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Abstract

Natural environments are never constant but subject to spatial and temporal change on

all scales, increasingly so due to human activity. Hence, it is crucial to understand the

impact of environmental variation on evolutionary processes. In this thesis, I present

three topics that share the common theme of environmental variation, yet illustrate its

effect from different perspectives.

First, I show how a temporally fluctuating environment gives rise to second-order

selection on a modifier for stress-induced mutagenesis. Without fluctuations, when

populations are adapted to their environment, mutation rates are minimized. I argue

that a stress-induced mutator mechanism may only be maintained if the population is

repeatedly subjected to diverse environmental challenges, and I outline implications of

the presented results to antibiotic treatment strategies.

Second, I discuss my work on the evolution of dispersal. Besides reproducing

known results about the effect of heterogeneous habitats on dispersal, it identifies

spatial changes in dispersal type frequencies as a source for selection for increased

propensities to disperse. This concept contains effects of relatedness that are known

to promote dispersal, and I explain how it identifies other forces selecting for dispersal

and puts them on a common scale.

Third, I analyse genetic variances of phenotypic traits under multivariate stabilizing

selection. For the case of constant environments, I generalize known formulae of

equilibrium variances to multiple traits and discuss how the genetic variance of a focal

trait is influenced by selection on background traits. I conclude by presenting ideas and

preliminary work aiming at including environmental fluctuations in the form of moving

trait optima into the model.
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1 Introduction

This thesis is a collection of selected projects I worked on during my PhD. Though

diverse, they share an underlying theme, which I explain below. Most of Chapter 3 is

adapted from my publication about dispersal evolution, see Novak (2014). All other

projects presented here are joint work with colleagues from IST Austria and beyond:

Marta Dravecká and Tiago Paixão (Chapter 2), Richard Kollár (Section 3.5), and Srd-

jan Sarikas and Stefanie Belohlavy (Chapter 4). Further, this entire work bears the

hallmarks of Nick Barton, who provided guidance and contributed constructively and

critically to each of the topics covered in this thesis.

1.1 Natural environments vary in space and time

Natural environments are never constant but subject to change on all scales. Such

change may be spatial or temporal, ranging from highly diverse landscapes up to

global gradients, or from the circadian cycle and yearly seasons up to recurrent glacial

epochs. Human activities in the (evolutionarily) recent past have been an additional

factor by increasing landscape fragmentation and transformation, and by their influ-

ence on climate change. Environmental changeability is so evident that, in fact, it

is hard to imagine a natural species, or even a population, that exists under spatio-

temporally constant conditions.

While the ubiquity of environmental variation is beyond question, its influence on

evolutionary processes is less evident. Spatial variation may cause local adaptation

and adaptive divergence, opposing the homogenizing effect of gene flow (Kawecki
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and Ebert, 2004). Similarly, speciation may require a certain degree of geographic

differentiation. Rapid temporal change causes populations to become maladapted,

such that they may decline in numbers and face extinction unless they adapt to the

new environment and restore a positive net growth rate in a process called evolutionary

rescue (Bell and Gonzalez, 2009). Temporal variability also interacts with the evolution

of recombination (Barton and Charlesworth, 1998) and mutation (Travis and Travis,

2002), since both these mechanisms enhance the genetic variation in a population and

thus facilitate adaptation. Variation in the reproductive success of individuals due to

spatial or temporal change can generally be described by genotype-times-environment

(G⇥E) interactions that provide an abstract framework for studying the effect of spatio-

temporal variation on polygenic traits (Turelli and Barton, 2004).

These examples are by no means meant to be an exhaustive list, but rather an

illustrative sample of the implications of spatio-temporal variation on evolutionary and

ecological processes. Similarly, in the following chapters, I present three major top-

ics that are loosely related members of the vast family of evolutionary questions, but

are nevertheless connected by the theme of spatio-temporal variation. I chose them

to shed light on the role of environmental variation in evolution from different angles:

First, spatial and temporal environmental variation may be a constitutive factor for se-

lection on certain traits. In other words, it generates selective forces that would be

absent in a constant environment. As I explain below, this is the case in the evolution

of genes that manipulate mutation rates (Chapter 2), and in the evolution of dispersal

strategies (Chapter 3). When discussing the former, I consider a well-mixed population

in an environment changing only in time, while in the latter, I focus on spatial variability.

Second, spatio-temporal variation can be seen as modifying preexisting evolutionary

phenomena. The example I discuss in Chapter 4 is concerned with the maintenance of

genetic variation of quantitative traits under selection for an optimal phenotype. There,

environmental variation causes the population to be maladapted and amplifies direc-

tional selection components, which in turn increases genetic variation. Environmental

variation is thus instrumental in maintaining variation by interfering with selective forces

that are already present in the system.

Throughout, I mostly neglect any ecological implications of changing environments
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and focus on their effect on the fitnesses of (geno)types, i.e., their average reproduc-

tive success. Furthermore, environmental variation acts on the level of populations

(in contrast to, e.g., variation in individual life histories), such that all individuals at a

given time and location experience the same environment. I use the adjectives “het-

erogeneous” and “homogeneous” in context of spatially variable, and “fluctuating” and

“stable” in context of temporally variable environments. When being deliberately un-

specific, I write “changing” (or “variable”) and “constant”.

1.2 Environmental change as a constitutive factor

Environmental variation may give rise to evolutionary phenomena and selective pres-

sures, which is particularly interesting for traits that are not directly under selection. For

example, think of a bacterial culture under idealized laboratory conditions that are kept

constant in space and time (e.g., a chemostat). If the bacteria are well-adapted to their

environment, changes in their genome will typically have negative effects. Thus, con-

sidering the given physical and metabolic constraints, the culture’s rate of mutations

should be as low as possible.

If the environment fluctuates in time, e.g. the mix of nutrients changes or certain

antibiotics are administered, mutations that cause their carrier to better cope with the

new condition will be selected for and thus spread in the population. Types that have

higher mutation rates also have a higher probability of producing such favoured mu-

tants, thus gaining an indirect selective advantage. In other words, increased mutation

rates may hitch-hike to high frequency along with the beneficial mutations they pro-

duce (Taddei et al., 1997); this is called the second-order selection hypothesis. The

long-term potential for this effect is rooted in continuing environmental fluctuations that

require the bacterial population to permanently adapt to new conditions. Overall, ne-

glecting other factors, mutation rates should be determined as a balance between the

detrimental effects of deleterious mutations and the adaptive advantage of increased

mutation rates. In order to predict the mutation rates actually realized by evolution,

however, these two opposing forces have to be quantified; a daunting task, in particu-

lar for the latter. As a matter of fact, it is still subject to debate if the indirect selective
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advantage of increased mutation rates is a relevant factor to the evolution of mutation

rates in practice (Sniegowski et al., 2000).

Another example of a trait that strongly interacts with environmental variation – yet

in a more intricate way – is dispersal (Ronce, 2007): Any natural species is distributed

in space and individuals either migrate themselves or disperse their offspring/gametes.

Oftentimes, dispersal entails increased mortality (e.g., predation risk), and it requires

time and energy to disperse. However, dispersal reduces the relatedness between in-

dividuals that locally compete for resources (i.e., it reduces kin competition), which at

least partially compensates these costs. In changing environments, additional factors

become relevant. Spatial heterogeneities tend to reduce dispersal in two ways. First, if

selection favours different features at different locations, dispersing individuals are less

likely to be adapted to local requirements. Second, if the habitat consists of patches of

richer and poorer quality, the former will contain more individuals. This leads to a net

flux of individuals from rich to poor habitat and thus disfavours dispersal. Conversely,

a temporally fluctuating environment generally leads to selection for increased disper-

sal. In this context, dispersal can be seen as a bet-hedging strategy against local

habitat deterioration. In an extreme form, environmental fluctuations can cause local

extinction events such that dispersers gain advantage from recolonizing empty habitat

(Van Valen, 1971).

In both of the above examples, the challenge lies in quantifying the selection pres-

sures created by environmental variability and to determine the evolutionarily optimal

mutation or dispersal rates in the presence of the other factors. In the subsequent

two chapters of my thesis, Chapters 2 and 3, I present some results that veer towards

these very questions. The general approach is similar in both cases: I postulate a

genetic modifier locus with two genetic variants (alleles) that alter the characteristic of

interest. This characteristic is not under direct selection; selection on the modifier al-

leles comes from their interaction with selected alleles at other loci, or from their effect

on individual life histories and behaviour. The alleles at the modifier locus are then

compared to determine whether a new allele can invade, is maintained, and may even

fix in the population. In the case that one allele replaces the other, new allelic variants

can be introduced to study the change of the characteristic in evolutionary time in a
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stepwise manner.

In Chapter 2, I discuss the second-order selection hypothesis (see above) for

stress-induced mutagenesis in a panmictic (i.e. spatially not distributed) bacterial pop-

ulation. The difference between unconditional and stress-induced mutator genes is

that the latter only increase mutation rates if their bearer experiences stress, e.g.,

in the form of antibiotics or other environmental challenges. Since they are inactive

during non-stressful periods, they create a reduced burden of deleterious mutations.

Like their unconditional counterparts, however, stress-induced mutator genes may in-

crease in frequency along with the beneficial mutations they produce. I model this

under the assumption that the modifier (mutator) locus is linked with a locus confer-

ring resistance to the stress. Further, I assume that the mechanism of stress-induced

mutagenesis is an active machinery whose genetic foundation itself degrades due to

mutations, yet that does not confer a direct fitness cost. Then, the fraction of individu-

als showing stress-induced mutagenesis may be explained from a balance between its

rate of decay and positive second-order selection. The model I present below shows

how the strength of the latter crucially depends on the diversity of environmental chal-

lenges occurring over time, which may have practical implications for the evolvability

of resistance to certain antibiotic treatments.

In Chapter 3, I present my work on the evolution of dispersal. I do not link the

modifier for dispersal to any selected locus, and I assume that all individuals at a given

location produce the same expected number of offspring. The latter implies that, lo-

cally, all individuals have the same fitness. The environmental factor of interest are

spatial differences in habitat quality, expressed by spatially heterogeneous population

sizes the habitat is able to sustain (i.e., a heterogeneous carrying capacity). The model

I discuss elegantly captures how dispersal and heterogeneous carrying capacities in-

teract. While this interaction has been studied before, there is more to my findings:

heterogeneities in the frequencies of the dispersal modifiers themselves promote in-

creased dispersal. This includes the phenomenon of relatedness between individuals

selecting for dispersal, yet is formulated more generally, hinting at other factors stimu-

lating dispersal that have not yet been considered.
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1.3 Genetic variation and environmental change

Genetic variation, the amount by which individuals in a population differ in their ge-

netic material, is a central concept in genetics, ecology, and evolutionary biology with

widespread implications, from QTL analyses to the conservation of species. Crucially,

the response of a population to selection, and hence its rate of adaptation, is propor-

tional to its genetic variance (Barton et al. (2007), Ch.17). Conversely, if a population

is maladapted, selection may pick out rare genetic variants that perform above aver-

age, therefore increasing the genetic variance. From an evolutionary point of view, the

interplay between genetic variation and environmental change thus has two facets:

genetic variation is necessary to cope with environmental change by adaptation, and

environmental change causes individuals to be maladapted, hence should increase

genetic variation.

Spatial structure has long been known to enhance genetic variation (Wright, 1943).

For example, think of two patches of habitat, each favouring one out of two alleles at

a certain locus. If migration between the patches is not too strong, each allele will be

maintained in its patch, with a certain degree of admixture determined by the strengths

of migration and selection. Even the simplest selection-mutation models thus have

immense potential in maintaining genetic polymorphism. Also mathematically, their

range of possible dynamics is extremely rich, as I showed earlier for the Levene (1953)

model (Novak, 2011).

Similarly, if selection does not act on genetic loci directly, but on quantitative char-

acters that are influenced by multiple loci, spatial heterogeneities typically increase

variation in those traits. Again considering a habitat consisting of two patches, a body

height H1 might confer the highest fitness in the first patch 1, while in the second patch

a different height H2 might be optimal, with fitness declining as body height deviates

from its optima. If the two patches are separated from each other, the balance between

selection and mutation will lead to two distributions in body height centred around H1

and H2, respectively. With migration connecting the patches, the two trait distributions

mix to some degree, which increases the variances of each (Lythgoe, 1997; Barton,

1999). Because of the demonstrated ability of spatial heterogeneities to maintain and

promote genetic variation, I will – in the following and in Chapter 4 – restrict my atten-
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tion to temporal fluctuations that are still much less explored.

In diploid organisms, genetic polymorphism can be maintained by overdominance

in fitness (i.e., heterozygote individuals have higher fitness than either of the homozy-

gotes). Note that even with additive effects, homozygotes in a beneficial mutation may

overshoot the optimum and thus create heterozygote advantage (Sellis et al., 2011).

It has been shown that, if selection acts on K phenotypic traits under stabilizing se-

lection, at most K loci can be maintained polymorphic (Hastings and Hom, 1989).

To exclude overdominance in fitness as an obvious mechanism maintaining genetic

variation, I henceforth consider haploid organisms.

To secure polymorphism in haploids, some kind of negative frequency dependence

of selection is required. In other words, rare alleles need to have a selective advan-

tage to be protected from extinction. Interestingly, even if the selection coefficients are

frequency-independent (i.e., the selection coefficient of an allele does not depend on

the allele frequencies at its locus), fluctuating selection may give rise to negative fre-

quency dependence. However, this requires additional structure in the system, like age

structure in the population or some dormant stage (e.g. seed bank), c.f. the storage

effect (Chesson and Warner, 1981). Considering a single locus under constant condi-

tions, the allele with the largest selection coefficient simply fixes in the population. With

arbitrarily many loci and alleles, there is a folkloric understanding that polymorphism

cannot be maintained by constant selection. If selection is additive (i.e., the alleles

contribute additively to fitness), this has been proven rigorously by Kirzhner and Lyu-

bich (1997). In Appendix A3, I show that any form of constant frequency-independent

selection on an arbitrary number of loci in linkage equilibrium (the strong recombina-

tion limit) eliminates all genetic variation. Thus in particular, my proof holds for arbitrary

epistatic interactions between alleles and hence is applicable to selection on polygenic

traits.

If selection is fluctuating, the situation is less simple, but it is widely assumed that

fluctuations alone do not maintain polymorphism. In the simplest models, the geo-

metric mean of fitness over time determines which of the alleles persists in the long

run (Dempster, 1955; Haldane and Jayakar, 1963), but formulating a general model

is hard. In a thought experiment, we may devise a pattern of fluctuating selection

that keeps two alleles, P and Q, segregating at a single locus forever: Assume that
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selection favours allele P for some time, then switches over to favouring allele Q for

a longer time, then back to allele P for even longer, and so on. In this example, the

allele frequencies oscillate between the two states where either of the two alleles is

fixed, lingering there longer and longer, yet always flipping back to the other state.

Clearly, this hypothetical experiment is not biologically relevant, since allele frequen-

cies become arbitrarily low and will eventually fix in any finite population. However, it

shows part of the complications of arriving at a clean mathematical statement that also

fluctuating frequency-independent selection does not maintain genetic polymorphism.

Anyway, in finite populations without mutations, all loci must become monomorphic

eventually because of genetic drift (i.e., the change in gene frequency due to the ran-

dom sampling of reproducing individuals). Thus, investigating sophisticated models of

fluctuating selection alone might not be practically relevant.

Instead, it is more interesting to consider genetic variation under a balance of mu-

tation and genetic drift, and try to quantify the impact of selection, be it conducive or

destructive to genetic variation. In Chapter 4, I do this in the framework of quantita-

tive genetics that is concerned with the variation in phenotypic characters (traits) in a

population. The variance of the distribution of trait values in the population is denoted

by the genetic variance (of the given trait). Quantitative characters are assumed to

be determined by a (large) set of genetic loci under the influence of mutation, genetic

drift, and selection. The latter is mediated by stabilizing selection on the traits, i.e.,

each trait has an optimal value that confers maximal fitness, and fitness declines with

deviations from the optimal value. Alleles that modify the trait in the direction of the

optimum are therefore positively selected, while alleles that have the opposite effect

are selected against. If the population’s trait mean is far from the optimum, stabilizing

selection pulls the trait distribution towards the optimum by picking out genetic vari-

ants in its tip; this increases the variance in the trait distribution temporarily. Once the

population’s trait mean is close to the optimum, stabilizing selection acts to diminish

the variance of the trait distribution, reducing the population to a single genotype that

matches the optimum best. However, fluctuations in the optimal trait value may pre-

vent the population from adapting too closely to the optimum, therefore attenuate the

tendency of stabilizing selection to reduce genetic variation, and lead to higher levels
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of genetic variance in the balance of selection and mutation. This principle has been

demonstrated mainly in simulation studies, e.g., by Bürger and Gimelfarb (2002).

My aim is to quantify the impact of fluctuations on genetic variance analytically. I

set up this project very broadly by considering more than one trait; naturally, organ-

isms consist of multiple traits, and correlations between those matter in quantitative

trait evolution. The general setup is justified in Section 4.1, see also Johnson and

Barton (2005). Multivariate quantitative trait models are quite elaborate, yet I pro-

pose an approach that takes advantage of the great complexity of the problem by

subsuming most of the microscopic details of the system into a stochastic process,

see Section 4.2. Hence, also if the environment is constant, we may make use of a

probabilistic description of fluctuating selection. In Section 4.3, I lay out the basics of

genetic variances with multiple traits, which may serve as a basis for adding external

fluctuations to the system. Given the stochastic description of selection mentioned

above, this should be a relatively straightforward extension; in Section 4.4, I present

and discuss some ideas of how to go deeper in that direction, yet leave the questions

open for future research.
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2 Stress-Induced Mutagenesis

2.1 Introduction

Because most mutations are deleterious, selection generally acts to lower mutation

rate. There are certain forces, however, that can keep mutation rates elevated (Kimura,

1967). The most evident are physical constraints on how precise polymerases can be,

or a balance between avoiding deleterious mutations and cutting down on energy costs

of efficient repair. In asexual populations with complete linkage, elevated mutation

rates can also exist for relatively long periods of time due to hitch-hiking with beneficial

mutations they produce, consistent with the observation of strains with highly elevated

mutation rates in experimental as well as clinical settings (Woods et al., 2011). The-

oretical studies suggest that conditions most suitable for elevated mutation rates to

persist are those when beneficial mutations can have a large effect - in times of strong

selection pressure. A common regime when selection pressure can be sustained de-

spite adaptation is a setting of fluctuating selection, which includes cells experiencing

bursts of stresses during antibiotic treatment or cancer chemotherapy.

There exist multiple mechanisms that result in elevated mutation rates specifically

during stress (stress-induced mutagenesis, SIM). When encountering DNA damage,

several species of bacteria activate an SOS response that – in addition to upregulat-

ing various repair mechanisms – activates error-prone DNA polymerases, which have

been linked to a faster evolution of antibiotic resistance (Cirz et al., 2005). In a study

from 2003, 40% of studied isolates of Escherichia coli strains showed a higher than 10-

fold increase in mutation rate under stress conditions, associated with ageing colonies
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(Bjedov et al., 2003). It has also been shown that Streptococcus pneumoniae activates

the expression of so-called com genes when treated with various antibiotics. These

genes allow the bacteria to readily take up DNA from the environment and incorporate

it into its genome (Prudhomme et al., 2006). Another example is the beneficial excision

of a genomic region in the plant pathogen Pseudomonas syringae in response to the

host’s immunity (Pitman et al., 2005). Similar mechanisms that link certain stresses

to an increase of mutation rates have also been found in Drosophila melanogaster

(Agrawal and Wang, 2008) and yeast (Heidenreich, 2007).

Several hypotheses may explain the prevalence of stress-induced mutagenesis

mechanisms. The first is a pleiotropic argument, where these mechanisms primarily

carry benefits of faster repair or nutritional gain (for error-prone polymerases in SOS

response, and uptake of foreign DNA with the com system respectively); then, the el-

evation of mutation rates is a side effect (e.g. Torres-Barceló et al., 2015). MacLean

et al. (2013) suggest an alternative hypothesis to explain the stress-linked induction

of error-prone DNA polymerases: DNA polymerases that are linked to specific stress

situations and that are used less often may be subject to weaker selection, and be-

come error-prone by accumulation of slightly deleterious mutations. Another intriguing

hypothesis, the second-order selection hypothesis, states that stress-induced mutage-

nesis has evolved thanks to its benefit of combining elevated mutation rates with those

situations when they give most benefit (Rosenberg, 2001; Ram and Hadany, 2012).

Exactly like in the case of second-order selection explanations of constitutive mutator

strain prevalence, an allele that causes elevated mutation rates hitch-hikes with the

beneficial mutations it produces. By elevating mutation rates in times of stress, when

beneficial mutations are more likely to have large effects, a SIM mechanism is more

likely to rise in frequency. By keeping mutation rates down at times of no stress, it de-

creases the mutational load from excessive deleterious mutations. There is no reason

to think that only one of these hypotheses is correct; it is plausible that an interplay of

these factors is responsible for the prevalence of SIM mechanisms in many organisms.

The aim of our investigation is to explore the basic principle behind the second-

order selection hypothesis of stress-induced mutagenesis: How can a mechanism that

increases mutation rates under stress evolve? Under which conditions and at what lev-
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els can it be sustained in a population? What stress patterns and regimes promote it

the most? The relevance of these questions is beyond doubt: stress-induced mutage-

nesis facilitates the adaptation of a population subjected to changing conditions. This

is relevant for cancer therapy or antibiotic treatment, for example. Much effort goes

into identifying strategies that keep the treatment effective for as long as possible, i.e.,

that impede the evolution of resistant strains (Bonhoeffer et al., 1997; Chait et al.,

2007; Bollenbach, 2015). If second-order selection is a key factor in the emergence

and maintenance of SIM genes, however, different treatment regimes also affect the

evolution of mutagenesis, and thus the evolvability towards resistant strains in the long

term. It is therefore essential to understand to what extent different patterns of chang-

ing conditions cause second-order selection on stress-induced mutagenesis.

2.2 A population genetics model for SIM alleles

We thus set up a model of a hypothetical stress-induced mutator (SIM) allele; its prop-

erties are based on the features of existing SIM mechanisms, yet the model is not

meant to truthfully represent any one particular system. We are interested in exploring

specifically the effectiveness of second-order selection in the evolution of a SIM allele.

To do so effectively, we need to isolate second-order selection from any direct benefit

of the SIM system. Direct effects are likely a major determinant of the persistence of

SIM mechanisms in the wild, but such dynamics have also been extensively studied

with existing evolutionary models (e.g. Hegreness et al., 2006). We therefore assume

that the SIM allele does not confer any direct fitness cost or benefit, and consider a

population of haploid individuals with two non-recombining loci. At the first, the SIM

allele can be present or absent (alleles M or m, respectively), and the second may or

may not grant resistance to a given stress (alleles R or r). The resulting four possible

genotypes are displayed in Figure 2.1.

In the absence of stress, we assume that transitions between the genotypes are

only due to mutations as indicated by the arrows in Figure 2.1a; thus in particular,

there is no cost to being resistant. Individuals may lose or gain resistance at rates µR

and ⌫R, respectively. The SIM allele M may lose its function at rate µM ; since we are
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Figure 2.1: Schematic description of the genotype dynamics under no stress and stress. (a) Under no

stress, all genotypes have the same fitness w = 1 and transitions between the states are solely due to

mutations. Resistance is lost and gained at rates µR and νR, respectively. Furthermore, the SIM allele

degrades at a rate µM . (b) In the stress environment, individuals that are resistant to the stress gain a

selective advantage s (fitness w = 1+ s). In addition, the genotype that is susceptible to the stress and

carries the SIM allele (pMr) increases its outgoing mutation rates by a factor σ > 1.

interested in conditions for the ultimate loss of the SIM allele, we neglect back-mutation

from m to M .

In the stress environment, genotypes containing the resistance allele R have in-

creased fitness w = 1 + s relative to susceptible genotypes. Furthermore, the Mr

genotype increases all outgoing mutation rates by a factor σ > 1 due to stress-induced

mutagenesis, see Figure 2.1b. There are two assumptions behind this modelling ap-

proach: First, stress does not activate the SIM allele in resistant individuals. This is

reasonable if, for example, the stressor is effective inside the cell but the resistant mu-

tation makes its membrane impermeable. Were the SIM allele also active in resistant

individuals, it would rapidly degrade itself and be lost from the population in our model.

Second, the only cost of an active SIM allele is that the mechanism degrades itself.

This may at best partially compensate for the detrimental effects of elevated mutation

rates not considered in this model. In any natural system, the load due to deleterious

mutations may be substantial and restrain the evolution of SIM alleles. This effect

could be included in our model by adding additional classes of individuals with reduced
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fitness. However, artificially creating an idealised situation for the SIM allele allows for

a clean and mathematically tractable model of positive second-order selection, which

is or focal concern. We may thus interpret our results as an upper bound on how

effective positive second-order selection can be.

