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Maternally inheritedWolbachia transinfections are being introduced into natural mosquito populations to reduce the transmission

of dengue, Zika, and other arboviruses.Wolbachia-induced cytoplasmic incompatibility provides a frequency-dependent reproduc-

tive advantage to infected females that can spread transinfections within and among populations. However, because transinfec-

tions generally reduce host fitness, they tend to spread within populations only after their frequency exceeds a critical threshold.

This produces bistability with stable equilibrium frequencies at both 0 and 1, analogous to the bistability produced by underdomi-

nance between alleles or karyotypes and by population dynamics under Allee effects. Here, we analyze how stochastic frequency

variation produced by finite population size can facilitate the local spread of variants with bistable dynamics into areas where

invasion is unexpected from deterministic models. Our exemplar is the establishment of wMel Wolbachia in the Aedes aegypti

population of Pyramid Estates (PE), a small community in far north Queensland, Australia. In 2011, wMel was stably introduced

into Gordonvale, separated from PE by barriers to A. aegypti dispersal. After nearly 6 years during whichwMel was observed only

at low frequencies in PE, corresponding to an apparent equilibrium between immigration and selection, wMel rose to fixation by

2018. Using analytic approximations and statistical analyses, we demonstrate that the observed fixation of wMel at PE is consis-

tent with both stochastic transition past an unstable threshold frequency and deterministic transformation produced by steady

immigration at a rate just above the threshold required for deterministic invasion. The indeterminacy results from a delicate bal-

ance of parameters needed to produce the delayed transition observed. Our analyses suggest that onceWolbachia transinfections

are established locally through systematic introductions, stochastic “threshold crossing” is likely to only minimally enhance spatial

spread, providing a local ratchet that slightly—but systematically—aids area-wide transformation of disease-vector populations in

heterogeneous landscapes.

KEY WORDS: Aedes aegypti, bistable dynamics, disease control, hybrid zone movement, migration-induced transformation,
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Impact Summary

Wolbachia are maternally inherited intracellular bacteria in-

fecting about half of all insect species. Roughly half of Wol-

bachia infections induce cytoplasmic incompatibility (CI):

when infected males inseminate uninfected females, resulting

embryos suffer increased mortality. Infected females are pro-

tected from CI and produce only infected progeny; thus, they

tend to increase in frequency. Some Wolbachia infections sup-

press pathogens in their insect hosts. Wolbachia-induced CI

and pathogen suppression underlie a novel strategy for con-

trolling insect-borne human diseases. The mosquito Aedes ae-

gypti, which spreads dengue, Zika, and other viral diseases,

has been artificially infected with wMel, a Wolbachia per-

vasive in natural populations of Drosophila melanogaster.
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Transinfected A. aegypti cause CI and rarely transmit diseases,

but they suffer reduced longevity and fecundity. Consequently,

wMel transinfections tend to increase in frequency only once

they become sufficiently common. In tropical northeastern

Australia, the threshold frequency for local increase of wMel

is about 25%. Hence, many transinfected mosquitoes must be

released to locally establish the transinfection. However, once

populations are transformed, they remain stably infected and

suppress disease spread. This novel disease-biocontrol strat-

egy is being deployed in A. aegypti populations throughout the

tropics and has effectively eliminated dengue transmission in

Australia and greatly reduced dengue transmission elsewhere.

A practical question is how to transform mosquito populations

in large, spatially heterogeneous cities. Because of its compet-

ing effects, wMel has spread spatially very slowly in relatively

homogeneous habitats in tropical Queensland, about 100–200

m per year. Barriers to mosquito dispersal, such as highways,

further reduce or halt spread. Here, we use models and statisti-

cal analyses developed in evolutionary genetics to understand

the implications of wMel spread across a barrier to dispersal in

northern Queensland—but only after a delay of about 7 years.

Our inability to distinguish between stochastic and determin-

istic explanations for the delayed “jump” across a barrier re-

flects a dilemma common to many phenomena in evolutionary

genetics.

Bistable dynamics, producing two alternative stable states,

are common in natural populations. They arise in the frequency

dynamics of polymorphic alleles or karyotypes that produce het-

erozygotes with reduced fitness (Barton 1979), and they describe

abundance dynamics of species subject to Allee effects, that

is, where per-capita reproduction rates increase from negative

to positive at low densities (Taylor and Hastings 2005). Our

analyses focus on understanding bistable frequency dynamics

in spatially heterogenous habitats with barriers to dispersal.

Spatial dynamics of one-dimensional bistable variants depend

critically on the position of the unstable point, denoted p̂, that

separates the initial frequencies leading to the alternative stable

equilibria. With stable equilibria at 0 and 1, corresponding to

local loss or fixation of a specific variant, p̂ determines whether

the area occupied by the variant tends to expand or contract

and the sensitivity of spatial spread to dispersal barriers (Barton

1979; Barton and Turelli 2011). We address whether stochastic

fluctuations associated with finite (but fixed) population size

explain a delayed “jump” by a bistable variant across a barrier

that had apparently stopped it for several years. Our exemplar is a

Wolbachia infection introduced into a mosquito species to reduce

disease transmission. We find that our data do not allow us to dis-

tinguish between specific stochastic and deterministic hypotheses

explaining the jump. Our methods and the question of stochastic

versus deterministic transitions apply to a range of evolutionary

and ecological scenarios involving spatial spread under bistable

dynamics—but our uncertain result depends on a delicate balance

of parameters required to explain the specific delayed transi-

tion observed and the difficulty of accurately estimating those

parameters.

Wolbachia are maternally inherited, obligately intracellular

alphaproteobacteria that infect about half of all insect species

(Weinert et al. 2015). Some Wolbachia inhibit the growth of some

pathogens in their insect hosts (Teixeira et al. 2008; Martinez

et al. 2014). This phenomenon underlies a novel strategy for con-

trolling the spread of vector-borne diseases (Ross et al. 2019).

Virus-suppressing Wolbachia that induce cytoplasmic incompat-

ibility (CI; Hoffmann and Turelli 1997) are introduced to stably

transform vector populations so that they do not transmit disease

(Flores and O’Neill 2018). Wolbachia-infected females produce

Wolbachia-infected progeny whether they mate with infected or

uninfected males, whereas CI increases embryo mortality when

uninfected ova are fertilized by sperm from Wolbachia-infected

males. In mosquitoes, CI generally kills all affected embryos,

providing a significant reproductive advantage for infected fe-

males once infected males become common. However, in addi-

tion to providing virus protection and inducing CI, Wolbachia

transinfections in Aedes aegypti also generally reduce fecundity

and longevity (Hoffmann et al. 2014; Ross et al. 2019). Fitness

costs (and imperfect maternal transmission) produce bistable fre-

quency dynamics with stable equilibria at 0 and (near) 1 (Caspari

and Watson 1959; Hoffmann et al. 1990; Turelli 2010).

