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Abstract
We provide a definition of the effective mass for the classical polaron described
by the Landau–Pekar (LP) equations. It is based on a novel variational principle,
minimizing the energy functional over states with given (initial) velocity. The
resulting formula for the polaron’s effective mass agrees with the prediction by
LP (1948 J. Exp. Theor. Phys. 18 419–423).

Keywords: polaron, effective mass, Landau–Pekar equations

1. Introduction

The polaron is a model of an electron interacting with its self-induced polarization field of the
underlying crystal. The description of the polarization as a quantum field corresponds to the
Fröhlich model [8]. In the classical approximation, on the other hand, the dynamics of a polaron
is described by the Landau–Pekar (LP) equations [14, 15, 24]. For (ψt,ϕt) ∈ H1(R3) × L2(R3),
where ψt is the electron wave function and ϕt denotes the phonon field, these equations read
in suitable units (see [8] or [1])

i∂tψt = hϕtψt,

iα2∂tϕt = ϕt + σψt ,
(1.1)

where hϕ is the Schrödinger operator

hϕ = −Δ+ Vϕ, (1.2)
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with potential

Vϕ(x) = 2 Re [(−Δ)−1/2ϕ](x) = π−2|x|−2 ∗ Reϕ, (1.3)

and

σψ(x) =
[
(−Δ)−1/2|ψ|2

]
(x) = (2π2)−1|x|−2 ∗ |ψ|2, (1.4)

where ∗ denotes convolution. The parameter α > 0 quantifies the strength of the coupling of
the electron’s charge to the polarization field.

Despite its long history, the polaron model continues being actively investigated. For recent
experimental and numerical work, we refer to [5, 21, 25, 27, 28] and references there.

The LP equations can be derived from the dynamics generated by the (quantum) Fröh-
lich Hamiltonian for suitable initial states in the strong coupling limit α→∞ [17] (see also
[6, 7, 13, 18, 22] for earlier results on this problem). One of the outstanding open problems
concerns the polaron’s effective mass [19, 26, 29]: due to the interaction with the polarization
field, the electron effectively becomes heavier and behaves like a particle with a larger mass.
This mass increases with the couplingα, and is expected to diverge as α4 as α→∞. A precise
asymptotic formula was obtained by LP [15] based on the classical approximation, and hence
it is natural to ask to what extent the derivation of the LP equations in [17] allows to draw
conclusions on the effective mass problem.

It is, however, far from obvious how to rigorously obtain the effective mass even on the
classical level, i.e. from the LP equation (1.1). A heuristic derivation, reviewed in section 4.1
below, considers traveling wave solutions of (1.1) for non-zero velocity v ∈ R

3, and expands
the corresponding energy for small v. The existence of such solutions remains unclear, how-
ever, and we in fact conjecture that no such solutions exist for non-zero v. This is related to
the fact the energy functional corresponding to (1.1) (given in equation (2.1) below) does not
dominate the total momentum, and a computation of the ground state energy as a function of
the (conserved) total momentum would simply yield a constant function (corresponding to an
infinite effective mass). Due to the vanishing of the sound velocity in the medium, a moving
electron can be expected to be slowed down to zero speed by emitting radiation. (See [2, 9–12]
for the study of a similar effect in a model of a classical particle coupled to a field.)

In this paper, we provide a novel definition of the effective mass for the LP equations.
We shall argue that all low energy states have a well-defined notion of (initial) velocity, and
hence we can minimize the energy functional among states with given velocity. Expanding the
resulting energy–velocity relation for small velocity gives a definition of the effective mass,
which coincides with the prediction by LP [15].

1.1. Structure of the paper

In section 2, we explain our rigorous approach to derive the energy–velocity relation of the
system, allowing for a precise definition and computation of the effective mass. After intro-
ducing some notation and recalling fundamental properties of the Pekar energy functional in
section 2.1, we identify in section 2.2 a set of initial data for the LP equations for which it
is possible to define the position, and consequently the velocity, at any time. We then arrive
at an energy–velocity relation by defining E(v) in section 2.3 as the minimal energy among
all admissible initial states of fixed initial velocity v. Finally, in section 2.4 we state our main
result, an expansion of E(v) for small velocities v, allowing for the computation the effective
mass of the system.

Section 3 contains the proof of our main result, theorem 2.1.
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In section 4 we discuss the formal approach to the effective mass via traveling waves. More-
over, we investigate an alternative definition of the effective mass, through an alternative notion
of velocity of low-energy states.

2. Main results

2.1. Preliminaries

We start by introducing further notation and recalling some known results. The classical energy
functional corresponding to the LP equation (1.1) is defined on H1(R3) × L2(R3) as

G(ψ,ϕ) = 〈ψ, hϕψ〉+ ‖ϕ‖2
2 for ‖ψ‖2 = 1. (2.1)

Equipped with the symplectic form 1
2i

∫
dψ ∧ dψ̄ + α2

2i

∫
dϕ ∧ dϕ̄, it defines a dynamical

system leading to the LP equation (1.1). Moreover, G is conserved along solutions of (1.1).
Let eP denote the Pekar ground state energy

eP := min G(ψ,ϕ). (2.2)