We cast the schematic dynamics of Figure 2.1 into two sets of differential equa-

tions for the variables p = {pmr, pMr, pmR, pMR}. Using the classical mutation-selection

dynamics of population genetics, they take the form

ṗ = p (w − w̄) +M.p, (2.1)

where w is the vector containing the marginal fitnesses of the genotypes, w̄ is the

mean fitness of the population, and M is a matrix encoding the mutation scheme (c.f.

Appendix A1.1). It seems reasonable to assume the following hierarchy among the

parameters:

s # µM , µR # ⌫R. (2.2)

Hence first, we assume that selection is strong compared to mutation. From a concep-

tual point of view, this implies that selection is the main driving force under stress; if mu-

tations that deactivate an existing resistance mechanism were too frequent, they would

“swamp” the population and resistance could not evolve. Since antibiotics typically ex-

ert high selection pressures, our assumption is justified in many cases. Second, we

assume that resistance mechanisms are lost more readily than they are gained by mu-

tation. This is intuitive, since by random genetic modifications it is more likely to disable

a functional mechanism than to create one. Assuming a functional resistant mecha-

nism to consist of 105 base pairs and a per-base mutation rate of 10−8 leads to a rough

estimate of µR ⇡ 10−3 (and similarly for µM ). To obtain resistance, however, a few very

specific point mutations may be required, such that ⌫R may not be much larger than

10−8. The relative magnitudes of µR and µM do not impact our results qualitatively,

although clearly a higher decay rate µM of the SIM allele hinders its prevalence.

Given the hierarchy (2.2), it can be shown that the SIM allele is maintained in none

of the two environments separately. Switching the stress and no-stress environments,

however, gives rise to non-trivial dynamics. During a stress phase, the SIM allele

may increase in frequency along with the resistance mutations it produces. Note that

even if the SIM allele is rare, it may contribute much of the resistance acquired during
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stress. As resistance levels in the population rise, its effect weakens and the SIM allele

frequency falls off because of mutations degrading the SIM mechanism. Periods of no

stress allow resistance levels to decline, such that the SIM allele becomes effective

again at the next stress phase.

2.3 Maintenance of the SIM allele

2.3.1 Recurrent and non-recurrent stress

We describe a hypothetical evolutionary experiment, in which we repeatedly subject

an effectively infinitely large bacterial population to stress. We apply stress for ⌧S time

units, followed by ⌧NS time units of no stress. Under no stress and stress, the genotype

frequencies evolve as described by the dynamical system (2.1) and according to the

schematics in Figures 2.1. Iterating this procedure leads to oscillations in the SIM

allele frequency pM = pMr + pMR as depicted in Figure 2.2. We measure genotype

frequencies at discrete time points directly before the onset of each stress (bold points

in Figure 2.2). The long-term equilibria of this time series thus describe the long-term

prevalence of the SIM allele, which we denote by p̂M . Note that sampling at the end

of the no-stress phases gives only approximately the minimal SIM allele frequencies

of the corresponding cycle, since they may continue dropping at the onset of stress

before they can hitch-hike to higher frequencies along with the resistance mutations

they produce. As our model assumes an effectively infinite population, however, the

SIM allele cannot be lost within one cycle. Nevertheless, it is possible that p̂M = 0, i.e.,

that the SIM allele frequency declines to zero as the cycles are iterated.

To be able to study the impact of stress diversity on the evolution of SIM alleles,

we first cover the two extreme cases of always the same stress re-occurring, and of

an infinite variety of stresses such that the population never experiences the same

kind of stress twice. We denote the first case by the recurrent (R) stress regime; it

corresponds to repeatedly triggering the same stress, for example, applying a certain

antibiotic. The second case can be seen as drawing each stress from an infinite pool

of possibilities, where each of them requires a different resistance mutation. We call

this case the non-recurrent (NR) stress regime. In Section 2.3.2, we numerically
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for two representative choices of the remaining parameters. For both the (R) and (NR)

regimes, the simulated values (points) align well with the above formulae (solid lines).

In the non-recurrent regime, the SIM allele is maintained in the population as long as

stresses occur frequently enough; more precisely, there is a critical cycle length ⌧c

such that the SIM allele is not maintained for cycle lengths exceeding ⌧c,

p̂
(NR)
M = 0 if ⌧ > ⌧c =

1

µM

log

✓

1 +
1

@

◆

. (2.5)

Furthermore, in this regime there is a strictly monotone dependence between the SIM

allele frequency and the frequency of stress occurrence; in particular, the SIM allele

becomes fixed in the population in the limit of infinitely rapid stress occurrence (i.e.,

p̂
(NR)
M ! 1 for ⌧ ! 0).

The dependence of the long-term SIM prevalence p̂
(R)
M in the recurrent regime on

the cycle length ⌧ is less simple. If the rate of gaining resistance without the SIM

allele is sufficiently low (i.e., ⌫R ⌧ 1, in particular ⌫R ⌧ µR), we can show that the

SIM allele is not maintained in the population for any choice of ⌧ (see Appendix A1.3).

This is the case in Figure 2.3a. In other cases, e.g., in Figure 2.3b, the SIM allele

may be maintained in the recurrent regime for intermediate values of ⌧ . Such cases,

however, are not in concordance with our basic ranking of parameters, inequality (2.2):

To obtain Figure 2.3b, we chose a very small decay rate of the SIM allele such that

µM ⇡ ⌫R. Hence, there is no contradiction to the previous statement. Furthermore,

we mathematically show in Appendix A1.3 that the non-recurrent regime generally

maintains a higher SIM prevalence than the recurrent regime, i.e., p̂
(NR)
M ≥ p̂

(R)
M for any

choice of parameters.

2.3.2 Finite stress cycles

In the next step, we explore the prevalence of the SIM allele when subjected to a finite

number of stresses. To this end, we simulate the full system as explained earlier for

the (R) and (NR) regimes, but for a finite number χ of stresses. This is done by taking

into account a separate resistance locus for every stress. As in the (NR) regime, we

assume no cross-resistance and there is complete linkage between all loci. Hence,

there are 2χ+1 different genotypes to consider. The SIM allele is lost at rate µM , and





CHAPTER 2. STRESS-INDUCED MUTAGENESIS 20

fitness advantage on its own and therefore can only rise in frequency if the relevant

resistance levels in the population are low. When stresses re-occur frequently, the

resistance levels are kept high, preventing the SIM allele from hitch-hiking.

Second, if there is a sufficient number of stresses available, a SIM allele can be

kept for intermediate frequencies of stress occurrence. The size of this region ex-

pands with increasing stress diversity up to the level of the (NR) regime of infinite

stress diversity. The maximum allele frequency that can be kept also increases with in-

creasing stress diversity, geometrically approaching the analytically determined value

of the (NR) case. Third, if stresses occur too infrequently, the SIM allele is lost. The

critical time between two consecutive stresses, above which the SIM allele is lost for

any number of stresses χ, was calculated analytically as ⌧c, see equation (2.5).

We may randomize our model by choosing one out of the χ stresses at each itera-

tion of the simulation. Qualitatively, this leaves the picture unchanged, see Figure 2.5a:

The SIM prevalence levels p̂M and the interval of stress occurrence times ⌧ that main-

tain the SIM allele both increase with increasing stress diversity, though not as readily

as in the deterministic case. Generally speaking, given a fixed number χ of stresses,

a strict cycle of stress occurrence is capable of maintaining the SIM allele at a higher

level than randomly choosing the next stress to occur. We obtain qualitatively very sim-

ilar results if we keep the ordering of stresses intact, yet choose the stress occurrence

times ⌧ randomly at each iteration (not shown).

For practical questions in antibiotic therapy, for instance, it is of interest to investi-

gate treatment scenarios in which a set of pharmaceuticals is applied simultaneously

or administered separately over a given period of time (combined versus sequential

treatment, Bonhoeffer et al., 1997; D’Agata et al., 2008; Perron et al., 2012). To this

end, we simulate and compare four stresses either occurring simultaneously, being

grouped in two pairs, or being applied separately. We assume that the stresses do not

allow for cross-resistance mutations (i.e., single mutations that provide resistance to

multiple stresses), that their effects on fitness are additive, and that one cycle through

all stresses or stress combinations takes ⌧ time units in each case. The results of our

simulations are depicted in Figure 2.5b; while applying all stresses at once does not

maintain the SIM allele for our choice of parameters (blue), the SIM allele prevalence
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increases if stresses occur more frequently, yet in a less clustered fashion (orange and

green).

Note that, to simulate the three scenarios presented here, we varied not only the

number of different stress combinations varies, but also the selection intensities due

to each stress combination and hence the fitnesses of the genotypes. Thus, a simple

comparison between the different cases – as we carried out for the simpler case of an

increasing stress diversity (Figures 2.3 and 2.4) – becomes infeasible. Generally, the

dynamics behind these simulations are intricate; each of the χ = 4 stresses requires

its own resistance allele, hence there are 2χ+1 = 32 genotypes (equations) to consider.

Therefore, we do not aim at analysing the dynamics in detail and more complicated

dynamic behaviour (e.g. limit cycles) cannot be excluded, yet the emerging qualitative

insight is interesting and may initiate more targeted investigations.

2.4 Discussion

Our study investigates the fate of a hypothetical stress-induced mutagenesis (SIM)

mechanism under various schemes of environmental fluctuations. We assume that

stress-induced mutagenesis is brought about by an active mechanism that increases

mutation rates as a response to stress, modeled by a modifier allele for stress-induced

mutagenesis that is much easier lost than gained. As a consequence, it decays over

time unless maintained by recurrent second-order selection due to changes in the en-

vironment. A similar model was analysed by Masel et al. (2007). Conversely, uncondi-

tional hyper-mutating strains are most often produced as a result of a loss of function

in methyl-directed mismatch repair, hence the hypermutator phenotype is much eas-

ier gained than lost. One thus has to be cautious when extrapolating our model to

such strains, yet our results about the qualitative effect of environmental fluctuations

on positive second-order selection can be expected to apply to unconditional mutator

phenotypes also.

Under our assumptions, environmental fluctuations are essential for the SIM al-

lele to be maintained in the population: in the absence of environmental challenges

(stresses), the SIM allele is lost. Repeatedly occurring stresses, however, give rise
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to second-order selection on the SIM allele. Under reasonable assumptions on the

model parameters, c.f. equation (2.2), we show that simple fluctuations caused by a

repetitive stress generally fail to maintain the SIM allele. As the stress diversity – i.e.,

the number of different stresses available – increases, the SIM allele may be main-

tained at increasingly high levels, see Figure 2.3. In the limit of infinite stress diversity,

the SIM allele is maintained for any frequency of stress occurrence above a given

threshold, which we characterized analytically by ⌧c. It is hard to assess how many

different stresses may invoke the same mutator allele in practice, but it is plausible that

multiple stresses activate the same stress response, yet require different resistance

mechanisms. Furthermore, we assume that there are no mutations conferring resis-

tance to more than one stress at a time; realistic cases will be more intricate due to

cross-resistance mutations.

Interestingly, choosing the stresses from the pool of available stresses at random,

or randomizing the stress occurrence times, generally decreases the levels at which

a SIM allele can be maintained compared to a deterministic cycling pattern (see Fig-

ure 2.5a). This helps identifying the aspects of environmental fluctuations that promote

second-order selection on SIM alleles: The relevant quantity leading to higher SIM al-

lele prevalences is stress diversity. Random fluctuations in either the type of stress

occurring or in the timing of stresses typically lowers the mean levels at which the SIM

allele is maintained.

Our results focus on how the maintenance of a SIM allele depends on the frequency

of stresses. We find that in the case of cycling a finite number of stresses, the SIM

allele is only maintained at intermediate stress frequencies. Irrespective of the number

of available stresses, a lower bound for the stress frequency can be determined ana-

lytically as 1/⌧c. For the upper bound, we find that the time between two stresses of

the same kind is crucial (Figure 2.4). This could inform the choice of treatment strate-

gies by identifying the schemes that could exert extensive selection pressure to keep

a SIM allele and possibly strengthen its effect. Somewhat intuitively, restricting the use

of antibiotics for long periods of time allows both resistance and SIM alleles to be lost,

adding another reason to limit antibiotic use to situations where it is necessary.

To date, various temporal treatment strategies have been investigated to counter
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the current antibiotic resistance crisis (Kim et al., 2014; Nichol et al., 2015; Roemhild

et al., 2015). However, it is not only necessary to impede the evolution of resistant

strains, but also to assess the effect of these treatment schemes on evolvability, for

example in the form of SIM mechanisms. Hence, our results may contribute to the

growing debate on developing new strategies to fight drug resistance.

To prevent the emergence of resistant strains, one approach is to inhibit known

resistance mechanisms directly (Reading and Cole, 1977). Another is to use combi-

nations of existing drugs in treatment regimes that are rationally designed to suppress

resistance levels (Bergstrom et al., 2004; Baym et al., 2016). However, to keep drugs

effective in the long term, it is desirable to develop strategies that not only decrease

resistance levels, but also restrict evolvability. To this end, there have been efforts

to directly inhibit SIM mechanisms, e.g. Cirz et al. (2005); Alam et al. (2016). Our

study complements this approach by assessing temporal treatment schemes on how

well they prevent second-order selection on a SIM mechanism. We find that an in-

creasing diversity of stresses encountered increases long-term SIM frequencies, see

Figures 2.3 and 2.5b. This suggests a trade-off between controlling resistance and

controlling evolvability: In most proposed schemes, it is the stress diversity and the re-

sulting need for new resistance mutations that help keep resistance levels low, at least

in the short term (Kim et al., 2014; Nichol et al., 2015; Roemhild et al., 2015). Our

model predicts that the sequential occurrence of stresses strengthens second-order

selection on a SIM allele compared to simultaneous stress occurrence. Experimental

work is needed to further characterize this trade-off and assess its relevance in a clin-

ical setting. Since the dynamics of SIM alleles are presumably much slower than that

of resistance acquisition, such experiments could be challenging, yet not impossible.

Our results may inform such experiments to confirm the suggested trade-off between

the evolution and evolvability of resistance.

It has been proposed that the simultaneous application of drugs that exhibit no

cross-resistance may be more effective against resistant strains than their sequential

application (Bonhoeffer et al., 1997; D’Agata et al., 2008; Perron et al., 2012). In our

model, the same applies to reducing positive second-order selection on SIM alleles.

This is an intriguing prospect, which should be explored further and may provide a
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resolution of the trade-off between fighting resistance and evolvability, at least for those

drug combinations that allow for simultaneous application despite common toxicity or

dosage problems.
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3 Evolution of Dispersal

3.1 Introduction

The dispersal of individuals is a ubiquitous trait of any species. It embeds natural popu-

lations into their environment by setting a scale for geographic distance, and it dictates

to what extent habitat heterogeneities are experienced as such or are averaged out.

Furthermore, it determines the degree of admixture of a spatially structured population

by providing an estimate of how many individuals interact locally. Understanding the

evolution of dispersal is therefore crucial for understanding the dynamics of spatially

structured populations, speciation, and the evolution of many other life-history traits.

Furthermore, it helps us predict the impact of environmental change or invasions of

alien species.

The propensity to disperse is variable and heritable, and hence subject to natu-

ral selection. The evolution of dispersal has attracted much interest in the past few

decades, see the reviews by Bowler and Benton (2005); Dieckmann et al. (1999);

Johnson and Gaines (1990); Ronce (2007). Positive dispersal must entail significant

benefits, since substantial costs are associated with dispersal (Bonte et al., 2012).

These costs come from the time and energy needed for dispersal, as well as from

increased mortality during the dispersal phase (Johnson and Gaines, 1990; Ronce,

2007). In addition, local adaptation causes indirect costs for dispersers, since they

are less likely to carry alleles locally favoured at their destination and thus have a

disadvantage in new environments (Billiard and Lenormand, 2005).

Sections 3.1–3.4 are published under a CC-BY license, see Novak (2014).
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Two main driving forces of dispersal evolution have been identified (Bowler and

Benton, 2005; Ronce, 2007). First, dispersal can be seen as a mechanism to avoid

competition between relatives. By reducing the relatedness, dispersal alleviates kin

competition, as first proposed by Hamilton and May (1977) and studied in more de-

tail in subsequent articles, e.g., Gandon and Michalakis (1999); Rousset and Gandon

(2002); Taylor (1988). Also, inbreeding depression is ameliorated by increased disper-

sal (Gandon, 1999; Roze and Rousset, 2005; Szulkin and Sheldon, 2008). In practice

however, the relative impacts of inbreeding and kin competition on the evolution of

dispersal are difficult to separate since both are based on the relatedness between

individuals (Perrin and Goudet, 2001).

Second, spatio-temporal variation of the environment interacts strongly with disper-

sal. If local extinction events occur, dispersal is necessary to recolonize empty habitat,

and thus is maintained even if it is costly (Van Valen, 1971). This is an extreme form of

temporal habitat variability, which has been shown to promote dispersal (Bach et al.,

2007; Blanquart and Gandon, 2011; Cadet et al., 2003; Jansen and Vitalis, 2007;

Mathias et al., 2001; Parvinen et al., 2012). By spatial habitat heterogeneity, I refer

to spatial differences in habitat quality, expressed by variable resource availability or

carrying capacity, for example. In particular, I do not consider spatial heterogeneity

in selection (Balkau and Feldman, 1973). However, the effects of these two types

of habitat heterogeneity on the evolution of dispersal are very similar. Conversely

to temporal habitat variability, spatial habitat heterogeneities select against dispersal

(Dockery et al., 1998; Holt, 1985). Hastings (1983) argued that zero dispersal is the

only evolutionarily stable dispersal strategy if the habitat is heterogeneous in space

but temporally stable (see e.g. Waddell et al. (2010) for a weighting between these

two kinds of variability). This is because high-quality habitat contains relatively many

individuals and thus dispersal leads to a net flux of individuals into low-quality habitat.

However, Hastings pointed out that non-zero dispersal rates can be maintained un-

der conditional, e.g., density-dependent, dispersal. This idea is confirmed by McPeek

and Holt (1992), demonstrating that spatial heterogeneity can select for dispersal if

dispersal depends on carrying capacity. Note that at the margins of a species’ range,

additional factors govern the evolution of dispersal (Dytham, 2009). However, I do
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not consider those but focus on a population that has become established within its

habitat.

In the context of dispersal evolution, the ideal free distribution (Kacelnik et al., 1992)

has gained significant importance. The ideal free distribution is a spatial distribution of

a population with the property that individuals cannot increase their reproductive out-

put by changing their location. As a result, all individuals have the same reproductive

output and the population is distributed as if there was no dispersal. In particular, this

implies that a homogeneous population, whose growth is limited by the abundance of a

fixed resource, is at its carrying capacity. Under reasonably general assumptions, dis-

persal strategies that lead to an ideal free distribution are evolutionarily stable (Cantrell

et al., 2007, 2010; Cressman and Křivan, 2006), i.e., they are the expected ultimate

outcomes of evolutionary trajectories. Zero dispersal as found by Hastings (1983) and

the positive dispersal strategy described by McPeek and Holt (1992) are examples in

support of this theory.

The dispersive ability of a population is usually characterized by its dispersal rate

(migration rate) that denotes the fraction of individuals leaving their habitat patch per

time unit. Classical discrete models, like Wright’s island model and the stepping stone

model (Kimura and Weiss, 1964), use this description of dispersal. To describe more

detailed modes of dispersal, the notion of dispersal distance determines how far indi-

viduals displace from their original patch (Gandon and Rousset, 1999; Murrell et al.,

2002; Rousset and Gandon, 2002). More generally and more commonly used in con-

tinuous models of dispersal, dispersive behaviour is described by dispersal kernels.

They denote probability distributions for the displacement of individuals within a time

unit. A few authors have studied the evolution of whole dispersal kernels either of a

fixed shape (Gros et al., 2006), or changing their shape (Hovestadt et al., 2001), mainly

using numerical simulations. In the following, I present a deterministic diffusion model

of type-dependent dispersal in which the mean and variance of the dispersal kernel

alone determine the dispersive behaviour of the population. I will denote the mean of

the dispersal kernel by the mean displacement, since it describes the mean distance

and direction of individual movement. The variance of the dispersal kernel I call diffu-

siveness. It can be interpreted as the extent to which individuals spread in space, or
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as a measure of variability in dispersal distance among individuals. The evolution of

these two determinants, mean displacement and variance of dispersal, is studied.

3.2 The model

Consider a population consisting of n dispersal types that occupy a habitat Ω in 1-

dimensional space. By Ni(x, t) denote the densities of adults of type i at location

x and time t, and by pi(x, t) their relative frequencies. NT (x, t) =
P

Ni(x, t) is the

total population density. Local birth and death rates of individuals are assumed to be

identical for all types, and I collapse them into a single per-capita growth rate r(x,NT )

that depends on the spatial variable x and the total population density NT . Hence,

there is no direct selection on any trait. For any given position x, a zero of the growth

rate function r(x,NT ) = rx(NT ) determines a carrying capacity x, i.e., rx(x) = 0. Let

this zero be unique to exclude, e.g., strong Allee effects, and let rx(NT ) > 0 if NT < x

and rx(NT ) < 0 if NT > x. Given that r(x,NT ) is smooth, we can define a smooth

carrying capacity profile (x) = x for x 2 Ω. In the following, I require  to be strictly

positive in the interior of the habitat Ω.

The dispersive behaviour of each type in the population is described by a dispersal

kernel µi(x, t; y, t +∆t), which gives the probability that an individual of type i located

at position x at time t disperses to y within a short time interval ∆t. Let the dispersal

kernels fulfil the following three assumptions, which are standard in diffusion theory.

First, individuals must not move at infinite speed, that is, no finite distances can be

covered in infinitesimally small time. Hence, for " > 0 we postulate

lim
∆t!0

1

∆t

Z

|y−x|<ε

µi(x, t; y, t+∆t) dy = 0. (3.1a)

Moreover, let the µi have (truncated) means and variances, Mi(x, t) and Vi(x, t), i.e.,

Mi(x, t) = lim
∆t!0

1

∆t

Z

|y−x|<ε

(y − x)µi(x, t; y, t+∆t) dy < 1, (3.1b)

Vi(x, t) = lim
∆t!0

1

∆t

Z

|y−x|<ε

(y − x)2 µi(x, t; y, t+∆t) dy < 1. (3.1c)

The expected directional movement (mean displacement) and the diffusive effect of

dispersal (diffusiveness) of type i are captured by Mi(x, t) and Vi(x, t), as defined
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in equations (3.1b) and (3.1c)). If mean displacement Mi and diffusiveness Vi are

constant, I speak of unconditional dispersal. Conversely, with conditional dispersal,

individuals base their dispersal decisions on environmental cues such that Mi and Vi

may vary in space and time. This dependence can be explicit or emerge implicitly

from conditioning on, e.g., the current population density or resource abundance. To

indicate this – possibly indirect – spatio-temporal dependence of mean displacement

and diffusiveness, I will write Mi(·) and Vi(·) in the case of conditional dispersal (rather

than Mi(x, t) and Vi(x, t)).

Under the assumption that we can approximate the life cycle described above by

a diffusion equation – namely that the population can be characterized in terms of

densities, the local influences r(x,NT ) are weak, and the µi satisfy (3.1), details in

Appendix A2 – the dynamics of population density NT and dispersal type frequencies

pi are given by

@tNT = −@xJT +NT r, (3.2a)

@tpi =
1

NT

(−@xJi + pi @xJT ), i = 1, ..., n, (3.2b)

where

Ji = MiNi −
1

2
@x(ViNi) (3.3)

is the flux of individuals of type i, and JT =
P

i Ji is the total flux of individuals. For the

ease of notation, I dropped the arguments x and t throughout. Similar models have

been employed by, e.g., Dockery et al. (1998); Pigolotti and Benzi (2014).

The equations (3.2) are reaction-diffusion equations. The population disperses ac-

cording to the gradient of its flux, −@xJT , and is locally regulated by the per-capita

growth rate r. I do not impose any particular regulation mechanism on population den-

sity; population regulation arises from the specification of density dependence of the

growth rate r = r(x,NT ). Similarly, spatial heterogeneity comes from the dependence

of the growth rate on the spatial variable x. Interestingly, the reaction terms in the

equations for the type frequencies pi are determined by the total flux of individuals,

@xJT . Hence, @xJT represents a force selecting on dispersal that is detailed below. If

dispersal were type-independent and unconditional (i.e., Mi(·) ⌘ M and Vi(·) ⌘ V for

all i, and M and V constant), and r = r(NT ) spatially homogeneous, equation (3.2b)
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simplifies to the standard diffusion equation, @tpi = (V/2)@xxpi. Note that from the

dispersal kernels µi, only Mi and Vi enter the equations. Hence, I do not restrict to

any particular shape of dispersal kernel; a dispersal strategy is characterized solely by

Mi(·) and Vi(·).
For the equations (3.2), we need to specify boundary conditions. Throughout this

chapter, I require that the habitat Ω is closed, e.g., a bounded interval or a circular

habitat. In the first case, no individuals must enter or leave the habitat, such that

all fluxes vanish at the interval’s endpoints. In the latter case, we can imagine an

interval glued together at its endpoints, such that the values of all expressions and

their derivatives coincide there.

