment showed 

transcript levels of LRRK1 in Wt Col-0 seedlings treated with respective concertation of NAA for respective time. 

Points represent relative fold change of expression. Error bars represent standard deviation (see Materials and 

Methods for detailed description). 

 



 
 

 Subcellular localization of LRRK1 and its function in constitutive PIN 
cycling  

To address how LRRK1 influences PIN polarity, we created reporter fusion of LRRK1 and 

fluorescent marker eGFP to the C-terminus by replacing LRRK1 stop codon with three amino 

acid linker Trp-Asp-Pro like in another LRR-RLK BRI1 (Friedrichsen et al., 2000). Predicted 

structure of LRRK1 proposes presence of single span helical transmembrane domain at 

position 511 – 531. First, we checked subcellular localization of LRRK1 in Arabidopsis 

protoplast transient expression system. Observed fluorescent signal tightly colocalized with 

CM of Arabidopsis mesophyll protoplast (Fig.4-3 A). This was further confirmed by short 

application of FM4-64 staining CM or propidium iodide staining cell wall on roots with stable 

expression of LRRK1-GFP (Fig.4-3 B, C). Immunolocalization of PIN2 in LRRK1-GFP reporter 

line demonstrated that both proteins colocalized on cell membrane. In comparison with 

rigorous presence of PIN2 on apical domain of root epidermal cells, localization of LRKK1 was 

apolar (Fig.4-3 D). Similarly, colocalization of LRRK1-GFP and immunolocalized PIN1 in cortex 

cells is only at basal and inner lateral sides while LRRK1-GFP signal is present also on apical 

and outer lateral sides of cortex cells (Fig.4-3 E, F).  

Auxin was for long time evidenced to block endocytosis of PIN proteins from CM. 

Nevertheless, recent publication of Jasik and collaborators disprove this auxin effect on 

endocytosis (Paciorek et al., 2005; Jasik et al., 2016). Application of fungal toxin Brefeldin A 

(BFA) on LRRK1-GFP reporter led to formation of so-called BFA bodies that were shared with 

PIN2 proteins (Fig.4-3 G, H). Interestingly, pre-treatment with auxin analogue NAA did not 

lead to inhibition of BFA bodies formation of LRRK1-GFP as robustly as was described in case 

of PIN2 proteins (Fig.4-3 G – I) (Paciorek et al., 2005; Jasik et al., 2016). Moreover, strong 

constitutive overexpression of LRRK1 caused decreased ability of PIN1 and PIN2 to form BFA 

bodies (Data not shown).  

 Altogether, described subcellular localization LRRK1 to CM, ability to cycle between 

endomembrane systems, and effect on BFA bodies formation guided us to hypothesis, that 

LRRK1 protein sense an unknown extracellular ligand that influences polarity of PIN proteins. 
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Figure 4-3 Subcellular localization of LRRK1. 

A. Transient expression of 35S::LRRK1-GFP in Arabidopsis protoplasts. Protoplasts were isolated from rosette 

leaves and transfected with vector containing 35S::LRRK1-GFP construct. B. Short FM4-64 (2 μM) staining of 

Arabidopsis root. Red dye tightly colocalized with 35S::LRRK1-GFP. C. Propidium iodine staining of Arabidopsis 

root. Likewise, red dye tightly colocalized with 35S::LRRK1-GFP. D. PIN2 immunolocalization of root epidermal 

cells in 35S::LRRK1-GFP. Colocalization of 35S::LRRK1-GFP with PIN2 on CM. PIN2 is localized on apical side of 

cells whereas LRRK1-GFP localization is apolar. E. – F. PIN1 and PIN2 immunolocalization of root of 35S::LRRK1-

GFP. G. – I. BFA and NAA/BFA treatments of 35S::LRRK1-GFP root cells. Bar size 10 µm. 

 



 
 

 Application of auxin and flg22 does not lead to LRRK1 internalization 

LRR-RLKs are known as receptors of various extracellular signals. Thus, first we tried to identify 

ligand of LRRK1. We searched for transcriptional regulators of LRRK1 by application of 

condition search tool in GENEVESTIGATOR® (Nebion AG) global library of expression data 

(Zimmermann et al., 2004). We found that the strongest perturbations of LRRK1 expression 

data were caused by bacterial peptides (EF-Tu and flg22), auxin IAA, and NAA (Fig. S4-3). 

Moreover, upregulation of LRRK1 by defense-related WRKY23 TF suggests that original 

function of this LRR-RLK is in plant immunity by its interaction with, e.g. FLS2 receptor of 

bacterial flagellin, as was shown for FLS2-BAK1 (Chinchilla et al., 2007b; Sun et al., 2013). FLS2 

underwent ligand induced endocytosis (Fig.4-4 A) (Robatzek et al., 2006). As part of the 

immune response, cell membrane FLS2 is activated by flg22 and recruited to ARABIDOPSIS 

RAB GTPase ARA7/RabF2b- and ARA6/RabF1-positive endosomes which are compartments 

of the late endosomal trafficking pathway (Robatzek et al., 2006; Beck et al., 2012). This 

process depends on BAK1/SERK3 (Chinchilla et al., 2007b; Beck et al., 2012), which itself 

undergoes constitutive endocytosis (Russinova et al., 2004). We applied flg22 peptide to 

seedlings expressing LRRK1-GFP and FLS2-GFP. We observed fluorescent endocytic vesicles 

30 minutes after application of flg22 in FLS2-GFP fluorescent marker line, the same 

application to LRRK1-GFP did not lead to internalization (Fig.4-4 B). We did not observe any 

changes in subcellular localization of LRRK1 even after prolonged treatment (Data not shown).  

Second group of possible ligands suggested by GENEVESTIGATOR® database was 

auxin; we therefore tested auxin action on LRRK1 reporter fusion. Auxin application had effect 

neither on polarity, nor subcellular localization of LRRK1. We measured ratio of lateral to basal 

fluorescent signal of LRRK1, similarly to lateral index of PIN proteins (Fig. 4 C) (Sauer et al., 

2006). We did not observe any significant change from original apolar localization of LRRK1, 

however, only very mild increase of inner lateral fluorescent signal in cells of epidermis was 

observed (Fig.4-4 D). Auxin application also caused non-significant decrease of intracellular 

to membrane fluorescence ratio (Fig.4-4 E). Overall fluorescence was only marginally lower 

(Fig.4-4 F). Observed non-significant difference in fluorescence, subcellular localization, and 

membrane polarity of LRRK1 imply no effect of auxin on these processes. On other hand, 

ligands are not always affecting these processes on its receptors as was shown on BR receptor 

BRI1 (Santiago et al., 2013). Our survey on ligand was not successful; hence we focused our 

attention on identification of interactors of LRRK1. 
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Figure 4-4 Effect of suggested ligands on LRRK1 subcellular localization. 

A. Ligand-induced endocytosis of FLS2 by flg22. Hypocotyl epidermal cells of FLS2 reporter line underwent 

ligand-induced endocytosis upon application of bacterial peptide flg22. B. flg22 application on hypocotyl 

epidermal cells of LRRK1-GFP line. C. Auxin application on root cells of LRRK1-GFP line. Bar size 10 µm. D. Graph 

shows mean ratio of inner-lateral to apolar signal intensity of LRRK1-GFP in epidermal cells treated with 10 µM 

NAA for 4 hours or DMSO. E. Graph shows mean ratio of signal on membrane to intracellular signal intensity of 

LRRK1-GFP epidermal cells treated with 10 µM NAA for 4 hours or DMSO. F. Graph shows mean value of signal 

intensity of LRRK1-GFP epidermal cells treated with 10 µM NAA for 4 hours or DMSO. 

 

 Signalling interactors of LRRK1 

LRR-RLKs act in complexes with other RLKs to increase specificity of ligand binding and 

sensing. Previously identified receptor complexes suggested that LRR-LRKs need a ligand 

binding receptor and co-receptor. Ligand binding with the receptor creates a new binding 

surface to a co-receptor, signalling cascades can be then initiated only when the receptor-

ligand-co-receptor complex is formed (Wu et al., 2016). Generally, these complexes are 

created from interaction of high order LRR receptors and rather short co-receptor LRR-RLKs. 

Most thoroughly studied LRR-RLKs, BRI1 and FLS2, share common signalling component and 

have slightly different activation mechanisms (Belkhadir et al., 2014). The best example of 

these complexes is BRI1 LRR-RLK. Activated by brassinosteroid BRI1 phosphorylates negative 



 
 

regulator BRASSINOSTEROID KINASE INHIBITOR 1 (BKI1) leading to displacement from 

membrane to cytosol where it become inactive (Jaillais et al., 2011). Then, a co-receptor LRR-

RLK BAK1 can create complex with BRI1 associated with transphosphorylation of kinase 

domains (Bajwa et al., 2013). In parallel, activated BRI1 kinase phosphorylates BR SIGNALING 

KINASE 1 (BSK1), receptor-like cytoplasmic kinase (Tang et al., 2008; Sreeramulu et al., 2013). 

BSK1 positively regulates BR signalling by relaying BRI1 signals to downstream signalling 

components, e.g. BRASSINOSTEROID INSENSITIVE 2 (BIN2) glycogen synthase kinase 3 (GSK3)-

type kinase (Li et al., 2001), or negatively regulates the pathway by phosphorylating 

downstream transcription factors BRASSINAZOLE RESISTANT 1 (BZR1) and BRI1–EMS 

suppressor1 (BES1) at multiple sites (Kim et al., 2009).  

We checked possible interactors of LRRK1 in testbed of other LRR-RLKs on insect cell 

expression system in vitro. Genome-scale interaction assay developed for high throughput 

identification of extracellular domain association uses phosphorylation of protein bait with a 

result of substrate colour change upon reaction with the enzyme (Belkhadir and Smakowska, 

personal communication). Based on in vitro interaction screen on extracellular domains of 

LRR-RLKs, two potential interactors with high confidence were identified: PXY/TDR 

CORRELATED 2 (PXC2; At5g01890) type VII and ROOT HAIR SPECIFIC 16 (RHS16; At4g29180) 

type I LRR-RLK. PXC2 is classified to a small group of three LRR-RLKs based on in silico co-

expression and functional clustering analyses with similar transcript profile like PXY/TDR 

(Wang et al., 2013). PHLOEM INTERCALATED WITH XYLEM (PXY) is a member of XI LRR-RLK 

subfamily and acts as receptor of TDIF (Tracheary element differentiation factor), or known 

as CLAVATA3/ENDOSPERM SORROUNDING REGION41/44 (CLE41/44) (Fisher & Turner, 2007; 

Hirakawa et al., 2008). CLE peptides usually contain 12 - 13 amino acids. They are essential 

for regulation of proliferation and differentiation of the shoot apical meristems, root apical 

meristem, and procambium (Fukuda, 2016). CLE44/41 was shown to inhibit xylem cell 

differentiation and to promote procambial cell proliferation (Ito et al., 2006). CLE peptides 

are expressed in phloem cells, then transferred to procambial zone where maturate and are 

immediately sensed by PXY (Etchells & Turner, 2010). Activated complex of CLE peptide ligand 

and PXY receptor promotes procambial cell proliferation by triggering WUS homologs, WOX4 

and WOX14 (Hirakawa et al., 2010; Etchells et al., 2013). CLE-PXY complex also influences 

expression of BES1, a downstream TF of BRI1 signalling cascade to suppress tracheary 

element differentiation (Kondo et al., 2014). Structural study of CLE-PXY complex revealed 
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conserved recognition mechanism. Comparison of other XI LRR-RLK subfamily receptors 

showed conserved Arg-x-Arg motif important for recognition of their peptide ligands (Song et 

al., 2016; Zhang et al., 2016b). To regulate procambial cell proliferation, PXY receptor uses to 

sense TDIFs interaction with co-receptor SOMATIC EMBRYOGENETIC RECEPTOR KINASE 

(SERK1/SERK2/BAK1/BAK1-LIKE) (Zhang et al., 2016a). Family of LRR-RLKs commonly acts as 

co-receptors of e.g. BR (BRI1-BAK1) or immune signalling (FLS2-BAK1) and therefore, they are 

involved in wide spectrum of processes like plant development and defense (Li et al., 2002; 

Nam & Li, 2002; Chinchilla et al., 2007a). 

Expression pattern of suggested interactor PCX2 correlates with PXC3 and with 

REVOLUTA class III HD-ZIP transcriptional regulator important in vascular differentiation 

(Etchells & Turner, 2010). PXC2 was, in contrast to PXY, expressed in the root tip while PXY 

expression begins in elongation zone (Wang et al., 2013). PXC2 belongs to subfamily VII with 

18 extracellular LRRs whereas PXY is a member of subfamily XI with 21 LRRs. Moreover, 

alignment of extracellular domains of PXY and PXC2 revealed only 32% identity of amino acid 

sequence.  

 RHS16 belongs to subfamily I of LRR-RLKs. RHS16 was originally identified in a screen 

of root hair specific genes based on presence of conserved RHE (root hair element) cis-

element in promoter (Won et al., 2009). The same cis-element is present in all known 

morphogenetic H genes (Kim et al., 2006). Core RHE consists of 16 or 17 nucleotides with 

incomplete palindromic structure. Composite consensus of RHE elements of 

WHHDTGNNN(N)KCACGWH within 1000 bp upstream of start codons were used to obtain 

fundamental overview on genes expressed in root hairs. A list of genes was further filtered 

using expression profiling experiments, promoter assays, etc., to final set of 24 genes, 

containing also RHS16 (Won et al., 2009). Similarly, RHS16 was identified in computational 

screen of microarrays and virtual Arabidopsis root hair proteome (Cvrckova et al., 2010).  

 First, we checked spatio-temporal expression patterns of potential interactors to find 

out whether interaction is physically possible. Then, we used transcriptional reporter fusions 

(Wu et al., 2016) to test effect of auxin application on expression pattern. LRRK1::GUS 

reporter was expressed in the cells of elongation zone of the root (Fig.4-5 A) (Wu et al., 2016). 

Auxin application expanded expression pattern of LRRK1. We applied effective amount of 

NAA to transcription fusion of LRRK1 promoter with GUS. After 6 hours of auxin application, 

expression pattern was shifted to the younger cells of epidermis and cortex where a PIN 



 
 

repolarization event happens (Fig.4-5 A). PXC2::GUS reporter expression pattern in the root 

tip comprises LRC, cells close to QC, young cortex and endodermis cells, and cells of two 

procambial poles (Fig. 4-5 B). Auxin application led to diffusion of expression pattern to 

meristematic zone of the root where it can meet expression pattern of LRRK1. Expression 

pattern of RHS16 was exclusively localised in root hairs and did not overlap with any of 

potential interactors (Fig.4-5 C).  

 

 

Figure 4-5 Expression patterns of LRRK1, PXC2, and RHS16 and LRRK1 and PXC2 mutant venation defects. 

A. Expression pattern of LRRK1::GUS (Wu et al., 2016). B. Expression pattern of PXC2::GUS (Wu et al., 2016) C. 

Expression pattern of RHS16::GUS. Cleared root tips were visualized with a DIC microscope (see Materials and 

Methods for detailed description). D. Cotyledon venation pattern in lrrk1-1 mutant, lines overexpressing LRRK1, 

pxc2-1, and pxc2-2 mutants. Percentages represent quantity of defect cotyledons. Bar size A – C 10 µm.; D. 1 

mm. 

 

As we have shown previously, WRKY23 loss-of-function causes venation defects and 

morphological changes in cotyledons (Prat et al., unpublished data). Leaf venation crucially 

depends on polarity of PIN proteins and in particular on the auxin feed-back on PIN polarity 

as proposed by canalization hypothesis (Scarpella et al., 2006). Therefore, we looked for 

abnormal venation patterns in LRRK1 and PXC2 mutants which were not present in control or 

were present significantly more often than in Wt Col-0 (max. 15% of defects). In control Wt 
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Col-0 cotyledons, venation pattern formed closed circles at the beginning two and then four 

lobes. This almost unvarying pattern is formed by self-regulatory mechanism of auxin 

canalization dependent on correct PIN1 polarity (Scarpella et al., 2006). Almost half of 

cotyledons of knock-out mutant lrrk1-1 had severe defects in venation presenting mainly 

additional loops on I2 or dead-end unconnected veins to midvein (Fig.4-5 D). Similarly, 

overexpression of LRRK1 caused defective vascularization in cotyledons. Moreover, loss-of-

function lines of PXC2 - pxc2-1 and pxc2-2 contained several defective venation patterns 

reminiscent of lrrk1-1 mutants (Fig.4-5 D). These results suggest involvement of LRRK1 and 

PXC2 in auxin canalization, a process dependent on auxin feed-back on PIN polarity. 

 

 Target interactors of LRRK1 

To identify broad interactome of LRRK1, we performed immunoprecipitation experiment. As 

a bait protein we used whole translation fusion of LRRK1 protein sequence of 94.9798 kDa 

with eGFP (32.7 kDa). Interacting complex proteins were pulled-down and analysed on MS 

device. We observed large numbers of CM transporters within a list of probable interactors. 

The most important groups were further studied (B Appendix Table S1). 

At the top of the list, complexes of PIP (PLASMA MEMBRANE INTRINSIC PROTEINS) 

PIP1A-E and PIP2 were found. PIPs are one of the group of aquaporins, the main gateways of 

cell membrane for water exchange. These multifunctional channels facilitate passive diffusion 

of water and/or small neutral solutes across biological membranes (Bienert & Chaumont, 

2014). PIPs are organised as highly conserved tetramers in which each subunit forms 

functional channel (Tornroth-Horsefield et al., 2007). The monomers are constituted of six 

transmembrane domains (TM1-TM6) which are linked by five loops (A-E). The N- and C-

termini lengths are the main structural difference among members of PIPs and together with 

B and D loops are cytosolic (Chevalier & Chaumont, 2015). PIPs are clustered into three 

clusters, one cluster for PIP1 group and two clusters for PIP2 group (Soto et al., 2012). These 

two groups potentially form heterotetramers or heteroligomers and thereby modify 

characteristics of both subfamilies in terms of activity, trafficking, and gating (Zelazny et al., 

2007). Controversially, PIP proteins are commonly found in IP experiments on CM proteins. 

Therefore it is very probable that interaction between LRRK1 and PIPs is due to its so-called 

“stickiness” and MS results may have been false positive (B Appendix Table S1). 



 
 

Second group, more related to background of LRRK1 identification, were proteins 

related to auxin transport (B Appendix Table S1). In complexes probably interacting with 

LRRK1, two ABCB transporters PGP2/ABCB2 and PGP19/ABCB19, and ABCG transporter 

PEN3/ABCG36, and two PIN proteins PIN4 and PIN7 were present. ATP binding cassette (ABC) 

superfamily of transporters is of the largest and most ubiquitous transporter families, ABC 

transporters share a high degree of structural conservation between bacteria and eukaryotes 

(Becker et al., 2009). The most important plant-specific subgroup of 22 members in 

Arabidopsis is ABCB transporter family [B-type: ABCB/multidrug resistance 

(MDR)/phosphoglycoprotein (PGP)]. ABCB1, ABCB4, ABCB14, ABCB15, ABCB19, and ABCB21 

are associated with auxin transport, although not exclusively (Geisler & Murphy, 2006; 

Titapiwatanakun et al., 2009; Kaneda et al., 2011; Kamimoto et al., 2012; Cho & Cho, 2013). 

ABCB1, ABCB4, and ABCB19 function in auxin driven root development and require activity of 

the immunophilin TWISTED DWARF1 (TWD1/FKBP42) to be correctly inserted on the CM 

where have stable and mostly apolar localization (Wu et al., 2010). ABCB19 stabilizes PIN1 on 

microdomains and enhances substrate specificity of the overall transport and regulates root 

and cotyledon development and tropic bending response (Mravec et al., 2008; 

Titapiwatanakun et al., 2009; Christie et al., 2011). Type G ABC transporter 

ABCG36/PDR8/PEN3 was identified to regulate pathogen responses (Stein et al., 2006), heavy 

metal transport (Kim et al., 2007), and also participate in regulation of IBA sensitivity and IAA 

homeostasis (Strader & Bartel, 2009). ABCG36 and a redundant homologue ABCB37 shows a 

strictly polar localization at the outer sides of epidermal and root cap cells (Langowski et al., 

2010; Ruzicka et al., 2010). 

PIN (PIN-FORMED) proteins belong to a plant-specific family of probable proton 

gradient-driven secondary transporters lacking ATP-binding domain (Zazimalova et al., 2010). 