(For an estimation of its numerical value, see [23].) It was proved in [20] that the minimum
in (2.2) is attained for the Pekar minimizers (ψP,ϕP), which are radial smooth functions in
C∞(R3) satisfying ψP > 0, ϕP = −σψP and ψP = ψϕP , where ψϕ denotes the ground state of
hϕ whenever it exists. Moreover, this minimizer is unique up to the symmetries of the problem,
i.e. translation-invariance and multiplication of ψ by a phase. We shall denote

HP = hϕP − μP with μP = inf spec hϕP . (2.3)

Associated to G, there are the two functionals

E(ψ) := inf
ϕ∈L2(R3)

G(ψ,ϕ) =
∫
R3
|∇ψ(x)|2dx − 1

4π

∫
R6

|ψ(x)|2|ψ(y)|2
|x − y| dx dy, (2.4)

and

F (ϕ) := inf
ψ∈H1(R3)
‖ψ‖2=1

G(ψ,ϕ) = inf spec hϕ + ‖ϕ‖2
2, (2.5)

and clearly eP = min G(ψ,ϕ) = min E(ψ) = min F (ϕ). We also define the manifolds of
minimizers

MG := {(ψ,ϕ)|G(ψ,ϕ) = eP}, ME := {ψ|E(ψ) = eP} , MF := {ϕ|F (ϕ) = eP} .

(2.6)

The results in [20] imply that we can write these in terms of the Pekar minimizers (ψP,ϕP) as

MG = {(eiθ ψy
P,ϕy

P)|θ ∈ [0, 2π), y ∈ R
3},

ME = {eiθ ψy
P|θ ∈ [0, 2π), y ∈ R

3},

MF = {ϕy
P|y ∈ R

3},

(2.7)
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where f y := f (· − y) for any function f . Furthermore, it can be deduced from the results in
[16] that the energy functionals F and E are both coercive (see [3, lemmas 2.6 and 2.7]), i.e.
there exists C > 0 such that

F (ϕ) � eP + Cdist2L2 (ϕ,MF ), E(ψ) � eP + Cdist2H1 (ψ,ME ). (2.8)

The following lemma on properties of the projection onto the manifold MF will be
important for our analysis below. Its proof will be given in appendix A.

Lemma 2.1. There exists δ > 0 such that the L2-projection onto MF , is well-defined (i.e.
unique) on

(MF )δ := {ϕ ∈ L2(R3) | distL2 (ϕ,MF ) � δ}. (2.9)

For any ϕ ∈ (MF )δ , we define zϕ ∈ R
3 via

PMF
L2 (ϕ) = ϕ

zϕ
P . (2.10)

Then zϕ is a differentiable function from (MF )δ toR3 and its partial derivative in the direction
η ∈ L2(R3) is given by

∂tzϕ+tη�t=0 = A−1
ϕ 〈Reη|∇ϕ

zϕ
P 〉, (2.11)

where A is the invertible matrix defined for any ϕ ∈ (MF )δ by Ai, j := − Re〈ϕ|∂i∂ jϕ
zϕ
P 〉.

Remark 2.1. Likewise, it can be shown that the H1- (resp. L2-) projection onto ME have
similar properties: there exists δ > 0 such that the H1- (resp. the L2-) projection onto ME

PME
H1 (ψ) = eiθψ ψ

yψ
P ,

(
resp. PME

L2 (ψ) = eiθ′ψ ψ
y′
ψ

P

)
, (2.12)

is well-defined on the set (ME )H1

δ := {ψ ∈ L2(R3)|distH1 (ψ,ME) � δ} (resp. (ME)L2

δ :=
{ψ ∈ L2(R3)|distL2 (ψ,ME) � δ}

)
and the functions yψ, θψ (resp. y′ψ, θ′ψ) defined through

(2.12) are differentiable functions from (ME )H1

δ (resp. (ME )L2

δ ) to R
3 and R/(2πZ).

2.2. Position and velocity of solutions

In this section, we give a meaning to the notion of position, and therefore velocity, for solutions
of the LP equations (at least for a class of initial data). There is a natural way of defining, given
ψt, the position of the electron at time t, which is simply given by

Xel(t) := 〈ψt|x|ψt〉. (2.13)

This yields, by straightforward computations using (1.1), that

Vel(t) :=
d
dt

Xel(t) = 2〈ψt| − i∇|ψt〉. (2.14)

Note that (2.14) is always well-defined for ψ ∈ H1(R3), even although (2.13) not necessarily
is.

For the phonon field, the situation is more complicated as ϕ cannot be interpreted as a
probability distribution over positions. This calls for a different approach. By (2.8), lemma 2.1

4



J. Phys. A: Math. Theor. 55 (2022) 015201 D Feliciangeli et al

and the conservation of G along solutions of (1.1), we know that there exists δ∗ such that for
any initial condition (ψ0,ϕ0) such that

G(ψ0,ϕ0) � eP + δ∗, (2.15)

ϕt admits a unique L2-projection ϕz(t)
P onto MF for all times. We use this to define

Xph(t) := z(t), Vph :=
d
dt

Xph(t) = ż(t). (2.16)

Note that Xph(t) is indeed differentiable by lemma 2.1 and the differentiability of the LP dynam-
ics. At this point, for any initial data satisfying (2.15), we have a well-defined notion of position
and velocity for all times, admittedly in a much less explicit form for the phonon field.

