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SUMMARY

GABAergic synapses in brain circuits generate
inhibitory output signals with submillisecond la-
tency and temporal precision. Whether the molec-
ular identity of the release sensor contributes to
these signaling properties remains unclear. Here,
we examined the Ca2+ sensor of exocytosis at
GABAergic basket cell (BC) to Purkinje cell (PC) syn-
apses in cerebellum. Immunolabeling suggested
that BC terminals selectively expressed synaptotag-
min 2 (Syt2), whereas synaptotagmin 1 (Syt1) was
enriched in excitatory terminals. Genetic elimination
of Syt2 reduced action potential-evoked release to
�10%, identifying Syt2 as the major Ca2+ sensor at
BC-PC synapses. Differential adenovirus-mediated
rescue revealed that Syt2 triggered release with
shorter latency and higher temporal precision and
mediated faster vesicle pool replenishment than
Syt1. Furthermore, deletion of Syt2 severely reduced
and delayed disynaptic inhibition following parallel
fiber stimulation. Thus, the selective use of Syt2 as
release sensor at BC-PC synapses ensures fast
and efficient feedforward inhibition in cerebellar
microcircuits.
INTRODUCTION

g-aminobutyric acid (GABA)-ergic interneurons play a key role in

the control of activity in neuronal microcircuits. These neurons

mediate feedback and feedforward inhibition and are involved

in the generation of high-frequency network oscillations (Hu

et al., 2014). A hallmark functional property of GABAergic inter-

neurons, especially of parvalbumin-expressing subtypes, is the

speed of signaling at their output synapses across species and

brain regions (Kraushaar and Jonas 2000; Hefft and Jonas,

2005; Caillard et al., 2000; Sakaba, 2008; Arai and Jonas,

2014). Several molecular and subcellular factors may underlie

submillisecond signaling at GABAergic synapses. The selective
Cell
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use of P/Q-type Ca2+ channels in presynaptic terminals will

contribute, because these channels activate and deactivate

very rapidly (Li et al., 2007;Hefft and Jonas, 2005; Arai and Jonas,

2014). The tight coupling between Ca2+ channels and Ca2+ sen-

sors of exocytosis will be relevant, because such ‘‘nanodomain

coupling’’ will reduce diffusional delays (Bucurenciu et al.,

2008; Eggermann et al., 2011; Chen et al., 2015). Finally, the acti-

vation anddeactivation kinetics of theCa2+ sensors of exocytosis

(presumably synaptotagmins) may be important for the speed of

synaptic transmission (Chapman, 2002; S€udhof, 2002; Koh and

Bellen, 2003; Xu et al., 2007; Kochubey et al., 2016).

However, the molecular identity of the Ca2+ sensor at

GABAergic synapses has not beendetermined yet. Themamma-

lian genome encodes 16 synaptotagmins, eight of which bind

Ca2+ (Syt1, 2, 3, 5, 6, 7, 9, and 10; Chapman, 2002; S€udhof,

2002), and three of which act as fast release sensors (Syt1,

Syt2, and Syt9; Xu et al., 2007; Kochubey et al., 2016). Which

of these synaptotagmins are involved in transmitter release

at GABAergic synapses remains unclear. Genetic labeling and

immunohistochemistry experiments suggested the expression

of Syt2 in GABAergic interneurons, probably parvalbumin-

expressing subtypes (Pang et al., 2006a; Fox and Sanes, 2007;

Sommeijer and Levelt, 2012). However, genetic elimination of

Syt1 reduced release at output synapses of fast-spiking, parval-

bumin-expressing interneurons in the hippocampus to �50% of

control value (Kerr et al., 2008), suggesting thatmultiple synapto-

tagmins, possibly Syt1 and Syt2, work in concert.

How different synaptotagmin isoforms shape the time course

of transmitter release is controversial. Recombinant expression

of different synaptotagmin isoforms in cultured neurons sug-

gested marked kinetic differences among Syt1, Syt2, and Syt9,

with Syt2 mediating the fastest and Syt9 the slowest time course

of release (Xu et al., 2007). However, expression of different syn-

aptotagmin isoforms in the calyx of Held revealed no significant

differences in release kinetics between Syt2 and Syt1 (Kochubey

et al., 2016). Furthermore, Syt2 mediated slower vesicle fusion

kinetics than Syt1 in chromaffin cells (Nagy et al., 2006) and

showed slower kinetics in comparison to Syt1 in liposome bind-

ing-unbinding assays (Hui et al., 2005). Thus, how the differential

expression of synaptotagmin isoforms (Mittelsteadt et al., 2009)

relates to the speed of synaptic transmission has not been

defined.
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Figure 1. Differential Expression of Syt1 and Syt2 between Excitatory and Inhibitory Presynaptic Terminals in Cerebellum

(A) Light-micrographs of cerebellar cortex, showing immunolabeling for synaptotagmin 1 (Syt1, left), synaptotagmin 2 (Syt2, center), and overlay (right) from a

wild-type mouse; single confocal sections.

(B) Similar to (A), but at higher magnification. Note that putative BC terminals surrounding PC somata are only immunoreactive for Syt2, but not for Syt1.

(C) Colocalization of Syt1 and VGAT (left) and VGLUT1 (right). Note the absence of Syt1 immunoreactivity in inhibitory terminals surrounding PCs.

(D) Similar colocalization analysis as shown in (C), but for Syt2. Note high Syt2 immunoreactivity in putative BC terminals (arrowheads).

ML, molecular layer; PCL, Purkinje cell layer; GCL, granule cell layer.
The cerebellar basket cell (BC)-Purkinje cell (PC) synapse

seems to be an ideal synapse to address these questions. First,

this synapse showed high connectivity and strictly perisomatic

location (Arai and Jonas, 2014), enabling us to examine the

time course of release with microsecond temporal precision.

Second, in comparison to hippocampus and neocortex, inter-

neuron diversity is more limited, making it easier to dissect

the functional contribution of synaptotagmin isoforms by com-

parison of wild-type and knockout synapses. Third, this syn-

apse is amenable to genetic manipulation (such as virus injec-

tion), because of the superficial location of the cerebellar

microcircuits. Finally, the effects of Syt2 deletion can be tested

in acute slices. This is important, because the effects of synap-

totagmins may depend on the network environment (Liu et al.,

2009). We discovered that genetic deletion of Syt2 largely abol-

ished fast transmitter release, and that Syt2 generated faster

release kinetics and faster pool refilling than Syt1 in rescue

experiments.
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RESULTS

Differential Expression of Syt1 and Syt2 between
Excitatory and Inhibitory Presynaptic Terminals in
Cerebellum
Previous expression analysis showed that several synaptotag-

min isoforms are expressed in the cerebellum, with strongest

expression of Syt1 and Syt2 (Mittelsteadt et al., 2009). To deter-

mine the molecular identity of the Ca2+ sensor at cerebellar BC-

PC synapses, we examined synaptotagmin immunoreactivity in

BC terminals, using specific antibodies against either Syt1 or

Syt2 (Fox and Sanes, 2007; Kochubey et al., 2016; Figure 1).

Although Syt1 immunoreactivity was abundant in both the

granule cell layer and the molecular layer, putative presynaptic

BC terminals surrounding PC somata were completely devoid

of fluorescent labeling (Figures 1A and 1B). In contrast, putative

BC terminals were strongly immunopositive for Syt2 (Figures 1A

and 1B). Syt2 labeling was completely eliminated in the Syt2�/�



Figure 2. Genetic Elimination of Syt2 Severely Reduces Transmitter Release at the BC-PC Synapse

(A) Left, presynaptic AP (black), individual evoked IPSCs (gray), and average IPSC (black) recorded from a Syt2+/+ synapse. Center, plot of IPSC peak amplitude

and postsynaptic series resistance (RS) against experimental time. Right, peak amplitude histogram from the same pair, obtained from 235 unitary IPSCs. The

number of failures was 2 in this experiment.