The Wolbachia-based population-transformation strategy for

disease control was first applied in 2011 to the isolated town-

ships of Gordonvale and Yorkeys Knob in tropical Queensland,

Australia (Hoffmann et al. 2011). Subsequently, A. aegypti pop-

ulations were transformed in most areas of Queensland subject

to dengue transmission (e.g., Schmidt et al. 2017)—and they

have remained stably transformed over several years (Hoffmann

et al. 2014; Ryan et al. 2019). These population transformations

have successfully suppressed dengue transmission in Australia

(Ritchie 2018; Ryan et al. 2019) and Indonesia (Utarini et al.

2021). Releases of another Wolbachia transinfection (wAlbB)

into A. aegypti in Kuala Lumpur, Malaysia have also decreased

dengue incidence (Nazni et al. 2019). This disease-control strat-

egy is being implemented in Vietnam, Brazil, Columbia, India,

and other locations where dengue is endemic (O’Neill 2018; Tan-

towijoyo et al. 2020). Hence, we seek to better understand spatial

spread of deleterious Wolbachia transinfections.

Barton (1979) analyzed the spatial dynamics of bistable vari-

ants and Barton (1979) and Pialek and Barton (1997) described

finite-population-size effects on these dynamics. These analyses

focused on understanding the spatial dynamics of “tension zones”
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between alternative genotypes that produce heterozygotes with

reduced fitness (Barton and Hewitt 1985). Barton and Turelli

(2011) and Turelli and Barton (2017) discussed the relevance

of Barton’s (1979) analyses to Wolbachia transinfections, and

Schmidt et al. (2017) showed that initial field data from Queens-

land seemed consistent with quantitative deterministic predic-

tions, including the speed of spatial spread (“wave speed”), the

connection between wave speed and the width of the spread-

ing wave, minimal introduction areas required to initiate spatial

spread, and barriers that stop this spread.

Four lines of evidence were invoked to support bistable

frequency dynamics for the wMel transinfection in A. aegypti

(Schmidt et al. 2017; Turelli and Barton 2017). Field-collected

wMel-infected females show significantly reduced fecundity and

longevity (Hoffmann et al. 2014), suggesting an unstable equi-

librium frequency on the order of 0.2, consistent with the fre-

quency dynamics observed in field cages (Walker et al. 2011). In

Cairns, Australia, localized urban releases of wMel in A. aegypti

produced slow spatial spread, roughly 150 m/year, broadly con-

sistent with mathematical predictions for bistable spatial dynam-

ics (and orders of magnitude slower than spatial spread observed

for natural Wolbachia infections, whose dynamics seem not to be

bistable, Kriesner et al. 2013, 2016; Zhao et al. 2013; Hamm et al.

2014; Meany et al. 2019). Moreover, in contrast to two larger re-

lease areas, which saw significant expansion of the infected areas

after releases stopped, the infected area associated with the small-

est Cairns release seemed to be shrinking and collapsing before

additional releases were undertaken. This shrinkage was expected

because the release area was very close to the predicted minimum

size for successful local establishment and subsequent spread. We

consider new data from this location (Ryan et al. 2019, fig. 7A)

in our Results. Finally, although wMel-infected individuals regu-

larly migrated across a highway from Gordonvale to an adjacent

community, Pyramid Estates (PE), the infection remained very

rare for several years.

These PE data suggested a quasi-stable state with wMel

persisting at a low frequency, averaging about 0.11 (Turelli and

Barton 2017). This long-term average was assumed to approx-

imate a stable equilibrium between the recurrent immigration

from Gordonvale and natural selection against wMel. An ana-

lytical approximation for this equilibrium (Barton and Turelli

2011) implied that the unstable equilibrium satisfied p̂ ≥ 0.22,

consistent with experimentally observed deleterious effects for

wMel in Gordonvale (Hoffmann et al. 2014). However, subse-

quent sampling showed that wMel rose to near fixation in PE by

2018. This delayed fixation may reflect a stochastic transition,

produced by the relatively small population in PE (cf. Jansen

et al. 2008). Here, we show that these data are also compatible

with fixation predicted by deterministic dynamics. We consider

whether the delayed timing of the transition observed in PE is

consistent with plausible estimates of the: (1) unstable equilib-

rium, p̂, (2) rate of immigration from Gordonvale, m, as inferred

from the average infection frequency prior to near fixation, and

(3) fluctuations in infection frequencies prior to fixation. We

focus on stochastic effects of constant finite population size to

contrast specific stochastic versus deterministic explanations of

the several-year delay in wMel fixation at PE.

Our stochastic “threshold crossing” hypothesis postulates

that the immigration rate m from Gordonvale into PE was rel-

atively constant and below the critical migration-rate threshold,

denoted mcrit, needed to deterministically drive wMel to fixa-

tion. As shown by Barton and Turelli (2011), mcrit ≈ p̂2/4. For

m < mcrit, stochastic fluctuations in infection frequency associ-

ated with the relatively small population in PE will eventually

move the frequency of wMel above p̂ so that CI drives fixation,

but the time scale depends critically on p̂, m, and effective pop-

ulation size, N. Waiting times associated with stochastic shifts

between stable equilibria generally scale exponentially with pop-

ulation size (e.g., Wright 1941; Barton and Charlesworth 1984).

An alternative, “deterministic transition,” hypothesis postulates

that the persistent migration of wMel from Gordonvale into PE

always satisfied m > mcrit. This is possible because as m de-

creases toward mcrit, deterministic dynamics imply an arbitrar-

ily long time to reach near-fixation. Our central conclusion is

that the PE data are consistent with both the threshold-crossing

and deterministic-transition hypotheses. This ambiguity rests on

a delicate balance involving p̂; p̄, the frequency of wMel main-

tained for several years by immigration; and the relatively small

A. aegypti population in PE—and the uncertainty underlying es-

timates of these parameters.

In addition to these two focal alternative hypotheses, there

are at least two other biologically distinct, and complementary,

explanations for the delayed spread into PE: evolutionary change

and fluctuating immigration. In the transinfected Gordonvale

population, either wMel or A. aegypti may have evolved so that

the infection became less deleterious (Turelli 1994; Carrington

et al. 2009; Bull and Turelli 2013), lowering p̂ and reducing mcrit,

so that m > mcrit. Rapid Wolbachia evolution has been observed

in California D. simulans (Weeks et al. 2007). Alternatively, fluc-

tuating immigration rates may have produced a large transient in-

flux driving wMel frequency in PE above p̂ and leading to rapid

quasi-deterministic fixation. This fluctuating-migration version

of “stochastic threshold crossing” is a plausible alternative to the

stochastic frequency fluctuations we investigate. However, unlike

finite-population effects, which are naturally modeled as bino-

mial sampling, there are many plausible descriptions of stochas-

tically varying migration, with little empirical guidance. Given

that the PE data cannot distinguish between our specific stochas-

tic and deterministic hypotheses, we do not explore stochastic-

immigration alternatives.
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Methods
DATA COLLECTION AND SUMMARIES USED FOR

ANALYSES

The methods for sampling A. aegypti (BG-Sentinel traps,

acronym BGSs) and Wolbachia detection (PCR and qPCR) were

presented in Hoffmann et al. (2011) and Schmidt et al. (2017).

