Analytic and machine learning
approaches to composite quantum
impurities
by
Wojciech Rzadkowski

February, 2022

A thesis submitted to the Graduate School of the
Institute of Science and Technology Austria (IST Austria)
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Committee in charge:

Prof. Dr. Julian Fischer, Chair
Prof. Dr. Mikhail Lemeshko
Prof. Dr. Onur Hosten
Prof. Dr. Johan Mentink

| INTMN AUSTRIA

Institute of Science and Technology






The thesis of Wojciech Rzadkowski, titled Analytic and machine learning approaches
to composite quantum impurities, is approved by:

Supervisor: Prof. Dr. Mikhail Lemeshko, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Prof. Dr. Onur Hosten, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Prof. Dr. Johan Mentink, Radboud University Nijmegen,
The Netherlands

Signature:

Defense Chair: Prof. Dr. Julian Fischer, IST Austria, Klosterneuburg, Austria

Signature:

Signed page is on file






© by Wojciech Rzadkowski, February, 2022
All Rights Reserved

IST Austria Thesis, ISSN: 2663-337X

I hereby declare that this thesis is my own work and that it does not contain other people’s
work without this being so stated; this thesis does not contain my previous work without
this being stated, and the bibliography contains all the literature that I used in writing
the dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved
by my thesis committee, and that this thesis has not been submitted for a higher degree
to any other university or institution.

I certify that any republication of materials presented in this thesis has been approved by
the relevant publishers and co-authors.

Signature:

Wojciech Rzadkowski
February, 2022

Signed page is on file






Abstract

In this Thesis, I study composite quantum impurities with variational techniques, both
inspired by machine learning as well as fully analytic. I supplement this with exploration
of other applications of machine learning, in particular artificial neural networks, in
many-body physics.

In Chapters 3| and [4] I study quasiparticle systems with variational approach. I derive
a Hamiltonian describing the angulon quasiparticle in the presence of a magnetic field. I
apply analytic variational treatment to this Hamiltonian. Then, I introduce a variational
approach for non-additive systems, based on artificial neural networks. I exemplify this
approach on the example of the polaron quasiparticle (Frohlich Hamiltonian).

In Chapter [0}, I continue using artificial neural networks, albeit in a different setting. I
apply artificial neural networks to detect phases from snapshots of two types physical
systems. Namely, I study Monte Carlo snapshots of multilayer classical spin models as
well as molecular dynamics maps of colloidal systems. The main type of networks that I
use here are convolutional neural networks, known for their applicability to image data.
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CHAPTER

Introduction

1.1 Many-body physics

In the search for fundamental laws of nature, one usually starts from studying the
properties of its single constituents. However, very often, interesting phenomena will
only be observed in a large ensemble of particles. Let us take water as an example. By
looking at just one HyO molecule, we cannot predict that it will be vapour, liquid, or solid,
depending on temperature and pressure. Even more so, by studying single molecules we
cannot predict the various snowflake shapes. However, studying many-body ensembles is
usually extremely difficult.

To emphasize how hard many-body physics is, let us provide two arguments, one from
classical and one from quantum physics. The classical example is N bodies (e.g. celestial
objects in space) with masses m,, n € 1,2,..., N. They are initially set at positions
{Z,(t = 0)} with momenta {p,(t = 0)}, interacting with gravitational force:

Frop = @m0 = T) (1.1)
|Zn — Tm[?

The task to find their evolution {Z,(¢)} is analytically feasible only for N = 1 and
N = 2 [Heg05]. Already the task for N = 3 does not have a general analytic solution,
despite the example being classical and only one type of interaction involved.

The quantum argument is the size of the Hilbert space, i.e. the vector space containing
all possible states of the system. For a system of N quantum particles, each of them
being in d possible states, the size of Hilbert space is d”¥. This exponential growth with
N quickly prohibits any exact calculations, even if they are numerical.

Due to the notorious challenges that many-body studies pose, some of the most
important methods, concepts, and approximations in physics have been developed to
tackle many-body systems. A surely non-exhaustive list of only most notable exam-
ples would include mean field theory [OS01], path integrals [GS98], density functional
theory [SS11], Monte Carlo methods [NB99], quasiparticle approach [VVGT16|, matrix
product states [Oral4], and artificial neural networks [CCCT19]. We will use some of
these techniques throughout this Thesis.

We will deal with many-body problems from the area of condensed matter physics,
both solid-state and soft-matter ones. We will introduce these systems in the next sections
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of this Chapter. In Chapter [2] we introduce methods that will be used to study these
systems. The details and results of these studies will be presented in Chapters [3 4] and [5]

1.2 Impurity problems

1.2.1 Quasiparticle approach

Sometimes many-body objects can be treated in a simpler way as one conceptual object
capturing the most important properties of all physically existing objects. A very simple
example could be a bubble of air in water, moving upwards to surface driven by buoyancy.
Studying the behavior of each molecule of nitrogen or oxygen inside the bubble would be
very involved. However, if we treat the bubble as one object, we can accurately compute
the distance to surface as a function of time. Such considerations give rise to the concept
of quasiparticles.

The quasiparticle zoo [VVGT16] contains a very large and constantly growing number
of species. For this thesis, two quasiparticles will be particularly important. The polaron
describes interaction between an electron and phonons excited by it in a crystal. The
angulon describes interactions between a linear rotor and a bosonic bath in which the
rotor is immersed. We will cover them in the following sections.

1.2.2 The polaron quasiparticle

When a negatively charged electron moves through a crystal, it distorts the positively
charged crystal lattice. We illustrate such a physical system in Fig. [L.1]

+ + + +
+ + + +
+ + + +
+ + + +

Figure 1.1: Physical system described with the polaron quasiparticle. An electron (orange)
moves through and interacts with a crystal lattice (blue).

The electron interacts with excitations of the lattice, called phonons. Such interaction
can be treated using the concept of quasiparticle; we imagine the travelling electron with
surrounding phonons as one object — electron ,dressed“ by surrounding phonons. This
quasiparticle treatment of such a system is well established. The polaron dates back to
work by Landau [Lan33|, Pekar [Pek46], Frohlich [Fr654] and Feynmann [Fey55].

The most general form of a Hamiltonian for such a system must assume the following
form:

A

H = Helectron + thonons + Helectron—phonons~ (12)

2



1.2. Impurity problems

One particular exemplification of this general Hamiltonian is known as Frohlich Hamil-
tonian [Fr654, [Devl6]. This Hamiltonian will be of importance to this thesis, so we will
discuss it in detail here. The first term describes the kinetic energy of the electron. It
will have the simple form

2 p
Heec ron — o 1.3
ton = (1.3

where m is the mass of the electron.

The second term describes the energy of the phonons written in second quantization:

thonons - Z hWLO&Ldka (14)
k

where wy o is the frequency of the longitudinal optical (LO) phonons in the system. The
operator ayx annihilates a phonon with wavevector k.

The electron-phonon interactions are given by:

f{electron—phonons = Z (Vk&ke_i Vk* a Lezkr> (1 5)
k

Here, k is, as already mentioned, is the phonon wavevector. The position of the electron
is denoted by r. The interaction potential Vi from Eq. (1.5 is defined by:

1 1
hwro /4man 2 h 4
‘/ —_ —_— 1
k ¢ k ( V > <2mbwLo> ( 6)

with a dimensionless coupling constant:

ez [ my 1 1
e 1.
0\ 2k ( 60> (17)

Combining Eq. (1.3]), (1.4), (1.5]), we obtain the full Frohlich Hamiltonian:

2
H= 0 4+ hosoifin+ 3 (Ve ™ + Rake™). (1.8)
k k

The Hamiltonian from Eq. can be transformed for easier handling. Our intuition
here is that we want to remove the impurity degrees of freedom — some methods, as we will
see in Chapter [4, are better suited for interacting systems of identical entities without a
distinct impurity. This goal can be achieved with the Lee-Low-Pines transformation, which
brings the Hamiltonian to the impurity frame of reference. It is a unitary transformation
given by the following unitary operator:

U = exp [h (P thakak> 'r] (1.9)

where P denotes the total momentum of the system. Let us then apply the transformation

from Eq. (1.9) to Hamiltonian from Eq. (1.8]):

/\ A

H transformed —

U=
(P 5 kakak>

(1.10)
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Looking at Eq. , we immediately see that, as desired, the impurity degrees of
freedom, namely position r and momentum p, are no longer present in the Hamiltonian.
The cost for this removal is that the first term of Eq. now includes correlations
between phonon modes, absent in the original form of the Hamiltonian in Eq. (L.8).
Nevertheless, the method used in Chapter [4] is naturally able to tackle such correlations,
while it is not naturally suited to deal with impurity coordinates.

1.2.3 The angulon quasiparticle

Having described the polaron quasiparticle, we now move to its rotational counterpart,
the angulon. The motivation to study the system composed of a molecule immersed in a
bosonic bath comes from experiment. External perturbations and thermal motion pose a
big challenge to molecular spectroscopy. For precise measurement, it is desired to have
the spectral lines as narrow as possible. However, the perturbations broaden these lines
in two main effects called collisional broadening and Doppler broadening.

To combat these problems, it is desirable to cool down the molecules and isolate
them from each other. Since 1990s, the so-called nanocryostats became a commonly
used technique [TV04]. One prepares small droplets of superfluid helium and puts single
molecules in them. Contrary to large portions of superfluid helium, which do not mix
well with impurities [JMRW64], such droplets can stably hold the molecules.

Such nanocryostats efficiently cool down and isolate the molecules. As a result, the
rotational spectra are free of both Doppler and collisional broadening. As another positive
“side effect”; one is able to measure spectra of molecules which in gas phase would be
reactive. However, these benefits come at a cost of the energy levels being distorted by
the presence of the bath. In order to properly interpret such spectra and understand
the physics behind the molecule-bath interaction, one needs sufficient theoretical and/or
numerical foundation.

Originally, the method of choice for analysing molecules interacting with the bath
were numerical calculations [Sza08al, especially using Monte Carlo techniques. When
compared with experimental data, these numerical techniques often turn out be very
accurate [TM02]. However, such methods, while providing accurate numerical results,
are less suitable for hinting towards physically intuitive understanding of the underlying
phenomena.

This gap has been bridged by the introduction of the angulon quasiparticle [SL15]
SL16l, [LS17, Lem17], which describes a linear rotor interacting with a many-body bosonic
bath. Rotation is the only degree of freedom in the original angulon theory. Within the
model, the molecule is assumed to neither move translationally, nor to possess additional
angular momentum degrees of freedom such a spin or orbital angular momentum. We
illustrate such a setting in Fig. [1.2]

For the derivation of angulon Hamiltonian, the bath was assumed to be a weakly-
interacting Bose-Einstein condensate. The angulon Hamiltonian for such a case is:

H = BJ*+ " wiblybine + 30 Us(k) [b, Y500, 6) + b Y2 (0, 8)] - (1.11)
kAp kA\p
Here, the first term is just the rotational energy of a rigid rotor with B being the rotational
constant. As there are no other degrees of freedom, rotation is the only contribution to
the total angular momentum J.
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Figure 1.2: Physical system described with the angulon quasiparticle. A linear rotor
(orange) interacts with a bosonic bath (blue). The molecule does not move translationally.
It does not have any angular momenta (e.g. spin, orbital) other than angular momentum
of the rotation.

The second term is the energy of the bath. The third term stands for the bath-impurity
interaction governed by the spherical harmonic operators Y, (6, ¢). Here U, (k) is the
interaction potential in reciprocal space.

For better understanding of the underlying physics, let us sketch the derivation of the
second and third term of the angulon Hamiltonian, Eq. (L.11). Let us start with the bath
alone without the rotor being present, i.e. the second term. This Hamiltonian at the
highest level of generality must assume the following form:

Hbosons = Hbosons—kinetic + Hboson-boson . (1 1 2)

In our case of a weakly interacting BEC, this becomes concretely:

. S k%Al an
Hbosons - k|2|k Z Vi)b CLk/ ak+qak/ak (113)
m 2, %

Here m is the mass of bosons in the bath. The quantity Vj,(q) corresponds to boson-boson
interaction potential, parametrized by the momentum q exchanged between two bosons.

To be able to handle this very general Hamiltonian in further calculations, we introduce
the Bogoliubov approximation:

e = (27)>Dod(K) + Preso. (1.14)

As of now, Eq. (1.14) is exact, but the in the next step, we will use this separation
between the lowest energy k = 0 mode and other modes. Inserting dy from Eq. (|1.14)

into Eq. (1.13]), we obtain:

A k|? At a n PN A A
Hiosons = Y l" + Vbb(k)n] PLPic+ 5 3 Von(k) [PLOT, + Db |, (1.15)
k

k2m

where we have neglected terms of order higher than two in Py and dropped constant
terms. This clarifies why we have used the term “approximation” when introducing the
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exact transformation in Eq. (1.14). We have indeed assumed now that most bosons are in
the lowest energy mode with k = 0.

Now, we use the following transformamon known as Bogoliubov rotation, in order to
express the Hamiltonian from Eq. in terms of new operator b

(i)k = ukl;k + ’Uiki)ik (116)

and X . A
@L = uiiblt + U_kb_k. (117)

The goal of this transformation is to eventually diagonalize the bosonic Hamiltonian. The
transformation is normalized as follows:

Jure* — Joie|* = 1. (1.18)

In our case of a stable Bose gas, the following uy, v diagonalize the Hamiltonian:

e([k[) + Vip(k)n | 1
= — 1.1
Uy \l 2w (k) + 5 (1.19)
and
e([k[) + Vip(k)n 1
=— - —. 1.2
Yk J 20(k) 2 (1.20)
Here we have introduced e(k) as short-hand notation for the kinetic energy:
k[*
k)= — 1.21
()= oo, (1.21)
while the dispersion relation wy is given by:
e = Je(k) (e(k) + 2Vip (K)n). (1.22)

Finally, we substitute Eqgs. (1.16}[1.17)) into Eq. (1.15)). This brings the Hamiltonian
from Eq. (1.15)) to the following form:

H =" wpblb, (1.23)
k

thus concluding the derivation of the bosonic bath Hamiltonian.

Having outlined the derivation of the bath Hamiltonian, let us proceed to deriving the
impurity-bath Hamiltonian, i.e. the third term of Eq. (1.11)). In its general form, it the
impurity-bath Hamiltonian will be:

mol bos Z Vmol bos qga éa ﬁ)e_qf‘dfyrqak' (124)

For our needs, it will be convenient to expand some quantities in terms of spherical
harmonics [VMKSS| Y,,(0, ). These are a set of orthogonal functions defined in spherical
coordinates. They are the spatial wavefunction of the angular momentum eigenstates:

<97¢|l>m> = Yim(e,(b) (1-25)

6
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We first expand the interaction potential in terms of the spherical harmonics:

mol bos Z V/\ Y)\O T ¢r) (126)

The angles used in Equations (1.24) and (1.26)) will be central for our derivation. Let
us summarize definitions of all angles used in the derivation of the rotor-bath Hamiltonian
in one place below:

e 0., ¢, are the spherical coordinates in the molecular frame of reference,
o Og, ¢g are the spherical coordinates in the laboratory frame of reference,

. é,gg are angle operators of the rotation between frames of reference marked by
Og, Pr and 0,, ¢,.. In general, there should be third rotation angle 4, but it is equal
to zero for linear molecules. The angles 6, ¢,~ are known in literature as Euler
angles [Eul76].

We also need to expand the bosonic operators ZA)L and by in terms of the spherical
harmonics. The expression for bk/\u is given by [LS17]:

b, = O / d,dO), sin O bl i~ Y3, (O, ). (1.27)

This obeys the proper commutation relations:
[Drenses D] = (K — k) 3ox Oy, (1.28)

while the inverse transformation is given by:

( 3/2

bl = wa i*Y5, (O, ) - (1.29)

To convert them to the molecular frame of reference, we use the following property of

spherical harmonics:

AT A A A
2)\+1Y/\/,L(9T7¢T)Y)\M(®R7®R>' (130)

Y/\O(era ¢T‘) = Z

I

Then, we convert it to momentum space using the Fourier transformation:

A AA

Vmol—bos ( 9 ¢ /d?’RVmol—bos (R, é, gz;)e_ikR

A PPN 1.31
— Y AR (O, 00) ¥5, (0. 6) 3y
Ap
We again apply the Bogoliubov approximation:
ﬁmol—bos = nvmol—bos (k =0, éu 9?)) + \/EZ VmOI—bOS (kv év ngS) (Ci);f( + (i)—k> (132)
k
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and Bogoliubov transformation:

~ A A ~ A A e(k) /~ ~
nvmol—bos (k - 07 Q, ¢) + \/ﬁz Vmol—bos (k7 67 Qb) w((k)) (ka + b—k) . (133)
k

We conclude by reaching our interaction potential from Eq. (1.11]):

> U(k) [IA)LMYA*M(@ é) + Bkk,uYAu(éa Gg)} (1.34)
with /
[ osnk2e(k) 17 o
U/\(k') = lu}(k)@)ﬂ—l)] /d?"'l“ V)\(T)])\(kr). (135)

Here j,(z) denotes the spherical Bessel function of the first kind:

= (m+a+1)

In this section, we have covered the original angulon theory. Many extensions have
been developed over the recent years. In Chapter [3] we cover an extension developed as
part of this thesis, namely an angulon with additional spin degree of freedom. The spin
degree of freedom naturally couples to a magnetic field, hence we will consider both the
case with and without the presence of an external magnetic field.

Other developments to date include angulon in a static electric field, dubbed ,,pendu-
lon” [RL16], angulon in time-dependent electromagnetic field [YL17] or the theory of a
rotating symmetric top inside a bath [CL17]. Addition of translational degree of freedom
has been considered and named the “rotating polaron” problem [YMD™18, IMLY20].
Multiple rotating impurities have also been studied [LYBT20]. The angulon has been
proposed as microscopic explanation of the Einstein-de Haas effect [MKL19].

A path-integral treatment of the angulon has been developed [BL17|. Interesting
connections to topology [YDLIT7, YL18, [YGL*™20, BLLY21al BLLY21D] as well as to
quantum group theory [YSL18] have also been identified. The dynamical properties of
the angulon have been studied in collaboration with experimentalists [CBCT19, (CCS™20),
CBS™21] in order to explain the spectra of helium-immersed molecules excited with laser

fields.

1.3 Lattice systems

The presence of a lattice is a fundamental property of crystals. A D-dimensional lattice
is an infinitely stretched set of discrete points in R”, whose positions are given by:

R:n1a1 + ngas + ... +npap. (137)

Here ny,no, ..., np are integers, while aj, as,...,ap are vectors defining the primitive
translations of the lattice.

In this Thesis, we will focus on the square lattice in two dimensions. The lattice vectors
as defined in Eq. (1.37)) are in this case simply given by:

a; — [0, 1], g = [1,0] (138)

8
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Let us also note that also with multiple layers, these models are essentially two-dimensional.
The layers do not make the lattice three dimensional as the lattice should stretch infinitely
in its dimensions.

In this section, we will concentrate on spin lattice models, where each site of the lattice
is occupied by by a single spin. We will be studying the following concrete spin lattice
models:

» bilayer Ising model,
o trilayer Ising model,

e Ashkin-Teller model.

We will now introduce these models briefly. More details can be found in Chapter [5|along
with the results of their study.

1.3.1 Ising model

The Ising model is a paradigmatic model used to study ferromagnetism using the methods
of statistical physics. The Hamiltonian of the Ising model is given by

]f] =—J Z 004, (139)
<ij>

where < 77 > denotes summation over all pairs of nearest neighbours on the lattice and
0; = £1 denotes the classical Ising spin variable.

Let us note that the form of the Hamiltonian in Eq. involves abstract summation
over nearest neighbours, but does not define the lattice. This Hamiltonian is universal
and hence can be studied on many types of lattices and the physical properties of the
models will change depending on the lattice. However, as already said, we will focus on
square lattices.

One can couple multiple square lattice Ising models to obtain a multilayer Ising model.
The simplest such system is the bilayer Ising model with two layers. The Hamiltonian will
be a natural extension of the Hamiltonian from Eq. with an additional coupling
constant K, which mediates the strength of coupling between the layers.

H:—J Z O'Z'O'j—J Z TiTj_KzaiTj- (140)
<ij> <ij> i
The quadratic coupling in Eq. (1.40]) is known as Yukawa coupling. The Ising spin

variables o;, 7; = +1 correspond to the first and second layer, respectively.