In Appendix A2, I argue that the two equations (3.2a) and (3.2b) can be separated

by separating their time scales, given that the dispersal patterns of all types are suffi-

ciently similar. Then, population density equilibrates in a rapid initial phase and can be

assumed to be constant, hence @xJT = NT r, as type frequencies evolve on a slower

time scale. In the following, I consider a resident population with a dispersal strategy

characterized by mean displacement M0(·) and diffusiveness V0(·). This population is

invaded by a dispersal modifier with frequency pI(x, t) that changes the dispersal strat-

egy to MI(·) = M0(·)+m(·) and VI(·) = V0(·)+v(·), where m(·) and v(·) are sufficiently

small. The invasion corresponds to a perturbation of the dispersal type frequencies

around pI(x, t) = 0; the exact pattern of the perturbation (e.g., local or global) is irrel-

evant for the long-term outcome in our continuous model. Since all types at location

x have the same growth rate r(x,NT ), changes in modifier frequencies will be due to

dispersal effects rather than different growth rates. In my study, dispersal hence does

not incur any explicit cost, which could be added to the model in a straightforward

way by introducing distinct growth rates ri(x, t) for different types, see Appendix A2, in

particular equation (A2.7).

3.3 Results

I use the terminology introduced in the previous section. In addition, I denote by NI the

number of dispersal modifiers (invaders), and by JI their flux. For the sake of improved
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readability, I will often omit the spatial and temporal dependence of these and similar

quantities in the following. Generally however, they will not be constant unless stated

explicitly.

3.3.1 Temporal change of modifier abundance

The total number of modifiers in the habitat is obtained by integrating NI = pINT over

the habitat Ω. Using (3.2), this yields

@t

Z

Ω

NI dx =

Z

Ω

pI @xJT dx, (3.4)

since NT r = @xJT at equilibrium of NT . Note that integration of the flux term in (3.2)

gives −JI |Ω, which vanishes since the habitat is closed. Equation (3.4) shows that the

modifier will not increase in total numbers if either the total flux of individuals, JT , or,

after partial integration, if its frequency pI is constant throughout the habitat. Thus,

invasion stops if the modifier’s frequency spreads out evenly, but note that spatial het-

erogeneities in dispersal patterns or population density profiles can deform initially

constant frequency profiles. Furthermore, a modifier increases if it invades regions

where @xJT is positive. Since NT is at equilibrium, these areas coincide with those

where the growth rate r is positive. Thus, this finding is very natural and, in particular,

does not depend on the dispersal pattern of the invading type. In general, the in-

vader increases in numbers if the change of flux weighted by its frequency is positive.

Thus, heuristically, the dispersal pattern must have the effect of keeping the invader’s

frequency above average in areas of positive growth rates to ensure its continuing

spread.

3.3.2 Ideal free distributions and stability of balanced dispersal

In the modelling section, I defined the carrying capacity profile (x). I call a dispersal

strategy balanced (Doncaster et al., 1997) if NT =  is a stable solution for the dynam-

ics of a population entirely adopting this strategy. Recalling the definition of the ideal

free distribution (Kacelnik et al., 1992), a population using a balanced dispersal strat-

egy is hence maintained at an ideal free distribution under perturbations of NT . From



CHAPTER 3. EVOLUTION OF DISPERSAL 33

equation (3.2a), together with equation (3.3), we see that a dispersal strategy given by

V (·) and M(·) is balanced if the change in total flux, @xJT , vanishes if the population

(entirely adopting it) is at carrying capacity ; that is if

Φ =
1

2
@x(V )−M ⌘ C, (3.5)

where C 2 R is, in particular, constant with respect to space – see also Cantrell et al.

(2010). Note that an inhomogeneous composition of two or more balanced dispersal

strategies at carrying capacity generally does not imply vanishing @xJT .

In Appendix A2, I prove mathematically that the class of balanced dispersal strate-

gies is protected against invasion by (sufficiently similar) non-balanced dispersal strate-

gies. In this sense, balanced dispersal strategies that produce an ideal free distribution

are evolutionarily stable outcomes of dispersal evolution. Evolutionary stability of bal-

anced dispersal strategies has been shown for similar models of dispersal evolution,

e.g., Cantrell et al. (2007); Cressman and Křivan (2006).

3.3.3 Dynamics at ideal free distribution

Between two balanced dispersal strategies, the previous stability analysis does not

provide a definite statement. In the following, I investigate dispersal evolution within the

class of balanced dispersal strategies, i.e., the evolution of dispersal at ideal free dis-

tribution. Assume that both the original and the modified dispersal strategies are bal-

anced, i.e., they satisfy (3.5). In particular, this implies that 1/2 @x[v(x)(x)]−m(x)(x)

is constant. Replacing for the total flux JT , we obtain from equation (3.4)

@t

Z

Ω

NI dx = −
Z

Ω

pI @x



(M + pIm)− 1

2
@x(V + pIv)

]

dx

= −
Z

Ω

pI @x

⇣

pIC +
v

2
@xpI

⌘

= −p2I
2

∣

∣

∣

∣

Ω

−
Z

Ω

v

2
pI @xxpI dx

= −
Z

Ω

v

2
pI @xxpI dx. (3.6)

This expression is independent of the modification to mean displacement m. There-

fore, the mean displacement does not contribute to the success or failure of the mod-

ifier as long as it adjusts a potential mismatch in diffusiveness to retain a balanced

dispersal strategy.
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It is remarkable that changes in diffusiveness (non-zero v) lead to changes in the

number of modifiers as long as their frequency profile, pI , is not spatially constant. In

full generality, the sign of this change depends on the shape of pI . However, if v is

constant, equation (3.6) can be partially integrated to yield

@t

Z

Ω

NI dx =
v

2

Z

Ω

(@xpI)
2 dx. (3.7)

The second term from the partial integration vanishes due to the boundary conditions.

This equation is analogous to equation (5) by Pigolotti and Benzi (2014), who anal-

ysed stochastic noise in a finite population. The occurrence of equation (3.7) here,

however, demonstrates its relevance more broadly. It shows that a growth rate of the

modifier abundance proportional to v is induced if the modifier changes its diffusive-

ness such that dispersal stays balanced. This change is fuelled by heterogeneities in

the modifier’s frequency, @xpI 6= 0. Consequently, it is only transient if the dispersal

type frequency profile diffuses out over time. Thus, under a purely deterministic model

without explicit costs of dispersal, or selection on a genetic background, balanced dis-

persal strategies are neutral with respect to each other.

However, the flattening-out of the frequency profile can be counteracted by factors

not yet considered in the model, tipping the balance between the competing types.

If these factors generate or maintain spatial differences in the frequency profile, they

thereby make the transient effect of a variant dispersal strategy permanent. For exam-

ple, selection on linked traits takes a complex role in dispersal evolution. While local

adaptation is known to select against dispersal, equation (3.7) indicates that selec-

tive processes on a genetic background that perturb the frequency profile of dispersal

modifiers thereby can favour increased dispersal. First, selection against heterozy-

gotes can maintain frequency heterogeneities in the form of clines (Barton, 1979) in

which type-dependent dispersal can operate. Note that these clines do not require

spatial heterogeneity in selection but emerge, e.g., after secondary contact between

differentiated species. Second, transient selection patterns on a selective background

linked to the dispersal modifier can directly perturb modifier frequencies away from uni-

formity. Third, if beneficial mutations appear on the selective background, they sweep

to fixation. Since recombination gradually breaks down linkage between the beneficial

mutation and the dispersal modifier, the sweep has an impact on the latter’s frequency
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profile (Barton, 2000). Even though, on average, the effect of such sweeps – often

termed ”genetic draft” (Gillespie, 2001) – cancels out, it hence leads to a systematic

increase of modifiers that enhance dispersal.

Finally, genetic drift in finite populations perturbs type frequencies away from spa-

tial uniformity. It has been observed that relatedness may emerge from genetic drift

in a structured population (Lenormand et al., 2009). Accordingly, the variability in type

frequencies due to genetic drift constitutes a measure of relatedness between indi-

viduals in the population (Barton and Clark, 1990). Hence, equation (3.7) relates to

the body of literature that dates back to Hamilton and May (1977) and predicts the

promotion of positive dispersal to escape from kin competition.

3.4 Discussion

As dispersal evolves, different dispersal strategies in a population compete against

each other in a selective process. The two main factors of influence are known to

be the relatedness between individuals, and spatio-temporal variability of the environ-

ment. Here, by spatial heterogeneity I referred to local differences in resource avail-

ability or carrying capacity. Other types of spatial habitat variability require additional

information put into the model. For example, selection for a spatially shifting optimum

requires to link dispersal to a second trait under direct selection. However, the conse-

quences for dispersal are analogous to a variable carrying capacity: Gene flow causes

individuals to be locally maladapted and hence induces a dispersal load (Kirkpatrick

and Barton, 1997) that enhances the pressure for lower dispersal. Historically, inves-

tigations have focused on either effects of relatedness or spatio-temporal variability

of different kinds rather separately – but see, e.g., Gandon and Michalakis (1999);

Leturque and Rousset (2002); Morris et al. (2001); Blanquart and Gandon (2014). In

this study of the evolution of dispersal, I demonstrated how the effects of environmental

heterogeneity and type frequency variances, e.g. due to genetic drift and relatedness,

can be linked within the same model.

Throughout this chapter, I assumed that population density is temporally constant.

This can be justified if the differences in dispersal behaviour between types are small.
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Then, population density will quickly equilibrate and we recover a fast-slow dichotomy

in which the ecological dynamics of population density can be decoupled from the dy-

namics of dispersal type frequencies. The assumption of small differences in dispersal

strategies is reasonable if we accept that dispersal evolution proceeds in small steps.

It allows us to treat population density as given while type frequencies evolve. Sim-

ulations confirm that the approximation is robust; as long as the deviations between

dispersal patterns are small, simulations of the full system (3.2) and of equation (3.2b)

with population density NT fixed produce virtually identical outcomes. In particular,

however, the assumption of temporally constant population density precludes most

aspects of environmental stochasticity, which is not considered in this chapter.

Intuitively, dispersal strategies that let the population more efficiently exploit the re-

sources that are present in the habitat should be successful. That is, strategies that

minimize the spatial discrepancies in growth rates and hence the experienced differ-

ences in habitat quality can be expected to be selectively favoured. This intuition is

confirmed by equation (3.4), which gives an analytical expression for the change of

the total abundance of dispersal strategies present in the habitat. The number of in-

dividuals of a specific dispersal strategy increases if the mean derivative of the total

flux, @xJT , weighted by the type’s frequency, is positive. Since @xJT is proportional

to the local growth rate, this result simply states that a successful type must be over-

represented in regions of positive growth rate. It follows that an evolutionarily stable

dispersal strategy homogenizes the total flux JT , and hence equalizes local growth

rates. That is, it causes the population to attain an ideal free distribution (Kacelnik

et al., 1992).

In principle, this can be achieved in two ways. Zero dispersal trivially homogenizes

the total flux JT . One of the first contributions to this aspect of dispersal evolution was

by Hastings (1983), who showed that a heterogeneous environment leads to zero dis-

persal if dispersal is unconditional. This is because positive unconditional dispersal

leads to a net flux of individuals from regions of positive growth rates (high carrying

capacity) into regions of negative growth rates (low carrying capacity) and is thus to

the disadvantage of the population. Accordingly, dispersal types with reduced diffu-

siveness exploit their environment more efficiently and therefore out-compete more
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mobile types. This statement is a special case of the present analysis, restricting to

unconditional dispersal strategies. It has been proved earlier by Dockery et al. (1998)

for a specific choice of local growth function r(x,NT ). An illustrative description of the

mechanism in a discrete setting is given by Holt (1985).

More generally, balanced dispersal strategies take the population to an ideal free

distribution by matching dispersal behaviour to the spatial carrying capacity profile.

This class of strategies has been shown to be evolutionarily stable in previous stud-

ies, e.g. by Cantrell et al. (2010); McPeek and Holt (1992). If the population is at an

ideal free distribution, any non-balanced dispersal strategy changes the flux JT to its

own disadvantage. Accordingly, I characterized the class of balanced dispersal strate-

gies for the present model, equation (3.5), and showed that it cannot be invaded by

strategies from outside this class. Hence, it is evolutionarily stable and an expected

long-term outcome of dispersal evolution.

Confirming this prediction in practice, however, is difficult. In principle, mean dis-

placement M and variance of dispersal V can be estimated directly by recording the

movement behaviour of large numbers of individuals. However, the carrying capac-

ity of the habitat can hardly be inferred in most cases. Unless there is a clear upper

bound to the number of individuals an area may sustain (e.g., a limited number of nest-

ing places), the availability of resources and their effect on carrying capacity in natural

environments are likely to be crudely estimable at best. In experimental approaches,

there is only little empirical evidence for balanced dispersal strategies, reviewed by

Diffendorfer (1998). Rather, experiments with bacteria and protozoa (Donahue et al.,

2003) seem to support a source-sink dispersal type (Pulliam, 1988). However, given

the complexity of the interaction of dispersal with other traits and the time it would take

to reach an evolutionarily stable state even under controlled conditions, it is question-

able if balanced dispersal is feasible to evolve in the laboratory.

Not all balanced dispersal strategies do equally well so that we can establish a

selective hierarchy between them whenever dispersal type frequencies are variable in

space. Analytically, this is formulated in equation (3.6) and, for an important special

case, in equation (3.7). The latter shows that the total number of individuals with in-

creased diffusiveness never declines. In fact, this number increases whenever disper-
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sal type frequencies vary in space. In our deterministic setting, the effect levels out as

frequencies diffuse in space and stalls once the frequency profiles are completely flat.

In practice however, various forces (e.g. selection on a genetic background and dif-

ferent sources of stochasticity) continuously perturb the frequency profiles and hence

induce a variance that sustains the increase in numbers of individuals with increased

diffusiveness. Thus, roughly speaking, elevated dispersal is selected for amongst bal-

anced dispersal strategies.

The two forces exerted by the variability in the habitat and the variability in disper-

sal type frequencies can be seen as opposing each other. Spatial heterogeneity in

the habitat exert a selection pressure for reduced dispersal, at least if the possibility of

conditional and hence balanced dispersal is limited, as is likely the case in many natu-

ral populations. Once sufficiently close to an ideal free distribution, the variability in the

dispersal type frequency profile of the population counters this force. The magnitude

of the pressure for increased dispersal will depend on the balance between the size of

the perturbations of frequencies away from uniformity, and the homogenizing effect of

dispersal.

A particular issue of dispersal evolution is whether dispersal evolves in a popula-

tion that initially does not disperse at all, i.e., M0 = V0 = 0. My results answer this

question for the scenario studied here: Given that the population is capable of adjust-

ing its dispersal to the demographic heterogeneities, any non-zero balanced dispersal

strategy is selectively favoured over the zero-dispersal strategy, as long as dispersal

type frequencies are variable in space.

Spatial heterogeneities in the type frequencies can emerge due to many reasons.

If the type frequencies fluctuate because of genetic drift, the variance in type frequen-

cies constitutes a measure of relatedness (Barton and Clark, 1990). The fact that

relatedness selects for dispersal in finite populations is well known (Billiard and Lenor-

mand, 2005; Gandon and Michalakis, 1999; Roze and Rousset, 2005). Equation (3.7)

demonstrates an alternative approach to identifying effects of relatedness in dispersal

evolution via type frequency variances emerging from stochastic sampling. To illustrate

how the effects of kin competition and genetic drift relate to spatial heterogeneities in

type frequencies, briefly consider two examples.
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First, consider a simple two-patch model with different patch sizes. In a classi-

cal paper, McPeek and Holt (1992) showed that balanced dispersal strategies, which

cause the number of emigrants to equal the number of immigrants in each patch, are

evolutionarily stable. Extending this model to finite populations, Leturque and Rous-

set (2002) defined a fitness measure taking relatedness into account. In this case,

a single dispersal strategy is selected for, which both is balanced and leads to pan-

mixia, i.e., the population behaves as if mating happened randomly in a single mating

pool. Assume that the population consists of two types of identical clones, one of

which is present at frequencies pA and pB in patches A and B. Then, the quantity

χ = (pA − pB)
2 is a measure of type frequency variability between the two patches,

analogous to (@xpI)
2 in equation (3.7). One can easily show that χ is minimized for

panmixia with χ = 0, hence dispersal increases as long as this quantity is positive and

equilibrates when χ = 0. The variability of type frequencies between the patches thus

plays an interesting role and could be used as a measure for the benefit of dispersal

in alleviating kin competition in this example.

Second, one could incorporate genetic drift directly into the model (3.2). This has

been done by Pigolotti and Benzi (2014), who obtained equation (3.7) from their re-

sulting stochastic partial differential equation. However, to evaluate this quantity, they

had to introduce a cutoff ✏, which is hard to interpret biologically. Considering a step-

ping stone model (Kimura and Weiss, 1964) as a discrete version of the continuous

model (3.2) shows that the expected change in the total abundance, N total
I , of a dis-

persal modifier that increases the migration rate between patches from M to M + m is

given by

E
⇥

∆N total
I

⇤

= mJN σ2
p

(

1− ⇢
)

, (3.8)

(cf. Appendix A2 for details) where J is the number of patches the habitat consists of,

and N is the number of individuals present in each patch. Furthermore, σ2
p denotes

the spatial variance of type frequencies, and ⇢ is the correlation between type frequen-

cies in adjacent patches. The expression σ2
p(1 − ⇢) is the discrete space equivalent

to (@xpI)
2 in equation (3.7). The fact that σ2

p is a measure of relatedness was already

noted by Kimura and Weiss (1964). Driving the analysis further (cf. Appendix A2),

one can derive a selection coefficient for dispersal modifiers as s = m/(4NM ). This
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shows that the cutoff in the article by Pigolotti and Benzi (2014) needs to be chosen

as ✏ = (Ω/J )2/(V ⇡), where V = M (Ω/J )2, to establish the correspondence between a

discrete stepping stone model and its approximation, the diffusion model (3.2). Hence,

a possibility for measuring the selective benefit of dispersal modifiers due to related-

ness is provided by the present framework.

Overall, the spatial heterogeneities of type frequencies take a central role in trans-

lating stochastic effects into selective forces promoting dispersal. Previous studies

developed rather specialized models to analyse the impact of different stochastic fac-

tors on the evolution of dispersal. Direct methods are crucial for understanding the

detailed process of how they influence dispersal evolution, but make it difficult to com-

pare their relative importance. However, the stochastic factors are reflected in the

same variability of type frequencies. Thus, their mode of promoting increased disper-

sal is channelled through the same phenomenon, as noted already by Waddell et al.

(2010). Identifying their contributions to the variability of type frequencies hence puts

these stochastic factors on a single scale.

In summary, my study shows that many of the main factors of dispersal evolution

can be brought together in a single modelling framework. The effect of spatially vary-

ing resource availability and the consequent spatial density variations are phrased in

terms of the fluxes JI and JT . Environmental stochasticity is not considered in this

chapter, but could be implemented directly into the equation for the total population

size, equation (3.2a). Genetic drift and relatedness are reflected in the variability of

dispersal type frequencies, (@xpI)
2, that exerts a selection pressure for increased dis-

persal. In many cases, selection on a genetic background can lead to heterogeneities

in dispersal modifier frequencies, e.g. in hybrid zones, if selection transiently favours

a certain part of the population, or by sweeping beneficial alleles. Indirectly, selection

on a genetic background hence can also exert a positive selection pressure on dis-

persal modifiers that is channelled through the spatial variability of type frequencies.

On top of that, dispersal evolution is limited by direct costs of dispersal in practice,

which can be added to the model straightforwardly by introducing distinct growth rates

ri(x, t) 6= rj(x, t) for different types i and j. This is indicated in Appendix A2, but I did

not consider direct costs of dispersal otherwise.
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The results described here suggest that future studies should focus on the vari-

ability of type frequencies as a force promoting increased dispersal and establish its

connection to demographic and environmental stochasticity more closely. I argued

that selective pressures on traits linked to dispersal may maintain spatial patterns that

dispersal differences can act on. The complexity of interactions between selection and

type-dependent dispersal is hard to assess, but can be relevant in nature, in particular

if individuals base dispersal decisions on their fitness. The correlations between fit-

ness and dispersal are virtually unexplored and it is unclear to what extent the ability

to detect and interpret fitness conditions can be based on a genetic level. In the pres-

ence of density-dependent selection, type-dependent dispersal might tip the balance

by pushing population density above thresholds and lead to interesting phenomena.

3.5 Excursion: Type-dependent dispersal in clines

In the final section of this chapter, I consider spatial patterns of gene frequencies that

are maintained by selection, and assume that the same genes concurrently determine

dispersal behaviour. This reveals the impact of type-dependent dispersal on moving

gene frequency clines, i.e., stable heterogeneities in gene frequency. At the same

time, however, it relates back to dispersal evolution: We show that in the presence of

clines, fast dispersing types have an advantage over slow dispersers, thus drawing the

parallel to the previous sections.

Most theoretical models in population genetics assume that dispersal is random

with respect to genotype (Slatkin, 1985). Such random gene flow homogenizes popu-

lations, eroding genetic dissimilarities. However, as pointed out by Edelaar and Bolnick

(2012), gene flow can have a much more complex role. Type-dependent dispersal ap-

pears naturally in numerous organisms, e.g., aquatic species (Bolnick et al., 2009;

Lutscher et al., 2007), butterflies (Haag et al., 2005), and plants that are polymorphic

in flower shape and/or colour (Stanton, 1987). It thus arises naturally to ask about

the impact of type-dependent dispersal on processes of natural selection in spatially

extended populations.
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Advantageous mutations spread locally and propagate in the form of travelling

waves (Fisher, 1937). These spatial changes in gene frequencies are commonly called

clines (Haldane, 1948); they may move, but have a stable shape that describes the

transition between areas where different alleles are predominant. Clines also emerge

due to spatial heterogeneities in selection, when different alleles are favoured in differ-

ent places (Nagylaki, 1975; Slatkin, 1973), or in the case of selection against hybrids,

e.g., in hybrid zones that emerge after secondary contact between populations (Bar-

ton, 1979). Spatial gene frequency clines are frequently observed in many natural

populations and provide insight into evolutionary patterns, e.g., Bridle et al. (2001);

Szymura and Barton (1986); Teeter et al. (2008); Whibley et al. (2006).

We study the effect of type-dependent dispersal on clines. As we will see, type-

dependent dispersal can affect both the shape of a cline and the speed at which it

moves; hence, the presence of different dispersal patterns can bias our predictions

drawn from the analysis of clines. Any model of type-dependent dispersal and selec-

tion requires a connection between the dispersal trait and individual fitness. We will

choose the simplest approach by assuming that they are completely linked, i.e., the

trait under selection also controls the dispersal behaviour of the individual. This is

a reasonable assumption, since alleles affecting dispersal are likely to pleiotropically

also affect fitness – for instance in the case of flowering plants, when flower shape

both determines how successfully to attract pollinators, and what kind of pollinators

to attract. The assumption is also justified if separate alleles determining fitness and

dispersal are sufficiently closely linked, at least for a limited period of time.

3.5.1 The model

Throughout this section, we consider a spatially homogeneous environment with (spa-

tially and temporally) constant population density. The classical continuous model for

selection and dispersal in unidimensional space assumes that all individuals follow the

same spatially homogeneous dispersal pattern, which is characterized by a mean dis-

placement (directional movement coefficient) M , and a variance of dispersal (diffusion

coefficient) V . If the population consists of two genotypes with frequencies p(x, t) and

1−p(x, t) at location x and time t, the diffusion limit of the selection-dispersal dynamics
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is

@tp =
V

2
@xxp−M @xp+ F (x; p). (3.9)

Here, the function F (x; p) describes selection: at position x, the frequency p grows at

rate F relative to the frequency of the other genotype. If no selective force is active

(F = 0), gene frequencies spread in space and equilibrate to a spatially constant value

at a rate proportional to V . The parameter M adds a directional component that can

emerge due to an active individual preference or due to the presence of a slope, wind,

or the current of water in the habitat. Since this is a constant shift of the system, M

disappears from the equation when transforming x 7! x−Mt.

