
PathCAS: An Efficient Middle Ground for Concurrent
Search Data Structures

Trevor Brown
University of Waterloo

Canada
me@tbrown.pro

William Sigouin
University of Waterloo

Canada
wpsigoui@uwaterloo.ca

Dan Alistarh
Institute of Science and Technology

Austria
dan.alistarh@ist.ac.at

Abstract
To maximize the performance of concurrent data structures,
researchers have often turned to highly complex fine-grained
techniques, resulting in efficient an d el egant algorithms,
which can however be often difficult to understand and prove
correct. While simpler techniques exist, such as transactional
memory, they can have limited performance or portability
relative to their fine-grained counterparts. Approaches at
both ends of this complexity-performance spectrum have
been extensively explored, but relatively less is known about
the middle ground: approaches that are willing to sacrifice
some performance for simplicity, while remaining competi-
tive with state-of-the-art handcrafted designs. In this paper,
we explore this middle ground, and present PathCAS, a prim-
itive that combines ideas from multi-word CAS (KCAS) and
transactional memory approaches, while carefully avoiding
overhead. We show how PathCAS can be used to implement
efficient search data structures relatively simply, using an
internal binary search tree as an example, then extending
this to an AVL tree. Our best implementations outperform
many handcrafted search trees: in search-heavy workloads,
it rivals the BCCO tree [5], the fastest known concurrent
binary tree in terms of search performance [3]. Our results
suggest that PathCAS can yield concurrent data structures
that are relatively easy to build and prove correct, while
offering surprisingly high performance.

CCS Concepts: • Computing methodologies → Concur-
rent algorithms; Shared memory algorithms.

Keywords: concurrent data structures, search trees, non-
blocking algorithms, lock-free, synchronization primitives

1 Introduction
Significant work has been invested in building scalable con-
current variants of fundamental data structures, and fast

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9204-4/22/04.
https://doi.org/10.1145/3503221.3508410

Figure 1. AVL trees using PathCAS vs state-of-the-art trans-
actional memory. 10% updates, 1M key trees. x-axis = number
of threads. y-axis = millions of operations per second.

implementations are now known for many instances, from
search trees to hash tables, or to containers such as queues
and stacks [25]. On the one hand, designs based on fine-
grained locking or fine-grained lock-free algorithms, have
arguably emerged as the best-performing solution [3]. Yet,
such designs tend to have high complexity, and are notori-
ously difficult to analyze and prove correct.

On the other hand, significant attention has been given to
general techniques for obtaining fast and simple concurrent
data structures. The classic example is transactional memory
(TM) [24], which is now available in software, hardware, and
hybrid variants, and allows one to derive concurrent imple-
mentations from sequential ones with lower programming
effort relative to fine-grained designs. When TM is available,
such designs can provide excellent performance.
However, TM-based designs still have drawbacks. Soft-

ware TM (STM) provides a hardware-independent alterna-
tive to HTM, but can incur higher overheads. Moreover,
although hardware transactional memory (HTM) is techni-
cally available on many platforms, via Intel’s TSX/TSX-NI,
IBM’s POWER8/9 TM and ARM’s TME [30], it is notably
missing from AMD chips (despite the proposal of ASF [10]
more than a decade ago), and has been disabled in Intel
and recent POWER processors [14, 27, 29], due to various
concerns, chief among which is security.
In this context, it is natural to seek a middle ground be-

tween the high efficiency, but high complexity, of fine-grained
designs, and the relative ease-of-use, but potential pitfalls, of
general designs such as the ones based on TM. A number of

385

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3503221.3508410
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reproduced

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Trevor Brown, William Sigouin, and Dan Alistarh

techniques exploring this trade-off have been investigated
over the years, often based on either restricted STMs or ex-
tended Multi-Compare Multi-Swap (MCMS) [38] implemen-
tations. However, as we illustrate later in the paper, known
instances of these techniques often fail to scale in the context
of high-performance data structures.

We revisit this question, and present a primitive for build-
ing correct and efficient concurrent search data structures
from scratch, called PathCAS. PathCAS combines key ideas
from efficient multi-word compare-and-swap (KCAS), and
transactional memory, to allow for concurrent data struc-
tures which are both efficient, and easier to reason about than
hand-crafted data structures using fine-grained primitives.

This mechanism is reminiscent of STM techniques, but it
has two semantic restrictions: (1) PathCAS does not guar-
antee opacity, and (2) PathCAS has a bounded read-set. These
restrictions allow for significant performance benefits, as ex-
emplified in Figure 1, whichwe believe areworth the increase
in programming complexity compared to TM.1 Despite Path-
CAS being less expressive than TM, it is still sufficient to
implement useful data structures.

We begin by describing the semantics and rationale behind
PathCAS in Section 2, and then illustrate how it can be used
to implement a simple concurrent unbalanced internal BST,
a data structure whose concurrent implementations war-
ranted publication on their own, e.g. [13, 16, 17, 26, 34, 35],
in Section 3. To illustrate the difficulty of implementing cor-
rect variants of these data structures, we note that, during
our investigation, we identified a correctness bug in the
lock-based internal BST of Drachsler et al. [16], and that the
publicly-available implementations of the lock-free internal
BSTs of [26] and [35] fail experimental validation tests, and
still lack complete correctness proofs. (We defer a detailed
discussion of these issues to the full version of this paper.)
In this context, PathCAS provides an implementation that is
both efficient and is easy to prove correct.

To further highlight the expressive power of PathCAS, we
also show a how a lock-free balanced version of this tree can
be derived, creating an implementation of a fully-internal
relaxed AVL tree (Section 4), which performs favorably when
compared to state-of-the-art solutions (please see Figure 1).

On the practical side, we present two efficient implementa-
tions of PathCAS: an HTM-enabled one which targets Intel
systems, and a software-only variant applicable to AMD
systems, and use them to empirically validate the above
data structure designs. We perform an in-depth comparison

1Bounding the read-set size is not strictly necessary, but doing so helps
us avoid the overheads associated with dynamically sized data structures.
One might imagine, for example, first filling a fixed array with nodes, then
appending further nodes to a linked list. Checking whether a read should be
added to the array or the linked list would require an extra branch for each
read (possibly on a hot code path). Even with branch prediction, we have
found this overhead to be significant in unbounded transactional memory
implememtations.

against previous methods: from HTM- and STM-based de-
signs, to fine-grained lock-free variants, across both Intel and
AMD systems with up to 256 threads. We find that PathCAS
data structures are highly competitive, across the range from
read-heavy to update-heavy workloads. In particular, our
unbalanced BST implementation manages to outperform the
state-of-the-art in unbalanced BSTs, and our balanced im-
plementation matches the performance of the fastest known
balanced BST in read-mostly workloads.
In sum, PathCAS introduces an additional point in the

trade-off between expressiveness and programming effort,
on the one hand, and efficiency of the resulting data struc-
tures, on the other. Although PathCAS builds on known tech-
niques, the resulting mechanisms are novel, and our search
tree implementations can achieve state-of-the-art results on
a variety of workloads.

2 Related Work
The question of identifying synchronization primitives with
the “right” balance between expressivity and efficiency is
as old as the field of concurrency. We describe related work
with the goal of situating PathCAS on the spectrum of syn-
chronization techniques that have been developed.
Treiber [39] gave one of the first illustrations of a non-

blocking data structure via CAS, while seminal work by
Herlihy [23] showed that CAS is universal. Anderson and
Moir gave constant-time implementations of Load Link (LL)
and Store Conditional (SC) from CAS [1], which is more
expressive than CAS and helps circumvent ABA problems.
Luchangco et al. [31] expand on LL/SC by implementing
k-compare-single-swap, allowing for the change of a single
field to be conditional on multiple fields containing their
expected values. Another extension of LL/SC by Brown et
al. [7] introduced LLX and SCX, which function on data
records. Data records contain multiple related fields which
are loaded by LLX, and SCX only succeeds in changing a
single memory location if none of the fields loaded by LLX
have changed since its invocation. LLX/SCX is less expressive
than PathCAS, as it atomically: changes one field to a new
value, and marks some number of nodes. Brown et al. [7]
introduced several search tree design based on LLX/SCX,
one of which we compare with in the experimental section
(ext-chromatic-lf).

Harris et al. [21], introduced a lock-free version of KCAS,
which is the basis of our implementation along with opti-
mizations from Arbel-Raviv and Brown [2]. KCAS facilitates
atomic multi-word updates, however it does nothing to sim-
plify the arguments around values read but not updated, for
example the path followed during a search.
Timnat et al. [38] introduced a direct evolution of KCAS

which they called Multi-Compare Multi-Swap (MCMS) [38].
Their proposal has similar goals to our work, attempting to
achieve a “middle-ground” between performance and ease

386

PathCAS: An Efficient Middle Ground for Concurrent Search Data Structures PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

of implementation. MCMS attempts to simplify the imple-
mentation of concurrent data structures by increasing the
expressiveness of KCAS, allowing fields to compared without
being swapped. When HTM is available, this algorithm at-
tempts to carry out operations in a transaction as a fast-path,
similar to our approach.

One key difference is that, in its slow path (or if HTM is not
available), the MCMS algorithm incurs high synchronization
costs. Specifically, when using MCMS for search data struc-
tures, one would need to include the entire search path in
the arguments to MCMS. On the software code path, MCMS
would write to every node on the entire search path, includ-
ing the root, both in updates and in searches. This aborts
all concurrent hardware transactions, likely causing cascad-
ing aborts on NUMA systems. In turn, this induces a global
contention bottleneck at the root of the search tree. Another
key difference is that, on machines without hardware TM,
we offer high performance, whereas MCMS essentially be-
comes the HFP KCAS algorithm. We present a comparison
of MCMS and PathCAS in the experimental section.
The work of Mahreshanski et al. [32] analyzes interplay

between HTM and other concurrent designs and how they
function together. This work suggests that HTM does not
obviate other designs, but can be used to improve them.
We apply a similar technique in PathCAS, using HTM as
a fast path for operations, and falling back to our software
algorithm when transactions fail a certain number of times.
Guerraoui and Trigonakis present Optik [20], which is a

methodology for implementing concurrent data structures
using optimistic concurrency and versioned locks. PathCAS
is built using similar low-level techniques, and encapsulates
their complexities in an expressive primitive.

