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Viral capsids are structurally constrained by interactions among the amino

acids (AAs) of their constituent proteins. Therefore, epistasis is expected to

evolve among physically interacting sites and to influence the rates of sub-

stitution. To study the evolution of epistasis, we focused on the major

structural protein of the fX174 phage family by first reconstructing the

ancestral protein sequences of 18 species using a Bayesian statistical frame-

work. The inferred ancestral reconstruction differed at eight AAs, for a

total of 256 possible ancestral haplotypes. For each ancestral haplotype

and the extant species, we estimated, in silico, the distribution of free energies

and epistasis of the capsid structure. We found that free energy has not sig-

nificantly increased but epistasis has. We decomposed epistasis up to fifth

order and found that higher-order epistasis sometimes compensates pair-

wise interactions making the free energy seem additive. The dN/dS ratio

is low, suggesting strong purifying selection, and that structure is under

stabilizing selection. We synthesized phages carrying ancestral haplotypes

of the coat protein gene and measured their fitness experimentally. Our find-

ings indicate that stabilizing mutations can have higher fitness, and that

fitness optima do not necessarily coincide with energy minima.
1. Introduction
A central question in ‘evolutionary biochemistry’ [1] is how the structure and

function of proteins determine their evolution (see reviews in [2,3]). While

the traditional approach using phylogenetics allows detection of signatures of

selection at the amino acid (AA) and nucleotide level, the specific causes for

the observed and inferred genetic diversity in protein sequence, structure and

function, often remains unknown [2,4]. Phylogenetics incorporates very little

biochemical and structural information and thus has been criticized [2,5].

This gap is in part, due to the complexity of the factors determining macro-

molecular structure and to the uncertainty of what selection is acting on.

Even when signatures of selection are evident in a phylogeny, it can act on com-

plex genotype–phenotype maps, favouring not specific AAs at specific sites,

but complete traits encoded by multiple AAs within and between proteins in

a non-additive way (i.e. epistatic effects). Moreover, the structure, confor-

mational constraints, kinetics and folding dynamics of macromolecules are

important components for their function and of organismic fitness [6–9]. This

multifaceted problem calls for combined approaches between evolutionary

and structural biology [2].

The aim of this work is to understand the evolution of the capsid of the bac-

teriophage fX174 group (Microviridae). In this family, the capsid is made up of
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four proteins: the coat, scaffold, major and minor spike pro-

teins. The capsid is structurally conserved across species of

Microviridae; the sequence variation in the coat protein is

low (&5%; divergence). We specifically focus on the coat

protein, which is the central structural constituent of the

Microviridae capsid and study two main aspects: the distri-

bution of epistatic effects and selection. We estimate the

phylogeny of this group and reconstruct the ancestral states

for each AA at every internal node. From these data, we

determine which haplotypes to model, computationally

determine their free energy and epistasis and experimentally

synthesize some of them to assay their fitness effects.

Two actual questions regarding protein structure are: (i)

whether function and structure are close to a fitness optimum

and (ii) how this relates to a sequence coding for a structure at

energetic minimum. We approach the problem combining

methods from evolutionary genetics and from computational

structural biology to better understand the evolution of

free energies of the coat protein, study the distribution

of high-order epistasis and infer a fitness landscape, which

allows the value of the optimum to be determined. However,

we find that this evolutionary point does not correspond to a

haplotype that is at an energetic minimum.

Prior experimental works using site-directed or random

mutagenesis have shown that while most substitutions

result in a decrease of stability, a significant minority can

increase it [10–14]. Altogether, this is indicative that most

evolved sequences are close, but not exactly, at an energetic

minimum. We find exactly this pattern, which can be inter-

preted as populations maintaining fitness load due to

mutation and drift.

By viewing the free energy of the capsid as an evolvable

trait, we ask how interactions among AAs give rise to epis-

tasis. Free energy is the capacity to do work, which here

refers to unfolding, resulting in structural changes of the

protein. Being fully determined by the physical basis of the

structure and its environment, free energy is sequence-

dependent. Therefore, variability in sequences will result in

a distribution of free energies. If the genetic composition

changes through the phylogeny, so does the distribution of

free energies.

Through molecular analysis, biophysical calculations and

experimental essays, we address the interplay between

epistasis, selection and molecular evolutionary rates. This

connection between structural biology and evolution has

direct implications for the importance of structure–function

relationships and the role of epistasis in molecular evolution

[5–7,15,16].
2. Results
2.1. Phylogeny and ancestral reconstruction
Figure 1 shows the Bayesian phylogenetic reconstruction of

the coat protein of fX174 using a codon model of substi-

tution. The average nucleotide divergence among the

ingroup fX174 sequences was 0.047, with a low average

dN/dS ratio v ¼ 0.060 (95% credible interval: 0.049, 0.092)

and a maximum-likelihood estimate of v ¼ 0.084, consistent

with strong purifying selection (figure 2).

The ancestral reconstruction for the ingroup fX174 has 34

nucleotide differences (12 non-synonymous and 22 synon-

ymous) relative to the Sanger strain (SS) of the fX174
phage (GeneBank accession J02482). As our goal is to under-

stand the role of energetic changes in the major coat protein,

we focus solely on AA substitutions (table 1), for which we

carried out a separate phylogenetic analysis (electronic sup-

plementary material, S1).