2.3. Initial conditions of velocity v

For any v ∈ R
3 (or at least for |v| sufficiently small), we are now interested in considering

all initial conditions (ψ0,ϕ0) whose solutions have instantaneous velocity v at t = 0 (both in
the electron and in the phonon coordinate) and to then minimize the functional G over such
states. This will give us an explicit relation between the energy and the velocity of the system,
allowing us to define the effective mass of the polaron in the classical setting defined by the
LP equations.

Note that by radial symmetry of the problem only the absolute value of the velocity, and
not its direction, affects our analysis. Hence, for v ∈ R, we consider initial conditions (ψ0,ϕ0)
such that

(a) (ψ0,ϕ0) ∈ H1(R3) × L2(R3) with ‖ψ0‖2 = 1 and such that (2.15) is satisfied,
(b) Vel(0) = Vph(0) = v(1, 0, 0).

The set of admissible initial conditions of velocity v ∈ R can hence be compactly written
as

Iv := {(ψ0,ϕ0)|(a), (b) are satisfied}. (2.17)

We will show below that it is non-empty for small enough v.

2.4. Expansion of the energy

In order to compute the effective mass of the polaron, we now minimize the energy G over the
set Iv . To this end, we define the energy

E(v) := inf
(ψ0,ϕ0)∈Iv

G(ψ0,ϕ0). (2.18)

The following theorem gives an expansion of E(v) for sufficiently small velocities v. Its proof
will be given in section 3.

Theorem 2.1. As v → 0 we have

E(v) = eP + v2

(
1
4
+

α4

3
‖∇ϕP‖2

2

)
+ O(v3). (2.19)

5
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Since the kinetic energy of a particle of mass m and velocity v equals mv2/2, (2.19) identifies
the effective mass of the system as

meff = lim
v→0

E(v) − eP

v2/2
=

1
2
+

2α4

3
‖∇ϕP‖2

2. (2.20)

The first term 1/2 is simply the bare mass of the electron in our units, while the second
term 2α4

3 ‖∇ϕP‖2
2 corresponds to the additional mass acquired through the interaction with the

phonon field. It agrees with the prediction in [15], and is conjectured to coincide with the effec-
tive mass in the Fröhlich model in the limit α→∞. Note that since (−Δ)1/2ϕP = −|ψP|2,
‖∇ϕP‖2 = ‖ψP‖2

4, which can be evaluated numerically [23].

Remark 2.2 (Traveling waves). The heuristic computations contained in the physics lit-
erature concerning meff [1, 15] all rely, in one way or another, on the existence of traveling
wave solutions of the LP equations of velocity v (at least for sufficiently small velocity), i.e.
solutions with initial data (ψv ,ϕv) such that

(ψt(x),ϕt(x)) = (e−iev t ψv(x − vt),ϕv(x − vt)), (2.21)

for suitable ev ∈ R. Such solutions would allow to define the energy of the system at velocity v
as ETW(v) = G(ψv ,ϕv), and a perturbative calculation (discussed in section 4.1 below) yields
indeed

lim
v→0

ETW(v) − eP

v2/2
=

1
2
+

2α4

3
‖∇ϕP‖2, (2.22)

in agreement with (2.20). Unfortunately, this approach turns out to be only formal, and we
conjecture traveling wave solutions to not exist for any α > 0, v > 0, as explained in more
detail in section 4.1.

Remark 2.3. In section 2.2, we used the standard approach from quantum mechanics to
define the electron’s position (2.13) and velocity (2.14). We could, instead, use also for the
electron a similar approach to the one we use for the phonon field (i.e. (2.16)) through the
projection onto the manifold of minimizers ME . A natural question is whether one obtains the
same effective mass using this different notion of position. In section 4.2, we show that, in fact,
this alternate definition yields a different effective mass equal to

m̃eff =
2‖∇ψP‖4

2

3‖∇ϕP‖2
2

+
2α4

3
‖∇ϕP‖2

2. (2.23)

This coincides with (2.20) and (2.22) for largeα (hence still confirming the prediction in [15]),
but differs in the O(1) term. In fact, as we discuss in section 4.2, one has m̃eff < meff.

3. Proof of theorem 2.1

Let us denote δ1 = ψ0 − ψP and δ2 = ϕ0 − ϕP. Expanding G in (2.1) and using that
ϕP = −σψP we find

G(ψ0,ϕ0) = G(ψP + δ1,ϕP + δ2)

= eP + 2 〈ψP| hϕP |Re δ1〉+ 〈δ1|hϕP |δ1〉+ 2 〈Re δ1|Vδ2 |ψP〉+ ‖δ2‖2
2 + 〈δ1|Vδ2 |δ1〉.

