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Abstract
Let G be a graph on n nodes. In the stochastic population protocol model, a collection of n

indistinguishable, resource-limited nodes collectively solve tasks via pairwise interactions. In each
interaction, two randomly chosen neighbors first read each other’s states, and then update their
local states. A rich line of research has established tight upper and lower bounds on the complexity
of fundamental tasks, such as majority and leader election, in this model, when G is a clique.
Specifically, in the clique, these tasks can be solved fast, i.e., in n polylog n pairwise interactions,
with high probability, using at most polylog n states per node.

In this work, we consider the more general setting where G is an arbitrary regular graph, and
present a technique for simulating protocols designed for fully-connected networks in any connected
regular graph. Our main result is a simulation that is efficient on many interesting graph families:
roughly, the simulation overhead is polylogarithmic in the number of nodes, and quadratic in the
conductance of the graph. As a sample application, we show that, in any regular graph with
conductance φ, both leader election and exact majority can be solved in φ−2 · n polylog n pairwise
interactions, with high probability, using at most φ−2 · polylog n states per node. This shows that
there are fast and space-efficient population protocols for leader election and exact majority on
graphs with good expansion properties. We believe our results will prove generally useful, as they
allow efficient technology transfer between the well-mixed (clique) case, and the under-explored
spatial setting.
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1 Introduction

Since the early days of computer science, there has been significant interest in developing
an algorithmic theory of molecular and biological systems [49]. In distributed computing,
population protocols [8] have become a popular model for investigating the collective compu-
tational power of large collections of communication- and computationally-bounded agents.
This model consists of n identical agents, seen as finite state machines, and computation
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(a) (b) (c)

Figure 1 The graphical population protocol model. In each step, a random edge {u, v} is selected
and the nodes u and v interact (blue nodes). Examples of graph classes covered by our construction:
(a) regular high-girth expanders, (b) bipartite complete graphs, (c) toroidal grids.

proceeds via pairwise interactions which trigger local state transitions. The sequence of
interactions is provided by a scheduler, which picks pairs of agents to interact. The goal
is to have the system reach a configuration satisfying a given predicate, while minimising
the number of interactions (time complexity) and the number of states per node (space
complexity) required by the protocol.

Early work on population protocols focused on the computational power of the model
under various interaction graphs [8, 11]. More recently, the focus has shifted to understanding
complexity thresholds, often in the form of fundamental complexity trade-offs between time
and space complexity, e.g. [10, 7, 32, 35, 4, 16, 19, 31]; for recent surveys please see [34, 5].

The second line of work almost focuses mainly on the uniform stochastic scheduler,
where each interaction pair is chosen uniformly at random among all pairs of agents in the
population, and the time complexity of a protocol is measured by the number of interactions
needed to solve a task. This is analogous to having a large well-mixed solution of interacting
particles when modelling chemical reactions. However, many natural systems exhibit spatial
structure and this structure can significantly influence the system dynamics.

Indeed, there is a separation in terms of computational power for population protocols
in the clique versus other interaction graphs: connected interaction graphs can simulate
adversarial interactions on the clique graph by shuffling the states of the nodes [8] and
population protocols on some interaction graphs can compute a strictly larger set of predicates
than protocols on the clique; see e.g. [13] for a survey of computability results.

By comparison, surprisingly little is known about the complexity of basic tasks in general
interaction graphs under the stochastic scheduler. So far, only a handful of protocols have
been analysed on general graphs. Existing analyses tend to be complex, and specialised to
specific algorithms on limited graph classes [33, 27, 42, 43, 17]. This is natural: given the
intricate dependencies which arise due to the underlying graph structure, the design and
analysis of protocols in the spatial setting is understood to be challenging.

Contributions. In this work, we provide a general approach showing that standard problems
in population protocols can be solved efficiently under graphical stochastic schedulers, by
leveraging solutions designed for complete graphs. Our results are as follows:
1. We give a general framework for simulating a large class of synchronous protocols designed

for fully-connected networks, in the graphical stochastic population protocol model (see
Figure 1). Thus, the user can design efficient (and simple to analyse) synchronous
algorithms on a clique model, and transport the analysis automatically to the population
protocol model on a large class of interaction graphs. For instance, on any d-regular graph
with edge expansion β > 0, the resulting overhead in parallel time and state complexity
is in the order of (d/β)2 · polylog n.
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Figure 2 The synchronous k-token shuffling model with 5 nodes for k = 1 and k = 2. Rectangles
are nodes and the small circles are tokens. In each round, nodes generate k tokens based on their
current state. Then all nk tokens are shuffled randomly. After this, nodes update their state based on
the vector of k tokens they hold. (a) An execution of a protocol in the 1-token shuffling model. The
arrows between tokens represent the random permutation used to shuffle tokens. (b) An execution
of a protocol for k = 2. Each node sends and receives two tokens.

2. As concrete applications, we show that for any d-regular graph with edge expansion
β > 0, there exist protocols for leader election and exact majority that stabilise both in
expectation and with high probability in (d/β)2 · polylog n parallel time, using (d/β)2 ·
polylog n states.

3. To complement the results following from the simulation, we also show that, on any graph
G with diameter diam(G) and m edges, leader election can be solved both in expectation
and with high probability in O(diam(G) ·mn2 log n) parallel time, by analysing the time
complexity of the constant-state protocol by Beauquier et al. [15].