According to the length of central hydrophilic domain, eight members of PIN proteins are 

divided into two groups: (i) shorter intracellular PINs with partially or entirely reduced central 

domain and (ii) long canonical PINs with long hydrophilic domain localized in the CM (Krecek 

et al., 2009). The polar localization of PIN proteins is established by cycling between the CM 

and endosomal compartments such as the trans-Golgi network/early endosomes (TGN/EE). 

PIN recycling occurs via clathrin-mediated endocytosis and depends on phosphorylation and 

ubiquitination (Kleine-Vehn et al., 2011; Lofke et al., 2013). Phosphorylation of PIN proteins 

is mediated by protein kinase PINOID (PID). Phosphorylation of PINs results in their GNOM-
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independent recycling back to the CM on apical side of the cell (Friml et al., 2004; Dhonukshe 

et al., 2010). Another kinase D6 PROTEIN KINASE (D6PK) has been recently demonstrated to 

regulate PIN phosphorylation and, together with PID, D6PK promotes PINs-mediated auxin 

transport through the CM by maintaining PIN phosphorylation status. D6PK CM localization is 

essential to establish and maintain PIN phosphorylation (Zourelidou et al., 2009; Willige et al., 

2013; Barbosa et al., 2014). Unphosphorylated PINs or those dephosphorylated by the PP2A 

phosphatase (Michniewicz et al., 2007) are recycled back to the CM via BFA-sensitive ADP-

ribosylation factor-guanine nucleotide exchange factor (ARF-GEF) GNOM. 

Monoubiquitination and subsequent polyubiquitination of PIN proteins induce their 

endocytosis followed by trafficking from the TGN/EE to late endosomes where the 

SNX1/BLOC-1 complex mediates transfer to multivesicular bodies (MVBs) for vacuolar 

degradation (Habets & Offringa, 2014). 

In all these complex processes, diverse mechanisms of phosphorylation/ 

dephosphorylation provided by kinases/phosphatases have been identified to date. 

Phosphorylation mainly controls PINs by directly acting on either their transport activity or 

their intracellular trafficking. Subsequently, phosphorylation impacts the polarity, 

degradation, and CM accumulation of PIN proteins. Despite the fact that interactions of PIN 

proteins were exhaustively investigated in past decades, still many of the regulatory parts are 

missing. We identified receptor-like protein kinase LRRK1 affecting auxin-dependent PIN 

repolarization in transcription profiling experiments. Post-transcriptional mechanism of 

LRRK1 action remains unclear but first insights into subcellular localization and LRRK1 role in 

PIN protein recycling were performed. Based on global expression data, we tried to identify a 

ligand responsible for signalling and furthermore, we suggested plausible signalling partners. 

Our work continues revealing WRKY23-dependent transcriptional network and WRKY23 role 

in executing auxin effect on PIN polarity in canalization-dependent regulation of plant 

development.  

Deciphering of LRRK1 function still remains incomplete. The most important step will 

be to sort out the list of possible interactors and to perform direct interaction assays to 

confirm protein-protein interactions. If these experiments confirm interaction of LRRK1 and 

PIN proteins, description, how differential phosphorylation of PIN proteins acts on polarity 

and/or their activity, will be interesting. This can move forward our understanding how PIN 

polarity is both stable in some processes but highly dynamic and variable in others.  
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4.7 SUPPORTING INFORMATION 

 

Figure S 4-1 Sequence alignment of extracellular domain of LRRK1 show very low identity to other LRR-RLK. 
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A. Neighbour-joining phylogenetic tree visualize isolated position of LRRK1 within I subfamily of LRR-RLKs. B. 

Amino acid sequence alignment of LRRK1 with topologically analogous to LIGHT-REPRESIBLE RECEPTOR PROTEIN 

KINASE (LRRPK; At3g21340) (Deeken & Kaldenhoff, 1997). 

 



 
 

 

Figure S 4-2 Transcript level confirmation of mutant and transgenic plant lines. 
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A. LRRK1 transcript was almost absent in lrrk1-1 T-DNA mutant line. Bars represent relative fold change of 

expression. Error bars represent standard deviation (see Materials and Methods for detailed description). B. 

LRRK1 was overexpressed in transgenic lines under control of constitutive RPS5A promoter. Bars represent 

relative fold change of expression. Y axis is represented in logarithmic scale log10. Error bars represent standard 

deviation (see Materials and Methods for detailed description). C. LRRK1-GFP was overexpressed in transgenic 

lines under control of constitutive 35S promoter. Bars represent relative fold change of expression. Y axis is 

represented in logarithmic scale log10. Error bars represent standard deviation (see Materials and Methods for 

detailed description). 

  



 
 

 

Figure S 4-3 Output from GENEVESTIGATOR® (Nebion AG) global library of expression data.  

We found that LRRK1 strongest perturbations of expression data were caused by bacterial peptides (EF-Tu and 

flg22) and by auxin IAA and NAA. Based on Zimmermann et al., 2004. 
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Table S 4-1 List of primers used in this study for T -DNA genotyping and qRT-PCR 
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5 Strigolactone interfere auxin-dependent PIN re-arrangement in 

Arabidopsis 

 

Jing Zhang, Zuzana Medvedova, Ewa Mazur, Tomáš Prát, Jozef Balla, Vilem Reinöhl, Elizabeth 

A. Dun, Saiko Yoshida, Phillip B. Brewer, and Jiří Friml 

 

5.1 INTRODUCTION 

Phytohormones play an essential role in regulation of plant development and architecture in 

response to variable environmental conditions. In many developmental processes, the 

crosstalk of several hormones is implicated, thus, coordination of their overlapping activities 

is crucial for correct plant development. Hormone auxin is unique among other known plant 

hormones by its strictly controlled transport in a directional manner which is mediated by 

polarly localized PIN-FORMED (PIN) auxin transporters. Recently, strigolactone, a newly 

described plant hormone, was suggested to crosstalk with auxin in plant development.  

 Developmental role of strigolactone lies in regulation of shoot architecture by inhibition 

of branching (Gomez-Roldan et al., 2008; Umehara et al., 2008; Kohlen et al., 2011). 

Strigolactone biosynthesis is derived from the carotenoid pathway (Matusova et al., 2005) via 

the activity of various oxygenases (Gomez-Roldan et al., 2008; Umehara et al., 2008). In 

Arabidopsis, the cytochrome P450 (MAX1; AtCyp711A1), the carotenoid dioxygenases MORE 

AXILLARY GROWTH3 (MAX3; AtCCD7), and MAX4 (AtCCD8) are involved in the biosynthesis of 

strigolactone (Turnbull et al., 2002; Sorefan et al., 2003; Booker et al., 2005) whereas the 

MAX2 protein containing F-box and leucine-rich repeats likely takes part in signal perception 

or transduction pathway (Booker et al., 2005; Stirnberg et al., 2007). Plants mutated in any of 

the MAX genes display increased numbers of shoot branches. This mutant phenotype can be 

rescued by the application of the synthetic strigolactone analog GR24 (Gomez-Roldan et al., 

2008) in MAX2-dependent manner. 

 Recent publications demonstrate strong evidence showing connections between 

strigolactone and auxin. Exogenous application of GR24 reduces basipetal auxin transport in 

isolated stem segments (Crawford et al., 2010). Furthermore, GR24 treatment has effects in 

auxin-related processes observed in mutants with defective auxin transport (Benkova et al., 



 
 

2003) like primary root elongation, lateral root initiation and development, and root hair 

formation in tomato and Arabidopsis (Koltai et al., 2010; Ruyter-Spira et al., 2011).  

 However, the underlying molecular mechanism remains elusive. Here, we show that 

strigolactone modulates auxin-dependent PIN proteins re-arrangement.  

 

5.2 MATERIALS 

The following transgenic plants, mutants, and constructs have been described previously: 

Seeds of DEX>>MAX1 (Crawford et al., 2010) and max2-3 were kindly gifted by Ottoline Leyser, 

University of York, UK.  

 

5.3 RESULTS 

We tested strigolactone role in a feed-back between auxin and PIN polarity (Adamowski & 

Friml, 2015) by the auxin-mediated polarity re-arrangements of the PIN auxin transporters in 

Arabidopsis roots (Sauer et al., 2006). In primary roots, PIN2 localizes to the apical cell side in 

epidermis and preferentially to the basal cell side in young cortex cells (Kleine-Vehn et al., 

2008). Auxin treatment leads to PIN2 re-arrangements in cortex to the outer lateral sides 

(Sauer et al., 2006). We used treatments with active strigolactone analogue GR24 (Gomez-

Roldan et al., 2008; Umehara et al., 2008) and DEX>>MAX1 line conditional expressing 

strigolactone biosynthetic enzyme MAX1 (Crawford et al., 2010).  

 This auxin effect was consistently inhibited by co-treatment with GR24 (Fig.5-1 A) in a 

MAX2-dependent manner because strigolactone effect was not observed in signalling mutant 

max2-3 (Fig.5-1 B). Results of auxin-dependent PIN re-arrangement in DEX>>MAX1 line with 

induction of endogenous strigolactone biosynthesis confirmed effect of externally applied 

strigolactone analogue GR24 (Fig.5-1 C - D). 
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Figure 5-1 Role of strigolactone in the regulation of PIN polarity. 

A. Graph shows mean ratio of lateral to basal signal intensity of PIN2 in cortex cells in Wt Col-0 1h pre-treated 

plants by 50 µM GR24 and subsequently treated with 10 µM NAA for 4 hours. Error bars indicate standard error. 

A two-tailed Student’s t-test compared marked sets of data. (**) P < 0.01. n ˃ 50 cells corresponding to roots 

imaged under comparable conditions. B. Graph shows mean ratio of lateral to basal signal intensity of PIN2 in 

cortex cells in Wt Col-0 and max2-3 mutant after 1h pre-treated plants by 50 µM GR24 and subsequently treated 

with 10 µM NAA for 4 hours. Error bars indicate standard error. A two-tailed Student’s t-test compared marked 

sets of data. (*) P < 0.05. n ˃ 35 cells corresponding to roots imaged under comparable conditions. C. Cortex 

cells of DEX>>MAX1 plant line induced by DEX/Mock treated with NAA/Mock. Arrowheads highlight PIN polarity. 

D. Graph shows mean ratio of lateral to basal signal intensity of PIN2 in cortex cells pre-treated by 50 µM DEX 

DEX>>MAX1 plants induced for 24h and treated with 10 µM NAA for 4 hours. Error bars indicate standard error. 

A two-tailed Student’s t-test compared marked sets of data. (**) P < 0.01. n ˃ 42 cells corresponding to roots 

imaged under comparable conditions. 
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6 Development of novel auxin sensor  

 
Tomáš Prát, Inmaculada Sanchez Romero, and Harald Lukas Janovjak 
 

6.1 INTRODUCTION 

Modern, advanced research in auxin-related plant science requires proper identification of 

auxin transport, distribution and accumulation. We are reliant on sensors, reporters and other 

indicators, basic tools for description of physiological processes as well as in every other 

biological science. Our knowledge of auxin biology is crucially dependent on limitations of 

these instruments. 

Auxin sensors are usually based on SCFTIR1-Aux/IAA-ARF auxin signalling pathway. The 

IAA2∷uidA reporter gene was constructed by fusing the uidA-coding sequence to the IAA2 

promoter sequence (Luschnig et al., 1998). The most commonly used reporter of auxin - DR5, 

is based on binding preference of ARF factors of SCFTIR1-Aux/IAA-ARF auxin signalling pathway 

to specific DNA sequence 5‘-TGTCtC-3‘ in gene promoters, AuxRE elements (auxin response 

elements). Sensor DR5 was constructed by fusion of minimal constitutive promoter 35S 

followed by nine repetition of AuxRE motif (5‘-TGTCTC-3‘), together expressing uidA (GUS) 

(Ulmasov et al., 1997), different fluorescent proteins (Friml et al., 2003), or luciferase 

(Moreno-Risueno et al., 2010). DR5 based sensor was recently upgraded to DR5v2. Analysis 

of crystal structure of two functionally divergent ARFs and protein binding microarray 

experiments revealed, that AuxRE motif used in original DR5 is not high-affinity binding site 

(Boer et al., 2014; Liao et al., 2015). Instead, nine high affinity AuxRE sites (5‘-TGTCGG-3‘) was 

used to create novel DR5v2 reporter (Liao et al., 2015). DR5v2 exhibit broader expression 

pattern than original line, e.g. during embryogenesis more distinctly mark cells in incipient 

cotyledon and in the root tip DR5v2 has high response also in adjacent cells of QC, in columella 

(Liao et al., 2015). Although both markers respond to low concentration of auxin, neither DR5 

nor DR5v2 show linear response to auxin concentration or treatment duration, and hence 

these cannot be used to infer actual auxin level (Liao et al., 2015).  

Position of ARF and AuxRE interaction at the end of the signalling pathway determine, 

that DR5 and DR5v2 reporters sense output of auxin signalling, resulting in delay of reporter 

activity (Vernoux et al., 2011). To overcome that was developed auxin sensor DII using process 

at the beginning of auxin signalling. In comparison to DR5, DII is a negative reporter, indicates 



 
 

auxin signalling input. Interacting Domain II of Aux/IAA protein is fused with fast maturating 

version of YFP fluorescent protein (VENUS). Binding of auxin between TIR1 protein and DII 

domain triggers ubiquitination of DII reporter and its degradation in proteasome. Moreover, 

fusion with fast maturating fluorescent marker, decrease signals appearance from 3 hours in 

case of DR5::GFP to less than 30 minutes (Brunoud et al., 2012). Comparison with control line 

expressing mDII-Venus, that lack auxin-dependent degradation, allows semiquantitative 

measurement of auxin input. Unfortunately, handling with multiple controls as well as 35S 

promoter, not active at early steps of embryogenesis, used to drive DII/mDII-Venus limit 

experimental applications (Liao et al., 2015). A single reporter R2D2 was designed recently to 

overcome these issues. Ratiometric version of two DIIs combines DII domain fused with 

n3xVenus yellow fluorophore and mDII fused with ndtTomato red fluorophore, both 

constructs driven by two RPS5A promoters on single transgene. A simple image analysis of 

yellow/red ratio allows semiquantitative measurement of auxin accumulation at cellular level 

(Liao et al., 2015). Different philosophy partially based on SCFTIR1-Aux/IAA-ARF auxin signalling 

pathway auxin uses ratiometric luminescent biosensor (Wend et al., 2013). Sensor construct 

comprises two components: a sensor module (SM), fused to firefly luciferase, and renilla 

luciferase. Both components are linked by a 2A peptide. 13-amino-acid minimal degradation 

sequences of three selected Aux/IAA family members (IAA17, IAA28, and IAA31) that confer 

auxin-dependent degradation were used as sensor modules. The 2A peptide allows for the 

stoichometrical co-expression of SM-firefly and renilla luciferase. Auxin concentration-

dependent degradation of the sensor could be monitored as a decrease in firefly relative to 

renilla luminescence (F/R) (Wend et al., 2013). 

These auxin sensors share fundamental disadvantage: They are not sensing auxin 

directly but through SCFTIR1-Aux/IAA-ARF auxin signalling pathway. That is preventing usage 

of them in auxin signalling mutants. Moreover was suggested that DR5 sensor is activated 

also by brassinolides as well as IAA (Nakamura et al., 2003). The potential method for direct 

auxin sensing, immunolocalization of free IAA with monoclonal anti-IAA antibodies, does not 

allow in vivo assays (Nishimura et al., 2011). Therefore, we would like to develop direct auxin 

sensor with rapid response, spatiotemporal resolution, sensitive and selective, providing dose 

response signal (ratiometric), which will be easy to use. 
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 Fluorescent sensors – probes as alternative in monitoring receptor-
dependent signalling 

To overcome disadvantages of the native receptor-dependent sensors, we would like 

to use an alternative method of introduction artificial probe for specific ligand. Till today, 

three different kinds of fluorescent probes were published: FRET probes, sensors with 

circularly permutated fluorescent protein and thiol-derived sensor.  

Genetically-encoded Foerster Resonance Energy Transfer (FRET) nanosensors have 

been developed for quantification of the dynamic changes in concentration of several 

biologically active ligands with improved spatiotemporal resolution. FRET sensors are fusion 

proteins composed of a ligand-binding moiety and a fluorescent pair, donor and acceptor 

fluorophores, with overlapping emission and excitation spectra, typically CFP and YFP (Hou et 

al., 2011). Binding of the ligand causes a conformational change that affects the relative 

distance and/or orientation between the fluorescent proteins, resulting in increase or a 

decrease of FRET efficiency (Marvin et al., 2013).  

An alternative strategy for creating genetically-encoded sensors is the allosteric 

modulation of the fluorescence properties of a single fluorophore. These sensors have a 

number of advantages: their ligand-bound states may be nearly as bright as the parental 

fluorophore, while their ligand-free states may be arbitrarily dim, providing broad range of 

fluorescence intensity. Therefore, single fluorophore sensors have increased signal-to-noise 

ratio (SNR) and are more resistant to photobleaching artifacts, than the FRET sensors (Tian et 

al., 2009). Circularly permuted YFP (cpYFP) has been successfully used as a reporter 

fluorophore of sensors for H2O2 (HyPer), cGMP (FlincG), ATP:ADP ratio (Perceval) or other 

circularly permutated fluorophore cpGFP has been used in iGluSnFr sensor of glutamate 

(Belousov et al., 2006; Nausch et al., 2008; Berg et al., 2009; Marvin et al., 2011). In each case, 

the emission intensity was at least doubled upon ligand binding (Marvin et al., 2013). 

The third type of fluorescent probe, glutamate (E) optical sensor (EOS), is a hybrid 

sensor made from the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

receptor. EOS contains glutamate-binding core and a small thiol-reactive fluorescent dye, that 

change fluorescence intensity upon binding of glutamate e.g. in mouse somatosensory 

cortical neurons (Namiki et al., 2007).  



 
 

These three possible methods of sensor creation are based on small binding cores 

which have to fulfill crucial attribute: change of structural conformation upon binding of the 

ligand. 

6.2 RESULTS 

 Identification of binding cores for auxin 

 Essential step of sensor creation is identification of binding core with known structure, 

which undergoes conformational change transferred to fluorescent part of the sensor. As well 

as in every kind of protein design, two strategies, rational and irrational, are possible. 

Irrational strategy of protein engineering is based on adjustment of scaffold, known flexible 

binding core for different ligand, to bind ligand of interest resulting in specific sensor for that 

compound. For creation of sensors is usually used mutation, in vitro directed evolution of PBP 

(Periplasmic binding proteins), transporters for glutamate and aspartate in bacteria (Alicea et 

al., 2011; Marvin et al., 2013). The rational strategy, use opposite way, the knowledge of 

specific binding of the ligand to binding core, from which the sensor is created. We decided 

to follow rational strategy, based on ligand dependent survey.  

 Firstly, we tried to identify auxin binding pockets in proteins with known preference 

to auxin. Not surprisingly at the beginning we were focused on auxin receptor, TIR1 and 

protein ABP1 (AUXIN BINDING PROTEIN 1). However was ABP1 protein the first discovered 

auxin receptor, mechanism of its signalling function remains unknown (Chen et al., 2001). 

Recently, the significance of the ABP1 pathway has been undermined by the lack of any 

obvious developmental phenotypes of the abp1 knockout mutants (Gao et al., 2015; Grones 

et al., 2015; Michalko et al., 2015; Michalko et al., 2016). ABP1 protein contains KDEL 

sequence determining its localization to endoplasmatic reticulum but small fraction is 

secreted to apoplast with ideal pH for binding of auxin (Henderson et al., 1997). 

Unfortunately, auxin receptor and ABP1 do not undergo change of conformation necessary 

for establishment of sensor. Therefore, we did in silico survey of other auxin binding protein. 

We suggested that members of auxin biosynthesis, conjugation, degradation and transport 

should contain auxin binding pocket but in none of them is the structure known. After 

unsuccessful survey of plant proteins, we decided to expand area of the search.  

 We presumed that some of the other chemical compounds could share structural and 

chemical attributes with to auxin. Therefore, we perform ligand-dependent survey in 
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databases of published space structures of proteins (PDB – protein databank) with 

compounds similar to auxin. We identified two possible binding cores. The first of them is 

PPARγ (PEROXISOME PROLIFERATOR_ACTIVATED RECEPTOR γ). This protein is a ligand-

dependent transcription factor. Its function is correlated with glucose homeostasis and insulin 

sensitization in animals (Schupp et al., 2009). PPARγ contains two binding pockets recognize 

distinct ligands, one for trans-fatty acids and the second for serotonin-like molecules. 

Serotonin metabolites, 5-methoxy-indole acetate (MIA) and 5-hydroxy-indole acetate (HIA) 

contain indole acetate ring function as a common moiety for the recognition in the sub-pocket 

near helix H12 of protein PPARγ. Chemical structure of MIA and HIA is almost similar to IAA. 