(3.1)

6



J. Phys. A: Math. Theor. 55 (2022) 015201 D Feliciangeli et al

Since ψ0 is normalized, we have

1 = ‖ψ0‖2
2 = ‖ψP + δ1‖2

2 = 1 + ‖δ1‖2
2 + 2〈ψP|Re δ1〉 ⇐⇒ 2〈ψP|Re δ1〉 = −‖δ1‖2

2. (3.2)

Hence

2 〈ψP| hϕP |Re δ1〉 = 2μP〈ψP|Re δ1〉 = −μP‖δ1‖2
2, (3.3)

and using ‖Vδ2δ1‖2 � C‖δ2‖2 ‖δ1‖H1 (see, e.g. [18, lemma III.2]) we arrive at

G(ψ0,ϕ0) = eP + 〈δ1|HP|δ1〉+ 2 〈Re δ1|Vδ2 |ψP〉+ ‖δ2‖2
2 + O(‖δ2‖2‖δ1‖2

H1). (3.4)

By completing the square, we have

‖Re δ2‖2
2 + 2 〈Re δ1|Vδ2 |ψP〉 = ‖Re δ2 + 2(−Δ)−1/2(ψP Re δ1)‖2

2

− 4〈Re δ1|ψP(−Δ)−1ψP|Re δ1〉, (3.5)

and therefore

G(ψ0,ϕ0) = eP + 〈Imψ0|HP|Imψ0〉+ ‖Imϕ0‖2
2

+ ‖Re δ2 + 2(−Δ)−1/2(ψP Re δ1)‖2
2

+ 〈Re δ1|HP − 4XP|Re δ1〉+ O(‖δ2‖2‖δ1‖2
H1 ), (3.6)

where XP is the operator with integral kernel XP(x, y) := ψP(x)(−Δ)−1(x, y)ψP(y). Since XP

is bounded, and ‖PψP Re δ1‖ = ‖δ1‖2
2/2 by (3.2) (with PψP = |ψP〉〈ψP| the rank one projection

onto ψP), we also have

G(ψ0,ϕ0) = eP + 〈Imψ0|HP|Imψ0〉+ ‖Imϕ0‖2
2

+ ‖Re δ2 + 2(−Δ)−1/2(ψP Re δ1)‖2
2

+ 〈Re δ1|Q(HP − 4X)Q|Re δ1〉+ O(‖δ2‖2‖δ1‖2
H1 ) + O(‖δ1‖3

L2), (3.7)

where Q = 11 − PψP .
Upper bound: for sufficiently small v, we use as a trial state

(ψ̄0, ϕ̄0) =
(

fvψP + igvH−1
P ∂1ψP, ϕP + ivα2∂1ϕP

)
, (3.8)

with fv , gv > 0 given by

f 2
v :=

2v2‖H−1
P ∂1ψP‖2

2

1 −
√

1 − 4v2‖H−1
P ∂1ψP‖2

2

, g2
v :=

1 −
√

1 − 4v2‖H−1
P ∂1ψP‖2

2

2‖H−1
P ∂1ψP‖2

2

. (3.9)

Note that ∂1ψP is orthogonal to ψP, hence H−1
P ∂1ψP is well-defined. We begin by showing

that (3.8) is an element of the set of admissible initial data Iv in (2.17). To prove that (ψ̄0, ϕ̄0)
satisfies (a), we only need to check that ψ̄0 is normalized (which follows easily from (3.9)) as
the condition (2.15) will follow a posteriori from the energy bound we shall derive. We now
proceed to show that (ψ̄0, ϕ̄0) satisfies (b). For the electron, using that H−1

P ∂ jψP = −x jψP/2
(which can be checked by applying HP and using that [HP, x1] = −2∂1) and consequently that

〈∂iψP|H−1
P |∂ jψP〉 = δi j/4, (3.10)

7
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since ψP is radial, we can conclude that

−2〈ψ̄0|i∂ j|ψ̄0〉 = 4 fvgv〈H−1
P ∂1ψP|∂ jψP〉 = vδ j1, (3.11)

i.e. that Vel(0) = v(1, 0, 0), as required.
For the phonons, we first note that Xph(0) = 0, since Re ϕ̄0 = ϕP. Next, we derive a relation

for the velocity of the phonons Vph(t) = ż(t) in terms of their position Xph(t) = z(t) for general
time t. Since

min
z
‖ϕt − ϕz

P‖2
2 = ‖ϕt − ϕz(t)

P ‖2
2, (3.12)

the position z(t) necessarily has to satisfy

Re〈ϕt|(u · ∇)ϕz(t)
P 〉 = 0 for all u ∈ S

2 ⇐⇒ Reϕt ⊥ span{∇ϕz(t)
P }. (3.13)

Differentiating (3.13) w.r.t. time, using (1.1) and evaluating the resulting expression at t = 0,
we arrive at

0 = Re〈−iα−2(u · ∇)(ϕ̄0 + σψ̄0
)|ϕP〉 − Re〈(ż(0) · ∇)ϕ̄0|(u · ∇)ϕP〉

= 〈−α−2 Im ϕ̄0|(u · ∇)ϕP〉 − 〈(ż(0) · ∇)Re ϕ̄0|(u · ∇)ϕP〉

= −〈v∂1ϕP|(u · ∇)ϕP〉 − 〈(ż(0) · ∇)ϕP|(u · ∇)ϕP〉, (3.14)

which the velocity ż(0) has to satisfy for all u ∈ S
2, given its position Xph(0) = z(0) = 0. By

invertibility of the coefficient matrix, (3.14) has the unique solution ż(0) = v(1, 0, 0), and we
indeed conclude that Vph(0) = v(1, 0, 0).

We now evaluate G(ψ̄0, ϕ̄0). Since fv=1+O(v2),gv=v+O(v3 ), using (3.7) and (3.10) we find

E(v) � G(ψ̄0, ϕ̄0) = eP + v2

(
1
4
+ α4‖∂1ϕP‖2

2

)
+ O(v3), (3.15)

verifying on the one hand (2.15) for sufficiently small v, and on the other hand the rhs of (2.19)
as an upper bound on E(v) (using that ϕP is radial).

