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We study two interacting quantum particles forming a bound 
state in d-dimensional free space, and constrain the particles 
in k directions to (0, ∞)k × Rd−k, with Neumann boundary 
conditions. First, we prove that the ground state energy 
strictly decreases upon going from k to k + 1. This shows 
that the particles stick to the corner where all boundary 
planes intersect. Second, we show that for all k the resulting 
Hamiltonian, after removing the free part of the kinetic 
energy, has only finitely many eigenvalues below the essential 
spectrum. This paper generalizes the work of Egger, Kerner 
and Pankrashkin (2020) [6] to dimensions d > 1.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction and main results

We consider two interacting quantum particles in d-dimensional space that form a 
bound state in free space. We constrain the particles in k directions to (0, ∞)k × Rd−k

for some k ∈ {1, ..., d} and impose Neumann boundary conditions. The goal of this 
paper is to show that at low energy the particles will stick to the boundary of the 
domain. In fact, the particles want to be close to as many boundary planes as possible. 

* Corresponding author.
E-mail addresses: barbara.roos@ist.ac.at (B. Roos), robert.seiringer@ist.ac.at (R. Seiringer).
https://doi.org/10.1016/j.jfa.2022.109455
0022-1236/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jfa.2022.109455
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2022.109455&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:barbara.roos@ist.ac.at
mailto:robert.seiringer@ist.ac.at
https://doi.org/10.1016/j.jfa.2022.109455
http://creativecommons.org/licenses/by/4.0/


2 B. Roos, R. Seiringer / Journal of Functional Analysis 282 (2022) 109455
In particular, they stick to the corner where all boundary planes intersect. Neumann 
boundary conditions can be interpreted as representing perfect mirrors. It is remarkable 
that while such boundary conditions are not sufficiently attractive to capture single 
particles, mutually bound pairs are always attracted to the boundary.

In order to justify the picture of particles sticking to the boundary, we show that 
introducing a boundary plane lowers the ground state energy. Then it is energetically 
favorable for the particles to localize at a finite distance to the new boundary plane. 
Moving the particles away from that boundary plane would reduce the boundary effects 
and raise the energy to reach the previous ground state energy, which is strictly higher. 
Since moving just one of the particles to infinity would increase the potential energy 
between them, both particles stick to the boundary.

This problem was already studied (for particles with equal masses) in the case d =
k = 1. Kerner and Mühlenbruch [9] considered a hard-wall interaction between the 
particles. (For a higher-dimensional version of this problem, which is different from the 
one we consider here, however, see [3].) More general interactions were studied by Egger, 
Kerner and Pankrashkin in [6]. Additionally, they showed that the Hamiltonian has only 
finitely many eigenvalues below the essential spectrum. We show here that this also holds 
true for particles with different masses and all dimensions d and numbers of boundary 
planes k. The finiteness of the number of bound states is a consequence of the fact that 
the effective attractive interaction with the boundary decays exponentially with distance, 
a decay that is inherited from the corresponding one of the ground state wave function 
in free space.

Let xa and xb be the coordinates of the particles. The Hamiltonian of the system is

H = − 1
2ma

Δxa − 1
2mb

Δxb + V (xa − xb) (1.1)

acting in L2 ((0,∞)k ×Rd−k
)
⊗ L2 ((0,∞)k ×Rd−k

)
, where V : Rd → R is the inter-

action potential. We change to relative and center-of-mass coordinates y = xa − xb and 
z = max

a+mbx
b

M , where M = ma + mb is the total mass. The conditions xa
j > 0 and 

xb
j > 0 for 1 ≤ j ≤ k result in the coordinates (z1, ..., zk, y1, ..., yk) lying in the domain

Qk =
{

(z1, ..., zk, y1, ..., yk) ∈ R2k | ∀j ∈ {1, ..., k} : zj > 0 and − M

mb
zj < yj <

M

ma
zj

}
,

(1.2)
while (zk+1, ..., zd) and (yk+1, ..., yd) lie in Rd−k. In these coordinates, the Hamiltonian 
becomes H = − 1

2μΔy − 1
2M Δz +V (y), where μ = mamb

M is the reduced mass. Separating 
the variables (zk+1, ..., zd) from the rest, we write the Hamiltonian as H = Hk⊗I+I⊗q, 
where q = − 1

2M Δ on H2(Rd−k) and

Hk = − 1
2μΔy −

1
2M

k∑ ∂2

∂z2
j

+ V (y) (1.3)

j=1
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acting in L2(Qk ×Rd−k). To be precise, we define the Hamiltonian Hk via the quadratic 
form

hk[ψ] =
∫

Qk×Rd−k

⎛⎝ 1
2μ |∇yψ|2 + 1

2M

k∑
j=1

∣∣∣∣ ∂ψ∂zj
∣∣∣∣2 + V (y)|ψ|2

⎞⎠dz1...dzkdy1...dyd (1.4)

with domain D[hk] = H1(Qk ×Rd−k). Due to the free part of the kinetic energy q, the 
Hamiltonian H has no discrete spectrum if k < d. We remove this free part and work 
with Hk instead of H.

We impose the following conditions on the interaction potential V .

Assumption 1.1. We assume that

(i) V = v + w for some v ∈ Lr(Rd) and w ∈ L∞(Rd), where

r = 1 if d = 1, (1.5)

r > 1 if d = 2, (1.6)

r ≥ d

2 if d ≥ 3, (1.7)

(ii) the operator H0 = − 1
2μΔy + V (y) in L2(Rd) has a ground state ψ0 with energy 

E0 < 0,
(iii) lim inf |y|→∞ V (y) ≥ 0,
(iv) V is invariant under permutation of the d coordinates (y1, ..., yd) ∈ Rd.

Remark 1.2. Condition (i) implies that in the quadratic form hk the interaction term is 
infinitesimally form bounded with respect to the kinetic energy, see Proposition A.3 in the 
Appendix. The KLMN theorem (see e.g. Theorem 6.24 in [13]) then guarantees that there 
is a unique self-adjoint operator Hk corresponding to hk, which is bounded from below. 
Assumption (ii) means that the particles form a bound state in free space. Condition (iii)
is a rather strong form of decay of the negative part at infinity. Presumably some weaker 
assumptions would be sufficient, but in our proofs this version is convenient. Also the 
assumptions on the positive part of V can probably be relaxed. Assumption (iv) is 
imposed for convenience as it implies that it is irrelevant which coordinates are restricted, 
and without loss of generality we pick the first k. However, our methods easily extend 
to the general case.

Our first result is that the ground state energy strictly decreases upon adding a 
Neumann boundary that cuts space in half, i.e. when going from k → k + 1. Moreover, 
the essential spectrum after dividing space starts at the previous ground state energy.
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Theorem 1.3. Let V satisfy Assumptions 1.1. Then for every k ∈ {1, ..., d}, the bottom 
of the spectrum of the operator Hk is an isolated eigenvalue Ek = inf σ(Hk). Moreover, 
the essential spectrum of Hk is σess(Hk) = [Ek−1, ∞). In particular, the ground state 
energies form a decreasing sequence Ed < Ed−1 < ... < E0 < 0.

Our second result is that the operators Hk have only finitely many bound states.

Theorem 1.4. Let 1 ≤ k ≤ d. Then Hk has a finite number of eigenvalues below the 
essential spectrum.

In the one-dimensional case d = k = 1 with equal masses ma = mb, Theorems 1.3
and 1.4 were proved in [6]. While we follow their main ideas, several new ingredients are 
needed to extend the results to general d and k. In particular, the localization procedure 
in the proofs is more complicated and requires several additional steps.

Remark 1.5. At various places it will be convenient to switch back to the particle coor-
dinates in the first k components, while keeping the relative coordinate in the last d − k

components. We shall from now on use the notation xa = (xa
1 , ..., x

a
k), xb = (xb

1, ..., x
b
k)

for the first k components of the particle coordinates and ỹ = (yk+1, ..., yd) for the 
remaining components of the relative coordinate. In this notation, y = (xa − xb, ỹ) and

hk[ψ] =
∫

[0,∞)2k×Rd−k

(
1

2ma
|∇xaψ|2 + 1

2mb
|∇xbψ|2 + 1

2μ |∇ỹψ|2

+ V (xa − xb, ỹ)|ψ|2
)

dxadxbdỹ (1.8)

with domain D[hk] = H1((0, ∞)2k ×Rd−k).

Remark 1.6. By Corollary 5.1 in [7], if Hk has a ground state, it is non-degenerate and 
we can choose the corresponding wave function to be positive almost everywhere.

The remainder of this paper is structured as follows. Section 2 contains the proof of 
Theorem 1.3. In Section 3, we prove Theorem 1.4. The Appendix contains an explicit 
example for d = 1 in A.1, the proof of Lemma 2.3 in A.2, as well as technical details 
of the proofs in A.3. The exponential decay of Schrödinger eigenfunctions needed in the 
proof is discussed in Appendix B by Rupert L. Frank.

2. Proof of Theorem 1.3

We shall prove the following two statements.

Proposition 2.1. Let k ∈ {1, ..., d}. If Hk−1 has a ground state with energy Ek−1 ≤ ... ≤
E0 the essential spectrum of Hk is [Ek−1, ∞).
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Proposition 2.2. Let k ∈ {1, ..., d}. If Hk−1 has a ground state ψk−1 with energy Ek−1

the spectrum of Hk satisfies

Ek = inf σ(Hk) ≤ Ek−1 − J2M

8μ2

(
1 + 2 max

{
ma

mb
,
mb

ma

})−1

< Ek−1, (2.1)

where J =
∫
Qk−1×Rd−k+1 δ(yk)|ψk−1|2dzdy > 0 with δ the Dirac delta-function.

The assumption Ek−1 ≤ ... ≤ E0 in the first Proposition holds as a consequence of 
the second Proposition. These two propositions combined yield Theorem 1.3.

Proof of Theorem 1.3. We proceed by induction. The claim is that Hk has a ground 
state, and that the ground state energies form a strictly decreasing sequence Ed < ... <
E0. For k = 0 the former is true by Assumption 1.1(ii). For the induction step we apply 
Propositions 2.1 and 2.2. Assuming that the claim is true for k − 1, Proposition 2.2
implies that Hk has spectrum below Ek−1. By Proposition 2.1 this part of the spectrum 
must consist of eigenvalues. Since Hk is bounded from below by Proposition A.3, it 
must have a ground state. The ground state energy Ek is strictly smaller than Ek−1 by 
Proposition 2.2. �
2.1. Proof of Proposition 2.1

In order to compute the essential spectrum of Hk, we follow the proof of Proposition 
2.1 in [6]. For the inclusion [Ek−1, ∞) ⊂ σess(Hk) we use Weyl’s criterion (see Section 6.4 
in [13]). For the opposite inclusion, we bound the essential spectrum of Hk from below by 
introducing additional Neumann boundaries. They split the particle domain into several 
regions. One of them is bounded, so it does not contribute to the essential spectrum. In 
another, the interaction potential is larger than Ek−1, and hence there is no essential 
spectrum below Ek−1. In the remaining regions, the Hamiltonian can be bounded from 
below by approximately Hk−1 ⊗ I. For this operator the essential spectrum starts at 
Ek−1.

Proof of Proposition 2.1. For the inclusion [Ek−1, ∞) ⊂ σess(Hk) we construct a Weyl 
sequence. Remark 1.6 allows us to choose the ground state wave function ψk−1 of Hk−1
to be normalized and positive almost everywhere. Let l ∈ [0, ∞) and let τ : R → R be a 
smooth function satisfying 0 ≤ τ ≤ 1 with τ(x) = 0 for x ≤ 1 and τ(x) = 1 for x ≥ 2. 
Let us write δ = M/ max{ma, mb}. For integers n ≥ 5, choose ϕn(z1, ..., zk, y1, ..., yd) =
fn(z1, ..., zk−1, y1, ..., yd)gn(zk) for (z, y) ∈ Qk ×Rd−k with

fn(z1, ..., zk−1, y1, ..., yd) = ψk−1(z1, ..., zk−1, y1, ..., yd)τ(n− |yk|/δ) (2.2)

and
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gn(zk) = cos(lzk)τ(zk − n)τ(2n− zk). (2.3)

Using the properties of τ , we observe that gn(zk) = cos(lzk) for zk ∈ [n + 2, 2n − 2]. 
Moreover, for |yk| < δ(n − 2) we have fn = ψk−1. Note that for (z, y) ∈ Qk ×Rd−k with 
zk ≥ n + 2, the variable yk can take all values satisfying |yk| ≤ δ(n + 2). Therefore,

‖ϕn‖2
L2(Qk×Rd−k) ≥

⎛⎜⎝ ∫
Qk−1×[δ(−n+2),δ(n−2)]×Rd−k

ψ2
k−1

⎞⎟⎠
⎛⎝ 2n−2∫

n+2

cos2(lzk)dzk

⎞⎠ . (2.4)

Since ψk−1 is normalized, the first integral converges to 1 as n → ∞. The second integral 
is greater than some constant times n. Thus, ‖ϕn‖2

L2(Qk×Rd−k) ≥ C1n for some constant 
C1 > 0.

Using the eigenvalue equation for ψk−1, we have

(
Hk − Ek−1 − l2

2M

)
ϕn = fnΨn + Φngn (2.5)

with

Ψn(zk) = 1
M

l sin(lzk) [τ ′(zk − n)τ(2n− zk) − τ(zk − n)τ ′(2n− zk)]

− 1
2M cos(lzk) [τ ′′(zk − n)τ(2n− zk) − 2τ ′(zk − n)τ ′(2n− zk) + τ(zk − n)τ ′′(2n− zk)]

(2.6)

and

Φn(z1, ..., zk−1, y1, ..., yd) = 1
δμ

∂yk
ψk−1sgn(yk)τ ′(n− |yk|/δ) −

1
2δ2μ

ψk−1τ
′′(n− |yk|/δ).