Conformation structure of PPARγ undergoes change upon binding (Waku et al., 2010), 

therefore we decided to use this protein as binding pocket for sensor creation. The second 

protein which we identified is HCPTP-A/ACP1 (ACID PHOSPHATASE LOCUS 1). ACP1 is a low 

molecular weight phosphotyrosine phosphatase (LMW-PTP), which presents two main 

enzymatic activities: phosphoprotein tyrosine phosphatase and flavin mononucleotide 

phosphatase (Bottini et al., 2002). ACP1 are present in two isoenzyme states, having different 

molecular and catalytic properties, suggesting that they may be implicated in different 

biological functions in the human cells, like regulation of many growth factors, such as 

platelet-derived growth factor receptor (Chiarugi et al., 1996), fibroblast growth factor 

receptor (Rigacci et al., 1999), insulin receptor (Pandey et al., 2007) and ephrin receptor, a 

peptide ligand that binds to the ephrin receptor family of tyrosine kinase receptors (Kikawa 

et al., 2002). ACP1 has been cocrystalized with synthetic auxin NAA and change structural 

conformation upon binding, so we presumed the possibility of use this protein as binding core 

of sensor.  

 Cloning of selected binding cores, creation of the sensor  

 As a template for amplification of selected genes PPARγ and ACP1 we were using cDNA 

isolated from HEK293 cells (Human embryonic kidney 293). Based on the results of public 

available microarray experiments on HEK293 cells, is the gene expression of both genes up-

regulated. We amplified the genes using gene specific primers containing restriction site for 

SapI (LguI) non-palindromic restriction endonuclease (RE) and unique linker, which allows 

insertion of DNA sequence in proper direction into plasmids called GoldenGate cloning 



 
 

system. We cloned PCR product following GoldenGate “one pot” periodic ligation and 

digestion protocol. 

 The next step after binding core cloning was the establishment of sensor based on 

type. In a case of cpGFP sensor, the crucial step was introduction of fluorophore into part of 

the protein undergoing a conformational change upon binding. We were using digestion and 

ligation using RE but because of there was none unique restriction site in the sequence, we 

introduce it through primers containing nucleotide substitution causes in vitro synonymous 

mutation in the binding core sequence to make recognition site for BamHI RE. Then we ligated 

cpGFP sequence specifically into this site by BamHI RE. The second sensor we made was the 

FRET probe, therefore we cloned binding core between two fluorophores, acceptor CFP and 

emitter VENUS (YFP). Because of the sequence of binding core contained stop codon Amber, 

we removed it by substitution of nucleotides, similarly like in cpGFP insertion but we changed 

Amber stop codon to codon for tyrosine amino acid. Then all three parts, CFP, binding core 

and YFP are expressed together as one protein. The third sensor EOS-like, were cloned for 

testing of functionality of sensors and elucidation of spatiotemporal conformational change 

(Namiki et al., 2007). For that was necessary to introduce cysteine amino acid to flexible loop 

of our binding core. The mechanism of signal emission of this kind of sensor is based on 

chemical reaction between cysteine and maleimide joined with small fluorescent dye, in our 

case AlexaFluor488 (Alexa488). After adding of reducing agent tris(2-carboxyethyl)phosphine 

(TCEP), that can keep the cysteines from forming di-sulphide bonds, will not react as readily 

with the maleimide. Insertion of artificial cysteine in the loop that undergoes change of 

conformation upon binding of the ligand, on exposed part of the protein to space, deviate the 

observed fluorescence signal. 

 Testing of the sensor 

 The important step in sensor creation is a validation of function. We developed high 

throughput method for testing of the sensor in vitro, using streptavidin-biotin binding assay 

on 96-well plate (Winkler et al., 1997). The sensor was cloned with biotin tag, the site 

providing strong biotinylation. The ELISA 96-well plate with transparent bottom was coated 

with streptavidin solution at final concentration 10 µg/mL. Then the isolated protein fractions, 

supernatant or pellet, was applied to each well. After multiple washing, to get rid of unbound 

proteins, only protein with a biotin tag is present in the well. We were using Biotek plate 
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reader H1 with injectors for rapid testing of fluorescence changes of our sensor. We 

performed pilot experiment to verify usability of streptavidin-biotin assay. We were using 

biotinilated Alexa488 in comparison to free Alexa488. To test suitability for protein testing, 

we applied eGFP protein with biotin tag and without, respectively. Results show the sensitivity 

of our method, for Alexa488 we could distinguish concentration with threshold between 10 

nM and 1nM and for proteins dilutions to 1:20 in blocking solution. 

 

Figure 6-1 Pilot experiments to verify usability of streptavidin-biotin assay. 

 EOS-like sensor 

 The first experiments with sensors were performed. We expressed EOS-like sensor 

containing ACP1 binding core in IPTG inducible heat-shock competent cell line BL21. We 

defined expression condition, the concentration of IPTG as 0.1 – 0.4 μM, temperature  

18 deg. C in overnight cultivation. Then we isolated whole protein content, divided to soluble 

supernatant fraction and insoluble pellet. We applied protein fractions to our streptavidin 

coated 96-well plate, performed maleimide reaction with TCEP, cultivated overnight with 

0.125 mM solution of Alexa488-C5-maleimide fluorescent dye and after extensive washing 

we added auxin NAA or IAA in final concentration of 1.25 mM. We made six triplicates for 

each supernatant, pellet, NAA and IAA together with controls without protein fractions or 

with protein but without fluorescent dye. Before adding of auxin, we have measured 

background fluorescence, which then was deducted from obtained fluorescence signal.  

 The results from measurement of fluorescent signal in activated EOS-like sensor 

showed not robust, random changes of the signal. Therefore, we can’t claim that the binding 

core of ACP1 is functional for binding of auxin and could be used for sensor. Since we were 

not sure if these negative results are caused by experiment design or method, we decide 

anyway to continue with other fluorescent sensor types. 



 
 

 

Figure 6-2 Results of maleimide reaction on EOS-like sensor with ACP1 binding core. 

 FRET based sensor 

 We expressed EOS-like sensor containing ACP1 binding core in IPTG inducible heat-

shock competent cell line BL21. We used defined expression condition like in EOS sensor, the 

concentration of IPTG as 0.1 – 0.4 μM, temperature 18 deg. C in overnight cultivation. 

Unfortunately, no increase in expression was observed, maybe because of cell toxicity of 

produced transgene induced by IPTG.  

Therefore, we used ZYM-5052 autoinduction medium for BL21 cells. Protein extract 

of sonicated cells was then purified on Ni-NTA His GraviTrap column (GE Healthcare), with 

binding buffer containing 20 mM imidazole and elution buffer of 500 mM imidazole. Purified 

protein was desalted by PD-10 desalting column (GE Healthcare). From 600 mL of bacterial 

culture we got 3.5 mL of purified ACP1-flipe FRET probe of concentration about 2 mg/mL.  

 Protein was diluted in sodium phosphate monobasic buffer concentration 0.25 or 0.5 

mg/mL. We measured fluorescence properties of ACP1-flipe probe in spectrophotometer 

(Spectramax M2e microplate/cuvette reader) at excitation wavelength 433 nm, with cut off 

455 nm in emission spectrum of 460 – 560 nm with step per 2 nm and 3 technical repeats. As 

a control we used benzoic acid (BA) with pKa= 4.19, that is very close to pKa of IAA (pKa= 4.7 -

4.84). As secondary control, we used structurally similar compound to IAA, its precursor 

tryptophan (Trp) amino acid with pKa=9.4. We tested three different concentrations  
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1 nM, 10 nM and 100 nM of IAA, BA and 10 nM and 100 nM for Trp. Mock treatments were 

performed with equivalent amounts of the respective solvents. Moreover, we tested also NAA 

of 10 nM. For analysis we used ratio of fluorescent intensity of CFP emission wavelength 470 

nm to YFP emission wavelength 534 nm. 

 

Figure 6-3 Results of FRET sensor with ACP1 binding core. 

 Unfortunately, we observed FRET process ongoing also by mock treated ACP1-flipe 

sensor. Emission spectra were not dramatically shifted in favor of YFP neither by application 

of different concentration of native auxin IAA, nor NAA auxin analogue. Control treatments, 

as well as auxins caused not stable and robust random change of fluorescent intensity. FRET 

ongoing without application of ligand could be simply caused by fact, that binding core of 

ACP1 is too small, by absence of longer linker separating both fluorophores and spatial 

conformation of whole artificial protein. Theoretically, these issues could be solved by use of 

probe with single fluorescent protein, circularly permutated GFP. 

 cpGFP sensor 

 For expression and extraction of ACP1-cpGFP probe we used similar experimental 

procedure as in case of genetically encoded, high-signal-to-noise maltose sensor (Marvin et 

al., 2011). Protein was extracted by freeze-thaw lysis and rapid shaking in 800 µL phosphate-

buffered saline in 2 mL Eppendorf tube. Crude lysate was clarified by centrifugation at 4000g 

for 30 min. Clarified lysate was diluted and transferred to cuvette for spectrophotometry and 

mixed with IAA or BA or Trp to final concentration of ligand 10 nM 100 nM. We measured 

spectral properties of mixture in spectrophotometer (Spectramax M2e microplate/cuvette 

reader) at excitation wavelength 485 nm, with cut off 495 nm in emission spectrum  
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of 500 - 560 nm with step per 2 nm and 3 technical repeats. For analysis we used ratio of 

fluorescent intensities ΔF/F0 where ΔF is difference between fluorescent intensity after 

adding ligand and initial fluorescence at wavelength of 514 nm (ΔF= Fligand - F0; F514 nm) and F0 

is initial fluorescence (Marvin et al., 2011). 

 We performed two independent experiments with similar trend for 100 nM 

concentration of compounds, interestingly 10 nM concentration of BA caused opposite 

change of ratio. These not robust, random changes of the fluorescent signal are in line with 

two previous strategies for sensor design. Therefore, we cannot claim that the binding core 

of ACP1 is functional for binding of auxin and could be used for sensor. 

Figure 6-4  Results of two independent experiments with cpGFP sensor containing ACP1 binding core. 

 

6.3 DISCUSSION 

 Due to time constrains, PPARγ binding core was not cloned to check binding core 

capabilities but all cloning plasmids were done and method procedures were optimized. If 

none of the identified binding core will be successful, irrational design approach in sensor 

creation is possible to use. It means e.g. in vitro directed evolution of PBP (Periplasmic binding 

proteins) to develop sensitivity for auxin (Alicea et al., 2011; Marvin et al., 2013). Fundamental 

issue in this approach will be cope structural similarity of IAA to common compound in plant 

cells – Tryptophan.  

Recently, direct interaction of ETTIN (ETT/ARF3) auxin response factor and basic helix-

loop-helix (bHLH) transcription factor INDEHISCENT (IND) upon presence of auxin was 

suggested (Østergaard, personal communication). ETT encodes an auxin response factor 

(ARF3) and mutants show pleiotropic phenotypes that include ectopic sepals and petals and 

fewer stamens in the abaxial domain (Nemhauser et al., 2000). IND is responsible for the 

formation of an auxin minimum in the dehiscence zone of the fruit. This auxin minimum is 
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required for separation layer specification (Sorefan et al., 2009). Overexpression of IND in 

seedlings was found to lead to PIN1 and PIN3 polarity loss. IND and the bHLH transcription 

factor SPATULA (SPT) were found to bind the promoters of the AGC kinase genes PINOID (PID) 

and WAG2 and to repress the expression of PID and upregulate the expression of WAG2 in 

seedlings and developing fruits (Sorefan et al., 2009; Girin et al., 2011). Protein-protein 

interaction of ETT and IND was thoroughly tested by FRET assay (Weijers, personal 

communication). We proposed model of possible FRET probe using interaction of ETT and 

IND.  

Substantial amount of questions is still not answered. One of the first is connected to 

phenotypes caused by gain-of-function of IND and loss-of-function ett respectively. Biosensor 

cannot change phenotype. Possible way is a deletion study inspired e.g. on spt mutant but 

still sensitive to auxin-dependent interaction. Other questions are how does proposed sensor 

affect auxin signalling? What if sensor switches on auxin responsive genes e.g. PID? How does 

sensor affect pool of intracellular auxin? Does interaction of IND and ETT need other putative 

regulators/interactors? Does interaction happen without DNA binding (that is relevant for 

sensors of apoplastic auxin levels)?  

From practical point of view is relevant which terminus shall be used for CFP/YFP for 

ETT and IND, what are necessary molecular properties of flexible linker “hinge” between IND 

and ETT and how to perform fast turnover of sensor. 

Although, we were not successful with experimental auxin sensor design we identified 

possible ways for future investigation on field of plant hormone auxin biosensors. 
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7 Conclusions 

 

The auxin feed-back on polar PIN localization was proposed by canalization hypothesis as a 

crucial mechanism in mediating multiple developmental processes. Here, we used the auxin 

effect on PIN polarity in Arabidopsis root meristems as a proxy for canalization and performed 

microarray experiments to find regulators of this process.  

We described novel regulator downstream of SCFTIR1-Aux/IAA-ARF auxin signalling 

pathway, transcription factor WRKY23 (At2g47260), and demonstrate its crucial role in 

mediating the auxin effect on PIN polarity. In order to identify transcriptional targets of 

WRKY23, we performed consequential expression profiling experiments. Among several 

genes mostly related to the groups of cell wall and defense process regulators, we identified 

LYSINE-HISTIDINE TRANSPORTER 1 (LHT1; At5g40780), a small amino acid permease gene and 

member of receptor-like protein kinase LRR-RLK (LEUCINE-RICH REPEAT TRANSMEMBRANE 

PROTEIN KINASE PROTEIN 1; LRRK1; At1g05700), which also affects auxin-dependent PIN re-

arrangement. Additionally, we described role of novel phytohormone group, strigolactone, in 

auxin-dependent PIN re-arrangement, that could be a fundament for future studies in this 

field. 

Our results provide first insights into an auxin transcriptional network targeting PIN 

localization and thus regulating plant development. This work provides unique 

comprehensive treatise on regulation property of auxin signalling on PIN polarity re-

arrangement which is not been reported so far.  
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A. Appendix – WRKY23 is a component of the transcriptional network 
mediating auxin feedback on the PIN polarity 

 

Table S1. 

A. Venn diagram representing gene overlay of microarray experiments. Dataset of auxin 

regulated genes in Wt Col-0 seedlings was overlaid with a second set of acquired from 

comparison of auxin treated Wt Col-0 and heat-shock induced auxin treated HS::axr3-1. 

Overlap of these genes yielded a list of 244 candidate genes list. B. The gene model description 

is depicted as it appears in TAIR database. Experiments were designed by M.Sau., performed 

by M.Sch. and statistical analysis was performed by M.Sch. and G.M.. 

 

Table S2. 

A. Venn diagram representing gene overlay of microarray experiments. Datasets of genes 

differentially regulated in HS::axr3-1 compared to auxin-regulated genes in wild were overlaid 

with a third set of genes which are no longer auxin regulated in arf7 arf19 background 

(Okushima et al., 2005). B. Candidate genes from microarray experiments yielded 125 genes 

containing also putative polarity regulators. The gene model description is depicted as it 

appears in TAIR database. Experiments were designed by M.Sau., performed by M.Sch. and 

statistical analysis was performed by M.Sch. and G.M..  



Locus identifier Primary Gene Symbol Gene Model Description
AT1G02400 GIBBERELLIN 2-OXIDASE 6 (GA2OX6) Encodes a gibberellin 2-oxidase that acts on C19 gibberellins but not C20 gibberellins.

AT1G02850 BETA GLUCOSIDASE 11
(BGLU11)

beta glucosidase 11 (BGLU11)

nietorp nwonknu02830G1TA

AT1G03870 FASCICLIN-LIKE
ARABINOOGALACTAN 9 (FLA9)

fasciclin-like arabinogalactan-protein 9 (Fla9)

esatahpsohp dica BIII ylimafbus ,ylimafrepus DAH04040G1TA

AT1G05530 UDP-GLUCOSYL
TRANSFERASE 75B2 (UGT75B2)

Encodes a protein with glucosyltransferase activity with high sequence homology to UGT1 (AT1G05560). It belongs to an UGT subfamily that binds UDP-glucose but not UDP-glucuronate, UDP-galactose, or UDP-rhamnose as the glycosyl 
donor. UGT2 was shown to be able to use abscisic acid as glycosylation substrate in the presence of UDP-glucose.

AT1G08500 EARLY NODULIN-LIKE
PROTEIN 18 (ENODL18)

early nodulin-like protein 18 (ENODL18); FUNCTIONS IN: electron carrier activity, copper ion binding; LOCATED IN: anchored
to membrane;

AT1G14350 FOUR LIPS (FLP) Encodes a putative MYB transcription factor involved in stomata development, loss of FLP activity results in a failure of guard
mother cells (GMCs) to adopt the guard cell fate, thus they continue to divide resulting in abnormal stomata consisting of clusters of numerous guard cell-like cells. This phenotype is enhanced in double mutants with MYB88.

nietorp ylimafrepus esadixoreP04541G1TA

AT1G15210 ATP-BINDING CASSETTE
G35 (ABCG35)

pleiotropic drug resistance 7 (PDR7)

AT1G15580 INDOLE-3-ACETIC ACID
INDUCIBLE 5 (IAA5)

auxin induced protein

AT1G19220 AUXIN RESPONSE FACTOR
19 (ARF19)

Encodes an auxin response factor that contains the conserved VP1-B3 DNA-binding domain at its N-terminus and the Aux/IAA-like domains III and IV present in most ARFs at its C-terminus. The protein interacts with IAA1 (yeast two 
hybrid) and other auxin response elements such as ER7 and ER9 (yeast one hybrid). ARF19 protein can complement many aspects of the arf7 mutant phenotype and , together with ARF7, is involved in the response to ethylene. In the arf7 arf19 
double mutant, several auxin- responsive genes (e.g. IAA5, LBD16, LBD29 and LBD33) are no longer upregulated by auxin.

AT1G21980 PHOSPHATIDYLINOSITO L-4-PHOSPHATE 5- 
KINASE 1 (PIP5K1)

Type I phosphatidylinositol-4-phosphate 5-kinase. Preferentially phosphorylates PtdIns4P. Induced by water stress and abscisic acid in Arabidopsis thaliana. Expressed in procambial cells of leaves, flowers and roots. A N-terminal Membrane 
Occupation and Recognition Nexus (MORN) affects enzyme activity and distribution.

nietorp ylimaf )sfitom PNR/DBR/MRR( gnidnib-ANR03322G1TA
AT1G22530 PATELLIN 2 (PATL2) PATELLIN 2 (PATL2

AT1G23080 PIN-FORMED 7 (PIN7)

Encodes a novel component of auxin efflux that is located apically in the basal cell and is involved during embryogenesis in setting up the apical-basal axis in the embryo. It is also involved in pattern specification during root development. In 
roots, it is expressed at lateral and basal membranes of provascular cells in the meristem and elongation zone, whereas in the columella cells it coincides with the PIN3 domain. Plasma membrane-localized PIN proteins mediate a saturable 
efflux of auxin. PINs mediate auxin efflux from mammalian and yeast cells without needing additional plant-specific factors. The action of PINs in auxin efflux is distinct from PGPs, rate-limiting, specific to auxins and sensitive to auxin 
transport inhibitors. PINs are directly involved of in catalyzing cellular auxin efflux.

;nietorp ylimafrepus esaretseohpsohp-ollatem ekil-nirueniclaC03252G1TA
AT1G25450 3-KETOACYL-COA SYNTHASE 5 (KCS5) Encodes KCS5, a member of the 3-ketoacyl-CoA synthase family involved in the biosynthesis of VLCFA (very long chain fatty acids).

AT1G28370 ERF DOMAIN PROTEIN 11 (ERF11) encodes a member of the ERF (ethylene response factor) subfamily B-1 of ERF/AP2 transcription factor family. The protein contains one AP2 domain. There are 15 members in this subfamily including ATERF-3, ATERF-4, ATERF-7, and 
leafy petiole.

AT1G28380 NECROTIC SPOTTED LESIONS 1 (NSL1) This gene is predicted to encode a protein involved in negatively regulating salicylic acid-related defense responses and cell death programs.
H08682G1TA XXXD-type acyl-transferase family protein

ylimaf nietorp evisnopser-nixua ekil-RUAS00592G1TA

AT1G29510 SMALL AUXIN UPREGULATED 68
(SAUR68)

SMALL AUXIN UPREGULATED 68 (SAUR68);

nietorp ylimaf )RRL( taeper hcir-enicueL09533G1TA
;nietorp ylimaf nitcel nilacaj09733G1TA

;nietorp nwonknu06605G1TA
;nietorp ylimafrepus nitcel gnidnib-esonnaM05025G1TA

AT1G52830 INDOLE-3-ACETIC ACID 6 (IAA6) An extragenic dominant suppressor of the hy2 mutant phenotype. Also exhibits aspects of constitutive photomorphogenetic phenotype in the absence of hy2. Mutants have dominant leaf curling phenotype shortened hypocotyls and reduced 
apical hook. Induced by indole-3-acetic acid.