At the ancestral node, eight out of 12 AA changes occur

as two different (uncertain) alleles. All possible allelic

combinations give 256 putative ancestral haplotypes. The

four remaining positions (3 V, 216R, 242F and 318R) are

fixed in the phylogeny except in the SS, and will be termed

‘ancestrally fixed’.

The ancestral haplotype containing these four fixed pos-

itions plus the remaining eight in the same state as the SS is

dubbed Ancestral Reference Type (ART; table 1). We chose

to use ART as a reference to minimize methodological

biases relative to structural analyses (Material and methods).

The ancestral haplotype containing all eight uncertain alleles

in a state different from ART is called AT8. All reported

ancestral probabilities are for the AA reconstructions. AA

substitutions are presented relative to ART.

Each ancestral haplotype has a posterior probability of

being the true ancestor. In our case, the most likely ancestral

haplotype (Pr ¼ 0.067) has only three differences from ART

(T92S, Q153E and S339A; table 1), more likely than the

uninformative prior probability, Pr ¼ 20�8 ≃ 5� 10�6.

Figure 2 shows that nearly all of the sites in the coat

protein have low v values indicating purifying selection

[23]. Six out of the eight variable sites in the ancestral node

are under diversifying selection, indicated by v . 1

(figure 2). The consensus of extant sequences coincides with

the ancestral haplotype Q153E, which also corresponds to

the AA sequence of species DQ079894.1. Three other ances-

tral haplotypes are also present in the extant species:

DQ079890.1, DQ079891.1 and DQ079880.1 (figure 1).

2.2. Spatial location of the ancestral haplotypes
Figure 3 shows the crystal structure of the SS fX174

(PDB:2BPA) and details the fragment employed for structural

simulations. Figure 4a,b shows the position of the ancestral

uncertain sites in the coat protein. Most of these sites face

the external milieux, suggestive of relaxed structural con-

straints (figure 4c). The ancestrally fixed sites mostly face

the inside.

2.3. Free energy at the ancestral state and in extant
species

We calculated the free energy of all probable haplotypes for

all internal nodes of our phylogeny and extant isolates

using FoldX, and with Rosetta only the 256 ancestral haplo-

types (due to computational limitation, see Material and

methods). These computational structural biology tools

allow the estimation of changes in DDG of the haplotypes

relative to a reference structure (Material and methods). We

chose ART as the reference, because it has the least changes

(four AAs) from the known structure of SS. By comparing

the free energy of haplotypes to an evolutionary equidistant

reference point at the ancestral state, and not to an extant

leaf (e.g. the SS), we avoid potential biases in our analyses.

The DDG calculated with FoldX and Rosetta will be denoted

by subscripts FX and R, respectively. Owing to compu-

tational constraints, we chiefly employ the FoldX simulation
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Figure 1. Phylogenetic tree of the coat protein of the fX174 and related phages used in this study. 1: Sanger et al. [17], 2: Lau & Spencer [18], 3: Wichman et al.
[19], 4: Rokyta et al. [20], 5: Godson et al. [21], 6: Kodaira et al. [22]. †Extant species with a coat protein identical to an ancestral haplotype. The underlined species
has a coat protein identical to the consensus of extant sequences. Nodes marked from A to P represent the internal node for which the ancestral reconstructions were
performed, see also table 1. Highlighted extant species and nodes indicate the presence of epistatic interactions. (Online version in colour.)
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dataset, but to the extent of our possibilities we support our

findings with Rosetta’s simulation results.

2.4. The energy spectrum of in silico random
substitutions is wide

Random in silico mutations of the capsid protein results in a

free energy distribution that is much wider than that of the

ancestral or extant species (figure 5a). While the maximum

DDG of the ancestral haplotypes is approximately

15 kcal mol21, in the random substitutions it is approxi-

mately 264 kcal mol21. Both of these extreme values occur

with only four substitutions. The smaller variance of the

ancestral distribution is consistent with purifying selection

acting on the capsid, assuming that mutations resulting in

large DDG are unfit.

2.5. Average increase of free energy with increasing
substitutions

We performed a linear regression in order to test whether

DDG increases with the number of substitutions. In the ances-

tral set, there is no significant trend (FoldX: slope ¼

0.15 kcal mol21, ANOVA p ¼ 0.50; figure 5b. Rosetta:

slope ¼ 0.03, ANOVA p ¼ 0.40). This is expected when

considering that, among the 256 putative ancestors, ART is

an arbitrary reference and from it there should not be any

particular trend in energetic states.

In the extant haplotypes, there is a significant trend where

each substitution adds on average 3.25 kcal mol21 (ANOVA

p ¼ 0.024; FoldX. No calculations with Rosetta). This slope

is consistent with the mean value of the distribution of muta-

tional effects. The higher slope in the extants is expected
because mutations accumulate as lineages diverge. Note

that the slope is heavily driven by three points which have

notably high free energies (DQ079885, SS and DQ079892;

the latter having 15 substitutions).
2.6. Mutational effects have a positively skewed
distribution

Following the terminology of quantitative genetics ([24],

p. 122; see also [25,26]) free energy differences of single

substitutions are called ‘additive effects’. These effects follow

a skew-normal distribution with mean of 4.83 kcal mol21

per AA (figure 6b) and positive skew, arguably suggesting

the capsid being close to (but not exactly at) an energetic mini-

mum [3]. While effects can be as small as 0.14 kcal mol21 (in

absolute value), others can be as high as 36.77 kcal mol21.