Technical Overview. Our reduction framework combines several techniques from different
areas, and can be distilled down to the following ingredients.

We start by defining a simple synchronous, fully-connected model of communication for
the n nodes, called the k-token shuffling model. This is the model in which the algorithm
should be designed and analysed, and is similar, and in some ways simpler, relative to the
standard population model. Specifically, nodes proceed in synchronous rounds, in which
every node v first generates k tokens based on its current state. Tokens are then shuffled
uniformly at random among the nodes. At the end of a round, every node v updates its local
state based on its current state, and the tokens it received in the round. Figure 2 illustrates
the model. This simple model is quite powerful, as it can simulate both pairwise and one-way
interactions between all sets of agents, for well-chosen settings of the parameter k.

Our key technical result is that any algorithm specified in this round-synchronous k-token
shuffling model can be efficiently simulated in the graphical population model. Although
intuitive, formally proving this result, and in particular obtaining bounds on the efficiency
of the simulation, is non-trivial. First, to show that simulating a single round of the
k-token shuffling model can be done efficiently, we introduce new type of card shuffling
process [28, 50, 23, 38], which we call the k-stack interchange process, and analyse its mixing
time by linking it to random walks on the symmetric group.

Second, to allow correct and efficient asynchronous simulation of the synchronous token
shuffling model, we introduce two new gadgets: (1) a graphical version of decentralised phase
clocks [4, 36, 35], combined with (2) an asynchronous token shuffling protocol, which simulates
the k-token interchange process in a graphical population protocol. The latter ingredient is
our main technical result, as it requires both efficiently combining the above components,
and carefully bounding the probability bias induced by simulating a synchronous model
under asynchronous pairwise-random interactions.

OPODIS 2021
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Table 1 Protocols for exact majority (EM) and leader election (LE) for different graph classes.
The state complexity is the number of states used by the protocol. The parallel time column gives
the expected parallel time (expected number of interaction steps divided by n) to stabilise. (*)
In [33], the running time of the protocol is bounded by the initial discrepancy in the inputs and the
spectral properties of the contact rate matrix; bounds in terms of n are only given for select graph
classes (paths, cycles, stars, random graphs and cliques). No sublinear in n bounds on parallel time
are given in [33]. Protocols marked with (⋆) stabilise also in non-regular graphs in poly(n) time.

Graph class Task States Parallel time Note
cliques EM 4 O(n log n) [33]

EM O(log n) Θ(log n) [31]
LE 2 Θ(n) [32]
LE Θ(log log n) Θ(log n) [19]

connected EM 4 poly(n) [33, 17], (*)
LE 6 O(diam(G) · mn2 log n) new analysis of [15]

d-regular EM (d/β)2 · polylog n (d/β)2 · polylog n new, (⋆)
LE (d/β)2 · polylog n (d/β)2 · polylog n new, (⋆)

Finally, we instantiate this framework to solve exact majority and leader election in the
graphical setting. We provide simple token-shuffling protocols for these problems, as well as
backup protocols to ensure their correctness in all executions.

Implications. Our results imply new and improved upper bounds on the time and state
complexity of majority and leader election for a wide range of graph families. In some cases,
they improve upon the best known upper bounds for these problems. Please see Table 1 for
a systematic comparison. Specifically, our results show that:

In sparse graphs with good expansion properties, such as constant-degree graphs with
constant edge expansion (Figure 1a), our simulation has polylogarithmic time and state
complexity overhead, relative to clique-based algorithms. Thus, good expanders admit
fast protocols using polylogarithmic states, despite being sparser than the clique.
In dense graphs, we obtain similar bounds whenever d/β ∈ polylog n holds. This is the
case for instance in d-dimensional hypercubes with n = 2d nodes, but also in highly-dense
clique-like graphs, such as regular complete multipartite graphs (Figure 1b), where the
degree and expansion are both Θ(n).
In D-dimensional toroidal grids, we get algorithms with n2/D polylog n parallel time
and state complexity. These graphs include cycles (1-dimensional toroidal grids), two-
dimensional grids (Figure 1c), three-dimensional lattices, and so on.

While our protocols guarantee fast stabilisation in regular graphs with high expansion, they
will stabilise in polynomial expected time in any connected graph. The results can be carried
over to certain classes of non-regular graphs provided that they are not highly irregular and
have high expansion; we discuss this in Section 8, and provide examples in the Appendix.

It is known that, in the clique setting, constant-state protocols are necessarily slower
than protocols with super-constant states [32, 4]. Our results suggest the existence of a
similar complexity gap in the graphical setting. Specifically, on d-regular graphs with good
expansion, such that d/β ∈ polylog n, we provide polylogarithmic-time protocols for both
leader election and exact majority. This opens a significant complexity gap relative to known
constant-state protocols on graphs. For instance, the 4-state exact majority protocol for
general graphs [33] requires Ω(n) parallel time even in regular graphs with high expansion, if
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node degrees are Θ(n). (A simple example is the complete bipartite graph given in Figure 1b.)
Yet, our protocols guarantee stabilisation in only polylog n parallel time in both low and
high degree graphs, as long as d/β is at most polylog n.