Herlihy and Moss [24] proposed HTM to provide flexible
hardware support for non-blocking data structures. Shavit
and Touitou introduced software TM [36], as a software-only
alternative. PathCAS has similarities to software transac-
tional memory (STM). STM is easier to use than HTM, as
STM does not have the same space limitations, but it suffers
from various overheads, such as requiring locks per word,
dependency on dynamic data structures, and function call
overheads on reads and writes.
Kumar et al. [28] introduced Hybrid Transactional Mem-

ory (HyTM), which is a combination of HTM and STM. Our
experiments include results from state-of-the-art HyTM al-
gorithms. To accelerate TM, other work has attempted to
break up transactions to avoid overheads. One example is
the speculation-friendly tree [19], which uses ElasticTM [18].
However, this tree has relatively poor performance compared
to the state of the art, as we show in Section 5.

3 PathCAS
We provide an overview of the PathCAS primitive, and show
how it can be used to implement a concurrent data struc-
ture. Data structures implemented with PathCAS should

be node-based. (A data structure can have many different
types of nodes, and PathCAS can be used to modify any or
all of them.) PathCAS combines ideas from KCAS and ver-
sion based validation; the rest of this section will provide a
description of these components and how they interact.

3.1 Background
In essence, PathCAS is a generalization of KCAS with addi-
tional capabilities. KCAS is semantically similar to compare-
and-swap (CAS), with the key difference that it is able to
atomically changemultiple addresses (which do not have to
be contiguous). KCAS supports a single operation in the form
of: KCAS(addr1, oldValue1, newValue1, ... addr𝑘 , oldValue𝑘 ,
newValue𝑘). KCAS does the following atomically: if addr𝑖 con-
tains oldValue𝑖 for all i, the value stored at addr𝑖 is changed
to newValue𝑖 for all i and returns true. If not, false is returned.
Our implementation of PathCAS builds on the lock-free

KCAS implementation of Harris, Fraser and Pratt (HFP) [21].
Harris, Fraser and Pratt (HFP) algorithm. A KCAS op-
eration first creates a KCAS descriptor 𝐷 that contains the
arguments to the KCAS as well as a status word that indi-
cates whether the KCAS is InProgress, Succeeded or Failed. It
then performs a sequence of atomic double-compare single-
swap (DCSS) operations to change all addresses from their
respective old values to point to the KCAS descriptor𝐷 only
if the status is still InProgress. (DCSS atomically determines
whether two (potentially non-contiguous) addresses contain
their respective old values, and if so, changes one to a new
value and returns true. Otherwise it returns false.)

If all of the DCSS operations are successful, then the status
is changed to Succeeded and the addresses are all changed
from the descriptor pointer to their respective new values
using CAS. Otherwise, the status is changed to Failed and
the addresses are changed back to their old values. This
atomic change to the status field decides the outcome of the
operation (and dictates the behaviour of helper threads).
Since old values are replaced by descriptor pointers, any

time a thread reads an address that could be modified by a
KCAS, it must use a special KCASRead function that knows
how to handle descriptor pointers. In particular, whenever
KCASRead encounters a KCAS descriptor, it will help the
corresponding KCAS operation to complete (by performing
the same set of DCSSs and CASs that would be performed by
the thread that initially invoked the KCAS). The use of DCSS
avoids ABA problems that could otherwise be introduced
by this lock-free helping [21]. Crucially, DCSS prevents any
helper from storing new pointers to the KCAS descriptor
once the status has become Succeeded or Failed (preventing
helpers from resurrecting completed KCAS operations).

The KCAS descriptor pointer behaves conceptually like a
lock that grants exclusive access of a field to a KCAS oper-
ation, rather than to a particular thread. Once all addresses
contain pointers to a KCAS descriptor, they can only be

387

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Trevor Brown, William Sigouin, and Dan Alistarh

changed in accordance with the corresponding KCAS oper-
ation. If the KCAS descriptor’s status is Succeeded, then all
helpers will try to change addresses to their respective new
values. The value contained in a memory address logically
changes when the status of the descriptor changes to Suc-
ceeded, and a successful KCAS is linearized then. If the status
is Failed, helpers will try to revert addresses to their old val-
ues. A failed KCAS is linearized when it saw a value that did
not match the address’ old value. Changing an address from
a descriptor pointer to a value conceptually unlocks it.

The authors implemented lock-free DCSS in software, us-
ing CAS and DCSS descriptor objects to facilitate helping.
There is no need to pierce the atomic DCSS abstraction in
our work, except to mention that DCSS descriptors exist.

3.2 Semantics
Whereas KCAS takes all of the addresses to be modified (and
their respective old and new values) as explicit arguments,
the PathCAS interface is closer to transactional memory. In
the following, we say a node 𝑛 has been visited (resp., an
address 𝑎𝑑𝑑𝑟 has been added) if there has been an invocation
of visit(n) (resp., add(addr, ...)) since the last invocation of
start(). PathCAS offers operations to:

• start() gathering arguments for a PathCAS,
• read(addr) an address that might be modified via Path-
CAS,

• add(addr, old, new) an address addr to be changed atom-
ically from old to new,

• visit(n) a node n, and
• validate() to check whether any visited nodes have
changed since they were visited. validate succeeds
and returns true only if no such change has occurred.
To allow for implementations with diverse progress
properties, validate can fail and return false spuriously.

• exec() performs a KCAS according to the arguments
passed to invocations of add since the last start. That is,
if all added addresses contain their respective old val-
ues, then exec succeeds, changing all added addresses
to their respective new values and returning true. Oth-
erwise it returns false.

• vexec() performs exec only if validate would succeed.

Behaviour is undefined if an address is added multiple
times with conflicting old and new values. If a node is visited
multiple times (after a particular invocation of start), then
any changes to it after the earliest such visit will cause exec
and validate to return false.
Note that start, add and exec can simply be viewed as

syntactic sugar for accumulating arguments to a KCAS op-
eration, and read is essentially KCASRead. However, visit
and vexec have no direct analogue in KCAS. To emulate the
behaviour of visit(n) and vexec using KCAS, one could in-
clude every address in node n in the arguments to the KCAS,
“changing” each address from its current value v to v.

3.3 Implementation
At a high level, the algorithm differs from HFP in the follow-
ing ways: we implement the syntactic sugar described above
for incrementally accumulating arguments, and we add a
new validation phase wherein visited nodes are inspected
to determine whether they have changed since they were
visited. Validation affects progress in subtle ways.
Basic operations: start, read, add, visit A PathCAS de-
scriptor consists of a status field, a sequence of ⟨𝑎𝑑𝑑𝑟, 𝑜𝑙𝑑, 𝑛𝑒𝑤⟩
triples denoted entries, and a sequence of ⟨𝑛𝑜𝑑𝑒, 𝑣𝑒𝑟 ⟩ pairs
denoted path. A start() operation creates a new descriptor,
and we refer to it as the thread’s descriptor (until start is
invoked again). Similarly to KCASRead, a read(addr) reads
addr, and if it sees a pointer to a descriptor, then it helps the
corresponding exec or vexec to complete (more about helping
below), and repeats these steps. If it sees a non-descriptor
value, that value is returned. An add(addr, old, new) adds a
triple to the thread’s descriptor’s entries.
Version numbers are used to track changes to the data

structure’s nodes. More specifically, each node is augmented
with a version number ver that should be incremented every
time the node is changed. The programmer using PathCAS
is responsible for ensuring that s/he increments the version
numbers of any node 𝑛 that s/he modifies using PathCAS.
This simply entails reading 𝑛.𝑣𝑒𝑟 and invoking add(node.ver,
v, v+1) to increment the value 𝑣 that was read from 𝑛.𝑣𝑒𝑟 .
We discuss the motivation behind the decision further in
Section 3.9.
A visit(n) operation reads the version 𝑣 of node n using

read, saves ⟨&𝑛.𝑣𝑒𝑟, 𝑣⟩ in the thread’s descriptor’s path, and
returns 𝑣 .2 The use of read means visit(n) will help any exec
or vexec it encounters that is in the process of modifying n.
vexec An invocation of vexec simply passes the thread’s
descriptor to a subroutine called help and returns the result.
Consider the set 𝑆 of addresses added to the thread’s de-

scriptor desc (i.e., the addresses that should be changed by
this PathCAS operation). An invocation of help(desc) first
uses DCSS to change all of the addresses in 𝑆 from their
respective old values to point to the PathCAS descriptor. If
any of these DCSSs fail, then all of the addresses that were
changed to point to the PathCAS descriptor are reverted to
their old values using CAS. Otherwise, now that all addresses
are conceptually locked for this PathCAS operation, we can
start validation. The two red lines of code in Algorithm 1
are the only changes from the HFP KCAS algorithm.
Validation To perform validation, help invokes a subroutine
called validateDesc(desc), which rereads the version number
of each visited node and checks whether it has changed, We

2Since the read-set (i.e., path) is bounded, we should mention what happens
if the read-set size is exceeded. In our code, exceeding the read set size
triggers an assertion. In practice, we imagine that the programmer will
either over-allocate a large array for visited addresses, or will implement
data structures for which a practical height bound is known.

