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Abstract
Mathematical models often aim to describe a complicated mechanism in a cohesive and
simple manner. However, reaching perfect balance between being simple enough or overly
simplistic is a challenging task. Frequently, game-theoretic models have an underlying
assumption that players, whenever they choose to execute a specific action, do so perfectly.
In fact, it is rare that action execution perfectly coincides with intentions of individuals, giv-
ing rise to behavioural mistakes. The concept of incompetence of players was suggested to
address this issue in game-theoretic settings. Under the assumption of incompetence, players
have non-zero probabilities of executing a different strategy from the one they chose, leading
to stochastic outcomes of the interactions. In this article, we survey results related to the
concept of incompetence in classic as well as evolutionary game theory and provide several
new results. We also suggest future extensions of the model and argue why it is important to
take into account behavioural mistakes when analysing interactions among players in both
economic and biological settings.
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1 Introduction

In classical non-cooperative games, the payoffs (or outcomes) are determined directly by the
players’ choice of strategies. In reality, however, a player may not be capable of executing
his or her chosen strategy due to a lack of skill that we shall refer to as incompetence.

In this paper, we survey a relatively recent line of research that is predicated on the
assumption that player incompetence is a real and ubiquitous phenomenon that deserves
deeper investigation. In the process, we also present a few recent results which, to the best of
our knowledge, have not been reported elsewhere. Since we regard the topic of incompetent
games as still being in its infancy, the main objective of this paper is to stimulate further
research on this subject.

Naturally, players’ incompetence inherently complicates a game. To prevent the added
complexity from becoming unmanageable, we must impose some assumptions on the infor-
mation domain and the structural form via which incompetence manifests itself. In the
development so far, the following key conceptual assumption has been imposed:

[A1] Incompetencemanifests itself as a set of probability distributions on sets of actions
available to one or more players.

While [A1] is restrictive in some ways, it allows us to recover a classical competent game as
a special case of an incompetent game. Namely, a game where all of the above incompetence
distributions are degenerate and execute the selected actions with certainty.

This immediately raises the possibility of parametrising the level of competence or, equiv-
alently, level of skill of a player by the ‘proximity’ to such a, fully competent, degenerate
distribution. It also opens up the possibility of players ‘learning’ by reducing their levels
of incompetence (equivalently, increasing their skill). We note that this kind of learning is
essentially different from both the discovery statistical learning and the imitation machine
learning.

To date, the topic of incompetent games has evolved along two distinct, but conceptually
related, directions. The first of these is the study of classical non-cooperative games under the
assumption that at least one player is incompetent. The second is the study of evolutionary
incompetent games.

In the case of classical games under incompetence, existing analyses assumed that all
probability distribution capturing incompetence are mutually known by all players. This is
plausible in the case of players who are familiar with others’ past performance (e.g. tennis
players on the international tour circuit). However, there is certainly scope for relaxing that
assumption. Such relaxations may give rise to interesting repeated versions of these games
and the natural trade-off between the so-called problem of “exploration versus exploitation".

The preceding “mutually known" assumption is not explicitly needed in the evolutionary
incompetent games. It is also conceptually challenging to ascribe consciousness of such
distributions to individual animals or bacteria.Nonetheless,within the evolutionary paradigm,
it is reasonable to assume that the emerging equilibrium frequencies of species types have
incorporated the mutual incompetence uncertainties in their adaptation to the ecosystem.
The uncertainties stemming from the incompetence are thus simply built into the replicator
dynamics of the game.

This review paper is structured as follows. We introduce incompetence first in classical
non-cooperative games and then in evolutionary games. In Sect. 2, specifically in Sects. 2.1-
2.4, we provide an overview of the formal definitions and results on games with incompetent
players in classical settings. Then, in Sect. 2.5 we introduce a new concept of incremental
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learning in the games with incompetent players and derive some of its properties. In Sect. 3,
we define evolutionary games with incompetence and provide an overview of results on these
games. Additionally, we provide a rationale for the importance of considering these games
in biological settings. We conclude by suggesting possible directions for future extensions
of games with incompetence.

1.1 Incompetent Classical Non-cooperative Games

Chronologically, Beck and Filar [10] introduced incompetence to matrix games and Beck
et al. [9] introduced incompetence to bimatrix games. Essentially, by quantifying a player’s
tendency to accidentally deviate from their selected actions, these authors represent incompe-
tence as stochastic matrices that can be used to account for these deviations. The application
of incompetent classical games to military planning is discussed in [8] and [7].

We note that the notion of incompetence introduced here is superficially similar to several
concepts used to measure the sensitivity of equilibria to changes in a game’s parameters.
For example, Selten [63] imagines players having “trembling hands” that cause them to
accidentally execute unintended actions with negligible probability. This is used to refine the
equilibrium solution concept in extensive-form games by defining trembling hand perfect
equilibria. However, unlike the notion of incompetence, a trembling hand is not intended to
model players making mistakes with arbitrary or even prescribed probabilities (e.g. a tennis
player who routinely places a ‘passing shot’ in the opponent’s hitting zone).

While the concepts and some of the results are generalisable to N -person non-cooperative
games, the setting of classic two-player games—meaning matrix and bimatrix games—is a
natural starting point for the introduction of incompetence to game-theoretic models. Larkey
et al. [45], when discussing the game “Sum Poker”, observe that there are several cognitive
and physical limitations that might prevent a player from finding or implementing optimal
strategies. Then, seeking to classify the specific difficulties a player encounters, they propose
a typology of skills consisting of:

– Strategic Skill, the ability to select which games should be played,
– Planning Skill, the ability to develop a desirable strategy within a game, and
– Execution Skill, the ability to execute desired actions throughout a game.

AlthoughLarkey et al. [45] apply this typology to experimentally compare different strategies
in “Sum Poker” under different skill limitations, a precise mathematical formulation of skill
is not provided. The notion of incompetence mainly addresses the issue of execution skill as
it quantifies accidental (ipso facto, unintended) deviations from a player’s chosen strategy.

The concept of incompetence is a useful modelling tool in traditional game-theoretic
settings because it captures a player’s inability to precisely control the outcome of their
actions. Necessarily, real-world strategic interactions are often complicated and a player’s
intentions might not be perfectly realised due to noise from their environment. For instance,
a tennis player is unable to control the exact trajectory of a shot and might sometimes make
consequential mistakes. Similarly, in the economic context, it is conceivable that a firm in
the classic Cournot oligopoly model is unable to guarantee the quantity of goods produced,
perhaps due to sporadic errors occurring during production. The latter may reflect flaws in
the firm’s quality control regime which in itself is related to its level of competence1. The
players in these situations must accept some degree of variability in the outcomes of their
actions and incompetence is a method capable of accounting for this variability.

1 Arguably, the famous “Toyota Production System (TPS)" could be seen as that firm’s highly successful
effort to reduce its level of incompetence.
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In this paper, in the context of classical games, wewill review the introduction of incompe-
tence and present several related, unpublished, results. Moreover, we will discuss and solve
a simple model for incrementally learning to decrease incompetence during a repeatedly-
played incompetent matrix game.

1.2 Incompetent Evolutionary Games

Game theory applied to populations of species has branched out from non-cooperative game
theory and evolved into an independent field called evolutionary game theory [28,56,68].
The setup of evolutionary games differs from the classical games in the very basic assump-
tion rationality of players. Obviously, one cannot expect rational behaviour from individual
bacteria or lions. However, the selection strength still acts rationally, which follows from
the classic prediction that the fittest survives [69]. Hence, in evolutionary games players, or
animals, do not make conscious choice of strategies to play as humans in economic settings.
Instead, individuals are born with a strategy predefined by their parents. The competition
then happens at a genetic level, which encodes the strategy. Incidentally, the question of
how cooperation evolves in biology is still open and, possibly, related to the coexistence of
different strategies at equilibrium. We note that in a recent paper [2] thermodynamics was
invoked to shed light on cooperation in evolutionary games.

The concept of incompetence was considered in biological settings when studying the
evolution of social behaviour [36–40]. That is, incompetence now acts at the selection level
rather than organisms themselves. Then, incompetence can be seen as behavioural plasticity
leading to mixed strategies executed at a genetic level. As a result, we do not require
organisms to be aware of probability distributions of all genes as well as their mistakes.
Instead, selection forces act upon these distributions driving the competition among types.
Such plasticity can be of variable degree, depending on the environmental conditions and
adaptations of organisms. The latter will correspond to the level of incompetence discussed
above.

Naturally, the idea of behavioural plasticity or stochasticity is not novel in the field
of evolutionary games and recently became one of the foci in the field. There are many
approaches considered in biological settings such as genetic mutations [12,57,70,72], learn-
ing processes [23,29,41,42,51,57,64], adaptation dynamics [47], phenotypic plasticity [15],
noise in continuous and discrete-time replicator dynamics [4,6,19,22] and environmental
fluctuations [75,81]. Thus, the notion of incompetence of players merely fills a new niche
where behavioural stochasticity is only induced at the moment of interactions.

Let us demonstrate this concept on a well-studied example of a Hawk-Dove game [67].
Imagine that individuals in a well-mixed large population compete for some resource. Two
behavioural strategies are available in a population: a Hawk (aggressive) strategy and a
Dove (passive) strategy. That is, Hawks fight for the resource, while Doves prefer to share
equally and flee when attacked. This game has a payoff matrix of the same structure as a
Chicken or Snowdrift games.As in these classical examples, in an equilibrium, both strategies
stably coexist. The game can be illustrated as an interaction between a naturally aggressive
person and a naturally passive one. Of course, a counter-attack in response to aggression is
not something one naturally expects from a passive person. However, behavioural plasticity
induced by incompetence can lead to situations when a passive player responses aggressively
or an aggressive player flees instead of fighting. While their strategies did not change as
such, the behaviour exhibited by individuals was altered. In [37], it was shown that such an
assumption may lead to different evolutionary outcomes and may change the way selection
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is realised. In this survey, we discuss these results and demonstrate them on an example of a
biological game.