This distribution shape is consistent with that of quantitative

traits, which also show positive skews [27,28].
2.7. Few substitutions drive free energy changes
Relative to ART, the SS’s coat protein has a large DDGFX ¼

53.79 kcal mol21 ( p � 1028). Two substitutions, R216H and

F242 L, explain 56.34 kcal mol21 of it; the two remaining sub-

stitutions (V3I, A318 V) contribute by –3.07 kcal mol21.

Although these four substitutions conserve charge and

hydrophobicity, the former two involve aromatic rings, intro-

ducing significant steric reconfigurations, packing density

and changes of electrostatic interactions.

Species DQ079885 also has a large deviation (DDGFX ¼

50.88 kcal mol21); two substitutions (D338H and E145D) add

54.52 kcal mol21 (note the common presence of histidine);

the third substitution, S339A reduces it by 4 kcal mol21.
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Of the 15 AA differences in species DQ079892, three (Y102S,

T144N and V333I) contribute with 62.30 kcal mol21 (88%) of

the DDGFX ¼ 70.90 kcal mol21. The remaining 12 additively

contribute the remaining 12%. The free energy differences of

every single substitution varies according to two factors: the

original and derived AAs, and the position (surface or

buried) in which these occur. Notably, histidine and leucine

tend to have the strongest effects (figure 6a).

From these examples, we conclude that most free energy

deviations are driven by a few substitutions of large effect,

again coincident with the pattern of substitutions in quanti-

tative traits (figure 6b). In the discussion, we address

biophysical factors for this pattern.
2.8. Strength and causes of epistasis
Structural epistasis is calculated by subtracting the additive

free energy of the constituting single substitutions from the

free energy of that haplotype. We consider epistasis e = 0

when the p-value of a t-test is below p�≃ 2� 10�3. This test

was performed only with FoldX (Material and methods and

electronic supplementary material, S2).

About 37% of the multiple mutants are epistatic: 66 in the

ancestral set, two in internal nodes (one in Node C—K83Q,

T92S, G101R, P141A, Q153E, Q182 L, S339A and E150Q,

Q153E, S339A, also shared among several ancestral nodes),

and five in extant species (DQ079881, DQ079882,

DQ079887, DQ079891, DQ079893; figure 1).

The distribution of epistatic effects estimated using

FoldX’s data has a variance of 0.13, while using Rosetta the

variance is much larger, 1.8. However, their means are stat-

istically similar (20.27 and 20.13, respectively; t-test on

mean equivalence, p ¼ 0.30. See the electronic supplementary

material, S3 for details). A linear regression of epistasis from

FoldX’s data on the number of substitutions has a slope of

0.11 kcal mol21 in the ancestral species and a slope of 0.3

with Rosetta’s data. Electronic supplementary material, S3

describes and reports bootstrap tests giving p , 1024 for

both slopes. In the extant species, the trend is stronger,

with a slope of 0.22 kcal mol21 (figure 7b; FoldX). Epistasis
and DDGFX are weakly correlated in the extant species (no

data with Rosetta).

2.9. Statistical and structural epistasis are correlated
but not causally

Epistasis can be physically determined by interactions among

AA side chains [29]. This mechanistic source differs from the

canonical statistical definition [30]. Using an independent

dataset of the 256 ancestors’ energy obtained with FoldX,

we tested five ANOVA models (additive and up to five-

way mixed effects; Material and methods). Akaike’s infor-

mation criterion favours five-way interactions. However,

only 18 interaction terms (out of 218) are significant

(confidence ¼ 0.050). Statistical epistasis correlates with struc-

tural epistasis (electronic supplementary material, S2), even

when employing the pairwise model (data not shown). In

both the pairwise and five-way models, only five of the 27

pairwise parameters are significant. The pairs with significant

epistasis are the same in both models and involve two focal

AAs at positions 83 and 153 (inter-AA distance ¼ 33.41 Å).

Besides correlating with each other, 83 correlates with

141 (13.47 Å) and with 361 (40.1 Å), and 153 correlates

with 150 (42.86 Å) and 361 (13.04 Å). An important obser-

vation is that none of these pairs show significant structural

epistasis. Moreover, there is no over-representation of these

substitutions in epistatic multiple mutants. This raises the

question of how meaningful is the interpretation of regression

coefficients in association analyses in terms of causal factors.

2.10. High-order epistasis cannot always be
decomposed into pairwise epistasis

Pairwise and five-way statistical epistasis are strongly corre-

lated (slope ¼ 0.70, p≃ 0, R2 ¼ 0.86, corr ¼ 0.95), suggesting

that pairwise factors dominate interactions. Although pair-

wise effects are pervasive, there is statistical support for

high-order epistasis. The mean value of high-order epistasis

is 1.024 kcal mol21 (significantly different than zero; sign

test for the median, p≃ 0; figure 8a), and its variance is 0.77



Table 1. Uncertain sites found in the ancestral reconstructions of each internal node of the phylogenetic tree (figure 1). Node A is the most recent common
ancestor of the ingroup fX174 species analysed and presents the eight ancestral alternatives discussed in the text, ART is ktpeqqsa. The number of haplotypes
and the most likely haplotype for each node with the posterior probability associated is also presented. Capital letters represents uncertain sites and lower
letters fixed sites in that node.

node uncertain site
no.
haplo.

most likely
haplotypes Pr.