The introduction of wMel-infected A. aegypti in Gordonvale was

initiated in January 2011 and completed by May 2011 (Hoffmann

et al. 2011). wMel was initially detected in PE in March 2011, but

no A. aegypti were collected from numerous traps in April 2011

(Hoffmann et al. 2011). There was minimal sampling in PE un-

til mid-December 2012, when regular (initially weekly, then bi-

weekly) sampling began and continued until mid-January 2015.

This initial sampling included 598 individual samples from 23

locations in PE over 94 collection periods (typically a week), for

an average of about six individual samples per collection period.

Over these initial samples, 2474 A. aegypti were scored for wMel

infection, with a pooled infection frequency of 245/2474 = 0.099.

Sampling did not resume until three individual samples in May

2017 (n = 20 individuals), January 2018 (n = 11), and July 2018

(n = 11).

Two figures below summarize the spatial and temporal dis-

tribution of wMel in PE. To illustrate the spatial distribution of

the samples, we pool data over four time intervals from mid-

December 2012 (16 months after the Gordonvale releases) until

mid-January 2015, about 760 days. The sampling days pooled are

numbered 100−280, 280−470, 470−600, and 600−860, corre-

sponding to numbering in the raw data. Pie diagrams correspond

to BGS locations that produced data in each interval. Overall, 23

sampling locations produced frequency data, but there were fewer

in each time interval.

In Appendix 2, we analyze spatial heterogeneity of wMel

frequencies within days using the 94 initial PE collection peri-

ods. These data are analyzed without spatial or temporal pooling.

However, we do not have enough data to explicitly model wMel

spatial dynamics within PE, nor do we have sufficient data to jus-

tify an explicit model of overlapping generations with quiescent

eggs (cf. Turelli 2010; Hoffmann et al. 2011, supporting informa-

tion). Instead, we apply the discrete-generation stochastic model

described by equations (1)–(4) below. This involves pooling sam-

ples in time and space. We pooled the data into nonoverlapping

generations of length 36.5 days (i.e., 10 generations per year).

Up to January 2015, we analyzed data for 21 successive “gen-

erations.” Our individual samples for May 2017, January 2018,

and July 2018 were treated as estimates of wMel frequency in

generations 43, 50, and 55. (Both the raw data and our pooled

samples are available on Dryad [https://doi.org/10.25338/B8

1931].)

DETERMINISTIC Wolbachia FREQUENCY DYNAMICS

We approximate local dynamics using a reparameterization of the

Caspari and Watson (1959) model (CW) that describes CI and

fecundity effects (cf. Hoffmann and Turelli 1988; Weeks et al.

2007) assuming perfect maternal transmission. We denote by: p,

the frequency of infected adults in the current generation; sh, the

reduction in relative hatch rate of embryos produced from incom-

patible crosses; and sf, the reduction in relative fecundity of in-

fected females. The expected change in p per generation in an

isolated population is approximated by

�p = p′ − p = sh p (1 − p) (p − p̂)

1 − s f p − sh p (1 − p)
, with (1a)

p̂ = sf/sh. (1b)

In this model, the condition for bistability (i.e., simultaneous

local stability of p = 0 and p = 1) is sh > sf > 0; namely, the (fre-

quency dependent) benefit to the infection from CI must exceed

its (frequency independent) cost, modeled as decreased fecundity.

Both lab and field experiments indicate that wMel causes essen-

tially complete CI, that is, sh ≈ 1, in A. aegypti near Cairns (Hoff-

mann et al. 2014). Our analyses assume complete CI and perfect

maternal transmission (ignoring transient imperfect transmission

observed during heat waves, cf. Ross et al. 2020a). Incorporating

rare imperfect transmission slightly lowers the “fixation” equi-

librium but does not appreciably change our analyses or con-

clusions. (Continuous-time models, specifically Schraiber et al.

[2012] and the Barton [1979] cubic approximation, produce sim-

ilar results.) A more detailed biological model with overlapping

generations and a bank of quiescent eggs (Turelli 2010; Hoff-

mann et al. 2011) would add several additional parameters that

cannot be accurately estimated. Approximation (1) sufficed to de-

scribe wMel spread in Cairns (Schmidt et al. 2017).

To approximate the effects of immigration of wMel-infected

mosquitoes from Gordonvale, we assume that after the determin-

istic change produced by selection and CI, as described by (1),

the infection frequency is deterministically modified by immi-

gration, with a fraction m of the postmigration PE reproductives

being immigrants with infection frequency pI. Letting p
∗ denote

the infection frequency after migration,

p∗ = (p + �p) (1 − m) + mpI, (2)

with �p from equation 1. Before the increase of wMel in PE,

the Gordonvale population remained essentially fixed for wMel,

so we assume pI = 1. This simple approximation ignores spa-

tial effects within PE and treats it as a spatially homogeneous

“island.”Our data are insufficient for a spatially explicit analysis

as presented in Schmidt et al. (2017) for the spread of wMel in

Cairns. This assumption is discussed further below.
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APPROXIMATING FINITE-POPULATION-SIZE EFFECTS

We approximate the stochasticity produced by finite population

size using a stochastic transition matrix analogous to a haploid

Wright-Fisher (WF) model of genetic drift, natural selection, and

immigration. As in population genetics, this model uses an effec-

tive population size (Crow and Kimura 1970, Ch. 3) and binomial

sampling to model the stochastic effects of finite population size

and their interaction with CI and immigration. This model use-

fully approximates finite-population-size effects on frequency

dynamics over a wide range of assumptions, with minimal

parameters.

Stochastic transition matrix
We assume a population of constant effective size, N, experienc-

ing immigration at a constant rate m from a source in which all A.

aegypti carry Wolbachia, that is, pI = 1. Assuming discrete gen-

erations, let It denote the number of Wolbachia-infected adults in

generation t, so that pt = It/N. The stochastic transition matrix Q

= (qij) is defined as

qi j = P (It+1 = j|It = i) , (3)

that is, the probability of going from i to j infected individu-

als in one generation. We approximate these probabilities using

three assumptions: (i) starting with the current adult infection fre-

quency, pt = It/N, the infection frequency among viable gametes

in the next generation is determined by the Caspari-Watson deter-

ministic recursion (1); (ii) after the deterministic change induced

by CI, the infection frequency is next deterministically modified

by immigration, as described by (2); and (iii) the infection fre-

quency in the next generation of N adults is obtained from bi-

nomial sampling of this deterministic projection. These assump-

tions correspond to the usual Wright-Fisher approximation (Crow

and Kimura 1970, Ch. 8).