2 Incompetence in Classical Non-cooperative Games

2.1 Games without Incompetence

An m × n bimatrix game Γ consists of a pair of action sets A = {1, 2, . . . ,m} and B =
{1, 2, . . . , n} and a pair of reward matrices R1 = (r1(i, j)) ∈ R

m×n and R2 = (r2(i, j)) ∈
R
m×n . Here, throughout this section only, we use non-standard notation for matrix entries to

accommodate additional symbols associated with incompetent games. After an action i ∈ A
is selected by Player 1 and an action j ∈ B is selected by Player 2, they receive rewards
according to the matrix entries r1(i, j) and r2(i, j), respectively. A (mixed) strategy extends
this behaviour to allow for randomised action selection. Specifically, Player 1 chooses a
strategy from the probability simplex

X :=
{
x = (xi )

m
i=1 ∈ R

m :
m∑
i=1

xi = 1 and xi ≥ 0,∀i = 1, 2, . . . ,m

}
(1)

over A and Player 2 chooses a strategy from the probability simplex

Y :=
{
y = (y j )

n
j=1 ∈ R

n :
n∑
j=1

y j = 1 and y j ≥ 0,∀ j = 1, 2, . . . , n

}
(2)

over B. The resulting strategy profile (x, y) ∈ X × Y yields an expected reward of

vk(x, y) := xRkyT (3)

to Player k ∈ {1, 2} where yT is the transpose of y. We want to find the (Nash) equilibria of
Γ , which capture the notion of a stable strategy profile. Precisely, (x∗, y∗) ∈ X × Y is an
equilibrium whenever it is resilient to unilateral deviations or, equivalently,

xR1(y∗)T ≤ x∗R1(y∗)T and x∗R2yT ≤ x∗R2(y∗)T (4)

for all x ∈ X and y ∈ Y. Nash [54], in a seminal contribution to game theory, proves that every
game with finitely-many players and actions has an equilibrium point. Vorob’ev [79] shows
that, in bimatrix games, the set of equilibria is the union of a finite collection of convex sets.
Specifically, these are calledmaximalNash subsets and are the largest equilibrium-containing
sets that are closed under interchanging a player’s strategies. The extreme points of amaximal
Nash subset are called extreme equilibria and are associated with paired non-singular square
submatrices of R1 and R2 called kernels (see Kuhn [43]).

A bimatrix game satisfying the zero-sum property: r1(i, j) = −r2(i, j) for all i =
1, 2, . . . ,m and j = 1, 2, . . . , n, is called amatrix game and is described by the single matrix
R := R1 = −R2. Note that, when Γ is a matrix game, every equilibrium (x∗, y∗) ∈ X × Y
achieves the same reward val(Γ ) := v1(x∗, y∗) = −v2(x∗, y∗), which is called the value of
the game Γ . Moreover, in recognition of von Neumann’s [55] celebrated minimax theorem
showing

val(Γ ) = max
x∈X min

y∈Y xRyT = min
y∈Y max

x∈X xRyT , (5)

the component strategies x∗ and y∗ of an equilibrium are often called (minimax) optimal
strategies.
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A completely mixed equilibrium (x∗, y∗) ∈ X×Y of a bimatrix game Γ is an equilibrium
under which every action is playedwith non-zero probability. IfΓ has only completelymixed
equilibria, then it is called a completely mixed game and has only a single (completely mixed)
equilibrium (see Kaplansky [35] and Raghavan [62]). Additionally, if Γ has a maximal Nash
subset containing only completely mixed equilibria, then it is called a weakly completely
mixed game. Jurg et al. [34] prove that a weakly completely mixed game contains a unique
completely mixed equilibrium.

2.2 Games with Incompetence

Beck et al. [9] introduce incompetence to a bimatrix game Γ by allowing players to acciden-
tally deviate from their intended actions. Specifically, after a pair of actions is selected from
A × B, incompetence randomly determines an executed action profile—also from A × B—
according to a predefined probability distribution. This distribution is represented by the
incompetence matrices Q1 := (q1(i, i ′)) ∈ R

m×m and Q2 := (q2( j, j ′)) ∈ R
n×n . After

Player 1 and Player 2 select the actions i ∈ A and j ∈ B, they execute the actions i ′ ∈ A
and j ′ ∈ B with probability q1(i, i ′) and q2( j, j ′), respectively. The notation ΓQ1Q2 denotes
the game Γ played under incompetence. If the incompetence matrices Q1 and Q2 are unam-
biguous, we will often replace the subscript “Q1Q2” with simply “Q” (e.g. ΓQ instead of
ΓQ1Q2 ).

Note that the original incompetence framework described by Beck et al. [9] allows the
players’ sets of selectable and executable actions to differ. This is especially useful for mod-
elling actions that can be executed with variable quality. Beck and Filar [10] give an example
of a capability acquisition game in which a defender, after selecting the action “Conventional
Defence”,may execute either “GoodConventionalDefence” or “BadConventionalDefence”.
Here, for the sake of notational simplicity, we assume that a player’s sets of selectable and
executable actions coincide.

Suppose that Player 1 selects the action i ∈ A and Player 2 selects the action j ∈ B. The
expected reward received by Player k ∈ {1, 2} under incompetence is

rkQ(i, j) :=
m∑

i ′=1

n∑
j ′=1

q1(i, i ′)rk(i ′, j ′)q2( j, j ′). (6)

Hence, ΓQ can be treated as another bimatrix game with the incompetent reward matrix
Rk
Q := (rkQ(i, j)) ∈ R

m×n belonging to Player k ∈ {1, 2}. Clearly, we have
Rk
Q = Q1Rk(Q2)T . (7)

Note that, as an immediate consequence of (7), an incompetent game derived from a matrix
game is also a matrix game. The expected reward granted to Player k ∈ {1, 2} in ΓQ is

vkQ(x, y) := xRk
Qy

T = xQ1Rk
Q(Q2)T yT (8)

for each (x, y) ∈ X × Y.
Beck et al. [9] are not only interested in games with static incompetence, but also dynamic

games wherein players are able to vary their incompetence. This is captured by a pair of
learning trajectories Q1 : [0, 1] → R

m×m and Q2 : [0, 1] → R
n×n . Then, for each pair

of learning parameters λ,μ ∈ [0, 1], the corresponding incompetent game ΓQ(λ, μ) has
Player 1’s incompetencematrix defined as Q1(λ) and Player 2’s incompetencematrix defined
as Q2(μ). Equivalently, ΓQ(λ, μ) is the bimatrix game with reward matrices
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Rk
Q(λ, μ) := Rk

Q1(λ)Q2(μ)
= Q1(λ)RkQ2(μ)T (9)

for each Player k ∈ {1, 2}. Although the family of parameterised incompetent games
ΓQ(λ, μ) is interesting in its own right (see Sect. 2.4), it is also an essential building-block
used to construct dynamic learning games (see Sect. 2.5).

Example (attack-defence game with incompetence) Consider, as an example, a matrix
gameΓ played between two aeroplane pilots—labelled “Attacker” (Player 1) and “Defender”
(Player 2)—competing over three sites. The attacker wants to destroy a site and the defender
wants to prevent this from occurring. Precisely, we have the action sets A = {1, 2, 3} and
B = {1, 2, 3} where, for each i, j ∈ {1, 2, 3}, Player 1’s action i means “Attack Site i”
and Player 2’s action j means “Defend Site j”. A successful attack occurs if and only if
the defending pilot does not anticipate the attacking pilot’s destination or, equivalently, the
executed action profile (i, j) ∈ A×B has i 	= j . The attacker receives a reward ν1 = 3 when
Site 1 is destroyed, ν2 = 4 when Site 2 is destroyed, and ν3 = 5 when Site 3 is destroyed.
The corresponding utility matrix is

R =
⎛
⎝ 0 ν1 ν1

ν2 0 ν2
ν3 ν3 0

⎞
⎠ =

⎛
⎝0 3 3
4 0 4
5 5 0

⎞
⎠ (10)

where R = R1 = −R2. The game value of Γ is 120/47 ≈ 2.55 and its (unique) equilibrium
has the attacking strategy x∗ = 1/47( 20 15 12 ) and the defending strategy y∗ = 1/47( 7 17 23 ).

Weuse incompetence to capture the pilots’ navigation skills and their propensity to arrive at
an incorrect site after getting lost. Define their learning trajectories Q1, Q2 : [0, 1] → R

3×3

where, for each λ,μ ∈ [0, 1], we set
Q1(λ) = 1

3
J3(1 − λ) + I3λ and Q2(μ) = 1

3
J3(1 − μ) + I3μ (11)

where Jn ∈ R
n×n is the n×n all-ones matrix and In ∈ R

n×n is the n×n identity matrix. Note
that Qk = 1/n Jn is called uniform incompetence and Qk = In is called complete competence

Fig. 1 The game value of the incompetent attack-defence game ΓQ(λ, μ) for each pair of learning parameters
λ, μ ∈ [0, 1]
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[9]. The resulting incompetent reward matrices at λ = μ = 0 and λ = μ = 1/2 are

RQ(0, 0) = 8

3

⎛
⎝1 1 1
1 1 1
1 1 1

⎞
⎠ and RQ(1/2, 1/2) = 1

12

⎛
⎝23 31 30
37 24 35
42 41 25

⎞
⎠ , (12)

respectively. The game value ofΓQ(0, 0) is 8/3 and the game value ofΓQ(1/2, 1/2) is 835/324 ≈
2.58. Moreover, since complete competence is achieved at λ = μ = 1 and ΓQ(1, 1) = Γ ,
we already know that the game value of ΓQ(1, 1) is 120/47 ≈ 2.55. Thus, it appears that the
parameterised incompetent games ΓQ(λ, μ) move in the defender’s favour as the learning
parameters are increased along λ = μ.

A clearer picture of the game value’s dependence on these learning parameters is achieved
in Fig. 1 by plotting the function (λ, μ) �→ val(ΓQ(λ, μ)) on the domain [0, 1] × [0, 1].
Note that, in this specific example, (λ, μ) �→ val(ΓQ(λ, μ)) is piecewise linear and non-
decreasing (or non-increasing) in the variable λ (or μ). This means that learning is beneficial
for the attacking and defending player when their opponent’s incompetence remains fixed.
Furthermore, the game value plateaus on the region [11/47, 1] × [26/47, 1] indicating that the
attacker reaches their “maximum useful skill’ at λ = 11/47 ≈ 0.23 and the defender reaches
their “maximum useful skill” atμ = 26/47 ≈ 0.55. Interestingly,ΓQ(λ, μ) is also completely
mixed on (11/47, 1] × (26/47, 1], which suggests a connection between complete mixedness
and this game value plateau. We will further explore the general properties of parameterised
incompetent games in Sect. 2.4.

2.3 Executable Strategies

Although [9] and [10] view incompetence as modifying a player’s reward matrix, it is also
possible to view it as modifying their strategy spaces. Here, we return to the setting of a static
incompetent game ΓQ with incompetence matrices Q1 ∈ R

m×m and Q2 ∈ R
n×n . Note that,

after Player 1 selects a strategy x ∈ X (or Player 2 selects a strategy y ∈ Y), the resulting
executed strategy is xQ1 (or yQ2) after incompetence is included. What strategies are the
players able to execute? Well, Player 1 and Player 2 are able to execute the strategies in

E1(Q1) := {
xQ1 : x ∈ X

}
and E2(Q2) := {

yQ2 : y ∈ Y
}
, (13)

respectively.We callEk(Qk) the executable strategy spacebelonging to Player k ∈ {1, 2} and,
when the incompetence matrices are unambiguous, we simply write Ek instead. Importantly,
from the perspective of an outside observerwhoonly sees that players have executed strategies
from E1 and E2, we would be unable to distinguish whether they are playing the competent
game Γ or the incompetent game ΓQ . Figure 2 shows some of the executable strategy
spaces within the previously discussed attack-defence game with incompetence. Note that
the transition between executable strategy spaces can bemore complicated than the “growing”
seen in Fig. 2.