(B) Similar experiment as shown in (A) but recorded from a Syt2�/� synapse (red, light red, and red). Histogram shown on the right was obtained from 400 unitary

IPSCs. The number of failures was 279.

(C–E) Genetic elimination of Syt2 reduces release probability. Summary bar graph of peak amplitude (C, left), proportion of failures (C, right), coefficient of

variation (CV, D, left), skewness (D, right), latency (E, left), and SD of latency (E, right) for Syt2+/+ (black) and Syt2�/� synapses (red). Bars represent mean ± SEM;

points indicate data from individual experiments. Data are from 12 pairs (Syt2+/+) and 12 pairs (Syt2�/�).
mice, demonstrating the specificity of the antibody (Figure S1).

Double labeling with antibodies against Syt1 and Syt2 revealed

that, despite the abundant expression of both isoforms in the

cerebellum, colocalization of immunoreactivities was minimal,

indicating expression in nonoverlapping populations of synap-

ses (Figure 1B). Double labeling with antibodies against one of

the synaptotagmins and the vesicular GABA transporter

(VGAT) or vesicular glutamate transporter (VGLUT1) demon-

strated that in the cerebellum Syt1 was exclusively expressed

at excitatory synapses (Figure S1B; see Figure 1C), whereas

Syt2 was largely confined to inhibitory synapses (Figure 1D).

These results suggest that Syt2 may constitute the main Ca2+

sensor for fast transmitter release at inhibitory BC-PC synapses.

Syt2 Deletion Severely Reduces Action Potential-
Evoked Release at BC-PC Synapses
To directly test the hypothesis that Syt2 is the Ca2+ sensor of

exocytosis at BC-PC synapses, we studied the effects of genetic

elimination. To achieve this, we compared the properties of uni-
tary inhibitory postsynaptic currents (IPSCs) between wild-type

(Syt2+/+) and Syt2-deficient (Syt2�/�) BC-PC synapses in 14-

to 16-day-old mice (Figure 2; Table S1). Genetic elimination of

Syt2 reduced the peak amplitude of evoked IPSCs at BC-PC

synapses to 16.4% of the wild-type control value (925.1 ±

99.2 pA in Syt2+/+ synapses; 151.9 ± 44.2 pA in Syt2�/� synap-

ses, 12 pairs in both cases; p < 0.0001; Figures 2A–2C). In

parallel, genetic elimination of Syt2 markedly increased the pro-

portion of failures, from 0.9% ± 0.6% in Syt2+/+ mice to 47.4% ±

7.7% in Syt2�/� mice (p < 0.0001; Figure 2C), confirming a pre-

synaptic change. These results identify Syt2 as the main func-

tional Ca2+ sensor for synchronous transmitter release at inhibi-

tory BC-PC synapses.

To reveal themechanisms bywhich genetic elimination of Syt2

reduces the amplitude of evoked IPSCs, we further examined

the coefficient of variation (CV) and the skewness of IPSC

peak amplitudes. Syt2 deletion increased the CV, from 0.49 ±

0.03 to 1.28 ± 0.17 (12 pairs in both cases; p < 0.0001; Fig-

ure 2D). Furthermore, genetic elimination of Syt2 increased the
Cell Reports 18, 723–736, January 17, 2017 725



Figure 3. Genetic Elimination of Syt2 Selectively Abolishes Synchronous Release

(A and B) Trains of ten presynaptic APs at 50 Hz and corresponding IPSCs recorded from a Syt2+/+ synapse (A) and a Syt2�/� synapse (B). 20 consecutive IPSC

traces (gray) and the average trace (black and red, respectively) are shown superimposed.

(C) Plot of normalized IPSC amplitude (IPSCn / IPSC1) against IPSC number (n) for Syt2+/+ (black circles) and Syt2�/� synapses (red circles). Error bars

indicate SEM.

(D and E) Corresponding release rate during the AP train obtained by deconvolution for a Syt2+/+ synapse (D) and a Syt2�/� synapse (E; horizontal dashed line

indicates a release rate of 0).

(F) Summary bar graph of cumulative release (total release, synchronous release, asynchronous release during the train, and asynchronous release after the train).

Bars represent mean ± SEM; points indicate data from individual experiments.

All data were obtained with trains of ten APs, applied at a frequency of 50 Hz. Data in (C) and (F) are from 11 pairs (Syt2+/+) and 16 pairs (Syt2�/�).
skewness, from 0.50 ± 0.14 in Syt2+/+ mice to 2.10 ± 0.38 in

Syt2�/� mice (p < 0.0001; Figure 2D). Taken together, these

results suggest that Syt2 deletion reduces release probability

without changing the number of release sites (Kerr et al.,

2008). Finally, we quantified the latency and its SD, a measure

of temporal precision of transmitter release. Whereas latency

was not significantly different (0.65 ± 0.04 ms in Syt2+/+; 0.75 ±

0.07 ms in Syt2�/�; p = 0.11; Figure 2E), SD of latency markedly

increased, from 0.15 ± 0.02 ms to 0.59 ± 0.10 ms (p < 0.0001;

Figure 2E). Thus, the residual component in Syt2�/� mice ap-

peared more asynchronous. Compensatory increases in the

expression of Syt1 were not detected in Syt2�/� mice (Figures

S1C and S1D), suggesting that the residual component was

mediated by a different Ca2+ sensor, e.g., Syt7 (Bacaj et al.,

2013; Jackman et al., 2016). In conclusion, deletion of the Syt2

gene resulted in a massive reduction of synchronous transmitter

release at cerebellar BC-PC synapses, caused by a reduction in

release probability.

Effects of Syt2 Deletion on Short-Term Dynamics and
Asynchronous Release
Next, we studied the effects of genetic elimination of Syt2 on

IPSCs evoked by trains of presynaptic stimuli (Figure 3). In
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Syt2+/+ synapses, trains of ten presynaptic action potentials

(APs) at 50 Hz induced a significant depression of IPSC peak

amplitude and aminimal amount of asynchronous release during

and after the stimulus train (Figures 3A and 3C), consistent with

previous observations (Caillard et al., 2000; Sakaba, 2008; Arai

and Jonas, 2014). In contrast, in Syt2�/� synapses, IPSC peak

amplitudes showed a marked facilitation (Figures 3B and 3C),

and the frequency of asynchronous release was increased (Fig-

ure 3B). To quantify synchronous and asynchronous release

components, we analyzed release during train stimulation by

deconvolution (Figures 3D and 3E). Synchronous release was

quantified in the time interval of 5 ms following the AP, whereas

asynchronous release wasmeasured in a timewindow 15–20ms

following each presynaptic stimulus. Syt2 deletion reduced the

cumulative release of the synchronous component from 34.1 ±

6.5 quanta in Syt2+/+ mice to 11.1 ± 3.3 quanta in Syt2�/� mice

(11 and 16 pairs, respectively; p = 0.0009; Figure 3F). In contrast,

Syt2 deletion increased asynchronous release during the train

from 0.14 ± 0.99 quanta in Syt2+/+ mice to 5.62 ± 1.53 quanta

in Syt2�/� mice (11 and 16 pairs, respectively; p = 0.0001; Fig-

ure 3F). Similarly, genetic elimination of Syt2 increased asyn-

chronous release after the train from 0.52 ± 0.38 quanta in

Syt2+/+ mice to 3.31 ± 0.81 quanta in Syt2�/� mice (11 and 16



Figure 4. Genetic Elimination of Syt2 Increases mIPSC Frequency

(A) Traces of mIPSCs in a PC at �70 mV in Syt2+/+ slices (top, black traces) and Syt2�/� slices (bottom, red traces). 1 mM TTX, 20 mM D-AP5, and 10 mM CNQX

were added to external solution to block spontaneous AP firing and excitatory synaptic activity. Inset shows average mIPSC at expanded timescale (averages

from 1,073 and 2,132 single events).