For three layers, we proceed analogously. Hence, the Hamiltonian of the trilayer Ising
model on a square lattice will be:

]f] = —J Z O'iO'j — J Z TiTj — J Z VZ‘VJ' — KZO'Z‘TZ' — KZTiVi' (141)
<ij> <ij> <ij> 7 %

This is, again, a Hamiltonian comprising individual single-layer Ising models coupled with
Yukawa coupling. Now there are three Ising spin variables o;, 7;, ; = £1 corresponding
to the three layers.
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1.3.2 Ashkin-Teller model

The Ashkin-Teller model is inherently multilayer. It does not exist in single-layer form.
It consists of two square lattice ising models with a quartic interlayer coupling. The
Hamiltonian of the Ashkin-Teller model is given by

.E[AT:—J Z O'Z'O'j—J Z TiTj—K Z 0;0;T;Tj. (142)

<i,5> <i,j> <i,5>

Here o; and 7; are again Ising spin variables. Due to more involved coupling, the Asking-
Teller model features a rich phase diagram, partially characterized by composite order
parameters. We will discuss it in more detail in Chapter 5

1.4 Colloidal systems

Lattice systems, such as those discussed in Section [I.3] can be used to explain a wide
range of phenomena in solid-state systems. However, they are less applicable to soft
matter systems, which are central to our understanding of living creatures [BH03]. In this
section, we will provide an introduction to the basic physics of complex fluids. We will
start with fluids in general, then proceed to complex fluids, and then to colloidal systems.
At this point, let us introduce the following standard terminology: “fluid” refers to both
“gas” and “liquid”, while “condensed matter” refers to both “liquid” and “solid”.

Fluids can be divided into two basic types: simple and complex fluids. Simple fluids
refer to fluids whose interaction potential is spherically symmetric and does not contain
both attractive and repulsive parts. An example of such interactions can be the purely
attractive Lennard-Jones potential, which we discuss later in this chapter. Examples in
nature include molecular nitrogen, ammonia, methane or atomic noble gases like argon.
Their phase diagrams are simple and well studied, typically consisting of just solid, liquid
and vapour phases. In the gas phase, they are completely disordered; in the low density
limit it is reasonable to entirely neglect the intermolecular interaction in an approximation
known as ideal gas model. In the liquid phase, the substance becomes densely packed and
ordered at short scales of a few intermolecular distances. Crystallization to solid phase is
associated with the appearance of a long-range order.

Complex fluids are characterized by more involved interaction between the individual
constituents. Their interactions can contain both attractive and repulsive parts and/or
be non-spherically symmetric. Such interactions lead to an emergence of much richer
phase diagrams. An example that we will discuss in this Thesis is a spherically symmetric
potential with repulsive part manifested at short distances between the particles and
the attractive part dominating the longer distances. Such systems are called short-range
attraction, long-range repulsion (SALR). This competition between the interactions
leads to a much richer phase diagram, in which the constituents of the SALR systems
self-assemble into different types of patterns [GLL09, WGO02].

Such competition between the interactions can be a property of a wide range of
physically different systems. Such interactions are, for example, manifested in globular
proteins [SSCT04al, which after folding form spherical structure. Another example,
which we will consider in this thesis, are colloidal systems, where spherical insoluble are
suspended in another substance.

10
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For mathematical modelling of SALR systems, a simple and widely used model is the
combination of Lennard-Jones and Yukawa potentials. Their are responsible for modelling
the attractive and repulsive parts, respectively. The Lennard-Jones potential is given by:

vny(r) = de ((j)m - (‘;)6> . (1.43)

Here o is the distance at which the potential crosses zero (sometimes referred to as
atomic diameter). The parameter e regulates the depth of the attractive well of the
potential and is often called dispersion energy. The Lennard-Jones potential is valid if
we assume spherical symmetry of the interactions. For anisotropic interactions, one can
add an additional term to the potential from Eq. , for example a dipole-dipole
interaction potential. In this Thesis, however, we will concentrate on spherically symmetric
interactions.

The Yukawa potential is given by

e " (1.44)

A
Uvukawall’) = —

vukawa (1) =
Here A is the magnitude of the potential, while the parameter s sets the range of the
potential to 1/k. The Yukawa potential is sometimes referred to as “screened Coulomb
potential” as the exponential decay of the e™* term screens the Coulomb interaction A/r,
which decays much slower.

In Fig we illustrate both Lennard-Jones (panel a) and Yukawa (panel b) potentials
as well as their sum (panel c).

In this Thesis, we will be focusing on homogeneous systems. We will not consider
interfaces with other substances. However, it is worth noting that pattern formation
effects occur for example at oil-water interfaces [MFKMI10], or particles adsorbed on
membranes [SC12, SC13] .

11
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(c) Short-range attraction, long range repulsion (SALR) potential resulting from summing both
Lennard-Jones and Yukawa potentials.

Figure 1.3: The SALR potential used in this thesis (panel ¢) and its two contributors:
the Lennard-Jones (panel a) and Yukawa (panel b) potentials. The y-axes have different
limits in each of the panels to show the most relevant details of each potential. The x-axes
are the same in all panels. See text for details.
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CHAPTER

Methods

2.1 Variational approach

Given a Hamiltonian of a system, H, solving a static quantum mechanical problem
amounts to solving the time-independent Schrodinger equation [LLI3) [GSIS]:

Hy) =E|p). (2.1)

Solving this equation corresponds to finding a set of orthogonal eigenstates and corre-
sponding eigenenergies:

HY) = E; W),  (bilv;) = by, (2.2)

where 0;; is the Kronecker delta.

This is exactly feasible only for few systems. For more involved systems, one needs to
resort to approximate techniques. One of them is the variational approach, which we will
discuss here. Among all eigenenergies of a given quantum system, the one with particular
importance is the ground state, i.e. the state characterized by the lowest energy. In the
variational approach, one picks up a family of candidate states parametrized by a set of
parameters W

[w), W=¢&,&, ... (2.3)

Then, for any Hamiltonian H and given configuration of the variational parameters W,
one can compute the expected value of energy as follows:

(Wwl| H [dyw)
(Wwlbw)

Naturally, this energy depends on the variational parameters. In variational approach, we

are interested in the lowest energy state, so we minimize the energy FEjy, over all possible

.. . .. t
variational parameters W to obtain our variational energy E))':

Eyy = (2.4)

<¢W|ﬁ|¢w>'

(Vwltow) (25)

t . .
EYYY = min Eyy = min
w w VTN
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The quantity E%’t is our final solution from the variational method. It is always larger or
equal to the ground state energy:

E%t 2 EO _ <¢0| H Wo>7 (26)

(tholtho)
where |1)g) is the true ground state and the equality holds if the true ground state belongs
to the class of states represented by the variational ansatz.

Hence, the most difficult and the most impactful part of solving any Hamiltonian with
variational approach is to choose a well-suited ansatz. The choice of variational ansatz is
usually based on the physical intuition about the given system. In what follows, we will
describe one particular type of variational ansatzes, inspired by artificial neural networks.

2.2 Variational approach with large number of
structured parameters: the birth of
neural-network quantum states

In the previous section, we have discussed the variational approach in general. Let us
now introduce the recent developments, where variational parameters are structured into
a neural-network-inspired architecture. In principle, there is no fundamental limit to
the number of variational parameters. One needs, however, to take into account that
with increasing number of parameters, finding the set of parameters that minimize the
variational energy becomes increasingly difficult.

Recent times witnessed huge, fast-paced developments in machine learning, especially
deep learning. These developments were caused by increasing ability to train large neural
networks, especially using GPUs. They are sometimes referred to as the “deep learning
revolution”, often associated with a deep network called AlexNet [KSHI12| winning the
2012 ImageNet image classification challenge with a huge 10.8 % advantage over the
runner-up.

Before proceeding to variational ansatzes inspired by artificial neural networks, let
us provide a brief introduction to artificial neural networks in general. They are a
framework to decompose functions, often with highly-dimensional arguments (input) and
multi-dimensional values (output) into a composition of smaller functions. The individual
building blocks (i.e. the basic functions that are not compositions of other functions) are
called neurons. They are organised sequentially in groups called layers. Such approach
is inspired by life sciences and aims to provide a simplified model of the function of the
brain.

In the most basic form, called multilayer perceptron, each of the layers typically takes
the entire previous layer as input and implements the following function

hy (hj_1) =0 (W) 'h;_y +b;). (2.7)

Let us explain this equation in detail. Here hy denotes the k-th layer of the network. They
are vectors of shape (neurons(k), 1), where neurons(k) is the number of neurons in the k-th
layer. The matrix Wﬁ_l contains trainable weights that perform a linear transformation
between the layers j and j + 1. This matrix has shape (neurons(j), neurons(j — 1)). The
vector b; is the bias of the j-th layer and has shape (neurons(j),1).

14



2.2. Variational approach with large number of structured parameters: the birth of
neural-network quantum states

The aim of the activation function o(z) is to introduce nonlinearity. Otherwise, multiple
linear layers would just trivially collapse into a single linear transformation. Popular
choices for the activation function are tanh, ReLU:

z, x>=0
ReLU(z) = { 0. z<0 (2.8)
or the sigmoid function:
el‘
i id(z) = . 2.9
sigmoid(x) 1 (2.9)

Over the years, numerous detailed architectures of neural networks have been developed.
In this Thesis, we will be using two specific architectures that we will discuss in details in
the following part of the Thesis.

The applications of artificial neural networks are very broad. Just to name a few interest-
ing examples, they have been successful in playing games at superhuman level [SHM™16],
solving partial differential equations [LKAT20], providing natural language machine
translation [Sta20] or filtering e-mail spam with high accuracy [DBCT19].

The training process corresponds to finding an optimal value of cost function dependent
on a large number of parameters, in deep learning often millions of them |[GBCI6]. This
setting is naturally very similar to the variational setting in quantum mechanics. This
similarity sparked the interest of quantum physics researchers as the successes of machine
learning could potentially be repeated in quantum physics by harnessing the power of the
machine learning concepts to boost the variational approach.

The landmark idea, that we will also develop in this Thesis, was introduced by Carleo
and Troyer in Ref. [CT17]. There, the Restricted Boltzmann Machine, which is a well-
established concept in computer science [Monl6], is used as a variational ansatz for
spin-1/2 systems. In this introduction, we will concentrate on one-dimensional spin
chains.

On top of the visible spins v;, ¢ € 1... N, the authors introduced an additional , hidden”
layer of spins h;, j € 1... M. The complex variational parameters are {a;}, {b;} and
{W,;}. They can be thought of as follows:

e a; are visible spin biases,
 b; are hidden spin biases,

o W,; are weights, which densely connect all visible spins with all hidden spins.

Then, the ansatz is:
»(8) = (SlY) = Zexp (Zazsﬁ—Zb h; —G—ZVVUSZ ) , (2.10)
{hs} i

where |5) is a Hilbert space basis vector corresponding to the visible layer (i.e. physical
spins) configuration:
§= 51,82,...,8N. (211)
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The sum goes over all possible hidden spin configurations. Hence, it can be computed
exactly and the ansatz assumes the following form:

J

0 = (510 = X e (S ) T 1+ i) (2.12)

7 [

{hs}

We visualize this approach graphically on Fig. 2.1}

N4

Visible spins (S S9 S 3 SN

Figure 2.1: Visualization of the restricted Boltzmann Machine approach to one-dimensional
spin chains, introduced in Ref. [CT17]. The variational ansatz is constructed by concep-
tually introducing a new layer of “hidden” spins in addition to “visible” spins forming the
chain. See text for details.

Then, the aim, as in every variational approach, is to minimize the energy functional

E = M (2.13)

(Y1)

This minimization inherently involves two subproblems:

1. calculating (estimating) the gradients of energy with respect to the variational
parameters

2. minimizing the energy, at each step performing the gradient estimation procedure
from point 1

Estimation of the gradients. However, as already mentioned in Chapter (1], due to
the size of the Hilbert space growing exponentially with the number of spins involved,
exact numerical calculation of the energy is infeasible. Therefore, one performs stochastic
sampling of the system with Metropolis-Hastings algorithm, which is a Monte Carlo
method commonly used to get stochastic estimates of energy and its gradients with
respect to variational parameters.

Minimizing the energy After having obtained the gradient estimates, the problem
to minimize energy is the standard minimization problem common in machine learning
community. Therefore, one can take the full advantage of the plethora of well-developed
techniques. The simplest approach is to simply update the weights by a small fraction
of the gradients (stochastic gradient descent). More involved techniques include the
Sorella method [SCROT7a], or the modern techniques used in deep learning, such as
momentum [Pol64] or Adam [KB14] optimization.
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Many extensions of the original neural-network quantum states framework have been
developed. Already in Ref. [CT17], the same ansatz was used to calculate dynamic
properties of the system. Instead of the time-independent variational energy, the following
quantity was minimized:

dist <md |ﬁ§t>> i |¢(t)>> , (2.14)
where
dist(|e) , |0)) = arccos m (2.15)

is the so-called Bures angle [Bur69]. This approach directly corresponds to minimizing the
difference between the left-hand- and right-hand-side of the time-dependent Schrédinger
equation:

Ldlv) 4
ih =2k = H (1)) (2.16)

Apart from the dynamics, the neural-network quantum states approach has been extended
to open quantum systems [HCI19, VBRC19, [YHI19, INS19]. Other extensions include
bosonic [Sail7] and fermionic [NDYTI17] systems, as well as sytems of coupled fermions
and bosons [Nom20)].

2.3 Artificial neural networks as a tool to
characterize phase transitions

Physical applications of artificial neural networks stretch way beyond variational opti-
mization of ground states. Another application that we will pursue in this Thesis is the
reconstruction of phase diagrams from snapshots of the system. The term “snapshots”
might for example refer to Monte Carlo snapshot of a classical lattice spin system or to
snapshots of a continuous system obtained with molecural dynamics methods, or even to
images of a physical system obtained in an experiment.

These snapshots can be treated like images for computational purposes. Compared to
image (e.g. photograph) classification tasks from computer science, the physics problems
are often simpler. For instance, a layer of spin-1/2 particles will only feature binary values,
S, = 1/2. Compared to color images, where the standard is to use 8-bit color depth,
giving 256 different possibilities per colour (256% = 224 possibilities in total for an RGB
image), this an extremely significant decrease in the size of all possible combinations.
This often allows successful with much less computational power than normally needed in
the field of image classification.

One can work in one of the two basic frameworks of machine learning:

o unsupervised learning, where the phase diagram is explored by the algorithm on its
own, without being fed prior training information, such as Monte Carlo snapshots
associated with labels,

o supervised learning, where labeled examples are provided, the model learns from
them, and is able to do further classification.
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One particular architecture of the artificial neural networks that is particularly well
tailored to solve discrimination problems in computer vision are convolutional neural
networks (CNNs). These networks contain one or more convolutional layers. These layers
perform a convolution between their input and a set of trainable filters. We illustrate a
convolutional layer in Fig. [2.2] In this figure we also show the size dependences between
the input and output layers.

J feature maps

Input image size PxP J feature maps
size WxW P = 1+(W-K)/S (P/L)x(P/L)
— —
/ _—
J convolutional Pooling
filters tile size LxL
size KxK

Figure 2.2: Visualization of a convolutional layer followed by a pooling layer. The input
image is independently convolved with J convolutional filters with stride S, resulting in J
feature maps. Each of them is then pooled, resulting in J new smaller maps. See details
in the text.

Each filter convolves with the input image independently, thus resulting in multiple
feature maps. Such approach allows the filters to learn different patterns in the input
image. The key parameters of a CNN architecture are:

o filter size — this should be chosen such that it captures the expected size of features
that one aims to detect. For example, if we expect order up to second-nearest
neighbour in a square lattice physical system, it is reasonable to use a 5x5 filter.

o stride — the step size in the discrete convolution. Larger strides decrease the
dimensionality of the feature maps, but might miss relevant features.

o number of filters — the larger the number of filters, the greater the representative
power of the network. However, the risk of overfitting as well as memory and
computational cost also grow with the number of filters.

Convolutional layer is usually followed by a pooling layer. This method of non-linear
sampling has two main advantages. As a form of regularization, it prevents overfitting,
a phenomenon where the network overly fits to training data and generalizes poorly to
unseen data. Secondly, it reduces the feature map size, thus reducing both the memory
and computational power needed. The most common pooling operation is the max pooling,
where the tiles select the maximum value from their receptive field. We visualize the

max-pooling layer in Fig.
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Figure 2.3: Detailed visualization of the max-pooling layer. The pool tiles of size 2x2
select the maximum from their receptive field.
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Due to the nature of convolution operation, CNNs are perfectly tailored for learning
local features of images. Their filters have a fixed size which then moves over the entire
image. This has advantages both for image recognition as well as for physics. The filters
can train to recognize local patterns, in image recognition these can be objects that we
detect, in physics these can be local patterns of the lattice (for example antiferromagnetic
“checkerboard” pattern).

The applications of artificial neural networks to phase recognition have been pioneered
by Carrasquilla and Melko [CM17]. They have used CNNs in a supervised learning
framework to distinguish between phases of Ising model. This approach has been later
extended to strongly correlated fermionic systems [CCMKI17, BCMT17]. After the
successful supervised approaches, the more challenging unsupervised framework has also
been explored, e.g. in [Wanl6, WS17, [HSS17]. A good review can be found in [Car20].
The developments made in this Thesis are presented in Chapter
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CHAPTER

Variational approach to spinful
angulon

3.1 Chapter intro

As already discussed in Chapter [I], properties of quantum many-particle systems can be
understood by considering their elementary building blocks — individual impurities coupled
to a many-particle environment [Mah90, [Weil2, BP02]. During the last years much effort
has been focused on uncovering the physics associated with point-like impurities, possessing
simple or no internal structure. Such impurity problems date back to the concept of
polaron first introduced by Landau and Pekar [Lan33l, [Pek46l LP48].

The polaron, discussed in detail in Section [I.2.2] represents a quasiparticle consisting
of an electron dressed by a cloud of crystal vibrations. It has become a standard tool
to describe transport phenomena in solid state and chemical physics [Emil3l, Dev16].
Recently, controllable polarons have been realized in ultracold quantum gases of bosons
and fermions [MZB14, . JWS™16]. Another broad class of well-studied impurity problems
involves a localized spin coupled to a bath of bosons [LCD™87], fermions [LCNDO§]|, or
other spins [PS00].

In many settings, however, quantum impurities possess additional internal degrees of
freedom, such as orbital or rotational angular momentum. Such problems arise, e.g. in
the context of molecules rotating in superfluid helium [TV04], ultracold alkali dimers
interacting with a Bose-Einstein condensate (BEC) [JY12], or electrons whose orbital
angular momentum is coupled to the crystal lattice [KRLAJ05, [CGS05, [ZN14, [TP15|
GC15al [TTHT16].

Section introduces the ‘angulon’ quasiparticle [SL15, [SL16, [LS17], a convenient
tool to address the problems mentioned in the previous paragraph. The angulon forms
out of an impurity exchanging rotational angular momentum with a many-particle bath
of some sort; it can be thought of as a quantum rotor dressed in a coat of orbital bath
excitations. In a way, the angulon represents a rotational counterpart of the polaron,
however, the non-abelian algebra of quantum rotations and their discrete spectrum render
the angulon physics remarkably different.

The angulon theory has been tested against experiments on molecules trapped in
superfluid helium nanodroplets. There, it was observed that the effective moment of inertia
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increases for molecules immersed in superfluid helium, as compared to free species [TV04].
This phenomenon is somewhat similar to renormalization of the effective mass of electrons
interacting with a crystal lattice [Dev16]. It was recently shown that the angulon theory can
reproduce the effective moments of inertia for molecules in helium nanodroplets for a broad
range of species, both in the weak-coupling and strong-coupling regimes [Lem17]. Moreover,
a coherent non-adiabatic rotation of angulons formed out of I molecules has been
experimentally demonstrated [SSCT17]. The angulon theory thereby offers an alternative
approach to molecules in quantum solvents, along with established numerical techniques
based on quantum Monte Carlo and Density Functional Theory calculations [SzaO8bl,
RCGLV16, IABC™17].

In this Chapter we generalize the angulon theory to the case where the impurity pos-
sesses both rotational and spin—1/2 degrees of freedom and is exposed to a static magnetic
field. Our main focus will be on open-shell diatomic molecules rotating in quantum
solvents. It is important to emphasize that the angulon model (including Eqs.
and below) has been originally derived for an ultracold molecule immersed in a
weakly-interacting BEC, where the theory is expected to provide quantitatively accurate
predictions. It has been shown, however, that one can approach the angulon Hamiltonian
from a phenomenological perspective in order to describe the properties of molecules
in superfluid *He, in good agreement with experiment [LemIT7, [CLI7, [SSCT17]. Thus,
while the theory is not designed to compete with numerical Monte Carlo calculations
in accuracy, it is expected to provide qualitatively accurate predictions for molecules in
liquid helium along with simple explanations for the underlying physics. Furthermore,
the theory can be in principle generalized to other types of orbital impurities such as
polyatomic molecules, non-spherical paramagnetic atoms, or p—, d—, or f—electrons.

