Acta Informatica
https://doi.org/10.1007/500236-021-00412-y

ORIGINAL ARTICLE

®

Check for
updates

Index appearance record with preorders

Jan Kretinsky'® - Tobias Meggendorfer?® - Clara Waldmann3@® -
Maximilian Weininger'

Received: 18 June 2020 / Accepted: 31 October 2021
© The Author(s) 2021

Abstract

Transforming w-automata into parity automata is traditionally done using appearance records.
We present an efficient variant of this idea, tailored to Rabin automata, and several optimiza-
tions applicable to all appearance records. We compare the methods experimentally and show
that our method produces significantly smaller automata than previous approaches.

1 Introduction

Constructing correct-by-design systems from specifications given in linear temporal logic
(LTL) [34]is aclassical problem [35], called LTL (reactive) synthesis. The automata-theoretic
solution to this problem is to translate the LTL formula to a deterministic automaton and
solve the corresponding game on the automaton. Although different kinds of automata can
be used, a reasonable choice would be deterministic parity automata (DPA) due to the
practical efficiency of parity game solvers [12,28] and the fact that these games allow for
optimal memoryless strategies. The bottleneck is thus to create a reasonably small DPA. The
classical way to transform LTL formulae into DPA is to first create a non-deterministic Biichi

This work is partially funded by the German Research Foundation (DFG) projects Verified Model Checkers
(No. 317422601) and Statistical Unbounded Verification (No. 383882557), and the Alexander von Humboldt
Foundation with funds from the German Federal Ministry of Education and Research. It is an extended
version of [21], including all proofs together with further explanations and examples. Moreover, we provide
a new, more efficient construction based on (total) preorders, unifying previous optimizations. Experiments
are performed with a new, performant implementation, comparing our approach to the current state of the art.

B Tobias Meggendorfer
tobias.meggendorfer @ist.ac.at

Jan Kfetinsky
jan.kretinsky @tum.de

Clara Waldmann
clara.waldmann@tum.de

Maximilian Weininger

maxi.weininger@tum.de

Technical University of Munich, Munich, Germany
IST Austria, Klosterneuburg, Austria

Operations Research Group, Technical University of Munich, Munich, Germany

Published online: 30 December 2021 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-021-00412-y&domain=pdf
http://orcid.org/0000-0002-8122-2881
http://orcid.org/0000-0002-1712-2165
http://orcid.org/0000-0001-6019-7130
http://orcid.org/0000-0002-0163-2152

J. Ketinsky et al.

automaton (NBA) and then determinize it [15]. Since determinization procedures [32,40]
based on Safra’s construction [38] are practically inefficient, many alternative approaches to
LTL synthesis arose, trying to avoid determinization and/or focusing on fragments of LTL, e.g.
[1,22,33]. However, new results on translating LTL directly and efficiently into deterministic
automata [9,10,17] open new possibilities for the automata-theoretic approach. Indeed, tools
such as Rabinizer [16,20] or LTL3DRA [2] can produce practically small deterministic Rabin
automata (DRA). Consequently, the task is to efficiently transform DRA into DPA, which is
the aim of this paper.

Transformations of deterministic automata into DPA are mostly based on appearance
records [13]. For instance, for deterministic Muller automata (DMA), one wants to track
which states appear infinitely often and which do not. In order to do that, the state appearance
record keeps a permutation of the states, ordered according to their most recent visits, see e.g.
[23,41]. In contrast, for deterministic Streett automata (DSA), one only wants to track which
sets of states are visited infinitely often and which not. Consequently, index appearance
record (IAR) keeps a permutation of these sets of interest instead, which are typically very
few. Such a transformation has been given first in [39] from DSA to DRA only (not DPA,
which is a subclass of DRA). Fortunately, this construction can be further modified into a
transformation of DSA to DPA, as shown in [23].

Since (i) DRA and DSA are syntactically the same, recognizing the complement languages
of each other, and (ii) DPA can be complemented without any cost, one can apply the IAR
of [23] to DRA, too. However, the construction presented in [23] is suboptimal in several
regards. In this work, we present a view on appearance records that is more natural for DRA,
resulting in a much more efficient transformation.

Our contribution in this paper is as follows:

— We provide an efficient IAR construction transforming DRA to DPA, generalizing pre-
vious works. In particular, we show that the construction of [21] shares the underlying
idea of [23], while the IAR presented now generalizes both.

— We present several optimizations applicable to appearance-record constructions in gen-
eral. A canonic representation of “simultaneous” events significantly reduces the state
space size and allows for further optimizations.

— We experimentally compare our AR construction to the construction of [23] and evaluate
the effect of the different optimizations. Moreover, we combine IAR with the LTL—DRA
tool of Rabinizer [20] and Spot [7] to obtain LTL—DRA—DPA translation chains and
compare it to state-of-the-art tools for LTL—DPA translation offered by Rabinizer/Owl'
and Spot, confirming its competitiveness.

2 Preliminaries

As usual, N refers to the (positive) natural numbers. For every set S, we use S to denote its
complement. Moreover, $* and S® refer to the set of finite and infinite sequences comprising
elements of S, respectively.

L owl[19]isa general purpose library for LTL and automata transformations, on which Rabinizer [20] is
currently built. Compared to the simple LTL-to-automata interface of Rabinizer, Owl offers high flexibility for
developers of such LTL and automata transformations. In particular, we also utilized Owl to easily implement
our IAR construction.

@ Springer

Index appearance record with preorders

2.1 ®-Automata

An alphabet is a finite set X'. The elements of X' are called letters. An (in)finite word is an
(in)finite sequence of letters. The set of all finite and infinite words over X is given by X*
and X', respectively. A set of words £ C X' is called (infinite) language. The length of a
word w, denoted |w/, is given by the number of its letters, setting |w| = oo for infinite words
w € X“. The ith letter (i < |w|) of a word w is denoted by w;,i.e. w = wjwy---.

Definition 2.1 (Deterministic w-Automata) A deterministic w-automaton A over the alphabet
X is given by a tuple (Q, X, 8, qo, @) where

— Q is a finite set of states,

— X is an alphabet,

-8 : 0 x XY — QU{L}is a transition function where | represents that no transition is
defined for the given state and letter,

— qo € Q is the initial state, and

— « is an acceptance condition (described later).

The transition function § induces the set of transitions A = {{(q,a,q’) | g € Q,a € X,q' =
8(q,a) € Q}. We write A; = (Q, ¥, 6, g, «) to denote the automaton with new initial state

q.

We identify automata with the underlying graph induced by the transition structure. For a
transition 1 = (q,a, q’) € A we say that ¢ starts at q, moves under a and ends in q'. A
sequence of transitions p = p1p3 - -+ € A is an (infinite) run of an automaton .4 on a word
w € X if (i) pp starts at g, and (ii) for each i we have that p; moves under w; and ends
in the same state as p;4 starts at. We write A(w) to denote the unique run of A on w, if
it exists. Such a run may not exist if at any point the transition function § yields L. If an
automaton .4 has a run for every word w € X'?, it is called complete.

A transition t occurs in p if there is some i with p; = ¢. By Inf(p) we denote the set of all
transitions occurring infinitely often in p. Additionally, we extend Inf to words by defining
Inf 4(w) = Inf(A(w)) if A has a run on w. If A is clear from the context, we furthermore
write Inf (w) for Inf 4 (w).

An acceptance condition is a positive Boolean formula, i.e. only comprising variables,
logical and, and logical or, over the variables Vo = {Inf[T'], Fin[T] | T € A}. Acceptance
conditions are interpreted as follows. Given a run p and an acceptance condition o, we
consider the truth assignment that sets the variable Inf[7'] to true iff p visits (some transition
of) T infinitely often, i.e. Inf(p)NT # @. Dually, Fin[T] is set to true iff p visits every
transition in 7T finitely often, i.e. Inf(p)NT = @. A run p satisfies « if this truth-assignment
evaluates o to true. We say that an automaton accepts a word w € X¢ if its run p on
w satisfies the automaton’s acceptance condition «. The language of .4, denoted by L(A),
is the set of words accepted by .A. An automaton recognizes a language L if L(A) = L.
Many kinds of acceptance conditions have been defined in the literature, e.g. Muller [30],
Rabin [36], Streett [44], Parity [29], and generalized Rabin [17]. In this work, we primarily
deal with Rabin and Parity. A Rabin condition {(Fj, I,-)}i.‘: | yields an acceptance condition
o = \/é‘:1 (Fin[F;] A Inf[1;]). Each (F;, I;) is called a Rabin pair, where the F; is called the
prohibited set (or Finite set) and I; the required set (Infinite set), respectively.2 A Parity or
Rabin chain condition is a Rabin condition where F; C I} C --- C F; C I;. This condition

2 Note that Rabin pairs do not have consistent notation in the literature. For example, some authors instead
use F; for the required and E; for the prohibited sets.

@ Springer

J. Ketinsky et al.

is equivalently specified by a priority assignment X : A — N. A word is accepted iff on its
run p the maximum priority of all infinitely often visited transitions max{\(q) | ¢ € Inf(p)}
is even.’

By slight abuse of notation, we identify the acceptance condition with the above set/priority
representations. A deterministic Rabin or parity automaton is a deterministic w-automaton
with an acceptance condition of the corresponding kind. In the rest of the paper we use the
corresponding abbreviations DRA and DPA.

Furthermore, given a DRA with an acceptance set {(F;, Ii)}ff=1 and aword w € X, we
write Fine(w) = {F; | F;NInf(w) # @} and Zins(w) = {I; | ;N Inf(w) # @} to denote the
set of all infinitely often visited prohibited and required sets, respectively.

Remark 2.1 In this work, we restrict ourselves to deterministic automata. A non-deterministic
automaton can have multiple transitions for a given state-letter pair, and a word is accepted
if any of its possible runs is accepting. However, non-deterministic variants of both Rabin
and parity automata are rarely used in practice, while deterministic parity automata are a
fundamental tool to, for example, LTL synthesis, as explained in the introduction. Thus, we
focus on deterministic automata for the sake of simplicity and practicality. Nevertheless, our
methods and proofs can be directly extended to non-deterministic automata.

2.1.1 State-based acceptance

Traditionally, acceptance for w-automata is defined state-based, i.e. the acceptance condition
is formulated in terms of states instead of transitions. For example, a state-based parity
acceptance would assign a priority to each state and a word is accepted if the maximal
priority among the infinitely often visited states is even. One of the main reasons for this
state-based view is that the acceptance of finite automata is defined via states in which the
run of the (finite) word ends. Since the concept of w-automata is rooted in finite automata,
this approach is carried over to the infinite domain. However, in line with recent works, e.g.
[6,7,20], we instead use transition-based acceptance for two reasons.

Firstly, transition-based acceptance is both theoretically and practically more concise. It
is straightforward to convert from state-based acceptance to transition-based acceptance by
“pushing” the acceptance information onto the outgoing transitions. This does not incur an
increase in the number of states, i.e. transition-based automata are always at least as concise
as state-based automata. For the other direction observe that when defining the acceptance on
transitions, we can “access” both the current and the next state, while state-based acceptance
only allows reasoning about the current state. The natural translation from transition-based
to state-based thus needs to “remember” the previous state and transition, i.e. essentially uses
Q x X as new-state space. In practice, the alphabet is often derived from a set of atomic
propositions AP, i.e. ¥ = 2A". Thus, going from Q to Q x 2*® results in an exponential
blow-up in the number of states. We also provide a matching lower bound: Theorem 2.1
outlines a family of single-state transition-based automata where every state-based automaton
recognizing the same language necessarily has an exponential number of states.

