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Abstract
The surface states of 3D topological insulators in general have negligible quantum oscillations
(QOs) when the chemical potential is tuned to the Dirac points. In contrast, we find that
topological Kondo insulators (TKIs) can support surface states with an arbitrarily large Fermi
surface (FS) when the chemical potential is pinned to the Dirac point. We illustrate that these FSs
give rise to finite-frequency QOs, which can become comparable to the extremal area of the
unhybridized bulk bands. We show that this occurs when the crystal symmetry is lowered from
cubic to tetragonal in a minimal two-orbital model. We label such surface modes as ‘shadow
surface states’. Moreover, we show that the sufficient next-nearest neighbor out-of-plane
hybridization leading to shadow surface states can be self-consistently stabilized for tetragonal
TKIs. Consequently, shadow surface states provide an important example of high-frequency QOs
beyond the context of cubic TKIs.

1. Introduction

Kondo insulators are strongly correlated systems where the hybridization between the quasi-localized
f-electrons and the itinerant conduction electrons leads to an insulating gap at low temperatures [1]. The
archetypal Kondo insulator SmB6, discovered over 50 years ago [2], drew revived interest with proposals
advancing topological surface states as an explanation for the previously-reported low-temperature
resistivity plateau [3–6]. While angle-resolved photoemission spectroscopy (ARPES) experiments have since
resolved these topological surface states [7–12] a number of puzzles remain, most notably in the linear

specific heat with a large Sommerfeld coefficient [13], gapless optical conductivity [14] and unconventional
quantum oscillations (QOs) [15–18]. Although specific heat and optical conductivity anomalies most likely
originate from the bulk of SmB6, the nature of the QOs is still under debate. Similar unconventional QOs
have also been observed in another Kondo insulator YbB12 [19, 20], suggesting a unified underlying
mechanism. Several theoretical proposals based on magnetic breakdown [21, 22], excitons [23], impurity
states [24, 25], contribution from Fermi sea [26], interplay between correlations and nonlocal hybridization
[27], oscillations of the Kondo screening [28], fractionalization [29–32] and surface driven mechanisms
[33, 34] have been advanced in this context.

A key aspect of QO experiments in SmB6 is the observation of high-frequency oscillations which
apparently match the extremal area of the unhybridized bulk bands. This naturally suggests that the bulk
Landau-quantized states underpin the observed oscillations. However, ARPES experiments [7–12] on SmB6

indicate a surface-state Fermi surface (FS) with total area which is comparable to the extremal area of the
unhybridized bands, which raises the possibility that high QO frequencies are instead rooted in the surface
states. Surface Kondo breakdown [33, 34] has been proposed as one possible mechanism for the emergence
of a ‘large’ FS for the surface states: the Kondo effect is suppressed on the surface, liberating the conduction

electrons which contribute directly to the FS of the surface states which expands as a consequence.
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Motivated by the well-studied case of SmB6, we consider the possibility of high-frequency QO in a
broader class of topological Kondo insulators (TKIs). In this context, we note that the areas of the surface
states are not directly related with the topological nature but depend in general on the bulk model
parameters [35]. Starting from a minimal two-orbital model for cubic TKIs with nearest-neighbor (NN)
hybridization, we analyze the effects of tetragonal anisotropy and next-nearest neighbor (NNN)
hybridization on the surface-state spectrum. Remarkably, we find that the surface-states have two FS’s at
charge neutrality in the extreme limit of vanishing NNN in-plane hybridization. Due to the Kondo effect,
which hybridizes quasi-localized and conduction electrons, the two bands have very different effective
masses, while having equal FS areas. We refer to these modes as ‘shadow surface states.’ The emergence of
these shadow states stands in stark contrast to the surface states of a minimal cubic model at charge
neutrality, since the presence of Dirac points in that case effectively excludes any QO due to the surface
states. Moreover, the areas enclosed by either of the two FS can be made comparable to the unhybridized
area of the bulk FS. In some respect surface states are insensitive to the bulk gap and are holographic
projections of bulk unhybridized bands, hence justifying the name of ‘shadow surface states’. Because of the
disparity in the effective masses of the ‘heavy’ hole-like and ‘light’ electron-like bands, the added
contributions of the two FS in the presence of a magnetic field can give rise to high-frequency QO. For a
finite NNN in-plane hybridization, the two FS’s become gapped and are replaced by a set of Dirac points,
with a gap controlled by the relative amplitude of in-plane and out-of plane NNN hybridization. As we
discuss in greater detail below, high-frequency QO are still possible in this case.

In most two-orbital models of non-interacting topological insulators (TIs), the bulk band structure and
gap are determined by the direct hybridization between electrons in different orbitals. By contrast, in a
minimal two-orbital model for TKIs [33], the effective hybridization between the orbitals, which leads to a
finite gap, can be traced to the Kondo screening, at mean-field level. Consequently, the gap structure and
the surface states in TKIs are not determined simply by the overlap of the weakly-interacting orbitals, but
rather emerge as a consequence of Kondo interactions, and thus can exhibit a wider array of possible
structures.