In Section |3.2| we derive the extended angulon Hamiltonian, which includes the impurity
spin and the impurity-field interaction. In Section we derive a Dyson equation for
the spinful angulon, which allows us to calculate its self-energy and spectral function. In
Section we analyze the angulon spectral function and the way it changes in a magnetic
field, for various bath densities. Section focuses on the angulon instabilities which
result in resonant emission of phonons with a given value of angular momentum. In
particular, we reveal the possibility to manipulate the angular momentum of phonons
using a magnetic field. In Section we study a limiting case when the magnetic field
tends to zero, thus discussing the spinful angulon in the absence of external fields.

3.1.1 Authors’ contributions

ML and I conceived the project. I performed the calculations under regular supervision
of ML.

3.2 Hamiltonian of the spinful angulon in a
magnetic field
We consider a molecular impurity with spin—1/2 and orbital angular momentum, immersed

in a bosonic bath. In the presence of a magnetic field, the system can be described by the
following Hamiltonian:

—

H = j{\mol + H\mol—f + j/v{\bos + ﬁmol—bow (31)
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3.2. Hamiltonian of the spinful angulon in a magnetic field

where the terms correspond to the bare molecule, molecule-field interaction, bosonic bath,
and molecule-boson interaction, respectively. Note that we assume a neutral, spinless
bath, such that its direct interaction with the magnetic field can be neglected. In the
following subsections we describe each term of Eq. in detail. In what follows, we use
the units where h = 1.

3.2.1 Bare spinful molecule

The first term of Eq. (3.1)) corresponds to a linear molecule with spin-1/2 (2% electronic
state), as given by the following Hamiltonian:

A
— =

Hyol = BL? +~L - S, (3.2)

Here B = 1/(21) is the rotational constant with I being the moment of inertia, and ~
defines the spin-rotation coupling [LBF04].

Since we focus on spin—1/2 molecules, in Eq. (3.2]) we omit the constant shift propor-

tional to S2. For higher spins (as, e.g., in *X molecules), the spin-spin interaction will
lead to an additional term in H,,. Furthermore, here we consider an impurity whose
translational motion is frozen in space, which is a good approximation for molecules in
helium nanodroplets [TV04]. Our formalism, however, can be generalized to include the
above mentioned terms, as well as to treat more complex impurities, such as polyatomic
molecules [Ber05].

We denote the eigenstates of the bare molecular Hamiltonian (3.2)) as |J = L +1/2, L, M)
with the corresponding eigenenergies

Eﬁ—BML+Q+7kJ—M(L+;>—H. (3.3)

Here J is the total (rotation+spin) angular momentum, L is the total rotational angular
momentum and M} is the projection of J on the quantization axis. All three numbers
are good quantum numbers. Note that the eigenstates can be written in the uncoupled
basis as

1
J:Li,LJL>:

o L1y Loy 69
g VL
CL,MJ—%;%,% |La M; — 1/2> ‘27 2> + CL,MJ+%;%,_% |L7 M; + 1/2> ‘27 _2> .
3.2.2 Molecule-field interaction
The term ﬁmol_f describes a static magnetic field applied to the system:
ﬁmol_f = Bﬁgz, (35)
where the dimensionless molecule-field interaction parameter is given by:
c}fgs//JB
= —— 3.6
- (36)

Here g, ~ 2.0023 is the gyromagnetic ratio, pup is the Bohr magneton, and ¢ gives the
magnitude of the magnetic field.
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Assuming that the magnetic field affects only the spin degree of freedom (i.e. neglecting
rotational magnetism in the case of molecules [LBF04]), the operator couples only
levels with the same L. In such a case, the eigenstates of the molecule+field Hamiltonian,
Hyol + HuoL s, represent field-dependent superpositions of the states |J, L, M) [FHOO]:

T, L, My) =0, (0) |J = L+1/2, L, My) +

(3.7)
+bJLMJ(77) |J =L- 1/27 L, MJ) .

In the presence of a field, L and M are good quantum numbers, while J is not. However,
in Eq. (3.7) we use J as an adiabatic (approximately good) quantum number, such that

J. L, M;) —3 | L, My). (3.8)

The exact form of the aj;,, (n) and by, () coefficients of Eq. (3.7)) can be calculated
as follows. For given L, M, the molecular and magnetic part of the Hamiltonian in the
matrix form reads:

L BnM B M?
N R BL(L+1)+ 3 + 2(Z+%J) —8n 1 - 7(“;)2
Hrnol + Hmol—f - B 72 B . (39)
_bn _ 7y _ _ nvly
5y /1 (Lé)Q BL(L+1) —3(L+1) 21t 1)

Upon diagonalization we find eigenenergies as given by Eq. (3.13]) and corresponding

eigenstate coefficients given by:
—¢1 +2(J — L)\ i + ¢3
ajrar,(n) = = , (3.10)
o3+ (—on + 2] — L) JoF + )2

and 5
birar, (1) = 2 , (3.11)
O3+ (o +20] - L)oT + @3)?
where
BnM. 1 M?
b= by (L s), da=Bn|1- (3.12)
+3 (Z+3)
The eigenenergies of the |J, L, M J> states are given by [FHO(]:
vy ~ 1
Ejpa, = BULA+1) = 5+ (J = L)Y(L + 5)¢prasy, (3.13)
where
Epv, = (1+ 200, XL + X3,)2, (3.14)
with u B
! Xpr 1 (3.15)

UM = P T (L 1)2)
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3.2. Hamiltonian of the spinful angulon in a magnetic field

3.2.3 Bosonic bath energy

The term ﬁbos corresponds to the kinetic energy of the bosonic excitations in a quantum
solvent, such as phonons, rotons, and ripplons in superfluid *He [SL06]. In its diagonal
form, the bosonic bath Hamiltonian reads:

ﬁbos - Zwk?i)\ul;k)\u7 (316)

kA\p

where wy, is the dispersion relation. The creation and annihilation operators of Eq. ((3.16))
are conveniently expressed in the angular momentum basis [LS17]:

A k . «
b = s f 09 00 i, i

. k N .
bk)\'u = W/ko Z)\ Y)\N(Qk) bk. (318)

Here ZA)L and by are the creation and annihilation operators defined in Cartesian space,
and Yy, () = Y5, (0k, ¢i) are the spherical harmonics [VMKSS|. The quantum numbers
k = |k|, A, and p, label, respectively, the linear momentum of phonons, the angular
momentum of phonons, and the projection of the phonon angular momentum onto the
laboratory-frame z-axis.

In Eq. (3.16]), the form of the dispersion relation wy depends on the particular system
under consideration. Here, without loss of generality, we chose the dispersion relation
corresponding to Bogoliubov excitations in a weakly-interacting BEC [PS16]:

wr, = \/€x(€r + 29mm). (3.19)

Here ¢, = k?/(2m) is the boson kinetic energy and gy, = 4may/m parametrizes the
interactions between the bosons of mass m, where ay, gives the boson-boson scattering
length. While the Bogoliubov dispersion does not provide a quantitatively good
approximation to the properties of superfluid helium, in the regime of large values of gy
and n it qualitatively describes the properties of a dense superfluid for small momenta k.
Furthermore, the theory can be extended to other types of excitations, such as rotons or
lattice phonons.

3.2.4 Molecule-boson interaction

The last term of Eq. (3.1]) determines the interaction between the molecule and the bosonic
bath, as given by [SL15J:

mol bos — Z U)\ Y)\M ¢)B£>\M + Y)\u(éa &)&Mu] (320)

kA\p

As already outlined in Section [1.2.3] the form of this term stems from expanding the
Hamiltonian in fluctuations around a homogeneous BEC of density n and applying the
Bogoliubov approximation and transformation (a constant mean-field shift is omitted).

In such a case the Fourier-space interaction potentials, Uy (k), can be obtained in closed
form [SL15]:

8nk26k

Unik) = wr(2A+ 1)

/ drr2Va(r) i (kr), (3.21)
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where jy(kr) is the spherical Bessel function, and V) (r) give the Legendre moments of the
two-body interaction between the molecule and an atom from the BEC in the molecular
frame:

mol—at Z V)\ Y)\O T gbr) (322)

The spherical harmonic operators, Y3, (6, ¢), in Eq. arise due to rotation of the
molecule-atom interaction potential from the molecular to the laboratory frame. The
explicit dependence on the molecule angle operators, (é, QAS), makes the angulon problem
substantially different from other impurity problems such as the Bose polaron [Dev16] and
spin-boson [LCD*87] models. It is important to note that while we consider the closed-
form coupling of Egs. and for simplicity, we expect the model to provide
qualitative predictions beyond the range of applicability of the Bogoliubov approximation.
For other types of impurities, such as electrons or non-spherical atoms, U, (k) will assume a
different form. Furthermore, the coupling constants U, (k) are taken to be independent on
the p quantum number, which is the case, e.g. for linear molecular impurities [SL15| [LS17].
Treating more complex, nonlinear molecules requires p-dependent potentials [CLI17].
However, the microscopic details of the impurity-bath interaction are not expected to
alter the effects discussed in this Chapter qualitatively. Therefore, in what follows we use

the coupling given by Eq. (3.21)).
Note that the long-wavelength behavior of Eq. (3.21]) is given by:

Un(k — 0) ~ CEM32 4 O(RMT/2), (3.23)

where ¢ is a constant independent of A\. The term (k*%/2 contributes to the rise of
Uy (k) for small values of k, which is a consequence of the centrifugal barrier emerging for
collisions with finite angular momentum. This behavior is illustrated in Fig. [3.1], where
Ux(k) is plotted for A = 0 and A = 1 at several densities.

3.3 The angulon self energy and spectral function

In order to uncover the behavior of spinful angulons in a magnetic field, we make use of the
equivalence between the variational and diagrammatic approaches to the angulon problem,
see Refs. [SL15| [LS17] for details. We start from the variational ansatz constructed of
field-dependent molecular states and taking into account single-phonon excitations:

WjLMJ> }/LQM 0) ‘J L, MJ>
+ Z Byu(k)CTM 0) [7,2.m,). (3.24)

JamsA i kA#

Jlmju

where |0) is the vacuum of bosonic excitations, and Z J/L a, and 3 Aji(k) are the variational

parameters obeying the following normalization condition:
Zipm, + >, |B,\jz(k)|2 =1 (3.25)
kAjl

Note that, despite the presence of the field, our variational coefficients are independent
of m;, which comes from the fact that the interaction potentials Uy (k) are independent
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3.3. The angulon self energy and spectral function
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Figure 3.1: Dependence of the molecule-boson couplings Uy and U; on k, for the parameters
defined in Section 3.4l Each coefficient Uy(k) is shown at three different densities:
n = exp(—15), n = exp(—7), n = exp(—3). Reproduced from Ref. [RL1§|, with the
permission of AIP Publishing.

of u. Moreover, in the presence of a field, M is the only good quantum number of the

system. In the variational ansatz of Eq. (3.24)), conservation of M is accounted for by

the Clebsch-Gordan coefficient C;%j’/\“ [VMKSS]. The number J, despite its presence
3T 5 A,

in the Clebsch-Gordan coefficients is not a good quantum number since the ansatz is

constructed on top of states which are not eigenstates of J2. This means that in Eq.
we neglect the processes where J changes due to the molecule-bath interactions, which is
a good approximation away from crossings of levels with different J. This approximation
becomes exact in the limit of  — 0, where J is a good quantum number.

In Refs. [SL15, [LS17] it has been shown, that by minimizing the functional

F= <77Z)jLMJ H - EWJLMJ> (3.26)

over Zjy s, and By (k), one can derive the following Dyson equation for the angulon:

G¥8 (B) ' =G4

JLM; JLM

(E)™" = S, (E), (3.27)
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where G% .~ (F) is the free molecule Green’s function

JLM;
1
JLM;
and - »
S iar, (B) UNR)* K, 5 () K3 () 50
JLM; = Tl |
ﬂ’ﬂ]:;\m’. Wk T m’.’<CE’m;’/{)‘7MJ_m;/)2E§)lm;.’ - E

J J

JLM
Kjlmj)\J
angular momentum algebra, dependent upon Clebsch-Gordan coefficients, aj, MJ(n), and

bipar, ().
Let us now derive Eq. (3.27) and provide explicit form of the coefficients Kj‘];an (n).

is the angulon self energy. Here (n) is a coefficient resulting from the relevant

A
We denote the terms of the ansatz from Eq. (3.24)) as ‘Q,DJLMJ> = ‘¢;LMJ> + ’@/}%LMJ>,
where:
1/2 5
‘w}LMJ> = ZJ/LMJ 0) )J> L, MJ> ) (3.30)
and N
JM; % ~
‘w(QjLM) = Z 5,\51(]5>C;,mj‘:,\,#blt>\p 10) ]7l7mj>- (3.31)
[3)
Jlmjp
We minimize the functional
F= <¢jLMJ H ‘¢J~LMJ> - E<¢JLMJ ¢jLMJ> -
= <¢§LMJ H ‘¢}LMJ> + <w02fLMJ H ‘w?fLMJ> + (3.32)
+ {<¢L17LMJ H ‘¢%LMJ> + C'C-} - F <¢JLMJ ¢jLMJ> -
To calculate F', we sequentially evaluate its terms. First,
<¢jLMJ ¢jLMJ> = Zspa,| + > |5,\jz(k5)|27 (3.33)
[5)

gl

where we summed over m; and p using the orthogonality relations for Clebsch-Gordan
coefficients [VMKSS]. Then

<w}LMJ H ’w}LMJ> = |ZJLMJ|E%LMJ7 (3.34)
and
<¢=27LMJ ﬁ’¢%LMJ> - Z |ﬁ/\ﬂ(k)|2 [Z(CJL{%{A,MJ_mj)QE‘?Zm]' + Wk - (3'35)
kXjl mj

The contribution of the interaction (fourth term of Eq. (3.1])) vanishes in Eqgs. (3.33),

, , unlike the <¢§LMJ‘ H\‘¢%LMJ> term, which is nonzero solely due to the
interaction. We express the field-dependent states in the basis of Eq. , and decompose
these states further as in Eq. . Now we can act with the spherical harmonics operators
on the rotational kets, with the matrix elements given by [VMKSS| [LS17]:

2L+ 1)2x+1)
Aw (2L + 1)

(L', M| Y3u(0,0) |L, M) = J ChatanClono: (3.36)
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3.4. Zeeman effect for the angulon

Then, making use of the spin kets orthogonality we arrive at the final form of <¢}~ I MJ‘ H ’1&% I MJ>:

H[¢200,) = (Zipa )2 Y B UARKSE (), (3.37)

lc)\]lmJ

(Wi,

where we denoted

]LJ\/IJ( ) = oM (2>\+1)(_ POl
Jlmg A JymgiA, My —m; A7 LOXO
L+%,M; L—3%,M; I+1m 1 m L,M;—1
x9|C, 7 agra, (M + b m]|C 277 1 1az, m+C 2 b3 (M| C g
{[ LMy;—1;1 17 JLM, LM -3:3,17JLMy Lmj—3%;%,479im Lm; 1 1%jlm; Lmg— L0 Mj—m;
1

L+ M ; L M, 3 I+4,m; } I— j . L,Mj+%
|:CL My+Lid _peioa, (M +Cp +11 - bJLMJ(")} [Cz,mﬁl;%ﬁ%aﬂmj(")+Cz,mj+%;%, %bﬂmj () Cl,ijr%;)\,MJ—mj :
(3.38)

’20

with a (1) and byp,, () given by Eq. (3.10) and Eq. (3.11)), respectively.

Having calculated the functional F', we can now compute its derivatives with respect
to the variational parameters:

OF

PG (Ziin))* (B, = B) + 32 Ba(k) )KJJIZM,\J =0, (3.39)
JLMy kXjlm,;
or

= Bt (k) | 22(C5 o aty -y i, = B+ |+ (Zar,)UMR) 32 Ky =0

(3.40)

Then, upon substitution of 3,5 (k) from Eq. ( into Eq. ( - }/;MJ cancels out
and we arrive at the Dyson equation as given by Eq. -

Furthermore, in the field-free limit, 7 — 0, the expression for the self-energy (3.29)) can
be simplified, see Section [3.6] for a detailed derivation.

By casting the variational problem in terms of the Dyson equation (3.27]), we are able
to access the energies of the excited states of the system by solving the following equation:

E= ESLM EJLMJ(E)a (3-41)
as well as to calculate the spectral function of the angulon, which is defined as:

Ajra, (E) = [G;Ei (E +1i07)]. (3.42)

3.4 Zeeman effect for the angulon

In this section we study the angulon spectral function, Eq. (3.42), in the presence of a
magnetic field. In order to describe the effects quantitatively, we use the Gaussian-shaped

potentials
Wi(r) = u,\(27r)_3/26_r2/(2’"§) (3.43)
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Figure 3.2: The angulon spectral function, Aj; ), (E), for different dimensionless densities:
(a) n = exp(—15), which approximately corresponds to bare molecular states in a magnetic
field as in Ref. [FHOQ], (b) 7 = exp(—7), and (c¢) . = exp(—3). In the left column, the
spectral functions are shown as a density plot, for all eight sublevels of L =0 and L =1,
as a function of the magnetic field strength, 7, and energy, E/B (these states are shown
one by one in Fig. [3.3)). The middle and right columns show the energy dependence
of the spectral function for two selected values of n = 2 and n = 4 depicted for four
states (1/2,0,-1/2), (1/2,0,1/2), (3/2,1,1/2), and (3/2,1,3/2) labeled as A, B, C, and D,
respectively. The primed letters A’) B’, C’, and D’ mark additional fine structure emerging
due to the interaction with the bath (see text). Reproduced from Ref. [RL1S8], with the
permission of AIP Publishing.

and the following parameter values in dimensionless units: ro = 7, = 1.5(mB)~/? and

ap, = 3.3(mB) Y2 ug = 1.75u; = 218B, as previously used in Ref. [SLI5]. Our choice of
spin-rotation coupling is v = 0.418 B, which is the value used in Ref. [FHO0].

In what follows, we focus on the substates belonging to L = 0 and L = 1 manifolds of
rotational angular momentum. Fig. shows the dependence of the angulon spectral
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3.4. Zeeman effect for the angulon

function on the field-strength parameter, 7. Fig.[3.2(a) corresponds to a vanishingly small
density of the bath, and therefore reproduces the structure of bare molecular states in a
magnetic field [FHOQ, [LF09).

The L = 0 and L = 1 manifolds of rotational angular momentum contain eight bare
molecular Zeeman levels (J, L, M) with their parity given by P = (—1)”. As the magnetic
field couples only levels with the same L, the parity remains unchanged in the presence of
the field. For extreme values of the projection M, i.e. My = +J with J = L + 1/2, the
field-dependence of the levels, as given by Eqs. f, reduces to the linear one.
For other states, linearity of the energy dependence on the field occurs in the high-field
regime due to Paschen-Back uncoupling of spin from rotation of the molecule.

Figures [3.2(b) and (c) reveal that for a finite bath density, the molecular levels
are shifted towards lower energies. This effect, known as polaron shift, is a result of
isotropic interactions between the impurity and the bath and has been widely studied
for structureless impurities [Dev16]. Apart from the polaron shift, Figures [3.2(b) and (c)
reveal a complex spectral structure emerging from the molecule-bath interaction. Namely,
a lot of metastable states (shades of yellow) appear in between the stable angulon states

(dark lines).

In order to understand this fine structure in detail, in the middle and right columns
of Fig. we present the spectral functions for the four selected states, A(1/2,0,—1/2),
B(1/2,0,1/2), C(3/2,1,1/2), and D(3/2,1,3/2), at two selected values of the magnetic
field strength, n = 2 (middle column) and n = 4 (right column).