A K83Q T92S P141A E150Q Q153E Q182L S339A A361V 256 KSPEEQAA 0.067

B w w w w 16 KSAeeqSa 0.81

C 1(2)a qsaeelaa 0.97a

D w w w w 16 KTpEeqAa 0.43

E w/n.a.b 4 kNpqeqaa 0.46

F w w w 8 kTpEeqSa 0.73c

G w w w w w 32 kTPEEqsA 0.68c

H w 2 ktpeEqsa 0.89c

I w w w 8(16)a ktpEEqAa 0.424a

J w w 4 kTaeeqsA 0.76

K 1 ktpeeqsa 0.99c

L w w 4(8)a ktpEEqaa 0.64a

M w 2 kTpeeqsa 0.98c

N w 2(4)a ktpEqqaa 0.51a

O 1 ktpeeqsv 0.99

P 1 ktpqqqaa 0.99
aNodes with one additional uncertain site (G101R) not present in the ingroup ancestral Node A.
bNode E showed multiple alleles on site T92S/n.a.
cNodes whose most likely haplotype is identical to the consensus of the extant species.
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(significantly larger than that of total epistasis ¼ 0.14). In the

electronic supplementary material, S3, we present equivalent

results with Rosetta.

Using the data from FoldX, we find that compensatory

pairwise effects can be of contrary sign to the value of

higher-order interactions. It is striking that in some cases

these two terms balance each other, resulting in energy

values that seem to be additive, but have significant epistasis

(blue cross symbols in figure 8).
2.11. Fitness assays
Of 10 synthetic constructs containing ancestral versions of the

coat protein gene (the eight ancestral uncertain sites, ART

and AT8), all but one (E150Q) were recovered. Recovered

haplotypes presented the same plaque morphology as the

SS. Absolute fitness was measured as the growth rate per

hour (Material and methods), and relative fitness was

computed relative to both ART and SS.

As with the free energy calculations, we report fitness

relative to ART (figure 9a). Relative fitness values were not

statistically different from 1, i.e. equal in fitness to ART or

SS (t-test for mean). The lowest relative fitness corresponds

to the ancestor Q153E; note that this is the consensus of

extant species. However, fitness measurements are subject

to high experimental variance and due to limited data,

biologically meaningful fitness effects are hard to resolve.

Our average fitness measures are at most 5%, with a relative

error between 1.1% and 8.3%, hardly detectable through a

t-test. Nevertheless, we find a significant trend between
relative fitness and DDGR (figure 9b). (The trend with FoldX

is inaccurate; see the electronic supplementary material, S4.)

According to this regression, the haplotype that was not

recovered (E150Q) has a DDG ¼ 21.214 and would have

had the highest relative fitness ¼ 1.06.
3. Discussion
3.1. Thermal stability versus steric compatibility
It has been observed that the consensus of a group of

sequences shows higher thermal stability [31–33] and

higher fitness [34,35] than other sequences. The consensus

sequence is expected to be at an optimum value because

most substitutions tend to be detrimental and, under low

mutation rates, derived alleles are not represented in the con-

sensus. However, our results are in contrast to this because

the consensus sequence has the lowest fitness and the highest

DDG of the assayed haplotypes (figure 9).

We found no evidence for selective preference of substi-

tutions decreasing DDG. There are at least two alternative

explanations for this. First, it might be that stability is not

severely affected during the evolution of the capsid of

fX174. If stability would be selected, we would, instead,

observe an overall decrease of free energy along the phylo-

geny. Alternatively, if the capsid is at an energetic

minimum, there would not be any substitutions in the muta-

tional neighbourhood that would allow for further decreases

of DDG. Which of these two (or other) alternatives hold

remains open.



(b)(a) (c) (d )

Figure 3. Capsid structure and molecular model of the fragment. Molecular model of the fX174 capsid (PDB:2BPA) highlighting (a) the repetitive constituting
protein subunits (each colour is a subunit), (b) the 12 protein subunits in the fragment employed for our calculations, (c) the fragment and one protein subunit and
(d ) the fragment showing one coat protein (blue) and one spike protein (red).
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The interpretation that free energy measures stability

requires clarification. Assessing stability of the capsid

requires energy evaluations not only of the actual configur-

ation but also of alternative states such as when the capsid

is unassembled. In addition, we still require knowledge

regarding the activation energy for disassembling the

capsid. While free energy differences dictate the preferred

direction of the conformational change, activation energy dic-

tates the expected waiting time for this change to happen. By

contrast, FoldX and Rosetta measure DDG on the structural

degrees of freedom of side chains, which do not determine

thermostability (cf. [14], for an alternative approach that

does not rely on structural calculations). However, it remains

true, and an important point, that substitutions that do not

affect the native structure (as ours, occurring at the surface;

[36]) might significantly affect the folding rates [13], but

this is not reflected on FoldX’s or Rosetta’s calculations.

3.2. Distribution of mutational effects
Quantitative trait loci and genome-wide association studies

have revealed that additive effects follow right skewed distri-

butions [37,38], observations supported by compelling

theoretical arguments [27,28]. Despite the biophysical

nature of our trait, the additive effects on free energy have

a skew-normal distribution, consistent with quantitative

genetics.

An argument explaining skewed distributions is that sub-

stitutions of large effect are initially selected since they bring

the trait closer to a fitness optimum. Once close to an opti-

mum, only substitutions of small effects allow fine-tuning

of the trait to match the optimum trait value. Consequently,

there are few opportunities for mutations of large effects to

fix, but many for mutations with small effects [16,39]. We

observe this factor in our results, supporting evidence for

the proximity of the ancestral sequences to an optimum.