AT1G55330 ARABINOGALACTAN PROTEIN 21 (AGP21) Encodes a putative arabinogalactan-protein (AGP21).

A

B

Table S1.



Locus identifier Primary Gene Symbol Gene Model Description
AT1G55740 SEED IMBIBITION 1 (SIP1) seed imbibition 1 (SIP1
AT1G56020 unknown protein
AT1G60000 RNA-binding (RRM/RBD/RNP motifs) family protein
AT1G60010 unknown protein
AT1G62770 Plant invertase/pectin methylesterase inhibitor superfamily protein
AT1G63830 PLAC8 family protein;

AT1G64390 GLYCOSYL HYDROLASE
9C2 (GH9C2)

glycosyl hydrolase 9C2 (GH9C2)

AT1G64405 unknown protein
AT1G69530 EXPANSIN A1 (EXPA1) Member of Alpha-Expansin Gene Family. Naming convention from the Expansin Working Group (Kende et al, Plant Mol Bio). Involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana.

AT1G70230 TRICHOME BIREFRINGENCE-LIKE 27 
(TBL27)

Encodes a member of the TBL (TRICHOME BIREFRINGENCE-LIKE) gene family containing a plant-specific DUF231 (domain of unknown function) domain. TBL gene family has 46 members, two of which (TBR/AT5G06700 and 
TBL3/AT5G01360) have been shown to be involved in the synthesis and deposition of secondary wall cellulose, presumably by influencing the esterification state of pectic polymers. A nomenclature for this gene family has been proposed 
(Volker Bischoff & Wolf Scheible, 2010, personal communication).

AT1G70560 TRYPTOPHAN AMINOTRANSFERASE OF 
ARABIDOPSIS 1 (TAA1)

TAA1 is involved in the shade-induced production of indole-3-pyruvate (IPA), a precursor to IAA, a biologically active auxin. It is also involved in regulating many aspects of plant growth and development from embryogenesis to flower 
formation and plays a role in ethylene-mediated signaling. This enzyme can catalyze the formation of IPA from L-tryptophan. Though L-Trp is expected to be the preferred substrate in vivo, TAA1 also acts as an aminotransferase using L-Phe, 
L-Tyr, L-Leu, L-Ala, L-Met, and L-Gln.

AT1G70940 PIN-FORMED 3 (PIN3)
A regulator of auxin efflux and involved in differential growth. PIN3 is expressed in gravity-sensing tissues, with PIN3 protein accumulating predominantly at the lateral cell surface. PIN3 localizes to the plasma membrane and to vesicles. In 
roots, PIN3 is expressed without pronounced polarity in tiers two and three of the columella cells, at the basal side of vascular cells, and to the lateral side of pericycle cells of the elongation zone. PIN3 overexpression inhibits root cell growth. 
Protein phosphorylation plays a role in PIN3 trafficking to the plasma membrane.

AT1G72900 Toll-Interleukin-Resistance (TIR) domain-containing protein;

AT1G73590 PIN-FORMED 1 (PIN1)

Encodes an auxin efflux carrier involved in shoot and root development. It is involved in the maintenance of embryonic auxin gradients. Loss of function severely affects organ initiation, pin1 mutants are characterised by an inflorescence 
meristem that does not initiate any flowers, resulting in the formation of a naked inflorescence stem. PIN1 is involved in the determination of leaf shape by actively promoting development of leaf margin serrations. In roots, the protein mainly 
resides at the basal end of the vascular cells, but weak signals can be detected in the epidermis and the cortex. Expression levels and polarity of this auxin efflux carrier change during primordium development suggesting that cycles of auxin 
build-up and depletion accompany, and may direct, differentstages of primordium development. PIN1 action on plant development does not strictly require function of PGP1 and PGP19 proteins.

AT1G73620 Pathogenesis-related thaumatin superfamily protein
AT1G73780 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein;

AT1G74660 MINI ZINC FINGER 1 (MIF1)

Encodes MINI ZINC FINGER 1 (MIF1) which has a zinc finger domain but lacks other protein motifs normally present in transcription factors. MIF1 physically interact with a group of zinc finger-homeodomain (ZHD) transcription factors, 
such as ZHD5 (AT1G75240), that regulate floral architecture and leaf development. Gel mobility shift assays revealed that MIF1 blocks the DNA binding activity of ZHD5 homodimers by competitively forming MIF1-ZHD5 heterodimers. 
Constitutive overexpression of MIF1 caused dramatic developmental defects, seedlings were non-responsive to gibberellin (GA) for cell elongation, hypersensitive to the GA synthesis inhibitor paclobutrazol (PAC) and abscisic acid (ABA), and 
hyposensitive to auxin, brassinosteroid and cytokinin, but normally responsive to ethylene.

AT1G74790 catalytics

AT1G75500 WALLS ARE THIN 1 (WAT1) An Arabidopsis thaliana homolog of Medicago truncatula NODULIN21 (MtN21). The gene encodes a plant-specific, predicted integral membrane protein and is a member of the Plant-Drug/Metabolite Exporter (P-DME) family (Transporter 
Classification number: TC 2.A.7.3).

AT1G77280 Protein kinase protein with adenine nucleotide alpha hydrolases-like domain
AT1G78100 F-box family protein;
AT1G78420 RING/U-box superfamily protein

AT2G01430 HOMEOBOX-LEUCINE
ZIPPER PROTEIN 17 (HB17)

homeobox-leucine zipper protein 17 (HB17);

AT2G01910 (ATMAP65-6) Binds microtubules. Induces a crisscross mesh of microtubules, not bundles. Not involved in microtubule polymerization nor
nucleation. Localizes to mitochondria.

AT2G02620 Cysteine/Histidine-rich C1 domain family protein
AT2G03730 ACT DOMAIN REPEAT 5 (ACR5) Member of a small family of ACT domain containing proteins. ACT domains are thought to be involved in amino acid binding.

AT2G03830 ROOT MERISTEM GROWTH FACTOR 8 
(RGF8)

Encodes a root meristem growth factor (RGF).  Belongs to a family of functionally redundant homologous peptides that are secreted, tyrosine-sulfated, and expressed mainly in the stem cell area and the innermost layer of central columella cells. 
RGFs are required for maintenance of the root stem cell niche and transit amplifying cell proliferation. Members of this family include: At5g60810 (RGF1), At1g13620 (RGF2), At2g04025 (RGF3), At3g30350 (RGF4), At5g51451 (RGF5), 
At4g16515 (RGF6), At3g02240 (RGF7), At2g03830 (RGF8) and At5g64770 (RGF9).

AT2G05940 Protein kinase superfamily protein;
AT2G14960 (GH3.1) encodes a protein similar to IAA-amido synthases. Lines carrying an insertion in this gene are hypersensitive to auxin.
AT2G18690 unknown protein;

AT2G18800 XYLOGLUCAN ENDOTRANSGLUCOSYLAS 
E/HYDROLASE 21 (XTH21) xyloglucan endotransglucosylase/hydrolase 21 (XTH21);

AT2G18980 Peroxidase superfamily protein
AT2G22500 UNCOUPLING PROTEIN 5 (UCP5) Encodes one of the mitochondrial dicarboxylate carriers (DIC): DIC1 (AT2G22500), DIC2 (AT4G24570), DIC3 (AT5G09470).
AT2G23170 (GH3.3) encodes an IAA-amido synthase that conjugates Asp and other amino acids to auxin in vitro.
AT2G25790 Leucine-rich receptor-like protein kinase family protein;
AT2G28400 Protein of unknown function, DUF584;

AT2G29460 GLUTATHIONE S-
TRANSFERASE TAU 4 (GSTU4)

Encodes glutathione transferase belonging to the tau class of GSTs. Naming convention according to Wagner et al. (2002).

AT2G30040
MITOGEN-ACTIVATED

PROTEIN KINASE KINASE KINASE 14 
(MAPKKK14)

member of MEKK subfamily

AT2G30140 UDP-Glycosyltransferase superfamily protein
AT2G30930 unknown protein

AT2G33310 AUXIN-INDUCED PROTEIN
13 (IAA13)

Auxin induced gene, IAA13 (IAA13).

AT2G34650 PINOID (PID)

Encodes a protein serine/threonine kinase that may act as a positive regulator of cellular auxin efflux, as a a binary switch for PIN polarity, and as a negative regulator of auxin signaling. Recessive mutants exhibit similar phenotypes as pin-
formed mutants in flowers and inflorescence but distinct phenotypes in cotyledons and leaves. Expressed in the vascular tissue proximal to root and shoot meristems, shoot apex, and embryos. Expression is induced by auxin. Overexpression of 
the gene results in phenotypes in the root and shoot similar to those found in auxin-insensitive mutants. The protein physically interacts with TCH3 (TOUCH3) and PID-BINDING PROTEIN 1 (PBP1), a previously uncharacterized protein 
containing putative EF-hand calcium-binding motifs. Acts together with ENP (ENHANCER OF PINOID) to instruct precursor cells to elaborate cotyledons in the transition stage embryo. Interacts with PDK1. PID autophosphorylation is 
required for the ability of PID to phosphorylate an exogenous substrate. PID activation loop is required for PDK1-dependent PID phosphorylation and requires the PIF domain. Negative regulator of root hair growth. PID kinase activity is critical 
for the inhibition of root hair growth and for maintaining the proper subcellular localization of PID.

AT2G35930 PLANT U-BOX 23 (PUB23) Encodes a cytoplasmically localized U-box domain containing E3 ubiquitin ligase that is involved in the response to water stress and acts as a negative regulator of PAMP-triggered immunity.



Locus identifier Primary Gene Symbol Gene Model Description

AT2G35980 YELLOW-LEAF-SPECIFIC GENE 9 (YLS9) Encodes a protein whose sequence is similar to tobacco hairpin-induced gene (HIN1) and Arabidopsis non-race specific disease resistance gene (NDR1). Expression of this gene is induced by cucumber mosaic virus, spermine and during 
senescence. The gene product is localized to the chloroplast.

AT2G36220 unknown protein

AT2G39350 ATP-BINDING CASSETTE
G1 (ABCG1)

ABC-2 type transporter family protein

AT2G39370 unknown protein;
AT2G39700 EXPANSIN A4 (EXPA4) putative expansin.

AT2G40540 POTASSIUM
TRANSPORTER 2 (KT2)

putative potassium transporter AtKT2p (AtKT2) mRNA,

AT2G41100 TOUCH 3 (TCH3) encodes a calmodulin-like protein, with six potential calcium binding domains. Calcium binding shown by Ca(2+)-specific shift in electrophoretic mobility. Expression induced by touch and darkness. Expression may also be developmentally 
controlled. Expression in growing regions of roots, vascular tissue, root/shoot junctions, trichomes, branch points of the shoot, and regions of siliques and flowers.

AT2G41380 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein;
AT2G41810 _ unknown

AT2G42430 LATERAL ORGAN
BOUNDARIES-DOMAIN 16 (LBD16)

LOB-domain protein gene LBD16. This gene contains one auxin-responsive element (AuxRE).

AT2G42440 Lateral organ boundaries (LOB) domain family protein; CONTAINS InterPro DOMAIN/s: Lateral organ boundaries, LOB (InterPro:IPR004883)

AT2G42570 TRICHOME BIREFRINGENCE-LIKE 39 
(TBL39)

Encodes a member of the TBL (TRICHOME BIREFRINGENCE-LIKE) gene family containing a plant-specific DUF231 (domain of unknown function) domain. TBL gene family has 46 members, two of which (TBR/AT5G06700 and 
TBL3/AT5G01360) have been shown to be involved in the synthesis and deposition of secondary wall cellulose, presumably by influencing the esterification state of pectic polymers. A nomenclature for this gene family has been proposed 
(Volker Bischoff & Wolf Scheible, 2010, personal communication).

AT2G42870 PHY RAPIDLY REGULATED
1 (PAR1)

Encodes PHYTOCHROME RAPIDLY REGULATED1 (PAR1), an atypical basic helix-loop-helix (bHLP) protein. Closely related to PAR2 (At3g58850).  Up regulated after simulated shade perception. Acts in the nucleus to control plant 
development and as a negative regulator of shade avoidance response. Functions as transcriptional repressor of auxin-responsive genes SAUR15 (AT4G38850) and SAUR68 (AT1G29510).

AT2G43290
MULTICOPY

SUPPRESSORS OF SNF4
DEFICIENCY IN YEAST 3 (MSS3)

Encodes calmodulin-like MSS3.

AT2G43590 Chitinase family protein
AT2G43880 Pectin lyase-like superfamily protein;
AT2G45400 (BEN1) involved in the regulation of brassinosteroid metabolic pathway

AT2G45420 LOB DOMAIN-
CONTAINING PROTEIN 18 (LBD18)

LOB domain-containing protein 18 (LBD18)

AT2G47130 NAD(P)-binding Rossmann-fold superfamily protein
AT2G47140 NAD(P)-binding Rossmann-fold superfamily protein

AT2G47260 WRKY DNA-BINDING PROTEIN 23 (WRKY23) Encodes a member of WRKY Transcription Factor; Group I. Involved in nematode feeding site establishment.

AT2G47440 Tetratricopeptide repeat (TPR)-like superfamily protein Eukaryotes - 33 (source: NCBI BLink).
AT3G01190 Peroxidase superfamily protein

AT3G02850 STELAR K+ OUTWARD RECTIFIER (SKOR)

Encodes SKOR, a member of Shaker family potassium ion (K+) channel. This family includes five groups based on phylogenetic analysis (FEBS Letters (2007) 581: 2357): I (inward rectifying channel): AKT1 (AT2G26650), AKT5 
(AT4G32500) and SPIK (also known as AKT6, AT2G25600); II (inward rectifying channel): KAT1 (AT5G46240) and KAT2 (AT4G18290); III (weakly inward rectifying channel): AKT2 (AT4G22200); IV (regulatory subunit involved in 
inwardly rectifying conductance formation): KAT3 (also known as AtKC1, AT4G32650); V (outward rectifying channel): SKOR (AT3G02850) and GORK (AT5G37500).  Mediates the delivery of K+ from stelar cells to the xylem in the roots 
towards the shoot. mRNA accumulation is modulated by abscisic acid. K+ gating activity is modulated by external and internal K+.

AT3G02885 GAST1 PROTEIN
HOMOLOG 5 (GASA5)

GAST1 protein homolog 5 (GASA5); INVOLVED IN: response to gibberellin stimulus;

AT3G06460 GNS1/SUR4 membrane protein family;
AT3G07010 Pectin lyase-like superfamily protein

AT3G07390 AUXIN-INDUCED IN ROOT
CULTURES 12 (AIR12)

isolated from differential screening of a cDNA library from auxin-treated root culture. sequence does not show homology to any
known proteins and is predicted to be extracellular.

AT3G09280 unknown protein
AT3G12700 Eukaryotic aspartyl protease family protein;
AT3G13380 BRI1-LIKE 3 (BRL3) Similar to BRI, brassinosteroid receptor protein.

AT3G14690
CYTOCHROME P450,

FAMILY 72, SUBFAMILY A, POLYPEPTIDE 15
(CYP72A15)

putative cytochrome P450

AT3G15540 INDOLE-3-ACETIC ACID
INDUCIBLE 19 (IAA19)

Primary auxin-responsive gene. Involved in the regulation stamen filaments development.

AT3G16180 Major facilitator superfamily protein

AT3G16570 RAPID ALKALINIZATION FACTOR 23 
(RALF23)

Encodes RALF23, a member of a diversely expressed predicted peptide family showing sequence similarity to tobacco Rapid Alkalinization Factor (RALF), and is believed to play an essential role in the physiology of Arabidopsis. Consists of a 
single exon and is characterized by a conserved C-terminal motif and N-terminal signal peptide. RALF23 is significantly downregulated by brassinolide treatment of seedlings.  Overexpression of AtRALF23 impairs brassinolide-induced 
hypocotyls elongation, and mature overexpressing plants are shorter and bushier. RALF23 overexpression produces slower growing seedlings with roots that have reduced capacity to acidify the rhizosphere.

AT3G18280 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein;
AT3G18560 unknown protein;
AT3G19200 unknown protein;
AT3G19320 Leucine-rich repeat (LRR) family protein
AT3G20015 Eukaryotic aspartyl protease family protein
AT3G20830 AGC (cAMP-dependent, cGMP-dependent and protein kinase C) kinase family protein;
AT3G21250 ATP-BINDING CASSETTE C8 (ABCC8) member of MRP subfamily
AT3G21700 (SGP2) Monomeric G protein. Expressed in root epidermal cells that are destined to become atrichoblasts. Also expressed during pollen development and in the pollen tube tip.

AT3G23030 INDOLE-3-ACETIC ACID INDUCIBLE 2 
(IAA2)

auxin inducible gene expressed in the nucleus

AT3G23730 XYLOGLUCAN ENDOTRANSGLUCOSYLAS 
E/HYDROLASE 16 (XTH16)

xyloglucan endotransglucosylase/hydrolase 16 (XTH16); FUNCTIONS IN: hydrolase activity, acting on glycosyl bonds, hydrolase activity, hydrolyzing O-glycosyl compounds, xyloglucan:xyloglucosyl transferase activity; INVOLVED IN: 
carbohydrate metabolic process, cellular glucan metabolic process

AT3G24750 unknown protein
AT3G26610 Pectin lyase-like superfamily protein



Locus identifier Primary Gene Symbol Gene Model Description
AT3G26760 NAD(P)-binding Rossmann-fold superfamily protein
AT3G28850 Glutaredoxin family protein
AT3G42800 unknown protein

AT3G43800 GLUTATHIONE S- TRANSFERASE TAU 27
(GSTU27) Encodes glutathione transferase belonging to the tau class of GSTs. Naming convention according to Wagner et al. (2002).

AT3G44990 XYLOGLUCAN ENDO-
TRANSGLYCOSYLASE- RELATED 8 (XTR8) xyloglucan endo-transglycosylase

AT3G48520
CYTOCHROME P450,

FAMILY 94, SUBFAMILY B, POLYPEPTIDE 3 
(CYP94B3)

CYP94B3 is a jasmonoyl-isoleucine-12-hydroxylase that catalyzes the formation of 12-OH-JA-Ile from JA-Ile. By reducing the levels of this the biologically active phytohormone, CYP94B3 attenuates the jasmonic acid signaling cascade. 
CYP94B3 transcript levels rise in response to wounding.

AT3G49350 Ypt/Rab-GAP domain of gyp1p superfamily protein

AT3G49360 6-PHOSPHOGLUCONOLACTO NASE 2 (PGL2) 6-phosphogluconolactonase 2 (PGL2)

AT3G49700 1-AMINOCYCLOPROPANE-
1-CARBOXYLATE SYNTHASE 9 (ACS9)

encodes a a member of the 1-aminocyclopropane-1-carboxylate (ACC) synthase (S-adenosyl-L-methionine methylthioadenosine- lyase, EC 4.4.1.14) gene family. Mutants produce elevated levels of ethylene as etiolated seedlings.

AT3G50660 DWARF 4 (DWF4)
Encodes a 22&#945; hydroxylase whose reaction is a rate-limiting step in brassinosteroid biosynthetic pathway. The protein is a member of CYP90B gene family. CLM is an epi-allele with small, compressed rosette, reduced internode length, 
and reduced fertility, appears in selfed ddm mutant plants possibly due to loss of cytosine methylation. Transcripts accumulate in actively growing tissues, and GUS expression is negatively regulated by brassinosteroids. Localized in the 
endoplasmic reticulum. The in vitro expressed protein can perform the C-22 hydroxylation of a variety of C27-, C28- and C29-sterols. Cholesterol was the best substrate, followed by campesterol. Sitosterol was a poor substrate.

AT3G51410 Arabidopsis protein of unknown function (DUF241)
AT3G51670 PATL6 SEC14 cytosolic factor family protein / phosphoglyceride transfer family protein
AT3G54000 Uncharacterised conserved protein UCP022260
AT3G54770 RNA-binding (RRM/RBD/RNP motifs) family protein

AT3G54950 PATATIN-RELATED PHOSPHOLIPASE 
IIIBETA (pPLAIIIbeta)

Encodes pPLAIIIbeta, a member of the Group 3 patatin-related phospholipases. pPLAIIIbeta hydrolyzes phospholipids and galactolipids and additionally has acyl-CoA thioesterase activity. Alterations of pPLAIII&#946; result in changes in 
lipid levels and composition.