388

PathCAS: An Efficient Middle Ground for Concurrent Search Data Structures PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Algorithm 1 PathCAS::help(desc)
1: ⊲ Phase 1: “lock” addresses for this PathCAS
2: if desc.state == Undecided then
3: newState = Succeeded
4: for each (addr, old, new) in desc.entries do
5: retry_dcss:
6: valueSeen = DCSS(⟨addr, old, desc⟩, ⟨desc.state, Undecided⟩)
7: if isDescriptor(valueSeen) then
8: help(valueSeen) ⊲ DCSS failed because of other PathCAS
9: goto retry_dcss ⊲ retry after helping
10: else if valueSeen ≠ old then
11: newState = Failed ⊲ DCSS failed because old ∉ addr
12: break ⊲ Stop trying to “lock” addresses
13: end for
14: if newState == Succeeded and not validateDesc(desc) then
15: newState = Failed ⊲ If validation fails, fail and release “locks”
16: CAS(desc.state, Undecided, newState)
17: ⊲ Phase 2: “unlock” addresses to new or old values according to state
18: result = (desc.state == Succeeded)
19: for each (addr, old, new) in desc.entries do
20: CAS(addr, desc, (result ? new : old))
21: end for
22: return result

Algorithm 2 PathCAS::validateDesc(desc)
1: for each (node, visitVer) in desc.path do
2: currentVer = node.ver
3: if currentVer = desc then
4: continue ⊲ “locked” for our PathCAS
5: if isDescriptor(currentVer) and currentVer ≠ desc then
6: return false ⊲ “locked” for a different PathCAS
7: if currentVer ≠ visitVer or (visitVer & 1) then
8: return false ⊲ node’s version has been changed or marked
9: end for
10: return true

discuss the practical considerations of using version num-
bers, namely wrapping, in the full version of the paper.

To simplify and optimize the implementation of data struc-
tures that mark nodes when removing them, we steal the
least-significant bit from each node’s version number to indi-
cate whether the node has been marked. (In data structures
without marking, this bit is simply not used.) Validation
succeeds only if all visited nodes are unmarked. In a data
structure that marks nodes, success implies that no visited
node has been deleted. Storing the marked bit in the same
word as the version number allows a node to be marked as
deleted at the same time as its version number is updated
with minimal overhead. (Note that visit returns the mark
along with the version number.)
If validation succeeds, none of the visited nodes have

changed (or been deleted, in a data structure with marking)
since they were visited. In this case, the PathCAS descriptor’s
status field is changed from InProgress to Succeeded using
CAS. Otherwise, it is changed from InProgress to Failed using
CAS. Once the status field changes to either Succeeded or

Failed it cannot change again. Finally, if the status is Suc-
ceeded, the addresses in 𝑆 are changed to their new values
using CAS. Otherwise, their old values are restored via CAS.
HelpingAs in the related KCAS algorithms, since old values
are replaced by descriptors, a special read() function (analo-
gous to KCASRead())must be used to read any fields that
can ever be modified by PathCAS. A read() function that
encounters a descriptor pointer will help the corresponding
PathCAS operation to complete. Helpers perform the same
sequence of steps as the thread that first invoked vexec for
this PathCAS. Note that the validation phase will be per-
formed by all helpers, and slow helpers may fail validation
even if a fast helper succeeded. However, a slow helper that
fails validation cannot revert addresses to old values, since
it will attempt to do so using CAS, and this CAS will fail if
the node no longer points to the same PathCAS descriptor
(with the same version). Moreover, as long as a node points
to the PathCAS descriptor, it cannot cause validation to fail.
Progress and helpingAt this point, onemight wonder why
forward progress is guaranteed even though an operation
𝑂 can invoke read and begin helping another operation 𝑂 ′

before 𝑂 has finished invoking add on all of its fields: Can
this cause 𝑂 and 𝑂 ′ to abort each other? We note that such
helping also occurs the lock-free HFP KCAS (in KCASRead).
The key observation is: although 𝑂 can help another opera-
tion before𝑂 has finished adding its addresses, the operation
being helped must have already finished adding all of its own
addresses. So, such mutual aborts cannot occur. Progress is
discussed in greater detail below.
exec The exec operation is just a stripped down version
of vexec that does not perform validation. It can be imple-
mented simply by removing all pairs for visited nodes from
the thread’s descriptor before invoking help. The intention
of including exec in the interface is to allow nodes to be
visited during a data structure traversal in case validation
will be needed, and then to decide not to validate (reducing
overhead) at the end of the traversal.
validate The validate operation simply passes the thread’s
descriptor desc to validateDesc and returns the result.

3.4 Correctness and Progress

Correctness The exec operation is the same as the lineariz-
able lock-free HFP KCAS algorithm, and is linearized in
the same way. In other words, for a successful exec, we lin-
earize at the change to the descriptor’s status field, and for a
failed exec, we linearize at the read (of an unexpected, non-
descriptor value) that caused the failure. Of course, if a vexec
is performed but no nodes were visited, then vexec is the same
as exec, and is linearized the same way.
The case where a vexec is performed after some nodes

were visited is more nuanced. Recall that many helper threads
can participate in a single vexec operation 𝑂 by invoking

389

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Trevor Brown, William Sigouin, and Dan Alistarh

help(desc), where desc is 𝑂 ’s descriptor. The helpers will col-
laborate to first “lock” all addresses, then perform validation,
then use CAS to change the descriptor’s status, then “unlock”
all addresses. Only one helper will successfully change the
descriptor’s status, and we call that helper the decider. Once
the status field is changed, the behaviour of all helpers is
dictated by its contents. Two cases arise.
If no visited node has its version number changed (or

marked) between when it was visited and when the decider
rereads its version number during validation, then valida-
tion succeeds. Given that validation succeeds, vexec behaves
the same as a successful HFP KCAS (matching the PathCAS
semantics). We linearize just before the decider invokes val-
idate(desc), at which point all added addresses are “locked”
and no visited node had changed.3

However, if some visited node has its version changed (or
marked) between when it was visited, and when the decider
rereads its version number during validation, then vexec
will behave like a failed HFP KCAS, restoring old values
and returning false (matching the PathCAS semantics). We
linearize when the value that caused the failure was read.
Progress The progress guarantees for PathCAS are subtle.
The start and add operations are wait-free. The visit, exec and
vexec operations only perform a constant number of steps
in addition to an invocation of help, but help can invoke
itself recursively. The latter is also true in the HFP KCAS
algorithm, and it manages to guarantee lock-free progress
with an assumption that the addresses passed to KCAS are
sorted. If we make the same assumption, then it is possible
to argue that visit, exec and vexec operations are lock-free.
However, lock-freedom only guarantees that infinitely

many operations will terminate in an infinite execution—not
that any of them will succeed. To see why this could be a
problem, consider a data structure with two nodes, 𝐴 and 𝐵.
Suppose thread 𝑡1 visits 𝐴 and adds 𝐵 (to change 𝐵’s value),
and thread 𝑡2 visits 𝐵 and adds 𝐴 (to change 𝐴’s value). If 𝑡1
and 𝑡2 both “lock” their respective added nodes, then both
perform validation, both will fail validation and “unlock,”
terminating, and hence satisfying lock-freedom, but perhaps
preventing the data structure using PathCAS from making
progress. The problem here is that both vexec operations can
fail spuriously, even though the non-descriptor values that
are semantically contained in 𝐴 and 𝐵 have not changed.

3.5 Avoiding spurious failures
It is impossible to avoid vexec failures altogether. One can
always invoke vexec after adding addresses with unreason-
able old values that they have never contained. However, the
above implementation allows every vexec to fail spuriously,

3Just as in the HFT KCAS algorithm, at this linearization point, since all
added addresses are “locked,” and threads cannot read their values without
first helping, no thread can read one of the added addresses and obtain an
old value. Instead, a new value will be obtained (after helping).

simply because a visited node contained a descriptor pointer.
To be able to implement lock-free data structures using Path-
CAS, we need to change this. Without loss of generality,
in the following, we focus on vexec operations (since exec
operations are just a special case).

We say a thread 𝑡 invokes a reasonable add(addr, old, new)
if the old value was read from addr at some point since the
last invocation 𝑆𝑡 of start by 𝑡 . If a thread invokes start fol-
lowed by a sequence of reasonable add operations, followed
by a vexec, then we call the vexec reasonable. With a small
modification to vexec, we can guarantee the following.
Property P1. If each thread 𝑡 invokes only reasonable vexec
operations, then whenever a vexec 𝑉𝑡 fails, another vexec has
succeeded since 𝑉𝑡 ’s start operation, 𝑆𝑡 .
Strong vexec In the implementation described previously, a
vexec fails validation simply because it sees a descriptor,
and “unlocks” all of its nodes. Rather than failing spuri-
ously, vexec can fall back to a slower lock-free code path
on which it creates a new copy of its descriptor with slightly
different contents. This new descriptor contains all of the
added fields of the old one, but crucially, all of the visited
⟨𝑛𝑜𝑑𝑒, 𝑣𝑒𝑟 ⟩ pairs in the old descriptor are converted into
added ⟨𝑛𝑜𝑑𝑒.𝑣𝑒𝑟, 𝑣𝑒𝑟, 𝑣𝑒𝑟 ⟩ triples. These triples are then sorted.
Finally, this new descriptor is passed as the argument to an
exec operation, which will effectively “lock” all of the visited
nodes’ version numbers rather than simply validating them.
In practice, to reduce overhead, before switching to this

slow path, vexec can repeatedly try again (a bounded number
of times) using an exact copy of its descriptor and performing
validation as usual. Since the slow path has high overhead,
the number of retries can be tuned to avoid invoking the slow
path except where it is really necessary. One can also try con-
tention management strategies such as bounded exponential
backoff to further reduce slow path usage.

Note that the choice of vexec or strong vexec does not af-
fect performance in our experiments, as spurious failures
are sufficiently infrequent that there is no need to switch to
the slow path.
How strong vexec helps Strong vexec is not vulnerable to
the progress problem described above. Suppose thread 𝑡1
visits 𝐴 and adds 𝐵, and thread 𝑡2 visits 𝐵 and adds 𝐴. If 𝑡1
and 𝑡2 both “lock” their respective added nodes, then both
perform validation, both will fail validation and “unlock,” but
they will not terminate. Rather, they will retry. They can retry
only a bounded number of times before executing the slow
path. Once both are executing the slow path, they will each
try to lock 𝐴 then 𝐵 (because of address sorting), and one of
them will succeed.
Let us sketch why P1 is satisfied. A reasonable vexec 𝑉𝑡

does not fail when it fails validation. Rather, it fails only if (a)
one of its reasonable added addresses contains an unexpected
non-descriptor value, or (b) one of its visited nodes’ version
numbers has been incremented. (In both cases,𝑉𝑡 might help

390

PathCAS: An Efficient Middle Ground for Concurrent Search Data Structures PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

one or more other vexec operations to complete before it
can read a non-descriptor value.) In case (a), since the added
address contained its reasonable old value at some time since
𝑆𝑡 , and it can be changed to a different non-descriptor value
only by a successful vexec, P1 holds. Similarly, in case (b),
the visited node’s version number was read since 𝑆𝑡 , and a
node’s version number is incremented only when the node
is changed by a successful vexec, so P1 holds.