What is the connection between equilibria of ΓQ inX×Y and equilibria of Γ inE1×E2?
Theorem 1 gives conditions under which an equilibrium in the competent game Γ can be
converted into an equilibrium in the incompetent game ΓQ , and vice versa. Theorem 1(i)
implies that an equilibrium of Γ in E1 × E2 is always executed by an equilibrium of ΓQ .
Meanwhile, Theorem 1(ii) implies that there exists an equilibrium of Γ in the interior of
E1 × E2 provided that ΓQ is weakly completely mixed.

Lemma 1 If ΓQ is a weakly completely mixed incompetent bimatrix game, then its incompe-
tence matrices Q1 and Q2 are non-singular.
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Fig. 2 The executable strategy spaces belonging to Player k ∈ {1, 2} in the previously introduced attack-
defence game at λ = μ = 1/3 and λ = μ = 2/3

Proof Let q1(i) denote the i th row of Q1. Assuming that Q1 is singular, there exists I ⊆
{1, 2, . . . ,m} such that ∑

i∈I
θiq1(i) = 0

for some non-zero coefficients θi ∈ Rwith i ∈ I . Then, after right-multiplying by the all-ones
row vector 1Tm ∈ R

m , we have
∑

i∈I θi = 0. Certainly, since the entries of Q1 are non-
negative, we can partition the index the set I into non-empty subsets I+ = {i ∈ I : θi > 0}
and I− = {i ∈ I : θi < 0} with ∑

i∈I+ θi = −∑
i∈I− θi .

Let (x∗, y∗) ∈ X × Y be an equilibrium of ΓQ . Define a constant α = −mini∈I−{x∗
i/θi}

such that x∗
i + αθi ≥ 0 for all i ∈ I and x∗

j + αθ j = 0 for some j ∈ I . We construct an

alternative strategy x† ∈ X, which is also completely mixed, where

x†i =
{
x∗
i + 1

2αθi , i ∈ I ,

x∗
i , i /∈ I ,

for each i = 1, 2, . . . ,m. Observe that

x†Q1 =
m∑
i=1

x†i q
1(i) =

∑
i /∈I

x∗
i q

1(i) +
∑
i∈I

(
x∗
i + α

2
θi

)
q1(i)

=
m∑
i=1

x∗
i q

1(i) + α

2

∑
i∈I

θiq1(i) = x∗Q1,

so x∗ and x† result in identical expected rewards to Player 1 and Player 2 in ΓQ and (x†, y∗)
is an equilibrium of ΓQ . But, given that ΓQ contains two distinct completely mixed equilibria
(x∗, y∗) and (x†, y∗), it cannot be a weakly completely mixed game. After using a similar
argument for the other incompetence matrix Q2, the desired result follows by contraposition.


�
Theorem 1 Fix a strategy profile (x∗, y∗) ∈ X × Y in an incompetent bimatrix game ΓQ.
Then,

(i) (x∗, y∗) is an equilibrium in ΓQ whenever (x∗Q1, y∗Q2) is an equilibrium in Γ , and
(ii) (x∗Q1, y∗Q2) is a (completely mixed) equilibrium in Γ whenever ΓQ is weakly com-

pletely mixed and (x∗, y∗) is a completely mixed equilibrium in ΓQ.
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Proof (i) Assume that Player 1 possesses a profitable deviation from (x∗, y∗) in ΓQ such that
v1Q(x, y∗) > v1Q(x∗, y∗) for some x ∈ X. Then, observe that

v1
(
x∗Q1, y∗Q2) = x∗Q1R1(Q2)T (y∗)T = x∗R1

Q(y∗)T

< xR1
Q(y∗)T = xQ1R1Q2(y∗)T = v1

(
xQ1, y∗Q2)

which contradicts the equilibrium inequalities for (x∗Q1, y∗Q2) in Γ . After repeating a
similar argument for Player 2, we obtain

v1Q
(
x, y∗) ≤ v1Q

(
x∗, y∗) and v2Q

(
x∗, y

) ≤ v2Q
(
x∗, y∗),

meaning that (x∗, y∗) is an equilibrium of ΓQ .
(ii) We know that Player 1’s strategy x∗ makes Player 2 indifferent between their actions

in ΓQ , hence

x∗R2
Q = x∗Q1R2(Q2)T = v2

(
x∗, y∗)1Tn ,

where 1n ∈ R
1×n is an all-ones row vector. Clearly, this is solved when x∗Q1R2 =

v2(x∗, y∗)1Tn and this solution is unique as Q2 is non-singular (by Lemma 1). This shows
that x∗Q1 makes Player 2 indifferent between their actions in Γ and, by a similar argument,
y∗Q2 makes Player 1 indifferent between their actions in Γ . Note that x∗Q1 and y∗Q2 are
both completely mixed because the entries in x∗ and y∗ are strictly positive and (by non-
singularity) the columns of Q1 and Q2 cannot contain only zeros. Thus, appealing to the
indifference principle, we conclude that (x∗Q1, y∗Q2) is an equilibrium in Γ . 
�

Corollary 1, which states that a completely mixed matrix game achieves the same game
value as its competent counterpart, was originally presented by Beck and Filar [10]. Although
they give a utility-centred argument based on Shapley and Snow’s [66] game value formula,
we give an alternative strategy-centred argument based on Theorem 1(ii). Note that, a gen-
eralisation of this result to bimatrix games is presented in [9]; however, we still choose to
highlight the matrix game version for later discussion.

Corollary 1 [10] If ΓQ is a completely mixed incompetent matrix game, then Γ is a matrix
game and val(Γ ) = val(ΓQ).

Proof Certainly,Γ is also amatrix game because R1 	= −R2 directly implies R1
Q 	= −R2

Q . If

(x∗, y∗) ∈ X×Y is the unique equilibriumofΓQ , thenTheorem1(ii) states that (x∗Q1, y∗Q2)

is an equilibrium of Γ . So,

val
(
Γ

) = v
(
x∗Q1, y∗Q2) = x∗Q1R(Q2)T (y∗)T

= x∗RQ(y∗)T = vQ
(
x∗, y∗) = val

(
ΓQ

)
,

as desired. 
�
Lastly, the result in Theorem 1(ii) can be extended to incompetent bimatrix games that

are “almost” weakly completely mixed. Theorem 2 shows that, if ΓQ can be approximated
by a sequence of weakly completely mixed incompetent games, then Γ has an equilibrium
in E1 × E2.

Lemma 2 If ΓQ is a weakly completely mixed incompetent bimatrix game, then Γ is also
weakly completely mixed.
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Proof We know from Theorem 1(ii) that there exists a completely mixed equilibrium
(x∗, y∗) ∈ E1 × E2 of Γ , so it lies in the interior of E1 × E2. If Γ is not weakly com-
pletely mixed, then there exists another equilibrium (x†, y†) ∈ X×Y such that (x∗, y∗) and
(x†, y†) belong to the same maximal Nash subset. Define the convex combination (xα, yα)

of these strategy profiles by

xα = αx∗ + (1 − α)x† and yα = αy∗ + (1 − α)y†

for each α ∈ [0, 1]. Note that, because Nash subsets are closed under convex combinations,
(xα, yα) is an equilibrium of Γ for every α ∈ [0, 1]. Moreover, for some α∗ ∈ (0, 1],
the strategy profile (xα, yα) lies in the interior of E1 × E2 for every α ∈ [0, α∗). But, by
Theorem 1(i) and Lemma 1, this means that (xα(Q1)−1, yα(Q2)−1) is a (completely mixed)
equilibrium of ΓQ for each α ∈ [0, α∗). Given that this contradicts the uniqueness of a
completely mixed equilibrium in the weakly completely mixed game ΓQ , we conclude that
Γ must also be weakly completely mixed. 
�
Theorem 2 Let {Q1

�}∞�=1 and {Q2
�}∞�=1 be sequences of incompetence matrices that converge

to Q1 and Q2, respectively. Moreover, assume thatΓQ�
= ΓQ1

�Q
2
�
is weakly completely mixed

for every � = 1, 2, . . .. Then, there exists an equilibrium (x∗, y∗) in ΓQ = ΓQ1Q2 such that
(x∗Q1, y∗Q2) is a (completely mixed) equilibrium in Γ .

Proof Take the sequences of strategies {x∗
�}∞�=1 ⊂ X and {y∗

�}∞�=1 ⊂ Y such that, for each
� = 1, 2, . . ., the strategy profile (x∗

� , y
∗
�) is the unique completely mixed equilibrium ofΓQ�

.
Moreover, let (x†, y†) ∈ E1 × E2 be the unique completely mixed equilibrium of Γ , which
we know to be weakly completely mixed by Lemma 2. Then, applying Theorem 1, we have
x∗
�Q

1
� = x† and y∗

�Q
2
� = y† for each � = 1, 2, . . ..

Note that, because the strategy spaces X and Y are compact, there exists subsequences
{x∗

�s
}∞s=1 and {y∗

�t
}∞t=1 that converge to some strategies x∗ ∈ X and y∗ ∈ Y, respectively.

Clearly,

x∗Q1 = lim
s→∞ x∗

�s
Q1

�s
= x† and y∗Q2 = lim

t→∞ y∗
�t
Q2

�t
= y†.

This shows that (x∗Q1, y∗Q2) is a completely mixed equilibrium of Γ and, by Theorem 1(i),
(x∗, y∗) is an equilibrium of ΓQ , as required. 
�

2.4 Variational Properties

Now, we return to the dynamic setting where ΓQ(λ, μ) denotes a family of incompetent
games parameterised by a pair of learning trajectories. A central focus in the development
of incompetence has been the variational properties of ΓQ(λ, μ) when Γ is a matrix game
or a bimatrix game. Here, we will summarise what is known about the behaviour of these
incompetent games under variations in the players’ learning parameters.

Beck et al. [9] study the dependence of equilibrium-induced expected rewards on the
players’ learning parameters. They present Theorem 3 and Theorem 4 showing that, under
certain conditions on Q1(λ) and Q2(μ), the expected rewards granted by a specific extreme
equilibrium have useful representations.