The observed features are qualitatively similar to that predicted in Ref. [SL15] for the
spinless angulon in the absence of a magnetic field. For the vanishingly low density of
the bath, i = exp(—15), Fig. [3.2(a), each of the states is given by a sharp peak, which
approximately coincides with the molecule spectrum in the absence of a bath. For a
finite density, n = exp(—7), an additional fine structure emerges in the spectrum, as
labeled by the primed letters A’, B’, C’, and D’. This is the so-called Many-Body-Induced
Fine Structure (MBIFS) of the first kind [SL15], which emerges due to dressing of the
stable angulon state with a phonon excitation carrying zero angular momentum, A = 0
— this effect is described in more detail below. In a magnetic field, the position of this
phonon wing changes in the same way as that of the stable angulon state: the states B,
C, and D are shifted towards higher energies for larger 7, while the energy of the A state
decreases. For an even larger density, n = exp(—3), Fig. [3.2(c), the splitting between the
stable angulon peak and the attached phonon continuum increases further. Note that the
features C" and D’ for n = 2 and B’, C’, and D’ for n = 4 move outside the range of the
corresponding plots. Moreover, the further the phonon branch is from the main angulon
line, the broader is the spectral feature associated with it.

To provide a detailed analysis of the physical phenomena happening in the presence of
the bath and a magnetic field, in Fig. 3.3 we study the states one by one. The left column
presents bath-free bare molecular states. While moving to the middle and right columns,
first we notice the splitting of the levels due to the MBIF'S which leads to splitting of lines in
each plot into a doublet. This splitting results from the isotropic term Uy (k) of the molecule-
bath interaction in Eq. (3.20) and can be understood (approximately) as a splitting
between the states ‘j, L, ]\m Ino phonons) and ‘j, L, MJ> ® |one phonon with A\ = 0).
This effect is reminiscent of the phonon wings predicted for acetylene molecules in He
nanodroplets in Ref. [ZKW04], and will not be the main focus of our studies.

31



3.

VARIATIONAL APPROACH TO SPINFUL ANGULON

6 A=e 1 f=e" f=e 3
(1/2,0,1/2) (1/2,0,1/2) (1/2,0, 1/2)-| (2)
4
2/
0
-2
(1/2,0,-1/2) (1/2,0,-1/2) (1/2,0, -1/2)
6 (3/2, 1, 1/2) (3/2, 1, 1/2) (/2,1,1/2)
L
2 i
0
-2
(/2,1,-1/2) (3/2,1,-1/2) G2, 1,-1/2)
/ / /’
—
E
B 6 (1/2,1,1/2) (1/2,1,1/2) (1/2,1,1/2) | (b)
4
O e \
-2
(1/2, 1, -1/2) (1/2,1,-1/2) (1/2,1,-1/2)
6 (3/2,1,3/2) (/2. 1,32 (/2,1,3/2) | (c)
4 —
2 /
0
-2
(3/2,1,-3/2) (/2,1,-3/2) (/2,1,-3/2)
01 23 45

0123435

Ui

Figure 3.3: Spectral functions of all eight L = 0 and L = 1 states vs. magnetic field
strength and energy for densities n = exp(—15), n = exp(—7), n = exp(—3). The first
column on the left (density of 7 = exp(—15)) corresponds to bare molecular states in
magnetic field as in Ref. [FH00] The labels (a), (b), and (c¢) on the right correspond
to panels in Fig. 3.5 The blue dotted frames mark clearly visible angulon instabilities.
Reproduced from Ref. [RLIS§], with the permission of AIP Publishing.
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Figure 3.4: An example of a spectral function in absolute units, plotted for a molecule with
B = 14.603 cm™! (that of CH), spin-rotation coupling v = 0.4B, in a field of # =2 T, as
a function of the effective molecule-helium interaction uy and the energy E. The molecule
is immersed in superfluid *He (superfluid density n = 10?> cm™3). The states C' and D
are labeled jointly as they lie too close to be resolved. Reproduced from Ref. [RL18], with
the permission of AIP Publishing.

Secondly, we observe the emergence of instabilities which results from anisotropic
interactions, U; (k) of Eq. (3.20). The instabilities are highlighted in Fig. by the blue
dotted frames. It has been previously shown that such instabilities are accompanied by the
transfer of angular momentum from the impurity to the bath, i.e. the resonant emission of
phonons with nonzero angular momentum. Since in our model we include only the leading
anisotropic interaction term, U (k), the emitted phonon carries angular momentum of
A = 1, however excitations with higher angular momentum are also possible [RL16]. As
an example, the state (1/2,0,1/2) features the angulon instabilities around n = 2.8 at
the density of 7 = exp(—7) and around n = 4.8 at the density n = exp(—3), as can be
seen from the first row of Fig. [3.3] These instabilities occur due to the interaction with
the phonon continua of the states (1/2,1,1/2) and (1/2,0,-1/2), respectively. Another
example is an instability of state (3/2,1,—1/2), taking place around n = 2.5 at the
density of n = exp(—3), which is due to interaction with the phonon continuum of the
state (1/2,0,—1/2). It was previously shown that the instabilities discussed above lead
to anomalous screening of the impurities’ dipole moments and polarizabilities [YL17],
and can be manipulated using an external electrostatic field [RL16]. Crucially, from
Fig. one can see that the position of the instabilities depends on the magnitude of
the magnetic field n as well. This paves the way to control the resonant emission of
phonons with a given angular momentum, as discussed in the following section. As an
example, in Fig. [3.4] plotted in absolute units, we illustrate the emergence of angulon
instabilities for a molecule with the rotational constant B = 14.603 cm™" (equal to that of
CH), and the spin-rotation coupling v = 0.4B, in a field of 5 = 2 T. Although Fig. 3.4
is plotted for a high solvent density of n = 10*?* cm ™3, we also quantitatively account
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for lower interactions (such as those occurring at lower densities of weakly-interacting
BEC’s) by including the regime of small interaction parameter uq in the plot (the ratio of
up/uy = 1.75 is kept constant).

3.5 Angular momentum of the bath phonons and
normalization of their populations

In this section we study the dependence of the phonon populations in individual A
channels,

Bk = 3 B (P, (344

on the magnitude of the magnetic field. Here, the phonon populations Bm(lﬁ) can be
obtained from the variational calculations as follows:

Un(k) K50
CJ,MJ 2E0 E ) (345)
Z]( j,m;’;A,MJ—m;’) jlm;’ - + Wy

B,\jz(k) -

and the energy F found as a solution of Eq. (3.41]). The phonon populations g \ji(k) are
related to the variational coefficients of Eq. (3.24) by the following normalization relation:

B/\jl(k)
12"
(1 s m;l(kn?)

3%

ﬁ/\jl(k) = (3-46)

This normalization is problematic, thus we discuss the unnormalized quantities as they
fully show the proportion between phonon populations for different A channels. Let us,
though, discuss the details of the normalization issues. The quantity Bw(k‘) defined in
Eq. simply follows from Eq. if one temporarily assumes for the calculation
that the quasiparticle weight Zj;;,, = 1. This results in normalization condition of
Eq. for 3,5 (k) and complementary normalization condition for Zj;,, :

P 1
LM 1+ Z ’BAjl(k)P.
EXjl

(3.47)

As we can see, the normalizations of both phonon population 3,5 (k) and quasiparticle
weight Zj;,,, inevitably involve an integral of the following type:

/0 - dkﬂz)?. (3.48)

At the angulon instabilities, there is a pole and the integral is divergent. This physically
results in |8, (k)|* close to one for a given combination of A, j,! parameters and the rest
of By (k) coefficients and the quasiparticle weight Z;; ,, being close to 0. Although there
exist techniques such as Hadamard regularization, in our problem we need to calculate
the value of the integral, not its finite part.

Let us also note that the problem presented above does not influence the calculations
of spectral functions. There, the integrals are of type [;° dk‘%. There still might be
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a pole, but as we calculate the spectral function, the form of Eq. (3.42)) causes us to
introduce a small but finite imaginary part to the denominator and take the real part of
the integral. Mathematically, we know from Sokhotski-Plemelj theorem:

i [ dp—t ) _ Fir f (ko) +P/dk J(h) (3.49)

e—>0+a k’—k’oilﬁ k—ko’
where P denotes the Cauchy principal value and a < ky < b, that by taking e small enough,
in our numerical method we approach the Cauchy principal value of the integral. Hence,
had we been able to calculate the analytical form of spectral function from Eq. , it
would differ from the one obtained numerically in this Chapter (with an introduction of a
finite imaginary part) only by sharper spectral features.
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Figure 3.5: Dependence of the phonon populations /3 \(k) on the magnitude of the magnetic
field n and wavevector k for two first channels A = 0,1 in two different densities 71 = e~7
and 72 = e¢73. The three panels feature different states: (a) (1/2,0,1/2), (b) (1/2,1,1/2),
(c) (3/2,1,3/2). Reproduced from Ref. [RL18], with the permission of AIP Publishing.

Fig. shows the phonon populations £ (k) for two lowest channels, A = 0, 1, depending
on the magnetic field strength 7 and the wavevector k. As discussed above, the phonons
with A = 0 emerge as a phonon wing surrounding the main angulon state, while the A = 1
phonons are resonantly emitted at the angulon instability. This reflects itself in moderate
emission of phonons into the A = 0 channel across all studied densities and magnetic
field and infinitely growing Bl(k) at the instabilities. By comparing Figs. and we
can see that the strong emissions in A = 1 channel occur for the same range of the field
as the instabilities in the spectral function. Let us note that the instabilities can look
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differently on the spectral function plots — they can be manifested as line discontinuities
or line broadening. Moreover, stable shape of the spectral function of (1/2,1,1/2) state
for 7 = e~ corresponds to almost no emission to A = 1 for this state and density.

Thus, by manipulating the angulon energies with a magnetic field, one can control
the emission of phonons with a given angular momentum A, and fine-tune the phonon
populations in different A-channels.

3.6 Spinful angulon in the absence of external fields

In this Section, we describe an intermediate case between that described by Hamiltonian
derived in Section and the original angulon theory introduced in Ref. [SLI5]. Namely,
we consider a zero-field limit, n = 0, in the presence of the spin-rotation coupling, v # 0.

The new variational ansatz reads:

1/2 ~ .
Warat,) = 25, ) 11, L M) + 3 Bap (k)OI bk, 10) 15,1,my) (3.50)
Y
= ¢3LA4J> gms
= 7~Z’3LMJ>

In full analogy with the case when the field is present, we minimize the following functional

F=(Ysm,] H|¢JLMJ> — By, |Yoon,)

= <¢(1]LMJ ﬁ’¢}]LM(;> + <¢g2]LMJ EWJ?ILMJ> + (3.51)
+ (<¢}LMJ ﬁ‘¢3LMJ> + C-C) — EWsrm,[¥iim,) -
We calculate F' term-by-term:
Warary [aeae,) = 1 Zea, |+ D 1B (R) P, (3.52)
kAjl
and -
<¢}ILMJ H‘w}]LMJ> = |ZJLMJ|E9L' (3~53)
where EY; is the energy of the |J, L, M) state as defined by Eq. (3.3). The next term
reads -
(o, | H [W0a,) = D 1B (k)P (wr + EY) - (3.54)
kAjl
Furthermore, we have
(Woay| H [W3001,) = (V) oar, | Hmolbos [W5ar, ) (3.55)
from which we obtain:
(hoay| H W5 0a,) = (Z30a,)? D2 Un(k)Brgn (k) K, (3.56)
kjl
where
7 A+ 1)(20+1)
Kj]zf :Cfo?x,o\/ e X
(3.57)

X A(J — L)(j — D(=)VH S04+ ] — L) + 1) { 112
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Now we vary F' with respect to the parameters, obtaining:

OF

T = 2o, (BS, — B) + Y UA(REE =0, (3.58)
NZjim,)* il
8F 0 1/2 JL _

OBalk)* Pt (k) (we + Ejy — E) + Z i, U (k) Ky = 0. (3.59)
J

Then, substituting 8 from Eq. (3.59) into Eq. (3.58) we arrive at the following Dyson
equation:

U2 (k) (K JE)?

N LalLid

hENAS LY (3.60)

The last term in Eq. (3.60) is the self-energy, from which one can obtain the Green’s
function and the spectral function.

3.7 Chapter conclusions and outlook

In this Chapter, we used the angulon theory to study a quantum impurity with spin—1/2
and rotational angular momentum, immersed in a many-particle bath of bosons, in the
presence of an external magnetic field. We have shown that the field can be used to
manipulate the exchange of angular momentum between the impurity and the bath,
as mediated by spin-rotation coupling. In turn, this paves the way to manipulate the
positions of the angulon instabilities [SL15, [ST.16| [LS17, YT.17, [RL16], and thereby control
the angular momentum of phonons in the bath. Recently, the signatures of the angulon
instabilities were found in spectra of molecules in helium nanodroplets [CL17|, which
opens up a possibility to test the presented predictions in experiment. In particular,
we expect that the effects predicted in this Chapter can be detected through electron
spin resonance measurements on molecules in superfluid helium nanodroplets [KACEQ09].
For typical 22 molecules, such as CaF, SrF, and CH, the respective rotational constants
are 0.338 cm™! [FHT75], 0.250 cm™! [DSHT7], and 14.603 cm™! [HH79] which makes
1 = 1 correspond to a field of 0.36 T, 0.27 T, and 15.62 T, respectively. Table lists the
quantities used throughout Chapter [3|in absolute units for 2% electronic ground states of
CaF, SrF, and CH molecules. Substantially smaller field magnitudes are expected to be
required for molecules containing highly magnetic elements, such as erbium [AFM™12]
and dysprosium [LBYLII]. We note that in the present work translational motion of
molecules in a superfluid has been neglected. The rotation-translation coupling can lead
to additional inhomogeneous broadening of the spectroscopic lines [Leh99] and we are
currently extending the angulon model to account for it.

Finally, we would like to note that the formalism presented in this Chapter is quite
general, and can be applied to any spinful impurity possessing rotational or orbital
angular momentum, immersed into, in principle, any kind of a bosonic bath. Therefore,
the predicted effects can find potential applications not only for molecules trapped in
superfluid helium nanodroplets [TV04] and ultracold gases [MTSL16], but also to Rydberg
excitations in Bose-Einstein condensates [BKG™13| and non-equilibrium magnetism in

solids [KRLAJO05, [CGS05, ZNT4, TP15, [GC15al TTHT16].
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Table 3.1: Values of energy, bath density, and magnetic field in absolute units for CaF,

SrF, and CH molecules immersed in superfluid *He.

Molecule CaF SrF CH
E=1 0.338 cm™* 0.250 cm™* 14.603 cm~!
= exp(—15) | 2.46- 10" cm™3 | 1.56 - 10'3 cm™ | 6.98 - 10'° cm ™
n=exp(=7) | 7.32-10% cm™ | 4.66 - 10'® cm ™3 | 2.08 - 10 cm ™3
f=-exp(—3) |4.00-10"% cm™3 | 2.54-10"® ecm™3 | 1.14 - 10*! cm™®
n= 0.36 T 027 T 15.62 T
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CHAPTER

Neural-network quantum states
approach to the polaron
Hamiltonian

4.1 Chapter intro

In Chapter [2, we have discussed an integration of machine learning ideas into the study
of quantum physics. As mentioned there, such approaches recently attracted great
interest, owing to the new possibilities it offers to tackle challenging problems in quantum
physics [BWP™17, (CCCT19, BC21].

Pioneered by Carleo and Troyer [CT17], whose approach we discussed in detail in
Section [2.2] a particularly appealing approach is to represent the quantum many body
wave function by an artificial neural network. This was first demonstrated to quantum spin
systems in one and two dimensions and subsequently generalized to bosonic [Sail7, [SK17]
and fermionic [NDYT17, [CL18, [CMC20| systems. Moreover, beyond pure quantum states,
artificial neural networks can also accurately represent mixed quantum states in open
systems [TM18, [HC19, YH19, VBRCI19] and quantum systems at finite temperature [IS20].

However, all these examples involve additive many-body systems, for which by definition
the total number of particles is conserved. On the other hand, there is an important class
of physical systems which does not satisty particle number conservation. This comprises
the important class of inherently non-additive quantum impurity systems. Such systems
include for example:

« Frohlich [Fr654] model, discussed in detail in Section [1.2.2] a paradigmatic model of
a polaron — a moving impurity inside a crystal,

« Holstein [Hol59] model, a second important polaron model. Compared to Frohlich
model, it focuses on small polaron, in which the polaron radius is comparable
with the crystal lattice size. The polaron radius is the uncertainty of the electron’s
position if using the phonon field as the measuring device,

o Su-Schrieffer-Heeger (SSH) [SSH79,[SSHS0], a simple two-sublattice model displaying
topological properties,
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« Dicke model [HL73| Dic54], a simple model of light-matter interaction, where a
single light mode interacts with a collection of two-level systems,

« Anderson impurity model [And61], which describes magnetic impurities in metals,
by treating them as a two-level system interacting with the conduction electrons

These models are quite simple, yet they display qualitatively rich physics. As such,
they play a crucial role in the understanding of quantum many-body systems. However,
analytic solutions are often available only in limiting cases. To address the full complexity
of the problem in a wide gauge of physical parameters, numerical methods are necessary.

Neural-network quantum states are, in principle, a prospective candidate for effi-
cient representation of such complex quantum many-body wavefunctions. For example,
the restricted Boltzmann Machine (RBM), one of the simplest and most widely used
architectures [MCCCI19], exhibits volume law entanglement and can represent even
models with long-range interactions [DLDS17|]. Analogous to variational Monte Carlo
(VMC) approaches to the Holstein and SSH model [OI14, [KTSB17, [FVB20], recently
the electron-phonon correlation factor was represented using an RBM, while keeping a
Jastrow correlation factor for the electron subsystem. Lattice polarons have also been
tackled with Gaussian process regression capable of extrapolating across their phase
transitions [VHSBKI1S]. In addition, the Anderson impurity model has been addressed
with machine learning methods to find the Green function [ALBvLM14] and to derive its
low-energy effective model [RM20]. However, so far no neural network states exists which
directly provide an unbiased estimate of the full many-body wave function of non-additive
systems.

In this Chapter we show that efficient artificial neural network quantum states for
non-additive systems can be constructed as a feed-forward neural network with outputs
inspired by coherent states well-known from quantum optics [Gla63]. We investigate
the efficiency of this architecture by considering the Frohlich model featuring long-range
interactions between the phonon degrees of freedom. We benchmark our architecture,
termed neural coherent states, against exact diagonalization and mean field solutions.
In all cases studied, we find that this approach outperforms the standard mean-field
coherent state solution, in particular when impurity-induced phonon-phonon correlations
are strong.

In Section we introduce a novel neural network architecture, the neural coherent
states, as a tool to express wavefunctions of non-additive systems with artificial neural
networks. We justify the necessity to introduce this architecture by proving that the
restricted Boltzmann machine quantum states are not capable of expressing the polaron
ground state even in a limiting case. In Section [4.2] we adapt the Hamiltonian described
in Section for numerical treatment and discuss its approximate mean-field solution.
In Section we describe the details of variational optimization, including the inherent
effects characteristic to non-additive systems. In Section we discuss our numerical
results and benchmark them against the mean-field and exact diagonalization solutions.

4.1.1 Authors’ contributions

JM and ML conceived the project. I designed the neural coherent states architecture and
performed the numerical experiments, exchanging ideas closely with JM and ML.
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4.2 Impurity Hamiltonian and its approximate
solution

To test the efficiency of the NCS for non-additive systems, we focus on the Frohlich
Hamiltonian already discussed in Section [1.2.2] Here, we just remind the form of this
Hamiltonian already after transformation to the impurity frame, which is achieved by
the Lee-Low-Pines transformation [LLP53]. In the sector of zero total momentum, the
Hamiltonian is:

2
) <— 5 hkaLak)
A==k + > hwoda + > (Vi + Vial,) - (4.1)
k k

The Lee-Low-Pines transformation removes the impurity degrees of freedom from the
Hamiltonian. This maps the problem to a pure problem of interactions between the
bosonic modes, at the price of introducing effective interactions between the phonon modes,
described by the first term of the transformed Hamiltonian. The transformed impurity
Hamiltonian problem is closer to the lattice boson problems such as the Bose-Hubbard
problem, studied earlier with different NQS architectures [Sail7, [SK17]. However, the
problem mentioned earlier that the total number of bosons is not conserved, persists.

To make the Hamiltonian more convenient for numerical computation, we measure
energy in units of hwy. Moreover, we discretize the k-grid to include N points k; ranging
from —kq to kg with step Ak. This finally puts the Hamiltonian into the following form
in one dimension:

2
(=3 hkial g,

H= o + Z af, g, + Z (Vi + Vi, ) - (4.2)

In the calculations we further restrict the maximum number of bosons at each mode at a
value npax, ranging between 3 and 8, depending on the parameter regime.