The TKI mean field model, with additional NNN coupling, retains a strong TI classification upon
lowering the point-group symmetry from cubic to tetragonal, as indicated by the changes in the
surface-state spectrum. For general NNN hybridization anisotropy, an even number of additional Dirac
points appear in the surface-state spectrum. When shadow states with a finite FS emerge, the chemical
potential intersects the surface-state bands at an odd number of points along any axis extending from the
center of the BZ, as shown in figure 1(a) along Γ–M.

We further show that the relative strength of NNN and NN hybridization controls the size of the shadow
state FS, which approaches the extremal area of the unhybridized bands for specific value of parameters.
Although a finite gap opens along the surface-state FS for any finite in-plane NNN hybridization, as
previously discussed, we expect it’s effect on the QO is negligible as long as the Landau level spacing is
larger than the surface gap. Similar finite gap can also be opened through sharp disorder which initiates
large momentum scattering. For sufficiently clean systems their effect on QO should still be minor.
Therefore, while the realized shadow states are not symmetry protected, for specific range of NN and NNN
hybridizations the QO response due to the shadow states is robust.

Shadow surface states emerge in a natural generalization of a minimal model for cubic TKIs which
accounts for tetragonal anisotropy and NNN hybridization. While shadow surface states are not directly
relevant to cubic TKIs such as SmB6 and YbB12, they provide a striking example of surface states which can
support high-frequency QO, even near the charge neutrality point in TKIs with tetragonal symmetry. In
addition modification of the cubic symmetry of natural materials which accrue on the edge of the system
can potentially reduce the symmetry into tetragonal structure which is required to realize the shadow states.
Although such difference between the structure of the edge and bulk in some Kondo systems and its effect
on their electronic properties has been discussed [36, 37], realization of actual Kondo insulating material
with edge or bulk properties that realize the shadow edge states is beyond the scope of this paper. We should
note that recently, anomalous QOs in other materials have been observed [38, 39]. Given the diversity of the
electronic structures and electron–electron interactions in these materials, we believe that different
microscopic mechanisms might lead to these novel phenomena. On the other hand, since the appearance of
shadow FS in our model relies on simple properties of effective non-interacting model of the material, we
believe that our result might help to understand phenomena in a much wider class of materials.

The rest of the paper is organized as follows. In section 2, we introduce effective non-interacting models
for TKIs with tetragonal symmetry and illustrate the emergence of shadow surface states in analytical and
numerical solutions of the models. In section 3, we consider the Kondo interactions corresponding to the
effective models in section 2. We show that the minimum-energy self-consistent saddle-point solutions lead
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Figure 1. Evolution of the spectrum of a two-orbital model for TKIs in the presence of NN and NNN hybridization terms with
tetragonal symmetry. The panels correspond to solutions with increasing NNN in-plane hybridization, as determined by the
parameter β in (3). Blue and red points denote bulk and surface states, respectively. The momentum k is chosen along the Γ to M
direction (θk = π/4). Panel (a) (β = 0) illustrates the emergence of shadow states. The second crossing of the two surface bands
also occurs for finite momenta along an arbitrary in-plane axis, signaling the presence of a finite FS. Panels (b)–(d),
corresponding to β = 0.2, 0.3 and 0.35 respectively, illustrate the presence and gapping of Dirac points. The associated Lifshitz
transitions are discussed in the text. The numerical solutions were obtained for a slab geometry using a lattice model
corresponding to HT in (1) with open boundary conditions and 200 lattice sites along the z direction. The parameters of the
model are M′ = m′ = −0.45, M = m = −0.55, v = 1.0 and α = −6.0.

to the emergence of shadow states. A detailed derivation of the analytical solutions of the effective models
introduced in section 2 is presented in the appendix.

2. Shadow surface states

The minimal, two-orbital model for cubic 3D TIs in the continuum limit has the form [40–43]

H0 =
(
M′ − m′k2

)
τ0 +

(
M − mk2

)
τz + vk · στx, (1)

where τ (σ) acts on the orbital (spin) basis. We choose units where the lattice constant a = 1. H0 also
describes the effective mean-field Hamiltonian for TKIs [6, 33]. In most minimal models of TKIs, the
narrow band originates from quasi-localized p orbitals while the wide band is due to the itinerant s orbital
conduction electrons, mimicking the f and d orbitals in real materials. In contrast to conventional TIs such
as Bi2Se3, the gap in TKIs emerges due to the Kondo interactions, taken at mean-field level. The nature of
the insulating state depends on the sign of the product of the two mass terms with Mm > 0 (Mm < 0) for
strong topological (trivial) insulators. The Fermi energy of the bulk unhybridized gapless bands (v = 0) is
determined by Ef = M′ − m′

m M corresponding to the energy where the two bands cross at momentum

kF =
√

M/m. An insulating gap appears as the hybridization v is turned on, provided that |m′| < m.
Furthermore, we consider cases where Mm > 0 such that the gapped phase corresponds to a strong TI. The
indirect gap closes when m = m′ and for |m′| > m the system transitions to a metallic state. We introduce
boundary surfaces chosen for convenience to be perpendicular to the z axis. In the strong TI phase, the
dispersion of the surface states can be derived following the standard procedure [40, 44, 45]