Theorem 3 [9] Assume that Q1(λ) and Q2(μ) are linear, that is,

Q1(λ) = (1 − λ)Q1(0) + λQ1(1) and Q2(μ) = (1 − μ)Q2(0) + μQ2(1) (14)
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for all λ,μ ∈ [0, 1]. Fix Λ, M ⊂ [0, 1] such that ΓQ(λ, μ) share a h1 × h2 Shapley-Snow
kernel for all (λ, μ) ∈ Λ × M. Then, for some constants αk

i j , β
k
i j ∈ R, the expected reward

to Player k ∈ {1, 2} achieved by the kernel’s associated extreme equilibrium in ΓQ(λ, μ) is

∑hk+1
i=1

∑hk+1
j=1 αk

i jλ
hk−i+1μhk− j+1

∑hk
i=1

∑hk
j=1 βk

i jλ
hk−iμhk− j

(15)

for each (λ, μ) ∈ Λ × M; a ratio of bivariate polynomials in λ and μ.

Theorem 4 [9] Assume that Q1(λ) and Q2(μ) are linear with initially uniform incompetence
Q1(0) = 1/mJm (or Q2(0) = 1/n Jn). Then, the dependence of an extreme equilibrium’s
expected reward in (15) is (at most) linear in λ (or μ).

Furthermore, in addition to proving specialisations of Theorem3 andTheorem4 formatrix
games, Beck and Filar [10] establish several other properties regarding the game value of a
parameterised incompetent matrix game ΓQ(λ, μ). Specifically, they prove that the function
(λ, μ) �→ val(ΓQ(λ, μ)) is continuous and not-necessarily monotone in λ and μ. It is also
shown that a player can never achieve a greater reward than under complete competence;
that is,

val
(
ΓQ1(λ),In

) ≤ val
(
ΓQ1(λ),Q2(μ)

) ≤ val
(
ΓIm ,Q2(μ)

)
(16)

for all λ,μ ∈ [0, 1]. Beck and Filar [10] also briefly address the plateauing game values
of some parameterised incompetent matrix games (see, for example, Fig. 1) by noting that
Corollary 1 might apply when a player approaches complete competence. The tools devel-
oped in Sect. 2.3 allow us to further explore this observation. Consider the set of learning
parameters

C := {
(λ, μ) ∈ [0, 1] × [0, 1] : ΓQ(λ, μ) is completely mixed

}
(17)

on which ΓQ(λ, μ) is completely mixed. Assume that the learning trajectories Q1(λ) and
Q2(μ) are continuous. Then, given that the set of reward matrices belonging to completely
mixed matrix games is open (see Jansen [33]), the set C is also open. Theorem 2 shows that,
for each (λ, μ) ∈ C, the players are both able to execute a completely competent optimal
strategy in ΓQ(λ, μ). This means that, by an identical argument to Corollary 1, the function
(λ, μ) �→ val(ΓQ(λ, μ)) is constant on C. Hence, we expect a game value plateau to emerge
whenever ΓQ(λ, μ) becomes completely mixed.

2.5 Incremental Learning

Next, we will demonstrate a simple model of incremental learning in a parameterised family
of incompetent matrix games ΓQ(λ, μ). This incremental learning game Γinc is a stochastic
game unfolding over an infinite time horizon T = {0, 1, 2, . . .} in which, between repeated
plays of an incompetent game, the playersmay choose to increment their learning parameters
through the ordered sets Λ := {λ1, λ2, . . . , λM } and M := {μ1, μ2, . . . , μN }. It is assumed
that λi < λi+1 and μ j < μ j+1 for each i = 1, 2, . . . , M − 1 and j = 1, 2, . . . , N − 1. This
means that a player’s skill parameter can never be decreased or, informally, that a player can
halt but never reverse the process of learning. Henceforth, we simplify notation by identifying
i with λi and j with μ j .
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Fig. 3 The transition structure of a general incremental learning game, with nodes representing states and arcs
representing potential transitions

Now, we give a precise description of Γinc using the language and notation associated
with stochastic games in [18]. The state space

S := {
(i, j) : i = 1, 2, . . . , M and j = 1, 2, . . . , N

}
(18)

is chosen to index the learning parametersΛ×M . Fix a stage t ∈ T and a state s = (i, j) ∈ S
such that λi and μ j are the learning parameters belonging to Player 1 and Player 2 at stage t .

Player 1 and Player 2 (optimally) play the incompetent game ΓQ(i, j) and are given the
option to advance their learning parameters to i + 1 and j + 1, respectively. The decision to
increment a learning parameter might incur a state-dependent learning cost ck(i, j) to Player
k ∈ {1, 2}. Formally, we say that the actions belonging to Player 1 and Player 2 at state s are

A(s) :=
{

{0, 1}, i 	= M,

{0}, i = M,
and B(s) :=

{
{0, 1}, j 	= N ,

{0}, j = N ,
(19)

where “0” means “Don’t Learn” and “1” means “Learn”. If Player 1 selects a ∈ A(s) and
Player 2 selects b ∈ B(s), then they receive the stage-t immediate rewards

rk(s, a, b) :=
{
val

(
ΓQ(i, j)

) − ac1(i, j), k = 1,

−val
(
ΓQ(i, j)

) − bc2(i, j), k = 2,
(20)

where the val(ΓQ(i, j)) term is the reward received after optimally playing ΓQ(i, j). More-
over, before the subsequent (t + 1)th stage, the game transition to the state (i + a, j + b)
with (degenerate) transition probabilities given by

p(s′|s, a, b) :=
{
1, s′ = s + (a, b),

0, s′ 	= s + (a, b),
(21)

for every s′ ∈ S. The general transition structure of this game is shown in Fig. 3.
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Here, we will focus on stationary strategies, which are represented as block row vec-
tors f = (f(s))s∈S for Player 1 and g = (g(s))s∈S for Player 2. The block f(s) =
( f (s, a))a∈A(s) stores the probability f (s, a) of choosing action a ∈ A(s) and the block
g(s) = (g(s, b))b∈B(s) stores the probability of choosing action b ∈ B(s). The sets of sta-
tionary strategies belonging to Player 1 and Player 2 are denoted by F and G, respectively.
The immediate rewards in (20) and the transition probabilities in (21) are extended to F×G
by defining

rk(s, f, g) :=
∑

a∈A(s)

∑
b∈B(s)

f (s, a)rk(s, a, b)g(s, b), (22)

and

p(s′|s, f, g) :=
∑
aA(s)

∑
b∈B(s)

f (s, a)p(s′|s, a, b)g(s, b), (23)

for each (f, g) ∈ F×G. If the stochastic process {St }∞t=0 stores the state at each stage t ∈ T ,
then it becomes a Markov chain under the dynamics induced by a strategy profile (f, g) ∈
F × G. We use Psfg and Esfg to denote probabilities and expectations under these dynamics
with the initial state S0 = s ∈ S. The β-discounted value (β ∈ [0, 1)) of (f, g) ∈ F × G to
Player k ∈ {1, 2} with the initial state s ∈ S is

vk(s, f, g) :=
∞∑
t=0

β t
Esfg

[
rk(St , f, g)

]
. (24)

Then, (f∗, g∗) ∈ F × G is a (Nash) equilibrium of the incremental learning game Γinc

whenever

v1(s, f, g∗) ≤ v1(s, f∗, g∗) and v2(s, f∗, g) ≤ v2(s, f∗, g∗) (25)

for all s ∈ S, f ∈ F, and g ∈ G.
Although Γinc unfolds over an infinite time horizon, its transition structure admits a spe-

cialised backward induction algorithm for computing equilibria. We construct a suitable
notion of “past” and “future” states by finding a sequence s1, s2, . . . , sL (where L := MN )
such that �′ < � implies p(s�′ |�, a, b) = 0 for all distinct �, �′ = 1, 2, . . . , L and
(a, b) ∈ A(s�) × B(s�).

It is straightforward to verify that a suitable ordering exists—for example, the lexico-
graphical ordering. So, we shall assume that an ordering has been fixed and write � instead of
s�. Lemma 3 shows that the discounted value of a strategy profile at a specific state does not
depend on the “past” states. This allows us to restrict the stochastic game Γinc to the limited
state space {�, � + 1, . . . , L} while still being able to assess the value of strategies.

Lemma 3 Fix (f, g) ∈ F × G. Then, for any � ∈ {1, 2, . . . , L} and k ∈ {1, 2}, we have

vk(�, f, g) = rk(�, f, g) + β
∑L

�′=�+1 vk(�′, f, g)p(�′|�, f, g)
1 − β p(�|�, f, g) . (26)
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Proof Observe that, by conditioning on the state S1 after the first transition, the discounted
value of (f, g) is

vk(�, f, g) =
∞∑
t=0

β t
E�fg

[
rk(St , f, g)

] = E�fg
[
rk(S0, f, g)

]

+
∞∑
t=1

L∑
�′=1

β t
E�fg

[
rk(St , f, g)

∣∣S1 = �′]
P�fg(S1 = �′)

∗= rk(�, f, g) + β

L∑
�′=1

p(�′∣∣�, f, g)
∞∑
t=0

β t
E�′fg

[
rk(St , f, g)

]

∗∗= rk(�, f, g) + β

L∑
�′=�

p(�′|�, f, g)vk(�′, f, g).

Note that the above equality
∗= can be verified by applying the definition of rk(�, f, g) and

appealing to the fact that {rk(St , f, g)}∞t=0 is a Markov chain. Similarly, the equality
∗∗= holds

by applying the definition of vk(�′, f, g). We now easily obtain (26) by rearranging to isolate
the vk(�, f, g) term on the left-hand side. 
�

Next,wewill show that a backward induction algorithmcan solve this incremental learning
game by working backward through the states 1, 2, . . . , L . Fix a state � ∈ {1, 2, . . . , L − 1}
and define F�+1 := {(f(�′))L

�′=�+1} and G�+1 := {(g(�′))L
�′=�+1} to be the sets of stationary

strategies over the “future” states � + 1, . . . , L . Assume that we have already found f∗�+1 ∈
F�+1 and g∗

�+1 ∈ G�+1 solving (25) at each state �′ = � + 1, . . . , L . Can we extend this
equilibrium to include the current state? Theorem 5 shows that it is sufficient to consider a
simplified version of the equilibrium inequalities that only account for unilateral deviations at
state �. The sets F�(f∗�+1) := {(f(�), f∗(� + 1), . . . , f∗(L))} and G�(f∗�+1) := {(g(�), g∗(� +
1), . . . , g∗(L))} denote the spaces of stationary strategies that extend f∗�+1 and g∗

�+1 to state
�.

Theorem 5 The strategy profile (f∗� , g∗
�) ∈ F�(f∗�+1) × G�(g∗

�+1) is an equilibrium of Γinc

restricted to {�, . . . , L} whenever

v1(�, f ′�, g∗
�) ≤ v1(�, f∗� , g∗

�) and v2(�, f∗� , g′
�) ≤ v2(�, f∗� , g∗

�) (27)

for all f ′� ∈ F�(f∗�+1) and g
′
� ∈ G�(g∗

�+1).