3.6 Optimizing descriptor management
Arbel-Raviv and Brown [2] showed how to transform the
HFP algorithm to eliminate the need to allocate and free de-
scriptors for DCSS and KCAS. The same transformation can
be applied to PathCAS, allowing each thread to reuse one
PathCAS descriptor (and we do this in our experiments). The
transformation in [2] is straightforward and mechanical, but
it makes the pseudocode much more difficult to read, so we
presented pre-transformation code. Similarly, to avoid com-
plicating the code, we treated DCSS as an atomic primitive.
(In reality it is implemented in software as in [2].)

3.7 Optimizing with hardware TM
On systems with support for hardware TM, the PathCAS
algorithm above can be used as a fallback code path, and a
faster hardware TM based algorithm can be used as a fast
path. In other words, we can use a hardware transaction
to perform vexec/exec atomically without the overhead of
synchronizing via DCSS and CAS.
Our hardware TM based fast path is simply obtained by

taking the software algorithm above, wrapping it in a trans-
action, and then performing a sequence of sequential opti-
mizations (which do not affect correctness because of the
atomicity of hardware transactions).

3.8 Comparison to transactional memory
PathCAS is most similar to a lock-free, non-opaque, bounded,
object-based TM that is compiled directly into the data struc-
ture (rather than being compiled as a library). Such a highly
restricted TM implementation could avoid many of the same
traditional TM overheads that we also avoid: incremental
validation to guarantee opacity, locks per word (instead of
version numbers per node), dynamic data structures such
as hash tables with intrusive lists (instead of a simple array
for our visited nodes), and function call overhead for reads
and writes. However, such a TM would be no easier to use
than PathCAS, and to our knowledge no such TM exists.
Moreover, it would be a substantial undertaking to design
an efficient TM with these properties.

3.9 Design Decision: Manual Version Numbers
We contemplated building the incrementing of version num-
bers into the abstraction, so that it would be automatic. How-
ever, we decided that requiring addresses passed to add to
be fields of nodes might be overly restrictive. We do not

want to rule out applications wherein PathCAS could be
used to atomically validate a set of nodes, and also modify
arbitrary fields that do not belong to a data structure node
(such as a size variable). Therefore, we only require nodes
that are passed to visit to have version numbers to track
changes, and leave it to the programmer to manage them.
Note that our interface supports debugging mechanisms to
catch errors in managing version numbers.4 In an applica-
tion where it is acceptable to restrict PathCAS so that it only
accesses nodes, one could easily change add() to also take a
node pointer in addition to the field pointer, and automate
version increments.

4 Application: Lock-free Internal BST
In this section we provide a concrete example of how to
create a data structure using PathCAS, namely, a concurrent
set implemented as an internal binary search tree.
Operations The tree supports the following operations. con-
tains(key) returns true if key is in the tree, and false otherwise.
insert(key, val) returns false if key is in the tree. Otherwise,
it inserts key and value returns true. delete(key) returns false
if key is not in the tree. Otherwise, it deletes key and its
associated value and returns true.
Data structures Tree nodes have fields for left and right
children, a key, a value, and a version number ver as required
by PathCAS.
To avoid special cases, the tree always contains two sen-

tinel nodes with keys −∞ and +∞. Consequently, every node
with key 𝑘 ∈ (−∞, +∞) always has both predecessor and suc-
cessor nodes. The sentinel with key +∞, which we call the
maxRoot, is the root of the entire tree. The sentinel with key
−∞, which we call the minRoot, is the left child of maxRoot.
No field of maxRoot is ever changed. All keys in (−∞, +∞)
are always found in the right subtree of minRoot.
Implicit read()Our pseudocode exemplifies a feature of our
PathCAS implementation in C++: implicit read invocations.
Whereas KCASRead() calls must be explicitly added by the
programmer, in C++, templates and operator overloading
can be used to invoke PathCAS read() calls automatically. 5
Thus, in our BST pseudocode we do not explicitly invoke the
PathCAS read function, but the reader should note: any field
that is ever modified by PathCAS is accessed using read.

4For example, visit can save the address ranges of all visited nodes, and
exec can then check for intersections between the visited nodes and added
addresses that do not have a corresponding node.ver increment. This intro-
duces overhead, but can be enabled only when debugging.
5The programmer need only annotate the types of fields that can be modified
by KCAS in the data structure node type definition, by wrapping each field’s
type in a special PathCAS template type. For example, int key becomes
casword<int> key. This requires very little effort, and can even help us
catch some types of programmer errors, such as unsafe writes to fields that
can be modified with PathCAS.

391

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Trevor Brown, William Sigouin, and Dan Alistarh

Algorithm 3 BST::search(key)
1: while true do
2: parent = maxRoot
3: parentVer = visit(parent)
4: curr = minRoot
5: currVer = visit(curr)
6: while curr ≠ NIL do
7: currKey = curr.key
8: if key == currKey then
9: return ⟨true, curr, currVer, parent, parentVer⟩
10: parent = curr
11: if key > currKey then curr = curr.right
12: else key < currKey curr = curr.left
13: parentVer = currVer
14: currVer = visit(curr)
15: return ⟨false, curr, currVer, parent, parentVer⟩

10

20

40

30 60

50

contains(50)

sleep

10

20

30 60

50

delete(40)

(promote successor)

Figure 2. Error in contains operation without validation

Search The search(key) procedure (Algorithm 3) is invoked
by contains, insert and delete. It performs a traditional BST
search until it encounters a NIL pointer, or finds a node
containing key. search returns a tuple of five items with
types: ⟨Boolean, node, version, node, version⟩. If the key key
is found, this tuple contains true, followed by the node that
contains key and its version number (observed during search),
followed by its parent and its version number. If key was not
found, then search returns false, followed by the final node
it encountered (before seeing a NIL pointer) and the version
number of that node. The remaining two fields are ignored
in this case. We return these two nodes (and their versions)
to be used by insert and delete. The key difference between
this search and a sequential BST search is that each node is
passed to an invocation of visit.
Contains The contains(key) operation invokes search(key),
followed by validate(). If validation succeeds, then the en-
tire search was effectively atomic (since the entire path was
visited), so we return true if search found key and false oth-
erwise. If validation fails, we retry the contains from scratch.

One might wonder why contains performs validation. Fig-
ure 2 depicts an error that can occur without validation
in an internal BST with atomic updates. In that execution,
contains(50) reaches node 60 then sleeps. Then, delete(40)
atomically deletes 40, promoting the successor key 50 in its
place. When contains(50) wakes up and continues its search,
it will conclude that 50 is not in the tree and return false.
This is incorrect, as 50 has been in the tree throughout the
entirety of the contains(50) operation. Validation would catch

Algorithm 4 BST::insert(key, val)
1: while true do
2: start()
3: ⟨foundKey, -, -, parent, parentVer⟩ = search(key)
4: if foundKey and validate() then return false;
5: newLeaf = createNode(key, val)
6: parentKey = parent.key
7: ptrToChange = (key < parentKey) ? &parent.left : &parent.right
8: add(ptrToChange, NIL, newLeaf)
9: add(&parent.ver, parentVer, parentVer + 2) ⊲ Increment version
10: if vexec() then return true

this error, since delete(40) changes a node that contains(50)
has already visited.
Validation makes arguing correctness trivial (validated

searches are atomic), and only incurs a small amount of over-
head.We discuss an optimized implementation that performs
less validation in Section 4.1.
Insert The insert(key, val) operation (Algorithm 4) first in-
vokes search(key) to determine whether key is already in the
tree, and to locate the parent whose child pointer should be
changed to insert a new node containing key (if key is not
already in the tree).
If the search finds key, then validate is invoked to deter-

mine whether any the nodes visited by search changed since
they were visited. If validation succeeds, it establishes a time
𝑡 during the insert operation when key was already in the
tree, so false is returned (the insert is linearized at time 𝑡).
If search() does not find key, then a new node contain-

ing key and val is created, and add is invoked so that the
appropriate child pointer of parent will be changed (by a
subsequent vexec) to point to this new node. Since we are
trying to change parent, add is invoked to cause the parent’s
version number to be incremented.

Finally, vexec is invoked to (attempt to) atomically change
the added addresses only if none of the visited nodes have
changed since they were visited. If it succeeds, we linearize
at the vexec. Otherwise, we retry the insert from scratch.
Delete The delete(key) operation (Algorithm 6) first searches
for the key to be deleted, similar to insert.
If search does not find key, the path followed in search

is validated. If this validation is successful, false can be re-
turned as a time has been established when the entire path
traversed by search, which did not contain key, was atom-
ically contained in the tree. Thus, the tree did not contain
key at some time during the delete, and we can linearize at
that time. If validation fails, delete is retried from scratch.

If search finds key, the node curr containing key is returned,
along with its parent. delete() then checks whether these
nodes are marked (and hence deleted already). If either is
marked, the delete is retried from scratch.