Due to space constraints, in the following we focus on the simulation framework and its
properties; the correctness proofs for our framework and the algorithmic applications are
given in the full version of the paper [6].

2 Related Work

Computability for Graphical Population Protocols. A variant of the graphical setting was
already considered in the foundational work of Angluin et al. [8], which also uses a state
shuffling approach. However, the resulting line of work focused on computational power in
the case where the number of states per node is constant [8, 9, 12, 11, 21]. A key difference
is that we aim to simulate pairwise interactions under the uniform stochastic scheduler, as
fast protocols in the clique require that pairwise interactions are uniformly random [34].
Thus, one of the main technical challenges is to devise an efficient shuffling procedure that
guarantees that the simulated interactions are (almost) uniform.

In addition, self-stabilising population protocols on graphs have been investigated partic-
ularly in the context of leader election [12, 15, 51, 47, 24, 25, 39, 48]. This considers more
stringent transient fault models than ours: we will thus be able to obtain better bounds,
but our results will not directly transfer to self-stabilising protocols. This is natural, since
self-stabilising leader election is not solvable on all graph families [12].

Beauquier et al. [15] noted that without the requirement of self-stabilisation, leader
election can be solved on every connected graph by a constant-state protocol. We provide
the first running-time upper bounds for this protocol; please see Table 1 for a summary of
the known bounds. Concurrent work by Sudo et al. [48] on self-stabilising leader election
on general graphs uses a similar approach to our analysis of the leader election protocol,
presented in the full version [6].

Complexity in the Clique Model. A parallel line of work has focused on determining the
fundamental space-time trade-offs for key tasks, such as majority and leader election, when
the interaction graph is a clique [32, 33, 42, 3, 4, 20, 16, 19, 31]. In this case, tight or
almost-tight complexity trade-offs are now known for these problems [19, 37, 4].

The vast majority of the work on complexity has focused on the clique case [34, 5]. Two
natural justifications for this choice are that: (1) the clique is a good approximation for
well-mixed solutions, and (2) the analysis of population protocols can be difficult enough
even without additional complications due to graph structure. Bounds on non-complete
graphs have been studied for exact [33] and approximate majority [42, 43], with some recent
work considering plurality consensus [26, 27, 17] in a related model. The recent survey of [34]
points out that running time on general graphs is poorly understood, and sets this as an
open question. We take a first step towards addressing this gap.

Interacting Particle Systems. Another related line of work investigated dynamics of
interacting particle systems on graphs, e.g. [2]. However, in this context dynamics are often
assumed to be round-synchronous, which allows the use of more powerful techniques, related
to independent random walks on graphs. Cooper et al. [26] analysed the coalescence time of
independent random walks on a graph in terms of the expansion properties of the graph,
where each node initially holds a unique particle, and in each step particles randomly move to

OPODIS 2021
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another node. Whenever, two particles meet, they coalesce into a single one, which continues
its walk. We also employ token-based protocols on graphs, but in our case tokens are shuffled
between nodes instead of coalescing.

Token-based processes have also been used to implement efficient, randomised rumour
spreading protocols. For example, Berenbrink et al. [18] analysed the cover time of a
synchronous coalescing-branching random walk on regular graphs. Similarly to our work,
they use conductance to bound the behaviour of this process in regular graphs. In this work,
we use token-based population protocols on graphs, where the tokens are shuffled between
nodes during an interaction and the tokens instead of coalescing, may also interact in other
ways.

Plurality Consensus on Expanders. In plurality consensus, there are k > 1 opinions and
the task is the agree on opinion supported by the most nodes. Berenbrink et al. [17] present
a protocol for the plurality consensus problem in a synchronous pull-based interaction model.
Their protocol also circulates tokens, and samples their count periodically (after mixing) to
estimate opinion counts, running into the issue that the token movements are correlated.
The authors provide a generalisation of a result by Sauerwald and Sun [45] in order to show
that the joint token distribution is negatively correlated, and therefore the token counting
mechanism concentrates.

In this work, we also employ a token exchange protocol, and encounter non-trivial correl-
ation issues. However, we resolve these issues differently: we characterise the distribution
of the token interactions using the k-stack interchange process, and bound its total vari-
ation distance relative to the uniform distribution, showing that the two distributions are
indistinguishable in polynomial time with high probability. More generally, the goal of our
construction is different, as we aim to provide a general framework to efficiently simulate
pairwise random node interactions.

Shuffling Processes. Our results also connect to the work on card shuffling processes, and
in particular, the interchange process, which has a long and rich history, e.g. [29, 1, 28, 50, 38].
While many of these processes are simple to describe, they are often surprisingly challenging
to analyse. In the classic interchange process, a card is placed on every node of a graph and
the shuffling is performed by randomly exchanging cards between adjacent nodes.

Diaconis and Shahshahani [29] gave sharp bounds on the mixing time of the random
transpositions shuffle, i.e., interchange process on the clique. Diaconis and Saloff-Coste [28]
developed a powerful comparison technique for upper bounding the mixing time of a random
walk on a finite group. This is one the key techniques for upper bounding mixing times of
the interchange process.