Proof We need to show that (f∗� , g∗
�) satisfying (27) also satisfies (25) at state �. Take a pair of

strategy profiles (f�, g�) ∈ F�×G� and (f ′�, g′
�) ∈ F�(f∗�+1)×G�(g∗

�+1) such that f(�) = f ′(�)
and g(�) = g′(�). This means that f ′� (or g′

�) is a combination of f� (or g�) at � and f∗� (or
g∗
�) at � + 1, . . . , L . So, (f ′�, g′

�) and (f ′�, g∗
�) satisfy the equilibrium inequalities at the states

� + 1, . . . , L; that is, we have

v1(�′, f�, g′
�) ≤ v1(�′, f ′�, g′

�) and v1(�′, f�, g∗
�) ≤ v1(�′, f ′�, g∗

�)
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for any �′ ∈ {� + 1, . . . , L}. Alongside the discounted value representation from Lemma 3,
this gives

v1(�, f�, g∗
�) = r1(�, f�, g∗

�) + β
∑L

�′=�+1 v1(�′, f�, g∗
�)p(�

′|�, f�, g∗
�)

1 − β p(�|�, f�, g∗
�)

≤ r1(�, f ′�, g∗
�) + β

∑L
�′=�+1 v1(�′, f ′�, g∗

�)p(�
′|�, f ′�, g∗

�)

1 − β p(�|�, f ′�, g∗
�)

= v1(�, f ′�, g∗
�)

where r1(�, f, g∗
�) = r1(�, f ′�, g∗

�) and p(·|�, f�, g∗
�) = p(·|�, f ′�, g∗

�) because f(�) = f ′(�).
Finally, by (27), we obtain

v1(�, f�, g∗
�) ≤ v1(�, f ′�, g∗

�) ≤ v1(�, f∗� , g∗
�).

After repeating an analogous argument for Player 2, we see that the conditions in (27) are
sufficient to ensure that that (f∗� , g∗

�) is an equilibrium of Γinc restricted to {�, . . . , L}. 
�

The useful consequence of Theorem 5 is that, by solving a “local” problem at “previous”
state �, we can extend the equilibrium (f∗�+1, g

∗
�+1) to create (f∗� , g∗

�). This local problem
resembles a repeated game with absorbing states. Namely, if the players both choose to
forego learning, then the game remains at state �. Otherwise, if either of the players choose to
learn, then the game transitions into a new state where the expected future rewards are fixed
by (f∗�+1, g

∗
�+1). The rewards given to Player k ∈ {1, 2} in this repeated game with absorbing

states are

V k
ab =

{
rk

(
�, a, b

) + βvk
(
s� + (a, b), f∗�+1, g

∗
�+1

)
, (a, b) 	= (0, 0),

rk
(
�, a, b

)
, (a, b) = (0, 0),

(28)

for each (a, b) ∈ A(�) × B(�). An immediate consequence of Lemma 3 is that, for each
k ∈ {1, 2} and (f�, g�) ∈ F�(f∗�+1) × G�(g∗

�+1), we have

vk(�, f�, g�) = 1

1 − β p0q0

∑
a∈A(�)

∑
b∈B(�)

paV
k
abqb, (29)

where p0 = 1 − p1 = f (�, 0) and q0 = 1 − q1 = g(�, 0). Hence, to ensure that (f∗� , g∗
�) ∈

F�(f∗�+1) × G�(g∗
�+1) satisfies the inequalities in (27), we need to solve the coupled pair of

maximisation problems

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p∗
0 = arg max

p0∈[0,1]
1

1 − β p0q∗
0

∑
a∈A(�)

∑
b∈B(�)

paV
1
abq

∗
b ,

q∗
0 = arg max

q0∈[0,1]
1

1 − β p∗
0q0

∑
a∈A(�)

∑
b∈B(�)

p∗
aV

2
abqb,

(30)

where p∗
0 = 1− p∗

0 = f ∗(�, 0) and q∗
0 = 1−q∗

1 = g∗(�, 0). Under the additional assumption
that this repeated game with absorbing states is non-degenerate, the solutions are either both
pure strategies (p∗

0, q
∗
0 ∈ {0, 1}) or both completely mixed strategies (p∗

0, q
∗
0 ∈ (0, 1)). The

pure strategy solutions can be found by imposing restriction p0, p∗
0 , q0, q

∗
0 ∈ {0, 1} in (30);

that is, by comparing the payoffs of every possible pure strategy profile. Moreover, by setting
the appropriate partial derivatives (with respect to p0 and q0, respectively)
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Fig. 4 The (unique) equilibrium learning strategies for the attacking and defending pilots with arrows showing
the learning direction

of the functions being maximised in (30) equal to zero, we obtain⎧⎪⎪⎨
⎪⎪⎩

∑
a∈A(�)

p∗
aV

2
a0 − p∗

a(1 − β p∗
0)V

2
a1 = 0,

∑
b∈B(�)

q∗
b V

1
0b − q∗

b (1 − βq∗
0 )V 1

1b = 0.
(31)

The solutions to (31) with p∗
0, q

∗
0 ∈ (0, 1) give the completely mixed strategy solutions to

Γinc. This shows that we are always able to extend (f∗�+1, g
∗
�+1) to an equilibrium (f∗� , g∗

�)

of Γinc restricted to �, . . . , L . Hence, since (f∗L , g∗
L) where f ∗(L, 0) = g∗(L, 0) = 1 is

the only strategy profile available at state L , we can work backwards through the states
L − 1, L − 2, . . . , 2, 1 and repeatedly extend it until obtaining an equilibrium (f∗, g∗) of
Γinc.

Example (attack-defence game with incremental learning) Lastly, recalling the attack-
defence game ΓQ(λ, μ) previously introduced in Sect. 2.2, suppose that the attacking and
defending pilots have the option to undergo navigation training between engagements. We
might model this as an incremental learning game Γinc in which training allows the pilots to
advance their skill parameters through

Λ = {
0, 1/5, 2/5, 3/5, 4/5, 1

}
and M = {

0, 1/5, 2/5, 3/5, 4/5, 1
}

after paying learning costs of c1(i, j) = c2(i, j) = 1/10 at state s = (i, j) ∈ S. Moreover,
assume that the pilots have far-sighted discounted strategy valuations with a discount factor
of β = 99/100. What are the best strategies to reduce incompetence throughout this game?

The aforementioned backward induction algorithm produces a unique equilibrium of Γinc

showngraphically in Fig. 4.Anode indicates a pair of learning parameters and an arc indicates
a transition realised by the equilibrium. So, a vertical arrow means that only Player 1 learns,
a horizontal arrow means that only Player 2 learns, a diagonal arrow means that both players
learn, and a loop means that neither player learns.
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Note that, under the equilibrium shown in Fig. 4, the attacker learns until their skill
reaches the interval [11/47, 1] and the defender learns until they reach the interval [26/47, 1].
We know that the underlying parametrised incompetent game ΓQ(λ, μ) is completely mixed
on (11/47, 1]× (26/47, 1]. So, by the observations in Sect. 2.4, both players are able to execute
completely competent optimal strategies when (λ, μ) ∈ [11/47, 1] × [26/47, 1]. This means
that, once the players have achieved learning parameters within these intervals, the game
value plateaus (see Fig. .1) and there is no incentive to learn further. Therefore, it is not
always necessary to achieve complete competence so long as the players are able to “mimic”
competence by executing an optimal strategy from the completely competent game Γ .

3 Incompetence in Biological Populations

Game theory as a mathematical paradigm found applications not only in economics and
behavioural studies, but also in biology. Its first application to biology was driven by the
puzzling fact that animal contests rarely result in fights or serious injuries, even though
contestants are sufficiently equipped to engage in an open fight [68]. It was suggested that
instead of considering individuals as players who may not be rational, the selection itself
could be considered as a rational force of evolution, and survival of the entire population
is more important than benefits to individual members. Since then, evolutionary game the-
ory emerged as a branch of game theory and ecological sciences studying evolution under
selection pressure [28,50,56].

Recently, the effects of environmental changes on the evolution of biological populations
became one of the main foci of the field [3,26,75,81]. Since all organisms on this planet
live in a dynamic environment that undergoes changes, the ability to adapt becomes key to
survival. Adaptation is a process that improves survival skills and reproductive functions
of species, and usually includes two components: genetic adaptation and learning. As a
specific example, when a population migrates or their environmental conditions change,
their responses to new environmental stimuli may differ, introducing behavioural mistakes in
individuals’ interactions. The concept of incompetence was proposed in [37] to address the
learning aspect of the evolution of social behaviour. Under the assumption of incompetence
of individuals, behaviours that were likely to be observed in the old environment, might not
have the same frequency in the new environment, and as organisms adapt, theymight re-learn
their previous behaviours.

3.1 Evolutionary Games

Naturally, game assumptions in biological settings differ from the classic games since ratio-
nality of each individual behaviour might not always be natural to assume. Consider a
population of species consisting of N individual organisms. At every time step, individu-
als interact in a pair-wise manner, where they have to choose one action out of n distinct
available actions. Outcomes of these interactions determine fitness of individuals based on
the fitness matrix R ∈ R

n×n . In the evolutionary settings, all individuals in the population
obtain the same fitness matrix R, however, during the interaction, Player 1’s fitness is deter-
mined by R, while Player 2’s fitness is determined by RT . Furthermore, the sets of selectable
and executable actions coincide for all players. Let x = (x1, . . . , xn), where xi denotes the
frequency of the (pure) strategy i . We assume that in a given population, all individuals have
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the same set of selectable actions A, fitness matrix R, and the mixed strategy of the entire
population x.

The main focus of evolutionary games is to predict the strategy x that will be adopted by
the population. Since we assume that n actions are available to each individual, the resulting
mixed strategies lie in the simplex Δn defined by

Δn =
{
x = (x1, . . . , xn)

∣∣∣
n∑

i=1

xi = 1, xi ≥ 0, ∀i = 1, . . . , n

}
,

where xi = Ni
N with Ni being a number of individuals adopting strategy i and N being a total

number of individuals in the population. Then, an evolutionary game Γ e can be denoted by

Γ e =
{
R,A, x ∈ Δn

}
. (32)

We say that the population adopts a pure i th strategy if all individuals are behaving as the
i th type and, hence, their behavioural frequency vector is the unit basis vector ei . However,
this may not always be the case. If not, we are in the case of mixed strategies x, and hence
we are interested in finding a mixture x∗ which is a stable outcome of the evolution.

It was shown, that the concept of Nash equilibria is not sufficient when taking into account
the evolution of populations [67]. As a result, a new equilibrium concept was proposed.
The evolutionary stable strategy (ESS) ensures that population’s strategy is resistant against
random mutations and is defined, more precisely, below.

Definition 1 A mixed strategy x∗ is called an evolutionary stable strategy if one of the fol-
lowing conditions hold:

(i) x∗R(x∗)T > yR(x∗)T , ∀y ∈ Δn ;
(ii) if x∗R(x∗)T = yR(x∗)T , then x∗RyT > yRyT , ∀y ∈ Δn .