Letting �p denote the expected (deterministic) change in in-

fection frequency due to Wolbachia effects and p∗ denote the ex-

pected frequency after CI and migration, as described by (1) and

(2), the elements of Q are

qij =
(

N

j

) (
p∗) j(

1 − p∗)N − j
, with (4a)

p∗ = (i/N + �p) (1 − m) + mpI. (4b)

With pI = 1, this stochastic process must ultimately fix at I = N.

Following Ewens (1965), we can approximate the time until

fixation and the distribution of infection frequencies prior to fix-

ation from the second-largest eigenvalue and the corresponding

eigenvector of the transition matrix Q described in (4). Alterna-

tively, the bistable dynamics can also be approximated using dif-

fusion theory (Barton and Rouhani 1987; Jansen et al. 2008). For

simplicity, our likelihood calculations are based directly on Q.

All of our calculations were performed using Mathematica 12.3.

DATA ANALYSES

We focus on likelihood analyses, using our heuristic models and

pooled data, to illustrate the compatibility of the PE transition

with alternative deterministic and stochastic hypotheses. In Ap-

pendix 2, we analyze wMel frequency fluctuations at PE us-

ing the 94 sampling dates between December 2012 and January

2015, during which wMel exhibited apparently stationary fluc-

tuations. Although we document statistically significant spatial

heterogeneity within PE, our data do not suffice to model these

spatial effects (as done using much more extensive data from

Cairns, Schmidt et al. 2017). Similarly, we do not have sufficient

data for an overlapping-generation model with quiescent eggs.

Instead, to analyze temporal dynamics before and including fixa-

tion, we pool the data across collection sites in PE to approximate

the population as an “island” receiving one-way migration from

Gordonvale. In our discrete-generation approximation, we also

bin the samples across collection dates to approximate wMel fre-

quencies in successive “generations.” In this context, the migra-

tion parameter m in equation (4b) is the fraction of reproductive

adults in PE that have just immigrated from Gordonvale.

We binned the data from mid-December 2012 until mid-

January 2015 over intervals 36.5 days long to approximate wMel

frequency dynamics over “generations” 0 to 20 (corresponding

to 10 generations per year). The small samples from May 2017,

January 2018, and July 2018 were treated as estimates from gen-

erations 43, 50, and 55. We modeled sampling error for these

wMel frequency estimates with a binomial distribution (using

the pooled sample size for each “generation”). The spatial het-

erogeneity documented in Appendix 2 implies that the binomial

model underestimates sampling variance. We used these pooled

data, with 24 time points, to estimate via likelihood the param-

eters (N, m, p̂) of the discrete-time transition-matrix model (4).

The likelihood of the model was calculated as the probability of

observing the data, assuming binomial sampling and an underly-

ing trajectory of infection frequencies, {p0, p1, p2 ...}. We approx-

imated the initial state in December 2012, 21 months after the

releases had stopped in Gordonvale (Hoffmann et al. 2011), us-

ing a quasi-stationary distribution obtained by iterating the transi-

tion matrix for 10 generations, assuming no infected individuals

in generation 0. This procedure implies essentially no chance of

fixation before the regular sampling began. The transition-matrix

predicts the distribution of pt + 1 given pt and the model param-

eters (N, m, p̂). We use the transition matrix and the pooled data

to calculate the likelihood of the model by summing over all pos-

sible trajectories of the underlying infection frequencies {p0, p1,

p2 ...}. The likelihood of the data is the probability that bino-

mial sampling produces the observations given {p0, p1, p2 ...}.
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Our quasi-stationary distribution describes p0, and then succes-

sive products of the transition matrix provide the joint distribu-

tion of {p0, p1, p2 ...}. The likelihood calculation is illustrated

by equation (A2.3).

By ignoring spatial heterogeneity in PE, we underestimate

sampling variance and hence underestimate the effective popu-

lation size, N. We compare our likelihood-based estimates of N

from the data in Figure 2 (and the binomial sampling model) with

more direct estimates of A. aegypti population densities and ef-

fective population sizes near PE.

Results
Wolbachia INFECTION FREQUENCIES AT PE

Figure 1 provides an overview of the study site and the spatial

and temporal variation of wMel frequencies before the transition

to fixation. Figure 1A shows an aerial photograph of Pyramid

Estates and Gordonvale. In the south, they are separated only by

the Bruce Highway and adjacent vegetation. The pie diagrams

in Figure 1B–E illustrate the spatial and temporal distribution of

wMel frequencies in PE (black) and Gordonvale (red) between

mid-December 2012 until mid-January 2015, before the transi-

tion to fixation. As shown, the PE data were collected from sites

spanning about 1 km2, at distances up to about 2 km from the

Gordonvale releases. Overall, 23 sampling locations produced

frequency data, but there were fewer than 23 collection sites in

each time interval. Figure 1B shows that, as expected, wMel was

initially detected in the areas of PE closest to Gordonvale. How-

ever, Figure 1C shows that within a year, wMel was detected in

the sampling sites farthest from Gordonvale, which remained true

until mid-January 2015 (Fig. 1D, E). This motivates our treatment

of PE as a homogeneous “island.”

Over these 94 initial temporal samples, 2474 A. aegypti were

scored for wMel infection, with a pooled infection frequency of

245/2474 = 0.099. Treating these as binomial data produces a

95% confidence interval of (0.087, 0.111). We use p̄ to denote

the approximate average frequency of wMel before fixation. In

Appendix 2, we analyze the spatial and temporal pattern of wMel

frequency variation in PE during this initial period, using a sam-

pling model that does not explicitly consider Wolbachia dynam-

ics. We find statistically significant spatial heterogeneity in wMel

frequencies, consistent with their varying distances from Gordon-

vale and significant density variation across sampling locations in

nearby Cairns (Williams et al. 2007). When we simultaneously

take into account spatial variation in wMel frequencies across

the sampling locations in PE and temporal variation in the av-

erage frequency, we obtain significantly higher estimates of p̄,

with a maximum likelihood estimate of 0.125 and 2-unit support

interval (0.105, 0.150). As explained in Appendix 2, this estimate

Figure 1. Panel A shows an aerial photograph of Pyramid Estates

(on the left) and Gordonvale (on the right) with the highway and

fields that separate them. Panels B–E illustrate the spatial and tem-

poral distribution of wMel frequencies in PE (black) and Gordon-

vale (red) between mid-December 2012 and mid-January 2015, be-

fore fixation ofwMel in PE. The axes are meters from an arbitrary

reference point. The pie diagrams show the wMel frequencies in

samples, pooled over the days indicated. (The top right points for

Gordonvale are outside the release area described in Hoffmann

et al. 2011).

down-weights large samples that may unduly influence p̄. We dis-

cuss the implications of our alternative estimates of p̄ below.