AT3G55690 unknown protein;
AT3G55720 Protein of unknown function (DUF620)
AT3G56230 BTB/POZ domain-containing protein
AT3G56880 VQ motif-containing protein

AT3G58190 LATERAL ORGAN
BOUNDARIES-DOMAIN 29 (LBD29)

This gene contains two auxin-responsive element (AuxRE).

AT3G60550 CYCLIN P3;2 (CYCP3;2) cyclin p3;2 (CYCP3;2);

AT3G60630 HAIRY MERISTEM 2
(HAM2)

Belongs to one of the LOM (LOST MERISTEMS) genes: AT2G45160 (LOM1), AT3G60630 (LOM2) and AT4G00150 (LOM3). LOM1 and LOM2 promote cell differentiation at the periphery of shoot meristems and help to maintain their 
polar organization.

AT3G60640 AUTOPHAGY 8G (ATG8G) AUTOPHAGY 8G (ATG8G)
AT3G61490 Pectin lyase-like superfamily protein;

AT3G62100 INDOLE-3-ACETIC ACID INDUCIBLE 30 
(IAA30)

Encodes a member of the Aux/IAA family of proteins implicated in auxin signaling. IAA30 lacks the conserved degron (domain II) found in many family members. IAA30 transcripts are induced by auxin treatment and accumulate 
preferentially in the quiescent center cells of the root meristem. Overexpression of IAA30 leads to defects in gravitropism, root development, root meristem maintenance, and cotyledon vascular development. Target of LEC2 and AGL15. 
Promotes somatyic embryogenesis.

AT3G63440 CYTOKININ
OXIDASE/DEHYDROGENAS E 6 (CKX6)

This gene used to be called AtCKX7. It encodes a protein whose sequence is similar to cytokinin oxidase/dehydrogenase, which catalyzes the degradation of cytokinins.

AT4G00080 UNFERTILIZED EMBRYO
SAC 11 (UNE11)

unfertilized embryo sac 11 (UNE11)

AT4G01870 tolB protein-related
AT4G03820 Protein of unknown function (DUF3537)

AT4G08040 1-AMINOCYCLOPROPANE-
1-CARBOXYLATE SYNTHASE 11 (ACS11) encodes an aminotransferase that belongs to ACC synthase gene family structurally

AT4G09570 CALCIUM-DEPENDENT
PROTEIN KINASE 4 (CPK4)

Encodes a member of Calcium Dependent Protein Kinase (CDPK) gene family.Positive regulator of ABA signaling. Phosphorylates
ABA responsive transcription factors ABF1 and ABF4.

AT4G11280
1-AMINOCYCLOPROPANE-

1-CARBOXYLIC ACID (ACC) SYNTHASE 6 
(ACS6)

encodes a a member of the 1-aminocyclopropane-1-carboxylate (ACC) synthase (S-adenosyl-L-methionine methylthioadenosine- lyase, EC 4.4.1.14) gene family

AT4G12110 STEROL-4ALPHA-METHYL
OXIDASE 1-1 (SMO1-1)

Encodes a member of the SMO1 family of sterol 4alpha-methyl oxidases. More specifically functions as a 4,4-dimethyl-9beta,19-
cyclopropylsterol-4alpha- methyl oxidase.

AT4G12410

SAUR-like auxin-responsive protein family ; CONTAINS InterPro DOMAIN/s: Auxin responsive SAUR protein
(InterPro:IPR003676); BEST Arabidopsis thaliana protein match is: SAUR-like auxin-responsive protein family
(TAIR:AT4G22620.1); Has 1137 Blast hits to 1128 proteins in 26 species: Archae - 0; Bacteria - 0; Metazoa - 0; Fungi - 0; Plants -
1136; Viruses - 0; Other Eukaryotes - 1 (source: NCBI BLink).

AT4G12720 (NUDT7) Encodes a protein with ADP-ribose hydrolase activity. Negatively regulates EDS1-conditioned plant defense and programmed cell
death.

AT4G12730 FASCICLIN-LIKE
ARABINOGALACTAN 2 (FLA2)

AF333971 Arabidopsis thaliana fasciclin-like arabinogalactan-protein 2 (Fla2) mRNA, complete cds

AT4G12880 EARLY NODULIN-LIKE
PROTEIN 19 (ENODL19)

early nodulin-like protein 19 (ENODL19)

AT4G13180 NAD(P)-binding Rossmann-fold superfamily protein).

AT4G13195 CLAVATA3/ESR-RELATED
44 (CLE44)

Belongs to a large gene family, called CLE for CLAVATA3/ESR-related, encoding small peptides with conserved carboxyl termini. The C-terminal 12 amino acid sequence of CLE44 is identical to that of a dodeca peptide (TDIF, tracheary 
element differentiation inhibitory factor) isolated from Arabidopsis and functions as a suppressor of plant stem cell differentiation. TDIF sequence is also identical to the C-terminal 12 amino acids of CLE41 (At3g24770).

AT4G14130
XYLOGLUCAN

ENDOTRANSGLUCOSYLAS E/HYDROLASE 
15 (XTH15)

xyloglucan endotransglycosylase-related protein (XTR7)

AT4G14560 INDOLE-3-ACETIC ACID
INDUCIBLE (IAA1)

auxin (indole-3-acetic acid) induced gene (IAA1) encoding a short-lived nuclear-localized transcriptional regulator protein.



Locus identifier Primary Gene Symbol Gene Model Description
AT4G14750 IQ-DOMAIN 19 (IQD19) IQ-domain 19 (IQD19); CONTAINS InterPro DOMAIN/s: IQ calmodulin-binding region (InterPro:IPR000048)
AT4G17350 DOMAIN/s: Pleckstrin-like, plant (InterPro:IPR013666), Protein of unknown function DUF828 (InterPro:IPR008546), Pleckstrin homology (InterPro:IPR001849

AT4G17490 ETHYLENE RESPONSIVE
ELEMENT BINDING FACTOR 6 (ERF6)

Encodes a member of the ERF (ethylene response factor) subfamily B-3 of ERF/AP2 transcription factor family (ATERF-6). The protein contains one AP2 domain. There are 18 members in this subfamily including ATERF-1, ATERF-2, AND 
ATERF-5.

AT4G17870 PYRABACTIN RESISTANCE
1 (PYR1)

Encodes a member of the PYR (pyrabactin resistance )/PYL(PYR1-like)/RCAR (regulatory components of ABA receptor) family proteins with 14 members. PYR/PYL/RCAR family proteins function as abscisic acid sensors. Mediate ABA-
dependent regulation of protein phosphatase 2Cs ABI1 and ABI2.

AT4G20460 NAD(P)-binding Rossmann-fold superfamily protein

AT4G21200 GIBBERELLIN 2-OXIDASE 8
(GA2OX8)

Encodes a protein with gibberellin 2-oxidase activity which acts specifically on C-20 gibberellins.

AT4G21850 METHIONINE SULFOXIDE
REDUCTASE B9 (MSRB9)

methionine sulfoxide reductase B9 (MSRB9);

AT4G21870 HSP20-like chaperones superfamily protein
AT4G22530 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein
AT4G22620 SAUR-like auxin-responsive protein family

AT4G22780 ACT DOMAIN REPEAT 7
(ACR7)

Member of a family of ACT domain containing proteins . ACT domains are involved in amino acid binding .

AT4G24160 Encodes a soluble lysophosphatidic acid acyltransferase with additional triacylglycerol lipase and phosphatidylcholine hydrolyzing enzymatic activities. Plays a pivotal role in maintaining the lipid homeostasis by regulating both phospholipid 
and neutral lipid levels.

AT4G25250 Plant invertase/pectin methylesterase inhibitor superfamily protein

AT4G26320 ARABINOGALACTAN PROTEIN 13 (AGP13) arabinogalactan protein 13 (AGP13);

AT4G27260 (WES1) encodes an IAA-amido synthase that conjugates Asp and other amino acids to auxin in vitro. Lines carrying insertions in this gene are hypersensitive to auxin.
AT4G27280 Calcium-binding EF-hand family protein;
AT4G27290 S-locus lectin protein kinase family protein

AT4G28640 INDOLE-3-ACETIC ACID
INDUCIBLE 11 (IAA11)

Auxin induced gene, IAA11  (IAA11).

AT4G29900 AUTOINHIBITED CA(2+)-
ATPASE 10 (ACA10)

one of the type IIB calcium pump isoforms. encodes an autoinhibited Ca(2+)-ATPase that contains an N-terminal calmodulin binding
autoinhibitory domain.

AT4G30170 Peroxidase family protein
AT4G30420 nodulin MtN21 /EamA-like transporter family protein
AT4G30450 glycine-rich protein
AT4G31320 SAUR-like auxin-responsive protein family
AT4G31910 HXXXD-type acyl-transferase family protein

AT4G32280 INDOLE-3-ACETIC ACID
INDUCIBLE 29 (IAA29)

Auxin inducible protein.

AT4G34150 Calcium-dependent lipid-binding (CaLB domain) family protein;

AT4G34710 ARGININE DECARBOXYLASE 2 (ADC2)
encodes a arginine decarboxylase (ADC), a rate-limiting enzyme that catalyzes the first step of polyamine (PA) biosynthesis via ADC pathway in Arabidopsis thaliana. Arabidopsis genome has two ADC paralogs, ADC1 and ADC2. ADC2 is 
stress-inducible (osmotic stress). Double mutant analysis showed that ADC genes are essential for the production of PA, and are required for normal seed development. Overexpression causes phenotypes similar to GA-deficient plants and these 
plants show reduced levels of GA due to lower expression levels of AtGA20ox1, AtGA3ox3 and AtGA3ox1.

AT4G35210 Arabidopsis protein of unknown function (DUF241);
AT4G35320 unknown protein
AT4G37290 unknown protein
AT4G37295 unknown protein

AT4G37590 NAKED PINS IN YUC
MUTANTS 5 (NPY5)

A member of the NPY gene family (NPY1/AT4G31820, NPY2/AT2G14820, NPY3/AT5G67440, NPY4/AT2G23050, NPY5/AT4G37590).  Involved in auxin-mediated organogenesis.

AT5G01750 Protein of unknown function (DUF567)

AT5G01840 OVATE FAMILY PROTEIN 1 (OFP1) Encodes a member of the plant specific ovate protein family. Members of this family have been shown to bind to KNOX and BELL-like TALE class homeodomain proteins. This interaction may mediate relocalization of the TALE 
homeodomain from the nucleus to the cytoplasm. Functions as a transcriptional repressor that suppresses cell elongation.

AT5G02760 Protein phosphatase 2C family protein
AT5G03960 IQ-DOMAIN 12 (IQD12) IQ-domain 12 (IQD12)
AT5G04980 DNAse I-like superfamily protein

AT5G05160 REDUCED IN LATERAL GROWTH1 (RUL1) Encodes a receptor-like kinase that activates secondary growth, the production of secondary vascular tissues.

AT5G06080 LOB DOMAIN-
CONTAINING PROTEIN 33 (LBD33)

LOB domain-containing protein 33 (LBD33)

AT5G10210 C2 calcium-dependent membrane targeting

AT5G10430 ARABINOGALACTAN
PROTEIN 4 (AGP4)

Encodes arabinogalactan-protein (AGP4).

AT5G12050 unknown protein;

AT5G13910 LEAFY PETIOLE (LEP) Encodes a member of the ERF (ethylene response factor) subfamily B-1 of ERF/AP2 transcription factor family (LEAFY PETIOLE). The protein contains one AP2 domain. There are 15 members in this subfamily including ATERF-3, ATERF-
4, ATERF-7, and LEAFY PETIOLE. Acts as a positive regulator of gibberellic acid-induced germination.

AT5G15890 TRICHOME BIREFRINGENCE-LIKE 21 
(TBL21)

Encodes a member of the TBL (TRICHOME BIREFRINGENCE-LIKE) gene family containing a plant-specific DUF231 (domain of unknown function) domain. TBL gene family has 46 members, two of which (TBR/AT5G06700 and 
TBL3/AT5G01360) have been shown to be involved in the synthesis and deposition of secondary wall cellulose, presumably by influencing the esterification state of pectic polymers. A nomenclature for this gene family has been proposed 
(Volker Bischoff & Wolf Scheible, 2010, personal communication).

AT5G16110 unknown protein
AT5G16120 alpha/beta-Hydrolases superfamily protein
AT5G17340 Putative membrane lipoprotein

AT5G18560 (PUCHI)
Encodes PUCHI, a member of the ERF (ethylene response factor) subfamily B-1 of ERF/AP2 transcription factor family. The protein contains one AP2 domain. There are 15 members in this subfamily including ATERF-3, ATERF-4, ATERF-7, 
and leafy petiole. PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. Expressed in early floral meristem (stage 1 to 2). Required for early floral meristem growth and for bract suppression. Triple mutant 
with bop1 and bop2 displays a strong defect in the determination of floral meristem identity with reduced LFY expression and the lack of AP1 expression.

AT5G19530 ACAULIS 5 (ACL5)
Encodes a spermine synthase. Required for internode elongation and vascular development, specifically in the mechanism that defines the boundaries between veins and nonvein regions.  This mechanism may be mediated by polar auxin 
transport. Though ACL5 has been shown to function as a spermine synthase in E. coli, an ACL5 knockout has no effect on the endogenous levels of free and conjugated polyamines in Arabidopsis, suggesting that ACL5 may have a very specific 
or altogether different in vivo function.
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AT5G20230 BLUE-COPPER-BINDING
PROTEIN (BCB)

Al-stress-induced gene

AT5G24100 Leucine-rich repeat protein kinase family protein

AT5G26930 GATA TRANSCRIPTION
FACTOR 23 (GATA23)

Encodes a member of the GATA factor family of zinc finger transcription factors. Controls lateral root founder cell specification.

AT5G27000 KINESIN 4 (ATK4) Encodes a kinesin-like protein that binds microtubules in an ATP-dependent manner.
AT5G39670 Calcium-binding EF-hand family protein;
AT5G40540 Protein kinase superfamily protein
AT5G42050 DCD (Development and Cell Death) domain protein

AT5G43700 AUXIN INDUCIBLE 2-11
(ATAUX2-11)

Auxin inducible protein similar to transcription factors.

AT5G47250 LRR and NB-ARC domains-containing disease resistance protein;

AT5G47370 (HAT2) homeobox-leucine zipper genes induced by auxin, but not by other phytohormones. Plays opposite roles in the shoot and root tissues
in regulating auxin-mediated morphogenesis.

AT5G47440 CONTAINS InterPro DOMAIN/s: Pleckstrin-like, plant (InterPro:IPR013666), Protein of unknown function DUF828
(InterPro:IPR008546), Pleckstrin homology (InterPro:IPR001849)

AT5G48150 PHYTOCHROME A SIGNAL
TRANSDUCTION 1 (PAT1)

Member of GRAS gene family. Semi-dominant mutant has a reduced response to far-red light and appears to act early in the
phytochrome A signaling pathway.

AT5G49360 BETA-XYLOSIDASE 1 (BXL1) Encodes a bifunctional {beta}-D-xylosidase/{alpha}-L-arabinofuranosidase required for pectic arabinan modification. Located in the extracellular matrix. Gene is expressed specifically in tissues undergoing secondary wall thickening. This is a 
member of glycosyl hydrolase family 3 and has six other closely related members.

AT5G49450 BASIC LEUCINE-ZIPPER 1
(bZIP1)

basic leucine-zipper 1 (bZIP1)

AT5G51670 Protein of unknown function (DUF668)
AT5G52450 MATE efflux family protein
AT5G52900 unknown protein

AT5G53250 ARABINOGALACTAN
PROTEIN 22 (AGP22)

arabinogalactan protein 22 (AGP22)

AT5G54130 Calcium-binding endonuclease/exonuclease/phosphatase family
AT5G54380 THESEUS1 (THE1) Encodes THESEUS1 (THE1), a receptor kinase regulated by Brassinosteroids and required for cell elongation during vegetative growth.

AT5G54490 PINOID-BINDING PROTEIN 1 (PBP1) Encodes a PINOID (PID)-binding protein containing putative EF-hand calcium-binding motifs.  The interaction is dependent on the presence of calcium. mRNA expression is up-regulated by auxin. Not a phosphorylation target of PID, likely 
acts upstream of PID to regulate the activity of this protein in response to changes in calcium levels.

AT5G54500 FLAVODOXIN-LIKE
QUINONE REDUCTASE 1 (FQR1)

Encodes a flavin mononucleotide-binding flavodoxin-like quinone reductase that is a primary auxin-response gene.

AT5G54510 DWARF IN LIGHT 1 (DFL1) Encodes an IAA-amido synthase that conjugates Ala, Asp, Phe, and Trp to auxin. Lines overexpressing this gene accumulate IAA-ASP and are hypersensitive to several auxins. Identified as a dominant mutation that displays shorter hypocotyls 
in light grown plants when compared to wild type siblings. Protein is similar to auxin inducible gene from pea (GH3).

AT5G57100 Nucleotide/sugar transporter family protein

AT5G57520 ZINC FINGER PROTEIN 2
(ZFP2)

Encodes a zinc finger protein containing only a single zinc finger.

AT5G60450 AUXIN RESPONSE FACTOR
4 (ARF4)

Encodes a member of the ARF family of transcription factors which mediate auxin responses. ARF4 appears to have redundant function with ETT(ARF3) in specifying abaxial cell identity.

AT5G60520 Late embryogenesis abundant (LEA) protein-related;

AT5G60660 PLASMA MEMBRANE
INTRINSIC PROTEIN 2;4 (PIP2;4)

A member of the plasma membrane intrinsic protein subfamily PIP2.When expressed in yeast cells can conduct hydrogen peroxide into those cells. Mutants exhibit longer root hairs.

AT5G62280 Protein of unknown function (DUF1442)
AT5G64250 Aldolase-type TIM barrel family protein

AT5G65390 ARABINOGALACTAN
PROTEIN 7 (AGP7)

arabinogalactan protein 7 (AGP7)

AT5G65670 INDOLE-3-ACETIC ACID INDUCIBLE 9 
(IAA9)

auxin (indole-3-acetic acid) induced gene

AT5G67430 Acyl-CoA N-acyltransferases (NAT) superfamily protein



Locus yramirPreifitnedi  Gene eneGlobmyS  Model Descrip on

NILLEREBBIG00420G1TA  2-OXIDASE 6 sedocnE)6XO2AG(  a gibberellin 2-oxidase that acts on C19 gibberellins but not C20 gibberellins.

AT1G03870  FASCICLIN-LIKEARABINOOGALACTAN 9 nilcicsaf)9ALF( -like arabinogalactan-protein 9 (Fla9)

AT1G08500  EARLY NODULIN-LIKEPROTEIN 18 (ENODL18)
early nodulin-like protein 18 (ENODL18); FUNCTIONS IN: electron carrier ac vity, copper ion binding; LOCATED IN: anchored
to membrane;

AT1G15580  INDOLE-3-ACETIC ACIDINDUCIBLE 5 nixua)5AAI(  induced protein

AT1G19220  AUXIN RESPONSE FACTOR19 (ARF19)

Encodes an auxin response factor that contains the conserved VP1-B3 DNA-binding domain at its N-terminus and the Aux/IAA-like domains III and IV present in most ARFs at its C-terminus. The 
protein interacts with IAA1 (yeast two hybrid) and other auxin response elements such as ER7 and ER9 (yeast one hybrid). ARF19 protein can complement many aspects of the arf7 mutant 
phenotype and , together with ARF7, is involved in the response to ethylene. In the arf7 arf19 double mutant, several auxin- responsive genes (e.g. IAA5, LBD16, LBD29 and LBD33) are no longer 
upregulated by auxin.

OTISONILYDITAHPSOHP08912G1TA  L-4-PHOSPHATE 5- KINASE 1 (PIP5K1)
Type I phos ylinositol-4-phosphate 5-kinase. Preferen ally phosphorylates PtdIns4P. Induced by water stress and abscisic acid in Arabidopsis thaliana. Expressed in procambial cells of 
leaves, flowers and roots. A N-terminal Membrane Occ n and Recogn n Nexus (MORN) affects enzyme ac vity and distr .