Equation (3.9) can be generalized to different dispersal strategies for the two types,

including the possibility of conditional dispersal strategies that depend, e.g., on space

and time (Nagylaki and Moody, 1980). We briefly sketch a derivation of the dynamics

that leads to an equation analogous to (3.2b), but with an additional selection term

(see also Appendix A2). Assume that the two genotypes have mean displacements

M1(x, t) and M2(x, t), and variance of dispersal V1(x, t) and V2(x, t). If the abundances

of the two types are denoted by N1 and N2, their reaction-diffusion dynamics can be

written as

@tN1(x, t) =
1

2
@xx [V1(x, t)N1(x, t)]− @x [M1(x, t)N1(x, t)] +G1(x;N1, N2), (3.10a)

@tN2(x, t) =
1

2
@xx [V2(x, t)N2(x, t)]− @x [M2(x, t)N2(x, t)] +G2(x;N1, N2), (3.10b)

where G1 and G1 are the growth rates of the two types. Here, we consider uncondi-

tional dispersal strategies, which are defined by constant Mi(x, t) ⌘ Mi and Vi(x, t) ⌘
Vi. This assumption is justified since unconditional dispersal strategies are balanced in

a spatially homogeneous environment and thus are not selected against directly, see

Cantrell et al. (2010) or the previous sections of this chapter. Furthermore, since we

assume that the environment is spatially homogeneous, selection does not explicitly

depend on x, hence G1(x;N1, N2) = G1(N1, N2) and G2(x;N1, N2) = G2(N1, N2) (and

thus F (x; p) = F (p), see below). If the total population size NT = N1 +N2 is regulated

and remains constant, we may write the system (3.10) in terms of the single variable

p = N1/NT . This generalizes the gene frequency dynamics (3.9) to type-dependent
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dispersal as follows:

@tp =
V (p)

2
@xxp−M(p) @xp+ F (p), (3.11)

where M(p) = pM2+(1−p)M1 and V (p) = p V2+(1−p)V1 – compare this equation to

equation (3.2b)). The selection function F is obtained from the individual growth rates

as

F =
1

NT

✓

N2

NT

G1 −
N1

NT

G2

◆

,

but this shall not be of importance here.

3.5.2 Existence of cline solutions

We will study properties of cline solutions to equation (3.11), though mathematically

their existence has not yet been established. We consider cline solutions p̃(x, t) =

P (x − c t) = P (z) that connect P (−1) = 1 with P (+1) = 0 and move with speed c

(positive c means movement to the right, negative c to the left). The analysis of the

inverse case, P (−1) = 0 and P (+1) = 1, follows by symmetry.

If the selection function F fulfills F (0) = F (1) = 0, F 0(0) 6= 0 and F 0(1) 6= 0,

and changes sign at most once on (0, 1), it is possible to prove that cline solutions

to equation (3.11) exist. This, in particular, encompasses the case of Fisher waves,

where F is a quadratic polynomial, and bistable waves with cubic selection function F .

In the latter case, which we discuss in more detail in Section 3.5.5, cline solutions are

even unique (modulo the above-mentioned symmetry). More complicated selection

functions may or may not permit cline solutions, depending on F itself, and on M(p)

and V (p). We do not go into technical details here; a proof of these statements will

be presented elsewhere. For the purpose of the following, we may simply assume the

existence of cline solutions to equation (3.11).

3.5.3 The speed of a cline

Given a cline solution to equation (3.11), we may study its speed more closely. For

an easier interpretation of the following results, it is convenient to define ∆M = M1 −
M2, and write V1 = V + ∆V and V = V2. Hence, the two types differ in their mean
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displacement by a constant ∆M 2 R, and in their variance of dispersal by a constant

∆V > −V . With this notation, equation (3.11) can be written as

@tp =
V +∆V (1− p)

2
@xxp−

✓

M1 +M2

2
+

∆M

2
(1− 2p)

◆

@xp+ F (p). (3.11’)

Assume that P (z) = P (x − ct) is a travelling wave solution to equation (3.11’) that

moves with wave speed c. Inserting P into (3.11’) produces

− c P 0 =
V +∆V (1− P )

2
P 00 −

✓

M1 +M2

2
+

∆M

2
(1− 2P )

◆

P 0 + F (P ).

Multiply this equation by P 0 = dP/dz and integrate over z 2 (−1,1). We assume that

the admissible solutions P have vanishing derivatives for z ! ±1. Then, we obtain

upon integration by parts

c

Z 1

−1

(P 0)2dz =− ∆V

4

Z 1

−1

(P 0)3dz +
M1 +M2

2

Z 1

−1

(P 0)2dz+

+
∆M

2

Z 1

−1

(1− 2P )(P 0)2dz −
Z 1

−1

F (P )P 0dz.

If P (−1) = 1 and P (+1) = 0, the rightmost integral is transformed into −
R 1

0
F (P )dP .

Thus, we write the speed of the cline as

c = cS + cV + cM , (3.12)

where the three components of this expression are given by

cS =

R 1

0
F (P )dP

R1

−1
(P 0)2dz

, cV = −∆V

4

R1

−1
(P 0)3dz

R1

−1
(P 0)2dz

, and

cM =
M1 +M2

2
+

∆M

2

R1

−1
(P 0)2(1− 2P )dz
R1

−1
(P 0)2dz

.

This formula is implicit in the solution P , hence the contributions of selection, mean

displacement, and variance of dispersal are not purely additive as suggested by the

decomposition of c into cS, cV , and cM . Rather, this representation is chosen such

that the respective summand disappears if any of these characteristics – selection,

variance of dispersal, or mean displacement – is neutral with respect to the genotypes.

The contribution of selection, cS. If the two genotypes have different fitnesses,

selective pressure acts on them. The term cS is already known (Fife, 1979) and can

be made explicit, e.g., in the case of disruptive selection (see below). In the absence

of type-dependent dispersal, the direction of movement of the cline is determined by

the sign of the average selection
R 1

0
F (P )dP .
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The contribution of the variance of dispersal, cV. If the two genotypes have dif-

ferent variances of dispersal, only their difference ∆V has an effect on the speed of the

cline. Since P 0 does not change its sign (see Section 3.5.2), the cline shifts towards

the genotype with smaller variance of dispersal, i.e., more mobile individuals gradually

push back less mobile ones.

The contribution of the mean displacement, cM. The mean displacements enter

cM in two ways, first via the arithmetic mean (M1 + M2)/2. This expression already

appears in the type-independent case (M1 = M2) and can be scaled away by shifting

the coordinate system accordingly. Second, there is a term proportional to the differ-

ence M1 − M2 = ∆M that is difficult to interpret. If the cline solution P is symmetric

to the point (zo, P (zo)), where zo is the position of the half-height of the cline defined

by P (zo) = 1/2, the term evaluates to zero. This applies, for example, if the cline has

a sigmoid shape, i.e., is of the form (1 + exp[γ(x − ct)])−1), as is the case for type-

independent dispersal and disruptive selection (see below). However, the sigmoid

shape of the cline can be perturbed by breaking the symmetry of forces maintaining it,

e.g., by type-dependent variance of dispersal.

3.5.4 Clines maintained by dispersal

Assume that the two genotypes are selectively neutral, i.e. F (p) ⌘ 0, and have

identical variance of dispersal, ∆V = 0. Then, type-dependent mean displacements

M1 6= M2 may lead to the existence of a cline solution for the dynamics (3.11). It is

straightforward to check that

p̃(x, t) =

✓

1 + exp



−∆M

V
(x− ct)

]◆−1

, (3.13)

satisfies equation (3.11). This cline solution has a sigmoid shape and moves with

speed c = cM = (M1 +M2)/2. Hence, it is a standing wave if the mean displacements

of the two genotypes are of equal size but have opposite signs. The width of a cline p̃

can be defined as L = (max |@xp̃|)−1, see Endler (1977). It determines a characteristic

length scale and evaluates to L = 4V/|∆M | for p̃ in equation (3.13). Overall, this

example shows that spatial clines can be maintained without selection, just by the
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presence of type-dependent dispersal. This is not surprising; for example, if both

genotypes have a movement bias in the direction of the half plane where they are

predominantly present, then they only mix to a certain degree in the area where they

meet.

3.5.5 Type-dependent dispersal in hybrid zones

Consider two alleles subject to selection against heterozygotes, such that common

alleles have an advantage over rare alleles. Call the first allele the A allele with fre-

quency p, and the second allele the a allele. Assume that selection is homogeneous

in space and that the fitness values of the three possible genotypes AA, Aa, and aa

are 1 + 2αs, 1 − s(1 − α), and 1, respectively. With this notation, s > 0 measures the

strength of selection and α 2 (−1, 1) scales the fitness asymmetry between the two

homozygotes. It follows that there is a threshold frequency p̂ = (1 − α)/2 such that

selection increases the frequency of the A allele if it is above p̂, and reduces it from

below that value. If we assume that fitness differences are small (s ⌧ 1), we may re-

formulate the local selection terms and obtain F (p) = 2sp(1− p)(p− p̂). As mentioned

in Section 3.5.2, equation (3.11) has a unique cline solution p̃(x, t) = P (x − ct) with

P (−1) = 1 and P (+1) = 0 under this specification of F . Clearly, there is another

unique cline solution with the opposite configuration, P (−1) = 0 and P (+1) = 1, and

a generally different wave speed.

Type-dependent mean displacement. Let ∆V = 0. With type-dependent mean

displacements M1 6= M2, equation (3.11) has two sigmoidal cline solutions given by

p̃±(x, t) =
(

1 + exp
⇥

ζ±s(x− c±t)
⇤)−1

, (3.14)

where

ζ± = 4

✓

∆M ±
q

∆2
M + 8V s

◆−1

,

and the speed of the cline is

c± =
1− 2p̂

ζ±
+

M1 +M2

2
.

For each set of parameters (i.e. V , s, M1, and M2), p̃
+ is monotonically increasing and

connects p̃+(−1) = 0 with p̃+(+1) = 1. Conversely, p̃− is monotonically decreasing,
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p̃−(−1) = 1 and p̃−(+1) = 0. These solutions hence correspond to the two possible

configurations of either genotype being absent on one and fixed on the other end of

the habitat. As discussed above in Section 3.5.2, these two solutions are the only cline

solutions.

The two components of the wave speed of the solutions (3.14) have been identified

in equation (3.12). The first summand, (1 − 2p̂)/⇣±, brings in the effect of selection.

It is scaled relative to dispersal by the parameter ⇣±, which leads to a non-additive

dependence of the speed of the cline on selection and dispersal. If dispersal is type-

independent (∆M = 0), the term (M1 + M2)/2 becomes a shift of the cline due to

the displacement of the population as a whole. Then, the second summand can be

disposed of by the rescaling described above, x 7! x−Mt, such that we recover known

results (Barton, 1979; Bazykin, 1969).

Type-dependent variance of dispersal. Let ∆M = 0. If the variance of dispersal

is different for the two genotypes, the cline solution becomes asymmetric which im-

pedes an explicit solution of equation (3.11). However, if the values of V1 and V2 are

sufficiently similar, |∆V | ⌧ 1, we may assume that the shape of the cline does not

differ from the cline solution under type-independent dispersal. Then, from (3.12) we

find that the contribution to the speed of the cline of the type-dependence variance of

dispersal is

cV = − ∆V

4

R1

−1
(P 0)3dz

R1

−1
(P 0)2dz

⇡ ∆V

10

r

s

2V
. (3.15)

Thus, the cline moves to the right towards the genotype with smaller variance of dis-

persal (P (−1) = 1 and P (+1) = 0). In Figure 3.1, the accuracy of the approximation

leading to equation (3.15) is confirmed numerically. If ∆V is small relative to V , simu-

lated wave speeds are very precisely predicted by equation (3.15). For higher values

of ∆V , the induced wave speed increases slower than predicted. However, the fit is

very close up to considerable deviations in the variances of dispersal; prediction and

simulation start to diverge by more than 5% only around dV ⇡ 0.1V for the parameters

studied here.
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Figure 3.1: Wave speed induced by deviations in the variance of dispersal. Equation (3.11) was sim-

ulated with M1 = M2 = ∆M = 0, s = 1, and p̂ = 1/2. The simulation was initialized at t = 0 with

the solution of equation (3.11) for type-independent dispersal, i.e., by p̃(x, 0) as in equation (3.14) for

∆M = 0, and stopped at t = 60. Assuming that the solution closely approaches a stable wave form

within the first 50 time units (confirmed numerically), the displacement of the solution in the last ten time

units (between t = 50 and t = 60) was used to calculate its wave speed cV induced by positive ∆V . The

relative deviation of the simulated wave speed csimV from the predicted cV in equation (3.15) is evaluated

for various values of ∆V /V . This is done for V = 1 (⌦), V = 1/2 (+), and V = 2 (⇥). Clearly, small

values of ∆V /V lead to a good fit between the simulation and the analytic prediction.
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3.5.6 Discussion

In nature, dispersal properties can vary between individuals even of the same popu-

lation. There are documented cases in which either the capacity to disperse is vari-

able itself, or systematic differences in dispersal direction are observable (Edelaar and

Bolnick, 2012). Classical mathematical models of evolution in spatially extended pop-

ulations however predominantly assume homogeneous dispersal properties (we refer

to classical work by Fisher (1937); Bazykin (1969); Slatkin (1973); Nagylaki (1975);

Barton (1979) for the type of models treated in this chapter).

Here, we consider a population with two different dispersal types that may also

differ in fitness. The assumption of complete linkage is justified if either a single locus

pleiotropically determines fitness and dispersal at the same time, or if recombination

between the fitness and the dispersal genes is sufficiently unlikely. The other extreme,

a dispersal trait that is completely unlinked from any fitness-related genes, is typically

studied in the context of dispersal evolution (Ronce, 2007). Here, we employed a

continuous diffusion model, equation (3.11), to investigate the effect of type-dependent

dispersal on gene frequency clines. We considered two genotypes that may differ

in their fitness, their variance of dispersal (dispersal propensity), and in their mean

displacement (directional dispersal bias).

If there is a cline solution to our model, equation (3.11), we derived a general for-

mula for the wave speed, equation (3.12), given implicitly in terms of the cline solution.

It allows us to decompose the total speed of the cline (c) into individual components

due to selection (cS), differences in the variance of dispersal (cV ), and differences in

the mean displacement (cM ). While cS is a well-known result, the components cV and

cM are new and quantify the relative contributions of selection, variance of dispersal,

and mean displacement to the speed of a cline.

Type-dependent mean displacement alone (i.e., V1 − V2 = ∆V = 0) as introduced

in this model does not break the asymmetry in the solutions of the model equa-

tions (3.11). Thus, the equations can still be solved relatively easily whenever the

choice of the local selection function F permits. Notably, even without selection, there

may be cline solutions that are maintained solely by type-dependent dispersal (see

Section 3.5.4). Intuitively, if the two genotypes have a tendency to move away from
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each other, i.e., their directional dispersal bias points in the direction of the half-plane

where they are predominantly present, complete mixing between the types is pre-

vented.

In hybrid zones, selection against heterozygotes is known to maintain genotype

frequency clines (Bazykin, 1969). These clines can – at least in the simplest cases –

be calculated analytically and have proven to be of practical importance in biocontrol to

predict rates of spatial spread, local introduction numbers necessary to initialize spatial

spread, and sufficient environmental conditions that interrupt spatial spread (Barton

and Turelli, 2011). For the case that only the mean displacement is type-dependent,

we generalized the known cline solution to type-dependent dispersal (equation (3.14)).

Type-dependent variance of dispersal disrupts the symmetry in the solutions of

the selection-dispersal model (3.11) and consequently makes analytic solutions in-

tractable. Thus, we employed a perturbation argument assuming that the difference

in the variance of dispersal values (∆V ) is small. This allows us to derive a prediction

for the wave speed induced by ∆V , equation (3.15), that should be accurate at least

for small values of |∆V |. Numerical simulations, however, show that the validity of the

approximation is surprisingly broad; for the studied parameter ranges, noticeable devi-

ations from the predicted wave speed only start to appear if ∆V /V exceeds 10%, see

Figure 3.1.

The variance of dispersal can be interpreted as the mobility of a genotype. Thus,

the result above – and more generally the formula for cV in equation (3.12) – shows

that more mobile types push back less mobile ones. It is interesting to interpret this

in the light of the evolution of dispersal strategies, as we have a case in which in-

creased dispersal spreads through the population even in the absence of the clas-

sic factors of dispersal evolution, i.e., any kind of spatio-temporal habitat variability,

explicit relatedness structure, or inbreeding effect. Instead, selection maintains het-

erogeneities in the spatial genotype frequency profile, which has been shown to be

sufficient to create selection for elevated dispersal, see Section 3.3.3. According to

equation (3.7), the rate of increase of a dispersal type with elevated variance of disper-

sal is ∆V /2⇥
R

R
(@xp)

2dx. Inserting the unperturbed cline solution for type-independent

dispersal yields cV ⇡ ∆V

p

s/2V /6. Hence, the order of magnitude of cV and its de-

pendence on the parameters s and V agree with our equation (3.15), even though the
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two models are different.

Throughout this section, we assumed that population density is spatially and tem-

porally constant. This is a common assumption in population genetics, but in the case

of type-dependent dispersal it is even more of an abstraction. Areas in which more

mobile types are located will experience an excess of emigration and hence will be

underpopulated relative to areas where slow dispersers are abundant. Hence, pop-

ulation density is bound to fluctuate in time, heterogeneously over space, as a con-

sequence of type-dependent dispersal. However, constant population densities can

be justified if the differences in dispersal strategies between genotypes are small (see

Section 3.2), or if there is an external population regulation mechanism, for example, a

limited number of nesting places available to a large progeny each generation. To in-

corporate a dynamic response of population density to the heterogeneities in dispersal

strategies of the population, one has to include an ecological layer into the model, i.e.,

consider equation (3.2a). Moving clines are known to speed up when moving down

population density gradients and thus can be trapped in population sinks (Barton and

Turelli, 2011). However, since population density itself changes with the changing

genetic composition of the population with type-dependent dispersal, even such sim-

ple qualitative predictions will be hard to establish for a joint ecological-evolutionary

selection-dispersal model.
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4 Multivariate Quantitative Genetics

The goal of my work on multivariate quantitative genetics is understanding the evo-

lution of genetic variation in phenotypic traits in natural (haploid) populations, which

entails the consideration of multiple traits and variable selection. This task is challeng-

ing and requires a solid understanding of multiple traits under constant selection first.

As such, much of the content of this chapter does not consider fluctuating selection

explicitly. In Section 4.4, however, I explain how to extend our model to fluctuating

selection, and how it may provide a basic framework to include temporal variation in

selection.

4.1 Why multivariate stabilizing selection?

4.1.1 Quantitative traits and genetic variance

Quantitative genetics is concerned with the inheritance of genetically complex traits,

i.e., characteristics that are influenced by many genes. We consider quantitative traits

that can, in principle, assume a continuum of values. Examples may be the milk yield of

cows, expression levels of genes, migratory behaviour of birds, or individual body size.

Even if only a moderate number of genes are involved in determining the quantitative

trait, the much larger number of possible gene combinations typically gives rise to a

seemingly continuous distribution of possible trait values.

The phenotype of an individual is determined by genetic and non-genetic contri-

butions, see Falconer and Mackay (1995). Accordingly, one partitions the phenotypic
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value P into two independent components: the genetic component G, and the envi-

ronmental component E, i.e., P = G+E. The environmental component can be seen

as the extent to which genetically identical individuals differ from each other; it should

not be confused with the effects of changing environments that are the theme of this

thesis. The genetic component G can be further broken up as G = A+D+ I. The first

contribution, A, is the breeding value, defined as the sum of (additive) contributions of

each gene to the trait. The second, D, contains contributions due to dominance be-

tween homologous alleles in diploids, and I comprises epistatic interactions between

genes at different loci. These components are defined so that they are statistically

independent. Accordingly, the variance of the trait can be partitioned into the contri-

butions of the different components as VP = VA + VD + VI + VE In principle, all these

variance components can be measured by comparing the phenotypic values of rela-

tives (Barton et al. (2007), Ch.14); in practice, they are difficult to estimate.

The proportion of the phenotypic variance that is due to additive genetic effects is

called the (narrow-sense) heritability h2 = VA/VP (Falconer and Mackay, 1995). This

dimensionless quantity can be interpreted as the slope of the regression of trait values

from parent to offspring. Therefore, it can be quantified relatively easily, which makes

it a convenient measure of the genetic variance in natural populations.

On a population level, quantitative traits very often exhibit abundant heritable vari-

ation. This can be seen directly, because close relatives are more similar than more

distantly related individuals. More indirect evidence comes from the sustained re-

sponse of trait means to artificial selection (Barton and Keightley, 2002). Estimates

of the heritabilities h2 over a wide range of traits indicate that h2 typically takes values

between 0.2 and 0.6 (Lynch and Walsh, 1998).

The genetic variance of quantitative traits is a fundamental concept for the evolution

of quantitative traits. Crucially, the response to selection, i.e., the change in the trait

mean between generations, is proportional to the genetic variance of the trait (the

breeder’s equation, Lush, 1937). Sustained selection fixes allelic variants and thereby

depletes genetic variation; hence, the (additive) genetic variance can be seen as the

fuel of adaptation. Genetic variation thus plays a central role for the evolvability of

phenotypic traits, and its evolution is tightly linked to changes in the strength, direction,
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and pattern of natural selection. For most traits, the genetic variance can mainly be

ascribed to the additive effects of separate genes (Hill et al., 2008), such that VD and

VI are typically neglected in theoretical investigations. Therefore, VG and VA are used

interchangeably in this chapter.

4.1.2 Mutations, genetic drift, and stabilizing selection

Mutations are the ultimate source of genetic variation. The increase of the heritability

h2 due to mutation is typically measured in terms of the mutational heritability h2
M =

VM/VE, where VM is simply the sum of the square of effects of all mutations that

occurred in one generation. Similarly to h2, the values of h2
M are also remarkably

consistent across many traits and organisms, approximately between 0.001 and 0.01

(Lynch and Walsh (1998), Ch.II.12). In comparison, mutation rates µi per gene or

per locus are relatively low (⇠ 10−5 and ⇠ 10−9, respectively). Therefore, to obtain

the observed values for h2
M , mutations must either have large effects, or very many

loci must influence the trait such that the overall mutation rate U on the trait (i.e., the

expected number of mutations affecting the trait per generation) is high (Turelli, 1984).

Random genetic drift is known to decrease variation within populations. According

to the Wright-Fisher model of a finite population of N haploid individuals, the genetic

variance is reduced by a factor of (1− 1/N) each generation (see Barton et al., 2007,

Ch.15, Box 15.1). Under the influence of mutation and genetic drift, the additive ge-

netic variance in the next generation, V t+1
A , can thus be calculated from its value in the

previous generation V t
A as

V t+1
A = V t

A

✓

1− 1

N

◆

+ VM .

At equilibrium, when V t+1
A = V t

A = V̂A, we then have

V̂A = NVM = NU E[α2], (4.1)

(c.f. Lynch and Hill, 1986) where U is the number of mutations per generation that

affect the trait (as above), and E[α2] denotes the mean square effect of a mutation

on the trait (i.e., the expected contribution to the trait variance per mutation). This
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formula represents our expectation of the genetic variance in the balance of mutation

and genetic drift when the system is in a stationary state. Since (constant) selection

reduces genetic variation in the long run (c.f. Section 1.3 and Appendix A3), it sets an

upper limit to the long-term genetic variation in the presence of selection.

Selection is believed to be stabilizing for most traits, i.e., there is an optimal trait

value conferring highest fitness, and fitness is reduced for individuals deviating from

that optimum. Heuristic evidence for the prevalence of stabilizing selection comes

from the apparent long-term stasis of many phenotypic characters (e.g. Gould and El-

dredge, 1977; Jackson and Cheetham, 1999), and from the observation that extreme

phenotypes typically have reduced fitness. Actually determining the mode of selection

on particular traits, let alone measuring its strength, is challenging. Regressing pheno-

type on fitness, one may measure linear gradients of directional selection (typically de-

noted by β, see also Section 4.4), and quadratic selection gradients indicating whether

selection prefers intermediates (stabilizing selection, negative quadratic selection gra-

dient) or extremes (disruptive selection, positive quadratic selection gradient). The

most well-known survey of selection gradients in the published literature, Kingsolver

et al. (2001), indicates that stabilizing selection of reasonable strength is at least not

uncommon in nature. Such data, however, have to be regarded with suspicion, since

constraints in adaptation, selection on trait combinations, or fluctuating selection may

mask the true mode of selection on quantitative traits. The apparent discrepancy be-

tween stabilizing selection being widely anticipated, yet empirically underrepresented,

is still subject to debate (Kingsolver et al., 2012).

The strength of stabilizing selection is described by the selection variance VS that

scales the fitness reduction when deviating from the optimum, see Barton et al. (2007),

Ch.18. A typical choice for VS was proposed by Turelli (1984) as VS/VE ⇡ 20, which

is still widely used for reference. In mathematical models of (quadratic) stabilizing

selection, the strength of stabilizing selection is given by the selection intensity S,

which is the curvature of fitness as a function of trait value at the trait optimum. It

relates to the selection variance as S = 1/VS.

Ignoring random genetic drift (i.e., considering a sufficiently large population), Turelli

(1984) showed that the genetic variance VG in the balance between mutation and sta-
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bilizing selection is given by twice the product of mutation rate times the selection

variance,

V̂A = 2UVS =
2U

S
. (4.2)

(This assumes a certain model of mutation, the house-of-cards model, but I do not go

into details here.) Note that we consider haploid organisms here, hence equation (4.2)

differs from the classical expression by a factor of two. Furthermore, it is interesting

that the prediction is independent of the actual effects of mutations on the trait. These

cancel out, because larger effects influence the genetic variance more, yet also cause

larger deviations from the optimum and thus are eliminated by selection more readily.