Secondly, many constructions are more “natural” to formulate using transition-based
acceptance. Informally, acceptance information is often based on the change of state instead
of the actual “label” of a particular state. In particular, the (state-based) construction of
[23], which inspired our work, adds information to the state space based on the previous
state. However, this information is only used to deduce acceptance information. By care-
fully transforming this construction to transition-based acceptance, we actually arrive at the

3 One can equivalently consider the minimal priority or change acceptance from even to odd.

@ Springer

Index appearance record with preorders

same construction as the one presented in the conference paper [21], despite approaching the
problem from different directions. We explain this transformation in more detail later on, see
Sect. 3.2. Observing this underlying equivalence when considering state-based acceptance is
far less obvious, since the type of “meta-data” stored by these constructions is significantly
different. As such, thinking in terms of transition-based acceptance can aid understanding
the construction by emphasizing the difference between state and transition information.
However, we repeat that this is not a hard fact but rather an informal observation.

Theorem 2.1 There exists a family of languages L, which are recognized by an automaton
with transition-based Rabin acceptance using a single state, while every automaton with
state-based Rabin acceptance requires at least 2" states.

Proof (Sketch) Fix the alphabet X, = {1, ..., 2"}. Moreover, define the language £, € X%
to contain exactly all finally constant words w € X2, i.e. L, = {w | Ik. VK’ > k. wx = wy'}.

This language can be recognized by a (transition-based) DRA with a single state g and
a self-loop under every letter. A word w is finally constant iff there exists a letter v € X,
such that wy = v for all sufficiently large k. So, intuitively, we can create a Rabin pair
for every way a word can be stable. Formally, for every letter v € X,, we define F, =
{(g0, V', qo) | v # v}and I, = {(qo, v, q0)}. When restricted to state-based acceptance, it
is not difficult (but tedious) to see that 2" states are necessary (and sufficient). Intuitively,
the state-based acceptance needs to “remember” the previous letter in order to detect every
switching behaviour. If there were less than 2" states, we can construct two accepted words
which visit the same set of states infinitely often. By appropriately switching back and forth
between these two words, we obtain another accepted word, which contradicts the non-
alternation requirement of the language. m}

There are some subtleties to be noted. One may claim that transition-based acceptance is
“cheating”: We are not making the automaton smaller as a whole, we are only moving com-
plexity into the transitions and acceptance; clearly an exponential factor cannot magically
vanish. In particular, the language from Theorem 2.1 can be recognized by an automaton
with 2" + 1 states and a single Rabin pair, compared to the 2" pairs of the transition-based
automaton. However, there are a number of practical arguments why a compact state space
often is preferable over a simpler transition relation. The details are beyond the scope of this
work, and we only give a brief overview on major points. From a theoretical side, the com-
plexity of algorithms may depend differently on the number of states and, for example, size
of the acceptance condition. Indeed, reducing the number of states often yields more speed-
ups in practice than a corresponding simplification of the transition relation. In particular,
applications of automata often end up building the product between a labelled system and an
automaton. There, we usually are only interested in the acceptance information associated
with states in the product. Thus, we can project away large parts of the transition relation after
building the product, while the states of the automaton remain a part of the product. Also,
representing the transition relation together with acceptance information symbolically works
well in practice (see, for example, [19]) and is much easier to achieve than a similar generic
approach applied to the set of states. We emphasize that (apart for parametrized algorithms)
these are purely empirical/anecdotal arguments, a different representation naturally does not
change the computational complexity of associated decision problems.

2.1.2 Strongly connected components

A non-empty set of states S € Q in an automaton A is strongly connected if for every pair
q,q’ € S there is a path (of non-zero length) from ¢ to ¢’. Such a set S is a strongly connected

@ Springer

J. Ketinsky et al.

component (SCC) if it is maximal w.r.t. set inclusion, i.e. there exists no strongly connected
S’ with § C §’. Consequently, SCCs are disjoint.

SCCs are an important concept for analysing the language of an automaton. Recall that
acceptance of a word by an w-automaton only depends on the set of transitions visited
infinitely often by its run. This set of infinitely often visited transitions necessarily has to
contain a cycle and thus the corresponding set of states is strongly connected. In particular,
Inf(w) always belongs to a single SCC. In other words, only states and transitions in SCCs
are relevant for acceptance, since only those can be encountered infinitely often. We say that
a state is transient if it does not belong to any SCC. Similarly, a transition is called transient
if its starting or end state does not belong to an SCC or these states belong to two different
SCCs. Transient objects are encountered at most once along every path.

2.2 Preorders

In this work, we make heavy use of (total) preorders over finite sets. Thus, we introduce some
notation.

Definition 2.2 Let S be a finite set. A binary relation 3C S x S is called preorder (or
quasiorder) if it is reflexive, i.e. a = a for all a € S, and transitive,i.e.a S band b = ¢
implies a = ¢ for all @, b, ¢ € S. It is called fotal if for all a, b € S we additionally have
a3Sborb Za Wewritea~bifa 3bandb 3 a,i.e.a and b are “equal” under 3. Dually,
we write a < bifa X bbutnotb X a,i.e. a is “smaller” than b under 3.

We use =¥ to denote the set of all total preorderson S = {1, ..., k}.

We exclusively use total preorders; hence, we omit “total” for the sake of readability. These
(total) preorders are also called / are equivalent to weak orderings or (weak) preference
relations. Such orders can, for example, be interpreted as an age relation, where a ~ b means
a and b are “of the same age” and a < b means a is “younger” than b or “occurred more
recently”. We use this intuition while explaining our algorithms.

Note that a preorder partitions the set S into equivalence classes (elements of equal age)
and assigns a total order to these classes. More specifically, for every preorder, there exists a
unique ordered partitioning (E p);,zl C S (where r depends on 3) such that

- E,#@foralll <p<r,
—a~biffa,be E,forsomel < p<r,
—a=<biffacE,, be E;forsomel <p<gqg=<r

and vice versa. We call r the size of =, denoted by | = | and write 3 [p] to refer to the
pth class E, for 1 < p < | 2 |. Naturally, the number of (total) preorders is given by
|Ek| = Zf:o il-S(k,i), where S(k, i) are the Stirling numbers of the second kind, i.e. the
number of ways to partition a set of k objects into i non-empty subsets. The value |Z¥] is
also called ordered Bell number or Fubini number.

As an example, consider the preorder specified by 3= ({1}, {2,3},{4}) € & 4. Here, we
have 1 < 2 ~ 3 < 4. For a preorder <€ E*, we write pos(=3, i) to denote the position of i
in 3, i.e. the index p with i €= [p]. Moreover, we write off (2, i) :=|{j | j S i} = |{j |
pos(Z, j) < pos(Z, i)} to denote the offset of i, i.e. the number of elements less or equal to i .
Considering the above preorder = again, we for example have that pos(({1}, {2, 3}, {4}),2) =
2, since 2 is in the second equivalence class, and off (({1}, {2, 3}, {4}), 2) = 3, since there are
three elements less than or equal to 2, namely 1, 2, and 3. We also make use of a reordering
operation described in the following. Let ¢ & k be a preorder and G C {1,...,k}. We

@ Springer

Index appearance record with preorders

define X'= move(3, G) as the preorder obtained by “moving” all elements of G to the front.
Intuitively, 3’ is the preorder where all elements of G are “reborn” and thus younger than
all others. Formally, we set 3'= (G, S [1J\ G, 2 21\ G, ..., 2 [| 2 11\ G), omitting
empty sets. With the above example == ({1}, {2, 3}, {4}), we get that move(Z, {1,2}) =
({1, 2}, {3}, {4}). Note that the preorder obtained this way can have a length anywhere between
land | 2|+ 1.

Finally, we define the notion of refinement. Given two preorders 3, 3'e & k. we say that
S refines 3 if 3C T and 3 strictly refines 3 if 3C3. Intuitively, this means that X is more
“restrictive”. Another way to view refinement is that some previously equal items are now
considered different. For example, we have that ({1, 2}, {3, 4}) is refined by ({1}, {2}, {3, 4})

but not by ({1}, {2, 3}, {4}), since the latter preorder considers 2 and 3 to be equal.

3 Index appearance record

In order to translate (state-based acceptance) Muller automata to parity automata, a construc-
tion called latest appearance record (or state appearance record) [4,13] has been devised.*
In essence, the constructed state space consists of permutations of all states in the original
automaton. In each transition, the state which has just been visited is moved to the front of
the permutation. From this, one can deduce the set of all infinitely often visited states by
investigating which states change their position in the permutation infinitely often along the
run of the word. This constraint can be encoded as parity condition.

However, this approach comes with a very fast growing state space, as the amount of
permutations grows exponentially in the number of input states. Moreover, applying this
idea to transition-based acceptance leads to even faster growth, as there usually are a lot
more transitions than states. In contrast to Muller automata, the exact set of infinitely often
visited transitions is not needed to decide acceptance of a word by a Rabin automaton. It
is sufficient to know which of the prohibited and required sets are visited infinitely often.’
Hence, index appearance record uses the indices of the Rabin pairs instead of particular states
in the permutation construction. This provides enough information to decide acceptance.

Definition 3.1 Let R = (Q, X, 8, qo, {(F;, Ii)}le) be a Rabin automaton. Then the index
appearance record automaton |IAR(R) = (Q, ¥, 3, qo, }) is defined as a parity automaton
with

- 0=0x8,

~ Go = (go. ({1,.... k})), and

- 3((g, 2),a) = (8(g,a), move(Z, {i | t € F;})) where t = {q, a, 8(q, a)) is the corre-
sponding transition in the Rabin automaton, i.e. all indices of prohibited sets visited by
the transition ¢ are moved to the front. We set S((q, 2),a) = Lifd(g,a) = L.

— To define the priority assignment, we first introduce some auxiliary notation. Fix a transi-
tion7 = ((g, 2), a, (¢’, 3)) and its corresponding transition t = (g, a, ¢’} in the Rabin
automaton. Let e = max<{i | 1 € F;UI;} the largest index w.r.t. = of a Rabin pair
containing ¢ or e = 0 if no such pair exists. We define maxPos(f) = pos(3, e) (or 0 if
e = 0) and analogously maxOff(f) = off (=2, e) (or 0 if e = 0) the position and offset
of e in 3. For readability, set 0 = maxOff(7) and p = maxPos(7). Then, we define the

4 Originally, it appeared in an unpublished report of McNaughton in 1965 under the name “order vector with
hit” [3].

5 See [46] for a variant of this idea applied to graph games.

@ Springer

J. Ketinsky et al.

priority assignment by

1 if e=0,
A = {20 ifVi €< [pl.t ¢ Fi,
20+ 1 otherwise, i.e.if 3i €3 [pl. t € F;.

Note that the second case implies that there exists an i €3 [p] such that r € [;, as
otherwise maxPos(7) would have a different value.

For a practical implementation, one would of course only construct the states reachable from
the initial state. We define the state space as the whole product for notational simplicity.
When drawing examples and discussing practical issues like (space) complexity or the actual
implementation, we only consider the set of reachable states.

Furthermore, for readability, we identify Rabin sets F; and [;, with their index i. For
example, given a preorder < we say that “F; is younger than F;” if i < j or say write “the
position of F;” to refer to pos(3, 7).

Remark 3.1 We highlight that our construction does not fundamentally modify the state space
of the input automaton. Instead, it only augments the original states with additional metadata.
In particular, if the states of the Rabin automaton are meaningful objects, our construction
preserves this meaning. This is, for example, relevant for recent approaches exploiting seman-
tic labelling [18] obtained from the Rabin automaton [9] or reduction approaches relying on
knowledge about states [25].

Before proving correctness, i.e. that IAR(R) recognizes the same language as R, we
provide a small example in Fig. 1 and explain the intuition behind the construction. For a
given run, the indices of all prohibited sets which are visited infinitely often will eventually
be younger than all those only seen finitely often: After some finite number of steps, none
of the finitely often visited ones will be seen again, while the infinitely occurring ones will
be moved to the front over and over again. By choice of priorities, we only accept a word if
additionally some required set older than all infinitely often seen prohibited sets also occurs
infinitely often.

In contrast to the constructions of [21,23], we consider total preorders instead of permu-
tations (corresponding to total orders). For state appearance records, which inspired these
constructions, it is natural to use a permutation, since exactly one state appears in each step.
However, with Rabin acceptance it might happen that two prohibited sets are visited at the
same time. The previous constructions resorted to breaking this tie arbitrarily. This suggests
that permutations are not the natural mechanism to track the order of appearance for such
events. Therefore, we instead use preorders, which are able to represent such ties.