Here, x∗R(x∗)T measures the frequency-dependent fitness of the entire population, given
that everyone adopts strategy x, whereas yR(x∗)T measure fitness of a population adopting
strategy y in a population of individuals using strategy x. In the long run, an ESS guarantees
that selection prefers x∗ to any other arising strategy. Note that the ESS is a special case of
a Nash equilibrium [56].

However, besides equilibria, we are usually interested in how these equilibria can be
reached, bringing us to the concept of evolutionary dynamics. Given that biological popula-
tions not only interact, but also reproduce, there is a need to take into account the reproduction
process. The first classic evolutionary dynamics model was proposed by Taylor and Jonker
in [74], and is called replicator dynamics. These dynamics assume well-mixed infinitely
large populations which is, of course, a simplification. Subsequently, many new concepts
of dynamics were suggested in order to capture mutations [12,57,70,72], finite size of pop-
ulations and stochasticity [31,53,73,76–78], adaptation [13,14,17,25,58], and a population
structure [5,49,59,60]. However, to date, the concept of incompetence was only considered
in a classic setting of replicator dynamics. In Conclusions section, we discuss possible exten-
sions to other forms of dynamics for incompetent games.

Replicator dynamics captures a frequency-dependent selection, where the evolution of
population’s strategy depends on the current frequencies of all strategies in the population.
That is, the fitness of a particular strategy is compared to the mean fitness of the entire
population and is determined by the adopted strategies. With respect to a mixed strategy
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x ∈ Δn , the expected fitness of a (pure) strategy i is defined by

fi =
n∑
j=1

x jri j = ei RxT = (Rx)i . (33)

The mean fitness payoff of the population is then defined by the scalar

φ =
n∑

i=1

xi fi = xRxT . (34)

Then, the dynamics of strategy i’s frequency in the population is defined by

ẋi = xi ( fi − φ), i = 1, . . . , n,

or in a matrix form,

ẋi = xi
((

RxT
)
i
− xRxT

)
, i = 1, . . . , n. (35)

In the folk theorem of evolutionary game theory, it was shown that any equilibrium of the
replicator dynamics is a Nash equilibrium of the gameΓ e and that a strict Nash equilibrium is
asymptotically stable [28]. Moreover, any ESS is an asymptotically stable equilibrium of the
replicator dynamics. Hence, when considering evolutionary games, it is frequently sufficient
to find equilibria of a static game Γ e. This simplification is useful when trying to predict
how the behaviour of the game changes under the assumption that interacting individuals are
incompetent. We shall next consider how incompetence changes the game setup.

3.2 Evolutionary Games under Incompetence

When introducing an assumption that individuals are prone to making behavioural mistakes
in an evolutionary game, one can interpret suchmistakes as a formof behavioural plasticity. In
some ways, this can be seen as phenotypic plasticity (for instance, in microbes). However, in
application to more sophisticated organisms, behavioural plasticity need not relate to genetic
background of the organism. These behavioural mistakes can be driven bymigration to a new
environment or any other form of environmental change and are reflected in the incompetence
matrix Q analogous to that introduced in Sect. 2.2.

Since we assume that the entire population obtains only one fitness matrix, we also assume
that the incompetence matrix is given for the entire population. Then, a new incompetent
fitness matrix is determined in a similar manner to (7) as

RQ = QRQT . (36)

In line with previous sections, we assume that players’ ability for improving their strategy
execution is determined by some parameter. Since here we consider one population of players
all of whom obtain the same measure of incompetence, we only need one incompetence
parameter λ ∈ [0, 1]. Then, the incompetent fitness matrix is defined as

R(λ) := RQ(λ) = Q(λ)RQ(λ)T . (37)

Throughout this section, wemake a specific assumption on the functional form of learning.
We assume that Q(λ) is linear and defined as

Q(λ) = (1 − λ)S + λI , (38)
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where S is the staring level of incompetence and I is the identity matrix. When λ = 1, the
population does not make any execution errors and has a perfect strategy execution. Now we
can define the evolutionary incompetent game as

Γ e
Q =

{
R,A, x ∈ Δn, Q(λ) : λ ∈ [0, 1]

}
. (39)

We can further simplify the analysis by utilising the property of replicator dynamics
that it is invariant under a linear positive transformation [27]. This allows us to reduce
the fitness matrix by subtracting diagonal elements of R from the corresponding columns.
Mathematically speaking, such transformation can be defined as

R̃ := R − dR1Tn , (40)

where dR is a vector consisting of the diagonal elements of R and 1n is a vector consisting
of ones. Throughout the manuscript, we shall denote any matrix R̃ as a canonical form of
matrix R as in (40). Then, according to (33)-(35), for a new game under incompetence Γ e

Q ,
we re-write the expected fitness for strategy i as

fi (λ) =
n∑
j=1

r̃i j (λ)x j = ei R̃(λ)xT , (41)

and for the mean fitness payoff of the population,

φ(λ) =
n∑

i=1

xi fi (λ) = x R̃(λ)xT . (42)

Hence, the incompetent replicator dynamics can be written as

ẋi = xi ( fi (λ) − φ(λ)), i = 1, . . . , n. (43)

In a strict sense, the new system given by (43) is a perturbed evolutionary game, and pertur-
bations depend on the parameter λ. As λ tends to 1 for all i , the game under incompetence
approaches the original game given by R. In the following section, we summarise the main
results obtained for incompetent evolutionary games.

3.3 Equilibria Transitions

Here,we aremostly interested in behaviours that dynamics exhibit under changes in parameter
values λ given the starting level of incompetence S and the fitnessmatrix R. These behaviours
may arise for different values of λ and the dynamics change their behaviour at critical levels
λc of λ, referred to as bifurcation points, where equilibria emerge, disappear or change their
stability properties.

Definition 2 [37] A critical value λc of the incompetence parameter is the bifurcation point
of the replicator dynamics.

Under incompetence, behaviour of the game dynamics may exhibit several bifurca-
tions [37]. Since by design the incompetence parameter approaches 1 when incompetence
decreases, the incompetent fitness matrix R(λ) is approaching the original fitness matrix R.
As a result, in the limit of perfect competence, behaviour of the incompetent game approaches
the behaviour of the original game. That is, there exists a maximal critical value of λ, that
preserves robust properties of the game. We recall this result in the following theorem.
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Theorem 6 [37] If the game R̃ possesses an ESS, x∗, and ||Q(λ) − I || ≤ δ(λu), where
λu = max λc is the maximal critical value of the incompetence parameter for a fixed point
x∗, then the incompetent game R̃(λ), when λ ∈ (λu, 1], possesses an ESS, x∗(λ), and

lim
λ→1− x∗(λ) = x∗. (44)

A natural question arises of how these bifurcation values of the incompetence parameter
can be determined and the behaviour of dynamics. The larger the game (the more available
strategies it has), the harder it becomes to define all possible bifurcations. However, even
for an arbitrary number of strategies, we can find bifurcations of special equilibria, such as,
interior equilibria or pure-strategies equilibria using analysis presented in [11]. Let us first
focus on the bifurcations of the interior equilibria.

Definition 3 [37] Let x∗ be a fixed point and λc be a bifurcation point that is also a zero of the
mean fitness, namely, φ(x∗, λc) = 0. Then, λc is a balanced bifurcation parameter value.

Then, the point of bifurcation for an interior equilibrium can be found by considering a
determinant of the incompetent fitness matrix.

Lemma 4 [37] If x∗ is an interior fixed point, that is, x∗
i > 0,∀i . Then every balanced

bifurcation parameter value, λc, is also a singular point of R̃(λ) in the sense that det(R̃(λ)) =
0.

Next, we recall the special canonical form of the matrix R̃(λ) that is defined through a
rank-one transformation of an incompetent fitness matrix R(λ). By [24], its determinant can
be written as

det(R̃(λ)) = det(R(λ) − dR(λ)1Tn ) = (1 − 1Tn R(λ)−1dR(λ)) det(R)[det(Q(λ))]2. (45)

Hence, critical values of the incompetence parameter can be found by finding zeroes of either
det(Q(λ)), or [1 − 1Tn R(λ)−1dR(λ)].

In a special case of a rock-paper-scissors game [40], stability of the interior equilibrium
is determined by the sign of the determinant of the fitness matrix [80], which gives rise to
three cases: (a) if det(R) < 0, then an unstable interior equilibrium exists resulting in a
heteroclinic cycle; (b) if det(R) > 0, then such an equilibrium is a stable mixed equilibrium;
(c) if det(R) = 0, then there exists a centre and periodic orbits around it.

However, games R̃(λ) and R(λ) exhibit the same behaviour [27]. Since the determinant
of the fitness matrix R(λ) always preserves the same sign as det(R), then det(R̃(λ)) also
cannot change its sign while the interior equilibrium exists.

Deriving a general form of equilibria depending on λ is complex and depends on the
form of matrices R and S. For a special case of uniform incompetence, which implies that
everybody makes mistakes with the same probability 1/n, we can sometimes find a closed-
form expression for the interior equilibrium. A uniform incompetence can be interpreted
as a form of plasticity in biological populations. For instance, phenotypic plasticity, when
different types might have slight variations in the exact degree of each gene expression. We
provide this result in the following theorem.

Theorem 7 [40] Let x∗ be an interior ESS for R. Then, for λ sufficiently close to 0, if the
starting level of incompetence, S, is a uniform matrix, that is, si j = 1/n,∀i, j = 1, . . . , n,
then

x∗(λ) = 1

λ

(
x∗ − 1 − λ

n
1n

)
(46)

is an interior ESS for the game R̃(λ).
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In [11], it was shown that pure-strategy equilibrium’s stability properties can be determined
from the sign of the j-th column of matrix R̃(λ). Hence, given the maximal level of incom-
petence, we can determine which of the vertices will be stable and when this stability will
change.

Theorem 8 [40] If

(sl − s j )T Rs j < 0, ∀ l 	= j

then vertex j is a stable point of the replicator dynamics with execution errors for λ ∈ [0, λc),
where λc is the smallest critical value of the incompetence parameter where r̃l j (λcl j ) changes
its sign for some l 	= j .

This result can be generalised for any level of incompetence, where we will have to
consider

(ql − q j )
T Rq j < 0, ∀ l 	= j,

for all levels of λ, where qi is the i th row of Q(λ). Generally speaking, this condition implies
that for a pure strategy to be stable under incompetence, it is necessary for it to be the best
response to itself given all other pure strategies.