(B) Cumulative histograms of mIPSC inter-event interval (gray: from individual PCs of Syt2+/+ mice; black: average of Syt2+/+ data; light red: from individual PCs of

Syt2�/� mice; red: average of Syt2�/� data).

(C) Comparison of mIPSC frequency (left) and peak amplitude (right) between Syt2+/+ and Syt2�/� mice. Bars represent mean ± SEM; points indicate data from

individual experiments. Data were obtained from 12 PCs (Syt2+/+) and 13 PCs (Syt2�/�).
(D) Similar data as shown in (C), but for mIPSCswith 20%–80% rise time <1.5ms, presumably corresponding to synaptic events generated by BC terminals (Roth

and Häusser, 2001).

(E) Confocal light-micrograph of Syt2 immunoreactivity (left), VGAT immunoreactivity (center), and overlay (right) in Syt2+/+ (top) and Syt2�/� (bottom)mice; single

confocal sections.

(F) Summary bar graphs of puncta density (left) and puncta cross-sectional area (right) in the PC layer. Bars represent mean ± SEM; circles indicate data from

individual experiments.
pairs, respectively; p = 0.0033; Figure 3F). These results demon-

strate that Syt2 selectively mediates synchronous release,

whereas asynchronous release appears to be mediated by a

different sensor, e.g., Syt7 (Bacaj et al., 2013; Jackman et al.,

2016).

Elevated Frequency of Spontaneous Release in Syt2�/�

Mice
Previous studies showed that deletion of synaptotagmins

increases the frequency of spontaneous release, suggesting

a clamping function of synaptotagmin (Littleton et al., 1994;

Pang et al., 2006b; Chicka et al., 2008; Giraudo et al., 2006;

Kerr et al., 2008). However, these experiments have mostly

been performed in culture conditions, in which compensatory

changes in connectivity or homeostatic mechanisms may occur

(Liu et al., 2014). To test the clamping hypothesis in the intact cir-

cuit, we compared the frequency of miniature IPSCs (mIPSCs) in

PCs between Syt2+/+ and Syt2�/� mice (Figure 4). mIPSCs were
recorded in pharmacological isolation in the presence of Na+

channel and glutamate receptor blockers (1 mM tetrodotoxin

[TTX]; 10 mM 6-cyano-7-nitroquinoxaline-2,3-dione, CNQX;

20 mM D-2-amino-5-phosphonopentanoic acid, D-AP5) and

were detected with a template matching algorithm (Pernı́a-An-

drade et al., 2012; Figure 4A). Genetic elimination of Syt2 re-

sulted in an �2.5-fold increase in the frequency of mIPSCs in

PCs, from 3.75 ± 0.42 Hz in Syt2+/+ mice (12 cells) to 9.64 ±

1.74 Hz in Syt2�/� mice (13 cells; p = 0.0008; Figures 4B and

4C). In contrast, the amplitude of mIPSCs was unchanged

(110.0 ± 11.0 pA in Syt2+/+ versus 141.7 ± 12.0 pA in Syt2�/�;
p = 0.087; Figure 4C). These results are consistent with a clamp-

ing function of Syt2 at GABAergic synapses.

To distinguish mIPSCs generated at BC synapses from those

at stellate cell synapses, we analyzed the 20%–80% rise time of

mIPSCs, an indicator of synaptic location. When the analysis

was restricted to IPSCs with a 20%–80% rise time of <1.5 ms,

likely to be generated by synapses in the inner third of the
Cell Reports 18, 723–736, January 17, 2017 727



molecular layer (Roth and Häusser, 2001), Syt2 deletion resulted

in an�2.5-fold increase in the frequency of mIPSCs, from 2.54 ±

0.30 Hz to 7.28 ± 1.43 Hz (12 and 13 cells, respectively;

p = 0.0005; Figure 4D). Furthermore, the amplitude of mIPSCs

was unchanged (p = 0.27; Figure 4D). To rule out that changes

in inhibitory connectivity confounded these observations,

we labeled GABAergic synaptic sites with antibodies against

VGAT and quantified the density of immunopositive puncta in

Syt2+/+ and Syt2�/� mice in the PC layer (Figures 4E and 4F).

On average, the number of VGAT-positive puncta per 100 mm2

in single confocal sections was 2.37 in Syt2+/+ and 2.59 in

Syt2�/� mice (Figure 4F, left; p = 0.39). Likewise, the puncta

area was not significantly different (Figure 4F, right; p = 0.41).

These results support the assumption of unchanged inhibitory

connectivity in Syt2�/�mice. Taken together, our results suggest

that Syt2 acts as a fusion clamp at GABAergic BC-PC synapses

(Giraudo et al., 2006).

Adenoviral Rescue with Syt2 Generates Fast
Transmitter Release
What is the functional significance of the selective usage of

Syt2 as a Ca2+ sensor at cerebellar BC-PC synapses? Previous

studies suggested that different synaptotagmins might differ

in their activation and deactivation kinetics (Hui et al., 2005;

Xu et al., 2007). However, it is controversial whether Syt2, the

isoform expressed in BC terminals, is faster than the other

Ca2+ sensors (Nagy et al., 2006; Xu et al., 2007; Kochubey

et al., 2016). To address this question, we attempted to rescue

transmitter release at BC-PC synapses in Syt2�/� mice by viral

expression of Syt2, the naturally expressed synaptotagmin iso-

form (Figures 5 and S3; Table S2). A helper-dependent adeno-

virus (HdAd) construct was used to express Syt2 and EGFP un-

der the control of two synapsin promoters (Figure 5A). The virus

was injected at postnatal day (P) 3 to 6, giving sufficient time for

expression until P14–16 (Figure 5B). HdAd-mediated expression

of Syt2 in Syt2�/� mice led to a complete rescue of IPSC peak

amplitude (Syt2 rescue versus Syt2�/�: p < 0.0001; Syt2 rescue

versus Syt2+/+: p = 0.412; Figures S3A and S3B). Similarly,

adenovirus-mediated expression of Syt2 led to a complete

rescue of all other measured synaptic parameters (Figures

S3C–3F).

Next, we attempted to rescue transmitter release in Syt2�/�

mice by viral expression of Syt1, a synaptotagmin isoform natu-

rally absent from BC-PC synapses (Figures 5 and S3; Table S2).

Similar to virally expressed Syt2, HdAd-expressed Syt1 fully

rescued IPSC peak amplitude (Syt1 rescue versus Syt2+/+;

p = 0.861). Analysis of EGFP expression and synaptotagmin

immunoreactivity in infected BCs suggested that the expression

levels for HdAd-Syt2 and HdAd-Syt1 were similar (Figure S2).

These results indicate that Syt2 and Syt1 fully rescued the

IPSC amplitude in an interchangeable manner.

To directly test whether Syt1 and Syt2 mediated transmitter

release with different time course, we quantified the time course

of release (TCR) using deconvolution (Figures 5C–5F). Unitary

IPSCs were first recorded in standard extracellular solution con-

taining 2 mM Ca2+, aligned to the peak of the presynaptic AP,

and averaged to generate a unitary IPSC waveform (Figures

5C and 5D). Subsequently, IPSCs were recorded in extracellular
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solution containing 0.7 mM Ca2+, aligned to the 50% rise point,

and averaged to generate a quantal IPSC waveform (Figure 5D,

insets). Finally, the TCR was obtained by deconvolution of the

two traces (Experimental Procedures; Figure 5E). For rescue

with Syt2, the latency of the TCR was 1.17 ± 0.12 ms and the

half-duration was 0.78 ± 0.13 ms (11 pairs). In contrast, for

rescue with Syt1, both the latency of the TCR (1.64 ± 0.11 ms)

and the half-duration were significantly longer (2.00 ± 0.35 ms;

14 pairs; p = 0.009 and 0.006, respectively; Figure 5F). These re-

sults indicate that different synaptotagmin isoforms, when ex-

pressed in GABAergic synapses in their natural context, have

different kinetic properties. Syt2-mediated release shows both

a shorter latency and a higher temporal precision.