However, note that, even if this is true, this might only be a

local optimum.

Biophysical explanations of the distribution of single sub-

stitutions have several causes, some of which follow. First,

substitutions in protein surfaces evolve faster than buried

AA [36,40] and tentatively have milder effects because

solvent-exposed residues have less local interactions with

other AAs than buried ones, as indicated by the packing

density. This is matched in our data: the eight variable sites

in the coat protein are among the ones with the highest v,

and are, in fact at the capsid surface. Moreover, on comparing

figures 2 and 4c a correspondence can be seen between AAs

at the surface and values v . 1.
Second, steric effects, where bulky side chains substitute

smaller ones, disrupt packing [41], as is the case of His and

Leu which have the largest effects and have heavy side

chains.

Third, the change in electrostatic potential and van der

Waals interactions are naturally dependent on the chemical

composition of a focal side chain and its chemical environment

[42].

The mechanistic nature behind mutational effects raises

the question of whether this distribution remains constant

during evolution [43]. Epistasis invariably means that the

propensity of AA substitution changes with divergence [5].

But the coat protein of fX174 showing only a small degree

of divergence, makes this effect harder to detect, even if epis-

tasis is evident. However, we focused on the distribution of

effects at the ancestral state and did not compare directly to

the expected distributional in extant populations.

3.3. Selection
We found evidence that selection is acting on evolution of

fX174 coat protein, however, the mode of action is still

unclear.

The distribution of the effects in the random set is a sur-

rogate for neutrality. This distribution has larger mean and

variance than that of the effects along the phylogeny

(figure 5). Comparison of both distributions rules out that

the latter is neutral [39] (Kolmogorov–Smirnov test p≃ 0,

electronic supplementary material, S5), supporting the

action of selection.

A first scenario is that directional selection maintains the

structure very close to an absolute energetic minimum.

Unless there is substantial load, the occurrence of negative

mutational effects is unlikely because no substitutions can

further diminish the free energy of the capsid. Evidence

against this scenario is that the class of mutations that dimin-

ish the free energy is not small. Moreover, our experiments

show that there are substitutions that decrease free energy

and increase fitness (figure 9).

Directional selection with high mutation rates would result

in high load, where mutations that decrease free energy should

be expected. However, high mutation rates would result in a

large spectrum of fixed substitutions causing a higher phylo-

genetic divergence. The low divergence observed in our data

is indicative that selection is much stronger than mutation,

which altogether argues against this scenario.

An alternative is that the capsid is under stabilizing selec-

tion, where substitutions that deviate the structure from its

optimum fitness value are out-selected. As stated before,
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this fitness optimum does not need to coincide with the ener-

getic minimum. The extant species have a similar energy

distribution to the ancestrals. Further evidence comes from

simulations with random substitutions: having a wider distri-

bution of effects than the ancestral, it indicates selection. In

addition, the low average dN/dS ratio indicates strong

purifying selection, consistent with stabilizing selection.

Another evidence for stabilizing selection is that only 14

sites show a high posterior probability of having v . 1,

while 315 sites belong to a category with an extremely low

median for v ¼ 0.084. Of the eight ancestral uncertain sites,

seven are under positive selection (only one of them has a

low posterior probability). This corroborates strong purifying

selection, where only few mutations fix along each branch of

the phylogeny.

Figure 6 shows that among all substitutions histidine has

the strongest effect on DDG. We expect multiple histidine

substitutions to result in large free energy deviations. We

substituted the four fixed as well as the eight ancestral uncer-

tain sites to histidines, and compared it to 12 substitutions to

histidines at random sites (S1H, G57H, F124H, E178H,

A198H, G246H, M283H, F291H, G321H, G377H, Q405H,

D421H). The latter has DDG ¼ 735 kcal mol21, much larger

than the former, with DDG ¼ 213 kcal mol21. This difference

is consistent with our hypothesis of purifying (stabilizing)

selection because the observed substitutions act at positions

that minimize DDG deviations. Many of these substitutions

are at buried sites, explaining the stunning difference in DDG.

Although sites that are under positive selection evolve at a

higher rate than neutral ones (showing v . 1), the converse is

not always true because sites free of functional constraints (e.g.

at the surface) may evolve rapidly, even if they are not under
positive selection [44]. However, we exclude the latter possi-

bility because our experiments do not show a strong

statistical difference in fitness relative to ART or SS. Therefore,

we think that the ancestral uncertain sites are not entirely free

of constraints. Below we give further thoughts to this.

Investigations on the distribution of mutational fitness

effects of fX174 [45] (figure 10) showed that more than

two-thirds of 36 random single-point mutations (including

synonymous mutations) resulted in fitness changes. Of all

substitutions, only five non-synonymous mutations occurred

in the coat protein (gene F). Of these, two (K83T and N98T)

have no significant effect on fitness, yet both have v . 1 in

our phylogeny. The other three changes (A7D, P72S and

E79Q) have v , 1 and show a significant effect on fitness,

with A7D being beneficial. This pattern is further reflected

in a significant negative correlation between fitness effects

and v (R2 ¼ 20.84).

Figure 11 presents an estimation of the fitness landscape,

employing the distribution of both ancestral haplotypes

and random substitutions. We infer that the selective

strength is about S≃ 0:005, and that the optimum is at

DDG≃� 8:8 kcal mol21. This optimum fitness value

coincides with the peak of the distribution of extant species.