As in [38], in Fig. 5, we provide some cases illustrating how equilibria stability can change
as competence level of the population changes, for an example of an unstable rock-paper-
scissors game. In every panel, the colour-coded bar at the top indicates which of the three
vertices is stable, while in the main plot we depict the interior equilibrium components as
functions of λ. Even in this simple game, the behaviour exhibited by the replicator dynamics
in response to changing λ can be very rich. As shown in these three examples, the inte-
rior equilibrium may or may not exist for different values of the incompetence parameter.
Similarly, one, two, three or none of the vertices may be stable at the same time.

As in the case of classical games, in evolutionary settings it is natural to consider decreasing
levels of incompetence, a process we called learning. Note that increasing λ corresponds to
greater skill level and decreasing incompetence.

In the evolutionary games setup, dynamic incompetencewas interpreted from twodifferent
perspectives: as an environmental shift that requires adaptation from organisms before the
stable equilibrium is reached and as a learning process designed to maximise the fitness of
the population after the population stabilised at some equilibrium.

Behaviour exhibited by the population dynamics when the process of learning is treated
as a function of time, λ(t), was considered in [36,38]. There are many options possible when
choosing the functional form. So far, two functional forms of λ(t) were analysed: a sigmoid
and a periodic function. The sigmoid form of learning implies that organisms are capable
of learning faster in the beginning of the process and slower when they reach sufficient
competence. An assumption of a slowing rate for high enough levels of λ is motivated by
the absence of necessity to learn fast since the evolutionary stable outcome can already be
reached (see Theorem 6).

Analysing parameters ofλ(t) one can determine how longwill it take for species to be fully
recovered in behavioural sense and act as in the environment they are familiar with. However,
while the functional form of the adaptation trajectory captures the pace and steepness of the
learning process, the starting level of incompetence can be seen as ameasure of themagnitude
of the changes in the environment. That is, the further the new habitat is from the previous
one, the longer it may take for organisms to fully recover.

Since natural habitats are prone to some form of regular stochasticity, in [36], it was also
consideredhowperiodic environmental fluctuations due to the seasonal or daily changes affect
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Fig. 5 Examples of equilibria transitions for different cases of an unstable rock-paper-scissors game. Here,
we consider three examples with different matrices Si and Ri in each panel A, B and C. First, we plot the
interior equilibria transitions for λ ∈ [0, 1] and report intervals of λwhere one, two or all three vertices become
stable in a colour-coded bar. Then, for λ = 1/2 we plot a phase diagram in Δ3 of the corresponding replicator
dynamics [32]. In the table for each example we report eigenvalues of the Jacobian of the replicator dynamics
for each of the equilibria of the dynamics for a given λ = 1/2. Interested reader is referred to [38] for the code
used to produce plots in A, B and C.

the evolutionary dynamics. It appeared that periodicity of environmental changes leads to
periodic behaviour in the evolutionary dynamics as well. Specifically, if the original game
possesses a stable equilibrium, then the solution of the incompetent game with periodic form
of incompetence will converge to a stable periodic orbit around this stable equilibrium.

Let us now demonstrate how the concept of incompetence can be applied to amore specific
biological setting. In the next section, we formulate a game of two foraging strategies of
marine bacteria and try to analyse it from the perspective of incompetence.

3.4 Bacterial Motility Game under Incompetence

Evolutionary game theory has been widely applied to studying the evolution of microbes.
Despite their primitivism and small sizes, marine bacteria are among the most ubiquitous
forms of marine organisms, playing a central role in governing health of marine ecosystems
and regulating global biosphere [52]. Understanding how cells make decisions and interact
has implications for both biology of bacterial communities and our exploitation of these
communities [1,20,21,44,46,48]. Fundamental to nutrient competition among bacteria is the
choice of motility (chemotactic) strategies. Chemotaxis—the ability to sense environmental
signals, and react to the stimuli accordingly—has been studied since the late 1800s [16,61].

However, a deterministic game theoretic approach misses an essential feature of the bac-
terial population dynamics: these populations and their interactions are highly stochastic. For
instance, stochastic environmental fluctuations often affect ecological systems [21]. In order
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to at least partially allow for this, the concept of incompetence was applied to study foraging
strategies of bacteria in [36] by incorporating behavioural stochasticity in a matrix game that
captures interactions between different strategic types of microbes. The aim is to identify
the most efficient strategy for given environmental conditions. We consider two possible
strategies: nonmotile or chemotactic. Nonmotile bacteria cannot induce active swimming
and only drift with the water flow, whereas chemotaxis allows for active choice of direction.
The fitness matrix can be constructed as

Nonmotile Chemotactic( )Nonmotile 1 0

Chemotactic 1 − c + m 1
2 − c

,

where c is the cost of swimming andm is the reward for being able to efficiently determine the
direction of swimming and both parameters are normalised so that c,m ∈ [0, 1]. Depending
on the exact values of the parameters, the game might exhibit four different behaviours, as
proposed in [82] in relation to the signs of matrix elements in a canonical form from (40):

1. Nonmotile strategy dominates: for c > 1/2 and m < c;
2. Chemotactic strategy dominates: for c < 1/2 and m > c;
3. A stable mixed equilibrium exists: for c > 1/2 and m > c;
4. An unstable mixed equilibrium exists: for c < 1/2 and m < c.

We shall focus on two cases: when chemotactic strategy dominates nonmotile strategy
and when a stable mixed equilibrium exists. The mixed equilibrium is given by

xN = 2(m − c)

2m − 1
and xC = 2c − 1

2m − 1
. (47)

When introducing incompetence in a model, one has to take into account biological lim-
itations of the strategies. For instance, there exist no conditions under which a nonmotile
bacterium can exhibit chemotaxis because it lacks receptors and flagella required for such a
strategy. However, a chemotactic bacterium can be both nonmotile and chemotactic. Hence,
the starting incompetence matrix S for this example, may have the following form

S =
Nonmotile Chemotactic( )Nonmotile 1 0

Chemotactic 1
2

1
2

.

Then, the resulting induced incompetent fitness matrix R̃(λ) is given by

R̃(λ) =

Nonmotile Chemotactic⎛
⎝

⎞
⎠Nonmotile 0 1

4

(
4c + 2m − 1 + λ(2m − 1)

)

Chemotactic m − c 0

.

Note that the relative fitness of chemotactic strategy is not affected by incompetence.
However, the advantage of nonmotile strategy depends on the level of incompetence induced
by chemotactic bacteria. By using Lemma 4, we can determine the critical value of the
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Fig. 6 Stochastic incompetence in the bacterial motility game: a for m = 0.75 and c = 0.25, b for m = 0.75
and c = 0.7. In the first row we plot 100 simulated solutions of the replicator dynamics of the chemotactic
strategy, xC (λ, t), for a given stochastic process of λ(t). In the second row we depict the executed or observed
frequency of chemotactic strategy as a function of t and λ. The corresponding stochastic learning process λ(t)
is depicted in the last row of Fig.

incompetence parameter, which is determined as the solution of det(R̃(λ)) = 0 or r̃21(λc) =
0, and given by

λc = 1 − 4c + 2m

2m − 1
.

Depending on the stability properties of the dynamics in the original game, the behaviour
of equilibria under incompetence will differ. For instance, if chemotactic strategy was dom-
inating in a fully competent game, then for λ < λc both strategies will stably co-exist. If
a stable mixed equilibrium existed, then for λ < λc chemotactic strategy will dominate
nonmotile strategy.

Additionally, turbulence affects life of marine bacteria [71]. Mathematically, this can be
modelled via a stochastic adaptation process. Construct a stochastic learning process where
each point λ(t) is a random variable with distribution that is determined by the species’
migration process. This assumption provides a more realistic interpretation of the species’
behaviour when we take into account migration and environmental stochasticity. However,
games with an ESS are well-known to be robust [11].

We shall compare population dynamics for two types of the learning processes: deter-
ministic sigmoid learning and a stochastic migration process. Any learning process, either
deterministic or stochastic, will lead to the ESS in terms of a species’ choice (Fig. 6). Obser-
vations of the real behaviour depend on the incompetence matrix. Population’s behavioural
observations for different learning processes will be different depending on the learning
dynamics.

The stochastic learning brings us to a situation where the majority of bacteria in a popula-
tion are able to perform chemotaxis if chemotactic strategy was dominating (Fig. 6, left), as
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in the deterministic case. However, if there exists a stable mixed equilibrium, then dynamics
under stochastic incompetence converges to the stable frequency of chemotactic bacteria as
well (Fig. 6, right). This is yet different from the equilibrium of the game without incompe-
tence.

Due to incompetence, extinct strategies may still reappear in the behaviour of individuals
as a manifestation of mistakes that cause a revival of the extinct types. This randomisation
may become beneficial as a changing environment may require flexibility from individuals
in their adaptation.

Even if the adaptive peak has been reached (i.e. λ = 1), behavioural randomisation may
become essential in preparedness to unforeseen changes. This is supported by the existing
research in stochastic phenotype switching, when bacteria perform behavioural stochasticity
even in stable environments [30].

When considering incompetent games, the main focus of the analysis is on where the
dynamics will stabilise and whether a stable equilibrium will be reached. However, what if
the change in the environment happened after the stable equilibrium was already reached?
Is there an optimal way to re-learn effective strategies that is least costly in terms of fitness
losses? We discuss results answering this question in the next section.

3.5 Prioritised Learning

When allowing for learning after the stable equilibrium is reached, the focus of the analysis
is the population’s need to re-learn its effective strategies in an optimal manner. Hence, in
[39] the learning under incompetence was considered with respect to maximising the fitness
over the learning path.

When addressing learning, one needs to distinguish whether the entire population is learn-
ing with the rate λ or whether each strategy has its own learning rate λi ∈ [0, 1]. This decision
depends on the specific situation under consideration. For this section, let us assume a more
general case with λ = (λ1, . . . , λn) to define an evolutionary game under incompetence.
Then, a performance measure of the learning path over fitness can be thought of as

ΦC∗(λ) = max
C

∫
φC (λ)dλ,

where C is a learning path that can be taken and φC (λ) is the mean-fitness of the population.
Note that here it is explicitly assumed that every strategy i has its own incompetence parameter
λi , which implies that λ = (λ1, . . . , λn). Since the complexity of the problem grows with
the number of strategies, this model was considered in its simplest possible setup: when only
two strategies compete. That is, the fitness matrix R has the canonical form

Strategy 1 Strategy 2( )Strategy 1 0 a

Strategy 2 b 0

and the starting level of incompetence S can be denoted as

S =
(

η 1 − η

1 − γ γ

)
.

If the initial game has one stable pure equilibrium, then the optimal learning will simply
imply reduction of frequency of execution of the unwanted strategy. However, if the game
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Table 1 Definitions of advantages of Strategy 1 over Strategy 2. For the definition of advantages of Strategy
2 over Strategy 1, the inequality signs in parameters comparison should be reversed

Advantage Parameters comparison Discussion

Fitness advantage a > b Fitness advantage implies that
Strategy 1 has higher fitness and,
hence, is more abundant.

