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Abstract

We consider the problem of reachability in pushdown graphs. We study the
problem for pushdown graphs with constant treewidth. Even for pushdown
graphs with treewidth 1, for the reachability problem we establish the following:
(i) the problem is PTIME-complete, and (ii) any subcubic algorithm for the
problem would contradict the k-clique conjecture and imply faster combinatorial
algorithms for cliques in graphs.
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1. Introduction

In this work we consider the problem of reachability in pushdown graphs with
the restriction of constant treewidth. Our main results are negative results
which shows that the restriction does not help to obtain better computational
or algorithmic complexity. We first describe the notion of treewidth and its
relevance.

Treewidth of graphs. A very well-known concept in graph theory is the notion
of treewidth of a graph, which is a measure of how similar a graph is to a tree
(a graph has treewidth 1 precisely if it is a tree) [20]. The treewidth of a
graph is defined based on a tree decomposition of the graph [15]. Beyond the
mathematical elegance of the treewidth property for graphs, there are many
classes of graphs which arise in practice and have constant treewidth. The most
important example is that the control flow graphs of goto-free programs for many
programming languages are of constant treewidth [21], and it was also shown
in [14] that typically all Java programs have constant treewidth. For many other
applications see the surveys [4, 5]. The constant treewidth property of graphs
has also played an important role in logic and verification; for example, MSO
(Monadic Second Order logic) queries can be solved in polynomial time [11]
(also in log-space [12]) for constant-treewidth graphs; parity games on graphs
with constant treewidth can be solved in polynomial time [19]; and there exist
faster algorithms for probabilistic models (like Markov decision processes) [8].
Moreover, recently it has been shown that the constant treewidth property
is also useful for interprocedural analysis [7] and intraprocedural analysis of
concurrent programs [6].
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The relevant questions. First, the constant treewidth property has played a
significant role for finite graphs. For example, for the basic reachability problem,
while for general graphs the complexity is NL-complete (non-deterministic log-
space complete), for constant treewidth graphs the problem is in DLOGSPACE
(deterministic log-space) [12]. Second, the constant treewidth property has been
exploited to obtain faster algorithms for several problems in program analysis,
such as [7, 6]. Since the control-flow graphs of a wide class of programs have
constant treewidth, a very relevant question is whether for general pushdown
graphs faster algorithms or better complexity results can be established with the
assumption of constant treewidth. More precisely, we consider the reachability
problem for pushdown graphs. In general, the problem is (i) PTIME-complete
and (ii) can be solved in cubic time1. Our goal is to investigate whether the
constant treewidth restriction can improve the algorithmic or computational
complexity.

Our results. We establish the following negative results.

1. We show even for pushdown graphs with treewidth 1 the reachability
problem is PTIME-complete. Thus in contrast to finite graphs, where
the constant treewidth restriction decreases the complexity from non-
deterministic to deterministic logspace, for pushdown graphs, the con-
stant treewidth restriction does not help to improve the computational
complexity for pushdown graphs.

2. We show that for pushdown graphs with treewidth 1 the reachability
problem is k-clique hard, in the sense that any combinatorial sub-cubic
algorithm would contradict the k-clique conjecture (i.e., a sub-cubic algo-
rithm would imply a faster combinatorial algorithm for finding k-cliques
in graphs). Thus our results show that even for pushdown graphs with
treewidth 1 obtaining better algorithms would require a major break-
through.

2. Preliminaries

We shall start by introducing the above notions formally and the discuss relevant
known results and conjectures.

2.1. Basic Definitions

Treewidth. Given a (directed or undirected) graph or a multi-graph G = (V,E),
a tree-decomposition is a tree Tree(G) = (VT , ET ) whose vertices Bi, 1 ≤ i ≤ m
are subsets of V , called bags, such that the following holds:

1.
⋃
B∈VT

B = V .

2. For every edge (u, v) ∈ E there is a bag B ∈ VT with u, v ∈ B.

1Improvement by logarithmic factors is also possible [9]
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3. For each v ∈ V , the set {B : v ∈ B} of bags containing v is connected in
Tree(G).