Later, Wilson [50] developed a general technique for proving lower bounds for many
shuffling processes. For example, he showed that the mixing time of the interchange process
on the two-dimensional

√
n ×
√

n grid is Θ(n2 log n) and Ω(n log2 n) on the hypercube.
Subsequently, Jonasson [38] gave additional upper and lower bounds on the interchange
process on various graphs.

3 Preliminaries

Graphs. A graph G = (V, E) is d-regular if every node v ∈ V is adjacent to exactly d other
nodes. The edge boundary of a set S ⊆ V is the set ∂S ⊆ E of edges with exactly one endpoint
in S. The edge expansion of the graph G is defined as β = min {|∂S|/|S| : S ⊆ V, |S| ≤ n/2}.
If G is regular, its conductance is β/d. Unless otherwise mentioned, all graphs are assumed
to be regular and connected.
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Probability distributions. Let E be a finite set. We say µ : E → [0, 1] is a probability
distribution on E if

∑
x∈E µ(x) = 1 holds. For A ⊆ E we write µ(A) =

∑
x∈A µ(x). The

uniform distribution on E is the distribution ν defined by ν(x) = 1/|E|. The support of µ is
the set {x : µ(x) > 0}. The total variation distance between distributions µ1 and µ2 on E is

∥µ1 − µ2∥TV = 1
2
∑
x∈E

|µ1(x)− µ2(x)| = max
A⊆E

|µ1(A)− µ2(A)|.

We say that µ is ε-uniform on E if ∥µ− ν∥TV ≤ ε.

Permutations and the symmetric group. Let N > 0 be a positive integer and [N ] =
{0, . . . , N − 1}. A permutation on [N ] is a bijection from [N ] to [N ]. The symmetric group
SN over [N ] is the group consisting of the set of all permutations on [N ] with function
composition as the group operation and identity element id defined by id(i) = i. The inverse
x−1 of an element x ∈ SN is the map satisfying x−1 · x = x · x−1 = id. A transposition
(i j) ∈ SN of i and j is the permutation that swaps the elements i and j, but leaves
other elements in place. We say that a set H ⊆ SN generates SN if every element of SN

can be expressed as a finite product of elements in H and their inverses. We use · and ◦
interchangeably to denote function composition.

Let µ be a symmetric probability distribution on SN , i.e., µ(x) = µ(x−1). The random
walk on SN with increment distribution µ is a discrete time Markov chain with state space
SN . In each step, a random element x is sampled according µ and the chain moves from
state y to state xy. Thus, the probability of transitioning from state x to state yx is µ(y).
The holding probability of the random walk is α = µ(id). The following remark summarises
some useful properties of such random walks; see e.g. [41] for proofs.

▶ Remark 1. Let µ be an increment distribution for a random walk on SN .
1. The uniform distribution ν on SN is a stationary distribution for the random walk.
2. The random walk is reversible if and only if µ is symmetric.
3. The random walk is irreducible if and only if the support of µ generates SN .
4. If µ(id) > 0, then the random walk is aperiodic.

Mixing times. Let ν be the uniform distribution on SN and be p(t) be the probability
distribution over states of the chain after t steps. Following [28], we define the ℓs-norm and
the normalised ℓs-distance to stationarity for s > 0 as:

∥µ∥s =
(∑

x

|µ(x)|s
)1/s

and ds(t) = |SN |1−1/s · ∥p(t) − ν∥s.

The total variation distance and the normalised distances satisfy 2
∥∥p(t) − ν

∥∥
TV = d1(t) ≤

d2(t), where the latter inequality follows from the Cauchy-Schwarz inequality. We define
the ε-mixing time as τ(ε) = min{t : d1(t) ≤ 2ε}. We refer to the value τmix = τ(1/2) as the
mixing time of the walk. Note that τ(ε) ≤ ⌈log2 ε−1⌉ · τmix.

Tasks. Let Σ and Γ be nonempty finite sets of input and output labels, respectively. A
task Π on a set V of n nodes is a function Π that maps any input labelling z : V → Σ to a
set Π(z) ⊆ ΓV of feasible output labellings. If Π(z) = ∅, then we say that z is an infeasible
input. We focus on two tasks:

OPODIS 2021
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In leader election, the input is the constant function z(v) = 1 and the output labelling z′

is feasible iff there exists v ∈ V such that z′(v) = 1 and z′(u) = 0 for all u ̸= v. That is,
exactly one node should output 1 and all others should output 0.
In the majority task, the inputs are given by z : V → {0, 1} and z′ ∈ Π(z) if z′(v) = b,
where b is the input value held by the majority of the nodes. As conventional, the input
with equally many zeros and ones is taken to be infeasible.

Graphical stochastic population protocols. Let G = (V, E) be a graph. In the graphical
stochastic population model, the computation proceeds asynchronously, where in each time
step t > 0:
1. a stochastic scheduler picks uniformly at random a pair et = (u, v) of neighbouring nodes,
2. the nodes u and v read each other’s states and update their local states.
As is common in population protocols, we assume that the node pairs are ordered, which will
allow us to distinguish the two nodes: node u is called the initiator and v is the responder.
We assume that nodes have access to independent and uniform random bits. Specifically,
upon each interaction, both u and v are provided with a single random bit each. We note
that this assumption is common in the context of population protocols, e.g. [35], and can be
justified practically by the fact that chemical reaction network (CRN) implementations can
directly obtain random bits given the structure of their interactions [22].