NIP08032G1TA -FORMED 7 (PIN7)

Encodes a novel component of auxin efflux that is located apically in the basal cell and is involved during embryogenesis in se ng up the apical-basal axis in the embryo. It is also involved in 
ern specifica on during root development. In roots, it is expressed at lateral and basal membranes of provascular cells in the meristem and elong on zone, whereas in the columella cells it 

coincides with the PIN3 domain. Plasma membrane-localized PIN proteins mediate a saturable efflux of auxin. PINs mediate auxin efflux from mammalian and yeast cells without needing 
addi onal plant-specific factors. The ac on of PINs in auxin efflux is dis nct from PGPs, rate-limi ng, specific to auxins and sensi ve to auxin transport inhibitors. PINs are directly involved of in 
catalyzing cellular auxin efflux.

FRE07382G1TA  DOMAIN PROTEIN 11 (ERF11)
encodes a member of the ERF (ethylene response factor) subfamily B-1 of ERF/AP2 transcrip on factor family. The protein contains one AP2 domain. There are 15 members in this subfamily 
including ATERF-3, ATERF-4, ATERF-7, and leafy pe ole.

AT1G28680 HXXXD-type acyl-transferase family protein

AT1G29500 SAUR-like auxin-responsive protein family

AT1G29510  SMALL AUXIN UPREGULATED LLAMS)86RUAS(86  AUXIN UPREGULATED 68 (SAUR68);

AT1G33790 jacalin lec n family protein;

AT1G50660 unknown protein;

ELODNI03825G1TA -3-ACETIC ACID 6 (IAA6)
An extragenic dominant suppressor of the hy2 mutant phenotype. Also exhibits aspects of cons ve photomorphogene c phenotype in the absence of hy2. Mutants have dominant leaf 
curling phenotype shortened hypocotyls and reduced apical hook. Induced by indole-3-ace c acid.

AT1G60010 unknown protein

AT1G62770 Plant invertase/pec n methylesterase inhibitor superfamily protein

AT1G64405 unknown protein

NISNAPXE03596G1TA  A1 (EXPA1)
Member of Alpha-Expansin Gene Family. Naming conven on from the Expansin Working Group (Kende et al, Plant Mol Bio). Involved in the forma on of nematode-induced syncy a in roots of 
Arabidopsis thaliana.

NAHPOTPYRT06507G1TA  AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1)
TAA1 is involved in the shade-induced produc on of indole-3-pyruvate (IPA), a precursor to IAA, a biologically ac ve auxin. It is also involved in regula ng many aspects of plant growth and 
development from embryogenesis to flower forma on and plays a role in ethylene-mediated signaling. This enzyme can catalyze the forma on of IPA from L-tryptophan. Though L-Trp is 
expected to be the preferred substrate in vivo, TAA1 also acts as an aminotransferase using L-Phe, L-Tyr, L-Leu, L-Ala, L-Met, and L-Gln.

NIP04907G1TA -FORMED 3 (PIN3)
A regulator of auxin efflux and involved in differen al growth. PIN3 is expressed in gravity-sensing ssues, with PIN3 protein accumula ng predominantly at the lateral cell surface. PIN3 localizes 
to the plasma membrane and to vesicles. In roots, PIN3 is expressed without pronounced polarity in ers two and three of the columella cells, at the basal side of vascular cells, and to the lateral 
side of pericycle cells of the elong on zone. PIN3 overexpression inhibits root cell growth. Protein phosphoryl on plays a role in PIN3 trafficking to the plasma membrane.

A

B

Table S2.
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AT1G73590 PIN‐FORMED 1 (PIN1)

Encodes an auxin efflux carrier involved in shoot and root development. It is involved in the maintenance of embryonic auxin gradients. Loss of function severely affects organ initiation, pin1 
mutants are characterised by an inflorescence meristem that does not initiate any flowers, resulting in the formation of a naked inflorescence stem. PIN1 is involved in the determination of leaf 
shape by actively promoting development of leaf margin serrations. In roots, the protein mainly resides at the basal end of the vascular cells, but weak signals can be detected in the epidermis 
and the cortex. Expression levels and polarity of this auxin efflux carrier change during primordium development suggesting that cycles of auxin build‐up and depletion accompany, and may 
direct, different
stages of primordium development. PIN1 action on plant development does not strictly require function of PGP1 and PGP19 proteins.

AT1G74660 MINI ZINC FINGER 1 (MIF1)

Encodes MINI ZINC FINGER 1 (MIF1) which has a zinc finger domain but lacks other protein motifs normally present in transcription factors. MIF1 physically interact with a group of zinc finger‐
homeodomain (ZHD) transcription factors, such as ZHD5 (AT1G75240), that regulate floral architecture and leaf development. Gel mobility shift assays revealed that MIF1 blocks the DNA binding 
activity of ZHD5 homodimers by competitively forming MIF1‐ZHD5 heterodimers. Constitutive overexpression of MIF1 caused dramatic developmental defects, seedlings were non‐responsive to 
gibberellin (GA) for cell elongation, hypersensitive to the GA synthesis inhibitor paclobutrazol (PAC) and abscisic acid (ABA), and hyposensitive to auxin, brassinosteroid and cytokinin, but 
normally responsive to ethylene.

AT1G77280 Protein kinase protein with adenine nucleotide alpha hydrolases‐like domain

AT1G78100 F‐box family protein;

AT2G03730 ACT DOMAIN REPEAT 5 (ACR5) Member of a small family of ACT domain containing proteins. ACT domains are thought to be involved in amino acid binding.

AT2G14960 (GH3.1) encodes a protein similar to IAA‐amido synthases. Lines carrying an insertion in this gene are hypersensitive to auxin.

AT2G18690 unknown protein;

AT2G18980 Peroxidase 16 Peroxidase superfamily protein

AT2G23170 (GH3.3) encodes an IAA‐amido synthase that conjugates Asp and other amino acids to auxin in vitro.

AT2G25790 Leucine‐rich receptor‐like protein kinase family protein;

AT2G30040  MITOGEN‐ACTIVATEDPROTEIN KINASE KINASE KINASE 14 (MAPKKK14) member of MEKK subfamily

AT2G33310  AUXIN‐INDUCED PROTEIN13 (IAA13) Auxin induced gene, IAA13 (IAA13).

AT2G34650 PINOID (PID)

Encodes a protein serine/threonine kinase that may act as a positive regulator of cellular auxin efflux, as a a binary switch for PIN polarity, and as a negative regulator of auxin signaling. 
Recessive mutants exhibit similar phenotypes as pin‐formed mutants in flowers and inflorescence but distinct phenotypes in cotyledons and leaves. Expressed in the vascular tissue proximal 
to root and shoot meristems, shoot apex, and embryos. Expression is induced by auxin. Overexpression of the gene results in phenotypes in the root and shoot similar to those found in auxin‐
insensitive mutants. The protein physically interacts with TCH3 (TOUCH3) and PID‐BINDING PROTEIN 1 (PBP1), a previously uncharacterized protein containing putative EF‐hand calcium‐
binding motifs. Acts together with ENP (ENHANCER OF PINOID) to instruct precursor cells to elaborate cotyledons in the transition stage embryo. Interacts with PDK1. PID 
autophosphorylation is required for the ability of PID to phosphorylate an exogenous substrate. PID activation loop is required for PDK1‐dependent PID phosphorylation and requires the PIF 
domain. Negative regulator of root hair growth. PID kinase activity is critical for the inhibition of root hair growth and for maintaining the proper subcellular localization of PID.

AT2G35930 PLANT U‐BOX 23 (PUB23) Encodes a cytoplasmically localized U‐box domain containing E3 ubiquitin ligase that is involved in the response to water stress and acts as a negative regulator of PAMP‐triggered immunity.

AT2G35980 YELLOW‐LEAF‐SPECIFIC GENE 9 (YLS9)
Encodes a protein whose sequence is similar to tobacco hairpin‐induced gene (HIN1) and Arabidopsis non‐race specific disease resistance gene (NDR1). Expression of this gene is induced by 
cucumber mosaic virus, spermine and during senescence. The gene product is localized to the chloroplast.

AT2G36220 unknown protein

AT2G39370 unknown protein;

AT2G39700 EXPANSIN A4 (EXPA4) putative expansin.

AT2G40540  POTASSIUMTRANSPORTER 2 (KT2) putative potassium transporter AtKT2p (AtKT2) mRNA,

AT2G41100 TOUCH 3 (TCH3)
encodes a calmodulin‐like protein, with six potential calcium binding domains. Calcium binding shown by Ca(2+)‐specific shift in electrophoretic mobility. Expression induced by touch and 
darkness. Expression may also be developmentally controlled. Expression in growing regions of roots, vascular tissue, root/shoot junctions, trichomes, branch points of the shoot, and regions of 
siliques and flowers.

AT2G41380 S‐adenosyl‐L‐methionine‐dependent methyltransferases superfamily protein;

AT2G42430  LATERAL ORGANBOUNDARIES‐DOMAIN 16 (LBD16) LOB‐domain protein gene LBD16. This gene contains one auxin‐responsive element (AuxRE).

AT2G42440 Lateral organ boundaries (LOB) domain family protein; CONTAINS InterPro DOMAIN/s: Lateral organ boundaries, LOB (InterPro:IPR004883)

AT2G42870  PHY RAPIDLY REGULATED1 (PAR1)
Encodes PHYTOCHROME RAPIDLY REGULATED1 (PAR1), an atypical basic helix‐loop‐helix (bHLP) protein. Closely related to PAR2 (At3g58850).  Up regulated after simulated shade perception. 
Acts in the nucleus to control plant development and as a negative regulator of shade avoidance response. Functions as transcriptional repressor of auxin‐responsive genes SAUR15 (AT4G38850) 
and SAUR68 (AT1G29510).

AT2G43590 Chitinase family protein

AT2G45400 (BEN1) involved in the regulation of brassinosteroid metabolic pathway

AT2G45420  LOB DOMAIN‐CONTAINING PROTEIN 18 (LBD18) LOB domain‐containing protein 18 (LBD18)

AT2G47130 NAD(P)‐binding Rossmann‐fold superfamily protein

AT2G47140 NAD(P)‐binding Rossmann‐fold superfamily protein

AT2G47260 WRKY DNA‐BINDING PROTEIN 23 (WRKY23) Encodes a member of WRKY Transcription Factor; Group I. Involved in nematode feeding site establishment.

AT3G02885  GAST1 PROTEINHOMOLOG 5 (GASA5) GAST1 protein homolog 5 (GASA5); INVOLVED IN: response to gibberellin stimulus;

AT3G07010 Probable pectate lyase 8 Pectin lyase‐like superfamily protein

AT3G07390  AUXIN‐INDUCED IN ROOTCULTURES 12 (AIR12)
isolated from differential screening of a cDNA library from auxin‐treated root culture. sequence does not show homology to any
known proteins and is predicted to be extracellular.

AT3G09280 unknown protein

AT3G13380 Serine/threonine‐protein kinase BRI1‐like 3 Similar to BRI, brassinosteroid receptor protein.

AT3G15540  INDOLE‐3‐ACETIC ACIDINDUCIBLE 19 (IAA19) Primary auxin‐responsive gene. Involved in the regulation stamen filaments development.

AT3G16420 AT3G16420; AT5G54490 PINOID‐BINDING PROTEIN 1 (PBP1)
Encodes a PINOID (PID)‐binding protein containing putative EF‐hand calcium‐binding motifs.  The interaction is dependent on the presence of calcium. mRNA expression is up‐regulated by auxin. 
Not a phosphorylation target of PID, likely acts upstream of PID to regulate the activity of this protein in response to changes in calcium levels.

AT3G18560 unknown protein;

AT3G19200 unknown protein;

AT3G20830 AGC (cAMP‐dependent, cGMP‐dependent and protein kinase C) kinase family protein;

AT3G21700 (SGP2) Monomeric G protein. Expressed in root epidermal cells that are destined to become atrichoblasts. Also expressed during pollen development and in the pollen tube tip.

AT3G23030 INDOLE‐3‐ACETIC ACID INDUCIBLE 2 (IAA2) auxin inducible gene expressed in the nucleus

AT3G26760 NAD(P)‐binding Rossmann‐fold superfamily protein

AT3G28850 Glutaredoxin family protein



Locus identifier Primary Gene Symbol Gene Model Description

AT3G42800 unknown protein

AT3G49700  1‐AMINOCYCLOPROPANE‐1‐CARBOXYLATE SYNTHASE 9 (ACS9)
encodes a a member of the 1‐aminocyclopropane‐1‐carboxylate (ACC) synthase (S‐adenosyl‐L‐methionine methylthioadenosine‐ lyase, EC 4.4.1.14) gene family. Mutants produce elevated levels 
of ethylene as etiolated seedlings.

AT3G50660 DWARF 4 (DWF4)

Encodes a 22&#945; hydroxylase whose reaction is a rate‐limiting step in brassinosteroid biosynthetic pathway. The protein is a member of CYP90B gene family. CLM is an epi‐allele with small, 
compressed rosette, reduced internode length, and reduced fertility, appears in selfed ddm mutant plants possibly due to loss of cytosine methylation. Transcripts accumulate in actively growing 
tissues, and GUS expression is negatively regulated by brassinosteroids. Localized in the endoplasmic reticulum. The in vitro expressed protein can perform the C‐22 hydroxylation of a variety of 
C27‐, C28‐ and C29‐sterols. Cholesterol was the best substrate, followed by campesterol. Sitosterol was a poor substrate.

AT3G51410 Arabidopsis protein of unknown function (DUF241)

AT3G54000 Uncharacterised conserved protein UCP022260

AT3G54950 PATATIN‐RELATED PHOSPHOLIPASE IIIBETA (pPLAIIIbeta)
Encodes pPLAIIIbeta, a member of the Group 3 patatin‐related phospholipases. pPLAIIIbeta hydrolyzes phospholipids and galactolipids and additionally has acyl‐CoA thioesterase activity. 
Alterations of pPLAIII&#946; result in changes in lipid levels and composition.

AT3G55690 unknown protein;

AT3G55720 Protein of unknown function (DUF620)

AT3G58190  LATERAL ORGANBOUNDARIES‐DOMAIN 29 (LBD29) This gene contains two auxin‐responsive element (AuxRE).

AT3G60550 CYCLIN P3;2 (CYCP3;2) cyclin p3;2 (CYCP3;2);

AT3G60630  HAIRY MERISTEM 2(HAM2)
Belongs to one of the LOM (LOST MERISTEMS) genes: AT2G45160 (LOM1), AT3G60630 (LOM2) and AT4G00150 (LOM3).
LOM1 and LOM2 promote cell differentiation at the periphery of shoot meristems and help to maintain their polar organization.

AT3G60640 AUTOPHAGY 8G (ATG8G) AUTOPHAGY 8G (ATG8G)

AT3G62100 INDOLE‐3‐ACETIC ACID INDUCIBLE 30 (IAA30)
Encodes a member of the Aux/IAA family of proteins implicated in auxin signaling. IAA30 lacks the conserved degron (domain II) found in many family members. IAA30 transcripts are induced by 
auxin treatment and accumulate preferentially in the quiescent center cells of the root meristem. Overexpression of IAA30 leads to defects in gravitropism, root development, root meristem 
maintenance, and cotyledon vascular development. Target of LEC2 and AGL15. Promotes somatyic embryogenesis.

AT3G63440  CYTOKININOXIDASE/DEHYDROGENAS E 6 (CKX6) This gene used to be called AtCKX7. It encodes a protein whose sequence is similar to cytokinin oxidase/dehydrogenase, which catalyzes the degradation of cytokinins.

AT4G00080  UNFERTILIZED EMBRYOSAC 11 (UNE11) unfertilized embryo sac 11 (UNE11)

AT4G01870 tolB protein‐related

AT4G11280  1‐AMINOCYCLOPROPANE‐1‐CARBOXYLIC ACID (ACC) SYNTHASE 6 (ACS6) encodes a a member of the 1‐aminocyclopropane‐1‐carboxylate (ACC) synthase (S‐adenosyl‐L‐methionine methylthioadenosine‐ lyase, EC 4.4.1.14) gene family

AT4G12410
SAUR‐like auxin‐responsive protein family ; CONTAINS InterPro DOMAIN/s: Auxin responsive SAUR protein (InterPro:IPR003676); BEST Arabidopsis thaliana protein match is: SAUR‐like auxin‐
responsive protein family (TAIR:AT4G22620.1); Has 1137 Blast hits to 1128 proteins in 26 species: Archae ‐ 0; Bacteria ‐ 0; Metazoa ‐ 0; Fungi ‐ 0; Plants ‐ 1136; Viruses ‐ 0; Other Eukaryotes ‐ 1 
(source: NCBI BLink).

AT4G12720 Nudix hydrolase 7 (NUDT7)
Encodes a protein with ADP‐ribose hydrolase activity. Negatively regulates EDS1‐conditioned plant defense and programmed cell
death.

AT4G13180 NAD(P)‐binding Rossmann‐fold superfamily protein).

AT4G13195  CLAVATA3/ESR‐RELATED44 (CLE44)
Belongs to a large gene family, called CLE for CLAVATA3/ESR‐related, encoding small peptides with conserved carboxyl termini. The C‐terminal 12 amino acid sequence of CLE44 is identical to that 
of a dodeca peptide (TDIF, tracheary element differentiation inhibitory factor) isolated from Arabidopsis and functions as a suppressor of plant stem cell differentiation. TDIF sequence is also 
identical to the C‐terminal 12 amino acids of CLE41 (At3g24770).

AT4G14130  XYLOGLUCANENDOTRANSGLUCOSYLAS E/HYDROLASE 15 (XTH15) xyloglucan endotransglycosylase‐related protein (XTR7)

AT4G14560  INDOLE‐3‐ACETIC ACIDINDUCIBLE (IAA1) auxin (indole‐3‐acetic acid) induced gene (IAA1) encoding a short‐lived nuclear‐localized transcriptional regulator protein.

AT4G17350
DOMAIN/s: Pleckstrin‐like, plant (InterPro:IPR013666), Protein of unknown function DUF828 (InterPro:IPR008546), Pleckstrin
homology (InterPro:IPR001849

AT4G22530 S‐adenosyl‐L‐methionine‐dependent methyltransferases superfamily protein

AT4G22620 SAUR‐like auxin‐responsive protein family

AT4G22780  ACT DOMAIN REPEAT 7(ACR7) Member of a family of ACT domain containing proteins . ACT domains are involved in amino acid binding .

AT4G27260 (WES1)
encodes an IAA‐amido synthase that conjugates Asp and other amino acids to auxin in vitro. Lines carrying insertions in this gene are
hypersensitive to auxin.

AT4G27280 Calcium‐binding EF‐hand family protein;

AT4G28640  INDOLE‐3‐ACETIC ACIDINDUCIBLE 11 (IAA11) Auxin induced gene, IAA11  (IAA11).

AT4G30420 nodulin MtN21 /EamA‐like transporter family protein

AT4G31910 HXXXD‐type acyl‐transferase family protein

AT4G32280  INDOLE‐3‐ACETIC ACIDINDUCIBLE 29 (IAA29) Auxin inducible protein.

AT4G37290 unknown protein

AT4G37295 unknown protein

AT4G37590  NAKED PINS IN YUCMUTANTS 5 (NPY5)
A member of the NPY gene family (NPY1/AT4G31820, NPY2/AT2G14820, NPY3/AT5G67440, NPY4/AT2G23050,
NPY5/AT4G37590).  Involved in auxin‐mediated organogenesis.

AT5G01840 OVATE FAMILY PROTEIN 1 (OFP1)
Encodes a member of the plant specific ovate protein family. Members of this family have been shown to bind to KNOX and BELL‐like TALE class homeodomain proteins. This interaction may 
mediate relocalization of the TALE homeodomain from the nucleus to the cytoplasm. Functions as a transcriptional repressor that suppresses cell elongation.

AT5G02760 Protein phosphatase 2C family protein

AT5G04980 DNAse I‐like superfamily protein

AT5G05160 REDUCED IN LATERAL GROWTH1 (RUL1) Encodes a receptor‐like kinase that activates secondary growth, the production of secondary vascular tissues.

AT5G06080  LOB DOMAIN‐CONTAINING PROTEIN 33 (LBD33) LOB domain‐containing protein 33 (LBD33)

AT5G12050 unknown protein;

AT5G16110 unknown protein

AT5G17340 Putative membrane lipoprotein

AT5G18560 (PUCHI)

Encodes PUCHI, a member of the ERF (ethylene response factor) subfamily B‐1 of ERF/AP2 transcription factor family. The protein contains one AP2 domain. There are 15 members in this 
subfamily including ATERF‐3, ATERF‐4, ATERF‐7, and leafy petiole. PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. Expressed in early floral meristem 
(stage 1 to 2). Required for early floral meristem growth and for bract suppression. Triple mutant with bop1 and bop2 displays a strong defect in the determination of floral meristem identity 
with reduced LFY expression and the lack of AP1 expression.