The width of a tree decomposition is the size of the largest bag minus 1. The
tree-width of a graph G is the lowest width achieved by a tree decomposition of
G.
Note that given a multi-graph G, a tree-decomposition of its simplification (i.e.
all loops removed and multiple edges replaced with single edges) is still a valid
tree-decomposition for G. We call a graph path-like if its simplification is a
path. Furthermore note that the tree-width of any tree is 1, and consequently
the tree-width of any path-like graph is also 1.

Context-free grammars. A context-free grammar (CFG) G is a tuple (V,Σ, P, S)
where V is the set of non-terminal symbols, Σ is the set of terminal symbols
(disjoint from V ), P ⊂ V × (V ∪Σ)∗ is the set of productions and S ∈ V is the
start symbol. If (N, u) is a production we also write N → u. For two words
w, w′ over V ∪ Σ we write w ⇒ w′ if w′ can be obtained by replacing one of
its non-terminals N with a string u where N → u is a production. We write
w ⇒∗ w′ if w′ can be obtained from w by a sequence of such replacements and
we say w′ can be derived from w. The language generated by G is defined as
the set {w : S ⇒∗ w} of words derivable from the start symbol and is denoted
as L(G). The context-free membership problem is defined as follows:

Context-free membership problem (CFG membership).
Input: A context-free grammar G = (V,Σ, P, S) and a word w ∈ Σ∗.
Output: YES if w ∈ L(G), NO otherwise.

Pushdown systems. A pushdown system (PDS) is a tuple (Q,Γ,∆, qs, $) where
Q is the set of states, qs ∈ Q is the start state, Γ is the stack alphabet, $ ∈ Γ is
the initial stack symbol and ∆ ⊂ (Q× Γ)× (Q× Γ∗) is the transition relation.
If ((q, γ), (q′, w′)) is a transition we also write (q, γ)→ (q′, w′). The associated
pushdown graph is the directed graph with vertex set Q and for each transition
(q, γ) → (q′, w′) an edge from q to q′. When talking about the tree-width of
a PDS or a PDS being path-like, we are referring to the associated pushdown
graph. A configuration of a PDS is pair 〈q, w〉 of a state together with the stack
content w ∈ Γ∗. Performing a transition (q, γ) → (q′, w′), when currently in
state q with top of stack symbol γ means going into state q′ and replacing the
top of stack symbol with the word w′ ∈ Γ∗.
We say a state q′ is reachable from another state q if there is a series of transitions
leading from 〈q, $〉 to some configuration 〈q′, w′〉 for some arbitrary stack content
w′. We say q′ is same-context reachable from q if w′ = $. This allows us to
define the pushdown reachability problem.
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Pushdown reachability problem.
Input: A pushdown system P = (Q,Γ,∆, qs, $) and two states q, q′ ∈ Q.
Output: YES if q′ is reachable from q, NO otherwise.

A clique is a graph such that there is an edge between every pair of vertices.
We will need the following two problems whose complexity is related to CFG
membership:

k-clique problem (k-clique).
Input: A graph G and a positive integer k.
Output: YES ifG contains a clique on k vertices as subgraph, NO otherwise.

Boolean matrix multiplication problem (BMM).
Input: Two square n× n matrices A and B with boolean entries.
Output: The product AB of the two matrices.

We define the boolean matrix multiplication exponent ω to be the smallest value
such that BMM for two n× n matrices is in O(nω+ε) for all ε > 0.

2.2. Known Results and Conjectures

It is known that ω < 2.376 due to Coppersmith and Winograd [10]. While it is
conjectured by some that ω = 2, there have been only very minor improvements
on the upper bound during the last 25 years. Furthermore these algorithms tend
to have large hidden constants and in practice “combinatorial” algorithms 2 are
more widely used. None of these run significantly faster than cubic however [3],
putting into question whether any significant improvement can be made:

Conjecture 2.1 (Combinatorial Boolean Matrix Multiplication Conjecture).
There is no combinatorial algorithm for BMM for two n×n matrices that runs
in O(n3−ε) time for any ε > 0.