We stress that we did not include the extant species in the fit-

ness estimations. The consensus sequence is 7th in rank closest

to the peak (DDG ¼ 28.54 kcal mol21), and the most likely

haplotype is ranked 55th (DDG ¼ 211.66 kcal mol21). There

is no correlation between this ranking and the probability of

the ancestral haplotype.

We conclude that stabilizing selection is acting on the coat

protein of fX174 capsid. What could be its source? Note that

the ancestral variable sites occur at the surface of the protein
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(figure 4c). These are known to have less effect on protein

stability than those occurring at protein interfaces or enzy-

matic active cores [10,36]. (Our random simulations are

consistent with this known fact.) However, capsid self-

assembly can be seen as a cooperative event, and this coop-

erativity can be compromised by multiple mutations by

affecting rate limiting steps [42]. Multiple mutations can

affect the kinetics of this process, even if granting the struc-

ture of final capsid remains conserved because some

mutations affect folding/unfolding rates rather than native

structure [13,46]. Therefore, steric or kinetic constraints

prior to pro-capsid assembly might be more limiting than

thermal stability of the capsid, impairing the ability of the

coat protein to undergo particular functional conforma-

tional changes in the capsid self-assembly. If substitutions

introduce a significant increase in the free energy, there

might be steric constraints due to conformational changes.

If the free energy is decreased too much, the protein, besides

steric impairement, can be more rigid. The interplay between

these two factors is a possible source of stabilizing selection.
3.4. Epistasis
The relevance of epistasis has long been sought in protein

evolution [42], and remains a current question [3,4,6,47].

In evolution, epistasis facilitates mutation accumulation by
masking detrimental energetic deviations [16]. This restricts

the possible evolutionary paths through a network of few

but interconnected (nearly) neutral changes [48,49].

Figure 7b reveals an evolutionary increase of epistasis in the

fX174 family, while there is no significant increase in free

energy, which is consistent with the epistatic network idea.

Population genetics arguments indicate that selection is

more likely to favour antagonistic (or negative) epistasis over

synergistic (positive) epistasis [50]. Assuming that most

mutations are deleterious, epistatic substitutions that compen-

sate fitness have higher fixation probabilities. We find the

opposite pattern in our data, a positive correlation between

free energy and epistasis (data not shown). This antagonistic

epistasis hypothesis assumes that there is a genotype that can

match the optimum. In some models, it is also assumed that

the distribution of epistatic effects can bring a trait arbitrarily

close to the optimum. It might be that neither of these two

assumptions hold in our case. If an evolutionary optimum

value cannot be attained due to physical constraints and there

is a negative deviation from the optimum, positive epistasis

can be favoured [51]. This can explain the positive correlation

between energy and epistasis. (An alternative explanation

would be disruptive selection, but we would expect a bimodal

distribution of energetic effects, which is not the case.)

Substitutions change the electrostatic field, which propa-

gates beyond the immediate radius of hydrogen bond

interactions. Hence, epistasis is better explained by Coulomb,

van der Waals interactions, or entropic changes [29]. We

point out that we did not find any relationship between

epistasis and the establishment or breaking of hydrogen

bonds.
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We have a contrasting distribution of epistatic effects from

FoldX and from Rosetta. The first attributes roughly 10% of

the DDG to epistasis (consistent with [16]), whereas the

latter inflates epistasis up to 10 standard deviations (elec-

tronic supplementary material, S3).
3.5. High-order epistasis can compensate pairwise
interactions

Most prior work has only considered pairwise epistasis; the

usual assumption is that higher-order terms are of lower

effect or even negligible. The distributions of second to

fifth-order epistasis have comparable magnitude. Epistatic

coefficients are normally distributed, ranging between –1.50

and 1.50 kcal mol21 (electronic supplementary material, S2).

Our results imply that analyses based on only second-order

epistasis can be severely biased [52]. (Statistical epistasis

also supports the occurrence of high-order epistasis.)

Our findings show that high-order structural epistasis can

compensate pairwise interactions in such a way that, for

some haplotypes, the free energy appears to be largely addi-

tive. Does this epistatic masking have any relevance? The

answer depends on the context. For predicting the energetic

values of a given AA sequence, it makes little difference.

However, epistasis is known to mask genetic variation,

known as cryptic genetic variance. This is important in the
evolutionary context because it confers evolvability to the

capsid. Cryptic genetic variance occurs when a given allele

damps down the detrimental effects of other substitutions.

Consequently, although there might be a certain amount of

heterozygosity in the population, there is no genetic variation

in the trait. Although in our analyses we do not consider

populations, there is evidence for cryptic epistasis, which

might be an important mechanism in the diversification of

the fX174 family.
4. Concluding remarks
By jointly considering evolutionary and structural analyses,

we have determined the distribution of additive and epistatic

factors that have been preferred during the evolution of the

capsid of the fX174-like phages.

We found no evidence for a pervasive decrease of the free

energy during the evolution of the capsid. However, we

found an increase in structural epistasis, which is better

explained in terms of the evolutionary history, than by

thermodynamic arguments. This might be surprising for

physicists and unsurprising for biologists. In either case, the

joint analysis allowed us to understand the mode of evolution

in a way that would not have been possible based only on

one perspective [2].