(2.7)
By choice of the function τ , we have suppΨn ⊂ [n + 1, n + 2] ∪ [2n − 2, 2n − 1] and 
supp Φn ⊂ Qk−1 × [δ(−n + 1), δ(−n + 2)] ∪ [δ(n − 2), δ(n − 1)] × Rd−k. Since both τ ′

and τ ′′ are bounded, there is a constant C2 > 0 independent of n such that |Φn| ≤
C2 (|∂yk

ψk−1| + |ψk−1|) and ‖Ψn‖∞ ≤ C2. With the aid of the Schwarz inequality, we 
therefore have

∥∥∥∥(Hk −Ek−1 − l2

2M

)
ϕn

∥∥∥∥2
L2(Qk×Rd−k)

≤ 2
∫

d−k+1

f2
n

∫
Ψ2

n + 2
∫

d−k+1

Φ2
n

2n−1∫
n+1

g2
n

Qk−1×R [n+1,n+2]∪[2n−2,2n−1] Qk−1×R
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≤ 4C2
2

⎛⎜⎝1 + (n− 2)
∫

Qk−1×[δ(−n+1),δ(−n+2)]∪[δ(n−2),δ(n−1)]×Rd−k

(
(∂yk

ψk−1)2 + ψ2
k−1
)⎞⎟⎠

(2.8)

where we used ‖ψk−1‖L2 = 1 in the last step. Since ψk−1 ∈ H1(Qk−1 × Rd−k+1), we 
obtain

lim
n→∞

‖(Hk − Ek−1 − l2

2M )ϕn‖2
L2(Qk×Rd−k)

‖ϕn‖2
L2(Qk×Rd−k)

≤ 4C2
2

C1
lim
n→∞

∫
Qk−1×[δ(−n+1),δ(−n+2)]∪[δ(n−2),δ(n−1)]×Rd−k

(
(∂yk

ψk−1)2 + ψ2
k−1
)

= 0.

(2.9)

By Weyl’s criterion, we obtain Ek−1 + l2

2M ∈ σ(Hk) for all l ≥ 0. Since the interval 
[Ek−1, ∞) has no isolated points, it belongs to the essential spectrum of Hk.

For the opposite inclusion σess(Hk) ⊂ [Ek−1, ∞), we partition the domain Qk ×Rd−k

into k + 2 subsets. By Assumption 1.1(iii) there is a number L0 such that for all y ∈ Rd

with |y| > L0 the potential satisfies V (y) > E0. For L > L0 and 1 ≤ l ≤ k let

Ωl :=
{

(z, y) ∈ Qk ×Rd−k
∣∣∣ zl > L

δ
, |yl| < L,∀1 ≤ j < l : zj <

L

δ

}
, (2.10)

Ωk+1 :=
{

(z, y) ∈ Qk ×Rd−k
∣∣∣ ∀1 ≤ j ≤ k : zj <

L

δ
,∀j > k : |yj | < L

}
, (2.11)

Ωk+2 := Ω0 \
k+1⋃
l=1

Ωl. (2.12)

These sets are sketched in Fig. 1. The set Ωk+1 is bounded. For (z, y) ∈ Ωk+2, we always 
have |y| > L. Moreover, in Ωl the range of yl is independent of zl.

For 1 ≤ l ≤ k + 2, we define the quadratic forms al : H1(Ωl) → R as

al[ψ] :=
∫
Ωl

(
1

2M |∇zψ|2 + 1
2μ |∇yψ|2 + V (y)|ψ|2

)
dzdy. (2.13)

For 1 ≤ l ≤ k + 1, the potential term in al is infinitesimally bounded with respect 
to the kinetic energy term, as will be shown in Lemma A.4. For ak+2 the potential 
is bounded from below. Thus, by the KLMN theorem there is a corresponding self-
adjoint operator Al for all 1 ≤ l ≤ k + 2. Let A =

⊕k+2
l=1 Al. There is an isometry 

ι : H1(Ω0) →
⊕

l H
1(Ωl), ϕ 
→ {ϕ|Ω }. Let {ϕn} be a normalized Weyl sequence such 
l
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0

L

xb
l

L xa
l

zl

yl

−L

L

1

2

3

3

Fig. 1. In the case d = k = 1, the areas labeled 1, 2, and 3 are precisely Ω1, Ω2, Ω3, respectively. In higher 
dimensions, region 1 (blue) is the domain of the lth component of z and y for (z, y) ∈ Ωl, l ≤ k. In 
particular, the domain of yl is independent of zl. The (red) triangular area 2 corresponds to the domain of 
zj and yj for (z, y) ∈ Ωl and j < l ≤ k + 1. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

that limn→∞‖(Hk − inf σess(Hk))ϕn‖ = 0. Then {ι(ϕn)} is an orthonormal sequence 
with limn→∞〈ι(ϕn)|Aι(ϕn)〉 = inf σess(Hk). By the min-max principle,

inf σess(Hk) ≥ inf σess (A) = min
l

inf σess(Al). (2.14)

We shall now analyze inf σess(Al) for all 1 ≤ l ≤ k + 2. Since Ωk+1 is a bounded 
Lipschitz domain, H1(Ωk+1) is compactly embedded in L2(Ωk+1) by the Rellich–
Kondrachov theorem [1]. Therefore, Ak+1 has compact resolvent and the spectrum of 
Ak+1 is discrete. In Ωk+2, always at least one of the yj is larger than L. Therefore, 
inf σ(Ak+2) ≥ inf |y|>L V (y) ≥ E0.

Consider now Al with l ≤ k. In order to separate the variable zl from the rest, let 
q be the quadratic form q[ϕ] = 1

2M
∫∞
L/δ

|ϕ′(zl)|2 dzl with domain H1((L/δ, ∞)). The 
remaining variables lie in

ΩL,l
k−1 :=

{
(z1, ..., ẑl, ..., zk, y1, ..., yd) ∈ Rd+k−1

∣∣∣ ∀1 ≤ j < l : 0 < zj <
L

δ
,∀j > l : zj > 0,

∀1 ≤ j �= l ≤ k : −M

mb
zj < yj <

M

ma
zj , |yl| < L

}
(2.15)
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where the hat means that the zl variable is omitted. Note that for L → ∞ the set ΩL,l
k−1

becomes Qk−1 ×Rd−k+1 with l and k components swapped. Define the quadratic form

hL,l
k−1[ψ] =

∫
ΩL,l

k−1

⎛⎜⎝ 1
2M

k∑
j=1
j �=l

∣∣∣∣ ∂ψ∂zj
∣∣∣∣2 + 1

2μ |∇yψ|2 + V (y)|ψ|2

⎞⎟⎠ dz1...d̂zl...dzkdy (2.16)

with domain D[hL,l
k−1] = H1(ΩL,l

k−1). In Lemma A.4, we show that there is a self-adjoint 
operator HL,l

k−1 corresponding to the quadratic form hL,l
k−1. By Assumption 1.1(iv), the 

quadratic form hL,l
k−1 resembles hk−1 with l and k components swapped, up to the con-

straints imposed by the finite number L.
We can decompose

al = hL,l
k−1 ⊗ I + I ⊗ q. (2.17)

It is well-known that the self-adjoint operator corresponding to q has purely essential 
spectrum [0, ∞). Therefore, we obtain inf σess(Al) = inf σ(HL,l

k−1). Using localization 
arguments, one can easily prove the following.

Lemma 2.3. Let 1 ≤ l ≤ k ≤ d and assume that Ek−1 ≤ ... ≤ E0. The self-adjoint oper-
ator HL,l

k−1 defined through the quadratic form (2.16) satisfies lim infL→∞ inf σ(HL,l
k−1) ≥

Ek−1.

The proof of Lemma 2.3 is rather straightforward and follows similar arguments as in 
the one-dimensional case in Proposition A.5 in [6]. For completeness, we carry it out in 
Appendix A.2.

Collecting all estimates and applying (2.14), we see that

inf σess(Hk) ≥ min{E0, inf σ(HL,l
k−1)} (2.18)

for all L > L0. With Lemma 2.3 and since E0 ≥ Ek−1, it follows that σess(Hk) ⊂
[Ek−1, ∞). �
2.2. Proof of Proposition 2.2

The goal is to find a trial function ψ such that (ψ, Hkψ) < Ek−1‖ψ‖2
2. Then 

inf σ(Hk) < Ek−1 by the min-max principle.
We denote the ground state of Hk−1 by ψk−1 and choose it normalized and positive 

a.e. (see Remark 1.6). Since we expect the ground state of Hk to stick to the boundary, 
we pick the trial function

ψ(z1, ..., zk, y1, ..., yd) = ψk−1(z1, ..., zk−1, y1, ..., yd)e−γzk (2.19)
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for γ > 0. We start with a preliminary computation.

Lemma 2.4. Let f(yk) = χ(−∞,0)(yk)e−2γmb|yk|/M + χ(0,∞)(yk)e−2γma|yk|/M , where χ
denotes the characteristic function. We have

A := 1
2(fψk−1, ψk−1) = γ‖ψ‖2

2. (2.20)

Proof. Carrying out the integration over zk, we have

‖ψ‖2
2

=
∫

Qk−1×Rd−k+1

dz1...dzk−1dy
∞∫
0

dzk χ{− M
mb

zk<yk<
M
ma

zk}ψ
2
k−1(z1, ..., zk−1, y1, ..., yd)e−2γzk

= 1
2γ

∫
Qk−1×Rd−k+1

dz1...dzk−1dy ψ2
k−1(z1, ..., zk−1, y1, ..., yd)f(yk)

= 1
2γ (fψk−1, ψk−1) = 1

γ
A. � (2.21)

Proof of Proposition 2.2. We have

hk[ψ] =
∫

Qk×Rd−k

dz1...dzkdy1...dyd
(

1
2M |∇zψk−1|2 + 1

2μ |∇yψk−1|2

+ γ2

2Mψ2
k−1 + V (y)ψ2

k−1

)
e−2γzk . (2.22)

We rewrite this as

hk[ψ] = γ2‖ψ‖2
2

2M +
∫

Qk−1×Rd−k+1

dz1...dzk−1dy1...dyd

×
∞∫
0

dzkχ{− M
mb

zk<yk<
M
ma

zk}

(
1

2M |∇zψk−1|2 + 1
2μ |∇yψk−1|2 + V (y)ψ2

k−1

)
e−2γzk .

(2.23)

Integrating over zk as in the proof of Lemma 2.4, we obtain

hk[ψ] = γ2‖ψ‖2
2

2M + 1
2γ

∫
d−k+1

dz1...dzk−1dy1...dyd
(

1
2M |∇zψk−1|2
Qk−1×R
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+ 1
2μ |∇yψk−1|2 + V (y)ψ2

k−1

)
f(yk). (2.24)

We pull the function f into the gradients and write

hk[ψ] = γ2‖ψ‖2
2

2M + 1
2γ

∫
Qk−1×Rd−k+1

(
1

2M∇z(fψk−1)∇zψk−1 + 1
2μ∇y(fψk−1)∇yψk−1

+ γ

μM

(
−mbχ(−∞,0)e

−2γ mb
M |yk| + maχ(0,∞)e

−2γ ma
M |yk|

)
ψk−1∂yk

ψk−1 + V (y)fψ2
k−1

)
.

(2.25)

Let us write hk[·, ·] for the sesquilinear form associated to the quadratic form hk. The 
previous equation reads

hk[ψ] = γ2‖ψ‖2
2

2M + 1
2γ hk−1[fψk−1, ψk−1] + B, (2.26)

where

B = 1
2μM

∫
Qk−1×Rd−k+1

(
−mbχ(−∞,0)e

−2γ mb
M |yk| + maχ(0,∞)e

−2γ ma
M |yk|

)
ψk−1∂yk

ψk−1.

(2.27)
Since ψk−1 is the minimizer of the functional hk−1[φ]

‖φ‖2
2

, for all functions g ∈ H1(Qk−1 ×
Rd−k+1) it holds that hk−1[g, ψk−1] = Ek−1(g, ψk−1). With g = fψk−1 and Lemma 2.4, 
we obtain

hk[ψ] =
(

γ2

2M + Ek−1
)
‖ψ‖2

2 + B. (2.28)

We now simplify the integral in B. By the Sobolev embedding theorem (Theorem 
4.12 in [1]), the restriction of an H1-function to a hyperplane is an L2-function. 
Therefore, one can restrict the function ψk−1 to yk = 0 and obtain a finite number 
J :=

∫
Qk−1×Rd−k

(
ψk−1|yk=0

)2
. Integration by parts with respect to yk gives

2μMB = −mb

∫
Qk−1×(−∞,0)×Rd−k

e−2γ mb
M |yk|ψk−1∂yk

ψk−1

+ ma

∫
Qk−1×(0,∞)×Rd−k

e−2γ ma
M |yk|ψk−1∂yk

ψk−1

= − mb

2

∫
d−k

(
ψk−1|yk=0

)2
+ γ

m2
b

M

∫
d−k

e−2γ mb
M |yk|ψ2

k−1
Qk−1×R Qk−1×(−∞,0)×R
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− ma

2

∫
Qk−1×Rd−k

(
ψk−1|yk=0

)2
+ γ

m2
a

M

∫
Qk−1×(0,∞)×Rd−k

e−2γ ma
M |yk|ψ2

k−1

= − M

2 J

+ γ

M

∫
Qk−1×Rd−k+1

(
m2

bχ(−∞,0)(yk)e−2γ mb
M |yk| + m2

aχ(0,∞)(yk)e−2γ ma
M |yk|

)
ψ2
k−1.