This is consistent with the load argument by Haldane (1937).

4.1.3 The relevance of pleiotropy

We may apply the above parameter estimates to a rough back-of-the-envelope calcu-

lation. Take a reasonable heritability of h2 = 0.5, so that VE = VA(= VG), and assume

stabilizing selection with intensity VS = 20VE. Inserting into equation (4.2), we require

a total mutation rate of U = 0.025 to reconcile these values. With our current estimates

of mutation rates per gene (around 10−5), we may thus conclude that the trait is de-

termined by at least a few thousand genes (Johnson and Barton, 2005). While this

is no reason for discomposure by itself, it raises the question of how many traits may

be encoded independently on any finite genome. For example, the human genome

is currently estimated to contain merely around 20, 000 genes. However, as noted by

Johnson and Barton (2005), any living organism is made up of a myriad of traits, hence

there is simply not enough space to put all traits on the genome separately. As a con-

sequence, individual genes affect multiple traits and thus also experience stronger se-

lective pressures; under simple mathematical models (c.f. Johnson and Barton, 2005),

this reduces the genetic variance of each trait. Thus, it is hard to explain observed

levels of genetic variance due to a balance of mutation and stabilizing selection on

many traits.

Our observations allow for two conclusions: quantitative traits will typically overlap

in their genetic basis, and other factors not considered in our simple models increase

genetic variation and thus distort our estimates. As argued in Section 1.3, spatio-
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temporal variation increases genetic variation, thus perturbing our simple estimate.

However, even if our predictions were off by one or two orders of magnitude, the prob-

lem would persist: Assuming that determining a trait takes only a few tens or hundreds

of genes still does not seem to allow for an independent genetic encoding of all traits

necessary to describe a functional organism. Hence, pleiotropy – i.e., individual genes

affecting multiple traits simultaneously – must be pervasive.

Phenotypic traits are thus connected via the genes that pleiotropically determine

them. The size and structure of such trait clusters, however, remains unknown. How

big are they, how strongly are they linked, and how does selection on the individual

traits combine to selection on the underlying genes? More concretely, we may ask:

How is the genetic variance of a given (focal) trait influenced by selection acting in-

dependently on pleiotropically connected background traits? The answers to those

questions depend on the correlation structure between traits that may be due to corre-

lations in the effects of genes on the traits (pleiotropic structure; correlations in allelic

effects), and due to selection acting on combinations of traits rather than on traits in-

dividually (trade-off; correlations in selection). Understanding these basic structural

problems are a first step towards an understanding of the dynamic processes of mul-

tivariate quantitative genetics, which may then be extended by temporally fluctuating

and spatially heterogeneous selection.

4.2 Multivariate QG as a fluctuating selection process

4.2.1 Notation and setting

Multivariate quantitative genetic models were introduced by Lande (1980) in a statis-

tical (macroscopic) model assuming Gaussian allelic effects. The multivariate house-

of-cards model by Turelli (1985) takes into account genetic (microscopic) details of the

trait architecture and leads to different conclusions. These classical models can be

seen as two extreme cases with other quantitative genetic models in between (Slatkin

and Frank, 1990). The model presented here is similar to a more recent approach

by Zhang and Hill (2003) and allows to determine the variances of allele frequencies

underlying the traits. Integrating the allele frequency variances over their allelic effect
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distribution, we obtain an expression for the expected genetic variances of any number

of traits themselves. Even though we assume selection and the trait distributions to

be Gaussian, we need to overcome two main difficulties: First, the distribution of al-

lele frequencies is complicated and hard to determine explicitly. Second, the integrals

emerging in the expression for the expected genetic variances are intricate and can be

resolved only numerically in most cases.

Consider a randomly mating population of N haploid individuals. We study the

dynamics of K quantitative traits that are determined pleiotropically by (effectively in-

finitely) many loci, n # 1. The allelic effects on the traits are assumed to be additive,

i.e., the contributions of two genes to any trait simply add up; there are no epistatic

interactions between loci. Furthermore, we assume that recombination is strong rel-

ative to the other processes, so that the loci are in linkage equilibrium and it suffices

to consider the allele frequencies at each locus to describe the microscopic dynamics

underlying the traits.

We consider the regime of very low per-locus mutation rates (the weak-mutation

limit, µ ⌧ 1) so that we may assume that every locus is affected by mutation at most

once in the time scale of interest. With very many loci, but very rare mutations, we

assume that the actual number of new mutations occurring in a generation is Poisson

distributed. To obtain the mean of this distribution, fix the genome-wide mutation rate

U = nµ and let n ! 1; consequently, µ ! 0. Thus, each generation, U loci become

polymorphic on average, which is eventually balanced by polymorphic loci fixing for

either of the two alleles (the population is finite). Consequently, only finitely many loci

are polymorphic at any point in time.

In this section, we scale the system so that the ancestral states (Qi) of each locus

has zero contribution to all traits; once a locus is affected by mutation, we draw the

effects on the K traits of the new allele (Pi) from a K-variate distribution, which is

the same for all loci. We denote the allelic effect of allele i on trait γ by αiγ, and

collect the allelic effect of a given allele i on all K traits in the vector αi = (αi1, ...,αiK).

Between different mutations, allelic effects are drawn independently from each other

(thus cov(αiγ,αjγ) = 0 for i 6= j). There may, however, be correlations between the

effects on different traits (i.e., cov(αiγ,αiλ) 6= 0 for γ 6= λ). These correlations in allelic
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effects describe the genetic structure of pleiotropy.

We further assume that the effects on each trait are distributed symmetrically

around zero, i.e., E(i)[αiγ] = 0 for every trait γ = 1, ..., K, where the expectation E
(i)

is taken across loci. The pleiotropic structure may be represented by the variance-

covariance matrix of allelic effects M given by Mγλ = E
(i)[αiγαiλ]. The mean contri-

bution of mutation to the genetic variance of trait γ each generation is then VM,γ =

U E
(i)[α2

iγ] = U σ2
M,γ, so that the expectation of the square of effects E

(i)[α2
iγ] equals the

variance of allelic effects σ2
M,γ on the trait.

With at most two alleles per locus, the ancestral state Qi and the derived (mutated)

allele Pi, we denote the frequency of allele Pi by pi, and the frequency of allele Qi by

qi = 1− pi. For a given genotype, let Xi be the indicators for the alleles Pi, i.e., Xi = 1

if locus i carries allele Pi and Xi = 0 if it carries the allele Qi. Clearly, E[Xi] = pi and

Var[Xi] = piqi, and for different loci i 6= j, the indicators Xi and Xj are independent

since the loci are in linkage equilibrium. As a consequence, the value of trait γ of the

genotype is given by Zγ =
P

i αiγXi, and hence the means and variances of the trait

distributions are given in terms of allele frequencies and allelic effects as

z̄γ =
X

i

αiγpi and Vγ =
X

i

α2
iγpiqi for γ = 1, ..., K, (4.3)

and the covariances between traits values are Vγλ =
P

i αiγαiλpiqi. We collect these

values in a vector z̄ of trait means, and a variance-covariance matrix V between traits.

If sufficiently many alleles are contributing to the traits, we may assume that the joint

distribution of the K traits is a multivariate normal distribution, Z ⇠ N (z̄,V ).

Assume that every trait γ has an optimal value θγ, and write θ = (θ1, ..., θK). To

generalize models of Gaussian stabilizing selection on a single trait to multiple traits,

we consider a symmetric and positive definite selection matrix S and define the fitness

of an individual with trait values given by Z = (Z1, ..., ZK) by

w(Z) = exp



−1

2
(Z − θ) .S. (Z − θ)

]

= exp

"

−1

2

K
X

γ,λ=1

Sγλ (Zγ − θγ) (Zλ − θλ)

#

. (4.4)

Thus, selection may act on pairs of traits via Sγλ 6= 0, i.e., there may be correlations

in selection. If S is a diagonal matrix, the fitness reduction due to the deviations from
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the trait optima is multiplicative across traits. Integrating the individual fitness (4.4)

over the normal distribution of trait values, N (z̄,V ), we obtain the mean fitness of the

population,

w̄ = exp



−1

2

(

(Z − θ).(I + SV )−1S.(Z − θ) + log[det (I + SV )]
)

]

,

where I is the K-dimensional unit matrix. Provided that selection is weak (i.e., all

entries of S are sufficiently close to zero), we may approximate (I + SV )−1S ⇡ S

and log[det(I + SV )] ⇡ tr(SV ), where tr(SV ) is the sum of the diagonal entries (the

trace) of the matrix SV . We thus obtain a general expression for the mean fitness of

the population,

w̄ = exp



−1

2

(

(z̄ − θ).S.(z̄ − θ) + tr(SV )
)

]

. (4.5)

Mutations and stabilizing selection can be seen as two opposing forces acting on

the distribution of traits in the K-dimensional trait space. The directions in which they

most strongly inflate or depress the genetic variances is encoded in their variance-

covariance matrices M and S, respectively. Applying a linear transformation on the

trait space, however, we may greatly simplify the problem, see also Zhang and Hill

(2003): There is always a (non-singular) matrix T so that T TMT = I and T TST = D,

where D is a diagonal matrix and T T denotes the transpose of T . Hence, a linear

change of variables transforms a system of correlated selection and mutation into an

uncorrelated one.

Without loss of generality, we may thus assume that selection acts only on single

traits (no correlations in selection, Sγλ = 0 for γ 6= λ), and that the distribution of allelic

effects is spherically symmetric (no correlations in allelic effects, M / I). The latter

implies that, to determine the allelic effects of a new mutation, αi, we may first choose

the direction of the effect vector by taking a vector uniformly from the K-dimensional

unit sphere, and then draw the length of the vector, |αi|, from some given distribution.

The vector of allelic effects thus effectively depends just on a single random variable,

the total allelic effect ρi = |αi| =
q

PK
γ=1 α

2
iγ of the mutation. Any specific system with

correlations in selection and mutation may be analysed by studying the uncorrelated

system and applying the corresponding reverse transformation.
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This observation greatly simplifies our problem, in particular since correlations be-

tween traits, Vγλ for γ 6= λ, do not play a role in the new scaling: Writing Sγ = Sγγ, the

mean fitness of the population, equation (4.5), is given by

w̄ = exp

"

− 1

2

K
X

γ=1

Sγ

(

(z̄γ − θγ)
2 + Vγ

)

#

. (4.6)

4.2.2 Fluctuating selection on individual genes

The ensemble of all genes determines the set of phenotypic traits, and selection on

these traits translates into selection on the individual genes. At the level of a single

gene Pi, selection is described exclusively by its selection coefficient si that depends

on the genetic background of the gene (i.e., the allele frequencies at the other loci),

and on how they interact with the traits. Given the great complexity of the dynamics

of many alleles and multiple traits, it is hopeless to gather all the data needed to pre-

dict the dynamics of selection on any gene; the detailed process will remain obscure,

with an essentially random appearance. We may, however, obtain a statistical descrip-

tion of the selection coefficients si in terms of macroscopic observables, replacing its

explicit dynamics by a stochastic process of fluctuating selection. To understand the

properties of the process causing the fluctuations, we first consider stabilizing selec-

tion for fixed trait optima with fixed selection intensities. For the rest of this Section 4.2,

and throughout the following Section 4.3, we thus assume that the trait optima θ and

the selection intensities S are constant.

As explained in the previous section, we wish to follow the dynamics of newly aris-

ing mutations under the joint influence of weak selection and random genetic drift.

Each mutation eventually either goes to fixation or is lost. Considering the collection

of a class of mutations (e.g., of a given allelic effect size), we may analyse the prop-

erties of their allele frequency distributions. Then, averaging over the distributions of

their allelic effects allows to calculate characteristics of the trait distributions, e.g., the

genetic variances. We consider stochastic allele frequency dynamics of the form

dpi = si pi (1− pi) dt+

r

pi (1− pi)

N
dW, (4.7)

where W is a standard Wiener process, hence the rightmost term describes the action

of genetic drift. The selection coefficient of allele Pi is si = ∂ log(w̄)/∂pi. Inserting
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the expressions for the trait means and variances, equation (4.3), into the mean fit-

ness (4.6), and taking the corresponding derivative, we obtain

si =
@ log(w̄)

@pi
= −

K
X

γ=1

Sγ



αiγ (z̄γ − θγ) + α2
iγ

✓

1

2
− pi

◆]

. (4.8)

Selection on the frequency on an allele Pi thus has two components. The term

−Pγ Sγα
2
iγ (1/2− pi) describes selection against variance, i.e., disruptive selection

on the allelic level. It only depends on the allele frequency pi, being negative for

pi < 1/2 and positive for pi > 1/2. Thus, it always favours the more common allele

on locus i, reducing variation at the locus. The remaining term, −Pγ Sγαiγ (z̄γ − θγ),

describes directional selection due to deviations between the trait means and their

optimal values. For example, if the mean of trait γ is above its optimum, z̄γ > θγ,

there is a negative contribution to the selection coefficient on an allele with positive

effect αiγ > 0 on the trait. The directional selection component contains the allele

frequencies at all loci within the trait means z̄γ and thus couples the dynamics of allele

frequencies at the different loci.

In the classical quantitative genetics of a single trait, selection efficiently maintains

the trait mean close to its optimum such that the directional selection component can

be neglected (Bulmer, 1972; Barton, 1989). As a consequence, the equations for the

allele frequencies decouple and the system becomes analytically tractable. With mul-

tiple traits involved, the situation is less clear; in principle, the joint action of stabilizing

selection on many traits might prevent all trait means to adjust to their optima simul-

taneously, or at least may require relatively strong selection intensities for doing so.

If the latter is the case, one could speculate that the effects of selection per trait add

up to a perceivably high directional selection component. Furthermore, when the trait

optima change over time, there must be a lag between trait means and optima, giving

rise to noticeable directional selection. These considerations motivate a more detailed

study of the directional component of stabilizing selection.

4.2.3 The directional selection component as a random process

Since we consider constant trait optima, we may rescale θ ⌘ 0 without loss of gen-

erality. Furthermore, assume for simplicity that the intensity of selection is the same
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on all traits, i.e., Sγ ⌘ S for all γ = 1, ..., K. The directional selection component of

stabilizing selection is a linear combination of the mean trait values z̄γ (γ = 1, ..., K),

whose coefficients are given by S times the effects of the allele under consideration,

αi.

For the moment, consider a single trait with trait mean z̄ and a genetic variance

of VG. Averaging over the genetic details, the dynamics of the trait mean are well-

described by an Ornstein-Uhlenbeck process (Lande, 1976), i.e., they satisfy a pro-

cess of the form

dz̄ = −# z̄ dt+ σ dW, (4.9)

where W is a standard Wiener process. The rate of return of z̄ to its long-term mean

✓ = 0 is given by # = S VG. This is just the rate of response of a trait under directional

selection (c.f. the breeder’s equation, Lush, 1937). The random fluctuations in the trait

mean have a variance of σ2 = VG/N . The stationary distribution of such an Ornstein-

Uhlenbeck process is a Gaussian distribution centred around ✓ = 0 with variance

σ2/(2#) = 1/(2NS).

If there are multiple traits with Sγ ⌘ S and no correlations between traits, we may

heuristically extrapolate from the behaviour of a single trait. Dropping the index i de-

noting the locus, and writing ⇣ = S
P

γ αγ z̄γ for the directional selection component,

ζ is a linear combination of Ornstein-Uhlenbeck processes. Assuming their random

components to be uncorrelated, ζ itself satisfies an Ornstein-Uhlenbeck process,

dζ = −ϑ ζ dt+ σSρi dW, (4.10)

where ρi =
q

P

γ α
2
iγ is the total allelic effect of the allele Pi under consideration (see

also Section 4.2.1). The long-term variance of ζ at stationarity is given by

σ2
ζ =

(σSρi)
2

2ϑ
=

Sρ2i
2N

. (4.11)

We numerically tested the Ornstein-Uhlenbeck description of the directional selec-

tion component ζ, simulating K = 10 traits under stabilizing selection (S = 0.01). In the

simulation, mutations create segregating alleles that evolve under selection and ge-

netic drift (with N = 100 individuals) as described above in Section 4.2.1. Figure 4.1a

shows a simulated trajectory of ζ for an allelic effect vector of length ρi = 1 over 105





CHAPTER 4. MULTIVARIATE QUANTITATIVE GENETICS 66

generations (c.f. the figure caption for parameter details). The distribution of these

values, shown in Figure 4.1b, closely matches a normal distribution with zero mean

and variance σ2
ζ = 5 ⇥ 10−5, as predicted from the stationary state of the Ornstein-

Uhlenbeck characterisation (4.10).

Nevertheless, describing the directional selection component ⇣ by an Ornstein-

Uhlenbeck process is an approximation, which becomes evident from looking at tem-

poral autocorrelations, (⌧) = corr[⇣(t), ⇣(t+ ⌧)]. For an Ornstein-Uhlenbeck process,

these autocorrelations decay exponentially at rate #. Measuring the mean genetic

variance through all K = 10 simulated traits leads to an accurate estimate of the ini-

tial slope in the autocorrelation function of the simulated values of ⇣, compare the solid

and dashed lines in Figure 4.1c. However, the decay of the autocorrelations in the sim-

ulated process is slower, i.e., the actual process has a longer memory than predicted;

in the long run, the decay of the autocorrelation function (⌧) tends to a different expo-

nential at a considerably lower rate, shown by the dotted line in Figure 4.1c. Numerical

analyses indicate that this is partially due to fluctuations in the genetic variances. Their

dynamics typically exhibit pronounced spikes as alleles of major effect rise to interme-

diate frequencies; hence, their mean might be higher than “typical” values, which leads

to an overestimate in the initial rate of decay of the autocorrelations in ⇣. Furthermore,

the random components of the Ornstein-Uhlenbeck processes for the individual trait

means, see equation (4.9), are not uncorrelated since they are ascribed to the dy-

namics of alleles that pleiotropically affect multiple traits. Thus, pleiotropy itself leads

to deviations between simulated realizations of ⇣ and their statistical description by

equation (4.10).

Given that the stationary distribution of ⇣ is well approximated by a Gaussian with

variance σ2
ζ (see equation (4.11)), characteristic magnitudes of the directional selec-

tion component are given by its standard deviation σζ =
p

S⇢i/(2N) (since E[|⇣|] =
p

2/⇡ σζ ⇡ σζ). From the selection coefficient of allele Pi, equation (4.8), we see that

the strength of selection against variance is about S⇢2i /2, at least at low allele frequen-

cies. Furthermore, the strength of genetic drift is 1/N in haploid populations. Putting

these three forces into relation gives
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If selection on the allele is weak, NS⇢2i /2 ⌧ 1, then
NSρ2i

2
⌧
q

NSρ2i
2

⌧ 1 and genetic

drift dominates the dynamics of allele frequencies. If, conversely, selection on the

allele is strong, NS⇢2i /2 # 1, then 1 ⌧
q

NSρ2i
2

⌧ NSρ2i
2

and selection against variance

is the driving force of the dynamics. In both cases, the directional selection component

only plays a subordinate role.

If NS⇢2i /2 ⇡ 1, the factors genetic drift, directional selection, and selection against

variance can be expected to contribute equally to the dynamics of allele frequencies.

In this case, statistics of single allele frequency trajectories, e.g., fixation probabilities

or sojourn times, can be very different compared to the extreme cases when direc-

tional selection can be ignored. When considering the expected genetic variance of

quantitative traits, however, simulations show that the directional selection component

does not have an impact. Intuitively, this is because averages are taken across time

and allelic effect distributions, such that the effect of directional selection balances out.

We study this in more detail in the following Section 4.3. Fluctuating stabilizing se-

lection, i.e., trait optima changing in time, may systematically introduce considerable

directional selection. This goes beyond the analysis of the next section and remains

to be studied in detail; the next steps in this endeavour are outlined in Section 4.4.

4.3 The stationary distribution approach

4.3.1 Adjusting the model framework

In this section, we derive a formula for the expected genetic variances of multiple phe-

notypic traits, each being under stabilizing selection and being determined pleiotropi-

cally by the underlying genes. The procedure is analogous to the traditional approach

demonstrated by Keightley and Hill (1989) that calculates the expected genetic vari-

ance assuming that the dynamics has reached a stationary state (the statistical bal-

ance between mutation, selection, and drift), using the stationary distribution of allele
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frequencies. To do the same, we slightly adjust the framework of our model, thereby

obtaining a symmetric distribution of allele frequencies.

More precisely, we modify the notation introduced in Section 4.2.1 as follows. We

assume that there is a fixed number of n loci that pleiotropically determine the K traits.

Each trait γ is under stabilizing selection with selection intensity Sγ > 0 for the optimal

value ✓γ = 0 (without loss of generality). There are two alleles per locus i that have

allelic effects ±αiγ/2 on trait γ 2 {1, ..., K}. These are chosen independently between

loci and traits. Furthermore, we assume symmetric mutation from one allele to the

other at rate µ.

In analogy to the previous section, we think of very many loci, n # 1, with very

low per-locus mutation rate, µ ⌧ 1, and a given genome-wide mutation rate nµ = U .

The new scaling of the allelic effects maintains the difference in the effects of the two

alleles at each locus. Thus, it shifts the trait means, yet leaves the trait variances the

same, i.e.,

z̄γ =
X

i

αiγ

✓

pi −
1

2

◆

and Vγ =
X

i

α2
iγpiqi for γ = 1, ..., K, (4.12)

compare equation (4.3). Going through the procedure outlined in Section 4.2.2 to

calculate the selection coefficient si for the allele Pi shows that the dynamics of allele

frequencies remain unchanged in the modified framework.

Our modifications represent a different way of looking the same problem. They sim-

ply correspond to shifting the scale of allelic effects or, equivalently, exchanging the la-

bels of the two alleles at every other locus (hence dropping the notion of ancestral and

derived alleles). As a consequence, the stationary distribution of allele frequencies

at every locus becomes symmetric. In the framework of the previous section, muta-

tions only create P alleles from Q alleles, hence the distribution of allele frequencies

in the balance of mutation, selection, and genetic drift is asymmetric, approximately

inversely proportional to the P -allele frequency, ⇠ p−1, see Figure 4.2a. With the new

setting, the distribution is symmetric, since about half of the loci will mostly carry the P

allele, and the other half the Q allele, with occasional flips between those states, see

Figure 4.2b.
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(1972), we argue that with many loci (n # 1) the expected genetic variance of trait γ

is well approximated by

E[Vγ] =
n
X

i=1

α2
iγ

Z 1

0

piqi φi(pi) dpi, (4.15)

with the distributions

φi(pi) / exp

"

−
X

γ

NSγα
2
iγ piqi

#

(piqi)
2Nµ−1 . (4.16)

To see this, define

Xγ =
X

i

αiγ

✓

pi −
1

2

◆

and Yγ =
X

i

α2
iγpiqi,

and assume that the allele frequencies pi are independently distributed with density

φi, equation (4.16). Because this distribution is symmetric in pi, the random variables

pi and piqi are uncorrelated. Hence, also every two random variables Yγ and Xλ are

uncorrelated. Furthermore, if the number of loci is large, n # 1, the Xγ and Yγ are

approximately normally distributed (central limit theorem). Since uncorrelated normal

random variables are automatically independent, every two random variables Yγ and

Xλ are independent from each other – asymptotically in the limit n ! 1.

The expression (4.15) can be rewritten as an expectation of Yγ over a joint distribu-

tion
Q

i φi(pi) of independent random variables,

n
X

i=1

α2
iγ

Z 1

0

piqi φi(pi) dpi =

Z 1

0

 

n
X

i=1

α2
iγpiqi

!

n
Y

j=1

φj(pj) dp1 · · · dpn.

However, since Yγ is independent from every Xλ, the distribution of Yγ does not change

if we multiply it by a function that only depends on X1, ..., XK . Therefore, the above

integral remains unchanged if we replace
Q

j φj(pj) by Φ(p1, ..., pn). Overall, this shows

that

n
X

i=1

α2
iγ

Z 1

0

piqi φi(pi) dpi ⇡
n
X

i=1

α2
iγ

Z 1

0

piqi Φ(p1, ..., pn) dp1 · · · dpn = E[Vγ]

if the number of loci contributing to the trait is large.
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Calculating the expected genetic variance. To obtain a general expression for the

expected genetic variances, we need to evaluate equation (4.15). Thus, it is necessary

to calculate integrals of the form

I(A,B) =

Z 1

0

e−Ap (1−p) (p (1− p))B−1 dp =

Z 1/4

0

e−AyyB−1

✓

1

4
− y

◆−1/2

dy.