E0
± = Ef ± vk‖

√
1 −

(
m′

m

)2

, (2)
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where k‖ =
√

k2
x + k2

y . Without loss of generality, we consider the case where the chemical potential for the

surface states coincides with the bulk Fermi energy Ef . The surface bands cross the Fermi energy at k‖ = 0,
corresponding to a 2D Dirac point.

We now consider additional point-group symmetry-allowed NNN hybridization terms in the
continuum limit:

Vnnn = αv
[
kx

(
βk2

y + k2
z

)
σx + ky

(
βk2

x + k2
z

)
σy

+ kz

(
k2

x + k2
y

)
σz

]
τx. (3)

Note that the k · σ hybridization in (1) as well as Vnnn are the limiting forms of NN and NNN
hybridizations in a lattice model which preserves the Oh cubic point-group symmetry, respectively, as
shown in section 3. |α|, which was introduced in Vnnn, controls the relative strength of the NNN/NN
hybridization. Importantly, we have generalized the cubic-symmetry allowed NNN terms to allow for
tetragonal anisotropy corresponding to D4h point-group symmetry, by introducing the anisotropy factors β.
Indeed, β = 1 and β �= 1 correspond to cubic and tetragonal point-groups, respectively. Although the
Hamiltonian in (1) should also reflect the tetragonal anisotropy we find that neglecting this does not
qualitatively affect our results.

We now consider the Hamiltonian HT = H0 + Vnnn, which includes the NNN hybridization terms. HT

supports surface states as shown in the appendix. To understand the structure of these states, we first
consider the extreme case with vanishing NNN in-plane hybridization corresponding to β = 0. The surface
state dispersion reads:

E± =
M′m2 − Mmm′

m2 + α2v2k2
‖

+
αv2

[
m′k2

‖ + α
(

M′ − m′k2
‖

)
k2
‖

]
m2 + α2v2k2

‖

±
vk‖

∣∣∣m + α
(

M − mk2
‖

)∣∣∣
m2 + α2v2k2

‖

√
m2 − (m′)2 + α2v2k2

‖, (4)

where k‖ is the momentum in the radial direction. In contrast to (1) where the two surface-state bands cross
only at the Dirac point for k1,‖ = 0, the presence of the additional bulk NNN hybridization in (3) leads to

additional crossings of the two surface-state bands at radial momenta k2,‖ =
√

M/m + 1/α. To understand
why the additional crossings on the circle of radius k2,‖ occur, we examine the real-space representation of
HT with open boundary conditions along z and β = 0:

HT =
(

M′ − m′k2
x + m′∂2

z

)
τ0 +

(
M − mk2

x + m2∂2
z

)
τz

+ v
[
kx

(
1 − α∂2

z

)
σx − i∂z

(
1 + αk2

x

)
σz

]
τx.

(5)

The hybridization part of the Hamiltonian (5) which is proportional to v has the structure of the
Su–Schrieffer–Heeger Hamiltonian [46] and has a zero-energy edge state when α < 0 for any kx. This edge
state not being sensitive to the presence of the bulk gap hints at the possibility that the Hamiltonian (5) has
edge states with properties which resemble the bulk band structure when the bulk gap is closed. The
condition for the presence of surface states at Ef and non-zero momentum k2,‖ can be directly deduced
from the full Hamiltonian HT. We require two non-trivial eigenstates with the same sign decay lengths to
satisfy the open boundary condition [40]. As outlined in the appendix, the decay lengths of the two in-gap
eigenstates of the Hamiltonian must satisfy

λ1λ2 = − 1

α
, (6)

which implies α < 0. We further require that the radial momentum of the additional crossing
k2,‖ =

√
M/m + 1/α be real which implies the following condition for the emergence of edge states with

finite size FS:
α < −m/M. (7)

In addition, with increasing |α|, k2,‖ approaches the radius of the extremal area of the bulk unhybridized
bands. In these cases, surface states which cross the Fermi energy at large momentum k2,‖ are expected to
lead to magnetic oscillations with a high frequency, which in many ways resemble the QO from the bulk
Landau-levels or surface Kondo breakdown.