To benchmark our results, we compare them with two approaches — exact diagonal-
ization, and the mean field approach [Dev16], where the ground state |¢yr) is a direct
product of coherent states, resulting in energy Eyp:

Vi V|2
i 2m

1+ 22 w1+

m
By such choice of benchmarks, we are able to quantify the correlations expressed with
our ansatz.

4.3 Neural-network architecture

Our novel ansatz is necessitated by the fact an RBM operates in a fixed particle number
sector. Let us provide an explicit proof that an RBM is not capable of representing
the coherent state. This is relevant because the ground state of Frohlich hamiltonian is
coherent in the infinite mass limit and in the mean-field approximation. Let us, without
loss of generality, consider just one k-point, i.e. n = n. The ground state |—V") is coherent
and its wavefunction is given by:

as(n) = (n|as) = exp <—|‘;|> (_\}/n_?n (4.4)
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It needs to be represented by the RMB variational ansatz:
Yrpm(n) = exp(an)(exp(b+ Wn) 4+ exp(—b — Wn)) (4.5)
The task is to find complex numbers a, b, W such that Eq. (4.5)) matches Eq. (4.4).

This is infeasible. Proof (by contradiction): assume that one can find a, b, W such that
reMm(n) = Yas(n). Then equating Yrpm(n + 1) /Yrem(n) with ¥as(n + 1) /1as(n) we

obtain: Ve h(b s W -
B _ a8 (b+Wn+W) (4.6)
n+1 cosh(b + Wn)

The left and right hand sides of this equation have different n — oo limits. The left hand
side decreases to 0 with rising n while right hand side tends to 1 with rising n. This ends
the proof. Let us now move to our new architecture.

We use a basis corresponding to bosonic occupations of the system with n denoting a
single bosonic configuration of the whole system:

‘l’l> = |n1,n2,...,ni,...,nN>, (47)

where N is the number of discrete phonon modes considered. In an RBM architecture, N
is equal to the number of visible neurons. However, direct application of an RBM to non-
additive systems is not efficient. This can easily been seen by writing the neural-network
quantum state as [¢)(n)) = () [n); we have [¢(n), N] = 0, N = ¥, 7, for a function
(n) ~ exp(E(n)), E being linear in n. Hence, by construction an RBM operates in a
sector of a given total number of particled]|

To bypass this problem, we propose a neural network inspired from coherent states,
which may be termed neural coherent states (NCS) and is illustrated in Fig. Analogous
to a standard coherent state, which for a given n returns an output proportional to A"/ Vvn!,
with A being the parameter representing the coherent state, we construct a (mutilayer)
feedforward neural network taking n as input. For each configuration, N output numbers
\; are generated, which are subsequently transformed according to: \; — A" /v/n;!.
Then these numbers are multiplied to form the wavefunction. If the solution is exactly a
coherent state \ for each mode ¢, the network simply learns that \; = X regardless of n;.
Correlated solutions are represented by perturbing the numbers \;, such that they depend
on the input vector n in arbitrary way. This yields the variational ansatz expressed as:
N )\?1

<n‘w> = ¢(n) = 1/1(”177127 s 7nN) = 1:[1 \/n_i-’

where ); is the output of a feedforward neural network (multilayer perceptron) with M

(4.8)

layers, i.e.:

A={A\, A2, ..., An} = hy(har—1 (.. - hi(n))), (4.9)
with each of the hidden layer transformations h; acting on output h;_; of the previous
layer:

hi (hy1) = o (W) 'hy_y + ;) (4.10)

where Wg_l and b; are weights and bias of j-th layer, while o(x) is an activation function.
This function, which introduces nonlinearity in the network, can be chosen from a wide
range of classes already discussed in Section , such as tanh (the choice made in this
work), sigmoid or ReLU [NHI0].

1See the Supplemental Material for more information.
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Figure 4.1: Visualization of the NCS approach. The input consists of Fock occupation
numbers n; for each of bosonic modes ¢ = 1,..., N, corresponding to discrete k values
k;. The input is fed to a multilayer perceptron with arbitrary number and size of the
hidden layers, see text for details. The number of neurons in the output layer is equal
to the number of inputs (k-points). Each of the outputs J\;, is transformed using the
information from the input, A\; — A" /v/n;!. These numbers are multiplied to form the
wavefunction 1. All neurons in the hidden layers are densely connected to all neurons in
the neighbouring layers; for clarity of the picture not all of them are visualized with grey
lines. Figure adapted from Ref. [RLM21].

4.4 Optimization of variational energy

With the ansatz from Eq. (4.8]), we optimize the variational energy
. S (Y|n) (n|H|n') (0’| S * () Hymth(n
w3 W () @) 2 ) By (o)

WOy T S SmP

(4.11)

using Variational Monte Carlo, by sampling the probability distribution given by |¢(n)|*.

The derivatives of energy with respect to variational parameters (“forces”) F:(W®),
are given by:

2; f{n’nw(n/)

e (4.12)

JT:{ = <EIOCOZ> - <Eloc> <OZ>; EIOC(n) =
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Here O¢ are the logarithmic derivatives of the wavefunction with respect to variational
parameters, which are indexed by a collective index £ running across all weights and

biases of the model:

1 9v(m) _ dlog (¥(n))
Y(n) ¢ 23
The quantity Fl..(n) is commonly referred to as local energy of the state n. If the
Hamiltonian matrix is sparse, local energy can be efficiently computed numerically.

O = (4.13)

4.4.1 Monte Carlo sampling

The braces () in Eq. (4.12)) refer to weighted averages over the probability distribution
given by the wavefunction; the average of any quantity x(n) is given by:

S lom)Pa(m)
DI

(4.14)

Such averages are not tractable as the sum runs over an exponential number of all
possible states of the system. One has to resort to stochastic techniques. To sample the
system for a given set of variational parameters and get the estimates (-) of the logarithmic
derivatives and local energies, we use the Metropolis-Hastings algorithm. At first, we
choose a random initial configuration n®). Here, we choose n® by randomly assigning 0
or 1 with probabilities 1/2 to each of the k-points k;. This, in average, results in starting
with a vector with mean occupation equal to N/2, i.e. half of the k-modes. We observed
that allowing to start from higher mean occupations can lead to unstable sampling, i.e.
that instead of reaching the high-probablity regions of the distribution, the sampling
reaches states with mean occupation rising in an uncontrolled way. The possibility of such
a behavior comes from the already mentioned fact that the non-additive Hamiltonian
connects states with different total numbers of bosons, contrary to e.g. the Bose-Hubbard
model.

Given a sample n, finding the next sample n*+) in the Metropolis-Hastings algorithm
consists of two steps:

1. choosing a candidate for n(+1)

2. calculating the acceptance probability a(n(i“)]n(i)) and accepting the candidate

n(+Y with that probability. If the candidate is not accepted, we remain in state
(i)
n'".

For step 1, every choice is in principle possible. However, one needs to take into
account the tradeoff between efficient exploration of the state space and still having a
large acceptance probability. A choice of state n*+) that differs too little from n® might
require too many steps to explore the state space, while a choice of state differing too
much leads to lower acceptance ratio. The solution that we adopt here is the so-called
Hamiltonian sampling, where the candidate n®*! is chosen with uniform probability from
all states connected by the Hamiltonian to n (i.e. having nonzero Hamiltonian matrix
element .[A{n(i)n(i+1)). We found other intuitive solutions, such as for example one that can
be applied to Bose-Hubbard model — choosing randomly a pair of k-sites and swapping a
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phonon between them, to work much worse. In particular, this solution conserves the
boson number, while our Hamiltonian does not.

For step 2, the acceptance probability is proportional to the probability ratio of accepted
states: )
D (n(i+1)) ‘w(n(iJrl))‘
p(@@)  p(n@)*

Moreover, as already noticed e.g. for Jastrow-type approaches [OI14], the detailed balance
condition [NB99| needs to be fulfilled:

(i+1) (7,) (’i+l)
p(n n p(n
(n* V) _p (D) (w16
P (n(l) |n(l+1)) p(n(l))

a (n(”l) \n(i)> x (4.15)

Observing that
» (n(i+1)|n(i)> —a (n(i+1)|n(z‘)) g (n(i+1)|n(i)> , (4.17)

where g(n+1)|n®) is the probability that state n®*") was proposed given n, and
combining with the equality from Eq. (4.15]) we arrive at:

D) . 4.18
Our choice of update proposal yields
) ) 1
g n))) oc (4.19)

((n))”
where ((n)) is the number of states connected to state n by the Hamiltonian. Hence, the
probability of accepting the sample proposal n(*1) given current sample n® is given by

@) (moy)
[pm@)* ((n+D))

‘ 2

a (n@ ) (4.20)

The need for the term ((n®))/{{(n@*1)) again results from the non-conservation of the
total number of bosons and is absent (i.e. equal to 1) in systems such as the Bose-Hubbard
model or Heisenberg spin. To improve the sampling stability, we run several Monte Carlo
chains in parallel. Samples from each of them are collated to form the set of samples used
at a given step of the optimization.

4.4.2 Gradient descent optimization

Having estimated the gradients as given by Eq. , we move to minimizing the
variational energy. One is free to choose any optimization method, either inspired by
physics, like stochastic reconfiguration [SCRO7b] and linear method [FK21] or an algorithm
chosen from a rich field of approaches originating from the field of machine learning. In
this work, we choose the Adam algorithm [KB14]. This is an adaptive algorithm, where
the variational parameters are updated as follows:

A (t)
g g _p e (4.21)
2 + e
3
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Here 7 is the learning rate. The quantities 7 (0¢) are the estimates of the first (second)
moment of the gradients. The small number e provides numerical stability by preventing
the denominator going to zero.

First, the bias-uncorrected estimates are obtained as follows
mg“) = Blm?) +(1—=5) Fg(t)

2 (4.22)
D) = 521)? (1= By) (Fg(t))

with 81 and [, being freely adjustable parameters of the algorithm. The estimates are
corrected as follows:

(t+1)
_ M

mg = 11
-/

A

e (4.23)

v

~ 3

Ve = -
1_ 2+

Intuitively, this corresponds to an extension of the momentum algorithm [Qia99).
In addition to having an estimate of the first moment (mean), like in the momentum
algorithm, we divide the updates by an estimate of the second moment (variance).

The typical values of the hyperparameters tend to be agreed upon in the community.
The small number ¢ is usually taken to be 1078, The 3, which can be thought of as the
“forgetting factor” for the first moment is usually set to #; = 0.9. The forgetting factor
for the second moment is often [, = 0.999.

The choice of learning rate n is usually changed much more frequently from one
application to another. The task here is to find an optimal tradeoff between the speed of
learning and the stability of this process.

During the training, we have observed that some values of energy are outliers, i.e. they
lie off the trend set by preceding and following energies. The phenomenon is illustrated
in Fig. 4.2l We attribute this to a failure of a Monte Carlo chain, i.e. exploring not
the entire distribution, but only a region of it. We go around this by always choosing
a number (e.g. 100) of subsequent optimization steps that does not contain an energy
outlier. Then, we choose the mean from these subsequent steps as the final energy and the
standard deviation over these steps as the error of the final energy. Designing a method
that excludes such points at runtime, for example by analyzing the discrepancy of energies
obtained from the different Monte Carlo chains running in parallel, could be a valuable
extension of our work. We have also observed that avoiding very low V' regime, increasing
the number of hidden nodes and decreasing the learning rate all contribute to a reduction
of the frequency and magnitude of such instabilities.

4.4.3 Implementation

To facilitate reproduction of the results and experimentation with the proposed approach,
we make the code available online under the following URL:
https://github.com/wrzadkow /ncs.

The code uses Jax [BFHT18| and Flax [HLOT20] libraries. The Jax library allows
execution on CPUs, GPUs and TPUs without change and boasts a high level of control
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Figure 4.2: Typical example of occasional sampling failures. Panel (a) shows entire
10 000 training steps starting from random parameters, with inset omitting first 1000
steps. Panel (b) shows exemplary 100 continuous training steps from a stable part of the
optimization, free of instabilities. Figure adapted from Ref. [RLM21].

over random number generation with the so-called Threefry counter pseudorandom number
generator [SMDS11]. Moreover, the native vectorization functionality provided in Jax
is used to parallelize the Monte Carlo chain. We use Flax, which is one of Jax’s neural
network libraries, to implement the multilayer perceptron neural network model.

The code is divided into modules. The energy module implements the Hamiltonian
and local energy calculation. The wavefunction module contains functionality related
to the variational ansatz and its optimization. Finally, Monte Carlo sampling is imple-
mented in the sampler module. Further information about the code can be found in the
documentation provided directly in the form of docstrings.
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4.5 Numerical results

As the first test, we take a small system with N = 2 k-points —ko and ky. We fix
the impurity-bath potential at V/(fwy) = 0.2. Moreover, using convenient unit mgy =
hik2/(2wo) for the mass, such that h?k2/(2mg) = hwp, we fix the inverse mass at 1/m =
0.6 - (1/mg). We vary the number of nodes in the single hidden layer, thus changing
the number of variational parameters and, consequently, the representative power of the
network. For each number of nodes, we optimize the energy and compare the obtained
energy with the ED and mean field energy mentioned above. The results are shown in
Fig. 4.3l We observe that with the number of nodes high enough, the variational energy

_06% _4% —
04 | 4y =
/0 _3% _D
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>, —0.049- 0.2% &
5 . . |  F0.0% 2%
ta 32 64 128 256 a
Mean field _I%BIJ

—0.0504Meanfield ¢ _
ED )

8 16 32 64 128 256

Nodes in hidden layer

Figure 4.3: Representative power of the proposed approach. The optimized variational
energy (orange dots, in units of hwy) is compared with exact diagonalization (ED), see
right y-axis for percent scale relative to ED; and mean-field result for a system with 2
bosonic modes. The inset shows percent difference to ED for the four largest network
sizes. Figure adapted from Ref. [RLM21].

clearly goes below the mean-field one, proving the capability of our approach. For 64 and
256 nodes in the hidden layer, we have obtained an agreement with the ED result within
the stochastic error of our variational approach.

To further evaluate the ability of NCS to express correlations between different bosonic
modes, we study the performance of our approach with different impurity mass. Low
mass is associated with high correlation level, while high mass brings the Hamiltonian
closer to the infinite mass regime, where an analytic solution in the form of coherent state
exists. We fix V at V/(fiwp) = 0.2. Then we optimize a network containing 1024 neurons
in the hidden layer for different mass values and compare the result with the mean-field
approach. The percentage deviation, 100% - (E — Fgp)/|Eep|, for both the mean-field and
NCS approach is shown in Fig. (a) as a function of the inverse mass. Here, we observe
very stable performance — the NCS is able to outperform mean-field approach across
the range of (inverse) mass tested. Even at the intermediate regime, where mean-field
solution lies =~ 1.5% above the ED, the NCS is able to accurately express the correlations
and agree with ED within the stochastic error.
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Figure 4.4: The percent difference with respect to ED as a function of: (a) inverse mass
in units 1/mg, mo = hk2/(2wy) (b) impurity-bath coupling V/hw,. Our NCS approach
(orange) is compared with mean field (blue). Error bars correspond to uncertainty of
stochastic estimates of the energy. In panel (b), which features log scale, the error bars
stretch infinitely down as the ED result lies within error bars. The dashed lines guide the
eye. Figure adapted from Ref. [RLM21].

Next, we study the performance at different impurity-bath couplings V. We fix the
inverse mass at 1/m = 0.2 - (1/my). Then we optimize the same network with 1024
neurons in the hidden layer for different values of V. The percentage deviation from
ED, for both NCS and mean-field approach is shown in Fig. [4.4(b). Here we observe
consistently good performance and clear advantage over mean-field across all values of
impurity-bath coupling V' > 0.1. Data for V < 0.1 is not shown, Eyp — Egp < 107°
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and numerical errors in the gradients start to dominate the optimization, making it hard
to reach more accurate results. We attribute this with a property of the NCS itself.
For such small V', the system is very close to the vacuum state. When approaching the
coherent state with |A\| = € < 1, leads to a dominance of states \; = ¢ for which ® = 1,
independent on €. Importantly, our approach easily extends outside the weak-coupling
regime, reaching equally accurate results for all V| even in the regime V' ~ 1.

So far, all results are obtained for high maximum occupation numbers (up to Ny = 8)
but only a small number of phonon modes. Next we gradually increase the number
of k-points to benchmark the ability of the NCS approach to express the correlations
between a larger number of bosonic modes, beyond a regime where ED is available. To
this end we take k£ being an equidistant grid between —ky and kg with a varying number of
points. The constant impurity-bath interaction potential is V;, = 0.3, which corresponds
to contact interactions in real space, which is reasonable for one-dimensional systems. We
fix the mass at 1/m =2+ (1/my). Instead of the total energy, we are now interested in
energy per number bosonic modes, to avoid a trivial scaling with the number of modes.
In Fig. we show the results of a benchmark against the mean-field approach and,
where feasible, exact diagonalization. We observe that the difference between the energy
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Figure 4.5: The energy divided by number of k-points calculated with the NCS approach
as a function of the number of k-points on an equidistant grid between £ = —1 and k = 1.

Error bars for NCS approach are smaller than point size. Dashed lines guide the eye.
Figure adapted from Ref. [RLM21].

reached using our NCS state and the mean field solution increases with increasing the
number of phonon modes, which is consistent with the fact that the amount of modes
that are coupled to each other increases as well. Moreover, within the range where ED is
feasible, we observe that the NCS results closely follow ED, while the mean-field energy
is systematically higher. The number of network parameters in the single hidden layer
network with 1024 hidden neurons used for training this system is much smaller (~2000
times smaller for 11 k-points) than the dimension of the Hilbert space, suggesting great
potential to exploit this approach beyond the regime accessible with exact diagonalization.
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4.6 Chapter conclusions and outlook

In this Chapter, we introduced a new approach to solve non-additive systems with
artificial neural networks. By benchmarking against exact diagonalization and mean
field, we obtained accurate results for small systems and all parameter regimes studied.
In particular, we were able to capture the challenging intermediate coupling regime at
the same accuracy as weak-coupling results, illustrating that this method provides an
unbiased approach to strong correlations in non-additive systems.

In our research, we have used a constant impurity-bath interaction potential, corre-
sponding to contact interactions. This renders our work to be more of a proof-of-principle
of a novel ML approach, rather then a tool to study the impurity Hamiltonian with a
more involved interaction potential. A natural extension would be using the interaction
potential from Eq. . To accurately model such potential, a dense grid of k-points will
be needed.

Other natural next steps include benchmarks against other methods for impurity
systems and generalizations to other neural network architectures and more complex
impurity models, such as the angulon quasiparticle [SL15, Lem17, [RLI§| which is the
rotational counterpart of the polaron. The main complication is the non-commutative
SO(3) algebra describing quantum rotations, which is inherently involved in the angulon
problem. Some work in similar direction has already been done for spin models [VCNT19],
where irreducible representations of SU(2) were considered as inputs for the network. An
appealing feature of variational neural network algorithms is their direct extension to
unitary quantum dynamics of the system [CT17, [CGG18, [FM19] [SH20, [HEM™21]. This
requires generalizing the current approach to complex valued network parameters, yielding
the possibility of extension of the presented work to the case of impurity dynamics,
understanding of which is a subject of intensive ongoing research |[ASBn™18| [Sch10),

GMF720, [SSJ21, VTHS13| ICBCT19.

Our approach is naturally suited for systems whose ground state, in an approximation,
can be described as the coherent state. Therefore, it is also suited to studies of arrays of
interacting harmonic oscillators. A paradigmatic Hamiltonian of such arrays is

A

" P2 mw? - m .
o= <2m ) Z - (@ = Grs1)” . (4.24)

r=1

This Hamiltonian is written for the simplest 1D case, with p, (§.) being the momentum
(position) operator for the r-th site on the chain. This system has been a subject of
studies, for example with mathematical methods [LSVAJ0S8]. It would be of interest to see
how neural coherent states perform in this case, especially with different dimensionalities
of the oscillator lattice (1D, 2D, and finally 3D).
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CHAPTER

Characterizing phase transitions
with convolutional neural networks

5.1 Chapter intro

In this Chapter, we study two types of systems. In Section [5.2] we focus on multilayer
classical spin models, while in Section we study colloidal systems. They are physically
very different, as already outlined in Chapter [Il However, they both can be simulated
numerically to produce “snapshots” of these systems. For classical spin models, this is
done with Monte Carlo algorithms. This results in a set of snapshots, whose distribution
matches the Boltzmann distribution at given temperature. Colloidal systems with no
fixed lattice can be simulated with molecular dynamics methods. These methods are
based on numerically solving Newton equations of motion for particles interacting with
given interparticle potential. As a result, one obtains a set of positions for each particle
in the simulation.