In the limit of small per-locus mutation rate (Nµ ⌧ 1), we may calculate explicitly

Z 1

0

piqi φi(pi) dpi =
I
h

P

γ NSγα
2
iγ, 2Nµ+ 1

i

I
h

P

γ NSγα
2
iγ, 2Nµ

i ⇡ NµH

"

X

γ

NSγα
2
iγ

#

,

where

H(x) = e−x/4

1
X

j=0

(x/4)j

(2j + 1)j!
. (4.17)

This is accurate for µ ! 0. To keep the genome-wide mutation rate U = nµ constant,

we simultaneously let n ! 1. Then, we may replace the sum over the individual loci

i = 1, ..., n in equation (4.15) by an integral over the distribution of allelic effects, i.e.,

n
X

i=1

α2
iγ

Z 1

0

piqi φi(pi) dpi = n

Z

RK

α2
iγ

✓Z 1

0

piqi φi(pi) dpi

◆

fα(α) dα,

where fα is the probability density of the (K-dimensional) distribution of allelic effects.

Since this distribution is the same for all loci i, we may drop the index i. In other words,

instead of a given set of loci with given allelic effects, we think of a distribution over a

huge number of loci, whose effect vectors have the K-variate density fα. Inserting our

approximation for the inner integral, we obtain for the expected genetic variances

E[Vγ] = NU

Z

RK

α2
γ H

"

X

λ

NSλα
2
λ

#

fα(α) dα (γ = 1, ..., K), (4.18)

where the function H is defined above in equation (4.17). This formula generalizes the

expected genetic variance of a single trait under stabilizing selection, see Keightley

and Hill (1989), to multiple pleiotropically connected traits. To accommodate correla-

tions in selection and mutation (non-diagonal selection matrix S and mutational effects

matrix M ), apply a linear transformation as described in Section 4.2.1 to obtain a non-

diagonal genetic variance-covariance matrix V .
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4.3.3 Limit cases: Neutrality, weak and strong selection

The cases of no selection and strong selection can be analysed by investigating the

limiting behaviour of the function H(x). It is easy to see that H(0) = 1, and that

H(x) ⇡ 2/x for large x. A Taylor series approximation for small x furthermore shows

that H(x) = 1− x/6 +O(x2) as x ! 0.

Consequently, if none of the traits are under selection (Sγ = 0 for all γ), the expected

genetic variances become

E[Vγ] = NU E[α2
γ]. (4.19)

This is just the expected genetic variance under the balance of mutation and random

genetic drift, which we derived above by a simple back-of-the-envelope calculation,

see equation (4.1).

Note that, generally, stabilizing selection couples the genetic variances of the dif-

ferent traits via the Sγ. Neutral traits however do not affect the dynamics of pleiotrop-

ically connected traits – the neutral genetic variance above can be calculated without

knowledge of background traits. Conversely, traits under selection modify the genetic

variance of pleiotropically connected traits. This will be discussed in Section 4.3.4.

If the overall selection on the K traits is sufficiently weak relative to random genetic

drift, i.e.,
P

γ NSγα
2
γ ⌧ 1, we approximate

H

"

X

γ

NSγα
2
γ

#

⇡ 1− 1

6

X

γ

NSγα
2
γ.

Assuming that we may exchange the order of limit and integration, we obtain

E[Vγ] ⇡ NU E[α2
γ]−

1

6

X

λ

NSλ E[α
2
γα

2
λ]. (4.20)

Thus, to a first approximation, the reduction of the neutral genetic variance by selection

is proportional to the covariances of the squares of the allelic effects between different

traits. Conversely, if selection is strong relative to genetic drift, so that
P

γ NSγα
2
γ # 1,

we approximate

H

"

X

γ

NSγα
2
γ

#

⇡ 2
P

γ NSγα2
γ

to obtain

E[Vγ] ⇡ 2U

Z

RK

α2
γfα(α)
P

λ Sλα
2
λ

dα. (4.21)
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Thus, calculating the total expected genetic variance weighted by the selection coeffi-

cients, we arrive at the simple identity

X

γ

SγE[Vγ] = 2U. (4.22)

For a single trait, this becomes equation (4.2). Notably, also in the multivariate case,

equation (4.22) is independent of the allelic effects and can be interpreted as a load

argument. Mutations introduce deleterious variation at rate U per generation that has

to be purged by selection. Alleles of small effects do not exert a high load, yet are not

removed by selection as easily as alleles of large effect. These two opposing effects

of the allelic effect size cancel out, and the mutational load only depends on the rate

at which new mutations occur (Haldane, 1937).

4.3.4 Selection on pleiotropically connected traits

Spherical symmetry of allelic effects. The effect of selection on pleiotropically con-

nected traits on the genetic variance of a given focal trait is mediated by the pleiotropic

structure of how the individual alleles influence the set of traits. As described in

Section 4.2.1 above, we may rescale the system to spherically symmetric distribu-

tions of allelic effects, i.e., no correlations between the allelic effects on different traits

(cov(αγ,αλ) = 0 for γ 6= λ). In this section, we show how using spherically symmetric

distributions of allelic effects allows us to say more about the impact of selection on

pleiotropically connected traits.

A distribution is called spherically symmetric if it remains unchanged under rota-

tions. Any spherically symmetric random variable α in R
K can be written as the prod-

uct of two independent random variables ρ and ξ̃, where ξ̃ is a uniform distribution on

the unit sphere in R
K determining the direction of α, and ρ = |α| is the length of α,

i.e., the total allelic effect. To obtain a uniform distribution on the unit sphere in R
K , we

may draw a vector ξ from a K-variate normal distribution, and normalize the result to

modulus one, i.e., ξ̃ = ξ/|ξ|. Hence, substituting α = ρ ξ/|ξ| and fα(α) = fρ(ρ) fξ(ξ),

where fξ(ξ) = (2π)−K/2exp[−|ξ|2/2], we obtain from equation (4.18)

E[Vγ] = NU

Z 1

0

Z

RK

ρ2
ξ2γ

|ξ|2 H
"

X

λ

NSλ ρ
2 ξ2λ
|ξ|2

#

fρ(ρ) (2π)
−K/2 e−|ξ|2/2 dξ dρ.



CHAPTER 4. MULTIVARIATE QUANTITATIVE GENETICS 74

The substitution α = ⇢ ξ/|ξ| describes the vector of allelic effects by a direction

in trait space and a total allelic effect ⇢. To quantify the expected increase in genetic

variation of each trait due to mutation, the mutational variance VM (see Section 4.1.2),

it is necessary to retrieve information about the E[α2
γ] from the new variables. Clearly,

P

λ E[ξ
2
λ/|ξ|] = 1, hence due to symmetry E[ξ2γ/|ξ|] = 1/K for every γ 2 {1, ..., K}.

Therefore, we obtain the identity

E[α2
γ] = E[ρ2]E



ξ2γ

|ξ|2
]

=
E[ρ2]

K
. (4.23)

The genetic variance in polar coordinates. In the following, we relabel the traits so

that the focal trait has index 1. This is convenient for casting ξ into polar coordinates,

where the ordering of the angles matters. We thus substitute

ξ1 = |ξ| cos(ϕ1),

ξλ = |ξ| cos(ϕλ)
λ−1
Y

i=1

sin(ϕi) for λ = 2, ..., K − 1,

ξK = |ξ|
K−1
Y

i=1

sin(ϕi).

Then, the genetic variance of the focal trait can be written as

E[V1] = NU
Γ[k/2]

2πk/2

Z 1

0

ρ2fρ(ρ)

Z 2π

0

Z π

0

· · ·
Z π

0

cos2(ϕ1)H
⇥

ρ2X
⇤

dΩK dρ, (4.24)

where

X =
K
X

γ=1

NSγξ
2
γ =

 

K−1
X

λ=1

NSλ cos2(ϕλ)
λ−1
Y

i=1

sin2(ϕi)

!

+NSK

K−1
Y

i=1

sin2(ϕi),

dΩK = sinK−2(ϕ1) sinK−1(ϕ2) · · · sin(ϕK−2) dϕ1 · · · dϕK−1,

and Γ is the gamma function generalizing factorials. In general, this integral can only

evaluated numerically. If the focal trait is neutral, it may be written in terms of hyperge-

ometric functions, yet these expressions do not provide further insight.

To investigate how selection on a background trait is reflected in the genetic vari-

ance of the focal trait, we from now on focus on K = 2 traits. Reducing the above

formula, equation (4.24), to two traits produces

E[V1] =
NU

2π

Z 1

0

ρ2fρ(ρ)

Z 2π

0

cos2(ϕ)H
⇥

ρ2
(

NS1 cos2(ϕ) +NS2 sin2(ϕ)
)⇤

dϕ dρ.

(4.25)
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Indirect selection on a neutral trait. Consider a neutral focal trait (S1 = 0) and

a second trait under stabilizing selection, S2 = S. Then, the inner integral of equa-

tion (4.25) can be evaluated analytically to produce

E[V1] =
2U

S

Z 1

0

"

p

⇡ NS⇢2 Erf

"
r

NS⇢2

4

#

+ e−
NSρ2

4 − 1

#

fρ(⇢) d⇢, (4.26)

where Erf is the error function given by Erf(x) = 2/
p
⇡
R x

0
e−y2 dy.

Keeping NU/NS constant and letting NS ! 1, we find (assuming that we may

exchange the order of integration and taking the limit)

E[V1]
p

NS⇢2
−! NU

NS
⇥

p
⇡

2
> 0. (4.27)

Thus, with spherically symmetric mutational effects, the expected genetic variance of

a neutral trait decays with the square root of the selection intensity on the background

trait. In contrast, the genetic variance of the selected trait decays linearly with selec-

tion, i.e., one can show that

E[V2] −!
2NU

NS

in the same limit. As a consequence, the classical limit of strong selection is inconsis-

tent with indirect selection on a neutral trait: Letting NS ! 1 with fixed NU/NS, we

have E[V2] = 2U/S for the selected trait, but the genetic variance of a pleiotropically

connected neutral trait diverges.

In general, equation (4.26) shows that the effect of indirect selection on the focal

trait depends on the distribution of allelic effects. For example, assume that ⇢ is drawn

from a normal distribution that is cut off for negative values, i.e.,

fρ(⇢) =

s

2

⇡σ2
ρ

e
− ρ2

2σ2
ρ ,

where σ2
ρ = E[⇢2]. Then, equation (4.26) can be integrated explicitly and yields

E[V1] =
NUσ2

ρ

1 +

q

1 +
NSσ2

ρ

2

. (4.28)

Note that due to the identity (4.23), σ2
ρ/2 = E[α2

1]. Hence, stabilizing selection on the

background trait reduces the genetic variance expected under neutrality for the focal
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trait (NUE[α2
1]) by a factor depending on

p

NS E[α2
1]. Calculating the expected genetic

variance of the selected trait, E[V2], we furthermore find that

E[V1]

E[V2]
=

r

1 +
NSσ2

ρ

2
. (4.29)

Two traits under strong selection. Assume two traits under strong stabilizing se-

lection with selection intensities S1 and S2. Since we may approximate H(x) ⇡ 2/x for

large x (c.f. Section 4.3.3), equation (4.25) can be approximated by

E[V1] =
NU

2π

Z 1

0

ρ2fρ(ρ)

Z 2π

0

2 cos2(ϕ)

ρ2
⇥

NS1 cos2(ϕ) +NS2 sin2(ϕ)
⇤ dϕ dρ

=
2U

S1 +
p
S1S2

. (4.30)

This confirms that the effect of selection on the background trait affects the genetic

variance of the focal trait by the square root of its intensity,
p
S2. By symmetry, we

have E[V2] = 2U/(S2 +
p
S1S2) and thus

E[V1]

E[V2]
=

r

S2

S1

. (4.31)

Hence, the ratio between the expected genetic variances of two traits under strong

stabilizing selection is inversely proportional to the square root of the ratio of their

selection intensities.

Using polar coordinates, it is easy to see that the genetic variances under strong

selection in general do not depend on the distribution of allelic effects if it is spheri-

cally symmetric. For intermediate to low selection strengths, however, this is not the

case. Figure 4.3 shows the ratio E[V1]/E[V2] of two pleiotropically connected traits as

a function of the strength of selection on the first trait by the example of normal (cir-

cles) and exponential (crosses) distributions for the total allelic effect ρ, and for two

different values of E[ρ2], E[ρ2] = 1 (blue) and E[ρ2] = 2 (orange). Clearly, different dis-

tributions produce different outcomes even with identical E[ρ2], although the patterns

are very similar. Increasing the value of E[ρ2] for a given distribution increases the

rate of convergence towards the limit of strong selection, equation (4.31) (dashed line)

approximately proportionally.
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Figure 4.3: Ratio of the expected genetic variances of two traits. For two traits under stabilizing se-

lection (NS1 = 4NS2), we calculated E[V1]/E[V2] by numerical integration of equation (4.25) for normal

(circles) and exponential (crosses) total allelic effect distributions with E[ρ2] = 1 (blue) and E[ρ2] = 2

(orange). Larger allelic effects lead to an approximately proportionally quicker convergence towards

the limit of strong selection, equation (4.31) (dashed line). The choice of the allelic effect distribution

influences the ratio of genetic variances E[V1]/E[V2] in a non-trivial way.
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4.4 Discussion and outlook

4.4.1 Constant selection

In the previous two sections, we investigated multivariate stabilizing selection with fixed

intensities and optima. As argued above, the complexity of interactions between traits

and the genetic loci causes selection on the individual alleles to essentially appear

stochastic, even in the case of constant selection. The more complicated the genetic

details are, the better can we expect the fluctuating selection process described in

Section 4.2 to capture the features of the explicit dynamics of allele frequencies. Using

this description, one may investigate the characteristics of allele frequency trajectories,

e.g., fixation probabilities and expected times to fixation or loss. In particular, the

approach of describing the system by a fluctuating selection process on individual

alleles may provide an alternative way to calculating the stationary distribution of allele

frequencies, and hence the expected genetic variances of multiple quantitative traits.

However, there are two major challenges to overcome. First, the dynamics of the

focal allele influences the trait means and hence its selection coefficient in practice.

In Section 4.2.3, we assumed that the pattern of fluctuations is determined by an

independent process. However, there is a feedback between the stochastic processes

describing the frequency of an allele and its directional selection component, since the

focal allele influences the dynamics of the trait means. This feedback can be modelled

explicitly, but greatly complicates an analytical treatment. There are scenarios when

the feedback between allele frequency and selection coefficient may be neglected, for

instance, if the allelic effects of the focal allele are sufficiently small, or if a great number

of alleles are segregating such that the contribution of the focal allele is irrelevant.

Second, the time scale of fluctuations in the trait means, and hence in the direc-

tional selection components, depend on the genetic variances (c.f. Section 4.2.3):

both the returning force and the volatility of the trait means are linear in VG, see equa-

tion (4.9). On a short time scale of a few generations, Figure 4.1c indicates that that

the process is well-described by substituting the mean genetic variance for VG. How-

ever, if the allele frequency trajectories are determined by changes of the trait means

over longer periods of time, a deeper understanding of the macroscopic dynamics of
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the genetic variances is required. This adds an additional layer of complexity to the

model, since the dynamics of allele frequencies and the directional selection compo-

nents are coupled to the dynamics of the genetic variances.

It may seem paradoxical that our model of fluctuating directional selection compo-

nents requires information about the very quantity that is subject of our investigations.

Similarly to the dynamics of the trait means, equation (4.9), the dynamical process

of the genetic variance has been described on a macroscopic level (Bürger, 2000).

It should thus be possible to apply this process and obtain the directional selection

components of segregating alleles, their stationary frequency distributions, and the

moments of the trait distributions, as functions of its characteristics. These may be

inverted to produce, e.g., the expected genetic variances we are interested in.

The challenges mentioned above are worth tackling and our method provides am-

ple opportunity for future work and an alternative method to calculating the stationary

distribution of allele frequencies under constant selection. The problem in principle

remains unchanged if we allow the trait optima to fluctuate stochastically in time. De-

viations between mean and optimal trait value, and thus the directional selection com-

ponents of the alleles, are still due to a stochastic process. In this case, however,

this process is additionally influenced by the fluctuation patterns of the trait optima.

Thus, our stochastic description of multivariate stabilizing selection may lend itself to

investigating genetic variances under fluctuating stabilizing selection – more so than

the traditional approach exercised in Section (4.3).

Applying Kimura’s stationary distribution of allele frequencies, equation (4.13), to

calculate the expected genetic variances of multiple traits sheds light on the effect of

pleiotropic interactions between traits in the presence of constant stabilizing selection.

Section 4.3.2 shows that known formulae can be generalized to the multivariate case

(equation (4.18)). In the limit of strong selection, we further recover a classical mu-

tation load argument, equation (4.22), that relates the rate of (deleterious) mutations

with the reduction in fitness due to variation of the traits around their optimal values.

One important interest in studying multiple traits is identifying the effect of pleiotrop-

ically connected traits under stabilizing selection on the genetic variance of a focal

trait. In Section 4.3.4, we showed that stabilizing selection with strength S on a back-
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ground trait reduces the genetic variance of the focal trait by a factor that scales with

the square root of S. In particular, we find that the ratio of the genetic variances of

two traits under strong selection is inversely proportional to the square roots of their

selection intensities, see equation (4.31).

Our results were derived under the assumption that selection acts on the traits sep-

arately (no correlations in selection; the matrix S containing the selection intensities

is diagonal), and that there is no pleiotropic structure in the allelic effects on differ-

ent traits (no correlations in mutation; the distribution of α is spherically symmetric).

However, any correlation structure in selection and mutation may be obtained by a

linear transformation of the uncorrelated case (Section 4.2.1). It will be interesting to

study the admissible transformations to compare expected genetic variances under

perceived strengths of stabilizing selection in the presence of a correlation structure

between allelic effects. It is to be expected that measuring stabilizing selection and

mutational effects on a single trait alone can lead to misleading predictions about its

genetic variance if it is part of a group of traits that evolve together under correlated

selection and mutation (Lande and Arnold, 1983).

4.4.2 Fluctuating selection

Fluctuations in a trait optimum have been shown numerically to have great potential

to increase the genetic variance, e.g., Kondrashov and Yampolsky (1996); Bürger and

Gimelfarb (2002). In their simulations, a fluctuating trait optimum was found to amplify

genetic variances by up to an order of magnitude or more. Because fluctuating trait

optima add a great deal of complexity to the dynamics of quantitative trait evolution,

analytical models have mostly looked at simple patterns of fluctuations, e.g., a linearly

moving optimum (Lynch and Lande, 1993; Bürger and Lynch, 1995; Matuszewski et al.,

2015) or an abrupt change of the optimum to a new value (Gomulkiewicz and Holt,

1995; Chevin, 2013). Generally, however, the analytic results of these studies are

concerned more with the dynamics of the trait mean rather than the genetic variance,

which is typically analysed numerically (Jones et al., 2004). In this final section of

Chapter 4, I describe ideas to extend our framework of multivariate stabilizing selection

to fluctuating trait optima. It is not meant to present any results, but deliver some
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detailed insight into possible next steps of the project.

If the trait optima fluctuate in time, they give rise to systematic differences between

the trait means and optima. Hence, directional selection components emerge that we

may not neglect as we did in the stationary distribution approach for constant selec-

tion, Section 4.3. Depending on the pattern of fluctuations, however, there are different

modelling techniques of approaching the problem. In the following, I first cover linearly

moving trait optima and abrupt shifts in the optimal trait values. These can be seen as

building blocks from which to assemble more complicated patterns of fluctuating selec-

tion. I conclude by discussing how fluctuating trait optima may translate into fluctuating

selection on individual alleles, using our modelling approach from Section 4.2.

Linearly moving optima. For simplicity, consider a single trait under stabilizing se-

lection for the optimum ✓ with intensity S with equal allelic effects (αi ⌘ α), and assume

that θ = θ(t) changes linearly in time at some given velocity. The trait mean will then

lag behind its optimum; given that the velocity of the trait optimum is not too high (such

that the trait mean is able to keep up), the lag between trait mean and optimum eventu-

ally reaches a stable value θ− z̄ = ∆ (Lynch and Lande, 1993). Assuming weak allelic

effects, α ⌧ 1, we find from equation (4.8) that the selection coefficient for the alleles

contributing to the trait is approximately s = αS∆. Hence, if we aim at understanding

the genetic variance under linearly moving trait optima, we first have to understand

the genetic variance under directional selection with (linear) selection gradient β = S∆

(c.f. Section 4.1.2).

As in the previous sections, we consider the limit of many loci at low per-locus

mutation rate (n ! 1, µ ! 0, and nµ = U ). Each of the loci has two possible allelic

variants with allelic effects ±α/2; let a fraction P of the loci be fixed for the + allele,

and a fraction Q = 1 − P be fixed for the − allele. Assuming that the trait optimum

moves with positive velocity, ∆ > 0, we call a mutation beneficial if it occurs on a locus

fixed for the − allele, and deleterious if it occurs on a locus fixed for the + allele.

Our aim is to calculate the distribution tavg(p) of times a single mutation spends at

frequency p = 1/N, ..., (N − 1)/N before it hits either p = 0 or p = 1, because this

distribution allows us to determine the steady-state distribution of allele frequencies

in the balance of new mutations occurring and segregating alleles being fixed or lost.
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Conditioning on the corresponding distributions of times for beneficial and deleterious

mutations, tb and td, respectively, we may write

tavg(p) = Q tb(p) + P td(p). (4.32)

To obtain an expression for tb, we condition on whether the mutation is fixed or lost

eventually. Let tlossb (p) and tfixb (p) denote the distribution of times a beneficial allele

spends at frequency p = 1/N, ..., (N − 1)/N before it hits either p = 0 or p = 1,

respectively. Approximating the fixation probability of a beneficial allele by 2s/(1 −
e−2Ns) (Kimura, 1962) and the probability of losing the allele by 1, we obtain

tb(p) =
2s

1− e−2Ns
tfixb (p) + tlossb (p). (4.33)

Analogously, we find an expression for td in terms of tfixd and tlossd . The required distri-

butions tfixb , tlossb , tfixd , and tlossd can be calculated, see Ewens (1979), Ch.4.6. Applying

these formulae to our case yields

tavg(p) /
P
(

1− e2Nsp
)

+Q
(

e2Nsp − e2Ns
)

(1− e2Ns) p (1− p)
. (4.34)

If P and Q emerged from a simple balance of transitions between + and − alleles,

i.e.,

µP −2s

1− e2Ns
= µQ 2s

1− e−2Ns
,

we would obtain P/Q = e2Ns. Inserting this into equation (4.34) yields

Q tb(p) + P td(p) /
e2Nsp

p (1− p)
. (4.35)

This has the form of a stationary distribution of a population with mean fitness esp,

in the limit of small mutation rates (µ ! 0). However, the actual distribution of allele

frequencies in this model is different, see Figure 4.4: We simulated n = 106 loci in a

population of 100 haploid individuals with µ = 10−6 and s = αβ = 0.02. The steady

state distribution of allele frequencies (orange) is different from the distribution (4.35)

(dashed line) and the stationary distribution under neutrality (dotted line).

Using the data from our simulation, we may simply count the number of loci being

fixed for the + and − alleles to estimate P and Q. Inserting these values into equa-

tion (4.34) gives rise to a distribution that fits the simulation very well (Figure 4.4, solid
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line). Unfortunately, this numeric approach to finding P and Q does not provide insight

into how they can be calculated from the model parameters. To be able to predict the

expected genetic variance under directional selection, we require analytic expressions

for the boundary masses P and Q of the steady state distribution, i.e., the probabilities

of being fixed for the + and − states. These could be obtained using the transition

rates between those states in combination with the expected sojourn times of new mu-

tations. We halt the discussion at this point, and leave the problem open as one of the

prospective lines of research in this project.

Abruptly shifting optima. Assume that the optimum of a trait switches abruptly to

a different value. How does the genetic variance evolve as the trait adjusts to its new

optimum, and how are pleiotropically connected traits affected? We exemplify this by

looking at K = 10 traits under stabilizing selection with NSγ ⌘ 1 for all γ = 1, ..., 10. We

set NU = 10 and consider spherically symmetric mutational effects with exponential

radius with mean 1, i.e., fρ(⇢) = e−ρ. Numerical simulations show that, initially, the trait

means remain around their original optima given by θ = 0, and the genetic variances

settle to fluctuations around their expectation of about E[Vγ] ⇡ 0.8, see Figure 4.5.

This value for E[Vγ] can be predicted from equation (4.18) and agrees well with our

simulations – see Figure 4.5b, dashed line.

At some point in time, indicated by the vertical dot-dashed lines in Figure 4.5, we

change the optimum for the first trait to ✓1 = 10. While the trait mean of the first trait

adjusts to the new optimum (Figure 4.5a, blue trajectory), the remaining traits seem

to remain unaffected; since there is no pleiotropic structure, the trait means evolve

approximately independently. The genetic variances, however, all show a significant

increase following the shift of ✓1. Nevertheless, while the impact on the genetic vari-

ance of the adapting trait is highest (Figure 4.5b, blue trajectory), the other traits also

experience a moderate increase of their genetic variances as alleles with positive ef-

fect on the adapting trait rise in frequency.

Figure 4.6 shows the difference between the mean of the first trait and its new

optimum, ∆ = 10− z̄1, for the first 1, 000 generations following the shift. The numerical

trajectory of ∆ (orange line) is very close to exponential at a rate that can be estimated

from the data as ∆(t + 1)/∆(t) ⇡ 0.991 (dotted black line). The response R of a trait
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of mean reversion #γ. Hence, there is also a purely mathematical motivation for inves-

tigating the effect of stochastic ✓γ.