Rescue with Syt2 Generates Faster Pool Refilling Rates
A hallmark property of GABAergic synapses is the ability to

release transmitter in a sustained manner during repetitive stim-

ulation (Kraushaar and Jonas, 2000; Sakaba, 2008; Hu et al.,

2014). To test whether the synaptotagmin isoform also controls

the rate of replenishment of the vesicular pool, we applied 100-

Hz trains of 50 APs and analyzed the dynamics of synaptic trans-

mission after rescue with either Syt2 or Syt1 (Figure 6). Both

HdAd-Syt2 andHdAd-Syt1 synapses showed depression during

high-frequency trains of stimuli (Figure 6A). However, the ratio

IPSC50/IPSC1 was significantly larger for Syt2 rescue than for

Syt1 rescue (IPSC50/IPSC1 = 0.56 ± 0.09 for HdAd-Syt2 synap-

ses; 0.21 ± 0.02 for HdAd-Syt1 synapses; ten and nine pairs,

respectively; p = 0.009). In contrast, synaptic depression after

Syt2 rescue was not significantly different from that in Syt2+/+

synapses (IPSC50/IPSC1 = 0.46 ± 0.05; nine pairs; p = 0.54; Fig-

ure 6C). Thus, Syt2 better supported sustained synaptic trans-

mission during high-frequency activity than Syt1.

Differences in the steady-state amplitude of IPSCs during re-

petitive stimulation could be generated by differences in readily

releasable pool size (RRP), release probability, or replenishment

rate. We therefore determined these parameters by analysis of

cumulative release (Neher, 2015; Figure 6D). To determine abso-

lute values of RRP size and refilling rate, we further measured

quantal size by nonstationary fluctuation analysis (Figure S4). Cu-

mulative IPSC amplitude was plotted against stimulus number,

and the last ten data points were fit by linear regression. The

size of the RRP was then determined from the intersection of

the regression line with the ordinate, and release probability

was quantified as the ratio IPSC1/RRP size. Finally, the replenish-

ment rate was measured as the slope of the regression line (Fig-

ure 6D). Comparison of HdAd-Syt2 and HdAd-Syt1 synapses

revealed that the RRP size and release probability were not

significantly different (RRP = 44.3 ± 7.1 vesicles and 37.6 ± 5.3

vesicles; Pr = 0.20 ± 0.02 and 0.22 ± 0.03; ten and nine cells;

p > 0.99 and p = 0.92, respectively; Figures 6F, right, and 6G,

left). In contrast, the refilling rate was significantly larger in

HdAd-Syt2 than HdAd-Syt1 synapses (3.91 ± 0.66 quanta ms–1

and 1.78 ± 0.12 quanta ms–1; p = 0.008). Refilling rate of Syt2+/+

synapses was not significantly different from Syt2 rescue, but

markedly different from Syt1 rescue (p = 0.55 and 0.006, respec-

tively; Figure 6G, right). Control experiments in the presence of

300 mM of the low-affinity competitive GABAA receptor antag-

onist (1,2,5,6-tetrahydropyridin-4-yl)-methylphosphinic acid



Figure 5. Syt2 Mediates Faster Release Than Syt1 at BC-PC Synapses

(A) Schematic illustration of the helper-dependent adenovirus (HdAd) constructs used for rescue experiments. Hsyn, human synapsin promoter; mvm, minute

virus of mice intron; SV40 polyA, Simian virus 40 poly A; BGH polyA, bovine growth hormone poly A.

(B) Confocal stack projection of a cerebellar BC in the molecular layer (left), infrared videomicroscopy light-micrograph (center), and overlay (right). The BC is

strongly fluorescent, showing successful infection with HdAd.

(C and D) Analysis of TCR by deconvolution. To acquire unitary IPSCs evoked by single APs, recording was started in an extracellular solution containing 2 mM

Ca2+. To isolate quantal IPSCs, recording was continued in an extracellular solution containing 0.7 mM Ca2+ (C). Unitary IPSCs were aligned to the peak of the

presynaptic AP and averaged (D, main graphs), and quantal IPSCs were aligned to the 50% onset point and averaged (D, insets). Left, HdAd-Syt2 rescue; right,

HdAd-Syt1 rescue. Gray lines, individual traces; green and blue lines, averages.

(E) Different TCR after rescue with Syt2 and Syt1. Black, average unitary IPSC; green and blue, TCR (scaled up by a factor of 20); red, results from deconvolution.

Left, HdAd-Syt2 rescue; right, HdAd-Syt1 rescue. Data from (C), (D, right), and (E, right) were taken from the same experiment; data from (D, left) and (E, left) were

from another experiment.

(F) Summary bar graph of latency (left) and half-duration of TCR (right). Bars represent mean ± SEM; points indicate data from individual experiments. Data were

obtained from 11 pairs for HdAd-Syt2 rescue and 14 pairs for HdAd-Syt1 rescue.
(TPMPA) and the GABAB receptor antagonist CGP55845 (both

Tocris) gave similar results (Figure S5), indicating that the results

of deconvolution analysis were not confounded by desensitiza-

tion or saturation of postsynaptic receptors (Jones et al., 2001;

Sakaba, 2008; Arai and Jonas, 2014).

To further test whether the synaptotagmin isoform also deter-

mined the kinetics of pool refilling after a depleting train, we

examined the time course of recovery from depression (Figures

6B, 6E, and 6H). 100-Hz train of 50 stimuli was applied to deplete

the pool, followed by a single stimulus to probe the time course

of refilling of the pool. Recovery from depression was faster in

Syt2-rescued than in Syt1-rescued synapses (Figures 6B and
6E). On average, the recovery time constant was 2.17 ± 0.31 s

for HdAd-Syt2 synapses and 4.89 ± 0.79 s for HdAd-Syt1 synap-

ses (13 and 12 pairs, respectively; p = 0.011; Figure 6H, left).

Similarly, the corresponding replenishment rates were signifi-

cantly larger for Syt2-rescued than in Syt1-rescued synapses

(p = 0.011; Figure 6H, right). Recovery time constant and replen-

ishment rate of Syt2+/+ synapses were not significantly different

from Syt2 rescue, but markedly different from Syt1 rescue

(p = 0.5 and 0.02, respectively; Figure 6H). In conclusion, the syn-

aptotagmin isoform not only controls the TCR, but also the rate

of replenishment of the releasable pool, with faster refilling for

Syt2, but slower refilling for Syt1.
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Figure 6. Syt2 Mediates Faster Vesicular Pool Refilling Than Syt1 at BC-PC Synapses

(A and B) Unitary IPSCs evoked by a train of 50 APs at 100 Hz (A) and unitary IPSCs evoked by a train of 50 APs at 100 Hz, followed by a single test stimulus with

different recovery time intervals (B), for Syt2+/+ (top), HdAd-Syt2 rescue (center) and HdAd-Syt1 rescue (bottom; both on Syt2�/� background). In (A), gray traces

represent individual sweeps; black, green, and blue lines represent averages. In (B), traces represent piecewise averages from 35 individual sweeps total;

horizontal dashed lines represent IPSC1.

(C) Normalized IPSC peak amplitudes, plotted against stimulus number. Black circles, Syt2+/+; green circles, HdAd-Syt2 rescue; blue circles, HdAd-Syt1 rescue

(both on Syt2�/� background). Data were obtained from nine, ten, and nine pairs.

(D) Quantitative analysis of pool size and refilling rate. IPSC peak amplitude was divided by IPSC1, averaged across cells, and cumulatively plotted against

stimulus number. The last ten points were fit by linear regression. Size of the RRP was determined from intersection of the regression line with the ordinate,

whereas refilling rate was determined from the slope of the line. Release probability was quantified as the ratio of IPSC1 over pool size.

(E) Plot of peak amplitude of IPSC evoked by the test stimulus, normalized to the amplitude of the first IPSC in the preceding train. Continuous curves represent

exponential functions fit to the data points. Data were obtained from 12, 13, and 12 pairs. Error bars indicate SEM.