We illustrate these arguments via a comparison between the analytical solutions of HT in the continuum
limit and the numerical solution of a lattice tight-binding model corresponding to HT discussed in detail in

4
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Figure 2. (a) Radius of shadow state Fermi circle k2,‖ versus the NNN hybridization strength α as determined from the
numerical and analytical solutions of HT. (b) Evolution of the shadow state FS with α. The black line corresponds to the
extremal-area section of the FS for the bulk unhybridized bands. For sufficiently large α, the shadow state FS becomes
comparable to the extremal area of the bulk unhybridized bands. The shadow state solutions were obtained for β = 0 and all
remaining parameters are the same as in figure 1.

the next section. The results are summarized in figures 1(a) and 2. Figure 1(a) shows the dependence of the
lowest energy states of HT in a slab geometry with surfaces normal to the ẑ direction.

The surface states clearly show two crossings at k1,‖ = 0 and at finite momentum k2,‖. Figure 2(a) shows
the dependence of k2,‖ on α obtained from the formula presented above and from the tight binding
equivalent of HT, respectively. The numerical and analytical results are in close agreement and, for α < −6,
the surface state FS approaches the extremal surface of the bulk unhybridized bands, whenever the gap
vanishes, as illustrated in figure 2(b).

For β = 0, the FS, which is circularly symmetric for the chosen parameters with radius k2,‖, corresponds
to the crossing points of the two surface bands. For non-zero β, a gap opens on the surface-state FS, except
for eight points located at θk = mπ/2 and θk = π/4 + mπ/2 (m is integer and tan θk = ky/kx). These
correspond to surface Dirac points. We distinguish between Dirac points at θk = mπ/2 and
θk = π/4 + mπ/2. For θk = mπ/2 the Dirac points are located at k2,‖ =

√
M/m + 1/α (since β dependent

terms do not contribute when either kx or ky is zero), while for θk = π/4 + mπ/2 the Dirac points occur at

k′2,‖ =
√

(m + Mα) /mα
(
1 − β/2

)
. As β increases beyond a critical value βc = 2/|α|k2

F = 2m/|α|M, the

bulk gap closes for θk = π/4 + mπ/2 and the corresponding surface Dirac points become gapped. This is
confirmed by the numerical results shown in figures 1(b)–(d). At β = βc the bulk band structure contains
four 3D Dirac points located in the kz = 0 plane, along directions θk = π/4 + mπ/2 and at distance kF

from the center of the BZ as shown in figure 3. For β > βc the FS of the surface state consists of four Dirac
points at directions θk = mπ/2.

Figure 4 shows the evolution of the surface-state band gap and corresponding FS extracted from the
numerical solutions as a function of β. There are two Lifshitz transitions between the bands in panels (a)
and (b) and (c) and (d), respectively, as the point-group symmetry is enhanced from tetragonal to cubic by
increasing β.

2.1. QOs induced by the shadow surface states
The presence of shadow surface states with finite FS’s at charge neutrality, which emerge in the extreme
limit where β = 0, manifests in QO of the magnetization for arbitrarily small fields. For small NNN
in-plane hybridization (β > 0), the surface states become gapped except at an odd number of Dirac points.
Provided that the gap is sufficiently small compared to the LL spacing, QO can still occur. Note that the
surface state gap is tuned by the anisotropy parameter β and can, in principle, be made arbitrarily small. In
the most general case, QO from the surface states can thus occur for fields well below the threshold for QO
from the gapped bulk. To show that this is the case, we calculated the magnetization of the ground state as a
function of a magnetic field B applied in a direction perpendicular to the surface for a set of values of the
chemical potential μ and anisotropy parameter β. The results are shown in figure 5. Here, Eg is the
minimum value of the direct gap of the bulk states, while �ωB is the LL spacing for the unhybridized
itinerant electron band in the presence of the field B. The ratio Eg/�ωB provides a threshold for QO from
the gapped bulk. Indeed, this ratio decreases with increasing field and we expect QO from the gapped bulk
whenever it drops below unity. By contrast, we observe QO from the surface states at ratios well above
unity, or correspondingly for fields well below the threshold value for the bulk, as illustrated in the figure.

We now turn to a detailed discussion of the results. Note that the non-oscillating part of the
magnetization was subtracted. Panels (a) and (b) of figure 5 show the QO for μ = 0 and for two values of

5
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Figure 3. The bulk band structure for β = 0.2, 0.3, 1/3, 0.4 (a)–(d) at kz = 0. The remaining parameters are the same as in
figure 1. For current parameters βc = 1/3.

Figure 4. Density plot of the surface-state gap determined from the numerical solutions for β = 0.0, 0.2, 0.3, 0.35 (a)–(d)
respectively. The remaining parameters are the same as in figure 1.

the anisotropy parameter β. When β = 0 we observe QO for all of the values of the ratio Eg/�ωB, which are
well away from the O(1) threshold value for QO from the gapped bulk. Note that the frequency of the
oscillations is comparable to that of the unhybridized bulk bands FS for the same magnetic field B. For
finite β, sharp QO are observed only for lower values of Eg/�ωB corresponding to higher fields. Due to the
presence of a gap in surface state spectrum stronger magnetic fields are needed to observe QOs due to the
magnetic breakdown.