Furthermore, the application of tools from stochastic analysis to our problem opens

up a set of mathematical techniques that have so far rarely been used in the context

of quantitative genetics; thus, they may provide new alternatives for studying the dis-

tribution of allele frequencies under fluctuating trait optima. Clearly, this is not a simple

task. A great simplification will be to consider the limit of large populations first, so

that random fluctuations in the trait means can be neglected and the process of the

z̄γ depends on the dynamics of ✓γ in a deterministic manner. Thus, the trait optima

θ are the single source of stochasticity, which may allow to investigate the evolution

of allele frequency distribution in the balance of mutation and stabilizing selection for

fluctuating optima. This, however, will be subject to future work.

4.4.3 Conclusion

In summary, I presented the current status of my work on multivariate stabilizing selec-

tion on a set of quantitative traits. The shown results constitute first steps to a better

understanding of how coupled traits interact and how selection on background traits

influences the genetic variance of a focal trait. There are several ways to extend the

project, which I indicated in this section. First, concerning the fluctuating selection

approach of Section 4.2, the feedback between the two processes for the frequency

of the focal allele and its directional selection component is unclear. Furthermore, the

impact of fluctuations of the genetic variance on the Ornstein-Uhlenbeck description

of the trait means z̄γ should be investigated more closely. Second, it will be interesting

to quantify the effect of correlations in selection (trade-off) and mutation (pleiotropic

structure) on the expected genetic variances. This can be achieved by studying lin-

ear transformations of the uncorrelated case that we are focussing on here. Third,

temporally fluctuating selection on quantitative traits remains virtually unexplored an-

alytically. I described several possibilities to tackle this shortcoming. These are (i) lin-

early moving trait optima, which may be approximated by a constant lag between trait

mean and optimum and hence constant directional selection; (ii) an abrupt change of

the trait optimum, which is followed by a phase of exponential adaptation and hence
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a pre-determined sequence of directional selection components; and (iii) fluctuating

trait optima according to some stochastic process, which may be integrated into the

Ornstein-Uhlenbeck description of the trait means to obtain a randomly fluctuating se-

lection coefficient.

Each of the above-mentioned extensions are challenging and may be tackled rela-

tively independently. Yet, putting together the presented results with prospective lines

of research, my project will contribute to a deeper understanding of the evolution of

quantitative traits under multivariate stabilizing selection that is necessary to compre-

hend the dynamics of genetic variation in complex functional organisms evolving in

realistic environments.
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5 Conclusion

In this thesis, I present three seemingly unrelated topics that are connected by the

common theme of changing environments. Environmental change in space and time

is ubiquitous in natural populations and may either give rise to or strongly interfere with

evolutionary phenomena. The former is the case in Chapter 2 and Chapter 3, where

temporally fluctuating or spatially heterogeneous external conditions induce selective

forces on a mutation or dispersal modifier. The latter is discussed in the context of

quantitative genetics, see Chapter 4, where spatio-temporal variation in selection is

known to have the potential to greatly inflate the genetic variances of phenotypic traits.

Stress-induced mutagenesis. In clinical applications, humans deliberately force ex-

treme environmental fluctuations on bacterial populations and other pathogenic organ-

isms by devising drug treatment regimes to eradicate target populations (Bollenbach,

2015). In the resulting biological arms race, species evolve mechanisms to deal with

the imposed challenges, which necessitates the development of treatment strategies

that inhibit resistance evolution. One possibility, for instance, is the cyclical application

of a set of drugs that attack different vital pathways in the target organism (Bonhoeffer

et al., 1997).

However, under repeated challenges of different kinds, there may be selection pres-

sure for evolvability, i.e., the capability of adapting to unforseen situations. Increasing

mutation rates under unfavourable conditions (stress-induced mutagenesis, SIM) can

be an effective mechanism to enhance evolvability, which I discuss in Chapter 2. The

model studied there indicates that the diversity of applied challenges is a crucial factor
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for positive second-order selection on SIM alleles. This may have implications for an-

tibiotic treatment plans to come up with strategies to both inhibit resistance evolution

and evolvability. In the face of the current antibiotic resistance crisis, such considera-

tions may be of critical relevance. The main challenges will be to theoretically quantify

the strength of second-order selection in terms of clinically relevant variables, and to

experimentally confirm that stress-induced mutagenesis actually plays an active role

in recovering population growth rates under environmental challenges.

Evolution of dispersal. Heterogeneous environments may feature habitats of dif-

ferent quality levels, capable of sustaining populations of variable size. As I explain

in Chapter 3, random dispersal in such situations leads to a net flow of individuals

from good-quality into bad-quality habitat such that dispersal is disfavoured on aver-

age (Hastings, 1983). There are other costs to dispersal due to, e.g., the expenditure of

time and energy, the risk of predation, and maladaptation due to migration into foreign

habitat (Bonte et al., 2012). Consequently, dispersal must entail significant benefits to

be maintained. Two main drivers of the evolution of positive dispersal are known to

be temporal environmental fluctuations – in the extreme case, to spatially bet-hedge

against catastrophic events (Van Valen, 1971) – and effects of relatedness between

individuals to avoid competition with relatives (Hamilton and May, 1977).

In Chapter 3, I present a model of dispersal evolution, which indicates that spatial

changes in dispersal type frequencies cause selection for increased dispersal. This is

an abstract, yet very general formulation of a force promoting dispersal that contains

selection for dispersal due to relatedness and allows to quantify its strength. Hetero-

geneities in dispersal type frequencies, however, may be generated and maintained

by various processes. For example, the direction of movement of clines maintained

by selection is biased towards slower-diffusing types, which may be interpreted as a

selective advantage of increased dispersal, c.f. Section 3.5. Another process that may

interact with dispersal may be genetic draft, i.e., the spatial sweep of beneficial alleles

through the population, which may perturb the frequencies of dispersal modifiers that

are linked to the sweeping allele. My result indicates that there may be yet unnoticed

factors of dispersal evolution to be explored, and it enables us to put them on a single

scale by the amount they perturb dispersal type frequencies.
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Multivariate quantitative genetics. Constant selection on quantitative traits is gen-

erally believed to erode genetic variation in the long run. This is more an empirical

observation than an affirmed result, because selection on a trait leads to complicated

epistatic interactions in fitness between the underlying alleles. This makes it difficult to

arrive at simple conclusions, since it may be conceivable to devise a fitness function

such that the evolutionary dynamics maintain a positive level of genetic variance even

without mutations generating variation. From the proof I present in Appendix A3, how-

ever, it follows that this is impossible in haploid populations. The novelty of this result

lies in the fact that my argument allows for arbitrary epistasis between alleles, and

hence is applicable to selection on quantitative traits. In models of (constant) selection

and mutation, it is thus justified to think of the genetic variance of traits as emerging

from a balance between mutation generating variation, and selection eroding it.

In Chapter 4, I argue for generalizing relatively simple models of a single trait under

constant stabilizing selection to sets of multiple traits and fluctuating selection. The

results I present in this chapter come from ongoing work and contribute to our un-

derstanding of how the presence of and selection on pleiotropically connected traits

influence the expected genetic variance of a focal trait. The full dynamics of the pro-

cess is highly intricate, yet the approach outlined in Section 4.2 may take advantage

of its complexity and describe it statistically in terms of stochastic processes.

In the light of genetic loads, the results from Chapter 4 provide interesting insight.

The mean fitness, equation (4.6), is reduced below its maximal value of w̄ = 1 by two

factors, the deviation of the mean from the optimum giving rise to “drift load”, and the

genetic variance leading to “mutation load” (Crow, 1970). Our simulations show that

the stationary distribution of the deviation of the mean of a given trait from its optimum

is independent of the number of pleiotropically connected traits. Consistently with the

Ornstein-Uhlenbeck description of the dynamics of trait means, c.f. Section 4.2.3, the

stationary distribution is close to a Gaussian with variance 1/(2NS). Due to the sum

over all traits in the expression for w̄, equation (4.6), it follows that the drift load is

proportional to the number of traits. In contrast, the mutation load is independent of

the number of traits, at least in the limit of strong selection (infinite population), due

to equation (4.22). Our formula for the expected genetic variance, equation (4.18),
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may be used to study the mutation load in finite populations (c.f. Kimura et al., 1963)

to investigate the dependence of the mutation load on the number of traits and the

population size.

Our results on selection on pleiotropically connected traits show a square-root de-

pendence of the genetic variance of the focal trait on selection on the background

trait. This is likely due to the spherical symmetry of mutational effects assumed in our

model, since we average over a uniformly distributed angle between the effects on

different traits. With stronger correlations in mutational effects between traits, we may

expect stronger dependence of the focal trait on background traits. However, note that

selection on pleiotropically connected traits influences the genetic variance of the fo-

cal trait even though there are no genetic covariances between the traits (Vγλ = 0). In

particular, we saw in Section 4.3.4 that selection on pleiotropically connected traits re-

duces the genetic variance of a neutral trait below its expected value of NUE[α2
γ]. This

is reminiscent of apparent stabilizing selection (c.f. Barton, 1990), i.e., the false ap-

pearance of stabilizing selection on the trait itself. Making the analogy precise may be

a fruitful way towards a better understanding of the effect of selection on pleiotropically

connected traits.

In Section 4.4, I discuss several ways of advancing my project. The task is challeng-

ing, but will lead to a deeper understanding of how pleiotropy interferes with the abil-

ity of populations to adapt to changing environments, which undoubtedly has gained

acute urgency. Furthermore, it may help us investigate structural properties of sets

of phenotypic traits that shape complex living organisms. Is the pleiotropic network

between traits subdivided into clusters, and if it is, do the traits of a given cluster

have some functional relationship (modularity)? How many such clusters can there

be, and how are the correlation structures between traits in each cluster? How many

degrees of freedom does the underlying genetic basis afford for exploring the pheno-

typic space? How strongly does selection act on each trait, and how many traits may

be maintained at an optimum efficiently? These are few of the many questions that

may be asked, yet will be hard to answer. Chapter 4 constitutes a small contribution

towards understanding the big picture, and there is ample opportunity for pushing my

research further beyond the steps indicated here.



93

Bibliography

A. F. Agrawal and A. D. Wang, Increased transmission of mutations by low-condition

females: evidence for condition-dependent DNA repair, PLoS Biology, 6(2):e30,

2008.

M. K. Alam, A. Alhhazmi, J. F. DeCoteau, Y. Luo, and C. R. Geyer, RecA inhibitors

potentiate antibiotic activity and block evolution of antibiotic resistance, Cell Chemi-

cal Biology, 23(3):381–391, 2016.

L. A. Bach, J. Ripa, and P. Lundberg, On the evolution of conditional dispersal un-

der environmental and demographic stochasticity, Evolutionary Ecology Research,

9(4):663, 2007.

B. J. Balkau and M. W. Feldman, Selection for migration modification, Genetics,

74(1):171–174, 1973.

N. H. Barton, The dynamics of hybrid zones, Heredity, 43(3):341–359, 1979.

N. H. Barton, The divergence of a polygenic system subject to stabilizing selection,

mutation and drift, Genetical Research, 54(1):59–78, 1989.

N. H. Barton, Pleiotropic models of quantitative variation, Genetics, 124(3):773–

782, 1990.

N. H. Barton, Clines in polygenic traits, Genetical Research, 74(03):223–236, 1999.

N. H. Barton, Genetic hitchhiking, Phil. Trans. R. Soc. Lond. B, 355(1403):1553–

1562, 2000.

N. H. Barton, D. E. G. Briggs, J. A. Eisen, D. B. Goldstein, and N. H. Patel, Evolution,

Cold Spring Harbor Laboratory Press, NY, 2007.



BIBLIOGRAPHY 94

N. H. Barton and B. Charlesworth, Why sex and recombination?, Science,

281(5385):1986–1990, 1998.

N. H. Barton and A. Clark, Population structure and processes in evolution, In

Population Biology, pages 115–173. Springer, 1990.

N. H. Barton and P. D. Keightley, Understanding quantitative genetic variation, Na-

ture Reviews Genetics, 3(1):11–21, 2002.

N. H. Barton and M. Turelli, Spatial waves of advance with bistable dynamics:

Cytoplasmic and genetic analogues of Allee effects, The American Naturalist,

178(3):E48–E75, 2011.

L. E. Baum and J. A. Eagon, An inequality with applications to statistical estimation

for probabilistic functions of Markov processes and to a model for ecology, Bull.

Amer. Math. Soc, 73(3):360–363, 1967.

M. Baym, L. K. Stone, and R. Kishony, Multidrug evolutionary strategies to reverse

antibiotic resistance, Science, 351(6268):aad3292, 2016.

A. D. Bazykin, Hypothetical mechanism of speciation, Evolution, 23(4):685–687,

1969.

G. Bell and A. Gonzalez, Evolutionary rescue can prevent extinction following envi-

ronmental change, Ecology Letters, 12(9):942–948, 2009.

F. E. Benth and A. Khedher, Weak stationarity of Ornstein-Uhlenbeck processes

with stochastic speed of mean reversion, In The Fascination of Probability, Statistics

and their Applications, pages 153–189. Springer, 2016.

C. T. Bergstrom, M. Lo, and M. Lipsitch, Ecological theory suggests that antimicro-

bial cycling will not reduce antimicrobial resistance in hospitals, Proceedings of the

National Academy of Sciences, 101(36):13285–13290, 2004.

A. T. Bharucha-Reid, Elements of the theory of Markov processes and their applica-

tions, McGraw-Hill Series in Probability and Statistics. McGraw-Hill Book Co., Inc.,

New York, 1960.



BIBLIOGRAPHY 95

S. Billiard and T. Lenormand, Evolution of migration under kin selection and local

adaptation, Evolution, 59(1):13–23, 2005.

I. Bjedov, O. Tenaillon, B. Gérard, V. Souza, E. Denamur, M. Radman, F. Taddei, and

I. Matic, Stress-induced mutagenesis in bacteria, Science, 300(5624):1404–1409,

2003.

F. Blanquart and S. Gandon, Evolution of migration in a periodically changing envi-

ronment, The American Naturalist, 177(2):188–201, 2011.

F. Blanquart and S. Gandon, On the evolution of migration in heterogeneous envi-

ronments, Evolution, 68(6):1617–1628, 2014.

T. Bollenbach, Antimicrobial interactions: mechanisms and implications for drug

discovery and resistance evolution, Current Opinion in Microbiology, 27:1–9, 2015.

D. I. Bolnick, L. K. Snowberg, C. Patenia, W. E. Stutz, T. Ingram, and O. L.

Lau, Phenotype-dependent native habitat preference facilitates divergence between

parapatric lake and stream stickleback, Evolution, 63(8):2004–2016, 2009.

S. Bonhoeffer, M. Lipsitch, and B. R. Levin, Evaluating treatment protocols to

prevent antibiotic resistance, Proceedings of the National Academy of Sciences,

94(22):12106–12111, 1997.

D. Bonte, H. Van Dyck, J. M. Bullock, A. Coulon, M. Delgado, M. Gibbs, V. Lehouck,

E. Matthysen, K. Mustin, M. Saastamoinen, N. Schtickzelle, V. M. Stevens, S. Van-

dewoestijne, M. Baguette, K. Barton, T. G. Benton, A. Chaput-Bardy, J. Clobert,

C. Dytham, T. Hovestadt, C. M. Meier, S. C. F. Palmer, C. Turlure, and J. M. J. Travis,

Costs of dispersal, Biological Reviews, 87(2):290–312, 2012.

D. E. Bowler and T. G. Benton, Causes and consequences of animal dispersal

strategies: relating individual behaviour to spatial dynamics, Biological Reviews,

80(2):205–225, 2005.

J. R. Bridle, S. J. E. Baird, and R. K. Butlin, Spatial structure and habitat variation in

a grasshopper hybrid zone, Evolution, 55(9):1832–1843, 2001.



BIBLIOGRAPHY 96

M. G. Bulmer, The genetic variability of polygenic characters under optimizing se-

lection, mutation and drift, Genetical Research, 19(1):17–25, 1972.

R. Bürger, The mathematical theory of selection, recombination, and mutation, vol-

ume 228, Wiley Chichester, 2000.

R. Bürger and A. Gimelfarb, Fluctuating environments and the role of mutation in

maintaining quantitative genetic variation, Genetical Research, 80(1):31–46, 2002.

R. Bürger and M. Lynch, Evolution and extinction in a changing environment: a

quantitative-genetic analysis, Evolution, 49(1):151–163, 1995.
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Appendix

A1 Modelling SIM alleles

A1.1 Dynamics of SIM allele frequencies

We start by casting the schematic dynamics of Figure 2.1 into differential equations of

the form (2.1) and analysing their behaviour. The aim of this section is to analyse the

dynamics of the SIM allele frequency in the stress and the no-stress environments.

The normal environment. In the normal (i.e., no-stress) environment, the genotype

frequencies evolve according to,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ṗmr = µM pMr + µR pmR − ⌫R pmr

ṗMr = µR pMR − (µM + ⌫R) pMr

ṗmR = ⌫R pmr + µM pMR − µR pmR

ṗMR = ⌫R pMr − (µM + µR) pMR

, (A1.1)

where the dot indicates a derivative with respect to time, ṗ = dp/dt. In terms of the the

frequency of the SIM allele, pM = pMr + pMR, the frequency of resistant genotypes,

pR = pmR + pMR, and the frequency of resistant genotypes among those that carry the

SIM allele, q = pMR/pM , we may rewrite equations (A1.1) as

8

>

>

>

<

>

>

>

:

ṗM = −µM pM

ṗR = ⌫R (1− pR)− µR pR

q̇ = ⌫R (1− q)− µR q

. (A1.2)
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Remarkably, these equations are independent from each other. Furthermore, the

equations for pR and q are identical; given the same initial conditions pR(0) and q(0),

these two variables thus remain the same. The solution to the equations (A1.2) are

8

>

>

>

<

>

>

>

:

pM(t) = pM(0) e−µM t

pR(t) =
(

1− e−(µR+νR)t
)

νR
µR+νR

+ pR(0) e
−(µR+νR)t

q(t) =
(

1− e−(µR+νR)t
)

νR
µR+νR

+ q(0) e−(µR+νR)t

. (A1.3)

The stress environment. To obtain tractable equations for the stress environment,

we assume that s and σ are large, and that the duration of stress is short relative to

the duration of no stress. More precisely, we take the full set of equations,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ṗmr = −s pmr (pmR + pMR) + σµM pMr − ⌫R pMr + µR pmR

ṗMr = −s pMr (pmR + pMR)− σ (µM + ⌫R) pMr + µR pMR

ṗmR = s pmR (1− pmR − pMR) + ⌫R pmr − µR pmR + µM pMR

ṗMR = s pMR (1− pmR − pMR) + σ⌫R pMr − (µR + µM) pMR

, (A1.4)

replace s 7! αs, σ 7! ασ, and rescale time dt 7! dt/α. Then, dividing by α and letting

α ! 1, we may neglect the rightmost terms of the above equations. We thus obtain

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ṗmr = −s pmr (pmR + pMR) + σµM pMr

ṗMr = −s pMr (pmR + pMR)− σ (µM + νR) pMr

ṗmR = s pmR (1− pmR − pMR)

ṗMR = s pMR (1− pmR − pMR) + σνR pMr

. (A1.5)

This approximation corresponds to neglecting all mutational transitions that are not

multiplied by σ in Figure 2.1b. Evidently, this dynamics converges to a unique equilib-

rium where all genotypes are resistant, and some fraction of genotypes containing the

SIM allele. In terms of the variables introduced above, this corresponds to pR(t) ! 1,

q(t) ! 1, and pM(t) ! p⇤M for t ! 1.

To calculate an expression for p⇤M analytically, we recast the system (A1.5) using

the variables pR = pmR + pMR, y = pMr/pR, and z = pmR/pR:

8

>

>

>

<

>

>

>

:

ṗR = s pR (1− pR) + σ νR pR y

ẏ = −y [s+ σ (µM + νR (1 + y))]

ż = −σνR y z

. (A1.6)
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For given initial conditions (pR(0), y(0), z(0)) and t ! 1, this system converges to

pR(t) ! 1, y(t) ! 0, and

z(t) ! z1 = z(0)
s+ σ (µM + ⌫R)

s+ σ (µM + ⌫R (1 + y(0)))
. (A1.7)

The expression for p⇤M is then calculated as p⇤M = (1− z1).

A1.2 Recursions for the SIM allele frequencies

Here, we set up recursions for the SIM allele frequency in the two limiting cases dis-

cussed in the main text, Section 2.3.1, the (R) and (NR) regimes. In both cases, we

measure the genotype frequencies directly before each stress to obtain the SIM allele

frequency p0M after one cycle of stress and no stress by

p0M = (G ◦ F) (pM), (A1.8)

where F and G are two mappings describing the stress and no-stress phases, respec-

tively.

Throughout, we use the approximation of the stress dynamics from the previous

section, describing it by an instantaneous jump in the SIM allele frequency, pM !
F(pM) = p⇤M . Thus, selection is assumed to be strong enough to fix the resistance

allele practically immediately. Furthermore, if the stress does not persist for long,

mutations from pMR to pmR can be neglected, and p⇤M = (1− z1) (with z1 from equa-

tion (A1.7)) can be expected to approximate the full dynamics (A1.4) (Figure 2.1b)

well.

We assume that one iteration of stress and no stress takes ⌧ time units. In the main

text (Section 2), we denoted the duration of the stress and no-stress environments by

⌧S and ⌧NS, respectively. In our analytical approach here, stress is approximated by

an instantaneous jump in allele frequencies, hence ⌧S = 0, and we apply the no-stress

environment for ⌧NS = ⌧ time units. Thus, the mapping G = Gτ depends explicitly on ⌧ ;

due to equation (A1.3), we have

G(P ) = Gτ (P ) = P e−µP τ . (A1.9)

The mappings of the jumps for the two stress regimes, F (R) and F (NR), will be defined

below.
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In contrast to the approximation described here, numerical simulations of the full

dynamics, i.e., iterating the equations (A1.4) for the stress environment and equa-

tions (A1.1) for the no-stress environment, naturally require ⌧S > 0 and ⌧NS = ⌧ − ⌧S.

However, a comparison between our analytical results (see below) and simulations of

the full dynamics for identical values of ⌧ demonstrates a good fit between the two

approaches, indicating that the approximations made here are justified (see also Fig-

ure 2.3).

The recurrent stress regime. Suppose that the same stress occurs every ⌧ > 0 time

units. Since we assume that each stress phase leads to the fixation of the resistance

allele, we have that pR = q = 1 at the beginning of each no-stress phase. Hence,

because the equations of these two variables are identical, see equation (A1.2), we

have pR(t) = q(t) for all times after the first occurrence of stress. At the end of each

no-stress period, we thus have

pR(⌧) = q(⌧) =
⌫R

µR + ⌫R
+ e−(µR+νR)τ

✓

1− ⌫R
µR + ⌫R

◆

(A1.10)

due to equation (A1.3). Inserting these values to obtain new initial frequencies for the

next stress phase required for equation (A1.7) allows us to calculate z1 and thus

F (R)(P ) = 1− z1 =

= 1− (pR(⌧)− P q(⌧)) (s+ σ (µP + ⌫R))

s pR(⌧) + σ [pR(⌧) (µP + ⌫R) + ⌫R P (1− q(⌧))]
. (A1.11)

Inserting this expression and the identity (A1.9) into the general recursion (A1.8), and

solving for equilibria fulfilling p̂
(R)
M =

(

G ◦ F (R)
)

(p̂
(R)
M ), provides the long-term preva-

lence of the SIM allele in the recurrent stress regime, p̂
(R)
M , as given in equation (2.3a).

The non-recurrent stress regime. Suppose that the population does not experi-

ence the same stress twice. As a consequence, we may neglect any resistance gained

from previous stress occurrences. Instead, we assume that the fraction of genotypes

that initially are resistant against an upcoming stress is in mutation balance, i.e., de-

termined by the relative rates of gaining and losing resistance by mutation. Hence, we

may use pR = q = ⌫R/ (µR + ⌫R) to determine the initial conditions for the stress phase

leading to z1 in equation (A1.7). Analogously to the above, this yields an expression
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for F (NR). Solving p̂
(NR)
M =

(

G ◦ F (NR)
)

(p̂
(NR)
M ), we obtain the long-term prevalence of

the SIM allele in the non-recurrent stress regime, p̂
(NR)
M , as given in equation (2.3b).

A1.3 Comparison between stress regimes

We assign the following names to the non-trivial terms on the right hand sides of

equation (2.3):

P (R)
τ = e−µM τ − @

(

1− e−µM τ
)

✓

1 +
µR + ⌫R

⌫R

(

e(µR+νR)τ − 1
)−1
◆

, (A1.12a)

P (NR)
τ = e−µM τ − @

(

1− e−µM τ
)

, (A1.12b)

where @ > 0 is defined in equation (2.4). Since

∆ = P (NR)
τ − P (R)

τ =
1− e−µP τ

e(µR+νR)τ − 1

µR + ⌫R
⌫R

@ > 0, (A1.13)

the long-term SIM allele prevalence under non-recurrent stresses is never lower than

in the recurrent stress regime (p̂
(NR)
M ≥ p̂

(R)
M ). In particular, for ⌧ = ⌧c the value of ∆,

and hence of P (R)
τc , is already negative.