Lower bound: we first observe that to derive a lower bound on E(v) we can w.l.o.g. restrict
to initial conditions (ψ0,ϕ0) satisfying additionally

PME
L2 (ψ0) > 0, (3.16)

Xph(0) = 0. (3.17)

This simply follows from the invariance of G under translations (of both ψ and ϕ) and under
changes of phase of ψ. Moreover, by the upper bound derived in the first step of this proof and
the coercivity of E and F in (2.8), we conclude that it is sufficient to minimize over elements
of Iv such that distH1 (ψ0,ME ) = O(v) = distL2 (ϕ0,MF ) for small v. Since the L2-projection

8
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of ϕ0 is ϕP by (3.17), it immediately follows that ‖δ2‖2 = O(v). We now proceed to show that
necessarily also ‖δ1‖H1 = O(v). Let y′, y ∈ R

3 and θ ∈ [0, 2π ) be such that

PME
L2 (ψ0) = ψy′

P , PME
H1 (ψ0) = eiθ ψy

P, (3.18)

where we recall that the L2-projection is assumed to be positive by (3.16). Combining the upper
bound derived in the first step with [3, equation (53)], we get

‖ϕ0 − ϕy
P‖2

2 � C (G(ψ0,ϕ0) − eP) � Cv2. (3.19)

There exist δ, C1, C2 > 0 such that

‖ϕP − ϕy
P‖2 �

{
C1|y|‖∇ϕP‖2, |y| � δ

C2 |y| > δ
, (3.20)

and this allows to conclude that |y| = O(v). In other words, assuming centering w.r.t. to trans-
lations in the phonon coordinate (i.e. (3.17)) forces, at low energies, also the centering w.r.t.
translations in the electron coordinate, at least approximately. At this point, it is also easy to
verify that θ = O(v) (and, as an aside, that |y′| = O(v)), since, by the upper bound derived in
the first step and the coercivity of E , we have

‖ψy′
P − eiθ ψy

P‖2 � ‖ψy′
P − ψ0‖2 + ‖eiθ ψy

P − ψ0‖2 = O(v). (3.21)

In particular, we conclude that

‖δ1‖H1 � ‖eiθ ψy
P − ψ0‖H1 + ‖ψP − eiθ ψy

P‖H1 = O(v). (3.22)

Using again (3.7) and that Q(HP − 4XP)Q � 0, we conclude that for any (ψ0,ϕ0) ∈ Iv
satisfying (3.16) and (3.17), as well as G(ψ0,ϕ0) � eP + O(v2), we have

G(ψ0,ϕ0) � eP + 〈Imψ0|HP|Imψ0〉+ ‖Imϕ0‖2
2 + O(v3). (3.23)

By arguing as in (3.14), we see that the conditions Xph(0) = 0 and Vph(0) = v imply that

P∇ϕP (Imϕ0 + vα2∂1Reϕ0) = 0, (3.24)

where P∇ϕP denotes the projection onto the span of ∂ jϕP, 1 � j � 3. Since P∇ϕP∂1 is a bounded
operator, and ‖δ2‖2 = O(v), we find

‖Imϕ0‖2
2 � ‖P∇ϕPImϕ0‖2

2 = v2α4‖∂1ϕP + P∇ϕP∂1Re δ2‖2
2 � v2α4‖∂1ϕP‖2

2 − O(v3). (3.25)

We are left with giving a lower bound on 〈Imψ0|HP|Imψ0〉, under the condition that

2〈ψ0| − i∇|ψ0〉 = 4〈Imψ0|∇Reψ0〉 = v(1, 0, 0). (3.26)

We already argued in (3.22) that ‖ψ0 − ψP‖H1 = O(v), and therefore

4〈Imψ0|∇ψP〉 = v(1, 0, 0) + O(v2). (3.27)

9
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Completing the square, we find

〈Imψ0|HP|Imψ0〉 = 〈HP Imψ0 − v∂1ψP|H−1
P |HP Imψ0 − v∂1ψP〉

+ 2v〈Imψ0|∂1ψP〉 − v2〈∂1ψP|H−1
P |∂1ψP〉

� 2v〈Imψ0|∂1ψP〉 − v2〈∂1ψP|H−1
P |∂1ψP〉. (3.28)

From the constraint (3.27) and (3.10), it thus follows that

〈Imψ0|HP|Imψ0〉 � v2

4
+ O(v3). (3.29)

By combining (3.23), (3.25) and (3.29), we arrive at the final lower bound

E(v) � eP + v2

(
1
4
+ α4‖∂1ϕP‖2

2

)
+ O(v3). (3.30)

Again, since ϕP is radial, this is of the desired form, and hence the proof is complete. �

4. Further considerations

In this section, we carry out the details related to remarks 2.2 and 2.3.

4.1. Effective mass through traveling wave solutions

A possible way of formalizing the derivation of the effective mass in [1, 15] relies on traveling
wave solutions of the LP equations. A traveling wave of velocity v ∈ R

3 is a solution (ψt,ϕt)
of (1.1) of the form

(ψt,ϕt) = (e−iev t ψTW
v (· − vt),ϕTW

v (· − vt)), (4.1)

for all t ∈ R, with ev ∈ R defining a suitable phase factor. As before, by rotation invariance we
can restrict our attention to velocities of the form v(1, 0, 0) with v ∈ R in the following.