A classical algorithm by Valiant [22] reduces CFG membership to BMM thus
giving an algorithm for CFG membership in O(nω). Lee introduced in [17] a
stronger version of CFG parsing called c-parsing where the parser has to provide
some additional data about parsing substrings of the input string. She showed
that BMM can be reduced to c-parsing such that c-parsing in O(gn3−ε) where
g is the size of the CFG and n the length of the word to parse implies BMM in
O(n3−ε/3) (for two n × n matrices). A drawback of this reduction is that the
grammar grows quadratically in n. Abboud, Backurs and Williams [1] provided

2The term “combinatorial” has no formal definition but see [3] for a brief discussion of the
term.
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a constant size CFG G and a scheme which for given k transforms a graph G
on n nodes into a string of length O(k2nk+1) such that this string is in the
language generated by G if and only if G has a 3k-clique. This implies the
following theorem:

Theorem 2.2. If CFG membership can be solved in T (n) time, then the k-
clique problem on any graph of n nodes can be solved in O(T (nk/3+1)) time, for
any constant k ≥ 3 divisible by 3.

The fastest known algorithm for k-clique runs in O(nkω/3) for k divisible by
3 [18]. The fastest known combinatorial algorithm known for k-clique runs in
O(nk/ logk n) and therefore is only better than the naive algorithm by a polylog
factor [23]. The lack of better algorithms, as mentioned in [1], motivates the
following conjecture:

Conjecture 2.3 (k-clique Conjecture). Let G be a graph on n vertices and k
an integer.
There is no algorithm solving k-clique running in O(nkω/3−ε) for ε > 0.
There is no combinatorial algorithm solving k-clique running in O(nk−ε) for
ε > 0.

Regarding the pushdown reachability problem, Finkel et al. showed that the
set of reachable states in a PDS P from an initial state with a given initial
stack content can be computed in O(|P|3) [13]. So in particular the pushdown
reachability problem is solvable in cubic time. Alur et al. introduced in [2] the
notion of recursive state machines (RSM). They showed that every PDS can be
transformed into an equivalent RSM of the same asymptotic size and vice versa,
and they provide a cubic time algorithm to compute reachability in RSMs.

3. Results

We will give a reduction from CFG membership to pushdown reachability where
the resulting pushdown system is path-like. This reduction can be done in
DLOGSPACE or in linear-time.

3.1. Reduction

The reduction is non-technical but has important implications about push-down
reachability.

Theorem 3.1. For a context-free grammar G with |G| = O(1) and a word w
of length n, there is a path-like PDS P of size |P| = O(n) with start state qs
and a designated state qf such that qs → qf if and only if w ∈ L(G). P can be
constructed in time O(n) or alternatively with working memory O(log n).

Proof. Let G = (V,Σ, P, S) be a context-free grammar. We shall henceforth
assume that the size of G is constant. We have a word w ∈ Σ∗ of length n and
we want to determine if w ∈ L(G).
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We will construct a path-like PDS P and show that there’s a state qf which
is only reachable from the start state qs if and only if S ⇒∗ w. Let P =
(Q,Γ,∆, qs, $) where Q = {q0, q1, . . . , qn} ∪ {qs, qf} is the set of states, qs is
the start state, Γ = Σ ∪ V ∪ {$} is the stack alphabet and $ is the initial stack
symbol and ∆ ⊂ (Q× Γ)× (Q× Γ∗) is the transition relation that we’ll define
in the following. For each production N → γ from P where γ is a word over
V ∪ Σ and for each state qi, 0 ≤ i ≤ n, we add a transition (qi, N) → (qi, γ).
Furthermore, for each 0 ≤ i < n we add a transition (qi, wi) → (qi+1, ε) where
wi is the ith character of w indexed from 0. Finally we add two transitions
(qs, $) → (q0, S$) and (qn, $) → (qf , ε). These transitions ensure that we can
transition into the final state qf if and only if only the $ symbol is left on the
stack. The size of the resulting PDS is O(n) as G was of constant size, and its
simplification is a path. See Figure 1 for an example.

qs q0 q1 q2 q3 qf
$ → S$ a → ε b → ε a → ε $ → ε

S → aSa
S → bSb
S → a
S → b
S → ε

S → aSa
S → bSb
S → a
S → b
S → ε

S → aSa
S → bSb
S → a
S → b
S → ε

S → aSa
S → bSb
S → a
S → b
S → ε

〈qs, $〉 〈q0, S$〉
〈q0, aSa$〉

〈q1, Sa$〉
〈q1, ba$〉

〈q2, a$〉 〈q3, $〉 〈qf , ε〉

Figure 1: Example of the reduction for the palindrome grammar S → aSa|bSb|a|b|ε with the
word aba to test membership for. Transitions (q, γ) → (q′, w) are depicted as edges from q to
q′ with label γ → w. At the bottom is a sequence of configurations of the PDS leading to an
accepting state, read top to bottom, left to right.