6
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Figure 5. The QO of the magnetization at zero temperature for a set of values for the chemical potential and anisotropy
parameter β. As discussed in the text, the ratio of the minimum direct bulk gap Eg and the LL spacing of the unhybridized
itinerant electron band �ωB for given magnetic field B provides a measure of the contributions to the magnetic oscillations from
the gapped bulk. The latter become important for Eg/�ωB � 1. By contrast, we observe QO well above this threshold, due to the
contribution of the surface states. Note that the chemical potential is always in the bulk gap. All other parameters are the same as
in figure 1.

We also consider the magnetization for a finite value of μ for increasing values of β in figures 5(c)–(f).
When both μ and β are finite, a finite FS consisting of eight small pockets emerges, as shown in figure 4.
The contribution of these small pockets, which oscillates with a lower frequency, becomes discernible with
increasing β, as seen in panels (e) and (f).

These results illustrate that, close to the limit where the NNN in-plane hybridization vanishes, QO from
the surface states with a frequency comparable to that of the bulk bands are clearly seen for magnetic fields
well below the threshold for QO from the gapped bulk.

One aspect of quantum oscillation, which is used to identify the two dimensional nature of conducting
states, is the dependence of the frequency of oscillations on the tilt angle of the magnetic field. In
conventional 2D electronic systems, the frequency of magnetic oscillations depends on the cross-sectional
area of the FS normal to the field direction. This is related to the field component in the direction normal to
the surface. For the shadow states, in addition to such dependence on the magnetic field direction, tilting of
the field leads to gaping of the states and suppresses the magnetic oscillations. This is demonstrated
numerically for the lattice model in figure 6. This effect results from hybridization of the two surface states
due to the in plane component of the field and occurs at the Fermi energy where the bands cross. As a
result, the effect of tilting of magnetic field can be used to distinguish the surface states in this paper from
other types of edge states.

3. Lattice models and interaction-induced shadow states

The emergence of shadow states in the effective continuum model requires α < −m/M. It is crucial to
examine which microscopic model could lead to effective models as in (1) and (3) and illustrate how these

7
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Figure 6. Gaping of the edge states in the presence of the in plane field. (a) and (b) corresponds to �ωB‖ = 0 and �ωB‖ = 0.025.
The results are obtained for 2D lattice in xz plane with 50 × 50 sites and applying periodic boundary conditions in x direction.
β = 0 and all the remaining parameters are the same as in figure 1.

microscopic models map onto the continuum limit discussed in section 2. In particular, such microscopic
models involve small ratios of NN to NNN hybridizations which would be highly atypical of direct orbital
overlaps in a non-interacting model. In this section we show that such hybridization structure can emerge
as a result of strong interactions in TKIs.

The kinetic part of continuum model in (1) corresponds to the following form in the lattice model:

Hk =

[(
M′ − 6m′)+ 2m′

∑
i

cos (kia)

](
f †k fk + c†kck

)
+

[
(M − 6m) + 2m

∑
i

cos (kia)

](
f †k fk − c†kck

)
,

(8)

where fk and ck are destruction operators associated with localized and itinerant bands. For simplicity we
choose half-filled localized band limit. Away from f-electron half-filling requires mole elaborate discussion
of the interacting model (see section 3.4) which will be presented elsewhere. We should note that even
though the localized f band is at half-filling, the effective Heisenberg interaction between the localized
moments leads to an effective dispersion for the band [33, 47, 48].

3.1. General form of the effective hybridization in a lattice model
We consider an effective s–p orbital hybridization on a three-dimensional lattice in the presence of
spin–orbit coupling with the most general tetragonal point-group symmetry. The form of these effective
hybridization terms is determined by the point-group symmetry and does not depend on strong
correlations. However, as we discuss in the next section, the effective hybridization gets renormalized due to
strong correlations. We consider a general form which allows for tetragonal anisotropy. The NN and NNN,
symmetry-allowed hybridization terms, which include the spin–orbit coupling, in second-quantized form
are [49]

HHyb =
∑
R,μ

[
t0‖

(
f †RμΨ0‖,Rμ + H.c.

)
+ t0⊥

(
f †RμΨ0⊥,Rμ + H.c.

)
+ t1‖

(
f †RμΨ1‖,Rμ + H.c.

)

+ t1⊥

(
f †RμΨ1⊥,Rμ + H.c.