Employing structural simulations allowed us to overcome

some limitations associated in the estimation of phenotypic

effects. For instance, we found no hierarchy in the order of
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epistasis: pairwise and multiple-way interactions have com-

parable strengths. We were also able to determine that

different orders of epistasis can compensate each other, buf-

fering mutation accumulation. Higher-order epistasis

remains an experimental and theoretical challenge, but

structural biology has aided us in this understanding.

As a last remark, we emphasize that our approach

allowed estimating an evolutionary optimum value. It is

not unthinkable that this fitness optimum is determined by

a biophysical energetic minimum. Although both need not

coincide, the inferred optimum and the minimal sampled

energy are rather close, and the difference could be justified

by a mutational load. Yet, we agree that this conclusion

would require further scrutiny.

Our work is a proof of principle of how evolution acts on

the physical basis of a trait, when a genotype–phenotype

map is determined from first principles. What the relation-

ship between free energy of the capsid, function and fitness

remains unclear. However, the strong signal of selection

on free energy provides compelling evidence of such

interconnection, irrespective of how complicated its nature is.
5. Material and methods
5.1. Estimation of the phylogeny
We retrieved from GenBank 18 sequences of fX174 sensu stricto
and four outgroups: G4, NC13, WA13 and fK (figure 1). We
limited our dataset to: (i) sequences originated from wild isolates

of the phage and (ii) complete genome sequences available. We

also included the canonical fX174 Sinsheimer/SS (J02482, SS).

The major coat protein gene (gene F) of the sequences was

aligned using CLUSTALW, implemented in MEGA 5.2 [53]. The

ingroup sequences have all the same size and are perfectly align-

able having only two shared small deletions of nine and three

continuous nucleotides (three and one AAs) in the positions

1129–1137 and 1147–1149 of the alignment relative to the out-

group. The resulting alignments were used to reconstruct the

phylogenies in MRBAYES v. 3.2.2 [54].

Nucleotide, AA and codon models were used in the recon-

structions assuming a GTR þ g site substitution model (þv in

the codon model) with a Dirichlet prior on the substitution

rates of the GTR model and unconstrained branch lengths. All

other parameters were at their default values [54]. Samples for

topology and parameters estimates used two independent runs

of four Markov chains (one cold and three heated) for 2 � 106

cycles, sampling every 200 cycles and burn-in of 25% (Codon

model ran for 3 � 106 cycles, sampling each 300th). All three

phylogenetic reconstructions gave concordant topologies

(figure 1; electronic supplementary material, S1).

We used PAML 4.8 [55] to estimate the dN/dS ratio (v) of

gene F, using a number of codon evolution models M0, M2a,

M7 and M8 on the consensus tree of the Bayesian phylogeny.

The value of v is expected to be 1 if there is no selection on

that codon (neutral), v , 1 if the site is under purifying selection,
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and v . 1 for sites under diversifying (positive) selection. The

best-fit model is M8, which uses a discrete b-distribution (k ¼
10 classes) to model classes with 0 , v , 1 and one additional

class with v . 1.

5.2. Ancestral state reconstruction
The ancestral reconstruction for the last internal node (Node A,

figure 1) was carried out in MRBAYES using the topology of the

trees estimated for each dataset (AA, nucleotide and codons).

As the codon tree was the best resolved tree (i.e. had the least

number of polytomies; electronic supplementary material, S1),

we used it as a guide to specify constraints defining the internal

nodes and reporting posterior probabilities for the ancestral

states on each node. An independent run of MRBAYES was

performed for each node.

For the ancestral reconstructions, we considered not only the

most probable sequence for each node but also, taking advantage

of the power of Bayesian inference in handling uncertainty of the

posterior probabilities, we generated a set of all possible ances-

tors for each node. A site was considered fixed in the ancestor

node if the posterior probability of a state was Pr . 0.99 and

was considered uncertain otherwise. Moreover, we only con-

sidered uncertain sites that were in agreement across all the

reconstructions.

5.3. Molecular model of the capsid
Our model is based on the atomic structure of the bacteriophage

fX174 capsid previously solved by X-ray crystallography, 3 Å

resolution [56], (PDB:2BPA). The virion capsid, of T ¼ 1 icosa-

hedral symmetry, consists of a repeat of 60 identical

asymmetric units (figure 3), with each subunit constituted by

three proteins: the major coat protein (protein F, 426 AA), the

major spike protein (protein G, 175 AA) and the DNA binding

protein (protein J, 37 AA; figure 3c).

To study free energy changes of different haplotypes with

FoldX, we modelled a capsid fragment that consists of 12 sub-

units: one focal coat protein (as well as one DNA binding and

one major spike proteins) surrounded by 11 other identical sub-

units (figure 3). This complex represents one-fifth of the virion

capsid and takes into account the influence of neighbouring

protein chains that might affect energy through protein–protein

interactions.

The 12-subunit structure was optimized by minimizing

its energy. We employed the Amber ff99SB-ILDN force field

[57] using the GROMACS 4.5 molecular dynamics simulation

package [58]. The energy minimization was first executed in

vacuum followed by minimization in explicit solvent. This opti-

mized structure was used as a reference and as a starting point

for further analyses.

When considering substitutions, all 12 copies of the coat

protein in the fragment were mutated to accounting for inter-

protein interactions.

Free energy changes computed with Rosetta use only a single

copy of the coat protein. This is because Rosetta is more

computationally demanding than FoldX.