Note that in the case α = 0, where ϕt = −σψt for all t ∈ R, the LP equations simplify to a
non-linear Schrödinger equation (also known as Choquard equation). In this case, a traveling
wave is given by ψTW

v (x) = eix1v/2 ψP(x) with ev = μP +
v2

4 , and its energy can be computed
to be

G
(
ψTW
v ,−σψTW

v

)
= eP +

v2

4
, (4.2)

yielding an effective mass m = 1/2 at α = 0. For the case α > 0, on the other hand, we
conjecture that there are no traveling wave solutions of the form (4.1).

Conjecture 4.1. For α > 0, there are no solutions to the LP equation (1.1) of the form (4.1)
with v �= 0.

The motivation for this conjecture comes from the vanishing of the sound velocity in the
medium. An initially moving electron can be expected to be slowed down to zero speed by
emitting radiation. Establishing this effect rigorously for the LP equations remains an open
problem, however.

If one assumes the existence of traveling wave solutions, at least for small v, one can predict
an effective mass that agrees with our formula (2.20), as we shall now demonstrate.

10
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From the LP equation (1.1) one easily sees that a traveling wave solution needs to satisfy

−iv∂1ψ
TW
v =

(
hϕTW

v
+ ev

)
ψTW
v

−iα2v∂1ϕ
TW
v = ϕTW

v + σψTW
v

.
(4.3)

We shall denote by ETW(v) the energy of the traveling wave as a function of the velocity v ∈ R,
i.e.

ETW(v) :=G(ψTW
v ,ϕTW

v ). (4.4)

In the following, we assume that ev = μP + O(v2) and that the traveling wave is of the form

(ψTW
v ,ϕTW

v ) =

(
ψP + vξv

‖ψP + vξv‖2
,ϕP + vηv

)
, (4.5)

with both ξv and ηv bounded in v and converging to some (ξ, η) as v → 0. In other words, we
assume that the traveling waves have a suitable differentiability in v, at least for small v, and
converge to the standing wave solution (e−iμPt ψP,ϕP) for v = 0. W.l.o.g. we may also assume
that ξv is orthogonal to ψP.

We can then use that

1
‖ψP + vξv‖2

2

= 1 − v2 ‖ξv‖2
2

‖ψP + vξv‖2
2

= 1 − v2‖ξ‖2
2 + o(v2), (4.6)

in order to linearize the traveling wave equation (4.1), obtaining that (ξ, η) solves(
i∂1ψP

iα2∂1ϕP

)
=

(
HP 2ψP(−Δ)−1/2 Re

2(−Δ)−1/2ψP Re 1

) (
ξ
η

)
, (4.7)

where HP = hϕP − μP, as defined in (2.3). Splitting into real and imaginary parts, we equiva-
lently find

HP Im ξ = ∂1ψP (4.8)

Im η = α2∂1ϕP (4.9)

HPReξ + 2ψP(−Δ)−1/2Re η = 0 (4.10)

2(−Δ)−1/2ψP Re ξ + Re η = 0. (4.11)

Combining (4.10) and (4.11) gives (HP − 4XP)Re ξ = 0, with XP defined after (3.6). It was
shown in [16] that the kernel of HP − 4XP is spanned by ∇ψP, hence Re ξ ∈ span{∇ψP}.
Equation (4.11) then implies that Re η ∈ span{∇ϕP}.

Using these equations and (4.6) in the expansion (3.7), it is straightforward to obtain

ETW(v) = eP + v2

(
1
4
+ α4‖∂1ϕP‖2

2

)
+ o(v2), (4.12)

which agrees with (4.2) for the case α = 0, and also with (2.19) to leading order in v. In
particular, (2.22) holds.

11
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4.2. Effective mass with alternative definition for the electron’s velocity

In this section, we discuss a different approach to the definition of the effective mass. This
approach is based on an alternative way of defining the electron’s position and velocity. While
in section 2.2 we use the standard definition from quantum mechanics, here we use a definition
similar to the one of the phonons’ position and velocity (2.16). For this purpose, we recall
remark 2.1 and that δ∗ has been chosen such that the condition E(ψ0) � G(ψ0,ϕ0) � eP + δ∗

ensures that for all times there exists a unique L2-projection eiθ(t) ψy(t)
P of ψt onto the manifold

ME . Then, we define the electron’s position and velocity by

X̃el(t) = y(t), Ṽel(t) = ẏ(t). (4.13)

Similarly to the conditions (a) and (b) in section 2.2, we define the set of admissible initial data
as

Ĩv = {(ψ0,ϕ0)|(a), (b′) are satisfied}, (4.14)

where

(b′) Ṽel(t) = Vph(0) = v(1, 0, 0).

Note that we are leaving the parameter θ̇(0) free, which in this case is also relevant. In other
words, we have

Ĩv = ∪κ∈R Ĩv,κ, (4.15)

where

Ĩv,κ = {(ψ0,ϕ0)|(a), (b′) are satisfied and θ̇(0) = κ}. (4.16)

Minimizing now the energy over all states of the set Ĩv

Ẽ(v) := inf
(ψ0,ϕ0)∈˜Iv

G(ψ0,ϕ0), (4.17)

leads to an energy expansion in v that differs from the one of theorem 2.1 in its second order.