(F–H) Summary bar graph of steady-state depression (IPSC50/IPSC1; F, left), RRP (F, right), release probability (Pr, G, left), replenishment rate during train

(G, right), recovery time constant (H, left), and replenishment after train (H, right).

Black, data from Syt2+/+ synapses; green, HdAd-Syt2 rescue; blue, HdAd-Syt1 rescue (both on Syt2�/� background). Bars represent mean ± SEM; circles

indicate data from individual experiments.
Syt2 Is Essential for Feedforward Inhibition in
Cerebellum
The present results suggest that the selective use of Syt2 at BC

synapses plays a key role for the efficacy and timing of inhibitory

synaptic transmission in the cerebellum, parameters, which are

highly relevant for feedforward inhibition. To directly test the

role of Syt2 in feedforward inhibition, we measured amplitude

and timing of disynaptic IPSCs evoked by extracellular parallel

fiber stimulation (Mittmann et al., 2005; Bao et al., 2010; Figure 7).

Monosynaptic EPSCs and disynaptic IPSCs were either

measured together at a holding potential of �50 mV, where

EPSCs were detected as inward currents and IPSCs as outward

currents (Figure 7B), or atmembrane potentials of�60 and 0mV,

where EPSCs and IPSCs could be studied in isolation (Figures
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7C and S6). In slices from Syt2+/+ mice, monosynaptic EPSCs

were followed by large disynaptic IPSCs, confirming powerful

feedforward inhibition in this circuit (Mittmann et al., 2005). In

contrast, in slices from Syt2�/� mice, disynaptic IPSCs were

markedly impaired (Figures 7B and 7C). Comparison of slices

from Syt2+/+ and Syt2�/� mice indicated that the excitatory

peak conductance was the same (2.3 ± 0.4 versus 2.7 ±

0.6 ns; ten and nine cells; p = 0.84), whereas the inhibitory

peak conductance was severely reduced (14.9 ± 3.7 versus

0.7 ± 0.2 ns; p < 0.001). Furthermore, the delay between EPSCs

and IPSCs was markedly prolonged (4.9 ± 0.6 versus 20.8 ±

6.4 ms; p < 0.001). These results demonstrate that Syt2 plays

a critical role for both efficacy and timing of feedforward inhibi-

tion in the cerebellum.



Figure 7. Fast Feedforward Inhibition in Cerebellum Critically Depends on the Presence of Syt2

(A) Schematic illustration of recording configuration for analysis of feedforward inhibition. Whole-cell recording from PC; stimulation of parallel fibers is expected

to evoke both monosynaptic EPSCs and disynaptic IPSCs.

(B) Recording of mixed EPSCs and IPSCs at �50 mV. As the holding potential is between the reversal potentials for excitatory and inhibitory events, EPSCs are

inwardly and IPSCs outwardly directed.

(C) Recording of EPSCs and IPSCs isolated by setting the holding potential to the reversal potential of one of the conductances (�60 mV and 0mV, respectively).

Top, Syt2+/+; bottom, Syt2�/�. Single traces (gray) and averages (black for Syt2+/+ and red for Syt2�/�).
(D) Scatterplot of inhibitory (IPSG) against excitatory peak conductance (EPSG) for Syt2+/+ (black) and Syt2�/� synapses (red). Data points were fit by linear

regression. Similar extracellular stimulus intensities in the two datasets.

(E) Summary bar graphs of peak conductance (left) and EPSC–IPSC delay (measured from peak to peak). Bars represent mean ± SEM; circles indicate data from

individual experiments.
DISCUSSION

The present results provide insights into the mechanisms of

Ca2+-dependent exocytosis at the cerebellar BC-PC synapse,

a major inhibitory synapse in the brain. First, we identified Syt2

as the primary Ca2+ sensor of exocytosis. Second, viral rescue

experiments revealed that the naturally occurring sensor Syt2

mediated transmitter release with shorter latency and higher

temporal precision than the alternative sensor Syt1. Finally,

Syt2 mediated faster refilling of the vesicular pool during repeti-

tive stimulation than Syt1, suggesting that Syt2 controls both

exo- and endocytosis at GABAergic synapses. Thus, the use

of Syt2 as a release sensor contributes to rapid signaling at

this GABAergic synapse (Figure S7).

Syt2-Mediated Fast GABA Release at Inhibitory
Synapses
The mammalian genome encodes 16 synaptotagmins, eight of

which bind Ca2+ (Syt1, 2, 3, 5, 6, 7, 9, and 10; Chapman, 2002;

S€udhof, 2002), and three of which were reported to act as fast

release sensors (Syt1, 2, and 9; Xu et al., 2007; Kochubey
et al., 2016). However, the functional significance of this molec-

ular diversity is incompletely understood.

It is generally thought that Syt1 is predominant in cortical cir-

cuits, whereas Syt2 is more prevalent in the cerebellum, brain-

stem, and spinal cord (Pang et al., 2006a, 2006b; Mittelsteadt

et al., 2009; Kochubey et al., 2016). However, our immunohisto-

chemical analysis showed that Syt1 is highly expressed in the

cerebellum, where it is mainly localized to excitatory synapses.

This idea is supported by the disynaptic inhibition experiments,

which show that Syt2 deletion suppresses inhibition but leaves

excitation unchanged (Figure 7). Thus, Syt1 and Syt2 coexist in

the circuit but are expressed in a synapse-specific manner.

It is also believed that Syt2 is more abundantly used in

GABAergic interneurons. Consistent with this idea, Syt2 is highly

expressed in subsets of GABAergic hippocampal interneurons

(Pang et al., 2006a; Kerr et al., 2008; Sommeijer and Levelt,

2012). However, genetic deletion of Syt1 substantially reduces,

but does not abolish, transmitter release (Kerr et al., 2008), sug-

gesting that in the hippocampus Syt1 and Syt2 may work in con-

cert. The results from immunocytochemistry, knockout, and

rescue experiments convergently suggest that Syt2 is the major
Cell Reports 18, 723–736, January 17, 2017 731



Ca2+ sensor triggering fast transmitter release at the cerebellar

BC-PC synapse. Thus, both cell type (GABAergic interneurons

versus glutamatergic principal neurons) and brain region (cere-

bellum versus other brain areas) determine which synaptotagmin

isoform is used.

The molecular identity of the Ca2+ sensor mediating the resid-

ual release component in Syt2�/� synapses is presently unclear.

The residual component might be generated by a compensatory

upregulation of Syt1, although our immunolabeling data argue

against this possibility (Figures S1C and S1D). Alternatively,

any of the other synaptotagmins, or an entirely different Ca2+

sensor, may be involved. One possibility is that the residual

component is mediated by Syt7 (Bacaj et al., 2013; Jackman

et al., 2016). Consistent with this idea, the residual component

shows profound facilitation and highly asynchronous kinetics

(Figure 3). Analysis of double-knockout mice will be needed to

test this hypothesis.

Syt2 Controls Fast Exo- and Endocytosis
The BC-PC synapse provides an ideal system to compare the

functional properties of Syt2 with those of Syt1, the alternative

Ca2+ sensor in synaptic transmission. As fast transmitter release

at this synapse is almost completely dependent on Syt2, rescue

experiments can be performed in Syt2�/� animals with minimal

confounding effects of other synaptotagmin isoforms. Our

rescue experiments revealed that Syt2 differs from Syt1 in both

speed and temporal precision of transmitter release. Thus, our

results corroborate the original suggestion of higher temporal

precision for Syt2-mediated release (Xu et al., 2007) and extend

these findings by showing that the synaptic latency is also iso-

form dependent. However, they appear to be inconsistent with

a recent study, which found no kinetic differences between

Syt1 and Syt2 at the calyx of Held (Kochubey et al., 2016).