The curious reader may wonder how this construction improves the one of [21], especially
since applying the construction of [21] to the example in Fig. 1 yields a smaller automaton.
Indeed, in the current form, the automaton IAR(R) always is at least as large as the one pro-
duced by [21] (with initial state optimization included) and can even be significantly worse:
Intuitively, every “unresolved” tie either gets resolved eventually or remains unresolved. In
the former case, an additional useless state is introduced, and in the latter we may as well
have resolved it arbitrarily immediately. However, by using an optimization based on refine-
ment, we recover the worst-case complexity of [21] through the above intuition and obtain
significant savings in practice.

@ Springer

Index appearance record with preorders

b@ A r | r2|l [Db4

Fig. 1 An example DRA and the resulting IAR DPA. For readability, we only draw the reachable part of
the state space. In the Rabin automaton, a number in a white box next to a transition indicates that this
transition is a required one of that Rabin pair. A black shape dually indicates that the transition is an element
of the corresponding prohibited set. For example, with t = (p, a, p), we have t € F| and ¢t € I;. In the
IAR construction, we shorten the notation for preorders to save space. For example, “p 12" corresponds to
(p, ({1,2})) and “p 1|12 to (p, ({1}, {2})). The priority of a transition is written next to the transitions’ letter

3.1 Proof of correctness

We now prove correctness of our construction. Thus, for the rest of the sectign fix a Rabin
automaton R = (Q, 2,8, qo, {(F;, [)}*_)) and let P = IAR(R) = (0, X,8, Go, A)

the constructed IAR automaton. First, we show that runs are preserved between the two
automata.

Lemma3.1 Letq € Q beastateinR and (q,) e Q anIAR state with q as first component.
Then, 8(q,a) = q' iff §((q, 3),a) = (¢', 3) for some ' EX (and 5(q,a) = L iff
6((g, 3),a) = 1).

Proof Follows immediately from the definition. O

Corollary 3.1 A word w € X® has a run p on R iff it has a run p on P. Moreover, if such a
pair of runs exists, we have that p; = q iff p; = (q, 3) for some Ze gk,

Proof Follows from Lemma 3.1 using an inductive argument. O

Note that the above statement essentially shows that the first component of the IAR state
stays “in sync” with the Rabin automaton. Now, we show how the preorders evolve in the
infinite run. In particular, all infinitely often seen prohibited sets eventually are younger than
all finitely often seen ones.

Lemma3.2 Let w € X“ be a word on which P has a run p. Then, the offsets of all finitely
often visited prohibited sets stabilize after a finite number of steps, i.e. their offset is identical
in all infinitely often visited states. Moreover, for every i, j with F; € Fing(w), Fj ¢ Finr(w)
and infinitely often seen state (q, 3), we have thati < j, i.e. all infinitely often seen prohibited
sets are younger than all finitely often ones in every infinitely often visited state.

Proof The offset of an index i only changes in two different ways:

@ Springer

J. Ketinsky et al.

— F; has been visited and thus i is moved to the front, or
— some F; with a position greater to the one of F;,i.e.i < j, has been visited and is moved
to the front, increasing the offset of F;.

Note that visiting a set F; with i ~ j does not increase the offset of i.

Let o be the run of R on w (using Corollary 3.1). Assume that F; is visited finitely often
on p, i.e. there is a step from which on F; is never visited again by p. Consequently, the
first case does not occur after finitely many steps. As the size of the preorder is bounded,
the second case may also only occur finitely often, since otherwise the offset of F; would
grow arbitrarily large. Thus, the offset of F; eventually remains constant. As F; was chosen
arbitrarily, we conclude that all finitely often visited F; eventually are pushed to the right
and remain on their position. Consequently, all infinitely often visited F; move to the left,
proving the claim. O

Corollary 3.2 Fix some word w € X which has a run p on P. Let t € Inf(p) be an infinitely
often visited transition in the IAR automaton. Further, assume that its corresponding Rabin
transition t is in some prohibited set, i.e. t € F; for some i. Let (q, 3) be the state f starts
at. Then, we have for all indices j younger than i, i.e. j 3 i, that F; is also visited infinitely
often, i.e. Fj € Finr(w).

Proof Follows immediately from Lemma 3.2. O

Looking back at the definition of the priority function, the central idea of correctness can
now be outlined as follows. For every I; which is visited infinitely often we can distinguish
two cases:

— Fj is visited finitely often. Then, /; will eventually be older than all F; with F; €
Fint (as these are visited infinitely often). Hence, the priority of every transition 7 with
corresponding transition ¢t € I; is both even and bigger than every odd priority seen
infinitely often along the run.

— F; is visited infinitely often, i.e. after each visit of I;, F; is eventually visited. As argued
in the proof of Lemma 3.2, the position of F; can only increase until it is visited again.
Hence, every visit of [;, yielding an even priority, is followed by a visit of F; resulting
in an odd priority which is strictly greater.

Using this intuition, we formally show correctness of the construction. To this end, we prove
aslightly stronger statement, namely that the language of every stateg € Q inR (i.e. L(Ry))
is equal to the language of every state (g, =) in the constructed automaton P. Note that this
in particular implies that any two IAR states with a different preorder but equal Rabin state
recognize the same language.

Lemma 3.3 We have that L(R) = L(P(p,j))for all p € Q and Ze =k,

Proof Fix an arbitrary state p € Q and preorder 3€ Z¥, and set p = (p, <) € Q. Corol-
lary 3.1 yields that for a word w the Rabin automaton R, has a run p on w iff P; has a run
p on it. Moreover, we know that the two runs stay “in sync”, i.e. the first component of p;
equals the state of the Rabin automaton p; [Fact I].

L(Rp) € L(Pj): Let w € L(Rp) be a word accepted by the Rabin automaton R . Let
p and p denote the runs of R, and P on it, respectively. We show that every transition
f € Inf(p) with maximal priority (among all infinitely often visited transitions) has even
priority and thus w is also accepted by Pj.

@ Springer

Index appearance record with preorders

By assumption, there exists an accepting Rabin pair (Fj, [;), i.e. I; € Zinr(w), Fi ¢
Finf(w). In particular, there exists a transition t; = (g;, a;, qlf) e (Inf(p)NI;) \ F;.
Consequently, by [I] there also exists an infinitely often visited transition 7; =
((qi, Zi)s ai, (q), Z))). Hence, off (Z;, i) < maxOff(#;) by definition of maxOff, since
the transition visits ;.

Now, fix an infinitely often seen IAR transition = ((¢, 2), a, (¢’, =')) € Inf(p) with
maximal maxOff (f) among all the infinitely often visited transitions, i.e. maxOff (f;) <
maxOff (). From Lemma 3.2 we know that the offset of i stays constant along the
infinite run, i.e. off (Z;, i) = off (3, i). Together, this yields off (Z;, i) = off (Z,i) <
maxOff (7;) < maxOff (7).

Assume for contradiction that A(f) is odd, i.e. t € F ' for some appropriate j. By Corol-
lary 3.2 this yields {F; | i = j} € Finf(w). As we previously argued off (Z,i) <
maxOff(7),i 3 j and F; € Finf(w), contradicting the assumption.

L(P5) € L(Rp): Letw € L(Pj) be a word accepted by the constructed parity automaton.
Again, denote the corresponding runs by p and p. We show that there exists some i where
Fi ¢ Fins(w) and I; € Zips(w), i.e. R, accepts w.

By assumption, the maximal priority Apmgax Of all infinitely often visited transitions is even.
Letf = ((g, 3),a, (q', 3)) € Inf(p) be a transition with A(f) = Amax = 2 - maxOff (£),
i.e. f is a witness for the maximal priority. By definition of the priority assignment A,
there exists an i with off (X, i) = maxOff(f) and ¢ € I; \ F;. By choice of 7 and [I],
we get that t = (q, a, q¢/) € Inf(p) and hence I; is visited infinitely often in the Rabin
automaton (via t). We now show that F; is visited only finitely often.

Assume the contrary, i.e. that F; is visited infinitely often. This implies that infinitely often
after taking 7, some transition 7r = ((¢r, ZF). d’, (¢,) with tp € F; is eventually
taken. After visiting /;, the position of F; cannot decrease until it is visited again. Hence,
after each visit of 7 such a transition 7 occurs later where off (3, i) > maxOff (7). But
then also maxOff (7r) > maxOff(7), as tr = (gr,d’, qf) € F;. Hence, A(fp) > A(7),
contradicting the assumption of A(f) being maximal. O

This directly yields the desired correctness of the translation.
Theorem 3.1 For every DRA R, we have that L(IAR(R)) = L(R).
Proof Follows immediately from Lemma 3.3 by choosing p = qo. O

Theorem 3.2 Let n = | Q| be the number of states in R and k the number of Rabin pairs. The
number of states in P is bounded by n - |E¥| € O(n - k! - 10g(2)_k). Moreover, the number
of priorities is bounded by 2k + 1.

Proof Follows directly from the construction. O

Since log(2)_1 > 1, this result implies means that the (worst-case) state-space size of P
is exponentially larger than the one presented in the conference version [21] (O(n - k!)).
However, we can improve our construction naturally by investigating the interpretation of
preorders more closely. This both re-establishes the asymptotically optimal complexity result
and yields much smaller automata in practice. Moreover, it also generalizes previous opti-
mizations, as we explain in Sect. 4.

3.2 Relation to previous appearance-record constructions

In this section, we discuss the relation of our approach (and the one of [21]) to the previous
construction of [23, Section 3.2.2]. There, a DPA with state-based acceptance is built from

@ Springer

J. Ketinsky et al.

a Streett automaton. Since Streett acceptance is the negation of a Rabin acceptance and
parity acceptance can be negated by simply adding 1 to every priority (or inverting the parity
condition), we can transparently apply this transformation to Rabin automata as well.

In order to explain the relation to our construction, we first explain its basic principles. As
in our case, the states of the resulting DPA comprise both the original automaton state and an
appearance-record on the F; sets®, however a total order in the case of [23]. The construction
of [23] additionally adds two pointers f and e, indicating the maximal index of occurring F;
and /; sets. The priority assignment of each state is then derived based on these two pointers.

In order to convert this construction to transition-based acceptance, we observe that both
f and e are not “stateful” information; they are not needed to determine a successor, only
to derive the acceptance. Hence, we can move the computation of f and e together with the
resulting priority assignment onto the transition. Consequently, the resulting state space would
be exactly the same as in our construction, namely Rabin states together with an appearance
record. By further analysis of the priority assignment of [23], one can also show that the
resulting priorities are equivalent to the ones obtained from [21]. Finally, we additionally
can augment [23] to use preorders. Then, we arrive exactly at our construction. As such, our
construction in its basic form captures the essence of the one presented [23].

While this insight has arisen naturally when considering transition-based acceptance, it
seems less obvious in the state-based case, as noted in [21, Remark 1]. Arguably, we also
could arrive at this insight by replacing the pointers f and e by the corresponding priority
assignment and then additionally realizing that the construction of [23] equals the state-based
version of [21]. However, we argue that it is less clear to observe this relation. In contrast, by
properly separating the concerns of transition dynamics and acceptance, the constructions
and their relationship have become more understandable.

4 Optimizations

Naturally, we are interested in building the output automata as compactly as possible. In
this section, we present several optimizations of our construction which aim to do so. On
the one hand, this has several practical implications for, for example, solving the resulting
parity game. The runtime of practical parity game solvers typically increases in the order
of O(n?), where n is the number of states and d the number of priorities, motivating us to
minimize both of these metrics. On the other hand, the presented optimizations are based on
theoretically intriguing insights and thus are of interest eo ipso.