Next, delete reads curr.left and curr.right to determine how
many children curr has. It does not matter if the number of
children is counted incorrectly, for example, because curr.left

392

PathCAS: An Efficient Middle Ground for Concurrent Search Data Structures PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Algorithm 5 BST::getSuccessor(start, startVer)
1: succP = start
2: succPVer = startVer
3: succ = startNode.right
4: succVer = visit(succ)
5: while true do
6: next = succ.left
7: if next == NIL then return ⟨succ, succVer, succP, succPVer⟩
8: succP = succ
9: succPVer = succVer
10: succ = next
11: succVer = visit(next)

is changed between these two reads. If curr changes, our
subsequent vexec will fail and the delete will retry. We would
not have to consider this possibility at all if we were using
opaque transactional memory instead of PathCAS, but we
would argue that this reasoning is not onerous to avoid the
overheads that come along with opacity.
As in a sequential internal BST, three cases arise. In each

case, we use vexec to perform the sequential update atomi-
cally. If vexec succeeds, delete returns true, and we linearize
at the vexec. If vexec fails, the delete is retried from scratch.
Leaf deletion If curr has no children, vexec is invoked to
unlink and mark it, and to increment the parent.ver.
One child deletion If curr only has a single child, vexec
is invoked to replace curr by its child, marking curr and
incrementing parent.var.
Two child deletion If curr has two children, we will try
to replace its key and value with those of its successor succ,
then delete the node succ (exactly as one does in a sequen-
tial internal BST). We first locate the successor succ and its
parent succP using getSuccessor, which visits each node it
traverses and returns the version numbers it saw. Note that
the successor cannot have a left child (or else it is not the
successor). So, succ has at most one child, which means it
can be deleted using one of the previous two cases.
If it has a child, succR, then we change the appropriate

pointer in the parent succP to succR. If it has no children,
succR is NIL, so changing the appropriate pointer in succP to
succR simply unlinks succR. We mark succR since it is being
removed, and increment the versions of curr and succP since
they are being changed. (If the successor happens to be the
right child of curr, then succP and curr are the same node, so
we only need to increment one of succP and curr.) Note that
the success of vexec implies that succ actually is the successor
of curr when the delete is linearized.

4.1 Optimizing to reduce validation
In contains, if foundKey is true, then it is unnecessary to
validate, because the key can only be found if it was actually
in the tree at some time during the contains, and we can
linearize the contains at that time. (If a node was unlinked
before contains began, then contains cannot reach it.)

Algorithm 6 BST::delete(key)
1: while true do
2: start()
3: ⟨foundKey, curr, currVer, parent, parentVer⟩ = search(key)
4: if not foundKey then
5: if validate() then return false;
6: else continue
7: if currVer & 1 or parentVer & 1 then continue ⊲ if marked
8: currLeft = curr.left
9: currRight = curr.right
10: if currLeft == NIL and currRight == NIL then ⊲ Leaf deletion
11: ptrToChange = (curr == parent.left) ? &parent.left : &parent.right
12: add(ptrToChange, curr, NIL)
13: add(&parent.ver, parentVer, parentVer + 2)
14: add(&curr.ver, currVer, currVer + 1) ⊲ mark curr
15: if vexec() then return true
16: else if currLeft == NIL or currRight == NIL then ⊲ One child
17: childToKeep = (currLeft == NIL) ? currRight : currLeft
18: ptrToChange = (curr == parent.left) ? &parent.left : &parent.right
19: add(ptrToChange, curr, childToKeep)
20: add(&parent.ver, parentVer, parentVer + 2)
21: add(&curr.ver, currVer, currVer + 1) ⊲ mark curr
22: if vexec() then return true
23: else ⊲ Two child deletion
24: ⟨succ, succVer, succP, succPVer⟩ = getSuccessor(curr, currVer)
25: if succ == NIL or (succVer & 1) or (succPVer & 1) then continue
26: succR = succ.right ⊲ succ has at most one child
27: if succR ≠ NIL then ⊲ if it does
28: succRVer = visit(succR)
29: if succRVer & 1 then continue
30: ptrToChange = (succP.right == succ) ? &succP.right : &succP.left
31: add(ptrToChange, succ, succR)
32: add(&curr.val, curr.val, succ.val)
33: add(&curr.key, key, succ.key)
34: add(&succ.ver, succVer, succVer + 1) ⊲ mark succ
35: add(&succP.ver, succPVer, succPVer + 2)
36: if succP ≠ curr then add(&curr.ver, currVer, currVer + 2)
37: if vexec() then return true

Readers familiar with the lazy linked list [22] might won-
der why we do not have to consider the case where a node
is marked as logically deleted before our contains began, but
not unlinked until later. Note that, unlike typical concurrent
data structures with marking, where nodes are marked before
they are removed, in our tree nodes are unlinked and marked
in the same atomic PathCAS operation. Thus, reachability in
our tree is equivalent to being unmarked (and hence logically
contained in the tree).
This optimization can also be applied to insert and delete

operations that return false. Additionally note that validation
is not required in the leaf deletion and one child deletion
cases, so exec can be used instead of vexec. A detailed expla-
nation is deferred to the full version of this paper.

4.2 Extension: AVL Trees with PathCAS
As a second example application of PathCAS, we extend our
internal BST to perform relaxed AVL tree balancing. Due
to lack of space, we only give an overview here. Complete
details appear in the full version of the paper.

393

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Trevor Brown, William Sigouin, and Dan Alistarh

1% updates 10% updates 100% updates
U
nb

al
an

ce
d
B
ST

s
B
al
an

ce
d
B
ST

s

Figure 3. Selected results: AMD system, 10 million keys. x-axis = # of threads. y-axis = operations/sec.

We augment the BST nodes described in the previous
section with two new fields: parent and height. The former
points to the node’s parent and the latter contains the logical
height of the node, which can differ from the node’s actual
height when the tree is unbalanced.

In insert, we initialize newly created nodes’ parent pointers
to point to the node they are being inserted under. In delete,
whenever we perform a vexec that removes an internal node,
and hence changes the parent of a child, we add that child’s
parent pointer to the vexec as appropriate.

A balance violation exists at node n when:
• n.left.height - n.right.height > 2; or
• n.left.height - n.right.height < -2; or
• n.height ≠ 1 + max(n.left.height, n.right.height)

A violation can be created by any operation that causes node
to gain or lose children. Whenever an operation creates a
violation, it performs rebalancing steps to fix the violation.
We implement the relaxed AVL tree rebalancing steps of

Bougé [4]. Bougé’s proved that, starting from an arbitrar-
ily unbalanced tree, after performing a bounded number of
atomic rebalancing steps (wherever they can be applied in
the tree, and in any order), the tree will converge to a bal-
anced state. Rebalancing steps are local modifications that
affect a small number of nodes, and they do not need to be
performed atomically at the same time as a search. The rebal-
ancing steps, namely rotateLeft, rotateRight, rotateLeftRight,
rotateRightLeft and fixHeight, are very similar to the familiar
AVL tree rotations. Rebalancing steps eliminate violations, or
move them towards the root where they will be eliminated.
A tree with no violations is balanced.

Whenever a thread creates a violation at a node, it takes
responsibility for repairing that violation, and any subse-
quent violations it creates while repairing that violation. More
specifically, after performing a successful insert or delete, a
thread traverses towards the root, fixing any violations it
sees until either: it fixes a violation at the root, it observes a
node on the path towards the root that has no violation, or

it encounters a deleted node on the path to the root (which
means another thread has taken responsibility for any vio-
lations further along the path to the root). This is why we
augment nodes with parent pointers: they allow us to easily
“follow” violations up the tree.

4.3 Freeing data structure nodes
In unmanaged languages like C++, PathCAS manages its
own memory, but the programmer must still manually re-
claim memory for the data structures they implement using
PathCAS. Reclaiming nodes that are deleted by a vexec (or
exec) is quite simple using an algorithm such as DEBRA or
NBR [6, 37]. The C++ implementation of DEBRA used in [9]
offers operations getGuard() and retire(node). The former is
invoked at the beginning of each data structure operation.
The latter can be invoked on any node after it is unlinked
using vexec (or exec). This will perform a delayed free once
no thread has a pointer to node. We use DEBRA to reclaim
memory for all data structures in our experiments.
Using DEBRA is so mechanical that the necessary invo-

cations of retire could even be integrated directly into vexec
(and exec), by having a successful vexec retire each node
whose version it marks just before returning.

5 Evaluation
Our experiments follow the methodology of [9], and we
use the authors’ publicly available benchmark, Setbench. We
compare against state-of-the-art hand-crafted trees, as well
as several TM-based trees (see Figure 4). We experimented
with update rates (1%, 10% and 100%) and uniform key ranges
(2×105, 2×106, 2×107). Each trial pre-filled the data structure
to contain half of the keyrange, then ran for 10 seconds. Data
is averaged over six trials with min/max bars shown in red.

Our AMD system has two EPYC 7662 CPUs, each with 64
cores and two hardware threads per core, for a total of 256
hardware threads, and a 256MB shared L3 cache. Threads
are pinned such that thread counts up to 128 run on one

394

PathCAS: An Efficient Middle Ground for Concurrent Search Data Structures PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Unbalanced BSTs
ext-bst-lf External, lock-free, CAS [17]
ext-bst-lf2 External, lock-free, CAS and BTS [34]

ext-bst-locks External, ticket locks [13]
pext-bst-locks Partially-external, locks, logical ordering [16]
int-bst-pathcas Internal, lock-free, PathCAS this work
int-bst-pathcas+ Internal, lock-free, PathCAS + HTM fast-path this work

Balanced BSTs
ext-chromatic-lf External, LLX/SCX [8]
pext-avl-occ Partially-external, locks, logical ordering [5]

int-avl-pathcas Internal, lock-free, PathCAS this work
int-avl-pathcas+ Internal, lock-free, PathCAS + HTM fast-path this work

Transactional Memory Algorithms
norec STM [12]

hynorec HTM fast-path + STM slow-path [11]
rhnorec HTM fast-path + HTM/STM slow-path [33]

tle HTM + Global Lock fallback this work
tl2 STM [15]

Figure 4. The list of algorithms in our experiments.