Differences in the shape of the Ca2+ transient at the sensor

may explain the apparent discrepancies. In the present study,

release was evoked by natural AP waveforms. Because of the

tight coupling between Ca2+ channels and sensors (Arai and

Jonas, 2014), the Ca2+ transient ‘‘seen’’ by the sensor will be

short, closely following the presynaptic Ca2+ current. Thus, the

TCR will be shaped by the activation and deactivation rates of

the sensor. In contrast, in the study by Kochubey et al. (2016),

release was triggered by long voltage pulses. Therefore, the

rise in Ca2+ concentration will be long lasting, and the TCR will

be primarily shaped by the pool depletion and refilling; the deac-

tivation rates of the sensor may be less relevant.

In addition to the difference in TCR, we found that synaptotag-

mins differentially controlled the rate of refilling of the releasable

pool. Whereas the size of the RRP and the probability of release

from this pool were similar for Syt2 and Syt1, the refilling rate was

�2-fold faster for Syt2 rescue. This result is consistent with

several previous observations: that synaptotagmins couple to

AP2/clathrin (Zhang et al., 1994), that endocytosis at the

Drosophila neuromuscular junction is suppressed by light inacti-

vation of synaptotagmin (Poskanzer et al., 2003) and that endo-

cytosis at the calyx of Held is blocked by AP2 peptides (Hosoi

et al., 2009). Thus, Syt2 may control both the speed of GABA

release following single APs and the efficacy of release during

trains of APs. Previous studies showed that the replenishment
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of the RRP at BC-PC synapses is dependent on intracellular

Ca2+ concentration (Sakaba, 2008). Our results are consistent

with the hypothesis that Syt2 is the molecular sensor that medi-

ates the Ca2+ dependence of replenishment. A caveat of the

rescue experiments is that differences in expression levels be-

tween Syt1 and Syt2 cannot be entirely excluded (Experimental

Procedures). Whether such differences affect the time course of

exocytosis and endocytosis remains to be determined.

A Clamping Function of Syt2 at GABAergic Synapses?
Whether genetic elimination of synaptotagmins increases the

frequency of spontaneous release has been controversial. One

potential problem is that changes in miniature release may be

confounded by sprouting or homeostatic changes. Furthermore,

the effects of synaptotagmin deletion on spontaneous release

depend on the synaptic environment (Liu et al., 2009). Our results

rigorously address this question. First, analysis of synaptic trans-

mission is possible in the intact circuit, because of the extended

survival of Syt2�/� mice in comparison to, e.g., Syt1�/� mice

(Geppert et al., 1994; Kerr et al., 2008). Second, immunolabeling

experiments reveal that the organization of the inhibitory micro-

circuits is maintained in the Syt2�/� mice (Figures 4E and 4F).

Taken together, these results are consistent with a clamping

function of Syt2 at BC-PC synapses (Giraudo et al., 2006). The

molecular mechanisms underlying this clamping function remain

to be determined. Clamping could be achieved by an arrest of

the partially zippered SNARE complex (Chicka et al., 2008).

Alternatively, clamping may be generated by the competition

of synaptotagmins for binding sites in the release machinery. In

this model, Syt2 may prevent the access of other synaptotagmin

isoforms, which may drive release at lower Ca2+ concentrations

or even in the absence of Ca2+.

Whether synaptotagmin ‘‘clamps’’ asynchronous release also

has remained unclear. Genetic elimination of Syt1 at glutamater-

gic synapses was shown to selectively eliminate synchronous

release, while asynchronous release was either unaffected (Gep-

pert et al., 1994) or enhanced (Nishiki and Augustine, 2004).

Differential effects on asynchronous release during and after a

stimulus train have been also suggested (Maximov and S€udhof,

2005). Our results show a significant enhancement of asynchro-

nous release both during and after the train (Figure 3). This is

consistent with a dual function of Syt2, which acts as both a

trigger of synchronous release and a clamp of asynchronous

release. Alternatively, it was proposed that synaptotagmins

may operate as pure synchronizers of release (Nishiki and Au-

gustine, 2004). However, for a pure synchronizer, the reduction

in synchronous release should equate the enhancement of asyn-

chronous release, which is not the case at BC-PC synapses.

Thus, our results for Syt2 at GABAergic synapses seem inconsis-

tent with a pure synchronizing function.

Molecular Mechanisms Underlying Differential Kinetics
Our results demonstrate that Syt2 has a kinetic advantage in

terms of speed and temporal precision of synaptic transmis-

sion. What are the underlying molecular mechanisms? Syt2

has a sequence identity of �60% with Syt1 in mice (S€udhof,

2002). The C2A domain is largely conserved between Syt2

and Syt1, with only one amino acid difference in the three loops



forming the putative Ca2+ binding site. However, the C2B

domain is more divergent between isoforms, with three amino

acid differences in the relevant loops (S€udhof, 2002). These

structural differences might explain our observations for two

reasons. First, the C2B domain seems more relevant for the

exocytotic Ca2+ sensing function than the C2A domain (Mack-

ler et al., 2002; Nishiki and Augustine, 2004; Bacaj et al., 2013).

Second, the C2B domain is thought to represent the binding

site for AP2, which might explain the effects of synaptotagmin

isoform on pool replenishment.

Other regions of the synaptotagmin molecule may be also

important. For example, the linker between C2A and C2B do-

mains shows three amino acid differences between Syt1 and

Syt2. Recent work suggested this linker to be critical for the func-

tion of synaptotagmins (Liu et al., 2014). In this scenario, the

presence of two glycine residues in Syt2 could make the linker

more flexible. Furthermore, the connector between the trans-

membrane segment and the C2A domain is seven amino acids

shorter for Syt2 than for Syt1. This could be relevant for tight

coupling between Ca2+ channels and synaptotagmins (Egger-

mann et al., 2011). Consistent with this idea, proteomic analysis

revealed that Syt2, but not Syt1, is molecularly associated with

Ca2+ channel alpha subunits (M€uller et al., 2010). Finally, the

C terminus of synaptotagmins is highly divergent between the

isoforms (Young and Neher, 2009). The C terminus has been

also suggested to be important for coupling but is also for inter-

nalization of the protein from the plasma membrane (Jarousse

and Kelly, 2001). Thus, both coupling distance and rate of endo-

cytosis might be regulated by this region. Differential binding of

Syt isoforms to Ca2+ channels or other presynaptic ion channels

may also modify channel gating, and thereby affect the time

course of presynaptic Ca2+ current, APwaveform, or both. Direct

recordings from inhibitory presynaptic terminals will be needed

to address these possibilities.

Relevance for Microcircuit Function
The selective use of Syt2 at BC output synapses may have

important consequences for the function of cerebellar microcir-

cuits. First, Syt2 may control the speed of feedforward inhibition

(Mittmann et al., 2005; Bao et al., 2010). One major function of

feedforward inhibition is that it narrows the time window for

spiking and temporal summation (Pouille and Scanziani, 2001;

Mittmann et al., 2005). Another function is shaping of the spatial

activity pattern of PC activation following APs in parallel fiber

beams (Mittmann et al., 2005; Bao et al., 2010). For both func-

tions, the fast time course of inhibition is critically important. Pre-

vious studies showed that the delay of disynaptic inhibition is as

short as �1 ms at physiological temperature (Mittmann et al.,

2005). We identify Syt2 as a molecular factor that contributes

to this remarkable speed. Both BCs and stellate cells are thought

to contribute to disynaptic inhibition. The sensitivity of disynaptic

IPSCs to Syt2 deletion (Figure 7) suggests that both BC and stel-

late cell output synapses use Syt2 for transmitter release. Paired

recording experiments will be required to directly determine the

identity of the sensor at stellate cell synapses.

Second, the selective use of Syt2 may be relevant for sus-

tained inhibition in the intact network in vivo. In the awake,

behaving animal, molecular layer interneurons fire APs at a fre-
quency of �20 Hz under resting conditions, and can be further

activated by sensory stimuli (Ekerot and Jörntell, 2003). Under

these conditions, depletion of the releasable pool would be ex-

pected. Therefore, the rapid replenishment of the pool mediated

by Syt2 helps to maintain inhibitory output.