Proposition 4.1. As v → 0, we have

Ẽ(v) = eP + v2

(
‖∇ψP‖4

2

3‖∇ϕP‖2
2

+
α4

3
‖∇ϕP‖2

2

)
+ O(v3). (4.18)

The energy expansion in (4.18) leads to the effective mass

m̃eff = lim
v→0

Ẽ(v) − eP

v2/2
=

2‖∇ψP‖4
2

3‖∇ϕP‖2
2

+
2α4

3
‖∇ϕP‖2

2, (4.19)

which agrees with (2.20) and (2.22) in leading order for large α only (and thus still confirms
the LP prediction [15]), but differs in the O(1) term. In fact, it turns out that m̃eff < meff with
meff defined in (2.22).

12



J. Phys. A: Math. Theor. 55 (2022) 015201 D Feliciangeli et al

This follows from the observation that the trial state

(ψ̃0, ϕ̃0) =

(
fvψP + ivH−1

P ∂1ψP

‖ fvψP + ivH−1
P ∂1ψP‖

,ϕP + ivα2∂1ϕP

)
, (4.20)

with fv = 1
2

(
1 +

√
1 − v2/(4‖∂1ψP‖2

2)
)

(which coincides up to terms of order v2 with the trial

state (3.8)) is an element of Ĩv,κ̄ for κ̄ = −μP + 4‖∂1ψP‖2
2( fv − 1) and is such that G(ψ̃0, ϕ̃0) =

eP + meff v
2/2 + O(v3). Thus, m̃eff � meff and equality holds if and only if equality (up to terms

o(v2)) holds in (4.36). This is the case if and only if

QψP

(
Im ψ̃0 − cv∂1ψP

)
= o(v). (4.21)

Using (4.20), equality holds if and only if

0 = H−1
P ∂1ψP − c∂1ψP = −

(
x1/2 + c∂1

)
ψP, (4.22)

i.e. recalling the radiality of ψP, if and only if ψP is a Gaussian with variance σ2 = 1/(2c).
Since ψP satisfies the Euler–Lagrange equation

HPψP = 0 ⇐⇒ VϕPψP = (−Δ+ μP)ψP, (4.23)

it cannot be a Gaussian and therefore m̃eff < meff.
We present only a sketch of proof of proposition 4.1, since it uses very similar arguments

as the proof of theorem 2.1.

Sketch of proof of proposition 4.1. Upper bound: we use the alternative trial state

(ψ̃0, ϕ̃0) =

(
fvψP + ivc∂1ψP

‖ fvψP + ivc∂1ψP‖
,ϕP + ivα2∂1ϕP

)
, (4.24)

with

fv :=
1 +

√
1 + 4c2v2‖∂1ψP‖2

2
, c :=

‖∂1ψP‖2

‖∂1ϕP‖2
. (4.25)

With similar arguments as in the previous section, one can verify that (ψ̃0, ϕ̃0) ∈ Ĩv , in

particular (ψ̃0, ϕ̃0) ∈ Ĩv,κ with κ = −μP +
−1+

√
1+4c2v2‖∂1ψP‖2

2c .
Note that, similarly to (3.14), one can derive necessary conditions for the velocities ẏ(0), θ̇(0)

(using X̃el(0) = 0, θ(0) = 0 ), namely

〈[hReϕ̃0 + θ̇(0)]Im ψ̃0 − ẏ(0) · ∇Re ψ̃0|(u · ∇)ψP〉 = 0 for all u ∈ S
2, (4.26)

and

〈ψP|(hReϕ̃0 + θ̇(0))Re ψ̃0 + ẏ(0) · ∇ Im ψ̃0〉 = 0. (4.27)
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Straightforward computations then show that

Ẽ(v) � G(ψ̃0, ϕ̃0) = eP + v2

(
‖∂1ψP‖4

2

‖∂1ϕP‖2
2

+ α4‖∂1ϕP‖2
2

)
+ O(v3). (4.28)

Lower bound: we proceed similarly to the lower bound in the previous section. First, we
assume w.l.o.g. that

PME
L2 (ψ0) = ψy(0)

P , PMF
L2 (ϕ0) = ϕP, (4.29)

i.e. centering with respect to translations and changes of phase. We can then substitute the
two conditions of (b′) and the conditions for ψy(0)

P (resp. ϕP) to be the L2-projection of ψ0

(resp.ϕ0) ontoME (resp.MF ) with their analogue necessary conditions (whose computations
proceed along the lines of (4.26) and (4.27)). With this discussion, we are left with the task of
minimizing G over the set

Ĩ′v :=
⋃
κ∈R̃

I′v,κ, (4.30)

with

Ĩ′v,κ :=

{
(ψ0,ϕ0) ∈ Ĩ∗| P∇ψ

y(0)
P

[
(hRe ϕ0 + κ)Imψ0 − v∂1Reψ0

]
= 0,

P
ψ

y(0)
P

[
(hRe ϕ0 + κ)Reψ0 + v∂1Imψ0

]
= 0,

P∇ϕP (Imϕ0 − vα2∂1Reϕ0) = 0

}
, (4.31)

and

Ĩ∗ :=
{

(ψ0,ϕ0)|G(ψ0,ϕ0) � eP + δ∗, ‖ψ0‖2
2 = 1, Reψ0 ⊥∇ψy(0)

P , Reϕ0 ⊥∇ϕP

}
.