(2.29)

The last integral is bounded from above by 2 max{m2
a, m

2
b}A. With (2.28), Lemma 2.4

and the min-max principle we obtain

inf σ(Hk) ≤
hk[ψ]
‖ψ‖2

2
≤ Ek−1 + γ

A

((
1
2 + max

{
ma

mb
,
mb

ma

})
γA

M
− J

4μ

)
. (2.30)

This holds for all γ > 0. Minimizing with respect to γ yields

inf σ(Hk) ≤ Ek−1 − J2M

32μ2A2

(
1 + 2 max

{
ma

mb
,
mb

ma

})−1

. (2.31)

Moreover, since ψk−1 is normalized we have

A = 1
2

∫
Qk−1×Rd−k+1

fψ2
k−1 ≤ 1

2

∫
Qk−1×Rd−k+1

ψ2
k−1 = 1

2 . (2.32)

This yields (2.1).
We are left with showing that J > 0. Suppose that J = 0. Define a new function 

ψ̃k−1 = ψk−1 (χyk<0 − χyk>0). Since J = 0, the function ψ̃k−1 ∈ H1(Qk−1 × Rd−k+1). 
Moreover, ψ̃k−1 is a ground state of Hk−1 because hk−1[ψ̃k−1]

‖ψ̃k−1‖2
2

= hk−1[ψk−1]
‖ψk−1‖2

2
. Since ψk−1

and ψ̃k−1 are linearly independent, this contradicts the uniqueness of the ground state 
(Remark 1.6). Hence, J > 0 and inf σ(Hk) < Ek−1. �
3. Finiteness of the discrete spectrum

In this section we shall give the proof of Theorem 1.4. An important ingredient will 
be the exponential decay of the ground state wave function ψk of Hk. In fact, the Agmon 
estimate (Corollary 4.2. in [2]) implies that for any a <

√
inf σess(Hk) − Ek we have∫

Qk×Rd−k

|ψk|2e2a
√

2M |z|2+2μ|y|2dzdy < ∞. (3.1)

Strictly speaking, the assumptions on the interaction potential stated in [2] are slightly 
stronger than ours. However, the Agmon estimate only requires V to be form-bounded 



B. Roos, R. Seiringer / Journal of Functional Analysis 282 (2022) 109455 13
with respect to the kinetic energy with form bound less than 1, as shown in Theorem B.1
in Appendix B by Rupert Frank. As we argue in Proposition A.3, this is the case given 
Assumptions 1.1.

In order to derive (3.1) from Theorem B.1, we remove the boundaries in the particle 
domain via mirroring and consider the operator H̃k acting on H1(Rd+k) (see Propo-
sition A.1). It suffices to prove the exponential decay for the ground state ψ̃k of H̃k. 
We rescale the variables to remove the masses in front of the Laplacians using the 

unitary transform Uϕ(z, y) =
√

2Mk√2μd
ϕ(

√
2Mz, 

√
2μy) on H1(Rd+k). Switching to 

relative and center of mass coordinates and writing Ṽ (z, y) = V ((|xa
j | − |xb

j |)kj=1, ỹ) and 

ṼU (z, y) = Ṽ (z/
√

2M, y/
√

2μ) we have

H̃k = − 1
2M Δz −

1
2μΔy + Ṽ = U

(
−Δz − Δy + ṼU

)
U†. (3.2)

The ground state ϕk of −Δz − Δy + ṼU satisfies ψ̃k = Uϕk. For any a <√
inf σess(Hk) − Ek =

√
inf σess(H̃k) − Ek, we thus have

∫
Rd+k

|ψ̃k|2e2a
√

2M |z|2+2μ|y|2dzdy =
∫

Rd+k

|ϕk|2e2a
√

|z|2+|y|2dzdy < ∞ (3.3)

by Theorem B.1. Hence (3.1) holds.

Definition 3.1. Let n ∈ Z≥0 and A be a self-adjoint operator with corresponding 
quadratic form a. We define

En(A) := inf
V ⊂D[a]

dim V =n+1

sup
ϕ∈V
ϕ�=0

a[ϕ]
‖ϕ‖2 . (3.4)

By the min-max principle, if n is larger than the number of eigenvalues below the essential 
spectrum, we have En(A) = inf σess(A). Otherwise, En−1 is the n-th eigenvalue of A
below the essential spectrum counted with multiplicities.

Definition 3.2. For a self-adjoint operator A and a number λ ∈ R, let N(A, λ) denote the 
number of eigenvalues in (−∞, λ) if σess(A) ∩ (−∞, λ) = ∅. Otherwise, set N(A, λ) = ∞. 
When N(A, λ) �= 0, one can write

N(A, λ) = sup
{
n ∈ Z≥1|En−1(A) < λ

}
. (3.5)

In the case k = d = 1, Theorem 1.4 was already shown in [6]. We generalize the proof 
using similar ideas. The overall strategy is to construct localized operators A and bound 
N(Hk, Ek−1) using N(A, Ek−1). The localized operators fall into three categories. First, 
they can have compact resolvent or second, the corresponding potential is larger than 
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Ek−1. In these cases, the number of eigenvalues below Ek−1 is certainly finite (or even 
zero). In the third category, the operator is of the form I⊗Hk−1− 1

2M Δzj⊗I−K, where K
is a well behaved error term. One estimates this operator by projecting onto L2(R) ⊗ψk−1
and its orthogonal complement. This reduces the problem to a one-dimensional operator. 
Then, (3.1) and the Bargmann estimate [4] imply that the number of eigenvalues is finite.

Proof of Theorem 1.4. Let χ1, χ2 : R → [0, 1] and χ3 : R2 → [0, 1] be continuously 
differentiable functions satisfying χ1(t) = 0 for t ≥ 2, χ1(t) = 1 for t ≤ 1, χ1(t)2 +
χ2(t)2 = 1 for all t and χ3(s, t)2 + χ2(s)2χ2(t)2 = 1 for all t and s. Note that for 
j = 1, 2, 3 we have ‖(∇χj)2‖∞ < ∞.

Let Ω0 = (0, ∞)2k ×Rd−k. The boundary of the particle domain consists of k orthog-
onal d − 1-dimensional hyperplanes. We start by localizing into two separate regions, 
distinguishing whether there is a particle close to all the hyperplanes, or whether both 
particles are far from some hyperplane. For R > 0, let

Ω1 =
{
(xa, xb, ỹ) ∈ Ω0|xa ∈ (0, 2R)k or xb ∈ (0, 2R)k

}
=
{
(xa, xb, ỹ) ∈ Ω0|max{xa

1 , ..., x
a
k} < 2R or max{xb

1, ..., x
b
k} < 2R

}
, (3.6)

Ω2 =
{
(xa, xb, ỹ) ∈ Ω0|xa /∈ [0, R]k and xb /∈ [0, R]k

}
=
{
(xa, xb, ỹ) ∈ Ω0|max{xa

1 , ..., x
a
k} > R and max{xb

1, ..., x
b
k} > R

}
. (3.7)

We define the functions

fR
1 (xa, xb) = χ3

(
max{xa

1 , ..., x
a
k}

R
,
max{xb

1, ..., x
b
k}

R

)
, (3.8)

fR
2 (xa, xb) = χ2

(
max{xa

1 , ..., x
a
k}

R

)
χ2

(
max{xb

1, ..., x
b
k}

R

)
. (3.9)

Note that for all functions ϕ ∈ L2(Ω0) we have support supp fR
j ϕ ⊂ Ωj . By the IMS 

localization formula we have for all ϕ ∈ H1(Ω0) that

hk[fR
1 ϕ] + hk[fR

2 ϕ] = hk[ϕ] +
∫

(0,∞)2k×Rd−k

WR|ϕ|2 dxadxbdỹ , (3.10)

where

WR(xa, xb, ỹ) = 1
R2

[
1

2ma
(∇xaχ3)

(
max{xa

1 , ..., x
a
k}

R
,
max{xb

1, ..., x
b
k}

R

)2

+ 1
2mb

(∇xbχ3)
(

max{xa
1 , ..., x

a
k}

R
,
max{xb

1, ..., x
b
k}

R

)2

+ 1
χ′

2

(
max{xa

1 , ..., x
a
k}
)2

χ2

(
max{xb

1, ..., x
b
k}
)2
2ma R R
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+ 1
2mb

χ2

(
max{xa

1 , ..., x
a
k}

R

)2

χ′
2

(
max{xb

1, ..., x
b
k}

R

)2]
.

(3.11)

Note that there is a constant c1 > 0 such that ‖WR‖∞ ≤ c1
R2 . For j = 1, 2, define the 

quadratic forms

aj [ϕ] =
∫
Ωj

(
1

2ma
|∇xaϕ|2 + 1

2mb
|∇xbϕ|2 + 1

2μ |∇ỹϕ|2

+
(
V (xa − xb, ỹ) −WR(xa, xb, ỹ)

)
|ϕ|2
)

dxadxbdỹ (3.12)

with domains

D[a1]=
{
ϕ∈H1(Ω0)|ϕ(xa, xb, ỹ)=0 if max{xa

1, ..., x
a
k}≥2R and max{xb

1, ..., x
b
k}≥2R

}
,

(3.13)

D[a2]=
{
ϕ ∈ H1(Ω0)|ϕ(xa, xb, ỹ) = 0 if max{xa

1 , ..., x
a
k} ≤ R or max{xb

1, ..., x
b
k} ≤ R

}
.

(3.14)

For all quadratic forms aj in this proof, let Aj denote the corresponding self-adjoint 
operator. In Lemma A.5, we verify that these operators exist. For ϕ ∈ D[hk], the re-
striction of the function fR

j ϕ to Ωj belongs to D[aj ]. With (fR
1 )2 + (fR

2 )2 = 1, it follows 
that hk[ϕ] = a1[fR

1 ϕ] + a2[fR
2 ϕ]. Let Â denote the operator Â = A1 ⊕ A2. The map 

J : H1(Ω0) → H1(Ω0) ⊕H1(Ω0), ϕ 
→ (fR
1 ϕ, fR

2 ϕ) is an L2-isometry and thus injective. 
By the min-max principle, we have

En(Hk) = inf
V ⊂D[hk]

dim V =n+1

sup
ϕ∈V
ϕ�=0

hk[ϕ]
‖ϕ‖2

L2(Ω0)
= inf

V ⊂D[hk]
dim V =n+1

sup
ϕ∈V
ϕ�=0

â[Jϕ]
‖Jϕ‖2

L2(Ω0)⊕L2(Ω0)

= inf
V ⊂JD[hk]
dim V =n+1

sup
ϕ∈V
ϕ�=0

â[ϕ]
‖ϕ‖2

L2(Ω0)⊕L2(Ω0)
≥ inf

V ⊂D[â]
dim V =n+1

sup
ϕ∈V
ϕ�=0

â[ϕ]
‖ϕ‖2

L2(Ω0)⊕L2(Ω0)
= En(Â) (3.15)

for all n ∈ Z≥0. Thus, N(Hk, Ek−1) ≤ N(Â, Ek−1) = N(A1, Ek−1) + N(A2, Ek−1).
Let

Ω̃1,int =
{
(xa, xb, ỹ) ∈ Ω0|(xa − xb, ỹ) ∈ (−R,R)d

}
and (3.16)

Ω̃1,ext =
{
(xa, xb, ỹ) ∈ Ω0|(xa − xb, ỹ) /∈ [−R,R]d

}
. (3.17)

Moreover, let Ω1,• = Ω̃1,• ∩ Ω1 for • ∈ {int, ext}. Define quadratic forms a1,int, a1,ext
through expression (3.12) with domain
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x2

R x1

Ω3,2

Ω3,1

7
8R

7
8R

Fig. 2. Let k = 2. In Ω2 both xa and xb lie outside the square (0, R)2. If xa lies below the upper diagonal, 
the configuration belongs to Ω3,1. If xa lies above the lower diagonal, the configuration belongs to Ω3,2.

D[a1,•] ={
ϕ ∈ H1(Ω̃1,•)|ϕ(xa, xb, ỹ) = 0 if max{xa

1 , ..., x
a
k} ≥ 2R and max{xb

1, ..., x
b
k} ≥ 2R

}
,

(3.18)

for • ∈ {int, ext}. Again, there is an isometry

D[a1] → D[a1,int] ⊕D[a1,ext], ϕ 
→ (ϕ|Ω̃1,int
, ϕ|Ω̃1,ext

), (3.19)

and therefore, N(A1, Ek−1) ≤ N(A1,int, Ek−1) + N(A1,ext, Ek−1). Since the negative 
part of V vanishes at infinity by Assumption 1.1(iii) and since ‖WR‖∞ ≤ c1

R2 , there 
is a R0 > 0 such that for R ≥ R0 and |(xa − xb, ỹ)| ≥ R0 we have V (xa − xb, ỹ) −
WR(xa, xb, ỹ) > Ek−1. Choosing R ≥ R0, we have N(A1,ext, Ek−1) = 0. Since Ω1,int is 
a bounded Lipschitz domain, A1,int has purely discrete spectrum. As A1,int is bounded 
from below, we have N(A1,int, Ek−1) < ∞.