Claim 1: qf is reachable from qs if and only if w ∈ L(G).
Assume qf is reachable from qs, and we have a valid sequence of transitions
starting in qs with only $ on the stack and finishing in qf . After the jth transi-
tion, when in state qi for some 0 ≤ i ≤ n, we shall call the word consisting of the
first i characters of w with the current stack content appended to it and the final
$ sign removed the input-stack word and denote it as Wj . We shall first show
by induction that S ⇒∗ Wj for all j ≥ 1. We have that W1 = S as after the
first transition we are in q0 and the stack only consists of S. Now assume that
S ⇒∗ Wj . If we perfom a state-changing transition from some qi to qi+1, then
wi must be at the top of the stack and is removed during the transition. But as
we advance one state, wi is now the last of the first i+1 characters of w and thus
Wj+1 = Wj . So we also get that S ⇒∗ Wj+1. Similarly, if we have a transition
remaining in the same state, then we’re replacing the non-terminal symbol at
the top of the stack with a string in accordance to one of the production rules
of G while leaving the rest unchanged. Therefore we have Wj ⇒ Wj+1 and
thus together with the induction hypothesis it follows that S ⇒∗ Wj+1. Now
qf is only reachable if we can reach qn with only $ on the stack. But then the
input-stack word is w once we reach qn, and thus S ⇒∗ w and w ∈ L(G).
Conversely if w ∈ L(G), then there is a sequence of productions that yield
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w starting from S. In particular, as G is context-free we can reorder these
productions such that always the first non-terminal is being replaced. Following
this sequence of productions with their corresponding same-state transitions in
the PDS, and using the state-changing transitions whenever a terminal symbol
is at the top of the stack, we can reach qn in the PDS with nothing but the $
symbol left on the stack, and thus also qf is reachable.
Also note that qf is reachable from qs if and only if qn is same-context reachable
from qs.
Claim 2: This reduction can be done alternatively in DLOGSPACE or linear
time.
We only need one pointer to the input tape, and one counting variable whose
range is O(n), each of which takes O(log n) space.
Similarly, we can construct P by passing over w only once and for each character
of w only do a constant number of operations as |G| is constant.

3.2. Consequences

We will outline two implications of this result.
Recall that pushdown reachability can be solved in cubic time, and thus is
in P . It is known that CFG-membership is P -complete under DLOGSPACE-
reductions [16]. As we have just shown that CFG membership can be reduced to
pushdown reachability in DLOGSPACE, it follows that pushdown reachability
is also P -complete and we get the following corollary:

Corollary 3.2. Pushdown reachability is P -complete under DLOGSPACE-
reductions, even if restricted to path-like PDSs.

Similarly, as our reduction is in linear time, an algorithm for pushdown reach-
ability in running in T (n) time implies an algorithm for CFG membership in
O(T (n)). Together with Theorem 2.2 we get that the k-clique problem on any
graph of n nodes can be solved in O(T (nk/3+1)) time, for any constant k ≥ 3
divisible by 3. If T (n) = O(n3−δ) for some δ, this in particular would imply
an algorithm for k-clique running in O(nk+(3−δ(k/3+1))) = O(nk−ε) for some
ε > 0 if k is chosen sufficiently large. Similarly, T (n) = O(nω−δ) would imply
an algorithm for k-clique running in O(nkω/3−ε) for some ε > 0 if k is chosen
sufficiently large. With this observation we get the following result:

Corollary 3.3. If the k-clique conjecture holds, then there is no algorithm for
push-down reachability running in O(nω−ε) for ε > 0, and no combinatorial
algorithm for push-down reachability running in O(n3−ε) for ε > 0, even if the
problem is restricted to path-like PDSs.

4. Conclusions

Unlike for a variety of other problems, our results imply that the treewidth
restriction by itself cannot be exploited for faster reachability algorithms for
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pushdown systems. An interesting direction for future work would be to consider
other restrictions, along with the treewidth restriction, that arise in program
analysis and can be exploited to develop faster algorithms for pushdown systems.
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