Formally, a protocol for a task Π is a tuple A = (f, ℓin, ℓout), where f : S × {0, 1} × S ×
{0, 1} → S × S is the state transition function and S is the set of states, ℓin : Σ→ S maps
inputs to initial states, and ℓout : S → Γ maps states to outputs. A configuration is a map
x : V → S and x0 = ℓin ◦ z is the initial configuration on input z. An asynchronous schedule
is a random sequence (et)t≥1 of the interaction pairs. An execution is the sequence (xt)t≥0
of configurations given by

xt+1(u), xt+1(v) = f (xt(u), qt+1(u), xt(v), qt+1(v)) and xt+1(w) = xt(w) for w ∈ V \{u, v},

where (u, v) = et+1 and qt+1(u) ∈ {0, 1} is the random bit provided to the node u during
the interaction. The output of the protocol at step t is given by z′

t = ℓout ◦ xt.
We say that A stabilises on input z by step T if z′

t+1 = z′
t and z′

t ∈ Π(z) holds for
all t ≥ T . Moreover, A solves the task Π with probability at least p in T (A) steps if the
protocol stabilises by step T (A) on any feasible input with probability at least p. The state
complexity of the protocol is S(A) = |S|, i.e., the number of states used by the protocol.

Synchronous token protocols. In the synchronous k-token shuffling model, we assume that
there are n agents which communicate in a round-based fashion using tokens. In each round,
1. every node v generates exactly k tokens based on its current state,
2. all nk tokens are shuffled uniformly at random so that each node gets exactly k tokens,
3. every node v updates its local state based on its current state and the k tokens it received.
Let X be the set of states a node can take and Y be a set of distinct token types. An algorithm
in the token shuffling model is a tuple B = (f, g, ℓin, ℓout). The map f : X × Y k → X is
a state transition function, and g : X → Y k determines which tokens each node creates at
the start of each round. As before, ℓin : Σ → X maps input values to initial states and
ℓout : X → Γ maps the state of a node onto an output value. The initial configuration on
input z is x0 = ℓout ◦ z.
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Figure 3 Interchange dynamics on a 4-cycle. In each step, blue cards are swapped. Top row:
The 1-stack interchange process. Bottom row: The 2-stack interchange process. In each step, a
randomly selected node either moves its top card to the bottom of its stack or exchanges it with the
top card of a randomly selected neighbour.

A synchronous schedule is a sequence (σr)r≥1, where the permutation σr ∈ Snk describes
how the tokens are shuffled in round r. For any y : [nk] → Y , we let y(v0, . . . , vk−1) =
(y(v0), . . . , y(vk−1)). A synchronous execution induced by (σr)r≥1 on input z is defined by

yr+1(v0, . . . , vk−1) = (g ◦xr)(v) and xr+1(v) = f (xr(v), (yr+1 ◦ σr+1) (v0, . . . , vk−1)) ,

where yr(v0, . . . , vk−1) and (yr ◦ σr+1)(v0, . . . , vk−1), respectively, are the k tokens generated
and received by node v during round r.

We assume the uniform synchronous scheduler, which picks each permutation σr inde-
pendently and uniformly at random from the set of all permutations Snk. The output of
node v at the end of round r is z′

r(v) = (ℓout ◦xr)(v). The synchronous algorithm B stabilises
on input z in R rounds if zr+1 = z′

r and z′
r ∈ Π(z) holds for all r ≥ R. The algorithm solves

the problem Π if it stabilises in R rounds on any feasible input with probability at least p.

4 Shuffling states on graphs: the k-stack interchange process

We now describe a shuffling process on graphs, which we call the k-stack interchange process.
This process will be useful in our analysis, and is a variant of the classic graph interchange
process, e.g. [30, 38]. We analyse its mixing time using the path comparison method of
Diaconis and Saloff-Coste [28], leveraging a classical flow result of Leighton and Rao [40].

The k-stack interchange process. Let G = (V, E) a graph with n vertices {0, . . . , n− 1}
and N = kn for k > 0. Assume each node of G holds a stack of exactly k cards, and consider
the shuffling process where, in every time step, one of the following actions is taken:
1. with probability 1/2, move the top card of a random node to the bottom of its stack,
2. with probability 1/4, choose a random edge {u, v} and swap the top cards of u and v,
3. with probability 1/4, do nothing.
We refer to this process as the k-stack interchange process on G. The special case of k = 1 is
the classic interchange process on G with holding probability 3/4, as the first rule does not
do anything on stacks of size 1. For k > 1, the holding probability will be 1/4. Instances of
the process for k = 1 and k = 2 are illustrated in Figure 3.

▶ Theorem 2. Let G be a d-regular graph with edge expansion β > 0. For any constant
k > 0, the mixing time of the k-stack interchange process on G is O

(
(d/β)2

n log3 n
)

.
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We prove this theorem in the full version of the paper [6]. In Section 6, we will show that
this shuffling process can be implemented efficiently in the graphical population protocol
model.

5 Decentralised graphical phase clocks

We now describe a bounded phase clock construction for the stochastic population protocol
model over regular graphs. Interestingly, the construction can be generalised to non-regular
graphs, assuming that node degrees do not deviate too much from the average degree; see
the full version [6] for details. Our approach generalises that of Alistarh et al. [4], who
built a leaderless phase clock on cliques leveraging the classic two-choice load balancing
process [14, 44].