We may argue that the SIM allele cannot be maintained in the population in the

recurrent stress regime if ⌫R is sufficiently small compared to µR. To this end, we

rewrite equation (A1.13) as

∆ =
1

"

1− e−µP τ

e(µR+νR)τ − 1
@. (A1.14)

Then, ⌫R ⌧ µR corresponds to " ⌧ 1. Furthermore, on the closed interval [0, ⌧c], the

function
1− e−µP τ

e(µR+νR)τ − 1
@

is bounded away from zero, i.e., it has a positive minimum. Therefore, if ⌫R is small,

1/" is large, and hence ∆ is large on [0, ⌧c]. Thus, by choosing ⌫R sufficiently small, we

may push P (R)
τ arbitrarily far below zero, thus p̂

(R)
M ⌘ 0 for all ⌧ ≥ 0.
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A2 Technical details of dispersal evolution

A2.1 Derivation of the model equations

Here, I derive the model equations (3.2) for a population consisting of n types that

occupy a habitat Ω ✓ R. In addition to the main text, I consider variable growth rates

between types to illustrate how, e.g., explicit cost of dispersal or selection could be

incorporated into the model. Let ri = ri(x,NT ) denote the per-capita growth rate of

type i.

Local reproduction changes the type densities Ni to N⇤
i . We assume that this

change is small, namely proportional to the (infinitesimal) time interval under consid-

eration, ∆t, and neglect all weaker effects, o(∆t). Then, we may write

N⇤
i (x, t) = Ni(x, t)(1 + ri(x, t)∆t) + o(∆t). (A2.1)

Second, we model dispersal. For each individual of type i that is located at position

y at time t, the probability to migrate into an interval around x of length ∆x within

∆t time units is expressed via the dispersal kernels µi by µi(y, t; x, t + ∆t)∆x. Using

the dispersal kernels µi, which naturally fulfil
R

Ω
µi(y, t; x, s)dx = 1, we obtain the next

generation by

Ni(x, t+∆t) =

Z

Ω

N⇤
i (y, t)µi(y, t; x, t+∆t)dy. (A2.2)

If the dispersal kernels fulfil the assumptions (3.1) and are sufficiently smooth, they

satisfy a Kolmogorov forward equation (see, e.g., Bharucha-Reid (1960), pp.130–136)

@sµi(y, t; x, s) =
1

2
@xx (Vi(x, t)µi(y, t; x, s))−

− @x (Mi(x, t)µi(y, t; x, s)) . (A2.3)

Using equations (A2.1) and (A2.2), and dividing by ∆t, we find

Ni(x, t+∆t)−Ni(x, t)

∆t
=

=

Z

Ω

Ni(y, t)
µi(y, t; x, t+∆t)− µi(y, t; x, t)

∆t
dy +

+

Z

Ω

✓

Ni(y, t)ri(y, t) +
o(∆t)

∆t

◆

µi(y, t; x, t+∆t) dy. (A2.4)
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For ∆t ! 0, (A2.3) can be inserted into (A2.4) to obtain

@tNi(x, t) =
1

2
@xx

✓

Vi(x, t)

Z

Ω

Ni(y, t)µi(y, t; x, t)dy

◆

−

− @x

✓

Mi(x, t)

Z

Ω

Ni(y, t)µi(y, t; x, t)dy

◆

+

+

Z

Ω

Ni(y, t)ri(y, t)µi(y, t; x, t)dy. (A2.5)

Since µi(y, t; x, t) is a point mass, the integrals resolve to

@tNi = −@xJi +Niri, (A2.6)

where Ji = MiNi − 1
2
@x(ViNi) is the flux of individuals of type i as in the main text.

With NT (x, t) =
P

i Ni(x, t) and pi(x, t) =
Ni(x,t)
NT (x,t)

, a short calculation shows that NT

evolves according to

@tNT = −@x

✓

M̄NT − 1

2
@x
(

V̄ NT

)

◆

+
n
X

j=1

Njrj

= −@xJT +NT r̄, (A2.7a)

where r̄ =
Pn

j=1 pjrj, M̄ =
Pn

j=1 Mjpj and V̄ =
Pn

j=1 Vjpj, and JT =
P

i Ji is the

overall flux of individuals. Applying the quotient rule to @tpi = @t(Ni/NT ) furthermore

gives

@tpi =
1

NT

 

−@xJi + pi@xJT +Niri − pi

n
X

j=1

Njrj

!

=
1

NT

(−@xJi + pi@xJT ) + pi(ri − r̄). (A2.7b)

Compare (A2.7b) to the model by Nagylaki and Moody (1980). With ri = r for all i, the

equations (A2.7) simplify to the model equations (3.2).

A2.2 Separation of time scales

Assume that growth rates and dispersal patterns are identical for all types, i.e., ri ⌘ r,

Mi ⌘ M0 and Vi ⌘ V0 for all i. We write the dynamics of this reference population N0,T

as

@tN0,T = −@xJ0,T + rN0,T , (A2.8)
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where the reference flux is given by J0,T = M0N0,T − 1/2@xV0N0,T . Now suppose

that dispersal patterns deviate only slightly from the reference pattern, Mi = M0 +mi

and Vi = V0 + vi, where mi and vi (and their derivatives) are of order O("). Further-

more assume that @xpi and @xxpi stay bounded. This assumption is natural since local

agglomerates flatten out by diffusion. Then, the population density dynamics, equa-

tion (3.2a), are dominated by the reference dynamics (A2.8), i.e., they differ only up to

order O("):

@tNT =− @xJ0,T + rNT +
v̄

2
@xxNT−

− (m̄− @xv̄)@xNT −
✓

@xm̄+
@xxv̄

2

◆

NT

=− @xJ0,T + rNT +O("), (A2.9)

where m̄ =
P

mjpj and v̄ =
P

vjpj are the average deviations from the reference

values M0 and V0. Since ri ⌘ r for all i, the right hand side of equation (3.2b) can be

approximated by the reference flux as

@tpi ⇡
1

NT

(−@xJ0,i + pi@xJ0,T ) , (A2.10)

where J0,i = M0piN0,T − 1/2@xV0piN0,T . Assuming that type frequencies spread out

such that @xpi and @xxpi become negligibly small, expanding the right hand side of (A2.10)

shows that @tpi = O(").

A2.3 Stability of balanced dispersal

Consider the dynamics of two types in terms of (A2.6) for uniform growth rates r0 =

rI = r, reading

@tN0 =− @xJ0 +N0r, (A2.11a)

@tNI =− @xJI +NIr, (A2.11b)

and assume that the original type N0 follows a balanced dispersal strategy, i.e., @xV0−
M0 = const. The dispersal strategy of the modified type NI deviates from that of N0

only slightly, V1 = V0 + v and M1 = M0 + m. In the absence of the modifier, N0

equilibrates at carrying capacity N⇤
0 = . I show that this equilibrium is asymptotically

stable against invasion of non-balanced dispersal strategies.
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At equilibrium, r ⌘ 0. Setting NI(x, t) = e−λtQ(x), equation (A2.11b) transforms

into an eigenvalue problem of Sturm-Liouville type (Courant and Hilbert, 1954; Wein-

stock, 1974):

0 =
1

2
@x ((V0 + v)@xQ) + @x(ΦQ) + λκQ, (A2.12)

where Φ = 1/2∂x(vκ)−mκ. Upon multiplication with the integrating factor

2eξ

(V0 + v)κ
, where ξ =

Z

∂x[(V0 + v)κ] + Φ

(V0 + v)κ
dx,

equation (A2.12) can be written in self-adjoint form

0 = ∂x
(

eξ∂xQ
)

+

✓

2eξ
∂xΦ

(V0 + v)κ
+ λ

2eξ

V0 + v

◆

Q. (A2.13)

If Φ is constant, the eigenvalues of (A2.13) are known to constitute a non-negative

sequence 0  λ0 < λ1 < ... (Weinstock, 1974). It is easy to see that λ0 = 0 is an

eigenvalue with constant eigenfunction Q0 ⌘ const. Therefore, if the modifier uses a

balanced dispersal strategy (Φ ⌘ const), it is neutral with respect to the original type.

Now assume that Φ 6= const. If m and v are small, ∂xΦ is small and equation (A2.13)

can be seen as a perturbation of the case Φ ⌘ const. Eigenvalues of (A2.13) depend

continuously on the coefficients of the system (Courant and Hilbert, 1954). Thus, the

following perturbation analysis is justified. I write m = εm̃ and v = εṽ. Then, Φ = εΦ̃

and we consider the smallest eigenvalue and its eigenfunction to be a function of ε,

i.e., λ0 = λ0(ε) and Q0 = Q0(ε). With this notation, the derivative dλ0/dε determines

the stability of the system.

Using the variational characterization of eigenvalues of (A2.13), Q0(ε) minimizes

the functional
Z

Ω

eξ(∂xQ)2 − ε
2eξ∂xΦ̃

(V0 + v)κ
Q2dx, (A2.14)

and its minimal value is λ0(ε). Since λ0(0) = 0 and Q0(0) ⌘ const, the required deriva-

tive is
dλ0

dε
(0) =

Z

Ω

2Φ2

(V0 + v)κ
e
R
Φ/[(V0+v)κ]dx−

⇣

e
R
Φ/[(V0+v)κ]Φ

⌘

∣

∣

Ω
. (A2.15)

This expression is positive since the last term vanishes under reasonable assumptions

on the boundaries of the habitat. Thus, the introduction of a non-balanced dispersal

strategy causes the minimal eigenvalue to become positive and hence, the original

population is protected from invasion by a non-balanced dispersal strategy.
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A2.4 Genetic drift in a stepping stone model

We employ a stepping stone model (Kimura and Weiss, 1964) as a discrete analogue

of the type frequency dynamics under type-dependent dispersal, equation (3.2b). The

recursion for the type frequencies reads

p0(j) =
p(j) +

M +m

2

(

p(j−1) + p(j+1) − 2p(j)
)

1 + m

2

(

p(j−1) + p(j+1) − 2p(j)
) j = 1, ..., J , (A2.16)

where the prime denotes frequencies measured in the next generation. With this no-

tation, I assume that the habitat Ω consists of J equally spaced patches. Dispersal

is described by migration rates 0 < M < 1 that determine the fraction of individuals

leaving their patch to migrate to one of the adjacent patches (nearest-neighbour mi-

gration) with equal probability. These rates then translate into diffusiveness values of

V = M (Ω/J )2 and M = 0. The modifier type has frequency p(j) in patch j and mi-

gration rate M + m , the original type thus has frequency 1 − p(j) and migration rate

M .

If each of the J patches contains N individuals, the total number of individuals

present in the habitat is ΩNT = JN . However, population size does not enter equa-

tion (A2.16) since it is assumed to be constant. This assumption can be justified by

a specific population regulation mechanism or by taking m sufficiently small. Note

that carrying capacity is considered to be spatially homogeneous and dispersal to be

unconditional, hence population size is at carrying capacity at all times. Starting out

from equation (A2.16), we can derive an expression for the change in the number of

modifiers during one generation. For m ⌧ M ⌧ 1, it reads

∆N total
I =

X

j

N
(

p0(j) − p(j)
)

=

= −mN

2

X

j

p(j)
(

p(j−1) + p(j+1) − 2p(j)
)

. (A2.17)

This expression is equivalent to a discretization of the corresponding equation in the

continuous setting, equation (3.7). If the habitat is homogeneous, the system is trans-

lation invariant at equilibrium. Then, taking the expectation of (A2.17) over a realization

of the sampling process, we find that the expected change in total modifier abundance

is given by equation (3.8).
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The variance σp and the between-patch correlation ⇢ of type frequencies in space

have been analysed under dispersal and selection, e.g., Felsenstein (1975); Nagylaki

(1978), and under dispersal and mutation, e.g., Kimura and Weiss (1964); Weiss and

Kimura (1965), ultimately yielding expressions for these quantities at stochastic equi-

librium. Additional mechanisms like selection or mutation need to be evoked, since

under random drift alone one type will eventually fix in the population, which leads to

zero variance of type frequencies at equilibrium. In the articles mentioned above, only

the presence of a single dispersal type in the population has been analysed. However,

since the migration modification m is small, we will expand (3.8) only up to leading

order in m such that this deficiency can be ignored.

I follow Kimura and Weiss (1964) to derive the variance of type frequencies, σp, and

the correlation between type frequencies in adjacent patches, ⇢. For the purpose of

this calculation, I assume an infinite habitat where patches are indexed by j 2 Z. Let

M denote the migration matrix, i.e., Mij is the migration rate from patch i to patch j.

For nearest-neighbour migration, set Mij = 1 − M for i = j, Mij = M /2 for j = i ± 1,

and Mij = 0 in all other cases. Denote the mutation rates to and from the focal type

by ⌫1 and ⌫2 = ⌫ − ⌫1, such that ⌫ = ⌫1 + ⌫2 is the total mutation rate. The dynamics of

type frequencies p(j) is then given by

p0(j) = (1− ⌫) (M.p)j + ⌫2 + ⇠j (A2.18)

where p = (p(j))j2Z summarizes local type frequencies in a single vector. The random

variable ⇠j describes genetic drift independently in each patch. It has zero mean and

a variance of p(j)(1− p(j))/(2N ).

From this, we may derive recursions for the expected type frequency, its variance

and the covariance between patches – see also Fleming and Su (1974). Expected

type frequencies settle at their homogeneous equilibrium determined solely by the

mutation rates. Hence, I set E[p(j)] = P uniformly in space. The remaining equations

for the variances and covariances of gene frequencies can be solved assuming that

correlations between patches decay geometrically with distance. For ⌫ ⌧ M ⌧ 1 we

obtain

σp =
P (1− P )

1 + 4N
p
2M ⌫

and ⇢ = 1−
p
2M ⌫

M
, (A2.19)
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see Kimura and Weiss (1964). Inserting into equation (3.8) produces

E
⇥

∆N total
I

⇤

= mJN
P (1− P )

p
2M ⌫

M (1 + 4N
p
2M ⌫)

. (A2.20)

If the number of individuals per patch, N , is large, the result simplifies as the de-

nominator is approximately 4NM
p
2M ⌫. Then, we may rewrite equation (A2.20), as

E
⇥

∆N total
I

⇤

=
mJ

4M
P (1− P ).

Denote the average frequency of the modifier in the habitat by P . Then, dividing by

the total population size JN , we obtain

E [∆P ] ⇡ m

4NM
P (1− P ). (A2.21)

This expression is analogous to a haploid selection model with selection parameter

s = m/(4NM ).
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A3 Frequency-independence and polymorphism

A3.1 Notation and assumptions

In this supplementary section, I formally prove that constant, frequency-independent

selection eliminates genetic variation (c.f. the discussion in Section 1.3). If selection is

also additive (alleles contribute additively to fitness), the result was shown by Kirzhner

and Lyubich (1997). The proof presented here does not require additivity of selection,

permitting epistatic interactions between alleles at different loci.

I assume that there are L genetic loci, indexed by i 2 {1, ..., L}. Locus i has Ki

possible allelic variants; I write K =
PL

i=1 Ki for the total number of alleles across all

loci. For k 2 {1, ..., Ki}, denote the k-th allele on locus i by P i
k. The frequency of allele

P i
k is pik. Clearly, we have

PKi

k=1 p
i
k = 1 for every i 2 {1, ..., L}. Furthermore, I denote

the vector of allele frequencies at locus i by pi, and collect the allele frequencies at all

loci in p = (p1, ...,pL).

A haploid genotype {P 1
k1
, ..., PL

kL
} is a list of alleles that sit on their respective loci

(ki 2 {1, ..., Ki}). I assume that selection is weak relative to recombination, hence there

is linkage equilibrium at all times. Then, the frequency of any genotype {P 1
k1
, ..., PL

kL
}

is given by the product of the frequencies of the alleles it consists of,
QL

i=1 p
i
ki

, and it

suffices to follow the evolution of allele frequencies over time (rather than study the

genotype frequencies).

Denote the fitness of a haploid genotype {P 1
k1
, ..., PL

kL
} by w{P 1

k1
,...,PL

kL
}, and assume

that selection is frequency-independent and constant in time. That is, the fitness values

w{P 1
k1

,...,PL
kL

} are constant; they do not change over time directly (fluctuating selection),

nor do their values depend on the allele frequencies. Note that I do not require any

assumptions about the pattern of epistasis; the genotype fitnesses may contain any

epistatic interactions between alleles.

The marginal fitness of an allele is the mean fitness of all genotypes containing the

allele. Hence, for allele kκ on locus iλ, its marginal fitness is

wiλ
kκ

=

K1
X

k1=1

· · ·
Kiλ−1
X

kiλ−1=1

Kiλ+1
X

kiλ+1=1

· · ·
KL
X

kL=1

 

Y

i 6=iλ

pikiw{P 1
k1

,...,P
iλ
kκ

,...,PL
kL

}

!

. (A3.1)
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It follows from the assumption of frequency-independent selection, that the marginal

fitness of an allele does not depend on the frequencies of the alleles at its locus. In

other words, for every locus i we have

@wi
k

@pij
= 0 for j, k 2 {1, ..., Ki}. (A3.2)

The mean fitness of the population is defined as the mean fitness of all genotypes,

i.e.,

w̄ =

K1
X

k1=1

· · ·
KL
X

kL=1

 

L
Y

i=1

pikiw{P 1
k1

,...,PL
kL

}

!

. (A3.3)

Clearly, we may write the mean fitness w̄ in terms of the marginal fitnesses of the

alleles at one locus, w̄ =
PKi

k=1 p
i
kw

i
k; this evaluates to the same value for any choice of

i 2 {1, ..., L}.

To describe the evolution of allele frequencies, I consider the standard selection

dynamics from population genetics in discrete time (generations). It neglects all other

evolutionary forces (e.g., mutation) and just describes the impact of selection. In par-

ticular, there is no genetic drift, i.e., the population is practically infinite. The frequency

of allele k on locus i in the next generation, (pik)
0, is calculated from the previous gen-

eration as

(pik)
0 = pik

wi
k

w̄
= f i

k(p). (A3.4)

These dynamics respect the constraint
PKi

k=1 p
i
k = 1 for all times and every locus i 2

{1, ..., L}. A fully polymorphic equilibrium of equation (A3.4) is a vector p̂ = (p̂1, ..., p̂L)

of only non-zero entries that satisfy f i
k(p̂) = p̂ik > 0. It follows that at any polymorphic

equilibrium we have wi
k = w̄ for all i 2 {1, ..., L} and k 2 {1, ..., Ki}.

A3.2 Convergence to the set of equilibria

From the above assumptions on the marginal fitnesses, it follows that @w̄/@pik = wi
k for

all i and k. Thus, from equation (A3.4), we may write the dynamics for allele k on locus

i as

(pik)
0 =

pik
∂w̄
∂pi

k
PKi

j=1 p
i
j

∂w̄
∂pij

. (A3.5)



APPENDIX A3. FREQUENCY-INDEPENDENCE AND POLYMORPHISM 122

Furthermore, w̄ is a linear combination of the allele frequencies at locus i, i.e., a ho-

mogeneous polynomial with positive coefficients (the marginal fitnesses of the alleles

at locus i). Thus, the conditions for the inequality of Baum and Eagon (1967) are

met. It follows that the mean fitness w̄ = w̄(p) is strictly increasing along trajectories

of p under the dynamics (A3.4), remaining constant if and only if it has reached an

equilibrium. Mathematically,

w̄(p0) ≥ w̄(p) and w̄(p0) = w̄(p) () p0 = p.

The space of admissible p is a compact set, hence the values of w̄(p) are bounded

from above. Thus, every trajectory of the dynamics (A3.4) converges to the set of

its equilibrium points. This set may be complicated; nevertheless, the existence of

other attractors (e.g. periodic orbits, chaotic attractors) can be excluded (Lyubich,

1992, Ch.9). If selection is additive, convergence to a given equilibrium was shown by

Kirzhner and Lyubich (1997).

In the next section, I show that any polymorphic equilibria are unstable. As a conse-

quence, every trajectory of the dynamics (A3.4) has to converge towards the boundary

of the state space, where at least one of the alleles is lost from the system. Iterating

the argument with the remaining alleles and those loci that stayed polymorphic shows

that, eventually, every locus is fixed for a single allele, i.e., all genetic variation is lost.

A3.3 Stability of equilibria

The local behaviour of allele frequencies around an equilibrium p̂ is given by the lineari-

sation of equation (A3.4) around p̂. The stability of p̂ is determined by the eigenvalues

of the Jacobian matrix J(p̂). This matrix has dimensions K ⇥ K (recall that K is the

total number of alleles at all loci), and its entry at position (m,n) is obtained from tak-

ing the derivative of the m-th function f i
k with respect to the n-th variable plj (counting

contiguously across loci), evaluated at p̂. For example, the diagonal entries of J(p̂)

are given by

(J(p̂))m,m =
@f i

k(p̂)

@pik
, (A3.6)

where m =
Pk−1

j=1 Kj + i. If all eigenvalues of J(p̂) have a modulus less than one, the

equilibrium p̂ is asymptotically stable; if the modulus of a single eigenvalue is greater



APPENDIX A3. FREQUENCY-INDEPENDENCE AND POLYMORPHISM 123

than one, it is unstable. In the case when the moduli of all eigenvalues equal one,

further analysis would be needed. However, I will neglect this degenerate case, since

it is highly unlikely.

Theorem (Instability of polymorphic equilibria). Under the assumptions stated in Sec-

tion A3.1, i.e., linkage equilibrium and constant frequency-independent selection, any

fully polymorphic equilibrium p̂ of the dynamics (A3.4) is unstable.

For the proof, consider two simple lemmas:

Lemma 1. Consider a polymorphic equilibrium p̂ of the dynamics (A3.4). Then, for

every locus i 2 {1, ..., L}, there is at least one eigenvector ⌫i of the Jacobian J(p̂) with

associated eigenvalue 0, i.e., J(p̂).⌫i = 0.

Proof. This is the case because the dynamics (A3.4) are a projection on the space of

allele frequencies,
PKi

k=1 p
i
k = 1 for i = 1, ..., L.

Lemma 2. Consider a polymorphic equilibrium p̂ of the dynamics (A3.4) under the

same assumptions as in Theorem A3.3. Then, the trace of the Jacobian J(p̂) (i.e., the

sum of its diagonal entries) is

tr(J(p̂)) = K − L.

Proof. First, from equation (A3.4), we calculate the derivatives

@f i
k(p̂)

@pik
= 1− p̂ik.

In this calculation, I used that @w̄/@pik = wi
k (mean fitness as a linear combination of

marginal fitnesses), @wi
k/@p

i
k = 0 (frequency independence), and wi

k ⌘ w̄ (equilibrium

condition). It follows that the trace of J(p) is

tr(J(p)) =
L
X

i=1

Ki
X

ki=1

@f i
ki
(p̂)

@piki
=

L
X

i=1

Ki
X

ki=1

(

1− p̂iki
)

=

=
L
X

i=1

(Ki − 1) = K − L.
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Proof of the Theorem. Consider a polymorphic equilibrium p̂ of equation (A3.4) and its

Jacobian J(p̂). Because J(p̂) is a matrix with dimensions K⇥K, it has K eigenvalues

(counting multiplicities). Due to Lemma 1, at most K − L are non-zero. According to

Lemma 2, the trace, and hence the sum of eigenvalues of J(p̂) is also K − L. Hence,

unless all eigenvalues equal one (the degenerate case), at least one of them has a

modulus greater than one. Thus, the polymorphic equilibrium p̂ is unstable.

A3.4 Summary

Start out with a population of haploid genotypes, consisting of multiple polymorphic

loci. The central assumption is that selection is constant and frequency-independent,

i.e., the genotypes have fixed fitness values. Furthermore, consider strong recombi-

nation to neglect linkage disequilibrium and study the evolution of allele frequencies

under selection alone, i.e., the dynamics (A3.4).

In Section A3.2, I argued that the selection dynamics are simple in the sense that

each trajectory converges to the set of equilibrium points of equation (A3.4). According

to Section A3.3, however, each polymorphic equilibrium is unstable, hence trajectories

converge to the boundary of the allele frequency space where at least one of the allele

frequencies is zero. Thus, some alleles are removed from the population and the set

of possible genotypes is reduced.

Repeating the argument on the reduced set of genotypes, i.e., restricting the sys-

tem to the alleles on the remaining polymorphic loci, allows to iteratively remove alleles

from the population. This procedure can be carried out until all loci become monomor-

phic, i.e., until only a single genotype remains. Thus, in the absence of mechanisms

creating variation (e.g., mutation), the action of constant frequency-independent se-

lection eventually deprives the population of all its genetic variation.