We are left with showing that N(A2, Ek−1) < ∞. For k = 1, wave functions in the 
support of A2 are localized away from the boundary. Effectively, the boundary has thus 
disappeared and one can directly make a comparison with Hk−1 = H0. For k > 1, the 
domain Ω2 is more complicated and we need to continue localizing in order to effectively 
eliminate one of the boundary planes. For now, assume k > 1 and let r = R/8. We 
localize xa in the k sectors

Ω3,j = {(xa, xb, ỹ) ∈ Ω2|xa
j > max{xa

1 , ..., x
a
k} − r} for 1 ≤ j ≤ k. (3.20)

In the sector Ω3,j , the largest component of xa is xa
j up to the constant r. The domains 

are sketched in Fig. 2 for the case k = 2. For the localization, we need functions fr
3,j on 

Ω2 which are supported in Ω3,j , satisfy 
∑k

j=1(fr
3,j)2 = 1, and their derivatives scale as 

1/r. We construct auxiliary functions f3,j corresponding to the case r = 1 and set
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fr
3,j(xa, xb, ỹ) = f3,j(xa/r). (3.21)

The idea behind the construction of the auxiliary functions is as follows. We want that 
f3,1 equals 1 on Ω3,1 apart from the boundary region which overlaps with other Ω3,j. The 
expression max{xa

2 , ..., x
a
k} −xa

1 measures the distance to the boundary of Ω3,1 and is large 
outside Ω3,1. Hence, to define f3,1, we apply χ1 to this expression (up to some constants). 
For the sum condition to hold, the remaining f3,j will contain the corresponding factor 
χ2. This χ2 factor takes care of the behavior at the boundary towards large xa

1. For 
the next function f3,2, we proceed analogously to before, but ignoring the xa

1 direction. 
Inductively, for xa ∈ (0, ∞)k and 1 ≤ j ≤ k − 1 we define

f3,j(xa) = χ1

(
k

2
(
max{xa

j+1, ..., x
a
k} − xa

j

)
+ 3

2

)

×
j−1∏
l=1

χ2

(
k

2
(
max{xa

l+1, ..., x
a
k} − xa

l

)
+ 3

2

)
,

f3,k(xa) =
k−1∏
l=1

χ2

(
k

2
(
max{xa

l+1, ..., x
a
k} − xa

l

)
+ 3

2

)
, (3.22)

where the product in the first line has to be understood as 1 for j = 1. Note that for all 
1 ≤ j ≤ k the derivatives are bounded, i.e. ‖(∇f3,j)2‖∞ < ∞. By construction, we have ∑k

j=1(f3,j)2 = 1. That the functions fr
3,j indeed have the correct support is the content 

of the following Lemma, which is proved at the end of this section.

Lemma 3.3. For 1 ≤ j ≤ k, the functions fr
3,j defined through (3.21) and (3.22) satisfy

supp fr
3,j ∩ Ω2 ⊂ Ω3,j . (3.23)

Moreover,

supp∇fr
3,j ∩ Ω2 ⊂

{(xa, xb, ỹ) ∈ Ω2|max{xa
1 , ..., x̂

a
j , ..., x

a
k} − r ≤ xa

j ≤ max{xa
1 , ..., x̂

a
j , ..., x

a
k} + r}, (3.24)

where x̂a
j means that this variable is omitted.

By the IMS formula, we have for all ϕ ∈ D[a2]

k∑
j=1

a2[fr
3,jϕ] = a2[ϕ] +

∫
Ω2

Fr(xa, xb, ỹ)|ϕ|2dxadxbdỹ, (3.25)

where
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Fr(xa, xb, ỹ) = 1
r2

k∑
j=1

1
2ma

(∇f3,j)2 (xa/r) . (3.26)

For 1 ≤ j ≤ k, define the quadratic forms

a3,j [ϕ] =
∫

Ω3,j

(
1

2ma
|∇xaϕ|2 + 1

2mb
|∇xbϕ|2 + 1

2μ |∇ỹϕ|2

+
(
V (xa − xb, ỹ) −WR(xa, xb, ỹ) − Fr(xa, xb, ỹ)

)
|ϕ|2
)

dxadxbdỹ (3.27)

with domains

D[a3,j ]=
{
ϕ∈H1(Ω0)|ϕ(xa, xb, ỹ) = 0 if max{xa

1 , ..., x
a
k}≤R or max{xb

1, ..., x
b
k}≤R

or xa
j ≤ max{xa

1 , ..., x
a
k} − r

}
. (3.28)

Again we have N(A2, Ek−1) ≤
∑k

j=1 N(A3,j , Ek−1). We will show that N(A3,k, Ek−1) <
∞. For 1 ≤ j < k, by Assumption 1.1(iv) the same argument with vector components 
k ↔ j swapped gives N(A3,j , Ek−1) < ∞.

We localize xb close and far from the domain of xa. Define the sets

Ω4 =
{
(xa, xb, ỹ) ∈ Ω3,k|xb

k > max{xb
1, ..., x

b
k−1} − 4r

}
and (3.29)

Ω5 =
{
(xa, xb, ỹ) ∈ Ω3,k|xb

k < max{xb
1, ..., x

b
k−1} − 2r

}
. (3.30)

For k = 2, they are sketched in Fig. 3. Let fr
4 (xb) = χ1

(
max{xb

1,...,x
b
k−1}−xb

k

2r

)
and fr

5 (xb) =

χ2

(
max{xb

1,...,x
b
k−1}−xb

k

2r

)
. By the IMS formula, we have for all ϕ ∈ D[a3,k]

a3,k[fr
4ϕ] + a3,k[fr

5ϕ] = a3,k[ϕ] +
∫

Ω3,k

Gr(xa, xb, ỹ)|ϕ|2dxadxbdỹ, (3.31)

where

Gr(xa, xb, ỹ) = 1
4r2mb

⎡⎣χ′
1

(
max{xb

1, ..., x
b
k−1} − xb

k

2r

)2

+ χ′
2

(
max{xb

1, ..., x
b
k−1} − xb

k

2r

)2
⎤⎦ . (3.32)

For j = 4, 5, define the quadratic forms
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√

2

Fig. 3. In Ω3,2, the first particle’s coordinate xa lies in the shaded area, while the second particle at xb lies 
outside the square (0, R)2. If xb lies above the lowest diagonal (blue), the configuration belongs to Ω4. If 
xb lies below the middle diagonal (red), the configuration belongs to Ω5. Note that for any configuration in 
Ω5, the particles are separated by at least distance r/

√
2.

aj [ϕ] =
∫
Ωj

(
1

2ma
|∇xaϕ|2 + 1

2mb
|∇xbϕ|2 + 1

2μ |∇ỹϕ|2

+
(
V (xa − xb, ỹ) −WR(xa, xb, ỹ) − Fr(xa, xb, ỹ) −Gr(xa, xb, ỹ)

)
|ϕ|2
)

dxadxbdỹ

(3.33)

with domains

D[a4]=
{
ϕ ∈ H1(Ω0)|ϕ(xa, xb, ỹ) = 0 if max{xa

1 , ..., x
a
k}≤R or max{xb

1, ..., x
b
k}≤R

or xa
k ≤ max{xa

1 , ..., x
a
k−1} − r or xb

k ≤ max{xb
1, ..., x

b
k−1} − 4r

}
, (3.34)

D[a5]=
{
ϕ ∈ H1(Ω0)|ϕ(xa, xb, ỹ) = 0 if max{xa

1 , ..., x
a
k}≤R or max{xb

1, ..., x
b
k}≤R

or xa
k ≤ max{xa

1 , ..., x
a
k−1} − r or xb

k ≥ max{xb
1, ..., x

b
k−1} − 2r

}
. (3.35)

Again, we have N(A3,k, Ek−1) ≤ N(A4, Ek−1) + N(A5, Ek−1).
For (xa, xb, ỹ) ∈ Ω5, we claim that

|(xa − xb, ỹ)| ≥ r/
√

2 = R/(8
√

2). (3.36)

Let l be the index such that xb
l = max{xb

1, ..., x
b
k−1}. We estimate

|(xa − xb, ỹ)|2 ≥ (xa
l − xb

l )2 + (xa
k − xb

k)2 ≥ 1
2
(
xa
l − xa

k − xb
l + xb

k

)2
. (3.37)

Since max{xa
1 , ..., x

a
k−1} ≥ xa

l we have in the set Ω5 (see (3.30) and (3.20))
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xa
k > xa

l − r and xb
k < xb

l − 2r ⇔ xa
l − xa

k < r and xb
l − xb

k > 2r. (3.38)

Combining this with (3.37) yields (3.36). Moreover, we have ‖WR‖∞+‖Fr‖∞+‖Gr‖∞ ≤
c2
R2 . By Assumption 1.1(iii), there is R1 > 0 such that for R > R1 we have a5 > Ek−1. 
Choosing R large enough, we thus have N(A5, Ek−1) = 0.

For k = 1, we set Fr = Gr = 0 and a4 = a2. For any choice of k ≥ 1, we now just 
need to show N(A4, Ek−1) < ∞. At the boundaries which constrain the kth component 
of xa and xb, the operator A4 has Dirichlet boundary conditions. The idea is to extend 
the domain of xa

k and xb
k to R, which leads to the new operator Â4 defined below. 

In Â4, the boundary hyperplane in the kth direction has disappeared. This makes it 
possible to compare the operator Â4 to the Hamiltonian Hk−1 of the problem with 
k − 1 boundary hyperplanes. Let us write KR = (WR + Fr + Gr)χ(0,∞)2k×Rd−k . Let 
Ω̂4 =

(
(0,∞)k−1 ×R

)2 ×Rd−k and define the quadratic form

â4[ϕ] =
∫
Ω̂4

(
1

2ma
|∇xaϕ|2 + 1

2mb
|∇xbϕ|2 + 1

2μ |∇ỹϕ|2

+
(
V (xa − xb, ỹ) −KR(xa, xb, ỹ)

)
|ϕ|2
)

dxadxbdỹ (3.39)

with domain D[â4] = H1(Ω̂4). We have N(A4, Ek−1) ≤ N(Â4, Ek−1).
Let us change to relative and center-of-mass coordinates y = (xa − xb, ỹ) and z =

max
a+mbx

b

M . Then

â4[ϕ] =
∫
R

dzk
∫

Qk−1×Rd−k+1

dz1..dzk−1dy
(

1
2μ |∇yϕ|2 + 1

2M |∇zϕ|2

+
[
V (y) −KR

(
z + mb

M
(y1, ..., yk), z −

ma

M
(y1, ..., yk), ỹ

)]
|ϕ|2
)

(3.40)

with D[â4] = H1(R × Qk−1 × Rd−k+1). Note that we can separate zk from the other 
variables and write the corresponding operator as Â4 = I⊗Hk−1− 1

2M Δzk⊗I−KR. Recall 
that Hk−1 has the ground state ψk−1 with energy Ek−1. Let Π denote the orthogonal 
projection onto L2(R) ⊗ ψk−1 in L2(R × Qk−1 × Rd−k+1), and Π⊥ := I − Π. For ϕ ∈
H1(R ×Qk−1×Rd−k+1) both Πϕ and Π⊥ϕ belong to H1(R ×Qk−1×Rd−k+1). We have

â4[ϕ] = â4[Πϕ] + â4[Π⊥ϕ] − 2KR[Π⊥ϕ,Πϕ], (3.41)

where
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KR[ϕ,ψ] =
∫

R×Qk−1×Rd−k+1

ϕ(z, y)KR

(
z + mb

M
(y1, ..., yk), z −

ma

M
(y1, ..., yk), ỹ

)
ψ(z, y)

dzkdz1...dzk−1dy. (3.42)

Using the Schwarz inequality, we estimate

|2KR[Π⊥ϕ,Πϕ]| ≤ R‖KRΠϕ‖2
L2(R×Qk−1×Rd−k+1) + 1

R
‖Π⊥ϕ‖2

L2(R×Qk−1×Rd−k+1).

(3.43)

Since Ek−1 is a discrete and non-degenerate eigenvalue of Hk−1, we have Ek−1
1 =

inf(σ(Hk−1) \ {Ek−1}) > Ek−1, and (I⊗hk−1)[Π⊥ϕ] ≥ Ek−1
1 ‖Π⊥ϕ‖2

L2(R×Qk−1×Rd−k+1). 
Together with the positivity of −Δzk ⊗ I and ‖KR‖∞ ≤ c2

R2 it follows that

â4[Π⊥ϕ] ≥
(
Ek−1

1 − c2
R2

)
‖Π⊥ϕ‖2

L2(R×Qk−1×Rd−k+1). (3.44)

In total, we have

â4[ϕ] ≥ â4[Πϕ] −R‖KRΠϕ‖2
L2(R×Qk−1×Rd−k+1)

+
(
Ek−1

1 − 1
R

− c2
R2

)
‖Π⊥ϕ‖2

L2(R×Qk−1×Rd−k+1). (3.45)

We choose R large enough such that Ek−1
1 −Ek−1 > 1

R + c2
R2 . Let B1 be the self-adjoint 

operator corresponding to

b1[ϕ] = â4[ϕ] −R‖KRϕ‖2
L2(R×Qk−1×Rd−k+1) (3.46)

in ran Π. Then N(Â4, Ek−1) ≤ N(B1, Ek−1) by the min-max principle.
We can write any function ϕ ∈ ran Π as ϕ(z, y) = f(zk)ψk−1(z1, ..., zk−1, y) for some 

f ∈ H1(R). Integrating over z1, ..., zk−1, y, we have

â4[f ⊗ ψk−1] =
∫
R

(
1

2M |f ′(zk)|2 + (Ek−1 − UR(zk))f(zk)2
)

dzk, (3.47)

where

UR(zk) =
∫

Qk−1×Rd−k+1

KR

(
z + mb

M
(y1, ..., yk), z −

ma

M
(y1, ..., yk), ỹ

)
ψk−1(z1, ...zk−1, y)2

dz1...dzk−1dy. (3.48)

Moreover,
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‖KR(f ⊗ ψk−1)‖2
L2(R×Qk−1×Rd−k+1) =

∫
R

VR(zk)f(zk)2dzk (3.49)

with

VR(zk)

=
∫

Qk−1×Rd−k+1

KR

(
z + mb

M
(y1, ..., yk), z −

ma

M
(y1, ..., yk), ỹ

)2
ψk−1(z1, ..., zk−1, y)2

dz1...dzk−1dy. (3.50)

Let ZR = UR + RVR. With

b2[f ] =
∫
R

(
1

2M |f ′(z)|2 − ZR(z)f(z)2
)

dz, (3.51)

we can write b1[f ⊗ψk−1] = Ek−1‖f‖2
L2(R) + b2[f ]. Therefore, N(B1, Ek−1) = N(B2, 0).