)]
, (9)

where R labels the sites of the cubic lattice and the f †Rμ operator acts on the lowest-energy Kramers doublet
which emerges under the effect of the cubic or tetragonal crystal field from the p-orbital with spin 1/2.
Since the spin in not conserved, μ ∈ {1, 2} denotes the two components of the Kramers doublet. We
introduced the Wannier states

Ψ0‖,Rμ = − i

2

∑
r̂∈{±x̂,±ŷ}

∑
ν

(r̂ · σ)μνcR+r̂ν , (10)

Ψ0⊥,Rμ = − i

2

∑
r̂∈{±ẑ}

∑
ν

(r̂ · σ)μνcR+r̂ν , (11)

Ψ1‖,Rμ = − i

2

∑
r̂∈{±x̂±ŷ}

∑
ν

(r̂ · σ)μνcR+r̂ν , (12)
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Ψ1⊥,Rμ = − i

2

∑
r̂∈{±x̂±ẑ,

±ŷ±ẑ}

∑
ν

(̂r · σ)μνcR+r̂ν , (13)

defined in terms of the s-orbital, spin-1/2 conduction electrons cRν . By construction, each of Ψ’s belong to
the same doublet as the f fermion operators. For the most general tetragonal anisotropy, the NN
hybridization splits into in-plane t0‖ and out-of-plane t0⊥ contributions, and similarly for the NNN terms
t1‖ and t1⊥. Under a straightforward Fourier transformation, the hybridization terms can be re-expressed as:

HHyb =
∑
k,μν

[
V0,μν(k) + V1,μν(k)

]
f †kμckν + H.c., (14)

where
V0,μν(k) = t0‖

∑
i∈{x,y}

siσi,μν + t0⊥σz,μνsz , (15)

V1,μν(k) = 2
[(

t1‖cy + t1⊥cz

)
sxσx +

(
t1‖cx + t1⊥cz

)
syσy

+ t1⊥
(
cx + cy

)
szσz

]
, (16)

and where si = sin(kia), ci = cos(kia).

3.2. Continuum limit for cubic symmetry
For cases where the hybridization preserves the cubic point-group symmetry we set t0‖ = t0⊥ and t1‖ = t1⊥.
Taking the continuum limit of the hybridization terms in (15) and (16) we arrive at (1) and (3) for β = 1
by identifying

v = t0 + 4t1, (17)

αv = −t1, (18)

from which the condition for the emergence of shadow states, α < −m/M, translates into

− 4t1 < t0 <

(
M

m
− 4

)
t1 if t1 > 0, (19)

(
M

m
− 4

)
t1 < t0 < −4t1 if t1 < 0. (20)

3.3. Continuum limit for tetragonal symmetry
The parameters of the continuum model in (1) and (3) are related to the lattice model parameters in (15)
and (16) via:

v‖ = 2t1‖ + 2t1⊥ + t0‖, (21)

v⊥ = t0⊥ + 4t1⊥, (22)

α =
−t1⊥

t0⊥ + 4t1⊥
, (23)

β =
t1‖
t1⊥

, (24)

where v‖ (v⊥) is the hybridization amplitude in the xy plane and along the z direction, respectively in (1).
As mentioned previously, the anisotropy of the NN hybridization does not have essential consequences.

For tetragonal lattices, the condition for the surface state crossings at finite parallel momentum (the
equivalent of (7) when v‖ �= v⊥) reads as αv⊥

v‖
< − m

M . In terms of parameters of tight-binding, the required

range of tight-binding model parameters read as:

−t1⊥
2t1‖ + 2t1⊥ + t0‖

< − m

M
. (25)

For β = 0 (t1‖ = 0), this condition implies

− 2t1⊥ < t0‖ <

(
M

m
− 2

)
t1⊥ if t1⊥ > 0, (26)

9
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(
M

m
− 2

)
t1⊥ < t0‖ < −2t1⊥ if t1⊥ < 0. (27)

This shows that if k2
F = M/m < 2 the emergence of shadow states requires that t0‖ and t1⊥ have opposite

signs. Recall that this conclusion is a consequence of (25), and is therefore rigorous only in the continuum
limit when M/m < 1. We note that for larger values of M/m, shadow states could develop even if t0‖ and
t1⊥ have the same sign. This case corresponds to very large shadow surface state FSs and is consequently
relevant in a restricted parameter-space. Therefore, we focus on t0‖ and t1⊥ having opposite sign. In
section 3.4 we demonstrate that for TKIs and due to the interacting nature of this material, such emergent
pattern of parameters is energetically preferred.