When PE was sampled again in May 2017, 10 of 20 A. ae-

gypti carried wMel, producing a 95% binomial confidence of

(0.21, 0.73). Small samples in January and July 2018 found all

A. aegypti infected (22/22, 11 infected in each sample). For the

pooled “fixation” samples (22/22 infected), the 95% binomial

lower bound is 0.87 (for each sample of 11, the lower bound

is 0.76). We use the pooled data plotted in Figure 2 to obtain

likelihood estimates of m, p̂, and N, based on stochastic model
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Figure 2. wMel frequency through time at Pyramid Estates. See

the text for details.

(4) for Wolbachia dynamics. The red dots from 2013 to 2015

are averages over successive samples spanning 36.5 days (cor-

responding to “generations” 0−20); the final three red dots are

point estimates derived from the individual samples in May 2017,

January 2018, and July 2018. Using our approximated generation

time, these are treated as estimates from generations 43, 50, and

55. (The red dots in Fig. 2 use dates that are the weighted arith-

metic means of the sampling dates within each pooling period,

with weights corresponding to sample sizes.)

After completing our statistical analyses, we became aware

of three subsequent samples from PE (Ryan et al. 2019, fig. 15A;

S. L. O’Neill, pers. comm.). In March 2019, two successive sam-

ples produced 17 out of 20 and 30 out of 30 infected. In De-

cember 2019, 16 out of 16 were infected. Pooled, these new data

provide an infection frequency estimate of 0.95, with 95% confi-

dence interval (0.87, 0.99). These results are consistent with the

stable long-term establishment of wMel observed in more than 20

areas in northern Queensland where wMel was systematically in-

troduced (Ryan et al. 2019, figs. 5−12). Hence, despite sampling

uncertainty, we are confident that the data we analyze document

a long-term shift of wMel to near-fixation in PE.

DETERMINISTIC ANALYSES: EQUILIBRIA WITH

MIGRATION

In Appendix 3, we analyze the deterministic dynamics of model

(2). We find an analytical expression for the maximum migra-

tion rate, denoted mcrit, below which an initially uninfected pop-

ulation is expected to achieve a stable polymorphic equilibrium

frequency, denoted ps < 1. For m < mcrit, there are two poly-

morphic equilibria, ps and pu, satisfying a quadratic equation;

they are displayed in Figure 3 for various values of p̂ and m (eq.

A3.4). The upper equilibrium, pu, is unstable, so that if the pop-

ulation has initial frequency p0 > pu, pt→ 1; for p0 < pu, pt con-

verges to ps. For m > mcrit, pt→ 1, irrespective of p0. Figure 3

shows a straight line, indicating the approximate average wMel

Figure 3. Unstable (dotted), pu, and stable (solid), ps, equilibria

produced by model (3) as a function of the migration rate m for p̂

= 0.2 (green), 0.25 (red), 0.3 (blue) and 0.35 (purple). The horizon-

tal line at p = 0.1 approximates the average infection frequency

observed in PE before the transition to fixation.

frequency, 0.1, observed in PE for several years preceding fixa-

tion, and parabolas presenting the unstable and stable equilibria

produced by model (2) as a function of m for p̂ = 0.2 (green),

0.25 (red), 0.3 (blue), and 0.35 (purple). For these four p̂ val-

ues, the critical migration rates, mcrit, are 0.0111, 0.0179, 0.0267,

and 0.0375, respectively, and the migration rates that produce ps

= 0.1 are 0.0111, 0.0167, 0.0222, and 0.0278, respectively (eq.

A3.4a). From equation (A3.5), the corresponding maximum sta-

ble polymorphic equilibrium frequencies are 0.106, 0.133, 0.161,

and 0.189, respectively.

Note that if p̂ = 0.2, we would not expect to see the in-

fection maintained at 0.1, by migration, much less at our higher

estimate 0.125 for p̄, because the necessary migration rate is ef-

fectively at or above mcrit. As p̂ increases, the distance between

the quasi-stationary value p̄ ≈ 0.1−0.125 and the corresponding

unstable equilibrium increases, suggesting that stochastic transi-

tions should take longer.

To determine relative support for threshold crossing versus

deterministic transition, we need estimates of p̂, N, and m. Var-

ious data indicate p̂ ≈ 0.25−0.3 (Schmidt et al. 2017; Turelli

and Barton 2017). These values imply mcrit≈ 0.018−0.027 under

model (2). The data indicate an average infection frequency prior

to fixation, p̄, about 0.1−0.125. When the m necessary to account

for this is near mcrit, we expect that delayed fixation requires rel-

atively large N. Conversely, when the necessary m is far below

mcrit, we expect that delayed fixation must be caused by stochas-

tic threshold crossing with N relatively small. This intuition is

quantified and supported by our likelihood analyses below.

LIKELIHOOD ANALYSES: CONNECTING THE DATA TO

m , p̂, AND N

Analyzing the PE data in Figure 2, pooled spatially over the

collecting sites and binned into discrete “generations,” we use
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Figure 4. Likelihood surfaces for (N,m) using p̂= 0.2, 0.25 (top), 0.3, and 0.35 (bottom). The red line showsmcrit(p̂) from equation (A3.3).

See the text for additional details and interpretation.

likelihood to estimate m, p̂, and N. Because of the heuristic na-

ture of the model, it is useful to consider other sources of infor-

mation about these parameters. As noted, various data suggest

p̂ ≈ 0.25−0.3. In contrast, there are no reliable estimates of m

(cf. Endersby et al. 2011, table 4). Effective population size, N,

is challenging to estimate (Wang 2005), but estimates relevant to

A. aegypti in PE are available. The spatial heterogeneity of wMel

frequencies documented in Appendix 2 implies that our likeli-

hood approach will underestimate N. Hence, it is important to

consider alternative estimates. There are about 1100 houses in

PE distributed over about 2 km2 (Ryan et al. 2019, table 1), but

the sampling area for our study focused on about 1 km2 clos-

est to Gordonvale. During the wet season when populations are

largest, Ritchie et al. (2013) used release-recapture data and es-

timated five to 10 females per house in Gordonvale and nearby

Yorkeys Knob. In Cairns, which is between them, Azil et al.