These snapshots can be essentially treated as images for the purpose of machine
learning approaches. The Monte Carlo samples of classical spin model can be expressed
as maps of pixels corresponding to individual spins. Each “pixel” can be, for instance,
black for spin up and white for spin down. In the case of multilayer models, the layers are
equivalent to color channels of images. The molecular dynamics data has to be processed
before being treated as images. For instance, one can prepare a 2-D grid with spatial
slots — each time one finds a particle in the slot, this pixel gets a given color, say black,
each time a particle is not found, a different color can be used, for example white.

For both of them, we use convolutional neural networks. As already signaled in
Chapter [2] these networks are perfectly tailored to learn local features of images. The
trainable filters, moved over entire images through convolution operation, can then
recognize characteristic features, thus distinguishing between different phases of the
system.

5.1.1 Motivation behind the choice of systems

Our motivation to study layered spin models is two-fold. First, when multiple models are
coupled, new phases may emerge, depending on the strength and the form of the coupling
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between them. Let us consider, for instance, two magnetic systems with a tunable coupling
between each other. Let us also suppose that when the coupling is zero, each system
separately undergoes a conventional ferromagnetic phase transition [Car96]. For nonzero
coupling, on the other hand, the order parameter may involve, in the general case, some
non-trivial combination of spins of both systems. Let us consider a specific example, the
Ashkin-Teller model, introduced in Section [I.3] When the interlayer coupling between
the variables o and 7 is zero, the phase diagram of the model is characterized only by the
single-layer order parameters (o) and (7). However, when the interlayer coupling is large
enough in comparison with the intralayer term, a new non-trivial phase with a composite
order parameter (oT) emerges.

Further examples of such emergence of new order parameters due to the coupling
between different layers of the system include the ‘metallic superfluid’ phase [BSA04,
SBP15] and the recently reported BKT-paired phase in two coupled two-dimensional XY
models [BDNT19]. At last, let us consider again two square-lattice Ising models with spin
variables ¢ and 7, now coupled via a term of the form o7. It is interesting whether there
is a phase with composite order parameter (o7). As discussed in literature for the bilayer
configurations, such phase is expected not to exist.

The phase diagram of the 2D Ashkin-Teller model and of some its variations can be
determined analytically [Bax07, DGO04]. Together with the Ising model, considered to
be a classical workhorse of statistical mechanics [Car96, Mus10], they provide an ideal
benchmark to attempt detection of composite order parameters in an unsupervised way.

One could can also ask which new composite order parameters emerge in configurations
involving more than two layers, such as the trilayer one. Although in the bilayer Ashkin-
Teller model the composite order parameter can be easily recognized, a more complex
spin model with several layers, with both short- and long-range interlayer couplings, could
be much more challenging to be addressed with simple physical considerations. Many,
possibly competing, composite order parameters may be present and determining the one
which actually breaks the symmetry and generates a novel phase is a highly non-trivial
task. From this point a view, an unsupervised approach able to correctly reproduce the
phase diagram of layered models, regardless of the nature of underlying order parameters,
is highly desirable.

Our second motivation lies in applicability — layered models tend to emerge in a
wide range of realistic physical situations. The most basic bilayer structure, where two
two-dimensional systems are coupled, has been studied in a number of cases, ranging
from graphene [NGM™04] to ultracold dipolar gases [BDPZ12]. Another major example is
the layered superconductors, both naturally occurring and artificially created. The most
important natural compounds are compounds of transition-metal dichalcogenides layers
intercalated with organic molecules [GDKGT0] and cuprates [Tin96]. Examples of artificial
structures are alternating layers of graphite and alkali metals [HGM™65] or samples with
layers of different metals [RBB80]. Neutral layered superfluids can be engineered with
quantum gases by using a one-dimensional optical lattice with ultracold fermions [TFT12]
or bosons [CIGQT7]. Therefore, it is important to develop general approaches capable of
dealing with coupled interacting systems. In particular, given the importance of layered
physical systems and their ubiquitous presence in a variety of contexts, a general approach
to reconstruct their phase diagram would provide an important tool of investigation.

Now let us move to our motivation to study colloidal systems with competing inter-
actions. These competing interactions, discussed in Chapter [I} were shown to appear
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between colloidal particles [GE97] or globular proteins [SSCT04b| with a proper balance
between the electrostatic and solvent-mediated forces. Theory and computer simulations
predict SALR particles to self-assemble into clusters and elongated aggregates. They form
either disordered glassy and gel states [STZ05, [TSZ09] or periodically ordered morpholo-
gies such as fcc ordered clusters, hexagonally ordered columns, double gyroid structure or
the lamellar phase [ZZC16, [ZC16a), [ZC16bl [CGI10, [Arc08, [Cia08, DCDGET06]. Experi-
mentally, however, the ordered structures are observed only for SALR particles adsorbed
at two-dimensional (2d) interfaces [GEI7, ILAS™13, [SG99], while in a three-dimensional
(3d) bulk the efforts to form ordered structures have been so far unsuccessful [Roy1§].
Although the realization of the SALR potential in 3d real space is quite challenging,
formation of 3d ordered structures by isotropic particles is of significant interest.

One way to gain stability enhancement of an ordered structure is to confine the system
with walls whose geometry fits the symmetries of the ordered pattern. In the case of the
SALR system it was shown that as long as the distance between two parallel walls fits to
the period of the stripe structure, the stability of the ordered phase is enhanced [APCIG,
PBC19]. Shorter wall-wall separation corresponds to a higher melting temperature
according to a Kelvin-like equation [APCI16]. Thus, confinement can effectively suppress
thermally induced topological defects, but an accurate choice of the distance between the
walls is hard to realize.

Another possible method to induce ordering is to apply shear. In the case of ho-
mogeneous systems shear was shown to either suppress [PMSL95, BAFLO04] or enhance
crystallization [AP88, IARTT00] depending on system and conditions [CMBO00]. Inhomoge-
neous systems, such as liquid crystals [LdJ04] or diblock copolymers [HACT00, NDM™14],
when exposed to steady shear were shown to order into layered structures. The focus of
the present study is on whether also the inhomogeneous SALR fluid orders when exposed
to steady shear. In the case of SALR systems, the first reports on shear effects were
provided by Imperio [IRZ0§|, but only ordered monolayers were sheared. In 3d, the
shear effects on SALR systems have been studied only recently [REGZ19, [SR1§|. In Ref.
[REGZ19] the authors showed that the equilibrium gel structure after being exposed to
steady shear exhibits local, short length-scale anisotropies; however no global ordering was
found. In Ref. [SR18], by means of the classical density functional theory, the effects of
shear on ordered states were described, showing e.g. shear induced transition between the
double gyroid and the cylindrical phases. Here, we describe a 3d SALR system that forms
an ordered structure when exposed to steady shear, even above the melting temperature
of the ordered phase.

Although SALR systems can spontaneously form a variety of microphases [CPG13,
Cia08], we focus on the lamellar phase only. The equilibrium properties of the SALR
lamellar phase were intensively studied with a variety of methods at different approximation
levels. In 2d bulk the lamellar phase consists of parallel stripes that were shown to melt
in a step-wise manner [APCI14]. First, the translationally ordered low temperature
structure undergoes a transition into a molten lamella phase with only orientational
ordering. Further heating results in a transition into a disordered, yet inhomogeneous
fluid. This finding from computer simulations agrees with the mean-field calculation
obtained in a 1d approximation of the lamellar system that shows coexistence of two
ordered phases characterized by different amplitudes of the density profiles [PCA13].
In 3d however, no signs of the step-wise melting of the lamellar phase were reported

[ZZC16l, TRO4, [Arc08, DCDGET06]. We will show here that also in 3d SALR particles
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can spontaneously form two distinct structures that are both lamellar.

Another question that motivates us to study colloidal systems, is how far the level
of description complexity can be reduced so that different 3d structures can still be
distinguished and transitions between them localized. To do that, instead of analyzing 3d
particle configurations, we will use binary matrices obtained by mapping the 3d structure
onto a 2d discretized surface. The maps will be then utilized as input data for different
machine-learning based methods aimed at pattern recognition.

5.1.2 Motivations behind the choice of methods

In layered models one has a certain degree of freedom in the way the MC data to be
analyzed are fed to the neural networks. Possible ways could be:

1. learning from each layer independently,

2. learning from any arbitrarily chosen combination of the layers (e.g. product, sum,
sum of squares, etc.). This choice would need to result from physical intuition about
the system,

3. the most challenging case, learning from a multilayer model directly, treating it
similarly to a color image with all layers fed into the nwtwork simultaneously

Method 1 would be entirely ineffective in detecting composite order parameters, i.e. pa-
rameters defined across multiple layers of a layered system. To use the Ashkin-Teller
model as an example, it is known to have an order parameter defined as the product of
spins from both layers. Method 2 requires prior knowledge of the physics of the system.
For known paradigmatic models such as the Ashkin-Teller models, the order parameters
are known, however, this is not the case for other models. We, in this Chapter, would like
to test if method 3 will succeed on the challenging multi-layer models.

Another question that will be addressed in this Chapter, is how far the level of descrip-
tion complexity can be reduced so that different 3d structures can still be distinguished
and transitions between them localized. To do that, instead of analyzing 3d particle
configurations, we will use binary matrices obtained by mapping the 3d structure onto
a 2d discretized surface. The maps will be then utilized as input data for different
machine-learning based methods aimed at pattern recognition. It is interesting from the
machine learning point of view if two-dimensional maps can be still used for learning
structures that inherently occur in three dimensions.

5.1.3 Authors’ contributions

In Ref. [RDCT20|, all authors developed the theoretical concept of the study. GB
performed the Monte Carlo simulations. I implemented the convolutional neural network.
All authors analysed the the results.

In Ref. [PRP20], JP conceived the project. I designed the artificial neural networks
approach. I performed the artificial neural networks experiments together with JP. JP
generated all samples with molecular dynamics and performed the Principal Component
Analysis. AP provided guidance throughout the project.
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5.2 Identification of phase transitions in multi-layer
lattice models

5.2.1 Machine learning phase transitions in classical spin
models

Let us consider a general case of a spin system whose Hamiltonian is defined by two
parameters, J and K. We aim to devise a procedure to depict the phase diagram in the
K — J plane. To this extent we discretize a portion of the K — J plane on a grid with
steps AJ and AK. For each point on the grid we generate a number of uncorrelated MC
snapshots using standard algorithms [SW87, [SS96), Wol89|. Unless otherwise specified we
shall work on a 32 x 32 x NN, square lattice, NV; being the number of layers to be specified
later, and we shall generate a number of 600 snapshots for each point in the phase diagram.
Periodic boundary conditions are used on each layer throughout all the simulations.

The training of the convolutional neural network attempts at learning to distinguish
snapshots belonging to the two different points, (J;, K1) and (Js, K3), in the phase
diagram. Intuitively, when this training fails, the two points present nearly identical
features, thus belonging to the same phase. On the other hand, if it succeeds, the two
points should belong to two different phases. In order to carry out this plan, at first, we
divide the data in a standard way, taking 80% of snapshots from each of the two points
as training data, while keeping the other 20% as validation data. Then, we train the
network on the training data and quantify the classification accuracy on the validation
set as the fraction ¢ of correctly labeled examples from the validation set. Based on that,
we introduce the following quasidistance between the two phase diagram points (J;, K;)
and (J2, K3):

d((J1, K1), (Jo, K2)) = 2(p — 0.5)0(¢ — 0.5) , (5.1)

where ©(x) is the Heavyside step function, preventing d from assuming negative values.
Then perfect discrimination ¢ = 1 (signaling different phases) corresponds to d = 1, while
perfect confusion ¢ = 0.5 (signaling the same phase) corresponds to d = 0. We use the
term ’quasidistance’ since it does not respect triangular inequality. However, this fact
plays no role as far as all the applications in the present Chapter are concerned.

We feed the raw Monte Carlo snapshots directly to the convolutional neural network,
with spin down encoded as 0 and spin up encoded as 1, no preprocessing applied. The
network architecture is optimized for the task of classifying two phases: after convolutional
and fully connected layers the final layer consists of two softmax output neurons outputting
the labels. The convolutional filters span both layers, which is the feature enabling the
network to learn composite order parameters. Hence, both layers are simultaneously fed
into the network.

We used the following architecture of the network. The first layer is a convolutional
layer with 32 filters of size 2 by 2 and unit stride in both directions. Then the ‘max
pooling’ [SMB10] operation is applied with pool size 3 by 3, stride 2 in both directions
and same padding. The results is then fully connected to a hidden layer with 100 neurons.
The binary classification is finally done in the output softmax layer with two neurons.
Both the convolutional and hidden fully connected layers are activated by rectified linear
units (ReLU) [NHIO]. The network is visualized in Fig. 5.1} We train the network by
minimizing the cross-entropy using the Adam [KB14] (described in Section adaptive
optimization algorithm with 7 epochs and minibatch size 25. Such choice leads to a fast
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MC snapshots
2/3 layers 30 feature maps 30 feature maps 2 softmax
32x32 each 32x32 each 16x16 each 100 hidden units  outputs

—_—

max pooling flatten, fully
convolution pool size 3x3 fully connected connected
30 2x2 filters stride 2

ReLU activation ~ same padding

Figure 5.1: Visualization of the convolutional neural network used. Lower labels describe
the layer operations. Upper labels describe the shapes of tensors before and after each

operation. Figure adapted from Ref. [RDC*20).

training — the amount of training is much lower than in computer vision applications,
routinely requiring hundreds or thousands of epochs — as well as prevention of overfitting by
early stopping, hence eliminating the need for other measures such as dropout [HSK*12].
We use the following Adam algorithm parameters: learning rate 0.001 and standard
choices of 3; = 0.9 and 3, = 0.999. We use Tensorflow [ABC*16] for the implementation.

At last, we make use of the distances defined in Eq. (5.1 to construct a field u(J, K)
defined on the phase diagram through its finite-difference lattice gradient

(u(J+ALK)—u(J,K)/AT\ _ (d{(J+AJK),(J,K))/AT
(u(J, K + AK) —u(J,K))/AK ) = \d((J, K + AK), (J, K))/AK

(5.2)
Clearly Vu will be constant in regions of the phase diagram belonging to the same phase,
since we expect that the difficulty of telling first neighbors apart should be uniformly quite
high. On the other hand, we expect the value of Vu to abruptly change in the vicinity of
a phase transition, suggesting that the phase diagram should be naturally characterized
by looking at the finite-difference lattice Laplacian

Vu(J, K) = (

V2u(J, K) ~ ( Alj)2 g(—w‘ (’;) w(J + (n)2 — )AJ), K) -
+ (A}()Q g(—l)i (?) u(J, K + (n)2 — )AK))

with the n = 2, n = 3 and n = 4 cases corresponding to a 5-point, 9-point or 13-point
stencil, respectively. The stencil includes (n — 1) nearest neighbors in the J and K
directions. We stress that the summations can be rearranged so that they involve only
differences of the u field evaluated between first, second and third neighbors, that can
in turn be expressed in terms of the quasidistance d. From the discussion above, it is
clear that a sudden rise in the value of V?u means that the CNN can distinguish with
increased precision arbitrarily close points in the phase diagram, thus signaling a phase

58



5.2. Identification of phase transitions in multi-layer lattice models

@]] il o
f ﬁﬁ | ”d S
Wi E @os
H CNN ye 0.4
uﬁ I !ﬂ Z
\‘M?M LU & H0-3
(b) o 0o o o0 o ©o 0 0 0 0 o Q.2
J o O O O O O o O O O O 01
o 0o 0o o e 0 0 O O
DN W %90 02 04 06 08 10 12 14
o 0 0 0 0 ©o o O 0O O o ol{ ﬂK

Figure 5.2: An overview of the proposed method. (a) The convolutional neural network is
able to assess quasidistance which determines whether the phase diagram points (J;, K7)
and (J2, K3) belong to the same or different phase. This is done by attempting to learn
to distinguish between individual Monte Carlo snapshots with orange and blue visualizing
training and validation MC snapshots, respectively, see main text. (b) Using distances
between first, second and third neighbors, one can evaluate the Laplacian across the
phase diagram. (c) Large values of the Laplacian signal the presence of phase transition.
Plotting the Laplacian reconstructs the phase diagram, which is now parametrized by
the dimensionless combinations SJ and K, with  the inverse temperature. Here we
show the reconstructed phase diagram for the square-lattice Ising bilayer model with the
transition between ordered (O) and unordered (U) phases, see main text. Figure adapted
from Ref. [RDCT20].

transition. We anticipate that including high-order finite-differences besides the obvious
5-point stencil taking into account first-neighbors stencil considerably increases the quality
of the reconstructed phase diagram. This point will be analyzed in detail later. Moreover,
using the stencil as opposed to always just comparing two neighboring points of the
phase diagram immunizes the algorithm in the case of very dense grid. In such a case, it
would be progressively difficult to find neighboring points belonging to different phases.
With our approach, we are assured that using a large enough stencil will circumvent this
problem for any grid density.

Calculation of V2u(J, K) for the entire phase diagram is by far the most time-consuming
step of the algorithm. Using N nearest-neighbours, i.e. [4(N — 1) + 1]-point stencil, it
requires M - 4(N — 1) calculations of the quasidistance. There,

Jmax - Jmin Kmax - Kmin

M = A . N (5.4)

is the total number of discretized (J, K') pairs in the phase diagram.

In conclusion of the present Section, we compare our scheme with other related
approaches. As opposed to other machine learning schemes, in the present work we do
not need the evaluation of any observable quantity to establish a distance [BAT17], rather
directly relying on the MC snapshots. Moreover, as opposed to other approaches [BAT17]
the scheme we introduce in this Chapter fully takes advantage of the two-dimensional
nature of a two-parameter phase diagram, as the local information is reconstructed by
taking into account neighbours in all directions. Extensions to three- or higher-dimensional
phase diagrams are straightforward [TAAST3|. Finally, our approach requires only the
evaluation of a fixed number of neighbors for each point in the phase diagram, ensuring
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that the computational effort required for training scales linearly with the number of
points in the discretized phase diagram.

5.2.2 Multilayer Ising models

We now use the framework described in the previous Section to characterize the phase
diagram of different coupled spin models.

Let us start from a bilayer Ising system, simplest multilayer system described in
Section . Its Hamiltonian features a quadratic coupling term (sometimes referred to as
the Yukawa coupling):

Hbilayer:_Jzaiaj_JZTiTj_KZUiTi ) (5.5)
(i7) (4) g

where o;, 7; = 1 are Ising variables on a two-dimensional square lattices, whose sites are
denoted by the indices 4, j. The sums in Eq. are over nearest-neighbor sites. When
K = 0, the system reduces to two uncoupled Ising models, having a phase transition
at the Onsager critical point (5.J). = ln(l + \/ﬁ) /2 [Ons44l, Mus10], 5 being the inverse
temperature. This critical point is shifted by the presence of a finite interlayer coupling
K. The resulting Ising critical line separating the paramagnetic and ferromagnetic phases
as a function of K has been studied in the literature [OE75, [HLIM93, BOST95]. It is
clear that the bilayer system ([5.5)) is the classical counterpart of two coupled quantum
Ising chains in a transverse field, a system that has been studied both in relation to its
spectrum, phase transitions and possibility to determine an integrable line in the space of
parameters [DM98, [FGNO0, [Tsv07, IKA09]. The classical bilayer system and the quantum
coupled chains can be also related to each other by an exact mapping.

From our point of view the model described by Eq. is an excellent starting point
for our investigations, especially in order to check the existence of a composite order
parameter and its relation to the phase diagram. It is now natural to parametrize the phase
diagram in term of the dimensionless combinations #J and K, discretizing it for values
of BJ € ]0,0.5] and SK € [0, 1.4], with discretization steps ASJ = AGK = 0.01. We then
apply the phase diagram reconstruction procedure described in the previous Section to
precisely determine the phase boundaries in the fK-/.J phase diagram, shown in Fig. (c)
The phase transition occurs at (3J). =~ 0.44 in the uncoupled SK = 0 case, in agreement
with analytical results [Ons44, [Mus10]. The errors of our method on the determination of
transition points are discussed in Section [5.2.4] Then the critical temperature gradually
decreases to the strong-coupling critical temperature (8J). = (8J)./2. The width of the
peak is essentially due to the the finite-size (32 x 32 x 2) of the lattice used for Monte
Carlo simulations, whose snapshots we feed to the neural network. The result is that
it appears that only two phases are found, with order parameter (o) = (7). From our
treatment of data we cannot determine the behavior of the order parameter inside the two
phases, whose study would be an interesting future continuation of the present results.