LLC miss Cycles Instr. Avg. Key Peak Mem.
per op per op per op Depth Usage

ext-bst-lf 26.6 25872 2047 32.9 1137 MiB
ext-bst-locks 24.6 23790 1527 30.5 1038 MiB
ext-bst-lf2 15.3 15226 1739 30 720 MiB
pext-bst-locks 16.3 16184 1011 28.6 2047 MiB
int-bst-pathcas 13.7 12371 2661 28.7 539 MiB
int-avl-norec 141 8677653 789316 21.7 620 MiB
ext-chromatic-lf 31.5 27123 3204 24.3 2441 MiB
int-avl-tl2 44.2 55514 7935 21.7 3642 MiB
pext-avl-occ 11.6 11234 2398 23.2 844 MiB
int-avl-pathcas 12.9 13752 3976 21.7 717 MiB

Figure 5. Detailed analysis for 100% updates, 256 threads.

socket. We used GCC 10.1.0 -O3, the fast allocator jemalloc,
and interleaved memory pages across sockets with numactl.

Many more experiments can be found in the full version of
this paper, including Intel results and additional algorithms
and workloads.
Comparing unbalanced trees The top three plots in Fig-
ure 3 present results comparing our unbalanced BST (int-bst-
pathcas) to a variety of leading hand-crafted unbalanced BST
implementations. Our code includes all fixes recommended
by Arbel-Raviv et al. for obtaining reliable BST performance
results [3]. Our PathCAS BST often significantly outperforms
its competitors. We explain why using Figure 5.
As expected, out of the unbalanced BSTs, int-bst-pathcas

performs the largest number of instructions per tree opera-
tion. However, it has the smallest cycle count per operation,
suggesting that its instructions can be pipelined more effi-
ciently. Crucially, int-bst-pathcas incurs the smallest number
of last-level cache misses, because of its low average key
depth and peak memory usage. The ext-bst-* BSTs are exter-
nal: the keys that are semantically contained in the dictionary
are stored in the leaves, and internal nodes contain dummy
routing keys. External trees contain more nodes than internal
trees and are taller. pext-bst-locks is partially external, which
means it is somewhat closer to an internal tree. Despite its
low average key depth, its nodes are quite large, containing
multiple locks and many pointers, as they participate in both
a tree and a doubly linked list. It underperforms because of
its peak memory usage and LLC misses.

Comparing balanced trees The bottom three plots in Fig-
ure 3 compare our AVL tree (int-avl-pathcas) with other
balanced BSTs, including pext-avl-occ [5], which is known
to be the fastest concurrent BST in many workloads [3]. In
read-mostly workloads, int-avl-pathcas is competitive with
pext-avl-occ, and outperforms the other trees.
In the 100% update workload, int-avl-pathcas is at most

20% slower than the fastest algorithm. The fact that int-
avl-pathcas is not drastically outperformed by the highly
tuned and intricate pext-avl-occ tree is remarkable.6 The ext-
chromatic-lf tree, which is implemented using the LLX and
SCX primitives, does not fare nearly as well.
TM-based trees It should be noted that in an attempt to be
generous to these TM approaches, in our implementations
we compiled each TM in the same compilation unit as the
data structure (rather than as a linked library), and force-
inlined all TM code, eliminating the overhead of function
calls to the TM code from the data structure. This optimiza-
tion would be unrealistic in practice, however should give
the TM implementations the best performance possible for
comparison. Despite this, the TM based algorithms in Fig-
ure 3 still suffer from high instruction counts and LLC miss
rates (Figure 5). In particular, the extremely high instruction
counts for int-avl-norec are due to contention on the global
version lock and repeated read set validation to guarantee
opacity.
The results in the introduction (Figure 1), from our Intel

system, include more algorithms, since the system has hard-
ware transactional memory support. In those results, our
trees outperform the next fastest algorithm, TLE, by nearly
2x. Moreover, those results are “generous” to TLE, since its
global locking fallback code path degrades performance dra-
matically in workloads with more updates.

5.1 Comparison with MCMS
To compare PathCAS with MCMS, we extended Timnat’s
original C++ code for the MCMS linked list. We note that
we found some bugs in his implementation of MCMS, one
of which only affects the source code, and one of which af-
fects the algorithm in the MCMS paper. Details are to appear
in the full version of this paper. We fixed these bugs, and
applied the same lock-free descriptor optimizations that we
use, and implemented an internal BST using MCMS to vali-
date the entire search path (similarly to how we validate the
entire search path using PathCAS). The implementation is
optimized to the best of our ability: for instance, it avoids
performing MCMS in cases where searches return true or
inserts return false. Moreover, deletes that return true per-
form their modifications in small MCMS operations that do
6The pext-avl-occ tree is intricate, and carefully engineered, using sophisti-
cated sequence locks that encode whether ongoing rebalancing operations
are shrinking or expanding the key range, and allowing a key that was
marked as deleted to be reinserted simply by changing a bit. This may
inflate its performance in the types of workloads used in our experiments.

395

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Trevor Brown, William Sigouin, and Dan Alistarh

100% update 100% search
threads PathCAS MCMS+ MCMS- PathCAS MCMS+ MCMS-
1 2.50 0.99 1.12 3.19 1.25 1.54
2 4.42 0.69 0.70 6.33 0.78 0.77
4 7.94 0.56 0.54 12.44 0.63 0.62
8 13.97 0.50 0.50 24.07 0.55 0.54
48 46.67 0.35 0.31 77.23 0.40 0.31
190 79.71 0.04 0.03 263.00 < 0.1 < 0.1

Figure 6. Intel results for an internal BST implemented with
PathCAS, MCMS with HTM (MCMS+), and MCMS without
HTM (MCMS-), respectively. Tree initially contains 100,000
keys. Results are in millions of operations per second.

threads: 24 48 96 144 190
ext-bst-elastic 17.24 29.54 52.25 71.59 90.43
ext-bst-lf2 29.28 53.07 129.02 195.71 267.44

Figure 7. Intel results for elastic transactions with 1% up-
dates and 99% searches. The trees initially contain 10,000,000
keys. Results are in millions of operations per second.

not include the search path. The hardware TM code path in
our MCMS implementation is faithful to the MCMS paper in
that it does not write to nodes on the search path unless the
operation is an update that intends to modify that node.

Results appear in Figure 6. We find that the resulting tree
is orders of magnitude slower than our PathCAS tree. For
example, for 100% searches and 100,000 keys, on a system
with hardware TM, the throughput of the MCMS tree is
0.4M at 48 threads, whereas the throughput of PathCAS is
77M. According to perf stat -e tx_commit,tx_abort,
half of MCMS transactions abort at 8 threads, 84% abort at
48 threads, and there are many capacity aborts even with
a single thread. As we suspected, even transient aborts in
MCMS can quickly turn into cascading aborts and software
path executions. At 190 threads, PathCAS is thousands of
times faster than MCMS.

5.2 Comparison with Elastic TM
We also compared PathCAS with elastic transactions, which
use sophisticated synchronization techniques to split trans-
actions into smaller atomic pieces to improve performance.
Specifically, we comparedwith ext-bst-elastic, the “speculation-
friendly BST” from Synchrobench [19] that is built using
elastic transactions. We were unable to port the Elastic STM
library that ext-bst-elastic depends on into Setbench, as it
would require overhauling Setbench to support the back-
ground rebalancing threads used by ext-bst-elastic, andwould
require us to completely redesign its memory reclamation.
So, we obtained performance numbers for ext-bst-elastic

using Synchrobench, instead of Setbench. We also obtained
performance numbers for ext-bst-lf2 on the same workload,
as it is included in Synchrobench as well as setbench. Results
appear in Figure 7. This gives us a sort of limited point of
comparison between our results in Setbench and our results
in Synchrobench. Although the results do not allow for a
rigorous comparison between ext-bst-elastic and the other
trees in our experiments, we note that it is much slower

than ext-bst-lf2, which is in the middle of the pack in our
Setbench experiments. And, we also note that ext-bst-elastic
is being evaluated in an environment that is presumably
most favourable to it, as ext-bst-elastic was developed by
the authors of Synchrobench, and integrated therein by the
authors. Additionally observe that this 1% update workload
is quite favourable to ext-bst-elastic, as its performance de-
grades faster than ext-bst-lf2 as the update rate increases.

6 Conclusion
This paper introduced PathCAS, a primitive used to imple-
ment efficient concurrent data structures while maintaining
lower complexity than hand-crafted techniques. PathCAS
utilizes an HTM fast path combined with an efficient fallback
path that relies on KCAS, version numbers, and search path
validation.

We implemented a set of historically difficult data struc-
tures using PathCAS, including an internal balanced tree, and
have shown them to achieve competitive performance with
the best fine-grained variants.We compared the performance
of our data structures with both TM-based and hand-crafted
variants of these structures, showing that PathCAS surpasses
TM based approaches, and can rival the state-of-the-art in
hand-crafted designs.
While in this work we focus on the two trees presented,

we emphasize that one can use PathCAS in a direct way
to implement many data structures wherein an operation
consists of a read phase followed by a write phase. The con-
struction is similar to our trees: visit each node that will
be read or written, then add and exec the necessary modi-
fications. Using this approach, we were able to implement
the following: (a,b)-trees, lists, hash-tables, hash-lists, stacks,
queues, skip-lists and dynamic graph connectivity data struc-
tures. We chose to focus on trees in the paper, since they have
traditionally been difficult to implement and prove correct.
However, we plan to share more of our implementations as
part of future work.

Acknowledgments
This work was supported by: the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) Collaborative
Research and Development grant: CRDPJ 539431-19, the
Canada Foundation for Innovation John R. Evans Leaders
Fund with equal support from the Ontario Research Fund
CFI Leaders Opportunity Fund: 38512, Waterloo Huawei
Joint Innovation Lab project “Scalable Infrastructure for Next
Generation Data Management Systems”, NSERC Discovery
Launch Supplement: DGECR-2019-00048, NSERC Discovery
Program under the grants: RGPIN-2019-04227 and RGPIN-
04512-2018, and the University of Waterloo. We would also
like to thank the reviewers for their insightful comments.