Phase clocks. Let ϕ > 0 be an integer and consider a population protocol C with state
variables c(v) ∈ {0, . . . , ϕ− 1} for each v ∈ V . The variable c(v) represents the value of the
clock at node v. Let c(v, t) be the clock value node v has at the end of time step t (regardless
of whether it was active during that step). We define the distance D between two clock
values and the skew ∆ of the clock at the end of step t, respectively, as follows:

D(x, y) = min{|x− y|, ϕ− |x− y|} and ∆(t) = max
u,v∈V

D (c(u, t), c(v, t)) .

We say that the protocol C implements a (ϕ, γ, κ)-clock if for all t ≥ 0 the following hold:
1. Pr[∆(t) ≥ γ] < t/nκ, and
2. c(v, t + 1) = c(v, t) + 1 mod ϕ for exactly one v ∈ V and c(u, t + 1) = c(u, t) for all

u ∈ V \ {v}.
Intuitively, ϕ is the length of a phase, γ is the skew of the clock, and κ controls the failure
probability. The above properties guarantee that the clocks (1) have a skew bounded by γ

for polynomially many steps, w.h.p.; and (2) in each step, the clocks make progress (at some
node). A clock protocol C fails at time t if ∆(t) ≥ γ occurs. Several types of phase clocks
have been proposed in the population protocol literature, e.g. [10, 35, 4, 46].

Bounded phase clocks via graphical load balancing. Let G be a graph and suppose that
each node of G contains a bin, which is initially empty. Our phase clock is based on the
classic graphical load-balancing process [44] where, in each step, a directed edge (u, v) is
sampled uniformly at random and a ball is placed into the least loaded of bin among the two
nodes connected by the edge (in case of ties, place the ball into bin u). Using this idea, we
obtain bounded phase clocks in the graphical population protocol model. We note that this
is the only place in our framework where the initiator/responder distinction is used. The
proof of this result can be found in the full version [6].

▶ Theorem 3. Let G = (V, E) be a d-regular graph with n nodes and edge expansion β > 0
and let κ > 1 be a constant. There exists a constant c(κ) such that for any γ and ϕ satisfying

γ ≥ c(κ) d

β
log n and ϕ ≥ 2γ

there exists (ϕ, γ, κ)-clock on G that uses ϕ states per node.
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6 Simulating synchronous token shuffling protocols

In this section, we give our main technical result: synchronous protocols in the fully-connected
token shuffling model can be simulated in the graphical, stochastic population protocol model.

▶ Theorem 4. Let k > 0 be a constant and A be a synchronous k-token shuffling protocol
on n nodes, where X is the set of local states and Y the set of token types used the protocol
A. If A solves the task Π with high probability in R ∈ poly(n) rounds, then there exists a
stochastic population protocol B that also solves task Π with high probability on any n-node
d-regular graph G with edge expansion β > 0. The step complexity T (B) and state complexity
S(B) of the protocol B satisfy

T (B) ∈ O (R · n · ζ) and S(B) ∈ O
(
|X| · |Y |k · ζ

)
with ζ = log n ·

(
d

β
+ τmix

n

)
,

where τmix is the mixing time of the k-stack interchange process on G.

Notation. The rest of this section is dedicated to proving this theorem. Throughout, we
fix R = R(n) ∈ poly(n) and ε = 1/na < 1/(Rnλ) for an arbitrary large constant a > 0.
Let G = (V, E) be d-regular n-node graph and N = kn. We use µ to denote the increment
distribution of the k-stack interchange process on the graph G. The support of µ is the set
H ⊆ SN and τ = τ(ε) is the ε-mixing time of the k-stack interchange process.

6.1 The token shuffling protocol
We now give a stochastic population protocol that simulates uniform schedules of the
synchronous token shuffling model. The protocol simulates the random walk made by the
k-stack interchange process, synchronised by phase clocks.

Setting up the clock. We choose the parameter κ > 0 such that a (ϕ, γ, κ)-clock C with
parameters given by

γ ∈ Θ
(

d

β
log n

)
ϕ = γ + ϑ ϑ = 2τ

n
+ 3γ t∗ = (Rϕ + γ)n

fails (i.e., the clock skew becomes γ or greater) with probability at most 1/nλ during the
first t∗ steps. Since ϕ ≥ 2γ, R ∈ poly(n), and t∗ ∈ poly(n) hold, such a protocol exists by
Theorem 3 for any constant λ > 0 by choosing a sufficiently large κ. The fact that t∗ is
polynomially bounded follows from Theorem 2 and that β ≥ 1/n2 for any regular connected
graph. Further, τ ≤ ⌈log 1/ε⌉ · τmix ∈ poly(n), and hence, ϕ, γ ∈ poly(n).