(2010, fig. 2) showed roughly 10-fold differences between the

wet and dry seasons in relative abundance. Thus, abundances are

likely to fall to about one female per house in the dry season. The

traditional harmonic mean approximation for temporally varying

population size (Crow and Kimura 1970, Ch. 3), which would

put the effective size closer to this minimum value, is compro-

mised, because A. aegypti produce desiccation-resistant eggs that

are effectively a short-lived seed bank. However, those eggs all

hatch in the wet season. Nunney (2002) approximates effective

size with both fluctuating population sizes and seed banks, but his

analysis does not consider regular elimination of the seed back.

Ignoring that, his approximations suggest that effective popula-

tion sizes may be comparable to the wet season numbers, mean-

ing a few thousand. Yet individual variation in reproductive suc-

cess typically greatly reduces the effective number below census

counts (Charlesworth and Charlesworth 2010, Ch. 5; Saarman

et al. 2017). Endersby et al. (2011, tables 2−4) and Saarman et al.

(2017, table 1) estimated effective population size in locations ad-

jacent to PE encompassing larger areas and more houses, based

on temporal variation of molecular marker frequencies. Different

methods produced widely varying estimates, but most are on or-

der of a few hundred, broadly consistent with our independent

estimates below, which are based on a longer time series but only

a single marker (i.e., wMel infection status).

Likelihood estimates of m and N assuming p̂ is known
Using our prior information on p̂, Figure 4 shows log likelihood

surfaces for (m, N) assuming p̂ = 0.2, 0.25, 0.3, and 0.35. The
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Figure 5. Likelihood surfaces for (p̂, m) using N = 150, 200 (top), 300, and 400 (bottom). The red curve shows the function mcrit(p̂)

from equation (A3.3). See the text for additional details and interpretation.

contours are spaced at 0.5 log-likelihood units, so the outer con-

tours give rough 3-unit support limits. In each panel, the red line

is mcrit(p̂) from equation (A3.3). If p̂ = 0.2, which seems too

low based on independent data, essentially all of the support falls

on m > mcrit, strongly indicating deterministic transition for all

likely population sizes. With p̂ = 0.25, stochastic threshold cross-

ing (m < mcrit) is likely only for effective population sizes below

200, whereas for p̂ = 0.3, our analyses give roughly equal sup-

port to both alternatives, with deterministic transition favored for

larger N. If we assume p̂ = 0.35, which seems implausibly large

from independent data, our analyses favor stochastic transition

but require relatively small populations, as expected from our dis-

cussion of the deterministic results in Figure 3.

Likelihood estimates of m and p̂ assuming N is known
Figure 5 shows log likelihood surfaces for (m, p̂) assuming N

= 150, 200, 300, and 400; contours are spaced at 0.5, so the

outer contours give rough 3-unit support limits. As noted above,

the actual effective population size is uncertain, but the results

for smaller and larger N are apparent from these results. In each

panel, the red curve shows mcrit(p̂) from equation (A3.3). Note

that for N = 150 and 200, the most likely values of p̂ include the

values ∼ 0.25−0.3 estimated from separate data. For p̂ = 0.25,

comparable likelihoods are assigned to values of m just above

and below mcrit, but with N = 150 or 200, support for stochastic

threshold crossing greatly increases as p̂ approaches 0.3 (and the

unstable point moves farther from p̄). Looking across the panels,

p̂ = 0.3 is consistent with the data only for N ≤ 200, and it implies

that only stochastic threshold crossing has appreciable probabil-

ity. For N = 300, both hypotheses have appreciable support with

p̂ = 0.25, but for N ≥ 400, our analyses force the p̂ estimates to

implausibly small values and require deterministic transition. For

N ≥ 400, only deterministic transition is plausible.

Discussion
AMBIGUOUS INTERPRETATION OF THE PYRAMID

ESTATES DATA

Our analyses suggest that the seven-year delay between the 2011

establishment of wMel in Gordonvale and its 2018 fixation in

Pyramid Estates (PE) is consistent with either a slow, essentially

deterministic transition or a stochastic threshold crossing asso-

ciated with finite-population-size effects. By pooling our data

across sampling locations within PE, we are underestimating
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sampling variation at each time point because of the spatial

heterogeneity documented in Appendix 2. Nevertheless, even

with the resulting inflation of statistical power, our data can-

not distinguish between our focal hypotheses. This would surely

also be true for more elaborate models with additional param-

eters to be estimated. As indicated by our likelihood results in

Figures 4 and 5, if the effective PE population size is very large,

neither hypothesis seems likely and the delayed fixation is more

plausibly explained by a transient large-scale immigration event,

rather than the steady immigration we have modeled. In general,

our likelihood analyses show that stochastic threshold crossing is

more likely with smaller effective population sizes.

Given that the data are consistent with our focal alternative

fixed-parameter hypotheses, threshold crossing and determinis-

tic transition, they clearly contain too little information to dis-

criminate among changing-parameter hypotheses, such as post-

2011 evolution of p̂ or transient increases of m above mcrit. Tran-

sient migration spikes can in principle be easily documented

by observing large influxes of A. aegypti larvae, but rapid evo-

lution would have broader implications for disease-controlling

transinfections. Either the wMel variants or A. aegypti may have

evolved so that the wMel transinfections in Gordonvale became

less deleterious after the 2011 releases. Decreasing p̂ lowers mcrit,

so that although m < mcrit may have held initially, m > mcrit

may precede fixation. Rapid host-fitness-enhancing evolution of

Wolbachia has been observed in California Drosophila simulans

(Weeks et al. 2007). Hence, the evolution hypothesis merits study,

specifically replicating the Hoffmann et al. (2014) analyses of

wMel-transinfection fitness costs. However, recent results con-

cerning the more deleterious wMelPop transinfection in A. ae-

gypti (Ross et al. 2020b) suggest that the deleterious effects of

wMel are likely to persist in these small populations (in contrast

to the much larger D. simulans populations in California).

The PE situation is special because it presents such a delicate

balance, with a prefixation average infection frequency not far

below the unstable equilibrium frequency expected under immi-

gration and local CI-dominated dynamics (Fig. 2) and an effective

population size that is plausibly just a few hundred. Nevertheless,

the problem of estimating parameters with sufficient accuracy to

decide between stochastic versus deterministic explanations for

observed frequency changes in nature is perennial and pervasive,

going back at least to the debate between Fisher and Ford (1947)

and Wright (1948) over changes in color-morph frequencies in

the moth Panaxia dominula (and Linanthus parryae flower col-

ors, Wright 1943; Turelli et al. 2001).