396

PathCAS: An Efficient Middle Ground for Concurrent Search Data Structures PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

References
[1] James H. Anderson and Mark Moir. 1995. Universal Constructions for

Multi-Object Operations. In Proceedings of the Fourteenth Annual ACM
Symposium on Principles of Distributed Computing (Ottowa, Ontario,
Canada) (PODC ’95). Association for Computing Machinery, New York,
NY, USA, 184–193. https://doi.org/10.1145/224964.224985

[2] Maya Arbel-Raviv and Trevor Brown. 2017. Reuse, don’t Recycle:
Transforming Lock-free Algorithms that Throw Away Descriptors. In
Proceedings of the 31st ACM Symposium on Distributed Computing.

[3] Maya Arbel-Raviv, Trevor Brown, and Adam Morrison. 2018. Getting
to the Root of Concurrent Binary Search Tree Performance. In 2018
USENIX Annual Technical Conference (USENIX ATC 18). USENIX Asso-
ciation, Boston, MA, 295–306. https://www.usenix.org/conference/
atc18/presentation/arbel-raviv

[4] Luc Bougé, Joaquim Gabarró Vallés, Xavier Messeguer Peypoch, and
Nicolas Schabanel. 1998. Height-relaxed AVL rebalancing: a unified,
fine-grained approach to concurrent dictionaries.

[5] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.
2010. A Practical Concurrent Binary Search Tree. In Proceedings of the
15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (Bangalore, India) (PPoPP ’10). ACM, New York, NY, USA,
257–268. https://doi.org/10.1145/1693453.1693488

[6] Trevor Brown. 2015. Reclaiming Memory for Lock-Free Data Struc-
tures: There Has to Be a Better Way. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing (Donostia-San
Sebastián, Spain) (PODC ’15). ACM, New York, NY, USA, 261–270.
https://doi.org/10.1145/2767386.2767436

[7] Trevor Brown, Faith Ellen, and Eric Ruppert. 2013. Pragmatic primi-
tives for non-blocking data structures. InACM Symposium on Principles
of Distributed Computing, PODC ’13, Montreal, QC, Canada, July 22-24,
2013. 13–22. https://doi.org/10.1145/2484239.2484273

[8] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A General Tech-
nique for Non-blocking Trees. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Or-
lando, Florida, USA) (PPoPP ’14). ACM, New York, NY, USA, 329–342.
https://doi.org/10.1145/2555243.2555267

[9] Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. 2020. Non-
Blocking Interpolation Search Trees with Doubly-Logarithmic Run-
ning Time. In Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (San Diego, California)
(PPoPP ’20). Association for Computing Machinery, New York, NY,
USA, 276–291. https://doi.org/10.1145/3332466.3374542

[10] Jaewoong Chung, Luke Yen, Stephan Diestelhorst, Martin Pohlack,
Michael Hohmuth, David Christie, and Dan Grossman. 2010. ASF:
AMD64 Extension for Lock-Free Data Structures and Transactional
Memory. In Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO ’43). IEEE Computer Society,
USA, 39–50. https://doi.org/10.1109/MICRO.2010.40

[11] Luke Dalessandro, François Carouge, Sean White, Yossi Lev, Mark
Moir, Michael L. Scott, and Michael F. Spear. 2011. Hybrid NOrec: A
Case Study in the Effectiveness of Best Effort Hardware Transactional
Memory. In Proceedings of the 16th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS). ACM, 39–52.

[12] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. 2010. NOrec:
streamlining STM by abolishing ownership records. In Proceedings of
the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP 2010, Bangalore, India, January 9-14, 2010. 67–78.
https://doi.org/10.1145/1693453.1693464

[13] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asyn-
chronized Concurrency: The Secret to Scaling Concurrent Search Data
Structures. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems (Istanbul, Turkey) (ASPLOS ’15). Association for Computing

Machinery, New York, NY, USA, 631–644. https://doi.org/10.1145/
2694344.2694359

[14] Linux Kernel development community. 2021. TSX Async Abort (TAA)
mitigation documentation. (2021). https://www.kernel.org/doc/html/
latest/x86/tsx_async_abort.html

[15] Dave Dice, Ori Shalev, and Nir Shavit. 2006. Transactional locking II. In
International Symposium on Distributed Computing. Springer, 194–208.

[16] Dana Drachsler, Martin Vechev, and Eran Yahav. 2014. Practical concur-
rent binary search trees via logical ordering. In PPoPP ’14 Proceedings
of the 19th ACM SIGPLAN symposium on Principles and practice of
parallel programming. 343–356.

[17] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
2010. Non-blocking Binary Search Trees. In Proceedings of the 29th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting (Zurich, Switzerland) (PODC ’10). ACM, New York, NY, USA,
131–140. https://doi.org/10.1145/1835698.1835736

[18] Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. 2009. Elastic
Transactions. In Distributed Computing, Idit Keidar (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 93–107.

[19] V. Gramoli. 2015. More Than You Ever Wanted to Know about Syn-
chronization: Synchrobench. In Proceedings of the 20th Annual ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP).

[20] Rachid Guerraoui and Vasileios Trigonakis. 2016. Optimistic Concur-
rency with OPTIK. In Proceedings of the 21st ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (Barcelona,
Spain) (PPoPP ’16). ACM, New York, NY, USA, Article 18, 12 pages.
https://doi.org/10.1145/2851141.2851146

[21] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A Practical
Multi-Word Compare-and-Swap Operation. In Proceedings of the 16th
International Conference on Distributed Computing (DISC ’02). Springer-
Verlag, Berlin, Heidelberg, 265–279.

[22] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William
N. Scherer III, and Nir Shavit. 2006. A Lazy Concurrent List-Based
Set Algorithm. In Proceedings of the 9th International Conference on
Principles of Distributed Systems (OPODIS 2005), Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 3974), James H. Anderson,
Giuseppe Prencipe, and Roger Wattenhofer (Eds.). Springer, 3–16.

[23] Maurice Herlihy. 1991. Wait-Free Synchronization. ACM Trans. Pro-
gram. Lang. Syst. 13, 1 (Jan. 1991), 124–149. https://doi.org/10.1145/
114005.102808

[24] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory:
Architectural Support for Lock-free Data Structures. In Proceedings
of the 20th Annual International Symposium on Computer Architecture
(San Diego, California, USA) (ISCA ’93). ACM, New York, NY, USA,
289–300. https://doi.org/10.1145/165123.165164

[25] Maurice Herlihy and Nir Shavit. 2008. The art of multiprocessor pro-
gramming. Morgan Kaufmann. I–XX, 1–508 pages.

[26] Shane Howley and Jeremy Jones. 2012. A non-blocking internal bi-
nary search tree. ACM Symposium on Parallelism in Algorithms &
Architectures (06 2012). https://doi.org/10.1145/2312005.2312036

[27] IBM. 2020. Power ISA™ Version 3.1. (2020). https://wiki.raptorcs.
com/w/images/f/f5/PowerISA_public.v3.1.pdf

[28] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu,
and Anthony Nguyen. 2006. Hybrid Transactional Memory. In Proceed-
ings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (New York, New York, USA) (PPoPP ’06). New
York, NY, USA, 209–220. https://doi.org/10.1145/1122971.1123003

[29] Michael Larabel. 2021. Intel To Disable TSX By Default On More CPUs
With New Microcode. (2021). https://www.phoronix.com/scan.php?
page=news_item&px=Intel-TSX-Off-New-Microcode

[30] Arm Ltd. 2021. ARM C Language Extensions. https://developer.arm.
com/documentation/101028/0013/?lang=en

397

https://doi.org/10.1145/224964.224985
https://www.usenix.org/conference/atc18/presentation/arbel-raviv
https://www.usenix.org/conference/atc18/presentation/arbel-raviv
https://doi.org/10.1145/1693453.1693488
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/2484239.2484273
https://doi.org/10.1145/2555243.2555267
https://doi.org/10.1145/3332466.3374542
https://doi.org/10.1109/MICRO.2010.40
https://doi.org/10.1145/1693453.1693464
https://doi.org/10.1145/2694344.2694359
https://doi.org/10.1145/2694344.2694359
https://www.kernel.org/doc/html/latest/x86/tsx_async_abort.html
https://www.kernel.org/doc/html/latest/x86/tsx_async_abort.html
https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/2851141.2851146
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/2312005.2312036
https://wiki.raptorcs.com/w/images/f/f5/PowerISA_public.v3.1.pdf
https://wiki.raptorcs.com/w/images/f/f5/PowerISA_public.v3.1.pdf
https://doi.org/10.1145/1122971.1123003
https://www.phoronix.com/scan.php?page=news_item&px=Intel-TSX-Off-New-Microcode
https://www.phoronix.com/scan.php?page=news_item&px=Intel-TSX-Off-New-Microcode
https://developer.arm.com/documentation/101028/0013/?lang=en
https://developer.arm.com/documentation/101028/0013/?lang=en

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Trevor Brown, William Sigouin, and Dan Alistarh

[31] Victor Luchangco, Mark Moir, and Nir Shavit. 2003. Nonblocking
K-Compare-Single-Swap. In Proceedings of the Fifteenth Annual ACM
Symposium on Parallel Algorithms and Architectures (San Diego, Cali-
fornia, USA) (SPAA ’03). Association for Computing Machinery, New
York, NY, USA, 314–323. https://doi.org/10.1145/777412.777468

[32] Darko Makreshanski, Justin Levandoski, and Ryan Stutsman. 2015.
To Lock, Swap, or Elide: On the Interplay of Hardware Transactional
Memory and Lock-Free Indexing. Proc. VLDB Endow. 8, 11 (jul 2015),
1298–1309. https://doi.org/10.14778/2809974.2809990

[33] Alexander Matveev and Nir Shavit. 2015. Reduced Hardware NOrec:
A Safe and Scalable Hybrid Transactional Memory. SIGPLAN Not. 50,
4 (March 2015), 59–71. https://doi.org/10.1145/2775054.2694393

[34] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-
free Binary Search Trees. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Orlando,
Florida, USA) (PPoPP ’14). ACM, New York, NY, USA, 317–328. https:
//doi.org/10.1145/2555243.2555256

[35] Arunmoezhi Ramachandran and Neeraj Mittal. 2015. A Fast Lock-
Free Internal Binary Search Tree. In Proceedings of the 2015 Interna-
tional Conference on Distributed Computing and Networking (Goa, India)
(ICDCN ’15). Association for Computing Machinery, New York, NY,
USA, Article 37, 10 pages. https://doi.org/10.1145/2684464.2684472

[36] Nir Shavit and Dan Touitou. 1995. Software Transactional Memory.
In Proceedings of the Fourteenth Annual ACM Symposium on Princi-
ples of Distributed Computing (Ottowa, Ontario, Canada) (PODC ’95).
Association for Computing Machinery, New York, NY, USA, 204–213.
https://doi.org/10.1145/224964.224987

[37] Ajay Singh, Trevor Brown, and Ali Mashtizadeh. 2021. NBR: Neutral-
ization Based Reclamation. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Vir-
tual Event, Republic of Korea) (PPoPP ’21). Association for Computing
Machinery, New York, NY, USA, 175–190. https://doi.org/10.1145/
3437801.3441625

[38] Shahar Timnat, Maurice Herlihy, and Erez Petrank. 2015. A Practical
Transactional Memory Interface. In Euro-Par 2015: Parallel Processing,
Jesper Larsson Träff, Sascha Hunold, and Francesco Versaci (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 387–401.