Finally, Syt2 may be important in synaptic diseases. In Syt2�/�

or Syt2 mutant mice, the ataxia phenotype (Pang et al., 2006a,

2006b) is readily explained by a failure of feedforward inhibition.

Mutations in the Syt2 gene have been recently identified in hu-

mans (Herrmann et al., 2014). These mutations were primarily

linked to a neuromuscular phenotype (Herrmann et al., 2014).

Whether other mutations in the Syt2 gene do exist and whether

these may generate a cerebellar phenotype, as predicted by

the present data, remains to be determined.

EXPERIMENTAL PROCEDURES

Animal Experiments

Experiments on C57BL/6 wild-type and mutant mice were performed in strict

accordance with institutional, national, and European guidelines for animal

experimentation and were approved by the Bundesministerium f€ur Wissen-

schaft, Forschung, und Wirtschaft of Austria (A. Haslinger, Vienna; BMWF-

66.018/0008-II/3b/2010; BMWF-66.018/0010-WF/V/3b/2015).

Immunohistochemistry

Brains of 14- to 16-day-old mice were dissected out, fixed in 4% paraformal-

dehyde and 1% sucrose for �2 hr, and transferred to 30% sucrose in PBS

(�10 hr) for cryoprotection. 50-mm-thick slices were cut from the cerebellar

vermis using a cryostat (HM560; Thermo Scientific). After washing with

0.01 M PBS, slices were incubated with 10% normal goat serum (NGS) for

1 hr and subsequently with primary monoclonal antibodies against Syt1

(immunoglobulin G2b [IgG2b], mab48, 1:500, developmental studies hybrid-

oma bank, DSHB), Syt2 (IgG2a, znp1, 1:500, zebrafish international resource

center, ZIRC; Fox and Sanes, 2007), or both in PBS containing 5% NGS and

0.3% Triton X-100 overnight. After washing, slices were incubated with iso-

type-specific secondary antibodies (goat anti-mouse IgG2b for mab48 and

goat anti-mouse IgG2a for znp1, 1:1000 for both; Invitrogen) with PBS con-

taining 3% NGS and 0.3% Triton X-100 overnight. After washing, slices

were embedded in Prolong Antifade and examined under a TCS SP5 II

confocal microscope (Leica Microsystems). Syt2 immunolabeling was

completely absent in Syt2�/� mice (Figure S1C). For double labeling for

VGAT or VGLUT1, rabbit polyclonal antibodies (#131003 and #135303; Syn-

aptic Systems) were used.

Confocal stacks were analyzed using the open-source software Fiji (‘‘Fiji

is just ImageJ’’). For analyzing puncta in different layers of the cerebellum,

regions of interest were randomly defined using the ‘‘Freehand Selection’’

feature of Fiji. Threshold was automatically adjusted using the ‘‘Triangle’’

method for both channels. Puncta number and area was analyzed using the

‘‘Analyze Particles’’ function.

Cerebellar Slice Preparation

C57BL/6 Syt2 knockout mice (Syt2�/�), in which exons 2–7 of the Syt2

gene were deleted, were kindly provided by T.C. S€udhof, Stanford University

(Pang et al., 2006a). All experiments were performed on littermate offspring

from heterozygous matings, with knockout mice being homozygous for the

deletion allele (Syt2�/�) and wild-type animals homozygous for the wild-type

allele (Syt2+/+). Slices were cut from the cerebellum of 14- to 16-day-old

mice of either sex. In all experiments, genotypes were determined by PCR

analysis. After decapitation, the brain was rapidly dissected out and immersed

in ice-cold slicing solution containing: 87 mM NaCl, 25 mM NaHCO3, 2.5 mM

KCl, 1.25 mM NaH2PO4, 10 mM D-glucose, 75 mM sucrose, 0.5 mM CaCl2,

and 7 mM MgCl2 (pH 7.4 in 95% O2/5% CO2, 325 mOsm). Parasagittal 250-

mm-thick cerebellar slices from the vermis region were cut using a custom-built

or a VT1200 vibratome (Leica Microsystems). After �20-min incubation at
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�35�C, the slices were stored at room temperature. Slices were used for maxi-

mally 5 hr after dissection. Experiments were performed at 21�C–24�C.

Electrophysiology

During experiments, slices were superfused with a physiological extracellular

solution containing: 125 mM NaCl, 2.5 mM KCl, 25 mM NaHCO3, 1.25 mM

NaH2PO4, 25 mM D-glucose, 2 mM CaCl2, and 1 mM MgCl2 (pH 7.4 in 95%

O2/5% CO2, �325 mOsm). Paired recordings from synaptically connected

BCs and PCs were performed as described previously (Caillard et al., 2000;

Sakaba, 2008; Christie et al., 2011; Eggermann and Jonas, 2011; Arai and

Jonas, 2014). Intracellular solution used for the presynaptic BCs contained:

125 mM K-gluconate, 20 mM KCl, 0.1 mM EGTA, 10 mM phosphocreatine,

2 mM MgCl2, 2 mM ATP, 0.4 mM GTP, 10 mM HEPES (pH adjusted to 7.28

with KOH, �310 mOsm); 0.2% biocytin was added in a subset of recordings.

The presynaptic pipette resistance was 8–15 MU. BCs were recorded under

current-clamp conditions. A holding current of approximately �50 pA was in-

jected to maintain the membrane potential at approximately �65 mV and to

avoid spontaneous AP generation. To evoke presynaptic APs, single pulses

or trains of either ten pulses at 50 Hz or 50 pulses at 100 Hz (400 pA, 4 ms)

were injected into the presynaptic BC every 4 or 20 s, respectively.

Intracellular solution for postsynaptic PCs contained: 140 mM KCl, 10 mM

EGTA, 2 mM MgCl2, 2 mM ATP, 10 mM HEPES, and 2 mM QX-314 (pH

adjusted to 7.28 with KOH,�313mOsm). To achieve the lowest possible post-

synaptic series resistance, leaded glass (PG10165-4, World Precision Instru-

ments [WPI]) was used to fabricate large tip-sized recording pipettes. The

postsynaptic pipette resistance was 0.8–1.5 MU, resulting in a series resis-

tance of 3–8 MU. Experiments in which series resistance changed by >2 MU

were discarded. PCs were recorded in the voltage-clamp configuration with

a holding potential of �70 mV. For monitoring series and input resistance,

5-mV, 100-ms hyperpolarizing test pulses were applied after the IPSCs had

decayed to baseline.

For recording of mIPSCs (Figure 4), synaptic events were examined in phar-

macological isolation in the presence of 1 mM TTX, 10 mM CNQX, and 20 mM

D-AP5 at �70 mV. For feedforward inhibition experiments (Figures 7 and

S6), slices were cut in frontal plane to preserve parallel fibers (Mittmann

et al., 2005). Parallel fibers were stimulated with glass pipettes (�1 MU) con-

taining extracellular solution placed at a distance >100 mm from the recorded

PC to avoid direct stimulation of interneuron axons. The stimulus electrode

was placed in the center or outer half of the molecular layer. Electrical stimuli

(5–8 V amplitude, 100-ms duration) were delivered using a stimulus isolation

unit. PCs were recorded in the whole-cell configuration using patch pipettes

similar to those in paired recordings. Membrane potential was set to

�50 mV to record both EPSCs and IPSCs in the same trace and to either

�60 mV or 0 mV to examine EPSCs and IPSCs in isolation. The electrode so-

lution contained: 130mMK-methanesulfonate, 2mMKCl, 10mMEGTA, 2mM

MgCl2, 2 mMNa2ATP, 10 mMHEPES, and 5 mMQX-314 (pH adjusted to 7.27

with KOH). In a subset of experiments, the selective GABAA receptor antago-

nist SR-95531 (10 mM, Biotrend) was used to block IPSCs.