CONNECTION TO OTHER THEORETICAL ANALYSES

As discussed in Barton and Turelli (2011), the spread of Wol-

bachia variants with bistable local frequency dynamics connects

to several evolutionary topics ranging from the spread of under-

dominant chromosome arrangements (Wright 1941; Lande 1979,

1985; Barton 1979; Pialek and Barton (1997)) and moving hy-

brid zones (Barton and Hewitt 1985; Wielstra 2019) to Wright’s

shifting balance theory (Coyne et al. 1997, 2000 and references

therein). In general, as illustrated by the analytical approxima-

tions and numerical results of Barton (1979) and Pialek and Bar-

ton (1997), finite population sizes allow spatial spread beyond

boundaries predicted to be impermeable from deterministic anal-

yses that assume effectively infinite populations (see Barton and

Turelli 2011). The Pialek and Barton (1997) simulations empha-

size two points. First, there is a great deal of variation in waiting

times for stochastic transitions, which are roughly exponentially

distributed (so that the standard deviation is approximately equal

to the mean). Second, mean waiting times increase approximately

exponentially with local effective population sizes (see also Bar-

ton 1979). The sensitivity to parameter values of dynamics near

invasion thresholds and our uncertain knowledge of the critical

parameters produce our inability to distinguish between our al-

ternative hypotheses (Figs. 4 and 5).

IMPLICATIONS FOR AREA-WIDE Wolbachia DISEASE

CONTROL

What is the practical relevance of understanding wMel establish-

ment in a single semi-isolated population separated by a bar-

rier from release areas? In particular, over what range of pa-

rameters might delayed spatial spread be expected? This ques-

tion is surprisingly difficult because it depends on the exact

shapes of the boundaries defining the release areas, the nature

of the boundaries, and local dispersal rates and patterns. In our

analysis, we have assumed that PE can be treated as a single

well-mixed population, which is likely a reasonable approxima-

tion, despite the statistically significant spatial heterogeneity we

document in Appendix 2. The area sampled in PE covers only

about 1 km2 (of a total 2 km2) and both direct and indirect es-

timates of dispersal distances for A. aegypti indicate that σ is

about 100 m/gen1/2 (Schmidt et al. 2017). Our analyses suggest

that the delayed transformation of PE occurred only because the

relevant migration rate and population size were delicately bal-

anced so that a deterministic transition was plausible. A simi-

lar delayed transition to fixation was observed in the Westcourt

area of Cairns (Ryan et al. 2019, fig. 7A). There, a small re-

lease area (only 0.1 km2) within a continuous spatial popula-

tion, near the lower limit of area needed for local establishment

and spread (Turelli and Barton 2017, table 2), initially seemed to

be collapsing (Schmidt et al. 2017, fig. 7) but then rebounded

to fixation. With parameter values near critical thresholds, we

expect uncertain predictions. The theoretical hybrid-zone liter-

ature summarized in Barton and Turelli (2011) indicates that

relatively minor barriers to dispersal can stop bistable waves

like those produced by Wolbachia transinfections. However,
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heuristic theoretical or data analyses rarely capture the full com-

plexity of field situations. A better practical understanding of the

barriers that block transinfection spread is more likely to emerge

from replicated empirical analyses of release data over a range

of habitats, with distinct barrier types, rather than additional

calculations.

Overall, stochastic transitions past barriers can obviously

occur, but their time scale is likely to generally be too slow

to appreciably alter the predictions from deterministic analyses

describing slow spatial spread in relatively homogeneous habi-

tats (Turelli and Barton 2017). As emphasized in the Coyne

et al. (1997, 2000) critiques of Wright’s shifting balance theory,

over longer time scales, changes in the environment, including

changes in migration rates and population densities, are often

more plausible than finite-population-size effects in moving pop-

ulations between alternative equilibria. However, when stochas-

tic transitions occur, whether produced by finite population

sizes or shifts in migration, they are expected to be irreversible

and hence contribute to permanent area-wide population trans-

formations.
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APPENDIX 1
DATA

The methods for sampling A. aegypti (BG-Sentinel traps) and

Wolbachia detection (PCR and qPCR) were presented in Hoff-

mann et al. (2011) and Schmidt et al. (2017). For additional de-

tails on the study sites, see Ryan et al. (2019). For each sampling

time, traps were placed in houses scattered across PE and typi-

cally left for a week. The infection frequency estimate was as-

signed to the midpoint of the collection period. The raw data and

our summaries used to produce Figures 4 and 5 are available on

Dryad (DOI https://doi.org/10.25338/B81931).

APPENDIX 2
LIKELIHOOD ANALYSES

Spatial and temporal variation before fixation:
Analyses of raw data
Because we find no statistically significant evidence for increas-

ing wMel frequency in PE from December 2012 to January 2015,

we jointly estimate the overall mean frequency in wMel prior to

fixation, together with measures of spatial and temporal varia-

tion. The temporal variation in this period provides information

about effective population size. However, understanding tempo-

ral variation in average infection frequencies across PE is com-

plicated by the confounding effects of spatial variation in infec-

tion frequencies within PE and by the binomial variance associ-

ated with small samples. As expected, infection frequencies from

small individual samples are broadly distributed. We fit a model

that allows for variation in frequency across sites, within days,

and accounts for spatial heterogeneity of wMel frequencies. We

also allow for temporal variation in the average wMel frequency

across PE, which we find is much smaller, and not significant, but

the lack of statistically significant temporal variation is probably

due to a lack of statistical power from our single marker (Wang

2005) rather than an effectively infinite population.

Variation across sampling sites within days
First, we model variation in wMel frequency estimates across

sampling locations (subpopulations) at a specific time. Sampling

n independent adults at a site produces binomial variation that

depends on the infection frequency near the sampling location.

These local infection frequencies vary among sampling sites

because of: temporal variation associated with small subpopu-

lation size, stochastic variation in local immigration rates, and

systematic spatial heterogeneity associated with variation in

subpopulation densities that determine effective immigration

rates (Williams et al. 2007). For each sampling time, we assume

that infection frequencies across sites follow a beta distribution

with mean p and variance Fp(1 – p), that is, are distributed as

Beta(a,b) with parameters a = αp and b = α(1 – p), where α =
(1/F) – 1. Under this beta-binomial model, which accounts for

both binomial sampling variation and the variation in p across

sites, the probability of finding j infected individuals in a sample

of size n is

ψ ( j, n, p, F ) =
(

n

j

)
(αp) j (α (1 − p))n − j

(α)n
, (A2.1a)

where

(αp)i = (αp) (αp + 1) . . . (αp + i − 1) and α = 1

F
− 1.

(A2.1b)
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(eq. A2.1a corrects a typo in the denominator of (S1a) from the

supporting information of Schmidt et al. 2017).