4.1 Choosing the initial order

The first observation is that the arbitrary choice of ({1, ..., k}) as initial preorder can lead to
suboptimal results. It may happen that several states of the resulting automaton are visited at
most once by every run before a “recurrent” preorder is reached. For example, if we always
have that F; is visited after every time the automaton visits F1, we never need F and F; to be
of “equal age” in the resulting automaton. These states enlarge the state-space unnecessarily,
as demonstrated in Fig. 2. Indeed, when choosing ({1, 3}, {4}, {2}) instead of ({1, 2, 3, 4})
as the initial order in the example, only the shaded states are built during the construction,
while the language of the resulting automaton is still equal to that of the input DRA.

6 Note that the notation for prohibited and required sets is different in [23].

@ Springer

Index appearance record with preorders

—
{p13|4|2 }»a 9%{ q2|13|4 J»b 9%{ r14|2|3 }eb 9«{ q2|134 }—a 9%
U U U U
b8

b 6 a2 a2

Fig.2 Example of a suboptimal initial order, using the same notation as in Fig. 1. Only the shaded states are
constructed when choosing a better initial order

Theorem 4.1 For an arbitrary Rabin automaton R with initial state qo, we have that
LUIAR(R)) = LUAR(R) 4y <o) for all o€ E-.

Proof Follows directly from Lemma 3.3. O

This observation can be used to improve the state-space size in practice but does not change the
worst case: Consider an automaton with a self-loop at the initial state gg which is contained
in all F;. Consequently, every (qo, 3) in IAR(R) has a transition to (go, ({1, ..., k})). In
the following, we present a more sophisticated optimization which generalizes the idea of
picking an initial preorder to the whole state space. Moreover, using insights we gain in
the following sections, we present a fast and practical mechanism to choose a good initial
preorder in Sect. 4.4.

4.2 Refinement

Inspired by the previous idea, we now explain how to exploit the preorders on the overall state
space. Recall that the idea of the previous section is that the initial preorder potentially does
not differentiate between two indices which always should be considered different. In other
words, we want to find a preorder which refines the initial preorder without distinguishing too
much. More generally, we should be able to merge states with a “too coarse” preorder into
states with a finer preorder without losing correctness. In particular, note that total orders are
the finest preorders; hence, we could merge all states into states with total orders, resolving
ties arbitrarily, and indeed recover the original construction of [21].
We now formalize this idea and explain a practical implementation.

Definition 4.1 Given an IAR automaton P = |IAR(R) = (Q, ¥, 8, qo, 1), we say that a state
(g, 2) refines (¢, X') if ¢ = ¢’ and = refines <’. Moreover, a function R : 0 — Q isa
refinement function if for every g € O we have that R(q) refines g. The refined automaton
is given by R(P) = (Or, ¥, 8, R(§o), Ar), where

- Or={(R@ |G < Q))

- 0r((g, D), a) = R(((¢q, D), @) or Lif6((¢q, 3),a) = L, and

— AR is defined as before (note that A was defined only based on the corresponding Rabin

transition and the preorder of the starting state).

Figure 3 shows an example of this refinement optimization.

@ Springer

J. Ketinsky et al.

{plj/QB }a7{p23|1J a’7 (
U \

b7 b7 b7
a7
N L
a|l| 23 {q2\1|3}33{q12\3J b7 a4 q2|1113 | b7

U \
b/ agq b3 b3 b3
)

Rabin Automaton R. Constructed IAR(R). Refined R(IAR(R)).

Fig. 3 Example of our refinement optimization with R(p 123) = p 23|1 and R(q 12|3) = ¢ 2|1|3, using the
same notation as in Fig. 1

Lemma 4.1 Let R be a Rabin automaton and R a refinement function. We have that L(R) =
[,(R(IAR(R)(pi)))for all p € Q and Ze =k,

Proof The proof is similar in essence to the proof of Lemma 3.3. We prove that the offsets
of Rabin pairs with infinitely often seen prohibited sets eventually are smaller than all with
finitely often seen ones, leading to an even maximal priority iff an appropriate required set
is seen infinitely often. Since the proof ideas are largely similar, we shorten some of the
arguments compared to the previous proof. For readability, we omit specifying the initial
state (p, 2).

Fix an arbitrary Rabin automaton R, set P = IAR(R) = 0, %,8, qo, A) and let R(P) =
(QR, X, 8&, R(qo),). First, note that we again can show that the runs of R, P, and R(P)
all stay in sync w.r.t. the Rabin state by a simple inductive argument. Additionally, we can
show a relation between the runs of P and R(P). Intuitively, transitions in R(P) can only
“split” equivalence classes at will. Let w be a word where P has the run p and R(P) the run
AR Further, let gi be the state p; starts at, with an analogous definition for L}iR . Then we can
show by another inductive argument that éiR refines g; for every i.

Now, we can directly apply the reasoning of Lemma 3.3: Let w € L(R) be a word
with run p on R, run 5 on P, and run 3% on R(P). The proof of Lemma 3.3 shows that
p is accepting iff p is accepting. The first argument is that eventually all Rabin pairs with
infinitely often visited prohibited set are ranked younger than all with finitely often visited
prohibited set. This reasoning transfers directly to 5%, as we established that 5% refines /5
at each position. Recall that refining only allows to split equivalence classes, not reorder or
merge them; hence, strict ordering is preserved, i.e. if i < j theni <’ j for every =/ refining
<. This also immediately shows that acceptance in R implies acceptance in R(P), as such
splits do not change the fact that the offset of the accepting pair always remains strictly larger
than the offsets of rejecting pairs.

However, the situation is slightly more involved in the case of w being rejected. Thus,
assume for contradiction that w is rejected in R but accepted by R(P). Consequently, the
maximal priority seen infinitely often is even and there exists a witness transition fg. Let
= be the preorder associated with the state 7 is starting in. The corresponding transition ¢
necessarily has to be in /; for some i; otherwise, no even priority is emitted. We cannot directly
conclude that a later visit of F; will overrule the even priority emitted by the visit of /;, since
the equivalence class which contains i may get split up by R, changing its offset. However,
we have that for every F; € Fiyf(w) there exists a later transition f;e € Fj. In particular, all

@ Springer

Index appearance record with preorders

such F; with i 3 j will also be visited. Since R(P) cannot reorder the equivalence classes
and the offsets of F; can only increase (compared to) until they are visited again, the

priority of some such f‘lé is odd and larger than the one emitted by 7. O

Theorem 4.2 Let R be a Rabin automaton and R a refinement function. Then L(R) =
L(R(IAR(R))).

Proof Follows directly from Lemma 4.1. O

Remark 4.1 This optimization directly subsumes the initial state optimization presented in
the previous section: Since the initial order is the “coarsest” preorder (every element is treated
equal) it is refined by every other preorder, and we can pick any initial preorder. Once the
initial state (go, Z0) is picked, we can easily choose the refinement function R such that the
runs on R(P) equal the runs of P, =0

In our implementation, we first construct IAR(R), then for each state ¢ € R determine the
set of “maximal” preorders = (w.r.t. refinement) occurring in IAR(R), and finally construct
a function which maps each preorder to an arbitrary maximal preorder refining it. We use
Rmax to denote this refinement function. Formally, let Q* be the set of states reachable from
qo and, for a state ¢ € Q, let Q; = {2 (g, 2) € 0*} all “reachable” preorders with state
g. Then, we set

maxOrd(q) = {3e QZ |V Ze QZ —(Z' strictly refines X)}.

In other words, maxOrd(g) are the maximal preorders w.r.t. refinement which are reachable
at state g. Finally, we set Rnax((g, 3)) = (¢,) where 3'€ maxOrd(g) is a maximal
preorder such that 3’ refines 3. Note that such a =’ always exists.

Using this implementation, we obtain the worst-case complexity of [21]. Moreover, as
our experiments in Sect. 5 show, the practical improvement is significant as well.

Theorem4.3 Let R = (Q, X, 6, qo, {(F;, 1,-)}{"21) be a Rabin automaton. Further, let
n = | Q| the number of states in R. There always exists a refinement function R such that
R(IAR(R)) has at most n - k! states. In particular, Rmax satisfies this requirement. Moreover,
the number of priorities is bounded by 2k + 1.

Proof The first claim trivially holds, since for every preorder we can simply pick an arbitrary
total order (corresponding to the permutations of [21]) by breaking ties arbitrarily. Clearly,
there are at most k! permutations for each state.

To prove the second claim, i.e. that Ry, satisfies the first condition, observe that there are
at most k! preorders that do not refine each other, i.e. |[maxOrd(g)| < k!. In particular, two
preorders 3 and 3 do not refine each other iff there exist two indices i and j such thati < j
but j <" i. To conclude, observe that | Rpax (0)] = |{(g, 2) | ¢ € Q, € maxOrd(¢)}| <
n-kl

The third claim directly follows from the definition of the priority function A. m}

Remark 4.2 Implemented naively, this approach produces the (potentially larger) IAR
automaton IAR(R) as intermediate result. By keeping a list of all explored maximal preorders
for each state during construction, we can apply the refinement dynamically: Whenever we
explore a new state (g, =), we check if X is refined by or refines some other already explored
preorder associated to ¢ and apply appropriate steps. Consequently, we store at most k! pre-
orders per state at all times during the construction and the constructed automaton never
grows larger than n - k!.

@ Springer

J. Ketinsky et al.

In [24, Theorem 7], the authors show that there exists a family of languages {£, },,>2 which
can be recognized by a DSA with ® (n) states and © (n) pairs, but cannot be recognized by a
DRA with less than n! states. This can easily be modified to a proof for (state-based) Rabin
to Parity translations, using the facts that (i) Rabin is the complement of Streett, (ii) Parity
is self-dual, and (iii) Parity is a special case of Rabin. In contrast, Theorem 4.3 yields a
worst-case state-complexity of @ (n - k - k!) (for state-based acceptance), leaving only a small
gap.

Recent work further suggests that a blow-up of at least k! and at least 2k priorities indeed
is necessary [26, Theorem 2]. There, a much more generic result is proven, yielding lower
bounds for translations from any particular acceptance condition « to parity automata via
the notion of Zielonka trees (see [5] for a similar result on Muller conditions). Instantiating
the theorem for Rabin condition, observe that the Zielonka tree associated with Rabin has
k! leaves and height 2k + 1 (C = {1, ..., 2k}). This proves that there exists a language
recognizable by a single-state Rabin automaton with k pairs, while every parity automaton
recognizing that language requires k! states and 2k + 1 priorities.

4.3 SCC decomposition

Our third optimization is based on the classic observation that only the acceptance information
of SCCs are relevant for acceptance.” Recall that for every run (i) only transitions in an SCC
can appear more than once and (ii) the set of transitions appearing infinitely often belong to
a single SCC. Observation (i) implies that a transient transition can occur at most once on
any run. Thus, we do not need to track acceptance while moving along transient transitions.
Observation (ii) means that we can process each SCC separately and restrict ourselves to the
Rabin pairs that can possibly accept in that SCC. This reduces the number of indices we need
to track in the appearance record for each SCC, which can lead to significant savings. Note
that a similar step could also be performed as a preprocessing step of the Rabin automaton.
Finally, when moving into a new SCC, we additionally can “reset” the tracked preorder in
an arbitrary way.

For readability, we introduce some abbreviations. We use ¢ to denote the “empty” preorder
(of length 0). Given an automaton A = (Q, ¥, 8, qo, @) and a set of states S € Q we write
8 [S:8xX — Stodenotetherestrictionof §to S,i.e. (§ | S)(¢g,a) = 38(q,a)ifé(g,a) € S
and L otherwise. Analogously, we define A | § = AN(S x X' x §) as the set of transitions in
the restricted automaton.® Consequently, we define the restriction of the whole automaton .4
to the set of states S using g € S as initial state by A [, S = (S, 2,8 [S,q,a [§), where
the acceptance « | S is updated appropriately, e.g. for a Rabin acceptance o = {(Fj, Ii)}f: 1
we set

a [S={(FNATS), iNAS) | LNA] S) #0).