3.4. Effective hybridization from Kondo interactions
The Kondo interaction, effectively emerges from Anderson model at half-filling of localized fermionic band
in the large interaction limit between electrons occupying the same localized orbital [49, 50]. Kondo lattice
model can be derived as a lower energy effective model from periodic Anderson model using
Schrieffer–Wolff transformation [51]. The resulting low energy Kondo model incorporates an interaction
term which is of the form of anti-ferromagnetic coupling between the spin of electrons in the local band
and the spin of itinerant electrons. Given that the Kondo model is still interacting we need to apply suitable
treatment such as mean-field approximation [48, 49]. Such treatments were used to capture phenomena
such as large FS and heavy quasiparticle mass in heavy-Fermi liquids [47, 52]. In this section, we show that
t0‖ and t1⊥ having opposite signs is energetically preferred at mean-field level for TKIs. In the half-filling
limit, we consider the NN and NNN Kondo interaction [6, 48, 53, 54]

HK =
∑

R

[
J0‖S0‖,R · Sf ,R + J0⊥S0⊥,R · Sf ,R

+ J1‖S1‖,R · Sf ,R + J1⊥S1⊥,R · Sf ,R

]
, (28)

where

Sf ,R =
1

2

∑
μν

f †Rμσμν fRν . (29)

For tetragonal symmetry, the in-plane and out-of-plane Kondo couplings are different with J0/1‖ �= J0/1⊥.
Note that the f fermion is constrained to the half-filled Fock space. Similarly, the operators

S0‖,R =
1

2

∑
μν

Ψ†
0‖,RμσμνΨ0‖,Rν , (30)

S0⊥,R =
1

2

∑
μν

Ψ†
0⊥,RμσμνΨ0⊥,Rν , (31)

S1‖,R =
1

2

∑
μν

Ψ†
1‖,RμσμνΨ1‖,Rν , (32)

S1⊥,R =
1

2

∑
μν

Ψ†
1⊥,RμσμνΨ1⊥,Rν , (33)

are defined in terms of the Wannier states in (10)–(13).
A straightforward decoupling of the Kondo interactions in the particle–hole channel reproduces (14) if

we identify

t0‖ = −3J0‖
8

〈∑
μ

Ψ†
0‖,RμfRμ

〉
, (34)

t0⊥ = −3J0⊥
8

〈∑
μ

Ψ†
0⊥,RμfRμ

〉
, (35)

t1‖ = −3J1‖
8

〈∑
μ

Ψ†
1‖,RμfRμ

〉
, (36)

10
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Figure 7. (a) Band structure determined from (38), (39) and (14) for the self-consistent solutions with effective f-electron level
μf = 0.66, and NN and NNN hybridization t0 = 0.62 and t1 = −0.08, respectively, which corresponds to J1⊥ = 0.3. Yellow
(blue) lines denote c(f) character. (b) Ground-state energy per unit cell versus NNN Kondo coupling J1⊥ for solutions where the
NN and NNN effective hybridizations t0 and t1⊥, respectively, have equal (blue line) and opposite (red line) signs. The
lowest-energy ground-state configuration occurs when the signs are opposite. Self-consistently determined NN and NNN
effective hybridizations t0 and t1⊥, respectively, as functions of the NNN Kondo-coupling J1⊥ for (c) t0t1⊥ > 0 and (d) t0t1⊥ < 0.
The values of the parameters are: t = 1.0, t′ = 0.5, J0‖ = J0⊥ = 1.0 and J1‖ = 0, which correspond to t0‖ = t0⊥ = t0 and t1‖ = 0.

t1⊥ = −3J1⊥
8

〈∑
μ

Ψ†
1⊥,RμfRμ

〉
. (37)

We choose a tight-binding part for conduction and f electrons [33]:

εk = −2t
∑

i

cos ki − 4t′
∑
i�=j

cos ki cos kj, (38)

εfk = −ηεk + μf , (39)

where η = 0.01 and μf is the chemical potential for the f electrons. We impose half-filling for both f and
conduction electrons:

1 =
1

Nk
〈
∑

kμ

f †kμfkμ〉, (40)

1 =
1

Nk
〈
∑

kμ

c†kμckμ〉, (41)

where Nk is the number of points in the bulk BZ. Finally, both ti‖/⊥ and μf are determined self-consistently.
Figure 7(a) shows the band structure of the Hamiltonian formed from (38), (39) and (14). The ground

state has band inversion at the 3 M points in the BZ and therefore has a nontrivial topological Z2 index.
Figures 7(b)–(d) shows the solution of (34)–(37) for half-filling, when t0 = t0‖ = t0⊥ and t1‖ = 0. We
distinguish solutions with t0 and t1⊥ having the same and opposite sign. We find that the self-consistent
solutions with t0t1⊥ < 0 minimize the ground-state energy whereas solutions with t0t1⊥ > 0 are always
higher in energy as shown in figure 7(b). Figures 7(c) and (d) show the corresponding t0/1⊥ as a function of
J1 for J0 = 1. At J1 = 0 the lower energy solution corresponds to finite t0 and t1⊥ = 0. Moving away to finite
J1 the t0t1⊥ < 0 solution smoothly connects with that low energy solution, whereas t0t1⊥ > 0 solution
develops in different region and is never preferred.