Next, we consider a trilayer system, whose Hamiltonian is a natural extension of the
one of Eq. (5.5). This Hamiltonian, already introduced in Section [L.3] is given by:

Htrilayer = —JZO'iO'j — JZTiTj — JZUZ‘U]‘ — KZO'iTZ‘ — KZTiUi s (56)
(ig) (ig) (ig) i i

and the new variable v; is also an Ising spin. This is the first non-trivial example, and of

course representative of properties of the multilayer Ising model with Yukawa coupling.
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The central natural question is whether a composite order parameter emerges. Moreover
the model of Eq. is interesting since it paves the way to the investigation of the N
layers case, which shall be trivial with the method presented here. Indeed the N layer case
may serve to investigate how the (three-dimensional) limit of infinite layers is retrieved,
an issue in the context of layered models, see e.g. Ref. [SS9§].

The investigation of the model described by Eq. follows the same line as the
one of the bilayer case, we are able to reconstruct the phase diagram as shown in
Fig. recovering that strong-interlayer-coupling critical temperature that in this case
is (B8J)2 = (BJ)¢/3, marked by a red dashed line. The main result exhibited in Fig.
is that no composite order parameter appears even for the trilayer case. Therefore, our
technique has been able to correctly recover the phase diagram of the bilayer Ising model,
where we do not expect any additional order to appear [SSBS05, [SB16], while it also
predicts the same picture for the trilayer case, for which no previous expectation exist up
to our knowledge. The generalization to the N-layer case shall be straightforward, but
more numerically demanding, while based on the present results no additional phases are
expected to appear. Therefore, in the following we are going to investigate a different
case where a composite order parameter appears by construction.

5.2.3 Reconstructing composite order parameters: the
Ashkin-Teller model

We now turn to the square-lattice Ashkin-Teller model. We introduced it in Section [I.3]
It is described by the following Hamiltonian

HAT:_Jzaiaj_JZTiTj_KZJinTiTj (57)
(i) (i) (i7)

with o;,7; = £1. Compared to Hamiltonians — one sees that the coupling
is now quartic in spins. Since in the Ising model there are only two scaling fields
relevant in renormalization group sense [Car96l Mus10], the magnetization and the energy,
one sees that in the models and one has basically the two natural ways of
having respectively magnetization-magnetization and energy-energy couplings, higher
order coupling terms being irrelevant. The Ashkin-Teller model is also related to the four

state planar Potts model, and several variations of it, also in three dimensions, have been
investigated [Wu82].

The Ashkin-Teller model features a rich phase diagram, and remarkably in two di-
mensions can be studied analytically [Bax07, [DG04]. Here we consider the case of
ferromagnetic couplings, J, K > 0. It is known that three different phases exist [Bax07].
Besides an ordered phase, denoted by I, characterized by (o) # 0 # (1) and a disordered
phase, II, characterized by (o) = (1) = 0 one also finds the peculiar phase III in which
the single spins ¢ and 7 are disordered, whereas a composite order parameter given by
their product is ferromagnetically ordered, i.e. (o7) # 0.

Whereas the previous investigation of Ising-like models makes us confident that the
ML procedure we have introduced is able to correctly characterize the transition between
phase I and phase II, it is not a priori clear that phase III can be correctly identified. As
shown in the small inset of Fig. MC snapshots show disordered spins both in phase
IT and in phase III, the transition being determined by the o7 composite variable, that
we do not directly feed to the CNN. In order to learn the existence of the II-III phase
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Figure 5.3: Reconstructed phase diagram for the square-lattice Ising trilayer model,
showing a phase transition between an unordered, high-temperature phase (U) to an
ordered, low-temperature phase (O). Note that as the interlayer interaction 5K is increased,
the critical temperature decreases from the analytic limit (8J). = ln(l + \/§> /2 ~ (.44,
marked by a red diamond, to the strong-interlayer-coupling limit SK — oo where
(BJ). = (BJ)./3, marked by a red, dashed line. Figure adapted from Ref. [RDC™20].

transition the CNN must learn to reconstruct the composite order parameter. We find
that our framework successfully performs this task, owing to the convolutional filters
which are convolved in 2D spanning across the layers and are able to learn even elusive
interlayer correlations.

The reconstructed phase diagram of Fig. shows that indeed our approach is able to
correctly learn the phase transitions in the ferromagnetic Ashkin-Teller model. Whereas
the transition line corresponding to the magnetization of o and 7, as separated variables,
corresponds to a prominent peak, whose width is essentially determined by finite-size
effects, the line corresponding to the magnetization of the composite o7 order parameter
corresponds to a smaller peak, displaying that the characterization of this transition line
is more demanding to the CNN, but still possible.

We can compare the obtained phase diagram we obtain with exact results available in the
literature. In the K" — 0 the model reduces to a square-lattice Ising model with coupling
constant J, with critical temperature (5.J). = ln<1 + \/5)/2 ~ 0.44 [Onsd4, Mus10],
whereas in the K — oo limit the model reduces to a square-lattice Ising model with
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Figure 5.4: Reconstructed phase diagram for the square-lattice Ashkin-Teller model: the
red, blue yellow and green diamonds show analytically-determined phase transition points,
see main text. Our approach identifies three phases, in agreement with the theory of the
Ashkin-Teller model. The insets show representative configurations of the o, 7 spins and
of the ‘composite’ spin o7, for each phase: note that the transition between phase II and
phase IIT does not correspond to any apparent difference in the ¢ and 7 layers that we
feed to the CNN. We stress that the o7 ‘composite’ variable, marked in red, is not fed to
the CNN. Figure adapted from Ref. [RDCT20].

coupling constant 2J and critical temperature (8.J), = ln(l + \/5) /4 ~ 0.22. Finally
for J = 0 the system again undergoes an Ising-like phase transition for the composite
order parameter, at (GK). = ln(l + \/§> /2 ~ 0.44. These three points are marked by a
red, green and blue diamond, respectively, in the phase diagram of Fig. showing an
excellent agreement between the analytical results and the reconstructed phase diagram,
even in the latter case when the composite order parameter o7 drives the transition.
Finally, the yellow diamond marks the bifurcation point as determined analytically in
Ref. [Bax07]; we attribute the difference with respect to the bifurcation point in our
reconstructed phase diagram to finite size effects. We also mention that the critical lines
separating the different phases are retrieved with a precision up to ~ 20% — 30%, except
for vanishing §J. Again we attribute this to finite size effects; proceeding as extensively
discussed in the literature [CCCT19] one could obtain a quantitative agreement on the
location of the critical lines. Here, our emphasis is on the possibility of retrieving the
phases with composite order parameters and to ascertain their existence, as we also did

63



5.

CHARACTERIZING PHASE TRANSITIONS WITH CONVOLUTIONAL NEURAL NETWORKS

8
6 ------------------------------------------------ @ ———————— o
4 °
2
0
-2
-
-6 o
0 1 2 3 4 5 6 7
H epochs
6
- 421_ -------------------------------------------------------- Q- ————————— o
2 0 .
e -4 .
0 100 200 300 400
H samples
5.5
0 -
4.5 .
4.0 .
3.5} .
3.0 .
2.5
3 6 9 12 15
H filters

Figure 5.5: Signal-to-noise ratio for the Ising bilayer as a function of the number of
epochs (upper panel), of the number of samples in the training set (middle panel) and
of the number of convolutional filters (lower panel). The dashed lines guide the eye
towards the highest attainable signal-to-noise ratio in each dataset. Figure adapted from
Ref. [RDC™20].

for the trilayer Ising model.

5.2.4 Scaling properties and robustness of the approach

Our results show that with the network and learning parameters that we used we were
able to obtain a phase diagram of quality high enough to visually identify different phases.
In addition, in this Section we characterize our method by quantifying signal to noise
ratio (SNR) and studying its behavior when essential parameters are changed. We define

the SNR as . ( )2
v il — v
SNR = logw (U) R

(5.8)
x; being the values of the V2u field of Eq. (5.3]), the summation extending over a region
containing N values, v being the ‘noise’, i.e. the average value of V2u in a subset of the
region far away from a phase transition. We evaluate the SNR for the Ising bilayer on
a strip centered on SK = 1.1, exhibiting a sharp phase transition at 8J ~ 0.26 as clear
from Fig.[5.2] At first, we vary the number of training epochs, observing that the SNR
is rapidly increasing before reaching a maximum value at around 5 epochs of training.
This indicates that further training brings no benefit while providing a risk of overfitting,
justifying our early-stopping approach. Secondly, we vary the number of samples in the
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training set, showing a rapid increase in the SNR before reaching a plateau at about
400 samples, justifying our choice of using a slightly larger number (600) of samples in
the training set. Lastly, we vary the number of convolutional filters in the CNN. Again,
the general upwards trend shows that a larger number of convolutional filters helps in
enhancing the quality of the reconstructed phase diagrams. However, we stress that in
this latter case the SNR is quite high in the whole parameter region we consider. The
lowest number of convolutional filters we consider (3) is already enough for achieving a
good reconstruction of the phase diagram and a large SNR value. These analyses are
shown in Fig. |5.5]

We have also analysed how the reconstructed phase transition is affected by the
dimension of the stencil in Eq. . Using a 5-point, 9-point or 13-point stencil we have
obtained SNR values of —1.36 dB, 0.38 dB and 3.88 dB, respectively. This confirms that
the approach we are introducing takes indeed great advantage from the two-dimensional
structure of the phase diagram, and information from second- and third-nearest neighbors
is being used to sharply characterize the phase transition.

0.10[ o pr
0.08 " Scaling from MC

-
-
- —
- -
- -
-

FWHM
e 2
> o
E &
o
|+.

\

- -
- -
- -
- -
- —
- -
- -
-
-

0.02 e

-
-
-

-
-
—-
-

0%901 0.02 0.03 0.04 0.05 0.06 0.07

(lattice size)™!

Figure 5.6: Full width at half maximum of the phase transition in the Ashkin-Teller
model for K = 0.7, as a function of the inverse lattice size, for four different lattice
sizes (L = 16,24,32,48). The red squares show the FWHM of the peak in magnetic
susceptibility in the MC data, whereas the blue squares show the FWHM of the Laplacian
peak obtain from our ML approach; errors are estimated by identifying the phase transition
10 times. The dashed lines guide the eye. Figure adapted from Ref. [RDC™T20].

We also studied the width of the identified phase transitions. These phase transitions
in the systems we consider have a certain ‘natural’ width, due to the finite size of the
lattice in the underlying Monte Carlo simulations; moreover, we expect our approach
to introduce an additional width when determining the transition point. In order to
verify this assumption and to investigate the accuracy of our method, we analyzed the
natural width associated to the phase transition in the Ashkin-Teller model for SK = 0.7,
determining it by looking at the peak of magnetic susceptibility directly from Monte Carlo
simulations, and determining its width through the full width at half maximum (FWHM).
We compare it with the FWHM of the Laplacian peak we reconstruct from our machine
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learning approach. The results are shown in Fig. [5.6f the FWHM of both the magnetic
susceptibility (red squares, the red dotted line guides the eyes) and machine learning
Laplacian (blue squares, the red blue line guides the eye) obey the same o< 1/L scaling
with respect to the lattice size L. The constant offset between the two datasets can be
understood, as anticipated, as the additional error introduced of our method, due to the
discretization of the parameter space, and due to some intrinsic uncertainty associated to
the machine learning procedure.

5.3 Characterization of phases in colloidal systems

5.3.1 Model and methods
Model

We used the SALR potential of the form previously studied in Refs.[SMZT04, [STZ05,
MLKBI14, [TSZ09, [SPP17]. We already described the SALR potential in Section The
effective interparticle interaction is the sum of the standard Lennard-Jones and Yukawa
potentials, which we just remind here for the convenience of the Reader:

V(r) = 4e [(")12 - (")61 e (5.9)

r r T

The parameter values were taken from [SPP17]: A = 0.5, k = 0.5, ¢ = 1.0, ¢ = 1.0,
where € and o are set to be the units of energy and length respectively. The plot of this
potential was presented in Fig. [[.3] Accordingly, in reduced units temperature is kgT'/e,

. . . . . . 2
where kp is the Boltzmann constant, and time is given in units of 7 = /™2, where

m = 1 is the mass scale. For this set of parameters, particle aggregation into clusters
with preferred size occurs up to kgT'/e &~ 0.45, even though the potential is found to be
repulsion-dominated (positive second virial coefficient) for kgT'/e > 0.31 [SPP17]. Apart
from a detailed description of the low density behavior, for the chosen set of parameters
the phase behavior of the system is not known precisely, but can be inferred by analogy
to similar systems [ZZC16 [Cia08| [CPG13, DCDGE™06].

Details of the simulation

In order to minimize size effects and to ensure commensurability between box size and the
period of the formed structures the molecular dynamic simulations (MD) were performed
in the isobaric-isothermal ensemble, NPT, where N is the number of particles, P is the
pressure and T is the temperature. We used N = 15625 and P = 0.5¢/03.

Equilibrium simulations were run using the HOOMD-blue package [GNAT15, [ALT0S]
with a time step dt = 0.0057. The runs consist of 10® MD steps with either linearly
increasing or decreasing temperature in the range of 0.01 < kg7 /e < 0.8. For decreasing
temperature runs the initial configuration was a simple cubic lattice, and the final
configuration of this procedure was later used to initialize the linear heating protocol. For
temperatures away from the phase transitions both heating and cooling protocols gave the
same number densities of the system, thus we can infer that the equilibrium was reached.

The nonequilibrium MD simulations were performed in LAMMPS [Pli95] adjusted to
use the SLLOD equation of motion in the NPT ensemble [TD17]. The shearing procedure
was initialized from the equilibrium structures, then after the 10° steps needed to reach
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the stationary state, production runs consisting of 10° steps were executed. The shear was
imposed in the x direction, and the velocity gradient was in the y direction. Therefore,

the shear rate is defined as R = v, /y and is measured in inverse time units, 771.

Details of the analysis

Dynamical properties of the equilibrium structures were described by computing compo-
nents of the average displacement vector, D = (d,, d,, d,), given by
1 N
i=1
where R;(t) is the i-th particle location at time ¢, and At = 10*dt. The calculations were
performed after rotating the structure so that

d, +d,
2 Y
describe the displacement in directions parallel and perpendicular to the plane of the

slabs respectively. For the temperature dependence analysis, time averages of d; were
calculated over 10? consecutive configurations of the cooling simulation protocol.

dy = d, = d, (5.11)

The algorithms were fed with the same data, that is a 2d map of the 3d structure
obtained by perpendicular projection of particle positions on a 100 x 100 grid located
at the x = 0 plane, i.e. the plane perpendicular to the flow direction. The normalized
map was then transformed to a binary array, M, by the ceiling function which turns
every nonzero value to 1. As a result, the only information contained in each element of
M is whether at a given time-step there is a particle with y and z coordinates within a
grid node regardless of its x coordinate value. An example of how a lamellar structure is
projected on 2d binary matrix is shown in Fig. [5.7]

Figure 5.7: Stages of binary map production. Left panel: processed particle configuration
seen from the top view of the (y,z) plane, perpendicular to the shear flow. Middle panel:
spherical particles transformed to point particles. Right panel: (y,z) positions of the
point particles were binned into 100x100 grid. The grid was then binarized depending on
whether the bin was occupied (yellow color) or not not (dark color). Reproduced from
Ref. [PRP20], with the permission of AIP Publishing.

Artificial neural networks [Dan13| are commonly used for data classification based on
features that they were trained to distinguish. They are a powerful tool for encoding
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functions that describe a set of features (e.g. Monte Carlo simulation, image data) into a set
of classes (e.g. ordered and disordered phase). This encoding is achieved by decomposing
the function into a set of small units, called neurons. The behavior of individual neurons
depends on a set of trainable parameters that are gradually adjusted during the training
phase. The training involves minimization of a cost function that quantifies the difference
between the ground truth labels and current neural network output over the set of the
neural network parameters. CNNs are an example of networks that are designed for

pattern recognition based on the translationally invariant two-dimensional features of
their inputs [GWK™18, [DV19].

On the contrary, DNNs do not convolve the input with a set of filters; the input is
instead densely connected to the first hidden layer of neurons. Hence, in that case the
preparation of data for training includes flattening, a transformation from 2d matrices to
1d vectors. Thus in the case of DNN, the learning relies on finding correlations between
artificially produced vectors. We have used both types of networks to categorize the
binary maps, M. For both networks we used maps obtained at kgT'/e = 0.42 with
Rt = 0.01,0.1,30 (low and high shear disordered structure), R = 6,8,10 (ordered
lamella) and R7 = 16, 20,24 (torn lamella). For each value of R we used 400 maps for
training and the rest (100 maps) for validation. The DNN features a multilayer perceptron
architecture with the input layer being followed by a 32-neuron hidden layer activated with
ReLU activation [NH10]. The output layer is made of three softmax-axtivated neurons.
The CNN consists of two convolutional layers followed by a softmax-activated output
layer. The convolutional layers feature 32 (input) and 16 (hidden) filters of size 3x3.
Both networks were trained using the Adam algorithm with the aim to minimize the
cross entropy between the softmax output and ground truth labels. This algorithm was
described already in Section [£.4.2] Despite the fairly simple and shallow architecture, for
both sets we reached a classification accuracy of 1.0 and cross entropy loss function values
of 0.0008 for the training set and 0.005 for the validation set.

The validity of the machine learning approach was verified by computing an order
parameter, O,, based on the structure factor, S(k). To find the structure factor the
following formula was used

2

S(k):]b[ésm(k-m] +;l§;cos(k-3i)] , (5.12)

=1

where - is the scalar product, and to describe the shear-induced lamellar ordering the wave
vector, k, was set to point in the direction perpendicular to the lamellar slabs. Usually,
the order parameter is the normalized height of the highest S(k) peak that appears for
k > 2m /L, where L is the size of the simulation box. Here, in order to fit O, to the scale
of A, we transform S(kq.) linearly in the following way: O, = %(1 — S(kmaz)) + Amin(R),
where A, (R) is the minimal value of A\(R) at given temperature.

The snapshots were visualized using The Open Visualization Tool (OVITO) [Stul0].

5.3.2 Results
The Equilibrium Case

SALR particles form ordered microphases only for a specific range of model parameters
which provides a proper balance between the attractive and repulsive interactions [ZC16b].
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In the case of very narrow attraction wells, aggregates are formed, but global ordering
does not occur [STZ05, [TSZ09, RFGZ19]. Here, following [SPP17, [Arc08, [ZZC16] we
choose a SALR potential with a wider attraction well. We have checked that the chosen
parameters lead to self-assembly into globally ordered cluster, columnar and lamellar
structures. Interestingly, the ordering occurs also at temperatures for which the SALR
potential has a positive second virial coefficient [SPP17]. In Fig. [5.§]the lamellar structures
obtained from equilibrium MD simulations in the NPT ensemble are presented. The phase
transition between the lamellar structures with crystal-like slabs and fluid-like slabs is
reflected in a drop of the average density. The transitions occur at different temperatures
depending on the simulation protocols used, as described in the caption of Fig. 5.8 A
similar but larger hysteresis is observed for the high-temperature melting transition. In
both cases the observed density response suggests presence of a first order transition. The
melting of the crystal-like ordering preserves lamellar structure, occurs only within slabs,
and is a local change that leads to a relatively small hysteresis. On the other hand, in the
high-temperature transition the melting turns a lamellar structure into a disordered fluid,
and such global order-disorder transition results in a relatively large hysteresis. Transition
between lamellar structures with different slab characteristics was not previously reported
for 3d systems. However in 2d, similar multi-step melting of stripes was found [ORRBI10].

The analogy with the 2d system is not only structural but also dynamical, since the
displacements of the particles along different axes behave in a similar manner as in the
2d system (Fig. and Fig. 8 in [ORRBI10]). In particular, formation of the lamellar
structure causes a significant drop in the average particle displacement along the axis
perpendicular the slabs, d,, and simultaneously a slight increase of d|. The difference
between d; and dj reflects the anisotropy of the system and the suppression of particle
exchange between the slabs. Upon further decrease of temperature both the anisotropy
and the displacements converge and the crystal lamellar structure is formed.