Production of Adenoviral Expression Vectors

Synaptotagmin cDNA (Mus musculus isoforms 1 and 2) was codon-optimized

for expression in mouse (GeneArt) and then cloned into the EcoRI and NotI

sites of the synapsin expression cassette (Montesinos et al., 2011). This

cassette included the 470-bp human synapsin (hsyn) promoter, the minute

virus of mice (mvm) intron, and the bovine growth hormone (BGH) polyA.

Subsequently, the expression cassette was cloned into the AscI site of

pdelta28E4, a gift from Dr. Phil Ng (Palmer and Ng, 2003), using InFusion

(Clontech). This version of pdelta28E4 was modified to also contain a separate

neurospecific EGFP expression cassette driven by the 470-bp hsyn promoter.

The final HdAd plasmids allow for expression of synaptotagmin isoforms inde-

pendently of EGFP as dual expression recombinant Ad vectors, similar to the

strategy previously used with second-generation rAd vectors (Young and

Neher, 2009; Chen et al., 2013).

Production ofHdAdwas carried out as previously described (Palmer andNg,

2003). Briefly, HdAds were produced by first digesting the pHdAd with PmeI to

linearize and expose the ends of the 50 and 30 inverted terminal repeats. Trans-

fection of the pHdAd was performed using 116 producer cells, a modified
734 Cell Reports 18, 723–736, January 17, 2017
HEK293 line expressing high levels ofCre recombinase, anda4-kbp adenoviral

genome fragment that encodes for the E1A/E1B gene, necessary for rAd to

replicate (Palmer and Ng, 2003). Standard protocols for recombinant HdAd

were followed (Palmer and Ng, 2003) with slight modifications. HdAd was seri-

ally amplified in five consecutive passages from 3- to 60-mm tissue culture

dishes followed by 1- to 15-cm and finally 30- to 15-cm dishes. Each succes-

sive passage was performed after cytopathic effect (CPE) occurred and cell ly-

sates were subjected to three freeze/thaw cycles to lyse cells and thereby

release the viral particles. HdAdwas stored at�80�C in storage buffer contain-

ing 10 mM HEPES, 250 mM sucrose, and 1 mMMgCl2 at pH 7.4. Viral particle

concentration (ml–1) was calculated (Palmer and Ng, 2003) as follows: viral par-

ticles/mL = (A260)3 (dilution factor)3 (1.13 1012)3 (36) / (size of the vector in

kilobases). Virus titers were similar for HdAd-Syt1 and HdAd-Syt2: 4.393 1012

vp ml–1 and 3.98 3 1012 vp ml–1, respectively.

Virus Injection

Syt2�/� mice, at postnatal days (P) 3–6, were anesthetized using isoflurane

(5% for induction and �3% during the injection procedure) (Forane, Abbott)

combined with meloxicam (1 mg kg–1, Boehringer) for analgesia. Meloxicam

was given 2 hr before surgery for pre-operative analgesia and repeated twice

24 hr after the previous injection for post-operative analgesia. After sufficient

sedation, mice were put on a stereotaxic apparatus and head-fixed with ear

bars. The skin was cut, the skull was exposed, and a small hole was made

with a needle in the region over the cerebellum. 1 mL adenovirus (�109 vp

mL–1) was injected into the vermis of the cerebellum at a depth of �600 mm

from the endocranium. After virus injection, pups were returned to their

home cages for recovery. Recordings were made at P14–16. Infected cere-

bellar BCs were identified by EGFP fluorescence. For electrophysiology, epi-

fluorescence illumination was used. For analysis of rescue efficiency and

documentation, cells were examined using a TCS SP5 II confocal microscope

(Figure 5B).

To address the expression level after viral infection, we examined both

EGFP fluorescence and Syt1 or Syt2 immunoreactivity. Expression levels

probed with this approach were very similar for Syt1 and Syt2 (Figure S2).

This is consistent with previous results using an identical transgene cassette,

demonstrating that Syt1 and Syt2 expression levels probed with aMyc tag and

an anti-Myc antibody were comparable (Kochubey et al., 2016).

Data Acquisition and Analysis

Data were acquired with a Multiclamp 700B amplifier (Axon Instruments), low

pass filtered at 10 kHz, and sampled at 20 or 50 kHz using a CED power1401

interface (Cambridge Electronic Design). Stimulus generation and data

acquisition were performed using custom-made software (FPulse v.3.19

and 3.33, Ulrich Fröbe, University of Freiburg) running under Igor Pro 6.22

(WaveMetrics). Data were analyzed using Stimfit 0.14.9 (https://github.com/

neurodroid/stimfit), Igor Pro 6.22, R 3.3.0 (the R project for statistical

computing), and Mathematica 10.3 (Wolfram Research). Synaptic latency of

monosynaptic IPSCs was measured from the peak of the presynaptic AP to

the IPSC onset. Latency of disynaptic IPSCs (Figure 7E) was measured from

the peak of the EPSC at �60 mV to that of the IPSC at 0 mV. IPSC decay

time constant was determined by fitting the decay phase of an average

IPSC trace. To quantify multiple-pulse depression, traces were averaged

and the amplitude of each IPSC in a train was measured from the baseline

directly preceding the rising phase. mIPSCs were detected using a template

matching algorithm and verified by visual inspection (Pernı́a-Andrade et al.,

2012; Goswami et al., 2012). Synchronous and asynchronous release was

quantified by a deconvolution algorithm based on Fourier transformation, us-

ing trains of ten APs at 50 Hz as stimuli (Hefft and Jonas, 2005). Synchronous

release wasmeasured 0–5ms after each AP. Asynchronous release during the

train was quantified 15–20 ms after each AP, and asynchronous release after

the train was quantified >20ms after end of the train. For display purposes, the

TCR was filtered at 2 kHz (Figures 3D and 3E).

Latency and half-duration of the TCR following a single AP were quantified

by a deconvolution algorithm in which the TCR function was represented by a

Gaussian or a gamma distribution. Unitary IPSCs recorded in 2 mM extracel-

lular Ca2+ concentration were aligned to the peak of the presynaptic AP and

averaged. Quantal IPSCs recorded in 0.7 mM extracellular Ca2+ and 2.3 mM

https://github.com/neurodroid/stimfit
https://github.com/neurodroid/stimfit


Mg2+ were aligned to the 50% rising point and also averaged. The TCR func-

tion was convolved with the quantal IPSC waveform, using ListConvolve of

Mathematica. Amplitude and shape of the time course of release function

were adjusted to minimize the sum of squared differences between predicted

and measured unitary IPSC.

For analysis of vesicular pool size and refilling rate, IPSC amplitudes during a

100-Hz train of 50 stimuli were examined. IPSC values were normalized by

IPSC1, averaged across cells, and cumulatively plotted against stimulus num-

ber. The last ten data points were fit by linear regression. The size of the RRP

was determined from intersection of the regression line with the ordinate,

whereas refilling rate was determined from the slope (Neher, 2015). The RRP

estimate represents ‘‘pool decrement’’ rather than absolute pool size; the

true pool size will be larger than the estimate (Neher, 2015). Release probability

was quantified as the ratio of normalized IPSC1 over pool size. For obtaining

absolute numbers of RRP size and refilling rate, estimated values were multi-

plied by the quantal content of IPSC1. Quantal size was estimated by nonsta-

tionary fluctuation analysis. Variance was plotted against mean for all IPSCs in

the train, and analyzed by linear regression. Quantal size was determined from

the slope of the fit line (Scheuss et al., 2002; Sakaba, 2008).

Statistics and Conventions

All values were reported as mean ± SEM. Statistical significance was tested

using a Kruskal-Wallis and two-sidedWilcoxon rank-sum test in R. Differences

with p < 0.05 were considered significant. In figures, *p < 0.05, **p < 0.01, and

***p < 0.001, respectively. In experiments with parallel fiber stimulation, stim-

ulation artifacts were blanked for display purposes.
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