11
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4. Conclusions

Motivated by the well-studied case of SmB6, we considered a natural extension of a minimal two-orbital
model with NN hybridization for cubic TKIs to cases with tetragonal anisotropy and additional NNN
hybridization. In the tetragonal limit with strictly NNN out-of-plane hybridization, we found that the
surface states show two FS’s with different effective masses at the charge neutrality point. The existence of
two FS’s, one hole-like and another electron-like, with equal areas but very different effective masses is
inherent to TKI’s, due to the hybridization between quasi-localized and itinerant electrons. These features,
in turn make finite-frequency QO possible. This contrasts with the more common situation in TI’s, which
typically exhibit Dirac points at charge neutrality and no QO from the surface states for vanishing magnetic
fields. The QO due to the surface states can also occur in presence of finite NNN in-plane hybridization or
disorder, provided that the gaps induced by these mechanisms are comparable to the Landau level spacing.

In addition, we showed that a predominantly NNN out-of-plane hybridization realizes the
minimum-energy ground-state configuration in TKIs with tetragonal lattice symmetry. Consequently,
shadow surface states provide a concrete example of how arbitrarily high-frequency QO can occur beyond
the immediate context of cubic TKIs such as SmB6.

Finally, we note that the ideal candidates for the emergence of shadow surface states with a small gap are
compounds with a dominant NNN out-of plane hybridization. The most natural realizations are therefore
TKIs under strong compressive strain.
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Appendix A

In this appendix, we discuss the analytical solutions of the surface states of continuum-limit Hamiltonian
HT = H0 + Vnnn introduced in section 2. Taking into account the double-degeneracy of the states due to
inversion and time-reversal symmetry, we consider the following two degenerate eigenstates ansatz for the
general solutions of HT (in the basis {|1, ↑〉, |2, ↑〉, |1, ↓〉, |2, ↓〉}, {1, 2} denoting orbital index and {↑, ↓}
denoting the spin):

ψ1
ξ (z) = N1

⎛
⎜⎜⎝

L− + m−λ
2
ξ − E

ivλξ

(
1 + αk2

)
0

−vkx

(
1 + α

(
βk2

y − λ2
ξ

))
− ivky

(
1 + α

(
βk2

x − λ2
ξ

))
⎞
⎟⎟⎠ e−λξ z, (42)

ψ2
ξ (z) = N2

⎛
⎜⎜⎝
−vkx

(
1 + α

(
βk2

y − λ2
ξ

))
+ ivky

(
1 + α

(
βk2

x − λ2
ξ

))
0

−ivλξ

(
1 + αk2

)
L+ + m+λ

2
ξ − E

⎞
⎟⎟⎠ e−λξ z, (43)

where L± = M± − m±k2
‖, M± = M′ ± M, m± = m′ ± m, ξ = 1, 2 and λξ are determined from a

characteristic equation [44, 45]. We focus on non-trivial surface states of a semi-infinite system with an
open boundary condition at z = 0 and normalization condition of the wave function in the region z > 0.
Therefore, we are only interested in λξ with positive real part. Using the definitions

F = m+ (L− − E) + m− (L+ − E)

+ v2
(

1 + 4αk2
‖ + α2k4

‖ + 4α2βk2
xk2

y

)
, (44)
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R = F2 − 4
(

m+m− − α2v2k2
‖

)
×
[

(L+ − E) (L− − E) − v2
(

k2
‖ + αβk2

xk2
y

(
4 + αβk2

‖

))]
, (45)

we express the solutions via

λξ =
[

2
(

m+m− − α2v2k2
‖

)]− 1
2 ×

(
−F + (−1)ξ

√
R
) 1

2
. (46)

Non-trivial solution satisfying boundary condition at z = 0 are obtained from the requirement
det{ψ1

1(0),ψ1
2(0),ψ2

1(0),ψ2
2(0)} = 0, which takes simple form at k2,‖ when β = 0 or θk = mπ/2:

λ1λ2 = − 1

α
. (47)

For β �= 0, and θk = π/4 + mπ/2 also for k′2,‖, the condition is

λ1λ2 =
1

β − 2

(
Mβ

m
+

2

α

)
. (48)

Non-trivial surface states thus require λ1λ2 > 0 and since 0 < β < 1, the above conditions can only be
satisfied if α < 0. In addition, the condition (48) requires α > −2m/Mβ which is equivalent to β < βc

derived in main text.
For general momentum k‖, the non-trivial surface state spectrum is

E± =
M′m2 − Mmm′

m2 + α2v2k2
‖

+
αv2

(
m′k2

‖ + α
(

M′ − m′k2
‖

)
k2
‖ + 2αβm′k2

xk2
y

)
m2 + α2v2k2

‖

± v

m2 + α2v2k2
‖

[(
m2 − m′2 + α2v2k2

‖

)((
m + α

(
M − mk2

‖

))2
k2
‖ + α2β2m2k2

xk2
yk2

‖

+ 4αβmk2
xk2

y

(
m + α

(
M − mk2

‖

))
+ α4β2v2k2

xk2
y

(
k2

x − k2
y

)2
)]1/2

. (49)

Above spectrum reduces to the from given in (4) for β = 0.
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