Using this notation, we describe the optimized IAR construction, denoted IARscc in Algo-
rithm 1. The algorithm decomposes the DRA into its SCCs, applies the formerly presented
IAR procedure to each sub-automaton separately and finally connects the resulting DPAs
back together. The IAR construction applied to the sub-automata may also apply the previ-
ously presented initial state or refinement optimization. Since the “infinite” part of the run

7 This optimization is effectively the same as in [21], we only adapted it to our new preorder-based construction
and added some further explanations.

8 Recall that A is the set of transition triples of the form (g, a, §(g, a)).

@ Springer

Index appearance record with preorders

Algorithm 1 The SCC decomposition procedure for IAR, IARscc.

Input: DRAR = (Q, X, 8, qo, {(F}, I;)} —1)> IAR construction IAR.
Output: DPA P with L(P) = L(R).

1: Q% < 0,8% <@, 0% <~ ¢

2: for SCC S in R do

3: Pick a starting state g € S

4 (05, %,85.ds. hs) < IAR(R [8)

5 0* < Q*UQg, §* < §*Udg, A* < A*ULrg

6: 0* <« 0*U{(q, ¢) | q transient in R}
7
8

: for transient t = (g)aq’ € A do
for (¢, 3) € 0* do

9: Plcka(q/ < e Q"
10: 5 (g, 3, a) < (¢, 3
11: (g, . a. @) <1

12: Pick a (qg, X) € O* as g
13: return (0%, X, §*, qgs 2%

l
a p12 J—a5—{p2|1}:}a4
bB b1
!
/

A
b@2 B b5 b3 a3

\ l
a a3dr1|2 <—a5\—[’r‘2‘1}

Example DRA R, Constructed Constructed
SCCs shaded IAR(R) IARscc(R, IAR)

Fig.4 Example application of Algorithm 1, using the same notation as in Fig. 1

can only occur inside an SCC, we do not need to track any information along transient states
or edges and thus we can directly copy the transition structure of the Rabin automaton.

Figure 4 shows an example application and the obtained savings of the construction. Pair
1 is only relevant for acceptance in the SCC {p}, but in the unoptimized construction it still
changes the preorder in the part of the automaton constructed from {g, r}, as e.g. the transition
(r)bq is contained in Fi. Similarly, pair 2 is tracked in { p} while actually not being relevant.
The optimized version yields improvements in both state-space size and amount of priorities.

In order to prove correctness of IARscc, we show some auxiliary lemmas. To this
end, we again fix a Rabin automaton R = (Q, ¥, 8, qo, {(F;, Ii)}i.‘zl) and set P* =
IARscc(R, IAR) = (O*, X, §*, Gy A*) the constructed IAR automaton. Moreover, let Pg =
IAR(R [4 S) the IAR automata constructed for SCC SinLine 4. Weuse &< = {s}U Uf;l ok
to denote all preorders of length up to k, including the empty preorder. With this definition,
we have for the states Q* of P* that 0* C Q x E<k.

First and foremost, we argue that the algorithm is well defined. Note that in the Rabin
automaton, each state and transition is either transient or contained in an SCC. Transitions
are transient even if the starting state and end state are contained in different SCCs. Due to

@ Springer

J. Ketinsky et al.

the definition of IAR, we have that in each SCC S, the constructed automaton IAR(R [, S)
contains at least one state (p,) for every state in the SCC, i.e. for every p € S. Line 6
then adds one state to the constructed automaton for each transient Rabin state. Hence, there
is at least one (p, 3) for each p € Q and the choices in Lines 9 and 12 are well defined.
Moreover, it is easy to see that 3* is assigned at most one value for each pair (¢*, a) € Q*
and similarly A* gets assigned exactly one value for each transition 7* € A*.

Now we show that |ARscc emulates runs on the original automaton, i.e. every run of a
Rabin automaton has a unique corresponding run in its IARscc translation, similar in spirit to
Lemma 3.1 and Corollary 3.1.

Lemma4.2 Letq € Q astatein R and (q, X) e Q* an IAR state with q as first component.
Then, §(q,a) = q' iff §*((q, 3),a) = (¢', 3') for some 3'€ E<.

Proof We prove both directions separately.

= We show that for all ¢, ¢’ € Q and a € X with ¢’ = 8(g, a) and for every S € E<;
such that (¢, 3) € Q0*, there is a X'e &% with (¢, X') = §*((¢, X), @), i.e. the run of
P* cannot get “stuck”.
Choose a transition ¢ = (g, a, ¢’) in the Rabin automaton and let 3 be an arbitrary
preorder. We show that 5*((g, <), a) = (¢/, </) for some preorder <’. To this end,
distinguish two cases:

— t transient: The statement follows directly from the treatment of ¢ in the loop of Line 7.
— t not transient: Then, ¢ is encountered while processing a particular SCC S, i.e. while
applying IAR to the sub-automaton. In this case, Lemma 3.1 is directly applicable.

< By investigating the algorithm, one immediately sees that whenever 5*((q, <), a) is
assigned some value (g’, 3') we have ¢’ = §(g, a) as a precondition. |

~

Corollary 4.1 Let w € X® be a word. Then, R has a run p on w iff it has a run p on P*.
Moreover, if such a pair of runs exists, we have that p; = q iff pi = (¢, 3) for some 3€ E<.

Proof Follows directly from Lemma 4.2 using an inductive argument. O

Furthermore, we show that every SCC in the result corresponds to a subset of an SCC in
the original automaton. In other words, it cannot be the case that an SCC in the resulting
IAR automaton contains states corresponding to states in two different SCCs of the Rabin
automaton.

Corollary 4.2 For every SCC §* C Q* in P*, we have that its projection {q € Q | 3 Je
E<x.(q,3) € S*} to R is a subset of some SCC in R.

Proof Consider an arbitrary cycle in P*. Projecting the cycle to R again results in a cycle
since the automata stay “in sync” due to Corollary 4.1. Thus, the projected cycle has to be
contained in a single SCC of R. O

As a last lemma, we prove that R [; S recognizes the correct language.

Lemma4.3 Let w be a word such that R has a run p on it. Let S be the SCC containing
Inf(w) and pick an arbitrary q € S. Fix j € Nsuch that pj € A | S foralli > j. Then w is
accepted by R iff w' = wjwjt1 - -+ is accepted by (R |4 S)s; where sj is the state pj starts
at.

@ Springer

Index appearance record with preorders

Proof Fix w, p, S, g, j and w’ as stated. One immediately sees that (R [, S),; has a run
p = pjpj+1--- onw and Inf(p) = Inf(p’). Hence, we only need to show that there are
pairs in both automata accepting the respective runs.

= As w is accepted by R there is an accepting Rabin pair (F;, I;). By assumption, Inf(p) C
A | S and Inf(p)NI; # @. Hence, LN(A [S) # @ and (F;N(A [S), iN(A | S))isa
pair of the restricted automaton accepting p’.

< Follows by an analogous argument. O

With these results, we prove the correctness of the algorithm.

Theorem 4.4 For every DRA R we have that L(IARscc(R, IAR)) = L(R) for all presented
variants of IAR.

Proof Letw € X be an arbitrary word. By Corollary 4.1, we have that R has arun p on w iff
P* has arun p* on it. Assume w.]l.0.g. that both automata indeed have such runs (otherwise w
trivially is not accepted by neither automata). Let S and S* be the SCCs containing Inf(p) and
Inf(p*), respectively. We further assume w.l.o.g. that {i | ;N(A [S) # @} # @; otherwise,
both of the automata only generate rejecting events infinitely often and w is rejected.

By virtue of Corollary 4.2, the SCC S* is constructed while processing S in the main loop,
i.e. it is an SCC of Pg. As both runs eventually remain in the respective SCCs, there is a
Jj € Nsuchthat p; € A | S and pf € A* | Sforalli > j. By Lemma 4.3 we have that
w' = wjwj4q - isaccepted by (R [, S) Pt iff w is accepted by R. Furthermore, employing
Lemmas 3.3 and 4.1 we have that w’ is accepted by (Ps) o iff it is accepted by (R [;) ot
By construction, w is accepted by P* iff w’ is accepted by (Ps) Pt Together, this yields that
w is accepted by R iff it is accepted by P*. O

4.4 Optimal choice of the initial order with SCCs

Section 4.1 presented an initial optimization idea by choosing a good initial preorder. In
Sect. 4.2 we argued that this idea is subsumed by the state refinement approach. However,
when combined with the SCC optimization of the previous section, we can nevertheless
obtain an efficient and theoretically appealing selection mechanism, as we shall explain now.
In particular, our implementation applies this step as a “preprocessing” to quickly eliminate
large parts of the state space before applying the more costly refinement computation.

Recall that when we apply IARscc the initial order is only optimized when processing an
SCC S of the input automaton, i.e. when building Ps from R [, S. Consequently, we can
restrict ourselves to only deal with Rabin automata forming a single SCC. For simplicity, let
R be such a single-SCC automaton. While IAR(R) may contain multiple SCCs, we show that
it contains exactly one (reachable) bottom SCC (BSCC), i.e. an SCC without outgoing edges.
Additionally, this BSCC is the only SCC which contains all states of the original automaton
‘R in the first component of its states.

Theorem4.5 Let R = (Q, X, 6, qo, {(F;, Ii)}fle) be a Rabin automaton that is strongly
connected. We have that P = IAR(R) 4, =, contains exactly one reachable BSCC S for
every 30€ Ek~, and for every reachable SCC s of P we have that §=5 iffO=1{q|33e
Ek(q,3) €.

Proof We assume w.l.o.g. that there is at most one F; which is empty. Otherwise, due to the
structure of Rabin acceptance, we simply merge all required sets with empty corresponding
prohibited set into one required set without changing acceptance.

@ Springer

J. Ketinsky et al.

We first show existence of BSCCs. As R is assumed to be strongly connected, every state
in R necessarily has a successor. From the definition of IAR it immediately follows that (i) P
is finite, and (ii) that there can be no state without a successor, which implies that there always
exists a BSCC.

We show that each BSCC of P contains all states of R, i.e. for every BSCC S and state
g € Q there exists a preorder < such that (¢, 3) € S [Fact I]. Let (¢, <) € S be a state
in a BSCC of P. Since the Rabin automaton comprises a single SCC, there exists a word w
such that starting from g every state is visited at least once. By Corollary 3.1, we get that
the corresponding run of PP on w starting from (g, =) also visits every state of R (in the first
component) at least once.

Next, we show both uniqueness and the given characterization of BSCCs as the only SCC
which contains all states of R. Let S be a BSCC of P, §’ an SCC with 0 =1{q|3=e
Ek.(q,=2) € §'Yand § # §'. This implies that SNS" = ¢, as different SCCs are disjoint by
definition. Note that §" might also be bottom. Since ' is an SCC, there exists a path which
visits all transitions in S’. Formally, for each state §’ € S’ we can find a finite word w such
that the run of P on w starting from §’' € §' visits each transition in S’ at least once and
ends in §'. Fix ¢’ = (¢, ') € §' and let w be such a word. By [I], there exists a preorder
Je & K such that § = (q, 3) e S. After following the word w on P starting from the two
states § and §’, we arrive at (g, <) € S (since S is bottom) and (g, 5/) e § (by choice of
w), respectively. But, as every transition and thus every (non-empty) F; was visited along the
path, we have that < = 3/. Note that by our assumption there exists at most one empty F;
and thus it is the oldest in both 5 and 5’ if it exists. Therefore (g, 5) = (g, 5/) and hence
SNS’ + ¢, contradicting the assumption. O

This result makes defining an optimal choice of the initial order straightforward, as fol-
lows. We construct IAR(R) starting with, for example, the coarsest initial preorder. By the
theorem, there always exists a BSCC containing all states of R, independent of the initial
order. We can find such a BSCC by, for example, a classical DFS. Now, since each state
of R occurs in that BSCC, we can always find a preorder = such that (gg, o) is in the
BSCC. If we choose (go, o) as the new initial state, then no state outside of the BSCC is
reachable in IAR(R) (0.%0) (since it is a BSCC). Note that this in particular implies that the
constructed automaton IARscc(R, IAR) always has exactly the same number of SCCs as the
input automaton R, since for each SCC in R we construct a single-SCC IAR automaton.