In the following, we bound the function ZR from above by an exponentially decaying 
function. With this bound it is easy to see that N(B2, 0) < ∞ using e.g. the Bargmann 
estimate (see Chapter 2, Theorem 5.3 in [4]). This concludes the proof of N(Hk, Ek−1) <
∞.

To bound ZR, first use that KR is bounded to obtain

ZR(zk) ≤
(
‖K‖∞ + R‖K‖2

∞
)
I(zk), (3.52)

where

I(zk) =
∫

Qk−1×Rd−k+1

χsuppKR
(z, y)ψ2

k−1dz1...dzk−1dy. (3.53)

By construction, I(zk) = 0 for zk < 0. We shall show that I(zk) decays exponentially 
for zk ≥ 0. In fact, if zk is large and KR(z, y) �= 0, then necessarily one of the remaining 
coordinates z1, ..., zk−1, y1, ..., yd has to be large as well. This is essentially the content 
of the following Lemma.

Lemma 3.4. Let a > 0. For zk ≥ 2R the function

α(z, y) = ea
√

2M |z1|2+...+2M |zk−1|2+2μ|y|2χsuppKR
(z, y) (3.54)

satisfies α(z, y) ≥ eac(zk−2R)χsuppKR
(z, y) with c =

√
2M(1 + 2 max{ma , mb })−1/2.
mb ma
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The Agmon estimate (3.1) tells us that there is a constant a > 0 such that

c3 :=
∫

Qk−1×Rd−k+1

ψ2
k−1e

a
√

2M |z1|2+...+2M |zk−1|2+2μ|y|2dz1...dzk−1dy < ∞. (3.55)

We apply Lemma 3.4 with this constant a and conclude that

χsuppKR
(z, y) ≤ e−c4(zk−2R)α(z, y) (3.56)

for zk ≥ 2R and suitable constant c4 > 0. In particular,

I(zk) ≤ e−c4(zk−2R)
∫

Qk−1×Rd−k+1

α(z, y)ψk−1(z1, ..., zk−1, y)2dz1...dzk−1dy

≤ c3e
−c4(zk−2R) (3.57)

for zk ≥ 2R. Recall that ZR vanishes on (−∞, 0) and ‖ZR‖∞ < ∞. With (3.52) we thus 
conclude the desired exponentially decaying bound. �

It remains to give the proof of Lemmas 3.3 and 3.4.

Proof of Lemma 3.4. Recall the definitions of WR, Fr and Gr in (3.11), (3.26) and (3.32), 
respectively. Since suppKR ⊂ suppWR ∪ suppFr ∪ suppGr, we estimate α on each 
of these three sets. In suppWR, at least one particle is close to the corner, i.e. in the 
hypercube (0, 2R)k. If zk is large, this means that the two particles are far apart and yk
is large. To be precise, using xa

j = zj + mb

M yj and xb
j = zj − ma

M yj we have

suppWR ⊂
{

(z, y) ∈ Qk ×Rd−k|0 ≤
zk + mb

M yk

R
≤ 2 or 0 ≤

zk − ma

M yk

R
≤ 2
}

⊂
{

(z, y) ∈ Qk ×Rd−k|zk − 2R ≤ max{ma,mb}
M

|yk|
}
. (3.58)

For (z, y) ∈ suppWR with zk ≥ 2R, we therefore have

M

k−1∑
j=1

|zj |2 + μ

k∑
j=1

|yk|2 ≥ μM2(zk − 2R)2

max{m2
a,m

2
b}

= M(zk − 2R)2

max{ma

mb
, mb

ma
} , (3.59)

which implies the desired bound on α.
For k = 1, both Fr and Gr are identically zero, hence to estimate α on their support 

we can restrict our attention to the case k > 1. Observe that in suppFr every coordinate 
xa
j for 1 ≤ j ≤ k is smaller than or similar in magnitude to the largest of the other 

coordinates xa
i , i �= j; in particular, this applies to j = k. Intuitively, for large zk either 
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xa
k or |yk| needs to be large. If xa

k is large, also some other xa
j with j < k has to be large. 

Phrased precisely, by Lemma 3.3 we have

suppFr ⊂
k⋃

j=1

⎧⎨⎩(z, y) ∈ Qk ×Rd−k| max
1≤l≤k,
l 
=j

{zl + mb

M
yl} − r ≤ zj + mb

M
yj ≤ max

1≤l≤k,
l 
=j

{zl + mb

M
yl} + r

⎫⎬⎭
⊂
{

(z, y) ∈ Qk ×Rd−k|zk − r ≤ −mb

M
yk + max

1≤j≤k−1
{mb

M
yj + zj}

}
=: SF . (3.60)

The constraint in SF can be written as zk − r ≤ (
√
Mz, 

√
μy) · e for a vector e ∈ Rk+d. 

A simple Schwarz inequality therefore shows that on the set SF we have

M
k−1∑
j=1

|zj |2 + μ
k∑

j=1
|yk|2 ≥ (zk − r)2

‖e‖2 = M(zk − r)2

1 + 2mb

ma

(3.61)

as long as zk ≥ r, which yields the desired bound on α.
Similarly to the previous case, in suppGr the coordinate xb

k is of similar magnitude 
as the largest of the other coordinates xb

j . We have

suppGr ⊂
{

(z, y) ∈ Qk ×Rd−k|2r ≤ max
1≤j≤k−1

{zj −
ma

M
yj} + ma

M
yk − zk ≤ 4r

}
⊂
{

(z, y) ∈ Qk ×Rd−k|zk + 2r ≤ max
1≤j≤k−1

{zj −
ma

M
yj} + ma

M
yk

}
=: SG.

(3.62)

Analogously to before, on the set SG we have

M
k−1∑
j=1

|zj |2 + μ
k∑

j=1
|yk|2 ≥ M(zk + 2r)2

1 + 2ma

mb

. (3.63)

This concludes the proof. �
Proof of Lemma 3.3. Suppose (xa, xb, ỹ) ∈ supp fr

3,j . If j < k, we need

k
max{xa

j+1, ..., x
a
k} − xa

j

2r + 3
2 ≤ 2 (3.64)

for the factor χ1 to be non-zero. This is equivalent to max{xa
j+1, ..., x

a
k} ≤ xa

j + r
k . Thus, 

for any 1 ≤ j ≤ k we have max{xa
j , ..., x

a
k} ≤ xa

j + r
k on the support of fr

3,j . Let us 
argue inductively why max{xa

1 , ..., x
a
k} ≤ xa

j + r. Suppose we know for some 1 < l ≤ j

that max{xa
l , ..., x

a
k} ≤ xa

j + (j + 1 − l) r . If xa
l−1 ≤ max{xa

l , ..., x
a
k}, we trivially have 
k
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max{xa
l−1, ..., x

a
k} ≤ xa

j + (j + 1 − (l − 1)) r
k . If xa

l−1 > max{xa
l , ..., x

a
k}, for the factor 

χ2

(
k

max{xa
l ,...,x

a
k}−xa

l−1
2r + 3

2

)
not to vanish we have max{xa

l , ..., x
a
k} + r

k ≥ xa
l−1. Thus,

max{xa
l−1, ..., x

a
k} = xa

l−1 ≤ max{xa
l , ..., x

a
k} + r

k
≤ xa

j + (j + 1 − (l − 1)) r
k
. (3.65)

Inductively, we see that for every j we have max{xa
1 , ..., x

a
k} ≤ xa

j + j r
k ≤ xa

j + r. Thus, 
supp f3,j ∩ Ω2 ⊂ Ω3,j .

For the support of ∇f3,j , we have

supp∇fr
3,j ∩ Ω2 ⊂ supp fr

3,j ∩ Ω2 ⊂ Ω3,j

= {(xa, xb, ỹ) ∈ Ω2|xa
j ≥ max{xa

1 , ..., x̂
a
j , ..., x

a
k} − r}. (3.66)

Now, suppose xa
j > max{xa

1, ..., ̂x
a
j , ..., x

a
k} + r. It is sufficient to show that fr

3,j ≡ 1 in 
this region. For j < k, we have

k
max{xa

j+1, ..., x
a
k} − xa

j

2r + 3
2 ≤ k

max{xa
1 , ..., x̂

a
j , ..., x

a
k} − xa

j

2r + 3
2 < −k

2 + 3
2 ≤ 1.

(3.67)

Thus, χ1

(
k

max{xa
j+1,...,x

a
k}−xa

j

2r + 3
2

)
= 1. For l < j ≤ k, we have

k
max{xa

l+1, ..., x
a
k} − xa

l

2r + 3
2

= k
xa
j − xa

l

2r + 3
2 ≥ k

xa
j − max{xa

1 , ..., x̂
a
j , ..., x

a
k}

2r + 3
2 >

k

2 + 3
2 ≥ 2. (3.68)

Thus, χ2

(
k

max{xa
l+1,...,x

a
k}−xa

l

2r + 3
2

)
= 1. In total, f3,j ≡ 1 for xa

j > max{xa
1, ..., ̂x

a
j , ..., x

a
k}

+ r. �
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Appendix A

A.1. Explicit example in one dimension

To illustrate the effect of a boundary on two-particle bound states, we present an 
explicit example in one dimension. We consider particles with equal masses ma = mb = 1

2
and with delta-interaction V (y) = −αδ(y) for α > 0. The full Hamiltonian is
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H = −
(

∂

∂xa

)2

−
(

∂

∂xb

)2

− αδ(xa − xb), (A.1)

either on L2(R2) or on L2((0, ∞)2) with Neumann boundary conditions. In the first case, 
corresponding to k = 0, we look at the operator H0 = −2 ∂2

∂y2 − αδ(y) on L2(R). It has 
the ground state ψ0(y) = e−

α
4 |y| with corresponding energy E0 = −α2

8 .
The second case corresponds to k = 1. To compute the ground state of H = H1 on 

L2((0, ∞)2), we mirror the problem along the xa = 0 and xb = 0 boundaries, and look 
for the ground state of the modified Hamiltonian

H̃1 = −
(

∂

∂xa

)2

−
(

∂

∂xb

)2

− αδ(xa − xb) − αδ(xa + xb) (A.2)

on L2(R2). This is exactly the operator considered in Proposition A.1. Switching to 
relative and center of mass coordinates y = xa − xb and z = xa+xb

2 , we obtain

H̃1 =
(
−2 ∂2

∂y2 − αδ(y)
)

+ 1
2

(
− ∂2

∂z2 − αδ(z)
)
. (A.3)

The ground state of H̃1 is ψ̃1(y, z) = ψ0(y)e−
α
2 |z|, which decays exponentially away from 

the Neumann boundary. The ground state energy E1 = −α2

4 is strictly lower than E0.

A.2. Proof of Lemma 2.3

Let 1 ≤ k ≤ d. First, we shall prove that the claim is true for l = 1, i.e.

lim
L→∞

inf σ(HL,1
k−1) ≥ Ek−1. (A.4)

In ΩL,1
k−1, the first component of y is constrained to |y1| < L. Apart from that, ΩL,1

k−1 is the 
same as Qk−1×Rd−k+1 with components 1 and k swapped. We localize in the y1 direction, 
analogously to the one-dimensional case in Proposition A.5 in [6]. For this, let χ1, χ2 :
R → [0, 1] be continuously differentiable functions satisfying χ1(t) = 0 for t ≥ 1, χ1(t) =
1 for t ≤ 1

2 , and χ1(t)2+χ2(t)2 = 1 for all t. Note that c := max{‖(χ′
1)2‖∞, ‖(χ′

2)2‖∞} <
∞. We choose the localizing functions fj on ΩL,1

k−1 as fj(z2, . . . zk, y) = χj(|y1|/L). By 
the IMS localization formula, we have for all ψ ∈ H1(ΩL,1

k−1)

hL,1
k−1[ψ] = hL,1

k−1[f1ψ] + hL,1
k−1[f2ψ] − 1

2μ

∫
ΩL,1

k−1

(
(∇f1)2 + (∇f2)2

)
|ψ|2. (A.5)

Note that (∇fj)2 = 1
L2 (χ′

j(|y1|/L))2 ≤ c
L2 . Since f2ψ is nonzero only for |y1| > L/2, for 

large enough L, we have hL,1
k−1[f2ψ] ≥ Ek−1‖f2ψ‖2

2 by Assumption 1.1(iii). Furthermore, 
since f1ψ satisfies Dirichlet boundary conditions at |y1| = L, we can extend the function 
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by zero to y1 ∈ R. Additionally, let us swap the first and the kth components and call 
the function obtained this way ι(f1ψ). Note that ι(f1ψ) ∈ H1(Qk−1 × Rd−k+1) and 
‖ι(f1ψ)‖2

2 = ‖f1ψ‖2
2. Therefore,

hL,1
k−1[f1ψ]
‖f1ψ‖2

2
= hk−1[ι(f1ψ)]

‖ι(f1ψ)‖2
2

≥ Ek−1. (A.6)

Combining the estimates, we obtain for large L that

hL,1
k−1[ψ]
‖ψ‖2 ≥ Ek−1 ‖f1ψ‖2 + ‖f2ψ‖2

‖ψ‖2
2

− c

μL2 = Ek−1 − c

μL2 . (A.7)