[39] R. K. Treiber. 1986. Systems programming: Coping with parallelism.
Technical Report RJ 5118. IBM Almaden Research Center.

7 Artifact
We have provided a docker container in which you can down-
load and start running the experimental benchmark.

• The docker container was prepared on Ubuntu 20.04,
which is also the OS the actual container is running

• In particular, we build our container using Docker
version 20.10.2, build 20.10.2-0ubuntu1 20.04.2.

• Our experiments are run on a machines with 384 GB
of RAM and 192 threads total, while possible to run
these experiments on a different machines with less
memory or threads:
– If you have lessmemory, youmay need to use smaller
data structure sizes

– If you have fewer threads, you will simply need to
use less threads

Inside the docker container, in the experiments folder,
you will find a script called run.sh that builds all data struc-
tures and runs a simple test (using each data structure). This
script is driven by the experimental configuration described

in experiments/_common.py. By default, the contents of
experiments/_common.py cause run.sh to reproduce Fig-
ure 3. More details on how to modify this experimental con-
figuration appear below.

Note that run.sh performs experiments for both transac-
tional memory and non-transactional memory data struc-
tures. This can take quite some time, so you may want to
limit the number of trials in _common.py to a relatively small
number.

7.1 Step By Step Instructions
1. Install docker (ideally the same version we use) on

your system with your preferred package manager
2. Download the docker image from Zenodo (https://

zenodo.org/record/5728166). For example, on Linux
you might do this by executing:
$ wget https://zenodo.org/record/5728166/fil
es/ppopp2022pathcas.tar.gz

3. Add the image to your local Docker images (running
in the same directory as step 2):
$ docker load -i ppopp2022pathcas.tar.gz

4. Launch the docker container
$ docker run -i -t –privileged ppopp2022pathc
as /bin/bash
Note that privileged is required in order to ascertain
the proper thread pinning strategy for the experiments,
and to record performance counters for, e.g., cache sta-
tistics. You may also need to set kernel.perf_event_
paranoid to -1 on Linux.

5. Go to the experiments folder
$ cd experiments

6. The experiments can be configured in _common.py. Be
sure to edit the HOST CONFIGURATION and EXPERI-
MENTALCONFIGURATION sections of experiments/
_common.py to match the machine you are running on,
and to reflect the types of experiments you would like
to run. Note that the various configuration parameters
are described in the comments.
By default, _common.py is configured to reproduce Fig-
ure 3 in the paper. Running such experiments can take
many hours (at least 12). If you would like to run
a shorter test to get started, please uncomment the
more restrictive testing values of ins_del_fractions,
max_keys, exp_duration_millis, thread_counts and
num_trials provided alongside the default values in
_common.py before proceeding. (Once you have run
your small test, you can comment those testing values
out again.)
Additionally, Smaller example test values are provided
if you wish to run a quick proof of concept test (com-
mented out next to the actual set values).

7. To run the experiments described in _common.py, sim-
ply execute $./run.sh. It will run experiments, store
the results in a sqlite3 database, process those results

398

https://doi.org/10.1145/777412.777468
https://doi.org/10.14778/2809974.2809990
https://doi.org/10.1145/2775054.2694393
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/2684464.2684472
https://doi.org/10.1145/224964.224987
https://doi.org/10.1145/3437801.3441625
https://doi.org/10.1145/3437801.3441625
https://zenodo.org/record/5728166
https://zenodo.org/record/5728166

PathCAS: An Efficient Middle Ground for Concurrent Search Data Structures PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

using various SQL queries, and produce several text
data files and plot images (more on this below).
If the testing values in _common.py areuncommented,
this should take less than five minutes.
If the testing values are commented out, then run.sh
will perform all necessary experiments to reproduce
Figure 3 in the paper. This should take approxi-
mately 12 hours.
While experiments are being performed, the scripts
will produce output of the form “step 000001 /
000336...”. Each such line contains the command
being executed, as well as a very rough estimate of the
remaining running time for all experiments.

8. After the runs are complete, PNG format plot im-
ages for the experiments can be found in directories
experiments/data_tm and experiments/data_non_tm.
Note that, by default, a large super set of the plots in
the paper are generated.
To more easily view these images, you may want to
copy them from the docker container to your host ma-
chine using docker cp. For example, while the docker
container is running, you can run the following com-
mand on the host machine, where <CONTAINER_NAME>
is the name of the running container.7
$ docker cp <CONTAINER_NAME>:/root/tmbench/ex
periments .
This will copy all experimental results to the host ma-
chine. Alternatively, you can browse the results in text
format directly inside the docker container:
a. A detailed summary of the numerical data can be

obtained by starting in the experiments directory
and running ./basic_info.sh to produce a pretty-
printed table, with columns for update rate, data
structure name, key range size, thread count and
throughput. If you ran both TM and Non-TM exper-
iments, this script will print a table for each type of
results.

b. Note that you can also perform your own arbitrary
SQL queries on the sqlite database, either by modi-
fying the queries in basic_info.sh, or by entering
an interactive sqlite console in either of the data_*
directories in experiments/:
$ sqlite3 output_database.sqlite

c. If you want to view the complete raw text data
(which contains considerably more information than
the sqlite database), you can find files for each ex-
perimental “step” stored in experiments/data_tm
and experiments/data_non_tm, with file names of
the form: data0*<STEP>.txt.
There are also CSV-format tables of data that are
converted into various plots in file names of the form:

7To obtain the name of the running container, run $ docker container
list and look in the NAMES column.

{DATA_STRUCTURE_TYPE}_{METRIC}_u{UPDATE RA
TES}-k{MAX_KEY}.{FILE_TYPE}
For example, data_tm/bst_tm_total_throughput
_sec-u50.0_50.0-k20000000.txt contains a table
of data that is used to produce a throughput compar-
ison plot for TM-based binary search trees, with 50%
inserts and 50% deletes, and a key range size of 20
million (i.e., initial data structure size of 10 million).
This example is of particular note, as it corresponds
to one of the plots in Figure 3.

9. Note that, due to the nature of docker containers, all
data will be lost if you exit the docker run. If you
want to save any of your generated data, you can do so
using docker cp from a different terminal on the host
machine to copy the relevant data from the container
to the host.
Alternatively, you can use docker commit to save a
new version of the docker image that includes all of
the data you’ve generated. You can then launch that
image in a docker container to access your data again.

10. Once you have saved any data you want to keep, you
can exit the docker container by running exit in the
container, or docker stop <CONTAINER_NAME> on the
host.

LLC misses on AMD Note the artifact fails to track LLC
misses on recent AMD processors. Instead, they must be
tracked manually using perf stat.

For example, on our machine, we used a command of the
form: [usual command prefix up until the binary]
perf stat -e l3_comb_clstr_state.request_miss [act
ual binary being run] [args].
Also note that will produce a raw number of LLC misses

for the entire execution, so one will need to divide by the
number of operations completed. This number will be some-
what inflated because it includes experimental setup and
tear-down as well as prefilling. To get around this, use perf
record -k CLOCK_MONOTONIC, which timestamps all cache
misses with a clock that is compatible with our benchmark.
Then one can take a pair of timestamps emitted by our bench-
mark, REALTIME_START_PERF_FORMAT and REALTIME_END_P
ERF_FORMAT, and plug them into perf report –ns –time
<start>,<stop> where <start> and <stop> are our times-
tamps.
Generating Figure 5 Figure 5 is generated by running the
following SQL queries on the results databases (starting in
the same directory as _common.py and run.sh).
for exp in tm non_tm ; do \
../setbench/tools/data_framework/run_experiment.py \
exp${exp}.py -q "select maxkey, TOTAL_THREADS, \
alg, mem_maxresident_kb, PAPI_L3_TCM, PAPI_TOT_CYC, \
PAPI_TOT_INS, tree_stats_avgKeyDepth from data \
where ins_del_frac = '50.0 50.0' \
order by maxkey desc, total_threads desc, alg" ; done

399

	Abstract
	1 Introduction
	2 Related Work
	3 PathCAS
	3.1 Background
	3.2 Semantics
	3.3 Implementation
	3.4 Correctness and Progress
	3.5 Avoiding spurious failures
	3.6 Optimizing descriptor management
	3.7 Optimizing with hardware TM
	3.8 Comparison to transactional memory
	3.9 Design Decision: Manual Version Numbers

	4 Application: Lock-free Internal BST
	4.1 Optimizing to reduce validation
	4.2 Extension: AVL Trees with PathCAS
	4.3 Freeing data structure nodes

	5 Evaluation
	5.1 Comparison with MCMS
	5.2 Comparison with Elastic TM

	6 Conclusion
	Acknowledgments
	References
	7 Artifact
	7.1 Step By Step Instructions