4.5 Applicability to other constructions

We briefly remark how our optimizations can be applied to other constructions. Note that all
our reasoning essentially only relies on the fact that the “appearance record” only tracks the
infinite behaviour. For example, this allows us to change the initial record without modifying
the language. Thus, we can transfer practically all our reasoning to every appearance record
construction; refinement of course only applies to those using preorders. For example, we
could improve the state appearance record used for Muller acceptance or a variant of our
IAR translating Streett to parity.

5 Experimental results

In this section, we compare variants of our approach and established tools, in particular Spot
(version 2.9.6) [7] and Owl (version 20.06.00) [19] (compiled to native code with GraalVM

@ Springer

Index appearance record with preorders

20.1.0). We implemented our construction on top of Owl. The source code, all tools, data sets,
and scripts used for the evaluation can be found at [27]. Due to contribution guidelines of Owl,
only the most optimized variant (IAR; in the evaluation) is part of its standard distribution
(named dra2dpa). The evaluation was performed on an AMD Ryzen 5 3600 6 x 3.60
GHz CPU with 8 GB RAM available. All of our evaluation is greatly aided by Spot’s utility
tools randaut, randltl, autcross, and 1tlcross. All executions were restricted to
a single CPU core.

Tools

Our experiments evaluate the |AR construction together with our presented optimizations
and compare it to other state-of-the-art tools. We denote enabled optimizations with sub-
scripts, namely 1 (initial state), r (refinement), and S (SCC decomposition). Whenever SCC
decomposition is combined with initial state refinement, we use the reasoning of Sect. 4.4 to
obtain an optimal initial state.

Additionally, we write IAR" to denote the IAR variant using total orders instead of pre-
orders, as described in the conference paper [21].° Note that for the total order variant, the
refinement optimization is not applicable, since there are no states refining each other. Thus,
IARgi is the “most optimized” variant thereof.

Apart from the IAR variants of this work, we consider constructions from Spot [7], and
Owl1 [19]. For completeness sake, we also implemented the (transition-based variant of the)
original construction of [23] without any optimizations (denoted LAAR). The used construc-
tions together with their configuration is mentioned at the appropriate places. In [21], we
also compared to GOAL [45]. Since that paper was published, a new version of GOAL has
been released. However, the new version still is far outside the league of the other mentioned
tools: Firstly, the DRA-to-DPA translation only works on state-based input. Secondly, it is
several orders of magnitude slower even on simple automata. Hence, we exclude it from the
comparison. The artefact contains instructions to replicate these findings.

We highlight that the mentioned state-of-the-art tools are highly optimized, containing
several minimization techniques which may yield drastic improvements by themselves,
orthogonal to the performance of the underlying construction. As such, the subsequent
results have to be read carefully: Where one tool outperforms an other, it may be due to,
for example, better generic optimizations in that tool rather than fundamental improvements
or the automata generated by one method may be structurally more aligned with a particu-
lar optimization technique. Since these optimizations are often interwoven with the actual
computation, we do not see a clear way to disable them in a fair way. In an effort to make
the comparison as fair as possible, we also apply the generic post-processing procedure of
Spot (which seems to be the most advanced) to all tools. The post-processing is denoted with
a superscript *. For example, IARg; is our construction with enabled SCC and initial state
optimization combined with Spot’s post-processing.

See “Appendix A.1” for an exhaustive list of all tool names together with a brief description
of the underlying approach.

State-based acceptance

In [21], we also performed comparison with state-based acceptance. Already there, the
experimental evidence clearly suggested that transition-based acceptance is more appealing.
Since the conference paper, more and more papers and tools shifted to transition-based
acceptance due to its theoretical and practical appeal. Moreover, Owl is fundamentally built

9 We reimplemented [21] in Owl to profit from its recent improvements and to unify most of the logic, allowing
for a fair comparison. In particular, the only difference between IAR and IAR is that a total preorder is chosen
as initial state.

@ Springer

J. Ketinsky et al.

to exclusively work with transition-based acceptance. While both Spot and Owl provide
mechanisms to output automata with state-based acceptance, comparison to “native” state-
based constructions still would be unfair, since the canonical conversion from transition to
state-based acceptance potentially could introduce superfluous states. Together, we choose
to omit an explicit treatment of state-based acceptance.

Metrics

We perform experiments on three different input sets, explained later. On each input set,
we compare the average performance of several tools. We are interested in the overall runtime,
number of states and edges in the resulting automaton, and the average number of acceptance
sets, i.e. distinct priorities. We note that runtimes are very small for all tools (often in the
order of a few milliseconds). As such, even the efficiency of the used parsing / serialization
routines may have an significant impact. Thus, comparison of runtime between two different
tools has to be done carefully. One might argue that this problem could be overcome by
using larger inputs; however, we experienced that typically memory becomes an issue much
faster than runtime. Unfortunately, autcross and 1tlcross, which are used to run the
experiments and gather raw data, do not provide insight on the memory footprint.

Data Sets

We first consider DRA-to-DPA translations and then include our IAR approach in a larger
LTL-to-DPA pipeline, as used in, for example, reactive synthesis. Several of our input datasets
are randomly generated, partly due to a lack of standard datasets. Evaluation on such random
inputs has to be understood with care due to several reasons. In Theorem 4.3, we have shown
that our translation of DRA to DPA incurs an exponential blow-up. Even more drastically, the
LTL-to-DRA translations we use to evaluate our LTL-to-DPA pipeline already construct a
double exponentially sized DRA in the worst case, leading to a triple-exponential worst-case
bound. In particular, applying only a handful of changes to an LTL formula can explode the
resulting DPA from only ten to several thousands of states. Yet, similar to, for example, SAT
problems, the theoretical worst case rarely shows in practice. Most of the randomly generated
inputs are easily translated while only a small fraction of the inputs actually leads to large
outputs, as visible in our plots.

See “Appendix A.2” for an exhaustive overview of all datasets.

5.1 DRA to DPA

As there are, to our knowledge, no “standard” datasets for this kind of comparison, we use
Spot’s tool randaut tool to produce randomly generated Rabin automata, yielding two
datasets dra2dpa and dra2dpa-large. We present an overview of the comparisons in
Fig. 5 and Table 1. We discuss several findings separately.

Effects of our optimizations: Each of the presented optimizations decreases the size of the
obtained automata noticeably while not incurring significant runtime overhead. In par-
ticular, note that the unoptimized IAR indeed is the slowest of all variants, likely due
to serialization overhead of significantly larger automata. Moreover, all our approaches
yield the same number of priorities and Spot’s post-processing also prunes them down
to the same number. We highlight the significant effect of the refinement optimization,
i.e. the results of IAR;, which is one of the main contributions of this work. Combined
with Spot’s post-processing it already yields the best results, suggesting that (at least on
this dataset) Spot applies a similar SCC and initial state optimization. We note that the
runtime of IARg,; is slightly higher than IARs,, contrary to our conjectures in Sect. 4.4.

@ Springer

Index appearance record with preorders

Table1 Comparison of different Rabin to Parity translations on the dra2dpa and dra2dpa-large datasets

Time (ms) States Edges Acc.
dra2dpa

R 19.68 46.30 11.61

IAR 62 (397) 2864 (1923) 5750 (4154) 12.39 (5.29)
IAR; 54 (261) 2102 (1403) 4220 (3017) 12.39 (5.29)
IARg 49 (248) 2032 (1383) 4107 (2972) 12.39 (5.29)
IARg; 58 (247) 1912 (1293) 3865 (2776) 12.39 (5.29)
IARy 54 (144) 1208 (860) 2426 (1837) 12.39 (5.29)
IARg, 56 (145) 1185 (860) 2396 (1837) 12.39 (5.29)
1ARg; 59 (149) 1185 (860) 2396 (1837) 12.39 (5.29)
LJAR 115 (985) 5438 (2503) 11121 (5415) 12.56 (5.29)
IAR! 32 (155) 1532 (1090) 3079 (2336) 12.48 (5.29)
IARfSi 37 (143) 1311 (939) 2651 (2007) 12.48 (5.29)
SPOtpra 137 (206) 830 (708) 1803 (1543) 5.29 (5.29)

Time (ms) States Edges Acc.
dra2dpa-large

R 19.95 59.62 12.00

ARy 215 (544) 2481 (2035) 7342 (6394) 12.61 (5.82)
IARtSi 90 (494) 2813 (2273) 8320 (7153) 12.78 (5.82)
SpPOtpra 416 (694) 2076 (1898) 6606 (6088) 5.82 (5.82)

Each cell displays the geometric average to reduce the influence of potential outliers
We also include the values after post-processing with spot in parentheses

We suspect that this is due to the small size of the automata. Interestingly, these two
methods yield exactly the same results in terms of state-space. We conjecture that this
a consequence of the discussion of Sect. 4.2: The refinement apparently picks optimal
initial states and their reachable successors in each SCC.

Comparison to [23]: LdAR clearly is outperformed by every other approach. Interestingly,
its post-processed version seems to overtake the basic IAR construction on a few more
complex inputs, likely related to the exponentially worse worst case of IAR as discussed
in Sect. 3.

Comparison to [21]: All of our variants without refinement optimization are outperformed
by the unoptimized variant total order construction IAR’. This presumably also is related
to the complexity discussion of Sect. 3. The implementation of AR’ uses sorting as tie-
breaking, which seems to be a practical choice. However, refinement alone already is
sufficient to outperform the most optimized variant of [21], namely IAR’Si, significantly.

Comparison to Spot: For this translation, Spot uses an improved variant of our previous work
[21], see [37]. Thus, it is hardly surprising that our results are comparable. We suspect
that Spot has a slight advantage (= 10%) on these datasets due to built-in optimizations.
In particular, Spot has a significantly higher runtime.

In summary, we observe that our approach is competitive and all our optimizations yield

an improvement without too much overhead. Moreover, the new refinement optimization
yields significant improvements over our previous IAR approach [21].

@ Springer

J. Ketinsky et al.

-10%
3
1]---1AR
. ----1AR;,
n 2 L
% B — IARGg;;
_- t
21 IAR
-~ -IAR,
SRS LdAR
0 e
0 20
dra2dpa with non-postprocessed tools
-104
15 --- |IAR*
. t *
2 T IARS
|- - IARES
< 1 e Si
% e) LAdAR
0-5 T L SpothHra
0 el S ———
0 20 40 60 80
dra2dpa with postprocessed tools
-10%
! — ARG,
2 ARy
= Y Spothra
<05 o
0 R g
O
0 20 40 60 80

dra2dpa-large with postprocessed tools

Fig. 5 Comparison of several tools on the datasets dra2dpa and dra2dpa-large. We run each tool on
each input from the respective dataset and plot the results in ascending order (sometimes called “cactus plot”).
Thus, at point i on the x-axis we have ith smallest result of each tool. Tools present in both graphs are drawn
with the same line style. The first graph compares different IAR variants without post-processing, the second
with post-processing and Spot as baseline, and the third compares the most optimized variants on a larger

dataset

5.2 LTL to DPA

Motivated by the previous results we concatenate our DRA to DPA translation IAR with LTL-
to-DRA translations of Owl and Spot, obtaining two LTL-to-DPA translations. We compare
this approach to the respective solutions of Spot (Spot,;) and Owl (Owl,y). We do not
present our results on the total order construction of [21] here, since they largely overlap
with the preorder variant on this dataset.

Before we present the results, we highlight some peculiarities of the following compar-
isons. Firstly, since our tool is only one piece of a large pipeline, the results are very dependent
on the performance and structure of the automata created by the predecessors in the pipeline.
Moreover, we do not expect to outperform the specifically tailored tools, we rather provide
this comparison to put the performance of our IAR construction into context. Finally, the

@ Springer

Index appearance record with preorders

OwllAR
/ SpotlAR
--- OwlpTe
Al-=-Spotyry,

states

130 140 150
1tl2dpa-rand 1tl2dpa-lit

Fig.6 Comparison of several LTL-to-DPA tools on 1t12dpa-rand (left) and 1t12dpa-1it (right). As
in Fig. 5, we report the sorted resulting state numbers of each tool on the respective dataset. We “zoomed in”
on the interesting regions, indicated by the axis labels

Table 2 Comparison of several

LTL-to-DPA tools on the datasets Time (ms) States Edges Acc.