Hence, inf σ(HL,1
k−1) ≥ Ek−1 − c

μL2 and the claim follows.
Note that for k = 1, l = 1 was the only possible case. Consider k ≥ 2. We proceed 

by induction. For l ≥ 2, assume the claim holds for l − 1. The strategy is to bound 
hL,l
k−1 using hL,l−1

k−1 and hL,l−1
k−2 . In ΩL,l

k−1, each of the first l − 1 components are restricted 
to the (red) triangular domain 2 in Fig. 1. Furthermore, yl ∈ (−L, L) while in the z-
coordinate the lth component is omitted. In the components l + 1 to k we have the full 
quadrant. Recall that δ = M/ max{ma, mb}. In the (l−1)th component, we localize such 
that one function has Dirichlet boundary conditions along the (red) line zl−1 = L/δ in 
Fig. 1 and the other is localized at L/2δ < zl−1 < L/δ, with a Dirichlet boundary at 
zl−1 = L/2δ. For this, we use the functions fj(z1, . . . , ̂zl, . . . , zk, y) = χj(δzl−1/L). By 
the IMS localization formula, we have for all ψ ∈ H1(ΩL,l

k−1)

hL,l
k−1[ψ] = hL,l

k−1[f1ψ] + hL,l
k−1[f2ψ] − 1

2M

∫
ΩL,l

k−1

(
(∇f1)2 + (∇f2)2

)
|ψ|2. (A.8)

Note that (∇fj)2 = δ2

L2 (χ′
j(δzl−1/L))2 ≤ δ2c

L2 . Since f1ψ satisfies Dirichlet boundary 
conditions along zl−1 = L/δ, one can extend the function by zero to the quadrant Q1 in 
the (l− 1)th component. Additionally swap yl−1 and yl to define ι1(f1ψ) ∈ H1(ΩL,l−1

k−1 ). 
Then ‖ι1(f1ψ)‖2

2 = ‖f1ψ‖2
2 and hence

hL,l
k−1[f1ψ]
‖f1ψ‖2

2
=

hL,l−1
k−1 [ι1(f1ψ)]
‖ι1(f1ψ)‖2

2
≥ inf σ(HL,l−1

k−1 ). (A.9)

To estimate hL,l
k−1[f2ψ], we localize in the yl−1-direction, such that the first function 

satisfies Dirichlet boundary conditions at yl−1 = L/2 and the second function is nonzero 
only for yl−1 > L/4. For this, we use the functions gj(z1, . . . , ̂zl, . . . , zk, y) = χj(2yl−1/L). 
The IMS localization formula gives

hL,l
k−1[f2ψ] = hL,l

k−1[g1f2ψ] + hL,l
k−1[g2f2ψ] − 1

2μ

∫
ΩL,l

(
(∇g1)2 + (∇g2)2

)
|f1ψ|2, (A.10)
k−1
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where (∇gj)2 = 4
L2 (χ′

j(2|yl−1|/L))2 ≤ 4c
L2 . For L large enough, by Assumption 1.1(iii), 

we have hL,l
k−1[g2f2ψ] ≥ Ek−1‖g2f2ψ‖2

2. In the (l − 1)th component, the function g1f2ψ

is supported in the parallelogram (zl−1, yl−1) ∈ (L/2δ, L/δ) × (−L/2, L/2) and satisfies 
Dirichlet boundary conditions at |yl−1| = L/2 and zl−1 = L/2δ. We extend the function 
g1f2ψ by zero to yl−1 ∈ R. Then we define ι2(g1f2ψ) on ΩL,l−1

k−2 × (L/2δ, L/δ) as

ι2(g1f2ψ)(z1 . . . , ẑl−1, . . . zk−1, y, x)

= g1f2ψ(z1, . . . , zl−2, x, zl, . . . , zk−1, y1, . . . , yl−2, yk, yl−1, . . . , yk−1, yk+1, . . . yd).
(A.11)

Observe that hL,l
k−1 now can effectively be decomposed into hL,l−1

k−2 plus a Laplacian in 
the x-direction

hL,l
k−1[g1f2ψ]
‖g1f2ψ‖2

2
=

(hL,l−1
k−2 ⊗ I + I ⊗ q)[ι2(g1f2ψ)]

‖ι2(g1f2ψ)‖2
2

, (A.12)

where q is defined on H1((L/2δ, L/δ)) through

q[ϕ] =
L/δ∫

L/2δ

1
2M |ϕ′(x)|2dx. (A.13)

Since inf σ(HL,l−1
k−2 ⊗ I − 1

2M I ⊗ Δx) ≥ inf σ(HL,l−1
k−2 ), we obtain

hL,l
k−1[g1f2ψ]
‖g1f2ψ‖2

2
≥ inf σ(HL,l−1

k−2 ). (A.14)

Combining all the estimates, we obtain that for large L and all ψ ∈ H1(ΩL,l
k−1)

hL,l
k−1[ψ]
‖ψ‖2 ≥ min{inf σ(HL,l−1

k−1 ), inf σ(HL,l−1
k−2 ), Ek−1} − δ2c

ML2 − 4c
μL2 . (A.15)

Taking L → ∞ the claim now follows from the induction hypothesis.

A.3. Technical details

By mirroring along the xa
j = 0 and xb

j = 0 hyperplanes, we can relate Hk to an 

operator H̃k defined in L2(Rd+k).

Proposition A.1. Let H̃k be the operator defined by the quadratic form
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h̃k[ψ] =
∫

Rd+k

(
1

2ma
|∇xaψ|2 + 1

2mb
|∇xbψ|2 + 1

2μ |∇ỹψ|2

+ V ((|xa
j | − |xb

j |)kj=1, ỹ)|ψ|2
)

dxadxbdỹ (A.16)

with domain D[h̃k] = H1(Rd+k). Then inf σ(Hk) = inf σ(H̃k) and inf σess(Hk) =
inf σess(H̃k). Moreover, the function ψk is a ground state of Hk if and only if the function

ψ̃k(xa, xb, ỹ) = ψk((|xa
j |)kj=1, (|xb

j |)kj=1, ỹ) (A.17)

is a ground state of H̃k.

Proof. The operator H̃k commutes with all reflections along the xa
j = 0 or xb

j = 0
hyperplanes. Reflections along different hyperplanes commute as well. Therefore, the 
Hilbert space H = L2(Rd+k) splits into subspaces H =

⊕
r Hr characterized by the 

eigenvalues ±1 of these reflections. We can write H̃k =
⊕

r H̃
r
k , where H̃r

k is the re-
striction of H̃k to Hr. For the spectrum, we obtain inf σ(H̃k) = minr inf σ(H̃r

k) and 
inf σess(H̃k) = minr inf σess(H̃r

k).
The subspace that is symmetric under all reflections corresponds to Neumann bound-

ary conditions on [0, ∞)2k ×Rd−k. The other subspaces Hr are antisymmetric under at 
least one reflection, so they have Dirichlet boundary conditions along the corresponding 
hyperplane. Thus, the domains of the quadratic forms for H̃r

k satisfy D[hr
k] ⊂ D[hsym

k ]. By 
the min-max principle, En(H̃r

k) ≥ En(H̃sym
k ). Therefore, both inf σ(H̃k) = inf σ(H̃sym

k )
and inf σess(H̃k) = inf σess(Hsym

k ).
Note that the map U : L2([0, ∞)2k × Rd−k) → L2

sym(Rd+k) that maps ψ to 

ψ̃(xa, xb, ỹ) = 1
2kψ((|xa

j |)j , (|xb
j |)j , ỹ) is unitary. Since H̃sym

k = UHkU
−1, the operators 

are unitarily equivalent and σ(H̃sym
k ) = σ(Hk). �

The next lemma follows from the Sobolev inequality, see e.g. Sections 8.8 and 11.3 in 
[10].

Lemma A.2. Let Ω ⊂ Rd be a domain satisfying the cone property (as defined in [10]) 
with radius R and opening angle θ. Let V satisfy Assumption 1.1(i). Then, for any 
0 < a < 1 there is a constant b ∈ R (depending only on d, R, θ, V and a) such that∫

Ω

|V ||f |2 ≤ a‖∇f‖2
L2(Ω) + b‖f‖2

L2(Ω), (A.18)

for all f ∈ H1(Ω).

Proposition A.3. Let 0 ≤ k ≤ d. Assumption 1.1(i) implies that in the quadratic form hk

in (1.4) the interaction term is infinitesimally form bounded with respect to the kinetic 
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energy. By the KLMN theorem, there is a unique self-adjoint operator Hk corresponding 
to hk, and both hk and Hk are bounded from below.

Proof. The quadratic form qk : H1([0, ∞)2k ×Rd−k) → R given by

qk[ψ] =
∫

[0,∞)2k×Rd−k

(
1

2ma
|∇xaψ|2 + 1

2mb
|∇xbψ|2 + 1

2μ |∇yψ|2
)

dxadxbdỹ (A.19)

is closed and bounded from below. In order to apply the KLMN theorem, we need to 
show that there are constants a < 1, b ∈ R such that for all ψ ∈ H1([0, ∞)2k ×Rd−k)

K[ψ] :=

∣∣∣∣∣∣∣
∫

[0,∞)2k×Rd−k

V (xa − xb, ỹ)|ψ|2dxadxbdỹ

∣∣∣∣∣∣∣ ≤ aqk[ψ] + b‖ψ‖2
2. (A.20)

Let ψ ∈ H1([0, ∞)2k × Rd−k) and define ψ̃(xa, xb, ỹ) = 1
2kψ((|xa

j |)j , (|xb
j |)j , ỹ) for 

(xa, xb, ỹ) ∈ Rk ×Rk ×Rd−k. We have ‖ψ̃‖2
2 = ‖ψ‖2

2 and ‖∇ψ̃‖2
2 = ‖∇ψ‖2

2. Moreover, ψ
and 2kψ̃ agree on [0, ∞)2k ×Rd−k. Hence,

K[ψ] ≤ 4k
∫

[0,∞)2k×Rd−k

|V (xa − xb, ỹ)||ψ̃(xa, xb, ỹ)|2dxadxbdỹ. (A.21)

Since the integrand is nonnegative, extending the domain of integration from [0, ∞)2k ×
Rd−k to R2k ×Rd−k gives the upper bound

K[ψ] ≤ 4k
∫

R2k×Rd−k

|V (xa − xb, ỹ)||ψ̃(xa, xb, ỹ)|2dxadxbdỹ

= 4k
∫

Rk×Rd

|V (y)||ψ̃(w + (y1, ..., yk)/2, w − (y1, ..., yk)/2, ỹ)|2dwdy, (A.22)

where we changed to coordinates w = xa+xb

2 and y. For almost every w ∈ Rk, the 
function f(y) = ψ̃(w + (y1, ..., yk)/2, w − (y1, ..., yk)/2, ỹ) lies in H1(Rd) by Fubini’s 
theorem. By Lemma A.2, for any 0 < ã there is a constant b independent of f such that ∫
Rd |V ||f |2 ≤ ã‖∇f‖2

2 + b‖f‖2
2. Integrating over w then gives

K[ψ] ≤ 4k

⎛⎜⎝ã ∫
Rk×Rd

∣∣∣∇yψ̃(w + (y1, ..., yk)/2, w − (y1, ..., yk)/2, ỹ)
∣∣∣2 dwdy + b‖ψ̃‖2

2

⎞⎟⎠ .

(A.23)
For 1 ≤ j ≤ k,
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∣∣∣∂yj
ψ̃(w + (y1, ..., yk)/2, w − (y1, ..., yk)/2, ỹ)

∣∣∣2
= 1

4

∣∣∣∂xa
j
ψ̃ − ∂xb

j
ψ̃
∣∣∣2 ≤ 1

2

(∣∣∣∂xa
j
ψ̃
∣∣∣2 +
∣∣∣∂xb

j
ψ̃
∣∣∣2) . (A.24)

Therefore,

K[ψ] ≤ 4k
(
ã‖∇ψ̃‖2

2 + b‖ψ̃‖2
2

)
= 4kã‖∇ψ‖2

2 + 4kb‖ψ‖2
2. (A.25)

For any 0 < a < 1, pick ã = 2−2k−1 min (m−1
a ,m−1

b )a to obtain K[ψ] ≤ aqk[ψ] +
4kb‖ψ‖2

2. �
Lemma A.4. The quadratic forms defined in the proof of Proposition 2.1 in Eqs. (2.13)
and (2.16) correspond to unique self-adjoint operators.

Proof. In all cases we prove that the potential term in the quadratic form is infinitesi-
mally bounded with respect to the kinetic energy term. The claim then follows from the 
KLMN theorem.

Let us begin with the quadratic form hl,L
k−1 in (2.16). The idea is to use the same 

mirroring argument as in Proposition A.3 for the coordinate components from l + 1 to 
k. In the first l− 1 components, we extend the triangular domain in Fig. 1 via a suitable 
mirroring, in order to be able to apply Lemma A.2. To be precise, we define the map φ
taking (0, L/δ) ×

(
−ML

mbδ
, ML
maδ

)
to the triangular domain {(z, y) ∈ (0, L/δ) ×R| − M

mb
z <

y < M
ma

z} as

φ(z, y) = (z, y) if xa = z + mb

M
y ≥ 0 and xb = z − ma

M
y ≥ 0,

(A.26)

φ(z, y) =
(
ma

M
y,

M

ma
z

)
if xb ≤ 0, (A.27)

φ(z, y) =
(
mb

M
y,

M

mb
z

)
if xa ≤ 0. (A.28)

Let us use the notation φ = (φ1, φ2). Note that for a function f defined on the triangular 
domain, we have

‖f ◦ φ‖2
2 = 2‖f‖2

2, (A.29)

where one contribution of ‖f‖2
2 comes from the triangular domain, and the second ‖f‖2

2
is the sum of the contributions with xb < 0 and xa < 0. In the region with xb < 0 we 
have
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ML
maδ∫
0

dy

may
M∫

0

dz|f(φ(z, y))|2 =

ML
maδ∫
0

dy

may
M∫

0

dz|f(may/M,Mz/ma)|2

=
L/δ∫
0

dz̃

Mz̃
ma∫
0

dỹ|f(z̃, ỹ)|2, (A.30)

where we substituted z̃ = may/M and ỹ = Mz/ma. Similarly, for xa < 0

0∫
− ML

mbδ

dy

mby

M∫
0

dz|f(φ(z, y))|2 =
L/δ∫
0

dz̃
0∫

−Mz̃
mb

dỹ|f(z̃, ỹ)|2. (A.31)

Moreover, if f ∈ H1, then f ◦ φ ∈ H1 by the Lipschitz continuity of φ.
Let us work in center of mass and relative coordinates in the first l components, and 

with the xa and xb coordinates in components l + 1 to k. The kinetic part of hl,L
k−1 is 

then

ql,Lk−1[ψ] :=
∫

Ωl,L
k−1

⎡⎢⎣ l−1∑
j=1

(
1

2M |∇zjψ|2 + 1
2μ |∇yj

ψ|2
)

+ 1
2μ |∇yl

ψ|2 +
k∑

j=l+1

(
1

2ma
|∇xa

j
ψ|2

+ 1
2mb

|∇xb
j
ψ|2
)

+ 1
2μ |∇ỹψ|2

⎤⎥⎦dz1 . . .dzl−1dxa
l+1 . . .dxa

kdy1 . . .dyldxb
l+1 . . .dxb

kdỹ.