The token shuffling protocol. The parameter ϑ is used as a special threshold value for
the token shuffling protocol. We assume that each node v holds exactly k tokens, which are
ordered from 0 to k − 1, in the same manner as cards ordered are in the k-stack interchange
process. We say that the first token is the top token. We say that node u is receptive when
ever its clock satisfies c(u) < ϑ and that it is suspended otherwise. When nodes in {u, v}
interact, they apply the following rule:
1. If both are receptive, that is, c(u) < ϑ and c(v) < ϑ holds, then

a. Let q(u) and q(v) be the random coin flips of u and v, respectively.
b. If q(u) = q(v) = 0, then u and v swap their top tokens.
c. If q(u) < q(v), then v moves its top token to the bottom of its stack; u does nothing.
d. If q(u) = q(v) = 1, then do nothing.

2. Otherwise, do nothing.
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Figure 4 The dynamics of the shuffling protocol for k = 1. Circles filled with white and red
denote receptive and suspended nodes, respectively. The blue arrows connect nodes who exchange
their tokens in the given step. Red lines denote steps, where at least one of the interacting nodes is
suspended, and thus, no swap is made. (a) Initially all nodes are receptive and swap tokens with
their interaction partners. After sufficiently many interactions, nodes become suspended and refrain
from swapping tokens. (b) Eventually all nodes are suspended. The highlighted panel shows the
resulting permutation, which will act as the interaction pattern for the simulated round. (c) As the
phase clocks reset back to 0, nodes become receptive again, and the tokens are shuffled once more.

The protocol uses at most one random bit per node per interaction and that this is the
only part of our framework, where the random bits provided to the nodes are used. The
interacting nodes exchange at most 4 bits (i.e., whether they receptive or not, and the result
of their coin flip) in addition to the contents of the swapped tokens in Step (1b). Finally,
observe that when all nodes are receptive, the tokens are shuffled according to the increment
distribution µ of the k-stack interchange process on G. Figure 4 illustrates the dynamics of
the shuffling protocol in the case k = 1.

6.2 Properties of the shuffling protocol
We now analyse the above shuffling protocol. Let c(u, t) indicate the clock value of node u at
the end of step t. Let c(u, 0) = 0 and t(v, 0) = 0. We say that the clock of node u resets at
time step t if its value transitions from ϕ− 1 to 0. For r ≥ 0, define

t(v, r +1) = min{t > t(v, r) : c(v, t) = 0}; the step when v resets its clock for the rth time,
tmin(r) = min{t(v, r) : v ∈ V }; the earliest step when some clock is reset for the rth time,
tmax(r) = max{t(v, r) : v ∈ V }; the latest step when some clock is reset for the rth time.

Similarly, we define the times with respective to the events when the clocks reach the value ϑ:
s(v, r) = min{t > t(v, r) : c(v, t) = ϑ},
smin(r) = min{s(v, r) : v ∈ V },
smax(r) = max{s(v, r) : v ∈ V }.

The following lemma captures the relationship between the timing of these events.

▶ Lemma 5. With high probability, the following inequalities hold:
1. tmax(R + 1) ≤ t∗ = (Rϕ + γ)n,
2. smin(r)− tmax(r) ≥ τ for each 1 ≤ r ≤ R.
3. tmax(r) < smax(r) < tmin(r + 1) for each 1 ≤ r ≤ R.
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Distribution of tokens. We now show that the distribution tokens mix to an ε-uniform
distribution during the intervals {tmax(r) + 1, . . . , smin(r)} for 1 ≤ r ≤ R. Let π0 = id and πt

denote the locations of the tokens after t steps of the shuffling protocol. Define σ0 = id and

σr = πsmax(r) for 1 ≤ r ≤ R.

Observe that σr = ρ3 · ρ2 · ρ1 · σr−1, where each ρi is product of elements from the support
H ⊆ SN of the increment distribution µ of the k-stack interchange process, where

ρ1 = xtmax(r) · · ·xtmin(r−1)+1 (a subset of nodes have become receptive for the rth time),
ρ2 = xsmin(r) · · ·xtmax(r)+1 (all nodes are receptive),
ρ3 = xsmax(r) · · ·xsmin(r)+1 (a subset of nodes have become suspended for the rth time).

(Recall that permutations are applied from right to left.) Observe that while each xi is a
random element of H, only the elements ρ2 are guaranteed to be distributed according to
the increment distribution µ of the k-stack interchange process. The elements of ρ1 and ρ3
are skewed towards the identity permutation, as some nodes are suspended whenever their
clock values are in {ϑ, . . . , ϕ− 1}. The next lemma establishes that this does not interfere
with the mixing behaviour.

▶ Lemma 6. Let 0 ≤ r < R. For any A ⊆ SN , we have |Pr[σr+1 ∈ A | σr]− ν(A)| ≤ ε.

6.3 The simulation protocol

Using the shuffling protocol in the population protocol model, we can simulate an R-round
algorithm A in the synchronous k-token shuffling model. Let f : X × Y k → X be the state
transition function and g : X → Y k be the token generation function of the algorithm A.
Recall that X and Y denote the sets of local states and token types, respectively.

The simulation protocol. Each node v maintains the following variables:
a(v) ∈ X to simulate the local state of the synchronous protocol A,
b0(v), . . . , bk−1(v) ∈ Y to store the sent and received tokens, and
r(v) ∈ {0, 1, . . . , R} to store the number of simulated rounds.