The parameter F = Var(p)/[ p̄(1 – p̄)] quantifies variation of

infection frequencies across sites within days (essentially, it is

Wright’s FST across patches; Crow and Kimura 1970, Ch. 3). The

beta-binomial model can be interpreted as a distribution of fre-

quencies among larvae within a randomly chosen small patch of

habitat (corresponding to the area sampled by an individual BGS

trap). Essentially, it is a convenient probability distribution with

variance that may be much larger than binomial. As F → 0, this

model converges to a binomial with parameters n and p (corre-

sponding to no heterogeneity in local frequencies across PE). For

a single individual (n = 1), the infection probability is simply p,

as expected. For n > 1, incorporating F > 0 reduces the weight

given to large subsamples by accounting for the fact that a spe-

cific subsample may be unrepresentative of the overall infection

rate across sampling sites.

Variation across sampling days
The parameter F quantifies variation of infection frequencies

across sites within days. Temporal variation in the overall PE in-

fection frequency (pooled across sites) before fixation tells us

about the effective population size in PE. To model this, we

assume that before fixation the overall PE infection frequency

across sampling times follows a beta distribution with mean p̄

and variance F∗p̄(1 – p̄), that is, follows a Beta(a,b) distribution

with parameters a = Ap̄ and b = A(1 – p̄), where A = (1/F∗) – 1.

As in a standard haploid Wright-Fisher model, we expect F∗ ∝
1/N, where N is the effective population size. We use likelihood

to jointly estimate p̄, F, and F∗. The estimate of p̄ allows us to

approximate the migration rate m of wMel into PE. The estimated

upper bound on F∗ allows us to approximate a lower bound on

N—whether our data allow us to reject the hypothesis that p̄ is

constant through time, prior to the rapid transition to fixation.

We now combine the beta distribution of mean allele fre-

quencies at each time, described by F∗, with the beta-binomial

distribution of observed numbers at each site, which varies

around this mean, and is described by our measure of spatial vari-

ation, F. This is straightforward, although computationally chal-

lenging. The set of S samples {ni, ji}, where ni is the sample size

and ji is the number infected, for each day have probability

∫ 1

0

pAp̄−1(1 − p)A(1−p̄)−1

Beta [Ap̄, A (1 − p̄)](∏S

i=1

(
ni

ji

)(
(αp) ji (α (1 − p))ni− ji

(α)ni

))
dp. (A2.2)

This is an integral over a polynomial in p.

Our MLE for the mean infection frequency prior to transi-

tion is p̄ = 0.125; this is somewhat higher than the unweighted

estimate p̄ = 0.106 reported in Turelli and Barton (2017), be-

cause in the presence of significant spatial variation, larger sam-

ples are given relatively less weight. The best estimate of spatial

variation is F = 0.320, which gives a highly significant gain of

log(L) = 20.6 over the MLE with F set to zero. In contrast, there

is no significant variation between days, and the upper bound is

F∗ = 0.015 (obtained by maximizing likelihood over p̄, F for

given F∗ that reduces log(L) by 2 units). Given F∗ = 0, the 2-unit

support limits on p̄ are {0.105, 0.150}; these limits are broader

than would be found if we included only binomial sampling vari-

ance, because estimation error is dominated by spatial variation

between sites within days.

Simulations (not shown) indicate that these values are con-

sistent with effective population sizes no smaller than about

200−300.

Likelihood analysis of fluctuations and fixation:
Analyses of data summaries
We used the summary data from Figure 2 to obtain likelihood

estimates for m, N, and p̂ under model (4). Under this Markov

model, the probability of going from i infected individuals to j

in t generations is the (i,j)th element of the matrix Qt. To clar-

ify the likelihood calculation, we consider only three time points

(generations), t0, t1, and t2, and calculate the probability of ob-

serving the data, namely, ki infected out of ni sampled at time

ti. The actual infection frequencies at these times, denoted pti ,

are unknown, but we assume that their dynamics are described

by Q. We approximate the distribution of p0 by starting with 0

infected and using Q10 to approximate the distribution, denoted

φ0, of the number infected at t0. If the actual infection frequency

at time t is p, the probability of observing k infected out of n is

just the binomial probability B(k | n, p). To obtain the likelihood

of the data, we simply sum over all possible numbers of infected

at each time, weighting them by the probabilities given by φ0

and Qt, then calculate the binomial sampling probabilities condi-

tioned on the numbers infected. To simplify the notation, denote

the number of observed infected individuals at time ti by ki, the

sample size by ni, and the actual number infected by ji. For com-

pactness, we abbreviate B(ki | ni, p) as Bi(p). The probability of

the data (k0/n0, k1/n1, k2/n2) under the model is given by the triple

sum over all possible values, namely, {0, 1, ..., N}, of (j1, j2, j3).

Thus

P (k0/n0, k1/n1, k2/n2) =
∑

φ0 ( j0) (Q�1 )( j0, j1 )

(Q�2 )( j1, j2 )Bo ( jo/N ) B1 ( j1/N ) B2 ( j2/N ) (A2.3)

with �i = ti – ti – 1 and Bi(p) = B(ki | ni, p). Our actual likelihood

analyses involve all time points for the PE data; we consider only

three in equation (A2.3) to simplify the presentation.
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APPENDIX 3
DETERMINISTIC ANALYSES OF MIGRATION

We consider the deterministic dynamics of infection frequencies

in an “island” population that receives immigrants from a popula-

tion with an infection frequency of 1. Each generation, a fraction

m of the island’s reproductive adults are new immigrants. From

equations (1) and (2), equilibrium allele frequencies satisfy:

0 = m (1 − p) + (1 − m) p (1 − p) (p − p̂) sh

1 − s f p − sh p (1 − p)

with p̂ = s f /sh. (A3.1)

Hence, the equilibria are p = 1 and the real solutions of the

quadratic

0 = m [1 − sf p − sh p (1 − p)] + (1 − m) p(p − p̂)sh. (A3.2)

Real roots exist only for m ≤ mcrit, with

mcrit =
(

2 − sf − 2
√

1 − s f

)
/sh. (A3.3)

For m ≤ mcrit, the stable and unstable polymorphic equilibria

(0 < ps ≤ pu < 1) are

ps = (1/2)

[
p̂ + m −

√
( p̂ + m)2 − (4m/sh)

]
and (A3.4a)

pu = (1/2)

[
p̂ + m +

√
( p̂ + m)2 − (4m/sh)

]
. (A3.4b)

For m > mcrit, the only equilibrium is p = 1. Equation (A3.4)

implies that the maximum stable equilibrium frequency is

pmax = ( p̂ + mcrit )/2. (A3.5)

For small sf, a Taylor’s expansion of (A3.3) implies

mcrit ≈ s2
f / (4sh ) = sh p̂2/4, (A3.6)

the approximation presented in Barton and Turelli (2011).
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