(A.32)

For ψ ∈ H1(Ωl,L
k−1) define ψ̃ on

Ω̃l,L
k−1 :=

{
(z1, . . . zl−1, x

a
l+1, . . . x

a
k, y1, . . . , yl, x

b
l+1, . . . x

b
k, ỹ)|∀j < l : zj ∈ (0, L/δ),

yj ∈
(
−ML

mbδ
,
ML

maδ

)
, yl ∈ (−L,L),∀l < j ≤ k : xa

j ∈ R, xb
j ∈ R, ỹ ∈ Rd−k

}
(A.33)

as

ψ̃(z, y) = 1
2(l−1)/2

1
2k−l

ψ
(
(φ1(zj , yj))l−1

j=1, (|xa
j |)kj=l+1, (φ2(zj , yj))l−1

j=1, yl, (|xb
j |)kj=l+1, ỹ

)
.

(A.34)

By (A.29) we have ‖ψ̃‖2
2 = ‖ψ‖2

2. Furthermore, ‖∇ψ̃‖2
2 ≤
(

M2
2 + 1

)l−1
‖∇ψ‖2

2.
min{ma,mb}
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Analogously to (A.21)-(A.22) we obtain

K[ψ] :=

∣∣∣∣∣
∫

Ωl,L
k−1

V (y1, . . . yl, x
a
l+1 − xb

l+1, . . . x
a
k − xb

k, ỹ)|ψ|2

× dz1 . . .dzl−1dxa
l+1 . . .dxa

kdy1 . . .dyldxb
l+1 . . .dxb

kdỹ

∣∣∣∣∣
≤ 2l−14k−l

∫
Ω̃l,L

k−1

|V (y)||ψ̃(z1, ...zl−1, (wj + yj
2 )kj=l+1, y1, ..., yl, (wj −

yj
2 )kj=l+1, ỹ)|2

× dz1 . . .dzl−1dwl+1 . . .dwkdy, (A.35)

where we changed the coordinates xa
j , x

b
j to wj = xa+xb

2 and yj . Let Dy =
(
−ML

mbδ
, ML
maδ

)l−1

× (−L, L) ×Rd−k. For almost every (z1, . . . zl−1, wl+1, . . . wk) ∈ (0, L/δ)l−1 ×Rk−l, the 
function f(y) = ψ̃(z1, ...zl−1, (wj + yj

2 )kj=l+1, y1, ..., yl, (wj − yj

2 )kj=l+1, ỹ) lies in H1 (Dy)
by Fubini’s theorem. Applying Lemma A.2 with Ω = Dy and integrating over z and w
one obtains

K[ψ] ≤ 2l−14k−la

∫
Ω̃l,L

k−1

∣∣∣∇yψ̃(z1, ...zl−1, (wj + yj
2 )kj=l+1, y1, ..., yl, (wj −

yj
2 )kj=l+1, ỹ)

∣∣∣2
× dz1 . . .dzl−1dwl+1 . . .dwkdy + 2l−14k−lb‖ψ̃‖2

2 (A.36)

for any a > 0 and a suitable constant b. As in (A.24) we have

K[ψ] ≤ 2l−14k−l
(
a‖∇ψ̃‖2

2 + b‖ψ̃‖2
2

)
≤ 2l−14k−l

(
M2

min{ma,mb}2 + 1
)l−1

a‖∇ψ‖2
2 + 2l−14k−lb‖ψ‖2

2. (A.37)

Since a can be arbitrarily small, the interaction term is infinitesimally bounded w.r.t. 
ql,Lk−1.

Let us now consider the quadratic form al in (2.13). For l = k + 2, the potential term 
is bounded from below since |y| > L, and is hence infinitesimally bounded w.r.t. the
kinetic energy.

The kinetic part of al is

ql[ψ] :=
∫ ⎡⎢⎣ l∑

j=1

(
1

2M |∇zjψ|2 + 1
2μ |∇yj

ψ|2
)

+
k∑

j=l+1

(
1

2ma
|∇xa

j
ψ|2 + 1

2mb
|∇xb

j
ψ|2
)

Ωl



34 B. Roos, R. Seiringer / Journal of Functional Analysis 282 (2022) 109455
+ 1
2μ |∇ỹψ|2

⎤⎥⎦dz1 . . .dzldxa
l+1 . . .dxa

kdy1 . . .dyldxb
l+1 . . .dxb

kdỹ. (A.38)

First, we consider 1 ≤ l ≤ k. Then, al is closely related to hl,L
k−1 through (2.17). Let 

ψ ∈ H1(Ωl). For every zl ∈ (L/δ, ∞), the function ψ(·, . . . , zl, . . . , ·) belongs to H1(Ωl,L
k−1). 

In (A.35)-(A.37), we saw that for any a > 0 there is a constant b such that

∫
Ωl,L

k−1

|V (y)| |ψ(z, y)|2dydz1 . . . d̂zl . . .dzk

≤ aql,Lk−1[ψ(·, zl, ·)] + b

∫
|ψ(z, y)|2dydz1 . . . d̂zl . . .dzk. (A.39)

Integrating the inequality over zl, we obtain

∫
Ωl

|V (y)||ψ(z, y)|2dydz ≤ a

∞∫
L/δ

ql,Lk−1[ψ(·, zl, ·)]dzl + b‖ψ‖2
2 ≤ aql[ψ] + b‖ψ‖2

2. (A.40)

Hence, the potential term is infinitesimally bounded w.r.t. ql.
For l = k + 1, we use the map φ in the first k components. For ψ ∈ H1(Ωk+1) define 

ψ̃ on

Ω̃k+1 := (0, L/δ)k ×
(
−ML

mbδ
,
ML

maδ

)k

× (−L,L)d−k (A.41)

as

ψ̃(z, y) = 1
2k/2

ψ
(
(φ1(zj , yj))kj=1, (φ2(zj , yj))kj=1, ỹ

)
. (A.42)

By (A.29) we have ‖ψ̃‖2
2 = ‖ψ‖2

2. Furthermore, ‖∇ψ̃‖2
2 ≤
(

M2

min{ma,mb}2 + 1
)k

‖∇ψ‖2
2. 

Analogously to (A.21)-(A.22) we obtain

K[ψ] :=

∣∣∣∣∣∣∣
∫

Ωk+1

V (y)|ψ(z, y)|2dzdy

∣∣∣∣∣∣∣ ≤ 2k
∫

Ω̃k+1

|V (y)||ψ̃(z, y)|2dzdy. (A.43)

Let Dy =
(
−ML

mbδ
, ML
maδ

)k
× (−L, L)d−k. For almost every z ∈ (0, L/δ)k, the function 

f(y) = ψ̃(z, y) lies in H1 (Dy) by Fubini’s theorem. Applying Lemma A.2 with Ω = Dy

and integrating over z gives
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K[ψ] ≤ 2ka
∫

Ω̃k+1

∣∣∣∇yψ̃(z, y)
∣∣∣2 dzdy + 2kb‖ψ̃‖2

2 ≤ 2ka‖∇ψ̃‖2
2 + 2kb‖ψ̃‖2

2 (A.44)

for any a > 0 and a suitable constant b. Hence,

K[ψ] ≤ 2k
(

M2

min{ma,mb}2 + 1
)k

a‖∇ψ‖2
2 + 2kb‖ψ‖2

2. (A.45)

Since a can be arbitrarily close to zero, the interaction term is infinitesimally bounded 
w.r.t. qk+1. �
Lemma A.5. The quadratic forms defined in the proof of Theorem 1.4 in Eqs. (3.12), 
(3.18), (3.27), (3.33), (3.39), (3.46) and (3.51) correspond to unique self-adjoint oper-
ators.

Proof. The quadratic forms aj with j ∈ {1, 2, 4, 5} in Eqs. (3.12) and (3.33) and the 
forms a3,j for 1 ≤ j ≤ k in (3.27) have the form

aj [ϕ] =
∫
Ωj

(
1

2ma
|∇xaϕ|2 + 1

2mb
|∇xbϕ|2 + 1

2μ |∇ỹϕ|2

+
(
V (xa − xb, ỹ) + V∞(xa, xb, ỹ)

)
|ϕ|2
)

dxadxbdỹ (A.46)

for some bounded potential V∞. The quadratic form qj : H1(Ωj) → R given by

qj [ϕ] =
∫
Ωj

(
1

2ma
|∇xaϕ|2 + 1

2mb
|∇xbϕ|2 + 1

2μ |∇ỹϕ|2
)

dxadxbdỹ (A.47)

is closed and bounded from below. Using that ϕ ∈ D[aj ] vanishes outside Ωj and applying 
Proposition A.3, we obtain∣∣∣∣∣∣∣

∫
Ωj

V (xa − xb, ỹ) + V∞(xa, xb, ỹ)|ϕ|2

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
∫

Qk×Rd−k

V (y)|ϕ|2

∣∣∣∣∣∣∣+ ‖V∞‖∞‖ϕ‖2
2

≤ aqj [ϕ] + (b + ‖V∞‖∞)‖ϕ‖2
2 (A.48)

for some a < 1 and b ∈ R. By the KLMN theorem, there is a unique self-adjoint operator 
Aj corresponding to aj .

For â4 in (3.39), note that KR is bounded. Adapting the argument in Proposition A.3, 
we show that the interaction term is infinitesimally bounded with respect to the kinetic 
part q̂ : H1(((0, ∞)k−1 ×R)2 ×Rd−k) → R given by
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Fig. A.4. In the domain of ψ for 1 ≤ j ≤ k, the 
coordinates (xa

j , xb
j) lie in the hatched set. We 

have yj = xa
j − xb

j and wj =
xa

j
+xb

j

2 .

0

R

R

2wj

yj

xa
jxb

j

R

Fig. A.5. Mirroring ψ along xa
j = 0 and xb

j = 0
defines ψ̃. For 1 ≤ j ≤ k, the coordinates (xa

j , xb
j)

or equivalently (wj , yj) lie in the hatched set.

q̂[ϕ] =
∫
Ω̂4

(
1

2ma
|∇xaϕ|2 + 1

2mb
|∇xbϕ|2 + 1

2μ |∇ỹϕ|2
)

dxadxbdỹ. (A.49)

For ψ ∈ H1(Ω̂4), define ψ̃(xa, xb, ỹ) = 1
2k−1ψ((|xa

j |)k−1
j=1 , x

a
k, (|xb

j |)k−1
j=1 , x

b
k, ỹ) for (xa, xb, ỹ)

∈ Rk × Rk × Rd−k. We have ‖ψ̃‖2
2 = ‖ψ‖2

2 and ‖∇ψ̃‖2
2 = ‖∇ψ‖2

2. Following the same 
steps as in Proposition A.3 from (A.21)-(A.25) with this adapted choice of ψ̃, we obtain 
that for any 0 < a there is a b such that

K[ψ] :=

∣∣∣∣∣∣∣
∫
Ω̂4

V (xa − xb, ỹ)|ψ|2dxadxbdỹ

∣∣∣∣∣∣∣ ≤ 4k−1
(
a‖∇ψ̃‖2

2 + b‖ψ̃‖2
2

)

= 4k−1a‖∇ψ‖2
2 + 4kb‖ψ‖2

2. (A.50)

By the KLMN theorem, â4 corresponds to a self-adjoint operator. Since b1 in (3.46)
differs from â4 by a bounded term, it also corresponds to a self-adjoint operator. For b2
in (3.51) and a1,ext in (3.18), the potential is bounded. Thus, these forms also correspond 
to self-adjoint operators.