1t12dpa-rand (top) and Random (1t12dpa-rand)

1tl2dpa-1it (bottom)
OwllAR 31 (41) 20 (15) 85 (59) 3.27 (1.56)
SpotlAR 28 (36) 17 (16) 72 (65) 2.88 (1.56)
Owlpqy 66 (68) 21 (15) 91 (60) 3.22 (1.56)
Spotim 11 (20) 25 (18) 159 (77) 1.56 (1.56)
Literature (Lt12dpa-1it)
OwllAR 9 (17) 3(3) 8(7) 2.45 (1.05)
SpotlAR 14 (20) 33 7(7) 2.36 (1.05)
Owlypqy 9 (16) 33 6 (6) 1.61 (1.05)
Spotim 7(13) 4(3) 12(7) 1.05 (1.05)

As in Table 1, each cell displays the geometric average and we addition-

ally include the values after post-processing with spot in parentheses
constructions used in Spot,,; are fundamentally different from the constructions of Ow1,y .
In particular, there are some formulae where Owl’s constructions outperform Spot by orders
of magnitude and vice versa, see “Appendix A.4” for details.

Figure 6 and Table 2 show our results on the datasets 1tl2dpa-rand and
1tl2dpa-1it. Quite surprisingly, our approach seems to perform at least on par with
the established tools, sometimes even better. We observe that the relative performance of the
different approaches varies between the datasets; however, all seem to be largely comparable
(except for few extremes). In particular, all (post-processed) approaches yield practically
equivalent solutions for a large portion of either datasets. This indicates that the datasets
probably are “too simple” in order to sufficiently showcase the differences between the
approaches. As the plots in Fig. 6 indicate, the complexity can quickly explode. Finding
sufficiently rich datasets where all formulae are challenging yet tractable may prove to be
difficult.

There are further, tailored datasets on which Owl significantly outperforms Spot (for
example, fairness constraints or GR (1) formulae [33]) or vice-versa. We do not report on
them here in particular, since this difference in performance is not due to our IAR construction.
See “Appendix A.4” for some pairwise comparisons between tools, demonstrating the effects
of the underlying differences between Owl and Spot.

@ Springer

J. Ketinsky et al.

In summary, our results suggest that our IAR construction is capable of handling real-
world inputs with a performance comparable to state-of-the-art tools. Moreover, each of the
four approaches seems to have slightly different strengths. In particular, analysing where the
combination of IAR with a tool’s LTL-to-DRA translation outperforms the tool’s “native”
LTL-to-DPA translation could yield interesting insights and significant improvements.

6 Conclusion

We have presented a new perspective on the index appearance record construction. In compar-
ison to the standard construction, our new approach produces significantly smaller automata
due to several non-trivial improvements. In [21], the switch to transition-based acceptance
alone yielded significant savings, several optimizations further improved the construction.
This work extends [21] by (i) shifting to pre-orders, allowing for a canonical representa-
tion and further optimizations, (ii) lifting previous optimizations to this new construction,
and (iii) introducing the new refinement-based optimization. As in [21], our construction
preserves the “labelling” of the input automaton, merely adding additional, understandable
metadata to the state space. The shift to pre-orders and the subsequent refinement optimization
allowed for significant practical improvements compared to [21]. Together, our construction
is on-par with or even ahead of state-of-the-art tools.

For future work, a more targeted post-processing of the state space and the priority function
is desirable. Further, one can adopt optimizations of Spot as well as consider optimizations
taking the automaton topology more into account. Combining our approach with the opti-
mizations presented in [37] could yield additional improvements. Dually, analysing instances
where our approach applied to LTL-to-DPA translation outperforms existing tools could help
to improve those tools, too.

A further interesting direction is to extend the refinement notion of Sect. 4.2 to runs. For
example, if we know that starting from a state s two prohibited sets F and F> occur on every
infinite run (not necessarily on the same transition), we could immediately move them into the
same group when entering that state s. As such, this idea is related the concept of confluence
(also called “diamond property”) and approaches identifying this property potentially could
be applicable here.

Funding Open access funding provided by Institute of Science and Technology (IST Austria).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Further evaluation details
A.1 List of tools

In this section, we list and describe all tools used in our evaluation and some more which can
be found in the artefact for further evaluation. The post-processed versions of tools is obtained

@ Springer

http://creativecommons.org/licenses/by/4.0/

Index appearance record with preorders

by chaining them with autfilt --hoa --parity --deterministic --high
-. We used min odd parity acceptance due to technical reasons, namely (i) Owl’s parity
post-processing only is applicable to min parity and (ii) our implementation of [24] also
yields min odd automata. Moreover, note that as of now, the optimize-aut processor
of Owl does not perform too significant optimizations. Its main effect on parity automata is
removal of dead states and “compressing” of priorities.

A.1.1 DRA to DPA tools

IAR: Our base method IAR without any further optimization.

owl -I- hoa --- dra2dpa --no-scc --no-init --no-succ
--min --odd --- optimize-aut --- hoa

IAR;: IAR with initial state optimization (Sect. 4.1).

owl -I- hoa --- dra2dpa --no-scc --no-succ --min --odd
--- optimize-aut --- hoa

IAR;: IAR with refinement optimization (Sect. 4.2).

owl -I- hoa --- dra2dpa --no-scc --no-init --min --odd
--- optimize-aut --- hoa

IARs: IAR with SCC optimization (Sect. 4.3).

owl -I- hoa --- dra2dpa --no-init --no-succ --min --odd
--—- optimize-aut --- hoa

IARs;i: IAR with SCC and initial state optimization (Sects. 4.3 and 4.4).

owl -I- hoa --- dra2dpa --no-succ --min --odd
--- optimize-aut --- hoa

IARs;: AR with SCC and refinement optimization (Sects. 4.2—4.4).

owl -I- hoa --- dra2dpa --no-init --min --odd
--- optimize-aut --- hoa

IARsyi: AR with SCC, refinement, and initial state optimization (Sects. 4.2 and 4.3).

owl -I- hoa --- dra2dpa --min --odd
--—- optimize-aut --- hoa

IAR": The total-order IAR of [21] without further optimizations.

owl -I- hoa --- dra2dpa --no-scc --no-succ
--no-init --no-preorder
--min --odd --- optimize-aut --- hoa

IAR’Si: The total-order IAR of [21] with SCC and initial state optimization (similar to
Sects. 4.3 and 4.4).

owl -I- hoa --- dra2dpa --no-succ --no-preorder
--min --odd --- optimize-aut --- hoa

LdAR: The original construction of [24].

owl -I- --- loding --- optimize-aut --- hoa

@ Springer

J. Ketinsky et al.

Spotpra: Spot’s DRA to DPA translation with some post-processing optimizations disabled

autfilt --hoa --deterministic --parity --low -x wdba
-minimize=0,simul=0

GOAL: A primarily educational tool based on [45], containing basic translations for various
automata and formulas.

goal batch ’S$nba = load -c HOAF /dev/stdin;
Sdpa = convert -t dtw S$nba;
save $dpa -c HOAF /dev/stdout; '

A.1.2 LTL to DPA tools

OwllAR: Owl’s 1t12dra tool combined with our optimized IAR

owl -I- 1tl --- 1tl2dra --- optimize-aut
--- dra2dpa --min --odd
--- optimize-aut --- hoa

SpotlAR: Spot’s LTL to DRA translation combined with our optimized IAR

ltl2tgba --deterministic --high - |
autfilt --remove-dead-states --cleanup-acceptance
--partial-degeneralize
--generalized-rabin --deterministic --high |
owl -I- hoa --- dgra2dra --- dra2dpa --min --odd
--- optimize-aut --- hoa

OwllAR’: Owl’s 1t12dra tool combined with optimized total-order IAR [21]

owl -I- 1tl --- 1tl2dra --- optimize-aut --- dra2dpa
--no-preorder --min --odd
--- optimize-aut --- hoa

SpotlAR’: Spot’s LTL to DRA translation combined with optimized total-order IAR [21]

ltl2tgba --deterministic --high - |
autfilt --remove-dead-states --cleanup-acceptance
--partial-degeneralize

--generalized-rabin --deterministic --high |
owl -I- hoa --- dgra2dra --- dral2dpa
--no-preorder --min --odd

--- optimize-aut --- hoa

Owlr: Owl’s 1t12dpa tool

owl -I- 1tl --- simplify-1tl --- 1ltl2dpa
--- optimize-aut --- hoa

Spot,y : Spot’s LTL to DPA translation with some post-processing optimizations disabled
ltl2tgba --hoa --deterministic --parity

--low -x wdba-minimize=0,simul=0 -

@ Springer

Index appearance record with preorders

A.2 List of datasets

dra2dpa: 100 randomly generated Rabin automata over 5 atomic propositions with 20
States, 6 Rabin pairs, a transition density of 5%, and acceptance probability of 10%. The
set is simplified by both Owl’s and Spot’s automata optimizations.

randaut -n 100 5 --seed=0 -Q 20 --density=0.05

--deterministic

--acceptance="Rabin 6" --acc-probability 0.1 --hoaf |
owl hoa --- optimize-aut --- hoa |
autfilt --remove-dead-states --cleanup-acceptance

--partial-degeneralize

--generalized-rabin --deterministic --high |
owl hoa --- optimize-aut --- dgra2dra

--- optimize-aut --- hoa

dra2dpa-large: 100 randomly generated Rabin automata over 5 atomic propositions
with 20 States, 6 Rabin pairs, a transition density of 5%, and acceptance probability of
20%. The set is simplified by both Owl’s and Spot’s automata optimizations.

randaut -n 100 5 --seed=0 -Q 20 --density=0.1

--deterministic

--acceptance="Rabin 6" --acc-probability 0.2 --hoaf |
owl hoa --- optimize-aut --- hoa |

autfilt --remove-dead-states --cleanup-acceptance

--partial-degeneralize
--generalized-rabin --deterministic --high |
owl hoa --- optimize-aut --- dgra2dra
--- optimize-aut --- hoa

1tl2dpa-rand: 100 randomly generated LTL formulae over 5 atomic propositions and
Boolean size of 32-42. The set is simplified by both Owl’s and Spot’s LTL processing.

randltl -n-1 5 --tree-size=25..40 --seed=0 |
owl 1tl --- simplify-1tl --- string |
1tlfilt --simplify=2 |

1tlfilt --remove-wm |

1tlfilt --bsize=32..42 -n 100

Additional info on the bs1ize parameter, copied from Spot’s website:

With --s1ize the size of the formula is exactly the number of atomic propositions
and operators used. [...] With --bsize, every Boolean subformula is counted as
1 in the total size. So F(a & b & c¢) would have Boolean-size 2. This type of
size is probably a better way to classify formulas that are going to be translated as
automata, since transitions are labelled by Boolean formulas: The complexity of the
Boolean subformulas has little influence on the overall translation.

1tl2dpa-1lit: A collection of 165 formulae, obtained from several previous works [8,
11,14,31,42,43], simplified by both Owl and Spot. Since some contain duplicates (after
simplification), the actual set only contains 155 formulae. All formulae are part of the
artefact.

@ Springer

J. Ketinsky et al.

We note that both the configuration of the random generators as well as the selection of
literature was done mostly arbitrary. We did not explicitly try to bias towards one particular
tool. For the random datasets, we observed that runtimes etc. are very sensitive to changes of
the random generator. We tried several combinations of parameters to obtain datasets where
no tool exhausts the resources of reasonable consumer hardware, yet significant computation
is performed. This arguably introduces a slight bias; however, when experimenting with
larger datasets, similar patterns as the ones observed in Sect. 5 emerged. For the literature
selection, we tried to avoid works for which one particular tool is known to have a significant
advantage.