AT5G26930  GATA TRANSCRIPTIONFACTOR 23 (GATA23) Encodes a member of the GATA factor family of zinc finger transcription factors. Controls lateral root founder cell specification.

AT5G40540 Protein kinase superfamily protein



Locus identifier Primary Gene Symbol Gene Model Description

AT5G43700  AUXIN INDUCIBLE 2‐11(ATAUX2‐11) Auxin inducible protein similar to transcription factors.

AT5G47370 (HAT2)
homeobox‐leucine zipper genes induced by auxin, but not by other phytohormones. Plays opposite roles in the shoot and root tissues
in regulating auxin‐mediated morphogenesis.

AT5G48150  PHYTOCHROME A SIGNALTRANSDUCTION 1 (PAT1)
Member of GRAS gene family. Semi‐dominant mutant has a reduced response to far‐red light and appears to act early in the
phytochrome A signaling pathway.

AT5G49448 AT5G49448

AT5G51670 Protein of unknown function (DUF668)

AT5G52900 unknown protein

AT5G54490 PINOID‐BINDING PROTEIN 1 (PBP1)
Encodes a PINOID (PID)‐binding protein containing putative EF‐hand calcium‐binding motifs.  The interaction is dependent on the presence of calcium. mRNA expression is up‐regulated by auxin. 
Not a phosphorylation target of PID, likely acts upstream of PID to regulate the activity of this protein in response to changes in calcium levels.

AT5G54500  FLAVODOXIN‐LIKEQUINONE REDUCTASE 1 (FQR1) Encodes a flavin mononucleotide‐binding flavodoxin‐like quinone reductase that is a primary auxin‐response gene.

AT5G54510 DWARF IN LIGHT 1 (DFL1)
Encodes an IAA‐amido synthase that conjugates Ala, Asp, Phe, and Trp to auxin. Lines overexpressing this gene accumulate IAA‐ ASP and are hypersensitive to several auxins. Identified as a 
dominant mutation that displays shorter hypocotyls in light grown plants when compared to wild type siblings. Protein is similar to auxin inducible gene from pea (GH3).

AT5G57100 Nucleotide/sugar transporter family protein

AT5G57520  ZINC FINGER PROTEIN 2(ZFP2) Encodes a zinc finger protein containing only a single zinc finger.

AT5G62280 Protein of unknown function (DUF1442)

AT5G64250 Aldolase‐type TIM barrel family protein

AT5G65390  ARABINOGALACTANPROTEIN 7 (AGP7) arabinogalactan protein 7 (AGP7)

AT5G67430 Acyl‐CoA N‐acyltransferases (NAT) superfamily protein
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B. Appendix - LRRK1, a leucine rich repeat receptor-like kinase and its role in 
auxin-dependent PIN re-arrangement 

 
Table S1 

Table with results of statistical analysis from protein-protein interaction IP/MS experiment 

from Perseus software. List is sorted by fold change ratio between MS result from control Col-

0 plants and 35S::LRRK1-GFP with an arbitrary cut-off at 100. The p-value from two-sided  

t-test with a cut-off at 0.0001 represent statistical significance. Experiments and statistical 

analysis were performed by B.d.R.. 

 



RATIO p-value Protein IDs Fasta headers
12877 1.38429E-08 AT1G30360.1  ERD4 | Early-responsive to dehydration stress protein (ERD4) | chr1:10715892-10718799 FORWARD LENGTH=724

12702 5.92279E-08 AT2G45960.2
 PIP1B, TMP-A, ATHH2, PIP1;2 | plasma membrane intrinsic protein 1B | chr2:18910450-18911579 FORWARD LENGTH=274; PIP1B, TMP-A, ATHH2, PIP1;2 | plasma membrane intrinsic protein 1B | chr2:18910450-
18911703 FORWARD LENGTH=286; PIP1

8933 6.51001E-08 AT3G11630.1 Thioredoxin superfamily protein | chr3:3672189-3673937 FORWARD LENGTH=266

8163 2.69895E-09 AT3G61430.2
 PIP1A, ATPIP1, PIP1, PIP1;1 | plasma membrane intrinsic protein 1A | chr3:22733657-22735113 FORWARD LENGTH=286; PIP1A, ATPIP1, PIP1, PIP1;1 | plasma membrane intrinsic protein 1A | chr3:22733657-22735113 
FORWARD LENGTH=286

5783 2.64727E-06 AT1G31330.1  PSAF | photosystem I subunit F | chr1:11215011-11215939 REVERSE LENGTH=221
3921 2.14009E-08 AT4G30190.1  AHA2, PMA2, HA2 | H(+)-ATPase 2 | chr4:14770820-14775920 REVERSE LENGTH=948; HA2 | H(+)-ATPase 2 | chr4:14770820-14775920 REVERSE LENGTH=981

2827 1.39337E-10 AT4G00430.2  TMP-C, PIP1;4, PIP1E | plasma membrane intrinsic protein 1;4 | chr4:186569-187531 REVERSE LENGTH=219; TMP-C, PIP1;4, PIP1E | plasma membrane intrinsic protein 1;4 | chr4:186143-187531 REVERSE LENGTH=287

2745 6.61169E-07 AT5G62670.1  AHA11, HA11 | H(+)-ATPase 11 | chr5:25159495-25164957 FORWARD LENGTH=956; AHA4, HA4 | H(+)-ATPase 4 | chr3:17693015-17697801 FORWARD LENGTH=960
2593 2.93191E-06 AT2G39010.1  PIP2E, PIP2;6 | plasma membrane intrinsic protein 2E | chr2:16291564-16293746 FORWARD LENGTH=289
2125 1.69951E-11 AT5G23060.1  CaS | calcium sensing receptor | chr5:7736760-7738412 REVERSE LENGTH=387

2072 7.4686E-08 AT5G56030.1
 HSP81-2, ERD8, HSP90.2, AtHsp90.2 | heat shock protein 81-2 | chr5:22686923-22689433 FORWARD LENGTH=699; HSP81-3, Hsp81.3, AtHsp90-3, AtHsp90.3 | heat shock protein 81-3 | chr5:22681410-22683911 
FORWARD LENGTH=699; HSP81-2 | hea

2047 1.05971E-08 AT3G28860.1  ATMDR1, ATMDR11, PGP19, MDR11, MDR1, ATPGP19, ABCB19, ATABCB19 | ATP binding cassette subfamily B19 | chr3:10870287-10877286 REVERSE LENGTH=1252
2015 2.3623E-08 AT5G14040.1  PHT3;1 | phosphate transporter 3;1 | chr5:4531059-4532965 REVERSE LENGTH=375

1929 7.1146E-09 AT1G23080.3
 PIN7 | Auxin efflux carrier family protein | chr1:8180768-8183406 REVERSE LENGTH=615; PIN7, ATPIN7 | Auxin efflux carrier family protein | chr1:8180768-8183406 REVERSE LENGTH=619; PIN7 | Auxin efflux carrier 
family protein | chr

1884 9.6508E-08 AT1G79040.1  PSBR | photosystem II subunit R | chr1:29736085-29736781 FORWARD LENGTH=140
1424 1.57756E-08 AT4G35060.1  HIPP25 | Heavy metal transport/detoxification superfamily protein  | chr4:16685874-16686419 REVERSE LENGTH=153
1388 1.2438E-06 AT3G09740.1  SYP71, ATSYP71 | syntaxin of plants 71 | chr3:2989615-2991354 FORWARD LENGTH=266
1319 3.26017E-05 AT5G01530.1  LHCB4.1 | light harvesting complex photosystem II | chr5:209084-210243 FORWARD LENGTH=290
1299 2.00804E-07 AT1G71500.1  Rieske (2Fe-2S) domain-containing protein | chr1:26936084-26937331 FORWARD LENGTH=287
1297 1.48565E-06 AT1G48480.1  RKL1 | receptor-like kinase 1 | chr1:17918475-17920743 FORWARD LENGTH=655

1258 6.03511E-08 AT3G53420.2
 PIP2A, PIP2, PIP2;1 | plasma membrane intrinsic protein 2A | chr3:19803906-19805454 REVERSE LENGTH=287; PIP2A, PIP2, PIP2;1 | plasma membrane intrinsic protein 2A | chr3:19803906-19805454 REVERSE 
LENGTH=287

1037 1.33522E-06 AT3G61470.1  LHCA2 | photosystem I light harvesting complex gene 2 | chr3:22745736-22747032 FORWARD LENGTH=257
1029 5.26239E-08 AT1G47128.1  RD21, RD21A | Granulin repeat cysteine protease family protein | chr1:17283139-17285609 REVERSE LENGTH=462
1006 2.98055E-07 AT1G45201.2  ATTLL1, TLL1 | triacylglycerol lipase-like 1 | chr1:17123889-17127497 FORWARD LENGTH=387; ATTLL1, TLL1 | triacylglycerol lipase-like 1 | chr1:17123889-17128462 FORWARD LENGTH=479

974 2.72972E-07 AT4G38920.1
 AVA-P3, ATVHA-C3, VHA-C3 | vacuolar-type H(+)-ATPase C3 | chr4:18147330-18148853 FORWARD LENGTH=164; AVA-P1, VHA-C1, ATVHA-C1 | ATPase, F0/V0 complex, subunit C protein | chr4:16568223-16569165 
REVERSE LENGTH=164;  | ATPase, F0/

959 2.63231E-09 AT4G25960.1  PGP2 | P-glycoprotein 2 | chr4:13177438-13183425 FORWARD LENGTH=1273
900 1.22002E-08 AT5G60660.1  PIP2F, PIP2;4 | plasma membrane intrinsic protein 2;4 | chr5:24375673-24376939 REVERSE LENGTH=291
892 1.6685E-07 AT2G30950.1  VAR2, FTSH2 | FtsH extracellular protease family | chr2:13174692-13177064 FORWARD LENGTH=695; FTSH8 | FTSH protease 8 | chr1:1960214-1962525 REVERSE LENGTH=685

867 9.97073E-07 AT2G20990.1
 SYTA, NTMC2TYPE1.1, ATSYTA, NTMC2T1.1, SYT1 | synaptotagmin A | chr2:9014827-9017829 FORWARD LENGTH=541; SYTA | synaptotagmin A | chr2:9014827-9017829 FORWARD LENGTH=565; SYTA | synaptotagmin A 
| chr2:9014827-9017829 FORWARD LEN

837 7.05455E-06 AT1G29930.1
 CAB1, AB140, CAB140, LHCB1.3 | chlorophyll A/B binding protein 1 | chr1:10478071-10478874 FORWARD LENGTH=267; CAB2, AB165, LHCB1.1 | chlorophyll A/B-binding protein 2 | chr1:10475089-10475892 REVERSE 
LENGTH=267; CAB3, AB180, LHC

825 1.26696E-06 ATCG00770.1  RPS8 | ribosomal protein S8 | chrC:80068-80472 REVERSE LENGTH=134
819 1.88861E-09 AT4G35470.1  PIRL4 | plant intracellular ras group-related LRR 4 | chr4:16846531-16848448 FORWARD LENGTH=549
804 6.60294E-07 AT3G54140.1  ATPTR1, PTR1 | peptide transporter 1 | chr3:20045885-20048154 REVERSE LENGTH=570
731 1.01391E-09 AT1G12840.1  DET3, ATVHA-C | vacuolar ATP synthase subunit C (VATC) / V-ATPase C subunit / vacuolar proton pump C subunit (DET3) | chr1:4375584-4378220 FORWARD LENGTH=375
718 3.34151E-06 AT2G01420.1  PIN4, ATPIN4 | Auxin efflux carrier family protein | chr2:180478-183199 REVERSE LENGTH=612; PIN4 | Auxin efflux carrier family protein | chr2:180478-183199 REVERSE LENGTH=616

698 2.16065E-07 AT4G22890.4
 PGR5-LIKE A | PGR5-LIKE A | chr4:12007157-12009175 FORWARD LENGTH=321; PGR5-LIKE A | PGR5-LIKE A | chr4:12007157-12009175 FORWARD LENGTH=322; PGR5-LIKE A | PGR5-LIKE A | chr4:12007157-12009175 
FORWARD LENGTH=324; PGR5-L

688 5.11463E-07 AT3G61260.1  Remorin family protein | chr3:22675403-22676701 REVERSE LENGTH=212
670 5.89795E-08 AT1G79920.2  Heat shock protein 70 (Hsp 70) family protein | chr1:30058935-30062224 REVERSE LENGTH=831;  | Heat shock protein 70 (Hsp 70) family protein | chr1:30058935-30062224 REVERSE LENGTH=831
665 1.96872E-09 AT3G51550.1  FER | Malectin/receptor-like protein kinase family protein | chr3:19117877-19120564 REVERSE LENGTH=895
658 5.36519E-06 AT2G38750.1  ANNAT4 | annexin 4 | chr2:16196582-16198431 REVERSE LENGTH=319
614 6.3431E-07 AT1G11260.1  STP1, ATSTP1 | sugar transporter 1 | chr1:3777460-3780133 FORWARD LENGTH=522
578 1.42624E-06 AT2G45820.1  Remorin family protein | chr2:18863147-18864576 REVERSE LENGTH=190
573 1.2743E-07 AT2G37180.1  RD28, PIP2;3, PIP2C | Aquaporin-like superfamily protein | chr2:15617779-15618937 FORWARD LENGTH=285
555 5.01092E-11 AT4G35250.1  NAD(P)-binding Rossmann-fold superfamily protein | chr4:16771401-16773269 REVERSE LENGTH=395

Table S1.
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554 4.37302E-08 AT4G30010.1
 unknown protein;FUNCTIONS IN: molecular_function unknown;INVOLVED IN: biological_process unknown;LOCATED IN: mitochondrion, plastid;EXPRESSED IN: 26 plant structures;EXPRESSED DURING: 15 growth 
stages;Has 39 Blast hits to 39 proteins in

552 4.09484E-06 AT2G36880.2  MAT3 | methionine adenosyltransferase 3 | chr2:15479721-15480893 REVERSE LENGTH=390; MAT3 | methionine adenosyltransferase 3 | chr2:15479721-15480893 REVERSE LENGTH=390
547 3.43799E-07 AT3G16240.1  DELTA-TIP, TIP2;1, DELTA-TIP1, AQP1, ATTIP2;1 | delta tonoplast integral protein | chr3:5505534-5506788 FORWARD LENGTH=250
542 8.86788E-07 AT2G45140.1  PVA12 | plant VAP homolog 12 | chr2:18611029-18612971 FORWARD LENGTH=239
516 1.55059E-06 AT3G46780.1  PTAC16 | plastid transcriptionally active 16 | chr3:17228766-17231021 FORWARD LENGTH=510
515 2.04718E-06 AT4G02510.1  TOC159, TOC86, PPI2, TOC160, ATTOC159 | translocon at the outer envelope membrane of chloroplasts 159 | chr4:1104766-1109360 FORWARD LENGTH=1503
510 1.62474E-07 AT5G54500.1  FQR1 | flavodoxin-like quinone reductase 1 | chr5:22124674-22126256 FORWARD LENGTH=204; FQR1 | flavodoxin-like quinone reductase 1 | chr5:22124674-22126435 FORWARD LENGTH=244
499 8.57377E-09 AT5G51010.1  Rubredoxin-like superfamily protein | chr5:20744615-20745344 FORWARD LENGTH=154

495 9.76711E-06 AT4G14960.2
 TUA6 | Tubulin/FtsZ family protein | chr4:8548769-8550319 REVERSE LENGTH=450; TUA2 | tubulin alpha-2 chain | chr1:18517737-18519729 FORWARD LENGTH=450; TUA4, TOR2 | tubulin alpha-4 chain | chr1:1356421-
1358266 REVERSE LENGTH=450

490 2.24985E-06 AT4G16370.1  ATOPT3, OPT3 | oligopeptide transporter | chr4:9247514-9250071 REVERSE LENGTH=737
480 1.33926E-05 AT5G10960.1  Polynucleotidyl transferase, ribonuclease H-like superfamily protein | chr5:3464581-3465414 FORWARD LENGTH=277
479 2.66089E-08 AT5G52520.1  OVA6, PRORS1 | Class II aaRS and biotin synthetases superfamily protein | chr5:21311112-21313875 FORWARD LENGTH=543
476 9.63624E-06 AT3G18830.1  ATPLT5, PMT5, ATPMT5 | polyol/monosaccharide transporter 5 | chr3:6489000-6491209 REVERSE LENGTH=539

474 1.0595E-06 AT1G04750.1
 VAMP7B, VAMP721, ATVAMP721, AT VAMP7B | vesicle-associated membrane protein 721 | chr1:1331857-1333426 REVERSE LENGTH=219; SAR1, VAMP722, ATVAMP722 | synaptobrevin-related protein 1 | 
chr2:14043785-14045337 REVERSE LENGTH=221; S

464 1.47617E-06 AT5G57110.2  ACA8, AT-ACA8 | autoinhibited Ca2+ -ATPase, isoform 8 | chr5:23109729-23116857 REVERSE LENGTH=1074; ACA8, AT-ACA8 | autoinhibited Ca2+ -ATPase, isoform 8 | chr5:23109729-23116857 REVERSE LENGTH=1074

462 1.47793E-08 AT4G08850.2
 Leucine-rich repeat receptor-like protein kinase family protein | chr4:5637467-5640496 REVERSE LENGTH=1009;  | Leucine-rich repeat receptor-like protein kinase family protein | chr4:5636693-5640496 REVERSE 
LENGTH=1045

455 1.24717E-05 AT1G51500.1  CER5, D3, ABCG12, WBC12, ATWBC12 | ABC-2 type transporter family protein | chr1:19097967-19100972 REVERSE LENGTH=687
452 4.3859E-07 AT3G04120.1  GAPC, GAPC-1, GAPC1 | glyceraldehyde-3-phosphate dehydrogenase C subunit 1 | chr3:1081077-1083131 FORWARD LENGTH=338

426 1.85622E-07 AT4G01100.1
 ADNT1 | adenine nucleotide transporter 1 | chr4:477411-479590 FORWARD LENGTH=352; ADNT1 | adenine nucleotide transporter 1 | chr4:477411-479590 FORWARD LENGTH=366;  | Mitochondrial substrate carrier 
family protein | chr4:1326026

417 1.28116E-09 AT3G13920.1
 EIF4A1, RH4, TIF4A1 | eukaryotic translation initiation factor 4A1 | chr3:4592635-4594128 REVERSE LENGTH=412; EIF4A1, RH4, TIF4A1 | eukaryotic translation initiation factor 4A1 | chr3:4592586-4594128 REVERSE 
LENGTH=415; EIF4A1 |

401 5.97254E-06 AT1G78570.1  RHM1, ROL1, ATRHM1 | rhamnose biosynthesis 1 | chr1:29550110-29552207 FORWARD LENGTH=669
399 6.7526E-07 AT3G23750.1  Leucine-rich repeat protein kinase family protein | chr3:8558332-8561263 FORWARD LENGTH=928

396 3.07939E-07 AT3G28715.2
 ATPase, V0/A0 complex, subunit C/D | chr3:10778025-10780350 FORWARD LENGTH=343;  | ATPase, V0/A0 complex, subunit C/D | chr3:10778025-10780350 FORWARD LENGTH=351;  | ATPase, V0/A0 complex, subunit 
C/D | chr3:10773144-10775594

387 7.32483E-07 AT3G21810.1  Zinc finger C-x8-C-x5-C-x3-H type family protein | chr3:7684852-7688360 FORWARD LENGTH=437

384 5.59388E-07 AT4G24190.2
 SHD, AtHsp90.7, AtHsp90-7 | Chaperone protein htpG family protein | chr4:12551902-12555851 REVERSE LENGTH=823; SHD, HSP90.7, AtHsp90.7, AtHsp90-7 | Chaperone protein htpG family protein | chr4:12551902-
12555851 REVERSE LENGTH=823

371 4.4446E-07 AT1G10200.1  WLIM1 | GATA type zinc finger transcription factor family protein | chr1:3346677-3347763 REVERSE LENGTH=190

364 3.45309E-06 AT5G59840.1
 Ras-related small GTP-binding family protein | chr5:24107450-24109049 REVERSE LENGTH=216; ARA3 | RAB GTPase homolog 8A | chr3:16917908-16919740 FORWARD LENGTH=216; ARA3 | RAB GTPase homolog 8A | 
chr3:16917908-16919740 FORWARD