For a1,int in (3.18), we proceed similarly to Proposition A.3. Let ψ ∈ D[a1,int]. The 
domain of ψ is sketched in Fig. A.4. Mirroring the domain along the xa

j = 0 and xb
j =

0 hyperplanes, we obtain the set Ω̃ sketched in Fig. A.5. For (xa, xb, ỹ) ∈ Ω̃ define 
ψ̃(xa, xb, ỹ) = 1

2kψ((|xa
j |)j , (|xb

j |)j , ỹ). We have ‖ψ̃‖2
2 = ‖ψ‖2

2 and ‖∇ψ̃‖2
2 = ‖∇ψ‖2

2. 
Using the triangle inequality and enlarging the domain of integration to Ω̃, we have
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K[ψ] :=

∣∣∣∣∣∣∣
∫

Ω1,int

V (xa − xb, ỹ)|ψ(xa, xb, ỹ)|2dxadxbdỹ

∣∣∣∣∣∣∣
≤ 4k

∫
Ω̃

|V (xa − xb, ỹ)||ψ̃(xa, xb, ỹ)|2dxadxbdỹ. (A.51)

We change to coordinates w = xa+xb

2 and y. For every w ∈ Rk, the set

Ωw = { y ∈ Rd|(w + (y1, ..., yk)/2, w − (y1, ..., yk)/2, ỹ) ∈ Ω̃} (A.52)

is equal to I1 × ... × Ik × Rd−k, where each Ij ∈ {R, (−R, R)} (Fig. A.5). Thus, there 
is an angle θ and radius r such that all the sets Ωw satisfy the cone property with 
parameters θ, r. For almost every w ∈ Rk, the function f(y) = ψ̃(w + (y1, ..., yk)/2, w −
(y1, ..., yk)/2, ỹ) lies in H1(Ωw). By Lemma A.2, for any 0 < ã there is a constant b
independent of fw and w such that∫

Ωw

|V (y)||f(y)|2dy ≤ ã‖∇f‖2
2 + b‖f‖2

2. (A.53)

Integrating inequality (A.53) over w and using (A.24) gives∫
Ω̃

|V (xa − xb, ỹ)||ψ̃(xa, xb, ỹ)|2dxadxbdỹ ≤ ã‖∇yψ̃‖2 + b‖ψ̃‖2
2 ≤ ã‖∇ψ̃‖2 + b‖ψ̃‖2

2.

(A.54)

In total, we thus have

K[ψ] ≤ 4kã‖∇ψ‖2
2 + 4kb‖ψ‖2

2. (A.55)

For any 0 < a < 1, pick ã = 2−2k−1 min(m−1
a , m−1

b )a to obtain K[ψ] ≤ aq1,int[ψ] +
4kb‖ψ‖2

2. The KLMN theorem thus implies that there is a self-adjoint A1,int, which is 
bounded from below. �
Appendix B. Exponential decay of Schrödinger eigenfunctions (by Rupert L. Frank1)

It is a folklore theorem that eigenfunctions of Schrödinger operators corresponding to 
eigenvalues below the bottom of their essential spectrum decay exponentially. This was 
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raised to high art by Agmon [2] and others; see, for instance, the review [12]. It may be 
of interest to note that the most basic one of these bounds holds under rather minimal 
assumptions of the potential. This is what we record here.

Let V ∈ L1
loc(Rd) be real and set V± := max{±V, 0}. Given α ∈ [0, 1], we say that V−

is −Δ-form bounded with form bound α if there is a Cα < ∞ such that∫
Rd

V−|ψ|2 dx ≤ α

∫
Rd

|∇ψ|2 dx + Cα

∫
Rd

|ψ|2 dx for all ψ ∈ H1(Rd) .

In this case, we define a quadratic form h by

D[h] :=

⎧⎨⎩ψ ∈ H1(Rd) :
∫
Rd

V+|ψ|2 dx < ∞

⎫⎬⎭ ,

h[ψ] :=
∫
Rd

(
|∇ψ|2 + V |ψ|2

)
dx for ψ ∈ D[h] .

This quadratic form is lower semibounded in L2(Rd) and, if α < 1, closed. Thus, it 
corresponds to a selfadjoint, lower semibounded operator, which we denote by −Δ + V . 
We abbreviate

E∞ := inf σess(−Δ + V ) ∈ R ∪ {+∞}.

Theorem B.1. Assume that V+ ∈ L1
loc(Rd) and that V− is −Δ-form bounded with bound 

< 1. For every E′ < E∞ there is a constant CE′ < ∞ such that if E ≤ E′ and if 
ψ ∈ D(−Δ + V ) satisfies (−Δ + V )ψ = Eψ, then∫

Rd

e2
√
E′−E |x| (|∇ψ|2 + V+|ψ|2 + (E′ − E)|ψ|2

)
dx ≤ CE′ ‖ψ‖2 . (B.1)

We emphasize that E∞ may be equal to +∞, in which case E′ may be taken arbitrarily 
large. If E∞ < ∞, the decay exponent 

√
E′ −E can be any number <

√
E∞ − E.

Note that under the assumptions of the theorem, ψ is not necessarily bounded, so one 
cannot expect pointwise exponential decay bounds. The bounds in the theorem control 
the quantities that are natural from the definition of the operator in the form sense.

In order to prove Theorem B.1, we use a geometric characterization of the bottom of 
the essential spectrum due to Persson [11]. Let K ⊂ Rd be a compact set and define

E1(−Δ + V |Rd\K) = inf
{

h[ψ]
‖ψ‖2 : ψ ∈ D[h], ψ ≡ 0 on K

}
.

Clearly, E1(−Δ + V |Rd\K) is nondecreasing in K and therefore its supremum over all 
compact K ⊂ Rd exists in R ∪ {+∞}.



B. Roos, R. Seiringer / Journal of Functional Analysis 282 (2022) 109455 39
Theorem B.2. Assume that V+ ∈ L1
loc(Rd) and that V− is −Δ-form bounded with bound 

< 1. Then

E∞ = sup
K⊂Rd compact

E1(−Δ + V |Rd\K) .

We first assume Theorem B.2 and show how it implies Theorem B.1. Then we will 
provide a proof of Theorem B.2 under our assumptions on V .

Proof of Theorem B.1. Fix E∞ > E′′ > E′. By Theorem B.2, there is an R′ > 0 such 
that

h[u] ≥ E′′‖u‖2

for all u ∈ D[h] with u ≡ 0 in BR′/2. Next, for an R > 0 to be specified, we choose two 
smooth, real-valued functions χ< and χ> on Rd such that

suppχ< ⊂ B2R and suppχ> ⊂ Rd \BR (B.2)

and such that χ2
< + χ2

> ≡ 1 on Rd. By scaling an R-independent quadratic partition of 
unity, we may assume that

|∇χ<|2 + |∇χ>|2 ≤ CR−2 (B.3)

with a constant C independent of R. By increasing R′ if necessary, we can make sure 
that C(R′)−2 ≤ (E′′ − E′)/2 =: ε with C from (B.3). Let f : Rd → R be a bounded 
Lipschitz function and take ϕ = e2fψ ∈ D[h] as a trial function in the quadratic form 
version of the equation (−Δ + V )ψ = Eψ to obtain, after an integration by parts,

E

∫
Rd

e2f |ψ|2 dx =
∫
Rd

(
|∇(efψ)|2 + (V − |∇f |2)|efψ|2

)
dx . (B.4)

Thus, in view of the IMS formula (see, e.g., [5, Theorem 3.2]),

E

∫
Rd

|efχ<ψ|2 dx + E

∫
Rd

|efχ>ψ|2 dx =
∫
Rd

(
|∇(efχ<ψ)|2 + Ṽ |efχ<ψ|2

)
dx

+
∫
Rd

(
|∇(efχ>ψ)|2 + Ṽ |efχ>ψ|2

)
dx

with Ṽ := V − |∇f |2 − |∇χ<|2 − |∇χ>|2. For R ≥ R′ we bound the terms on the right 
side from below by
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∫
Rd

(
|∇(efχ<ψ)|2 + Ṽ |efχ<ψ|2

)
dx ≥

(
E1 − ‖∇f‖2

∞ − ε
) ∫
Rd

|efχ<ψ|2 dx

with E1 := inf σ(−Δ + V ), and∫
Rd

(
|∇(efχ>ψ)|2 + Ṽ |efχ>ψ|2

)
dx ≥

(
E′′ − ‖∇f‖2

∞ − ε
) ∫
Rd

|efχ>ψ|2 dx .

Thus,

(
E′′ − E − ‖∇f‖2

∞ − ε
) ∫
Rd

|efχ>ψ|2 dx ≤
(
E −E1 + ‖∇f‖2

∞ + ε
) ∫
Rd

|efχ<ψ|2 dx ,

and therefore(
E′′ −E − ‖∇f‖2

∞ − ε
) ∫
Rd

|efψ|2 dx ≤ (E′′ − E1)
∫
Rd

|efχ<ψ|2 dx

≤ (E′′ − E1) ‖ψ‖2 sup
BR

e2f .

Ideally, we would want to choose f(x) = κ|x| with κ as large as possible. The wish to 
have a positive constant (ε, say) in front of the integral on the left side then dictates our 
choice κ =

√
E′′ − E − 2ε =

√
E′ − E. The problem with this ‘ideal’ choice of f is that 

the function |x| is Lipschitz, but not bounded. We remedy this by taking |x|/(1 + δ|x|)
instead and proving bounds which are uniform in the parameter δ > 0, which we will let 
tend to zero at the end. Thus, let us choose

f(x) :=
√
E′ − E

|x|
1 + δ|x|

with a (small) parameter δ > 0. This is a Lipschitz function satisfying ‖∇f‖∞ =√
E′ −E. Thus, the previous inequality with R = R′ becomes

ε

∫
Rd

|efψ|2 dx ≤ (E′′ − E1) ‖ψ‖2 e2R′√E′−E .

Since the right side is independent of δ, we can take the limit δ → 0 and obtain by 
monotone convergence

ε

∫
Rd

|e
√
E′−E|x|ψ|2 dx ≤ (E′′ −E1) ‖ψ‖2 e2R′√E′−E .

This is already one of the inequalities claimed in the theorem.
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To prove boundedness of the terms involving the gradient term and V+ we recall that, 
by form boundedness,

h[efψ] ≥ (1 − α)
∫
Rd

|∇(efψ)|2 dx +
∫
Rd

V+|efψ|2 dx− Cα

∫
Rd

|efψ|2 dx .

This, together with identity (B.4), implies

(
E + ‖∇f‖2

∞ + Cα

) ∫
Rd

|efψ|2 dx ≥ (1 − α)
∫
Rd

|∇(efψ)|2 dx +
∫
Rd

V+|efψ|2 dx .

Using

|∇(efψ)|2 = e2f |∇ψ + ψ∇f |2 = e2f (|∇ψ|2 + 2 Reψ∇ψ · ∇f + |ψ|2|∇f |2
)

≥ e2f
(

1
2 |∇ψ|2 − |ψ|2|∇f |2

)
,

we obtain

(
E + (2 − α)‖∇f‖2

∞ + Cα

) ∫
Rd

|efψ|2 dx ≥ 1 − α

2

∫
Rd

|ef∇ψ|2 dx +
∫
Rd

V+|efψ|2 dx .

Since we have already shown an upper bound on the left side, this completes the proof 
of the theorem. �

Thus, we are left with proving Theorem B.2. We use the following abstract charac-
terization of the essential spectrum.

Lemma B.3. Let a be a lower semibounded, closed quadratic form in a Hilbert space and 
A the corresponding self-adjoint operator. Then

inf σess(A) = inf
{

lim inf
j→∞

a[ξj ] : ξj ⇀ 0 , ‖ψj‖ = 1
}

(with the convention that inf ∅ = +∞). Moreover, if both sides are finite, then there is a 
sequence (ξj) with ‖ξj‖ = 1, a[ξj ] → inf σess(A) and ξj ⇀ 0 in D[a].

This lemma is classical. The proof in [8, Lemma 1.20] shows the first assertion and, 
in the case of finiteness, the existence of a normalized sequence with a[ξj ] → inf σess(A)
and ξj ⇀ 0. Since this sequence is bounded in D[a], a subsequence converges weakly in 
D[a] and, since D[a] is continuously embedded into the Hilbert space, the weak limit is 
necessarily zero, as claimed.
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Proof of Theorem B.2. We abbreviate E′
∞ := supK compact E1(−Δ + V |Rd\K).

We begin by proving E∞ ≥ E′
∞. We may assume that E∞ < ∞ and we shall show 

that for all R > 0,

E1(−Δ + V |Bc
R
) ≤ E∞ , (B.5)

for then the claimed inequality follows as R → ∞. Fix R > 0 and let χ< and χ> be as in 
the proof of Theorem B.1. By Lemma B.3, there is a sequence (ξj) ⊂ D[h] with ‖ξj‖ = 1
such that ξj ⇀ 0 in D[h] and h[ξj ] → E∞. Then

E1(−Δ + V |Bc
R
) ≤ h

[
χ>ξj

‖χ>ξj‖

]
(B.6)

and our goal is to estimate the right side as j → ∞.
By Rellich’s compactness theorem, ξj → 0 in L2

loc(Rd), so χ<ξj → 0 in L2(Rd) and

‖χ>ξj‖2 = ‖ξj‖2 − ‖χ<ξj‖2 → 1 as j → ∞ . (B.7)

Moreover, by the IMS formula,

h [χ>ξj ] = h [ξj ] − h [χ<ξj ] +
∥∥∥(|∇χ<|2 + |∇χ>|2

)1/2
ξj

∥∥∥2 . (B.8)

The last term vanishes as j → ∞ again by Rellich’s theorem. Moreover,

h [χ<ξj ] ≥ E1‖χ<ξj‖2

and therefore

lim inf
j→∞

h [χ<ξj ] ≥ lim inf
j→∞

E1‖χ<ξj‖2 = 0 .

Putting this into (B.8), we learn that

lim sup
j→∞

h [χ>ξj ] ≤ lim sup
j→∞

h [ξj ] = E∞ .

This, together with (B.6) and (B.7), yields (B.5).
We now prove the converse inequality E∞ ≤ E′

∞. Let (Rj) ⊂ (0, ∞) be a sequence 
with Rj → ∞ and let (ψj) ⊂ D[h] be a sequence with ‖ψj‖ = 1, ψj ≡ 0 in {|x| < Rj}
and h[ψj ] −E1(−Δ +V |Bc

Rj
) → 0. The support condition implies that ψj ⇀ 0 in L2(Rd)

and therefore, by Lemma B.3,

E∞ ≤ lim inf
j→∞

h[ψj ] = lim inf
j→∞

E1(−Δ + V |Bc
Rj

) ≤ E′
∞ ,

which proves the theorem. �
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