Learning advantage η < γ Learning advantage implies that
Strategy 1 is more flexible in its
execution of Strategies 1 and 2.

Strategic advantage δ > 0 or ã > b̃ Strategic advantage combines both
fitness and learning advantages
implying that if Strategy 1 is
disadvantaged in fitness (or
learning), then advantage in
learning (or fitness) can
compensate.

possesses a mixed stable equilibrium, it is no longer obvious what the learning path should
look like. Note that an interior equilibrium in a 2-strategy game has the following form
p̂ = (â, b̂), where

â := a

a + b
and b̂ := b

a + b
. (48)

In order to maximise the fitness of the population, it is sufficient to consider the mean
fitness function [74], which has the following form

φ = p̂Rp̂T = ab

a + b
,

which under incompetence is reduced to the analysis of two parameters

ã := η − â

1 − η
, b̃ := γ − b̂

1 − γ
. (49)

An important aspect stemming from thismodel is the understanding of fitness and learning
advantages. Given that relative fitness of each strategy is positive, that is, a, b > 0, we say
that the strategy with higher relative fitness obtains a fitness advantage.

In addition,we say that strategiesmayobtain a learning advantage. This concept is induced
by incompetence and implies that the strategy with more variability in the behaviour, that is,
with a higher probability of mistakes, has a higher potential fitness advantage which might
be achieved by reducing incompetence. Hence, the lower η or γ , the greater the learning
advantage. A new parameter δ := ã − b̃ was defined to measure the relative strategic
advantage of one strategy over another.We summarise and compare these concepts in Table 1.

Hence, since we allow for one strategy to have a relative strategic advantage over another
one, the optimal learning path depends on which strategy is advantageous. This phenomenon
was called prioritised learning.

Definition 4 We say that there exists prioritised learning forΦC (λ) among stepwise learning
paths, if there exists C∗ such that one of the directions is preferable over the other. That is,
ΦC1(λ) 	= ΦC2(λ), where Φ(λ) is the fitness-over-learning depending on the direction of
learning i and C1, C2 are the learning paths in directions 1 and 2, respectively.
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Interestingly, the sign of δ fully determines which strategy has to be learnt first. That is, it
cannot be determined separately based on either fitness or learning advantages of strategies.
The naive suggestion would be that the most advantageous skill in terms of fitness has to be
learnt first. However, the strategy with lower relative strategic advantage is learnt first in the
optimal learning path.

Theorem 9 [39] The direction of the optimal learning path is determined by the sign of δ:
for δ > 0 the direction of Strategy 2 is optimal and for δ < 0 the direction of Strategy 1
is optimal. If δ = 0, then there is no difference in the direction of optimal learning, that is,
ΦC1(λ) = ΦC2(λ).

We suggest that natural selection tries to compensate the most disrupted strategy first even
if its fitness is not the highest. Nonetheless, if the fitness difference is high enough to overcome
the effect of incompetence, then the optimal learning will demand that the better strategy
is learned first. Another possible interpretation would be to consider the mixed equilibrium
as mixed strategies used by players. Then, by learning the less-advantageous strategy first,
individuals are reaching the nearest optimal mixed strategy.

In the next section we shall demonstrate results from three previous sections on a reduced
2-strategy game based on the foraging strategies of marine bacteria as presented in [36].

3.6 Bacterial Motility Game and Prioritised Learning

Let us now assume that the population has stabilised at the mixed equilibrium defined in (47).
Assume that the environmental conditions have changed leading to deviations in strategy
executions for both bacterial strategies. For this, assume that the new starting incompetence
matrix is defined as

Ŝ =
Nonmotile Chemotactic( )Nonmotile 1 − ε1 ε1

Chemotactic ε2 1 − ε2

.

Since nonmotile bacteria can exhibit chemotactic behaviour only as a random noise, it is
natural to assume that ε1 ≤ ε2. Furthermore, let us allow for each strategy to be learnt at
a different pace as in Sect. 3.5. In order to determine the optimal path that maximises the
fitness over learning, we first calculate advantages of nonmotile and chemotactic strategies
from (49) as

ã = 1 − ε1

ε1
+ 2m − 2c

ε2(2m − 1)
and b̃ = 1 − ε2

ε2
+ 2c − 1

ε2(2m − 1)
.

Then, the strategic advantage of nonmotile strategy over chemotactic strategy equals to

δ =
(1 − ε1

ε1
− 1 − ε2

ε2

)
+

( 2m − 2c

ε2(2m − 1)
− 2c − 1

ε2(2m − 1)

)
.

Note that if ε1 = ε2 = ε, then δ = 1/ε > 0 and chemotactic strategy has to be learnt first
in one step (see Fig. 7 (left)). Generally, chemotactic strategy has to be learnt first whenever
δ > 0 or equivalently

ε1

ε2
>

2m − 2c

2c − 1
,
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Fig. 7 Prioritised learning paths for the bacterial motility game for m = 0.9, c = 0.75 and: (left) ε1 = ε2 =
0.1, (right) ε1 = 1/10 and ε2 = 1/6

which together with the condition ε1 < ε2 requires that m < 2c − 1
2 . We plot a special case

when δ = 0 in Fig. 7 (right).

4 Conclusions and Future Extensions

This paper is predicated on the belief that competitions/games with incompetent agents/
players are ubiquitous in nature. Hence, formalising the notion of incompetence and mod-
elling the impact of the resulting “mistakes" on the outcomes of games is worthy of detailed
analysis. However, we first must recognise that everyday use of the word “incompetence"
carries a very wide range of possible interpretations and hence needs to be narrowed down
in order to be rigorously analysed.

Hence, the line of researchwe surveyed is limited to situations where incompetence can be
adequately modelled via probability distributions on specified sets of actions available to one
or more players (assumption [A1]). This implies that incompetence induced mistakes mani-
fest themselves as random outcomes, different from intended outcomes. The latter certainly
captures some essential characteristics of incompetence.

However, in the case of classical incompetent games studied so far, assumption [A1] was
augmented by a requirement that players know one another’s propensity to make mistakes.
This “mutually known" aspect concerning the probability distributions ofmistaken executions
is certainly restrictive. For instance, it is clear that while it may approximately apply to a
match between two professional tennis players at Wimbledon, it would not hold for two
children playing one another. We hope that future investigations will relax this restriction.

4.1 Extensions for Classical Games

Currently, in the setting of classical nooncooperative game theory, incompetence has been
studied mainly in matrix and bimatrix games. However, there are clearly several other, more
general, classes of games to which this approach could be extended. Below, we name just
four, out of many possible, generalisations.
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a) Continuum of actions. Although we have only dealt with players having finitely-many
actions, the concept of incompetence could be extended to games with larger action
spaces, for example, games with a continuum of actions. Given a game with a continuum
of actions, mixed strategies are represented by cumulative distribution functions and
expected utility is computed as a Riemann-Stieltjes integral. This means that, in this
context, a general “incompetence-adjusted” utility function (as in (8)) would also need
to be expressed in an integral form.

b) Incompetence dependent action spaces. While the original incompetence framework
described by Beck et al. [9] allows a player’s selectable and executable actions to differ,
the theoretical development to date addressed only the case where they coincide. Intu-
itively, it is clear that there are situations where a player’s incompetence may contract or
expand their set of selectable actions. However, this raises the conceptual challenge of
dynamically capturing the changes to these sets, as a player reduces his or her incom-
petence via learning. This would need to be modelled in a sufficiently general and yet
technically tractable way.

c) Extensions to stochastic games. In stochastic games evolving over discrete time horizon,
at each stage players play one of a finite set non-cooperative games called “states". The
consequence of a single play is an immediate payoff (to each player) and a probabilistic
transition to a new state (e.g. see the seminal paper [65]). Clearly, it is possible to replace
each state by an incompetent non-cooperative game, thereby inducing an incompetent
stochastic game. Such a generalisation would be interesting and, likely, tractable.

d) Extensions to incremental learning. The incremental learning games formulated in
Sect. 2.5 adopt several simplifying assumptions that could be relaxed to further extend
the model. First, the assumption that a player’s learning trajectory can be parameterised
by a single learning parameter could be relaxed to allow for “multidirectional learning”.
Second, relaxing the assumption that a player’s level of incompetence can never be decre-
mented would allow the model to describe not only the process of learning, but also the
process of forgetting what one has learnt.

4.2 Extensions for Evolutionary Games

It should be clear that the work done so far in studying incompetent evolutionary games
constitutes merely a beginning. As above, in this section we briefly describe just three, out
of many, possible continuations of this research.

a) Generalisations of population dynamics. First of all, choosing to work within replica-
tor dynamics setting carries with it simplifying assumptions which open it to criticism for
oversimplification of natural reproduction processes. While replicator dynamics is a clas-
sical approach to modelling the effect of natural selection, over decades of research, these
assumptions were relaxed in new approaches to modelling population dynamics.

In particular, the effect of the finite population size and inherent stochasticity of the repro-
duction process were addressed in finite population dynamics likeMoran birth-death process,
ability of others to imitate successful behavioural aspects of neighbours were addressed in
imitation dynamics and the effect of interaction with neighbours was addressed in many dif-
ferent dynamics on networks. Hence, as a natural extension, one should consider how relaxed
assumptions on the population dynamics affect the dynamics of games with incompetence.

b)Generalising prioritised learning by exploiting the power of simulations. In recent years,
evolutionary models adopted methods of computer simulations to facilitate exploration of
more realistic complex models that would have been intractable using analytical methods.
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Hence, one could extend our prioritised learning of Sect. 3.5 to allowmore than two strategies
to compete at the same time. Furthermore, it is tempting to allow every individual organism
their own learning parameter so as to closer approximate natural scenarios.

While the complexity of such a complex model will render it intractable analytically,
simulating specific setupsmay shed light onmany puzzling biological problems. For instance,
the problem of determining how niches emerge and are filled by organisms while interacting
under many different environmental conditions with multiple organisms.

c) Learning as a function of frequency of strategies. One simplifying assumption we
made so far in all models of incompetence applied in biology is that of the separation of
the learning process from the reproduction process. However, evolution of learning or levels
of incompetence might be frequency dependent, which could lead to intricate co-evolution.
Setups that follow similar logic were considered in [81] and [75]. While results presented
in [75] can be seen as more general, the form of the exact dynamics of the learning process
in the settings of incompetence was not addressed in previous works. Hence, we believe it
would be worthwhile to consider co-dependence of x(λ) and λ(t, x).

Acknowledgements The authors would like to acknowledge stimulating email discussions with Dr Wayne
Lobb of W.A. Lobb LLC on the topic of evolutionary games. We also thank Dr Thomas Taimre for his input
to the material in Sect. 3.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Data Availability The data sets and simulations discussed in this article are available from the relevant co-
author upon reasonable request.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
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