5.4. Energetic analysis
The free energy change was evaluated with the protein design

package FoldX (v. 3.0 beta 5.1). FoldX estimates the free energy

of unfolding in a given structure relative to another reference

structure. Its semi-empirical force field considers a weighted

combination of physical and statistical energy terms calibrated

to fit experimental DDG values from mutational experiments

[59–62].

The reference structure for our calculations was the capsid

fragment described above, but we included the ancestrally
fixed sites (table 1). As these substitutions appear in all extant

species except in the SS, this haplotype (ART) is an appropriate

reference structure.

When using FoldX, calculation for each haplotype is for a

complete capsid fragment. Thus, we divided the output DDG
by 12 to account for energy per copy of the coat protein. Because

both models (ART and haplotype structures) have the same

interface with the solvent, the contribution of the fragments’

interfaces to the DDG cancel out on average, and the only

remaining effect of the solvent is on the substitutions.

FoldX might be inaccurate for a large number of substitutions

[63]. However, most of our sequences have only few changes

justifying its use. Of the 38 polymorphisms in the ingroup,

the ancestral has at most 12 and the extant species at most 15.

We tested consistency of our findings with ddg_monomer

protocol from Rosetta [64]. This protocol is an alternative

method used to predict changes in protein stability (DDG)

induced by point mutations, with limited backbone confor-

mational freedom [65]. It requires minimization of the initial

structure, which we conducted using a single chain as a starting

model (ART). After introducing mutations, ddg_monomer opti-

mizes all side chain rotamers in both ART and mutant

structures, these steps follow three rounds of gradient based

minimization, which allows small changes in backbone confor-

mation. We set up ddg_monomer protocol as recommended by

Kellogg et al. [65] with 15 iterations of optimization, due to com-

putational costs. The final DDG values were converted from

Rosetta Energy Units to kcal mol21 as previously described [65].
5.5. Structural simulations
Capsid fragments simulations ran at 258C. With FoldX, we con-

sider a statistically representative sample of DDG by calculating

at least 20 replicas to account for alternative energetic minima

biasing the estimate [63]. Pilot simulations indicated that 15 repli-

cates are sufficient for the sample variance of DDG to be stable.

(p≃ 0 in variance ratio tests between bootstrapped distributions

of DDG with 5 and n ¼ 10, 15, 20 replicates; no significant differ-

ence between 15 and 20 replicas; data not shown).

We generate empirical distributions of free energies for each

haplotype in all internal ancestral nodes, for the extant species

and for each single substitution occurring in the alignment.

(The latter is required to estimate the epistatic effects.)

With Rosetta, we only considered an average value resulting

from 15 iterations (not individually reported by the package).
5.6. Estimation of structural epistasis
Epistasis is defined as non-additive effects on a trait, in this case

DDG. We estimate epistasis e of a haplotype H as

e ¼ DDGH �
X
i[H

DDGi: ð5:1Þ

The data from each haplotype and their corresponding single

substitutions are not paired. Moreover, different simulations can

have different numbers of replicates. Therefore, we estimate

the average epistatic value, �e. We test statistically whether epista-

sis is negative, positive or zero by performing a t-test using

the statistic

t ¼ �effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VH=nH þ

P
i[H ðVi=niÞ

p , ð5:2Þ

where Vk ¼ var(DDGk), is the sample variance of the free energies

of the haplotype k and nk is the number of replicates. We employ

Welch’s approximation for the degrees of freedom for unequal

sample sizes.
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5.7. Estimation of statistical epistasis
Statistical epistasis is based on the model:

DDG ¼
Xn

i¼1

aiXi þ
Xn

i,j¼1
i=j

eijXiXj þ
Xn

i,j,k¼1
i=j=k

eijXiXjXk þ � � � þ error,

ð5:3Þ

where ai are additive factors, ei... epistatic factors and Xi inci-

dence variables: Xi ¼ 0 for ART allele and Xi ¼ 1 for the

alternative allele. Factors a and e are estimated using an

ANOVA. In the design matrix of the ANOVA, we employ all

energy points, not their averages (4476 data values). The data

limit us to consider epistasis up to five-way interaction. Akaike

information criterion was computed to determine model

preference.

5.8. Experimental methods
To assess the fitness of the haplotypes found in the ancestral

reconstructions, we synthesized 10 of the 256 possible ancestor

haplotypes, each of the eight single variants (K83Q, T92S,

P141A, E150Q, Q153E, Q182 L, S339A and A361 V), ART and

the AT8.

These synthetic genes were then cloned in the Sinsheimer/SS

replacing the gene F and transformed in Escherichia coli C strain

to obtain phages with capsids containing the ancestral variants

(see the electronic supplementary material, S4 for full description

of experimental methods).
Absolute fitness was estimated as growth rate of the phages,

a measure of population doublings per hour in the presence of

excess of bacterial host [66]:

rt ¼ log2

Ct¼60

Ct¼0

� �
, ð5:4Þ

where Ct is the concentration of the phage at measurement time t.
Then, we estimated relative fitness against a reference (to both

ART and SS) by taking the ratio of the absolute fitness of a

given haplotype ri against the absolute fitness of the reference,

ro [66]. Each fitness measurement is based on a total of 16–24

replicates for each ancestral haplotype and 32–48 replicates for

SS and ART, with an experimental design that accounts for

variance in dilution, plating and handling during the essays

(electronic supplementary material, S4).
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