The variable a(v) is initialised to the initial state x0(v) of node v in the algorithm A and
b0(v), . . . , bk−1(v) are initialised to the values given by g(x0(v)). The variable r(v) is initially
set to 0. When node v interacts (in the asynchronous population protocol model), v updates
its state according to the following rules:
1. Run the clock and the shuffling protocol using b0(v), . . . , bk−1(v) to hold the k tokens.
2. If c(v) = ϑ, then

update the round counter and set r(v)← min{r(v) + 1, R},
compute the new state a(v)← f (a(v), b0(v), . . . , bk−1(v)), and
generate new tokens b0(v), . . . , bk−1(v)← g(a(v)).

As output value of the simulation, node v uses the output value algorithm A associates to
state a(v). The above algorithm simulates an execution of the synchronous algorithm A under
the schedule σ1, . . . , σR given by the shuffling protocol. To this end, define x0(v) = a(v, 0)
and x(r) = a(v, s(v, r)) for all 1 ≤ r ≤ R.

▶ Lemma 7. With high probability, the sequence (xr)0≤r≤R is an execution induced by the
schedule (σr)1≤r≤R.
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6.4 From almost-uniform schedules to uniform schedules
The schedules provided by the shuffling protocol are only ε-uniform, as the shuffling process
is executed for finitely many steps. We now show that this does not matter: any synchronous
protocol behaves statistically similarly under ε-uniform and uniform schedules.

To formalise this, let Φ be the distribution over sequences (σ1, . . . , σR) ∈ SR
N of permuta-

tions generated by the shuffling protocol under the assumption that the clock protocol works
correctly for T time steps. Let νR = ν × · · · × ν denote the distribution of a sequence of R

independently and uniformly sampled random permutations from SN . That is, νR is the
distribution of the uniform R-round schedules. The following then holds:
▶ Lemma 8. The total variation distance between Φ and νR satisfies

∥∥Φ− νR
∥∥

TV ≤ εR.
Together with the following lemma, we can show that protocols simulated under the

ε-uniform schedules behave almost the same as under perfectly uniform schedules.
▶ Lemma 9. Let µ and ν be probability distributions over a finite domain Ω. For any
function F : Ω→ Ω′, the total variation distance satisfies ∥F (µ)− F (ν)∥TV ≤ ∥µ− ν∥TV.

6.5 The main simulation theorem
With all the pieces now in place, we can now state our simulation theorem.
▶ Theorem 4. Let k > 0 be a constant and A be a synchronous k-token shuffling protocol
on n nodes, where X is the set of local states and Y the set of token types used the protocol
A. If A solves the task Π with high probability in R ∈ poly(n) rounds, then there exists a
stochastic population protocol B that also solves task Π with high probability on any n-node
d-regular graph G with edge expansion β > 0. The step complexity T (B) and state complexity
S(B) of the protocol B satisfy

T (B) ∈ O (R · n · ζ) and S(B) ∈ O
(
|X| · |Y |k · ζ

)
with ζ = log n ·

(
d

β
+ τmix

n

)
,

where τmix is the mixing time of the k-stack interchange process on G.

7 Applications: leader election and exact majority

Using Theorem 4, we can automatically transport algorithms from the fully-connected
synchronous token shuffling model to the graphical, asynchronous population protocol model.
We utilise this result to obtain fast protocols for leader election and exact majority in the
graphical population protocol model.

The leader election protocol for the token shuffling model uses a one-way information
dissemination protocol and a protocol for generating synthetic coins in the token shuffling
model with k > 1. Specifically, we show the following result.
▶ Theorem 10. There is a synchronous 2-token shuffling protocol for the leader election task
that stabilises in O(log2 n) rounds with high probability, uses O(log n) states per node and
two token types.

For exact majority in the token shuffling model, we give an algorithm that simulates
two-way interactions in a population of 2n virtual agents. The algorithm uses the classic
cancellation-doubling dynamics used in the clique model [13, 34], yielding the following result.
▶ Theorem 11. There is a synchronous 2-token shuffling protocol for the exact majority
task that stabilises in O(log2 n) rounds with high probability, uses O(log n) states and five
token types.
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8 Conclusions

In this work, we established a general framework for simulating clique-based protocols in
arbitrary, connected regular graphs. We now conclude by briefly discussing some limitations
of our approach and summarise key problems left open by this work.

First, we focused on regular interaction graphs. The justification for this assumption is
two-fold. First, this assumption is only used once: in Section 5, to obtain clean bounds for
the skew of the phase clock. However, upon close inspection, we notice that this regularity
assumption can be relaxed in many cases if the minimum and maximum degrees do not
deviate too much from the average degree of the graph [6]. Second, regular graphs give a
natural extension of the notion of parallel time, since all nodes interact at the same rate.

The simulation overhead has a polylogarithmic dependency on n. We have made no
particular effort to optimise the degree of this polylogarithmic dependency. The dependency
can be improved by providing better bounds on the k-stack interchange process. Indeed,
even in the case of the well-studied (1-stack) interchange process, exact bounds on mixing
time have been – and still remain – an open question for many graph classes [38]. Improved
bounds for these processes imply better running time bounds for our simulations.

Finally, our complexity bounds have a quadratic dependency on d/β. We suspect a
polynomial dependency on the expansion properties is necessary for step complexity and
leave the investigation of tight space-time trade-offs for population protocols in the general
graphical setting as an intriguing open problem.
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