Nonequilibrium Simulations

In the case of a SALR potential that leads to periodically ordered structures, the effect
of shear on the ordered microphases was studied in Ref. [SRI§|]. Thus, here we focus
on the question of whether steady shear can induce ordering of disordered SALR fluids.
We apply shear to the equilibrium structures at P = 0.5¢/03 and for kgT /e > 0.4, that
is, above the melting temperature of the lamellar phase. We find that the obtained
stationary states show different kinds of ordering depending on the applied shear-rate and
the temperature. Importantly, close to the equilibrium order-disorder phase transition,
the steady state structures (Fig. are highly similar to the equilibrium lamella with
fluid-like slabs (Fig. . However, since many other states were found that were not as
highly ordered, in what follows we describe and analyze structural transitions between
different shear-induced morphologies by applying different machine learning methods to
2d binary maps of the obtained 3d structures, as described in Section [5.3.1]

Artificial Neural Networks

We applied two common supervised methods for pattern recognition: DNN and CNN.
The aim of the training was to learn to classify the structures occuring at kgT'/e = 0.42,
where Principal Component Analysis (PCA), another machine learning method, suggests
that in between critical shear rates required for ordering, a gradual structural transition
from ordered to torn lamella is present. The results are shown in Fig. In both cases
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Figure 5.8: (a) Number density as a function of temperature at constant pressure
P = 0.5¢/03 for a sequence of simulations with linearly increasing (dashed red lined) or
decreasing (solid blue line) temperature. The density drops appear at kg7 /e = 0.185
and 0.377 for decreasing kpT'/e, while at kgT/e = 0.237 and 0.40 for increasing. (b)
Representative snapshots of lamellar structures with fluid-like (left) and crystal-like (right)
ordering. Reproduced from Ref. [PRP20], with the permission of ATP Publishing.

the steady states for R7 < 0.5 and R7 > 28 are labeled by the networks as disordered,
which agrees with the PCA predictions. In the intermediate range of the shear rate, both
networks are able to distinguish the lamellar and the torn lamellar structures and predict
that the transition occurs between 11 < R7 < 20. This suggests that, contrary to the
order-disorder transitions, these steady states change gradually. Therefore, both neural
networks’ predictions seem to agree with the the PCA analysis. Interestingly, this is,
however, not the case for kg7 /e = 0.55 (not shown in this Thesis), where the thermal
fluctuations are more prominent. The structures are far less ordered, and only CNN
predictions to some extent agree with PCA whereas the DNN does not even capture the
location of the transitions between disordered and the torn-lamellar structures. However,
one should note that both networks were trained with data from kg7 /e = 0.42.
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Figure 5.9: Average displacements versus temperature in directions parallel (dashed red)
and perpendicular (solid black) to the lamellar slabs. Reproduced from Ref. [PRP20],
with the permission of AIP publishing.

It is also interesting to learn how the neural network that we used makes the final
decision on labelling a given structure. Some insight into that process can be found in the
output, i.e. the last layer of the CNN. The number of neurons in the output layer is equal
to to the number of structures that the network was trained to distinguish. The output
values pq, po and ps correspond to the lamellar, torn lamellar and disordered structures,
respectively. They assume values in the range [0, 1]. The final classification decision is
made by choosing the structure corresponding to the largest-output softmax neuron of the
output layer. In Fig. [5.11] the output value p; is shown for the shear rates at which the
PCA predicts gradual transition between the lamellar and the torn lamellar structures.
In this range of shear rates po = 1 — p; and p3 = 0. The ongoing structural transition is
reflected in the high noisiness of the output. In particular, at the shear rate of R = 13
where more then 90% of configurations were labelled as lamellar, the output plot shows
that actually in many cases the p; &~ 0.5, meaning the output values of the lamellar and
torn structures are close. This suggests that the network, although with high accuracy,
made the decision with less certainty. An increase in the shear rate makes the predictions
more ambiguous, so that for R7 = 15, where about half of the configurations are labelled
as lamellar and half as torn lamellar, the output resembles random noise. Increasing the
shear rate to R = 17 changes the situation dramatically. For most of the configurations,
the classification decisions are made with high certainty. However, for some range of
configurations, a kind of transition between the steady states can be observed. Further
shear rate increases result in monostability, and the outputs become constants of value 0
or 1 (not shown).
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Figure 5.10: Representative steady states obtained after exposing disordered fluid to shear.
Left panel: (kgT'/e, RT) = (0.42,10), right panel: (kg7 /e, RT) = (0.65,10). Reproduced
from Ref. [PRP20], with the permission of AIP Publishing.

5.4 Chapter conclusions and outlook

In this Chapter, our work demonstrated that ML approaches are able to learn the order
parameter driving a phase transition in layered models, also when this parameter is
not immediately apparent from the snapshots without preprocessing. This is directly
possible due to the convolutional filters which are, without any a priori knowledge,
capable of learning even involved algebraic operations that uncover the order parameters
from the data. This paves the way to the use of ML approaches to investigate the
properties of systems of increasing complexity and to characterizing phases of matter
described by multiple, possibly non-local order parameters. The universal approximation
theorem [Hor91] ensures us that a neural network can, at least in principle, learn to
recognize arbitrarily complex order parameters.

In particular, an interesting extension would be to study the multilayer Ising model
with a number of layers increasing, the three-dimensional Ashkin-Teller and the trilayer
Ahkin-Teller in two dimensions, which can be studied with the techniques introduced in
the Chapter. Non-local couplings among the layers could be added, which would lead
to non-local, more composite, operators. These results should be compared with the
identification of hidden order done using non-ML techniques [MCL19].

Our approach may be used for other cases in which the identification of the order
parameters is not straightforward [RSM™15, [LCH*17, VZ06]. Even if our approach has
been devised to deal with coupled spin models and can applied to different geometrical
configurations, it is not clear a priori that it would succeed in other more complicated cases
of coupled interacting systems, such as multilayer configurations of interacting bosons
and fermions or bilayer quantum Hall systems. Of course, in order to study generically
coupled models one needs to have an efficient algorithm to simulate the uncoupled systems.
Nevertheless, we think the present work provides a methodological basis, highlighting the
effect of interlayer coupling on the macroscopic properties and phases of coupled systems.
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Figure 5.11: Fraction of configurations assigned to different structures by DNN (upper
panel) and CNN (lower panel) as a function of the shear rate at kg7’ /e = 0.42. The neural
networks were trained to distinguish between the disordered structures (blue), lamellar
structure (orange) and torn lamellar structure (green). Reproduced from Ref. [PRP20],
with the permission of AIP Publishing.

Naturally, the approach we introduced could also be extended in the future to char-
acterize quantum models, or classical spin models with competition between short- and
long-range interactions, or more involved spin models such as the XY model, discretising
the continuous degrees of freedom|LRT17]. We expect that by an appropriate choice
of the sizes and strides of the filter in the convolutional layer one could characterize
antiferromagnetic order parameters, non-local order parameters and exotic order pa-
rameters, such as nematic and smectic phases. In this context, current experiments on
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Figure 5.12: Output, p;, of neuron corresponding to the lamellar structure in the last,
softmax-activated layer of the convolutional neural network upon the gradual transition
from the lamellar to torn lamellar structures at kgT/e = 0.42. From left to right:
Rt =13,15,17. Reproduced from Ref. [PRP20], with the permission of AIP Publishing.

fermionic dipolar atoms [LBL12, PWZ15|] promise to open a new window in the physics
of competing long-range and short-range interactions [BPBT18|, clearing the path for the
comprehension of modulated phases in strongly interacting quantum systems.

The presence of spatially ordered structures is a leitmotiv for long-range and layerd
systems such as ultra-thin magnetic films [AB92, [KP93al, [KP93b|, iron-based supercon-
ductors and cuprates [PAASNT10, [TBTT16]. The pattern structure normally depends on
several experimental conditions and it produces a particularly rich phase diagram. Most
of the common features occurring in stripe forming systems and modulated phases remain
obscure due to the challenges posed by the complicated order parameters, which occur in
these cases [MCBS17, MCS12, BS09, BS11]. The ML technique introduced in the present
Chapter may serve as an essential prove to finally uncover the complexity of such phases.

Our results pave the way for fully automated study of phase diagrams of more general
and complicated spin systems. An exciting open problem lying in the realm of so-called
explainable artificial intelligence (XAI) [DBH1S] is whether machine learning techniques
could not only learn to separate phases differing by a ‘hidden’ order parameter, but also
identify that parameter. Another natural development of the present work is to use our
fully-unsupervised technique to learn directly from experimental data [RKTT19, BCJ™19,
ZMFET19]. Finally, it would be interesting to extend the results presented in this Chapter
according to the variational procedure discussed in Ref. [KJRIS].

In this Chapter we have also analyzed properties of lamellar structures formed by
a SALR fluid in equilibrium and nonequilibrium conditions. We have found that the
equilibrium lamellar phase can be formed with slabs that exhibit either fluid- or crystal-like
ordering. The transition between the two is manifested by a jump in the density and
by the average displacement becoming significantly anisotropic upon heating. Although
the presence of crystal-like lamellar phase with hexagonally packed particles has been
reported before [DCDGFT06], the phase transition between the two ordered lamellar
phases has not been shown in previous attempts to describe phase behavior of the 3d
SALR fluid [ZZC16, TR04, [Arc08, DCDGFT06]. Interestingly, two distinct lamellar phases
have been found in 2d lattice [APCI14] and off-lattice [ORRB10] models, as well as in
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the model for a 1d cross-section of the stripe phase [PCA13|. Importantly, the nature of
the transition found here and in Ref. [ORRB10] is the same and shows a liquid-crystal
transition within the slabs. On the other hand, the molten lamellar phase described in
[APC14], consists of liquid-like stripes with randomly distributed topological defects. In
the 3d equilibrium, no such defects were observed, but this can be model-dependent and
requires further studies.

Out of equilibrium, the disordered SALR fluid was shown to form a number of
anisotropic morphologies when exposed to steady shear. In particular, depending on
temperature and applied shear rate, we have found that lamellar, torn lamellar, lamellar
mixed with columnar, and hexagonally-ordered columnar structures can occur. The
anisotropic structures with weak, global ordering were observed up to kg7 /e = 0.75, with
kT /e = 0.4 being the temperature of the equilibrium order-disorder phase transition.

At equilibrium, one of the main obstacles that a system with competing interactions
has to overcome to form an ordered state is finding the global minimum in a highly
complex energy landscape. The barriers between the local minima that potentially can
trap the system are steeper at lower temperatures. Thus, if one could make the system
ordered above its melting temperature, it would place the system close to what becomes
the global minimum upon cooling. Here, we have shown that a SALR system exposed to
steady shear can order above its melting temperature, and thus shearing can be used to
facilitate the formation of the lamellar structure.

The analysis of the shear-induced structures we observed was performed after reduction
of data dimensionality. We have shown that in the case of such highly anisotropic
structures as lamellae, the structural transitions that take place in 3d space can be
successfully quantified using PCA applied to 2d binary maps of the structure.
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CHAPTER

Conclusions

In this Thesis, we have studied several types of systems. Their nature and physical
properties are different, however, all of them belong to the class of many-body systems.
This was the fundamental source of difficulty in their investigations performed in this
Thesis. Therefore, we resorted to approximate and numerical techniques to overcome
these difficulties. Although we have used a wide spectrum of methods, all of them rely
on minimization of a certain functional dependent on parameters introduced by a choice
of a model. In the variational approach, we minimized the energy of the system with
respect to the variational parameters of the ansatz, either analytically or numerically. In
phase discrimination, we numerically minimized cost functions of the phase discrimination
problem with respect to the weights and biases of the artificial neural networks.

The original results of the Thesis were presented in Chapter [3] Chapter [ and
Chapter [5] Each of these chapters was based on already published papers or a preprint
submitted to the arXiv repository. In Chapter , based on Ref. [RL18], we derived a
Hamiltonian for a spinful angulon in the presence of an external magnetic field. We applied
variational technique to retrieve a physically intuitive picture of relevant properties of the
system. In Chapter [ based on Ref [RLM21], we developed a neural-network quantum
state ansatz for non-additive systems. We exemplified this approach on the polaron
Hamiltonian, a non-additive system with significant physical meaning. In Chapter [5] based
on Refs. [RDC™20, [PRP20], we used artificial neural networks, in particular convolutional
neural networks, to study classical spin lattice models as well as colloidal systems.

At the end of each Chapter, we presented conclusions and outlook resulting from the
work described in each of them. However, these conclusions intersect each other and
converge towards a bigger picture of the potential outlook, both for the systems studied
and methods used in this Thesis. Let us present these broader conclusions in the rest of
this Chapter.

The angulon theory, now 6 years from its theorization, has already a proven track
record of explaining important phenomena in quantum physics. These developments were
described already in Chapter [I] and continued in Chapter [3] However, there is still large
room for further developments. To compare, the translational counterpart of angulon,
the polaron, has been a subject of active research for almost ninety years (Ref. [Lan33]
was published in 1933). The angulon, with its treatment of interactions between angular
momenta that provides physical insight as opposed to black-box numerical approach,
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provides hope for further studies explaining involved phenomena in atomic, molecular,
and solid-state physics. Let us now provide a more detailed picture of potential outlook.

The angulon theory could be developed further to treat even more involved systems.
A particular example here would be the hydroxyl radical (OH). This is a very natural
extension — the original angulon theory covered only rotational angular momentum,
while in Chapter |3| we extended the theory to cover also the spin angular momentum;
the hydroxyl radical, in addition, has a non-zero orbital angular momentum. Such an
extension is not only of interest purely from the theoretical perspetive — there exists
already exciting experimental data, lacking detailed microscopic explanation, both on OH
A-doubling [RLD13] and Zeeman effect [Dou] in the presence of the bath.

For this potential extension, one could take the following path. First, one would develop
a theoretical model of A-doubling in the presence of the bath. Then, using experimental
data, one could fix the OH-helium interaction interaction parameters (magnitudes and
ranges) from this A-doubling model. In the second step, one would develop a model
of Zeeman splitting in the presence of the bath. Then, finally, one could evaluate
the consistence of both models by checking how well experimental Zeeman splitting is
reproduced when using the parameters established from fitting the A-doubling.

Other possible extensions of the angular quasiparticle approach involves solid-state mag-
netism. In spite of intensive theoretical and experimental efforts, exhaustive microscopic
description of phenomena related to solid-state magnetism remains to pose a challenge.
One of the most important ingredients yet to be done for such a complete theoretical
picture is the description of the microscopic mechanisms of angular momentum transfer
between the electron spin, orbital motion and the lattice degrees of freedom [GCI5h].

This is important not only from the fundamental point of view. These insights are
crucial, for example, to reduce decoherence in solid-state qubits [DRST16]. This is one
of the most promising setups for future large-scale quantum computing [Prel8| with
potentially a wide range of real-life applications. However, directly studying angular
momentum exchange in solid-state systems is usually extremely challenging. Therefore,
one resorts to model, controllable systems. An example of such model system is the
oxygen molecule, Oy, immersed in helium nanodroplets. The ground state of the oxygen
molecule is 329’, — this denotes that the orbital angular momentum is L = 0, while spin is
S = 1. Studying this configuration naturally complements the finished work of Chapter [3]
where the case S = 1/2, L = 0 was studied and the already discussed potential extension
to the hydroxyl radical, which tackles the case S =1/2, L = 1.

Therefore, another potential extension is to explore the use of the angulon theory
to explain the observed change in Stern-Gerlach effect when the oxygen molecule O, is
immersed in helium nanodroplets, as compared to the same experiment in the gas phase.
One expects that in Stern-Gerlach experiment, the three-fold multiplicity of the total
angular momentum projection results in a three-fold splitting of the molecular beam
when exposed to a magnetic field. However, experimentalists have already observed that
only one of the three sub-beams is present. This leads us to formulate the following
hypothesis: it is the interaction with the bath that splits the energy levels corresponding
to different angular momentum projections. This would subsequently induce a decay to
the lowest-lying state. This would be then a direct experimental evidence that the transfer
of angular momentum — which one would describe using techniques derived from the
theoretical description of the angulon quasiparticle — is indeed happening in the system.
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As already said, the extension to oxygen molecule and hydroxyl radical will probably
be started with analytic approach similar to the techniques presented in Chapter [3] This
would give analytic insight into these problems. However, it is also possible that, after
refinement and adaption, the artificial neural network quantum state approach, similar
to the one described in Chapter [, will also work for the hydroxyl radical and oxygen
molecule. These approaches, when refined to cover the more involved angular momentum
algebra, are expected to provide more accurate numerical results that might be directly
comparable with experimental data.

Regarding machine learning, this Thesis has covered two different paradigms. In
Chapter [ we exploited neural-network quantum states, while in Chapter [5| we harnessed
the power of convolutional neural networks to uncover the phase diagrams of many-body
systems. However, the machine learning approaches in physics and, hence, the outlook of
these Chapters, stretch way beyond these two paradigms. In what follows in this Chapter,
we will cover particularly exciting subfields of machine learning that might shed new light
on physics in the coming years.

A particular machine learning method that could also rise to prominence in (quantum)
physics is reinforcement learning [SBI1§|. In reinforcement learning, one changes the
paradigm — now, there is an agent performing actions in an environment. The actions
to be taken in a given state of the environment are governed by the policy function,
which assigns numerical scores to state-action pairs. This function is usually approxi-
mated by an artificial neural network and trained in a process which combines random
exploration of the environment with the exploitation of the already partially trained
policy. Compared to supervised and unsupervised learning, this method is known to
be very challenging [DAMHI9] — the challenges include extremely high dimensionality
of the state-action space, only partial observation of the environment, or very limited
training data. Thus, the reinforcement learning boom might came with a delay compared
to developments in supervised and unsupervised learning, nevertheless, the perspectives
are extremely exciting.

Reinforcement learning has already a track record of successful applications in physics.
One particular field in which reinforcement learning has been successful, is quantum
control [NBSNT9, BDST18, ZWA™19|. These advancements in quantum control might
be useful for future quantum computing or for real-life experiments in other subfields
of quantum physics. However, the already achieved progress is not limited to quantum
computing — there have already been successful applications for improving the dynamics
of sensors [SFB20)], optimizing quantum error correction codes [NDD™19|, or optimizing
quantum circuits [FNML21].

The so-called meta learning, or “learning to learn” is also an expanding field of machine
learning. In meta learning, the machine learning techniques are not applied to the problem
itself, but to metadata concerning the machine learning approach and experiments. The
goal is to use machine learning itself to choose the most feasible machine learning technique
to solve a given problem. Such approaches in computer science date back already to years
1980s and 1990s [Sch87, BBC90]. Their importance grew then with the deep learning
revolution, which we mentioned already in Chapter[2 However, the meta learning methods
are not yet widespread in physics applications of machine learning. One could expect the
meta learning techniques to gradually start automating more and more tasks in machine
learning approaches, including in physics, regardless if they belong to unsupervised,
supervised, or reinforcement learning. This would fit into the long-standing aim [WB09]
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to automate (at least part of) scientific discovery.

Obviously, conceptual advancements are the most important trigger of wider appli-
cations of machine learning approaches in physics. However, it is worth noting that
with time, it also becomes increasingly easier to perform numerical experiments to test
these conceptual advancements. The developments include both general-use software
packages, such as already mentioned jax package [BFH™ 18| [FJL18], but also specialized
software packages for use in physics, such as NetKet (based on jax), whose third version
has been recently announced [VHST21]. Compared to earlier software, such as Tensor-
Flow [ABC™16] or Pytorch [Ket17], they provide a more flexible way of implementing
machine learning concepts in physics, especially novel architectures of neural-network
quantum states. Yet, they keep high performance, enabling scaling to larger systems — for
instance, more particles in the system or larger cap on bosonic excitations allowed per
particle.

These modern software packages combine several advantages advantages for the re-
searcher in a single, ready-to-use package. First, they enable just-in-time compila-
tion [Ayc03] of Python code, thus greatly speeding up execution of programs, albeit at a
cost of introducing small constraints to the programmer. Secondly, they involve automatic
differentiation, a technique enabling efficient computation of derivatives of functions
specified by a computer program. This is crucial for machine learning applications as
they almost always incorporate calculation of optimization target gradients. Thirdly, the
same programs can be executed without change on GPUs and even on more powerful
TPUs (Tensor Processing Units) [JYPP18]. Compared to usual execution on a CPU,
even a multi-core one, GPU and TPU enable much more massive parallelization, enabling
scaling way beyond the CPU capabilities. Historically, code adaptation to these software
accelerators used to be a considerable challenge requiring significant field knowledge. One
can expect these developments in available software to continue, thus providing a further
boost to the already rapidly expanding field of machine learning in physics.
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