(4.32)

As in the previous section, one can argue by coercivity of E and F and the upper bound that it
is possible to restrict to initial conditions such that ‖δ2‖2, ‖δ1‖H1 , y(0) are all O(v). Moreover,
the second constraint of the rhs of (4.31) shows that κ = −μP + O(v). Thus, we are left with
minimizing G over the set

Ĩ′′v := Ĩ′v ∩ {κ+ μP = O(v), ‖δ1‖H1 = O(v), ‖δ2‖2 = O(v)} . (4.33)

The lower bound is proven in the same way as before. But instead of the constraint (3.27), this
time we need to minimize w.r.t.

P∇ψ
y(0)
P

[
(hReϕ0 + κ)Imψ0 − v∂1Reψ0

]
= 0. (4.34)

Since κ+ μP, y0, ‖δ1‖H1 and ‖δ2‖2 are all order v andψP ∈ C∞
0 (R3) (and these facts also allow

to infer that ψy(0)
P = ψP + O(v)), the constraint (4.34) can be written as

〈∇ψP|HP|Imψ0〉 = v‖∂1ψP‖2
2(1, 0, 0)+ O(v2). (4.35)
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Denoting c = ‖∂1ψP‖2
2/‖∂1ϕP‖2

2, we complete the square

〈Imψ0|HP|Imψ0〉 = 〈Imψ0 − vc∂1ψP|HP|Imψ0 − vc∂1ψP〉

+ 2vc〈Imψ0|HP|∂1ψP〉 − c2v2〈∂1ψP|HP|∂1ψP〉

� 2cv〈Imψ0|HP∂1ψP〉 − c2v2〈∂1ψP|HP|∂1ψP〉. (4.36)

With the constraint (4.34) and 〈∂iψP|HP|∂ jψP〉 = δi, j‖∂ jϕP‖2
2, we arrive at (4.18). �

5. Conclusions

While a rigorous determination of the effective mass of a polaron described by the Fröhlich
model remains an outstanding open problem, we solve here the classical analog of this problem,
where the polaron is described by the LP equations. Even though these equations are often
invoked in heuristic derivations of the effective polaron mass, it is not at all obvious how to
make such derivations rigorous since they rely, in one form or another, on the assumption of the
existence of traveling waves. As argued above, the latter can not be expected to exist, however.
We overcome this problem by introducing a novel variational principle, minimizing the Pekar
energy functional over states of given initial velocity v, which can be defined in a natural way
for all low-energy states. We hope that this novel point of view may in the future also shed
some light on the corresponding problem for the Fröhlich polaron, in particular in view of
the recent derivation [17] of the LP equations from the Fröhlich model in the strong coupling
limit.
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Appendix A. Well-posedness and regularity of the projections onto MF

Similar arguments to the ones used in the following proof are contained in [4], where the
functional F is investigated in the case of a torus in place of R3. Remark 2.1 on the properties
ME can be shown with a similar approach, but we omit its proof.

Proof of lemma 2.1. We need to prove that there exists δ > 0 such that for anyϕ ∈ (MF )δ
there exists a unique zϕ identifying the projection of ϕ onto MF , and such that zϕ is differen-
tiable at any ϕ ∈ (MF )δ. As the problem is invariant w.r.t. translations, we can w.l.o.g. restrict
to show differentiability at ϕ0 ∈ (MF )δ such that zϕ0 = 0.
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We define the function F : L2(R3) × R
3 → R

3 given, component-wise, by

Fi(ϕ, z) = Re〈ϕ|∂iϕ
z
P〉 for i = 1, 2, 3. (A.1)

By definition of zϕ, we have F(ϕ0, 0) = 0 and F(ϕ, zϕ) = 0, for any ϕ in a sufficiently small
neighborhood of ϕ0. Hence, we set out to use the implicit function theorem to determine
properties of zϕ. Observe that, for any η ∈ L2(R3), z ∈ R

3 and i, j ∈ {1, 2, 3}, we have

∂tFi(ϕ+ tη, z) = Re〈η|∂iϕ
z
P〉 and ∂z jFi(ϕ, z) = −Re〈ϕ|∂i∂ jϕ

z
P〉. (A.2)

Since ϕP ∈ C∞(R3), the map (MF )δ � ϕ �→ det
(

∂Fi
∂z j

(ϕ, z)
)

i, j=1,...,3
is continuous w.r.t the L2-

norm and, by radiality of ϕP,

det

(
∂Fi

∂z j
(ϕP, 0)

)
i, j=1,...,3

=
1
9
‖∇ϕP‖2

2 > 0. (A.3)

Thus, it follows that det
(

∂Fi
∂z j

(ϕ0, 0)
)

i, j=1,...,3
> 0, uniformly in ϕ0 for sufficiently small δ > 0.

By the implicit function theorem, there exists a unique differentiable zϕ : (MF )δ → R
3 whose

partial derivative in the direction η ∈ L2(R3) at ϕ0 is given by

∂tzϕ0+tη�t=0 =

[(
∂Fi

∂z j
(ϕ0, zϕ0 )

)
i, j=1,...,3

]−1

Re〈η|∂iϕ
zϕ0
P 〉. (A.4)
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