359 4.43392E-06 AT2G44790.1  UCC2 | uclacyanin 2 | chr2:18462182-18463232 REVERSE LENGTH=202
354 3.89558E-06 AT2G26730.1  Leucine-rich repeat protein kinase family protein | chr2:11388621-11391286 FORWARD LENGTH=658
353 1.91197E-06 AT5G19780.1  TUA5 | tubulin alpha-5 | chr5:6687212-6688926 FORWARD LENGTH=450; TUA3 | tubulin alpha-3 | chr5:6682761-6684474 REVERSE LENGTH=450
339 5.11807E-06 AT5G15350.1  ENODL17, AtENODL17 | early nodulin-like protein 17 | chr5:4985184-4986154 REVERSE LENGTH=172

335 1.29282E-06 AT3G56940.1
 CRD1, CHL27, ACSF | dicarboxylate diiron protein, putative (Crd1) | chr3:21076594-21078269 FORWARD LENGTH=409; CRD1 | dicarboxylate diiron protein, putative (Crd1) | chr3:21076825-21078269 FORWARD 
LENGTH=332

333 3.53433E-08 AT4G09000.1
 GRF1, GF14 CHI | general regulatory factor 1 | chr4:5775387-5777157 FORWARD LENGTH=267; GRF1, GF14 CHI | general regulatory factor 1 | chr4:5775387-5777157 FORWARD LENGTH=318; GRF2, 14-3-3OMEGA, GF14 
OMEGA | general regulatory f

317 1.56569E-07 AT5G35360.1
 CAC2 | acetyl Co-enzyme a carboxylase biotin carboxylase subunit | chr5:13584300-13588268 FORWARD LENGTH=537; CAC2 | acetyl Co-enzyme a carboxylase biotin carboxylase subunit | chr5:13584300-13587827 
FORWARD LENGTH=499; CAC2 | a

311 1.06802E-06 AT5G64740.1
 CESA6, IXR2, E112, PRC1 | cellulose synthase 6 | chr5:25881555-25886333 FORWARD LENGTH=1084; CESA5 | cellulose synthase 5 | chr5:3073356-3077974 FORWARD LENGTH=1069; CESA2, ATH-A, ATCESA2 | cellulose 
synthase A2 | chr4:18297078-

308 4.05931E-06 AT3G17840.1  RLK902 | receptor-like kinase 902 | chr3:6106092-6108430 FORWARD LENGTH=647

305 7.30364E-07 AT5G67500.1  VDAC2, ATVDAC2 | voltage dependent anion channel 2 | chr5:26935223-26937123 FORWARD LENGTH=276; VDAC2 | voltage dependent anion channel 2 | chr5:26935223-26937123 FORWARD LENGTH=303

299 2.53305E-07 AT1G22710.1  SUC2, SUT1, ATSUC2 | sucrose-proton symporter 2 | chr1:8030911-8032970 REVERSE LENGTH=512
294 6.58566E-06 AT4G23650.1  CDPK6, CPK3 | calcium-dependent protein kinase 6 | chr4:12324967-12327415 REVERSE LENGTH=529
286 8.21849E-08 AT4G38630.1  RPN10, MCB1, ATMCB1, MBP1 | regulatory particle non-ATPase 10 | chr4:18057357-18059459 REVERSE LENGTH=386
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281 2.69652E-05 AT3G08930.1  LMBR1-like membrane protein | chr3:2713562-2717058 FORWARD LENGTH=509
279 1.4983E-07 AT2G38940.1  ATPT2, PHT1;4 | phosphate transporter 1;4 | chr2:16258500-16260104 FORWARD LENGTH=534
278 2.66312E-05 AT3G58730.1  vacuolar ATP synthase subunit D (VATD) / V-ATPase D subunit / vacuolar proton pump D subunit (VATPD) | chr3:21718495-21719280 REVERSE LENGTH=261
276 2.8762E-06 AT3G14840.2  Leucine-rich repeat transmembrane protein kinase | chr3:4988271-4993891 FORWARD LENGTH=1020

274 3.16187E-07 AT5G38660.1  APE1 | acclimation of photosynthesis to  environment | chr5:15473285-15475497 REVERSE LENGTH=286; APE1 | acclimation of photosynthesis to  environment | chr5:15471208-15475497 REVERSE LENGTH=431

272 7.84044E-07 AT5G46110.2
 APE2, TPT | Glucose-6-phosphate/phosphate translocator-related | chr5:18698019-18700212 FORWARD LENGTH=297; APE2, TPT | Glucose-6-phosphate/phosphate translocator-related | chr5:18697606-18700212 
FORWARD LENGTH=399; APE2, TPT |

270 3.10696E-08 ATCG00470.1  ATPE | ATP synthase epsilon chain | chrC:52265-52663 REVERSE LENGTH=132
268 8.39695E-07 AT5G53480.1  ARM repeat superfamily protein | chr5:21714016-21716709 FORWARD LENGTH=870
256 4.67193E-08 AT5G39320.1  UDP-glucose 6-dehydrogenase family protein | chr5:15743254-15744696 FORWARD LENGTH=480
254 7.5326E-07 AT5G38480.2  GRF3, RCI1 | general regulatory factor 3 | chr5:15410277-15411285 FORWARD LENGTH=254; GRF3, RCI1 | general regulatory factor 3 | chr5:15410277-15411285 FORWARD LENGTH=255
251 1.59556E-05 AT1G04410.1  Lactate/malate dehydrogenase family protein | chr1:1189418-1191267 REVERSE LENGTH=332
244 1.96136E-07 AT1G79530.1  GAPCP-1 | glyceraldehyde-3-phosphate dehydrogenase of plastid 1 | chr1:29916232-29919088 REVERSE LENGTH=422

239 4.75485E-06 AT5G10450.2
 GRF6, AFT1, 14-3-3lambda | G-box regulating factor 6 | chr5:3284452-3286261 REVERSE LENGTH=246; GRF6, AFT1, 14-3-3lambda | G-box regulating factor 6 | chr5:3284452-3286261 REVERSE LENGTH=248; GRF6 | G-box 
regulating factor 6 | c

238 1.69044E-07 AT1G79930.1  HSP91 | heat shock protein 91 | chr1:30063781-30067067 REVERSE LENGTH=831; HSP91 | heat shock protein 91 | chr1:30063924-30067067 REVERSE LENGTH=789
233 2.27603E-06 AT1G71880.1  SUC1, ATSUC1 | sucrose-proton symporter 1 | chr1:27054334-27056100 FORWARD LENGTH=513

230 5.9359E-09 AT3G08510.3
 phospholipase C 2 | chr3:2582626-2585556 REVERSE LENGTH=552; ATPLC2, PLC2 | phospholipase C 2 | chr3:2582626-2585556 REVERSE LENGTH=581; ATPLC2, PLC2 | phospholipase C 2 | chr3:2582626-2585556 REVERSE 
LENGTH=581

229 3.78227E-05 AT3G62530.1  ARM repeat superfamily protein | chr3:23132219-23133121 FORWARD LENGTH=221
227 1.39013E-07 AT4G39090.1  RD19, RD19A | Papain family cysteine protease | chr4:18215826-18217326 REVERSE LENGTH=368
222 6.84084E-06 ATCG01060.1  PSAC | iron-sulfur cluster binding;electron carriers;4 iron, 4 sulfur cluster binding | chrC:117318-117563 REVERSE LENGTH=81
215 2.04062E-08 AT5G43060.1  Granulin repeat cysteine protease family protein | chr5:17269784-17272117 REVERSE LENGTH=463

214 9.56515E-09 AT1G25450.1  KCS5, CER60 | 3-ketoacyl-CoA synthase 5 | chr1:8938679-8940282 REVERSE LENGTH=492; CUT1, POP1, CER6, G2, KCS6 | 3-ketoacyl-CoA synthase 6 | chr1:25712881-25714733 REVERSE LENGTH=497

211 1.23357E-07 AT3G48140.1  B12D protein | chr3:17778471-17779299 FORWARD LENGTH=88

208 8.69143E-09 AT1G03860.2
 ATPHB2, PHB2 | prohibitin 2 | chr1:979611-980870 REVERSE LENGTH=221; ATPHB6, PHB6 | prohibitin 6 | chr2:8842300-8843787 FORWARD LENGTH=286; ATPHB6, PHB6 | prohibitin 6 | chr2:8842300-8843787 FORWARD 
LENGTH=286; ATPHB2,

202 2.63526E-06 AT5G01460.1  LMBR1-like membrane protein | chr5:186823-190008 FORWARD LENGTH=509
200 4.94303E-09 AT2G26250.1  FDH, KCS10 | 3-ketoacyl-CoA synthase 10 | chr2:11170799-11173059 REVERSE LENGTH=550
199 1.51691E-06 AT1G73110.1  P-loop containing nucleoside triphosphate hydrolases superfamily protein | chr1:27494344-27496844 REVERSE LENGTH=432
198 5.85619E-06 AT2G34430.1  LHB1B1, LHCB1.4 | light-harvesting chlorophyll-protein complex II subunit B1 | chr2:14524818-14525618 FORWARD LENGTH=266
190 3.0048E-07 AT1G54780.1  TLP18.3 | thylakoid lumen 18.3 kDa protein | chr1:20439533-20440953 FORWARD LENGTH=285
188 1.02523E-06 AT3G44110.1  ATJ3, ATJ | DNAJ homologue 3 | chr3:15869115-15871059 REVERSE LENGTH=420; ATJ3, ATJ | DNAJ homologue 3 | chr3:15869179-15871059 REVERSE LENGTH=343
187 2.9347E-06 AT5G06320.1  NHL3 | NDR1/HIN1-like 3 | chr5:1931016-1931711 REVERSE LENGTH=231
185 6.94549E-05 AT4G03080.1  BSL1 | BRI1 suppressor 1 (BSU1)-like 1 | chr4:1359935-1365166 REVERSE LENGTH=881
184 4.00632E-06 AT3G08030.2  Protein of unknown function, DUF642 | chr3:2564517-2565819 FORWARD LENGTH=323;  | Protein of unknown function, DUF642 | chr3:2564191-2565819 FORWARD LENGTH=365
183 4.46132E-05 AT4G32150.1  VAMP711, ATVAMP711 | vesicle-associated membrane protein 711 | chr4:15526407-15527651 REVERSE LENGTH=219
179 3.36353E-07 AT5G38990.1  Malectin/receptor-like protein kinase family protein | chr5:15608824-15611466 FORWARD LENGTH=880

174 1.25735E-07 AT1G54270.1
 EIF4A-2 | eif4a-2 | chr1:20260495-20262018 FORWARD LENGTH=412; EIF4A-2 | eif4a-2 | chr1:20260495-20262018 FORWARD LENGTH=407; EIF4A1, RH4, TIF4A1 | eukaryotic translation initiation factor 4A1 | 
chr3:4592635-4594094 REVERSE LENG

171 6.41163E-08 AT3G07570.1  Cytochrome b561/ferric reductase transmembrane with DOMON related domain | chr3:2418205-2420206 REVERSE LENGTH=369

167 8.29127E-06 AT5G59880.2
 ADF3 | actin depolymerizing factor 3 | chr5:24120382-24121628 FORWARD LENGTH=124; ADF2 | actin depolymerizing factor 2 | chr3:16907743-16908822 REVERSE LENGTH=137; ADF4, ATADF4 | actin depolymerizing 
factor 4 | chr5:24122545-241

164 1.40883E-06 AT1G72150.1  PATL1 | PATELLIN 1 | chr1:27148558-27150652 FORWARD LENGTH=573
159 1.29152E-08 AT1G61250.1  SC3 | secretory carrier 3 | chr1:22586035-22588519 FORWARD LENGTH=274; SC3 | secretory carrier 3 | chr1:22586035-22588664 FORWARD LENGTH=289
158 8.09419E-05 AT5G23660.1  MTN3, SWEET12, AtSWEET12 | homolog of Medicago truncatula MTN3 | chr5:7971936-7973796 REVERSE LENGTH=285
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158 2.56291E-07 AT1G06700.2
 Protein kinase superfamily protein | chr1:2052750-2054552 REVERSE LENGTH=361;  | Protein kinase superfamily protein | chr1:2052750-2054552 REVERSE LENGTH=361;  | Protein kinase superfamily protein | 
chr2:13093145-13094677 FOR

156 6.58395E-06 AT5G25460.1  Protein of unknown function, DUF642 | chr5:8863430-8865394 FORWARD LENGTH=369;  | Protein of unknown function, DUF642 | chr5:3644655-3646991 FORWARD LENGTH=366

155 5.49579E-07 AT3G62830.1
 UXS2, ATUXS2 | NAD(P)-binding Rossmann-fold superfamily protein | chr3:23232539-23235353 FORWARD LENGTH=445; UXS2, ATUXS2, AUD1 | NAD(P)-binding Rossmann-fold superfamily protein | chr3:23232539-
23235353 FORWARD LENGTH=445; UXS4

155 1.95335E-05 AT3G08530.1  Clathrin, heavy chain | chr3:2587171-2595411 REVERSE LENGTH=1703
154 6.59875E-06 AT3G44320.1  NIT3, AtNIT3 | nitrilase 3 | chr3:15993419-15995493 FORWARD LENGTH=346

147 1.66704E-07 AT1G25490.1
 RCN1, REGA, ATB BETA BETA, EER1 | ARM repeat superfamily protein | chr1:8951700-8954899 FORWARD LENGTH=588; PP2AA3 | protein phosphatase 2A  subunit A3 | chr1:4563970-4567348 REVERSE LENGTH=537; 
PDF1, PR 65, PP2AA2 | protein pho

144 1.49251E-05 AT1G68830.1  STN7 | STT7 homolog STN7 | chr1:25872654-25875473 REVERSE LENGTH=562
144 4.62424E-07 AT5G28540.1  BIP1 | heat shock protein 70 (Hsp 70) family protein | chr5:10540665-10543274 REVERSE LENGTH=669

143 2.18155E-05 AT1G12920.1
 ERF1-2 | eukaryotic release factor 1-2 | chr1:4396555-4397859 REVERSE LENGTH=434; ERF1-3 | eukaryotic release factor 1-3 | chr3:9788854-9790161 FORWARD LENGTH=435; ERF1-1 | eukaryotic release factor 1-1 | 
chr5:19386555-19387865

142 7.66958E-07 AT3G17970.1  atToc64-III, TOC64-III | translocon at the outer membrane of chloroplasts 64-III | chr3:6148030-6151794 FORWARD LENGTH=589
141 9.77252E-07 AT3G58140.1  phenylalanyl-tRNA synthetase class IIc family protein | chr3:21529988-21532386 REVERSE LENGTH=429
140 5.85708E-07 AT1G12000.1  Phosphofructokinase family protein | chr1:4050159-4053727 REVERSE LENGTH=566; MEE51 | Phosphofructokinase family protein | chr4:1939250-1942765 FORWARD LENGTH=569

138 3.91752E-06 AT5G13430.1  Ubiquinol-cytochrome C reductase iron-sulfur subunit | chr5:4305414-4307399 REVERSE LENGTH=272;  | Ubiquinol-cytochrome C reductase iron-sulfur subunit | chr5:4308431-4310022 REVERSE LENGTH=274

132 1.14862E-05 AT3G21340.1  Leucine-rich repeat protein kinase family protein | chr3:7511848-7515937 REVERSE LENGTH=899
130 2.25303E-08 AT5G47930.1  Zinc-binding ribosomal protein family protein | chr5:19406423-19407329 REVERSE LENGTH=84

126 1.05517E-06 AT1G45688.1
 unknown protein;FUNCTIONS IN: molecular_function unknown;INVOLVED IN: biological_process unknown;LOCATED IN: plasma membrane;EXPRESSED IN: 22 plant structures;EXPRESSED DURING: 13 growth stages;BEST 
Arabidopsis thaliana protein match is:

124 1.31377E-06 AT3G19760.1  EIF4A-III | eukaryotic initiation factor 4A-III | chr3:6863790-6866242 FORWARD LENGTH=408;  | DEA(D/H)-box RNA helicase family protein | chr1:19047960-19049967 FORWARD LENGTH=392
123 1.1419E-07 AT5G17170.2  ENH1 | rubredoxin family protein | chr5:5649335-5650835 FORWARD LENGTH=224; ENH1 | rubredoxin family protein | chr5:5649335-5650975 FORWARD LENGTH=271

119 9.95157E-08 AT5G12370.3
 SEC10 | exocyst complex component sec10 | chr5:4003002-4008445 REVERSE LENGTH=820; SEC10 | exocyst complex component sec10 | chr5:4003002-4008445 REVERSE LENGTH=825; SEC10 | exocyst complex 
component sec10 | chr5:4003002-4008445

118 5.59768E-07 AT3G54110.1  ATPUMP1, UCP, PUMP1, ATUCP1, UCP1 | plant uncoupling mitochondrial protein 1 | chr3:20038890-20040996 FORWARD LENGTH=306

117 1.07099E-05 AT3G18780.2
 ACT2, DER1, LSR2, ENL2 | actin 2 | chr3:6475535-6476832 FORWARD LENGTH=377; ACT8 | actin 8 | chr1:18216539-18217947 FORWARD LENGTH=377; ACT2, DER1, LSR2, ENL2 | actin 2 | chr3:6475535-6476728 
FORWARD LENGTH=371

116 1.7492E-06 AT5G33320.1  CUE1, PPT, ARAPPT | Glucose-6-phosphate/phosphate translocator-related | chr5:12588950-12591408 FORWARD LENGTH=408
115 1.31042E-08 AT5G55280.1  FTSZ1-1, ATFTSZ1-1, CPFTSZ | homolog of bacterial cytokinesis Z-ring protein FTSZ 1-1 | chr5:22420740-22422527 REVERSE LENGTH=433

114 1.76621E-06 AT4G33510.1
 DHS2 | 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase | chr4:16116496-16118549 FORWARD LENGTH=507;  | Class-II DAHP synthetase family protein | chr1:7912120-7914742 FORWARD LENGTH=527; DHS2 | 3-
deoxy-d-arabino-heptulosonat

112 1.99533E-06 AT3G11800.1
 unknown protein;FUNCTIONS IN: molecular_function unknown;INVOLVED IN: biological_process unknown;LOCATED IN: endomembrane system;EXPRESSED IN: 24 plant structures;EXPRESSED DURING: 15 growth 
stages;BEST Arabidopsis thaliana protein match

112 2.48766E-06 AT1G51805.2
 Leucine-rich repeat protein kinase family protein | chr1:19221187-19225590 REVERSE LENGTH=860;  | Leucine-rich repeat protein kinase family protein | chr1:19221187-19225590 REVERSE LENGTH=884;  | Leucine-rich 
repeat protein k

111 1.06351E-05 AT5G59030.1  COPT1 | copper transporter 1 | chr5:23833945-23834457 REVERSE LENGTH=170
111 4.4564E-08 AT2G25110.1  SDF2, ATSDL, AtSDF2 | stromal cell-derived factor 2-like protein precursor | chr2:10684428-10685838 FORWARD LENGTH=218
110 2.64164E-07 AT4G25140.1  OLEO1, OLE1 | oleosin 1 | chr4:12900498-12901259 FORWARD LENGTH=173
106 1.60162E-07 AT3G01570.1  Oleosin family protein | chr3:222152-222778 REVERSE LENGTH=183
104 2.98865E-07 AT5G48960.1  HAD-superfamily hydrolase, subfamily IG, 5-nucleotidase | chr5:19849645-19853382 FORWARD LENGTH=642
102 3.6081E-06 AT5G49910.1  CPHSC70-2EAT SHOCK PROTEIN 70-2, HSC70-7, cpHsc70-2 | chloroplast heat shock protein 70-2 | chr5:20303470-20306295 FORWARD LENGTH=718

101 8.41888E-07 AT3G58500.1
 PP2A-4 | protein phosphatase 2A-4 | chr3:21635503-21638911 REVERSE LENGTH=313; PP2A-3 | protein phosphatase 2A-3 | chr2:17698099-17701226 REVERSE LENGTH=313; PP2A-3 | protein phosphatase 2A-3 | 
chr2:17699029-17701226 REVERSE LEN

101 1.8258E-06 AT2G46820.2  PTAC8, TMP14, PSAP, PSI-P | photosystem I P subunit | chr2:19243729-19244870 FORWARD LENGTH=174; PTAC8, TMP14, PSAP, PSI-P | photosystem I P subunit | chr2:19243729-19244870 FORWARD LENGTH=174

101 2.84273E-05 AT4G35000.1  APX3 | ascorbate peroxidase 3 | chr4:16665007-16667541 REVERSE LENGTH=287

101 2.06227E-07 AT3G09820.1
 ADK1, ATADK1 | adenosine kinase 1 | chr3:3012122-3014624 FORWARD LENGTH=344; ADK2 | adenosine kinase 2 | chr5:796573-798997 FORWARD LENGTH=345; ADK1 | adenosine kinase 1 | chr3:3012645-3014624 
FORWARD LENGTH=302
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