A.3 Comparisons for DRA-to-DPA translation

In this section, we present log-log-plots comparing the state count of selected pairs of tools
on the set dra2dpa for the reader’s convenience. The solid and dashed lines indicate equal
and double/half size, respectively. The artefact contains all pairwise comparisons.

104
10% i 10%
.
& 103 & 10 e 10
< < <
102 102 10
10! 10! 10!
0101 102 103 104 O101 102 103 104 10t 102 10% 104
IAR IAR IAR?
104 -
104 104 i
x> . el
15 103 £ 108 & =5 103
< < & X g .
~ 102 ~ 102 102
10t ' - 10! 101 -
101 102 103 10% 101 102 103 10% 101 102 103 104
IAR* IAR* IAR,
10* 104 10* {.-
< 3 = 3 .
L5 10 5 103 5 10
2 4 = P
& 102 < < 2 "
n 10 - 102 10
10t = 1 ' 101
101 102 103 104 10101 102 103 104 101 102 103 104
IARS,; IARs;i IARE,

A.4 Comparisons for LTL-to-DPA translation

As in the previous section, we provide log-log-plots for pairs of tools, showing the state-count
on both the 1t12dpa-rand and 1t12dpa-11it separately.

@ Springer

Index appearance record with preorders

A.4.1 1t12dpa-rand comparison

3) 103
10 103
2 = =) 2
*E 10 *S 102 *S 10
l 2 —
3 1 a. 3 10!
109 100 100
100 10* 102 103 100 10! 102 103 100 10t 10% 10°
OwllAR* OwllAR* SpotlAR*
].03 103
5 102 % 5 102
b = +©
2 5 1 S,
w' 10! 2, 10 o 10!
n
10° 0 09
100 10! 102 10° 10000 100 102 100 10! 102 103
SpotlAR* OwllAR* Owlfypy,
A4.21tl12dpa-1it comparison
10* 104
| = |
E 5 £
*3 1
o 102 % 102 5 10
o , o
[9p] p
P L
100 & 100 K 100
100 102 104 100 102 104 100 10t
OwllAR* owllAR* SpotlAR™
2 2
% 10! 3 102 5 10t - A
[oN o Q, C
w0 [oN . w0
177) 3!;*‘"
100 ol 100
100 10* 102 10100 102 104 100 10t 102
SpotlAR™ OwllAR* Owlpy,
References

. Alur, R., La Torre, S.: Deterministic generators and games for LTL fragments. ACM Trans. Comput. Log.
5(1), 1-25 (2004). https://doi.org/10.1145/963927.963928

Babiak, T., Blahoudek, F., Kretinsky, M., Strejcek, J.: Effective translation of LTL to deterministic Rabin
automata: beyond the (F, G)-fragment. In: Automated Technology for Verification and Analysis—11th

@ Springer

https://doi.org/10.1145/963927.963928

J. Ketinsky et al.

International Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18, 2013. Proceedings, pp. 24-39
(2013). https://doi.org/10.1007/978-3-319-02444-8_4
3. Bjorklund, H., Sandberg, S., Vorobyov, S.: On fixed-parameter complexity of infinite games. In: The
Nordic Workshop on Programming Theory (NWPT 2003), vol. 34, pp. 29-31. Citeseer (2003)
4. Biichi, J.R.: State-strategies for games in F G. J. Symb. Log. 48(4), 1171-1198 (1983). https://doi.org/
10.2307/2273681
5. Casares, A., Colcombet, T., Fijalkow, N.: Optimal transformations of games and automata using Muller
conditions. In: Bansal, N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference),
LIPIcs, vol. 198, pp. 123:1-123:14. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2021). https://
doi.org/10.4230/LIPIcs.ICALP.2021.123
6. Chatterjee, K., Gaiser, A., Kretinsky, J.: Automata with generalized Rabin pairs for probabilistic model
checking and LTL synthesis. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification—25th
International Conference, CAV 2013, Saint Petersburg, Russia, July 13—19, 2013. Proceedings, Lecture
Notes in Computer Science, vol. 8044, pp. 559-575. Springer (2013). https://doi.org/10.1007/978-3-
642-39799-8_37
7. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.: Spot 2.0—a framework
for LTL and w-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) Automated Technology
for Verification and Analysis—14th International Symposium, AT VA 2016, Chiba, Japan, October 17-20,
2016, Proceedings, Lecture Notes in Computer Science, vol. 9938, pp. 122-129 (2016). https://doi.org/
10.1007/978-3-319-46520-3_8
8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-state verification. In:
Ardis, M.A, Atlee, J.M. (eds.) Proceedings of the Second Workshop on Formal Methods in Software
Practice, March 4-5, 1998, Clearwater Beach, Florida, USA, pp. 7-15. ACM (1998). https://doi.org/10.
1145/298595.298598
9. Esparza, J., Kretinsky, J., Sickert, S.: From LTL to deterministic automata—a safraless compositional
approach. Form. Methods Syst. Des. 49(3), 219-271 (2016). https://doi.org/10.1007/s10703-016-0259-
2
10. Esparza, J., Kretinsky, J., Sickert, S.: One theorem to rule them all: a unified translation of LTL into
w-automata. In: Dawar, A., Gridel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pp. 384-393. ACM (2018).
https://doi.org/10.1145/3209108.3209161
11. Etessami, K., Holzmann, G.J.: Optimizing Biichi automata. In: Palamidessi, C. (ed.) CONCUR 2000—
Concurrency Theory, 11th International Conference, University Park, PA, USA, August 22-25, 2000,
Proceedings, Lecture Notes in Computer Science, vol. 1877, pp. 153—167. Springer (2000). https://doi.
org/10.1007/3-540-44618-4_13
12. Friedmann, O., Lange, M.: Solving parity games in practice. In: Automated Technology for Verification
and Analysis, 7th International Symposium, ATVA 2009, Macao, China, October 14—16, 2009. Proceed-
ings, pp. 182-196 (2009). https://doi.org/10.1007/978-3-642-04761-9_15
13. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proceedings of the 14th Annual ACM
Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pp. 60-65 (1982).
https://doi.org/10.1145/800070.802177
14. Holecek, J., Kratochvila, T., liehék, V., Safrdnek, D., Sime&ek, P.: Verification Results in Liberouter
Project (2004)
15. Klein, J., Baier, C.: Experiments with deterministic omega-automata for formulas of linear temporal logic.
Theor. Comput. Sci. 363(2), 182—195 (2006). https://doi.org/10.1016/j.tcs.2006.07.022
16. Komadrkova, Z., Kretinsky, J.: Rabinizer 3: safraless translation of LTL to small deterministic automata.
In: Automated Technology for Verification and Analysis—12th International Symposium, ATVA 2014,
Sydney, NSW, Australia, November 3-7, 2014, Proceedings, pp. 235-241 (2014). https://doi.org/10.
1007/978-3-319-11936-6_17
17. Kietinsky, J., Esparza, J.: Deterministic automata for the (F, G)-fragment of LTL. In: Computer Aided
Verification—24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceed-
ings, pp. 7-22 (2012). https://doi.org/10.1007/978-3-642-31424-7_7
18. Kretinsky, J., Manta, A., Meggendorfer, T.: Semantic labelling and learning for parity game solving in
LTL synthesis. In: Chen, Y., Cheng, C., Esparza, J. (eds.) Automated Technology for Verification and
Analysis—17th International Symposium, ATVA 2019, Taipei, Taiwan, October 28-31, 2019, Proceed-
ings, Lecture Notes in Computer Science, vol. 11781, pp. 404—422. Springer (2019). https://doi.org/10.
1007/978-3-030-31784-3_24
19. Kretinsky, J., Meggendorfer, T., Sickert, S.: Owl: a library for w-words, automata, and LTL. In: Lahiri,
S.K., Wang, C. (eds.) Automated Technology for Verification and Analysis—16th International Sympo-

@ Springer

https://doi.org/10.1007/978-3-319-02444-8_4
https://doi.org/10.2307/2273681
https://doi.org/10.2307/2273681
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.1007/978-3-642-39799-8_37
https://doi.org/10.1007/978-3-642-39799-8_37
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1145/298595.298598
https://doi.org/10.1145/298595.298598
https://doi.org/10.1007/s10703-016-0259-2
https://doi.org/10.1007/s10703-016-0259-2
https://doi.org/10.1145/3209108.3209161
https://doi.org/10.1007/3-540-44618-4_13
https://doi.org/10.1007/3-540-44618-4_13
https://doi.org/10.1007/978-3-642-04761-9_15
https://doi.org/10.1145/800070.802177
https://doi.org/10.1016/j.tcs.2006.07.022
https://doi.org/10.1007/978-3-319-11936-6_17
https://doi.org/10.1007/978-3-319-11936-6_17
https://doi.org/10.1007/978-3-642-31424-7_7
https://doi.org/10.1007/978-3-030-31784-3_24
https://doi.org/10.1007/978-3-030-31784-3_24

Index appearance record with preorders

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

sium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings, Lecture Notes in Computer
Science, vol. 11138, pp. 543-550. Springer (2018). https://doi.org/10.1007/978-3-030-01090-4_34
Kretinsky, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: from LTL to your favourite deter-
ministic automaton. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verification—30th
International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part I, Lecture Notes in Computer Science, vol. 10981, pp. 567-577.
Springer (2018). https://doi.org/10.1007/978-3-319-96145-3_30

Kretinsky, J., Meggendorfer, T., Waldmann, C., Weininger, M.: Index appearance record for transforming
Rabin automata into parity automata. In: Legay, A., Margaria, T. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems—23rd International Conference, TACAS 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings, Part I, Lecture Notes in Computer Science, vol. 10205, pp. 443-460 (2017).
https://doi.org/10.1007/978-3-662-54577-5_26

Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: 46th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, SA, Proceedings, pp.
531-542 (2005). https://doi.org/10.1109/SFCS.2005.66

Loding, C.: Methods for the transformation of automata: complexity and connection to second order logic.
Master’s thesis, Institute of Computer Science and Applied Mathematics, Christian-Albrechts-University
of Kiel, Germany (1999)

Loding, C.: Optimal bounds for transformations of w-automata. In: Foundations of Software Technology
and Theoretical Computer Science, 19th Conference, Chennai, India, December 13—15, 1999, Proceed-
ings, pp. 97-109 (1999). https://doi.org/10.1007/3-540-46691-6_8

Loding, C., Tollkétter, A.: State space reduction for parity automata. In: Ferndndez, M., Muscholl, A.
(eds.) 28th EACSL Annual Conference on Computer Science Logic, CSL 2020, January 13-16, 2020,
Barcelona, Spain, LIPIcs, vol. 152, pp. 27:1-27:16. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik
(2020). https://doi.org/10.4230/LIPIcs.CSL.2020.27

Luttenberger, M., Meyer, P,, Sickert, S.: On the optimal and practical conversion of Emerson—Lei automata
into parity automata. To appear (2021)

Meggendorfer, T.: Artefact for: index appearance record with preorders (2021). https://doi.org/10.5281/
zenodo.4651156

Meyer, P.J., Luttenberger, M.: Solving mean-payoff games on the GPU. In: Artho, C., Legay, A., Peled,
D. (eds.) Automated Technology for Verification and Analysis—14th International Symposium, ATVA
2016, Chiba, Japan, October 17-20, 2016, Proceedings, Lecture Notes in Computer Science, vol. 9938,
pp. 262-267 (2016). https://doi.org/10.1007/978-3-319-46520-3_17

Mostowski, A.W.: Regular expressions for infinite trees and a standard form of automata. In: Skowron,
A. (ed.) Computation Theory—Fifth Symposium, Zaboréw, Poland, December 3-8, 1984, Proceedings,
Lecture Notes in Computer Science, vol. 208, pp. 157-168. Springer (1984). https://doi.org/10.1007/3-
540-16066-3_15

Muller, D.E.: Infinite sequences and finite machines. In: 4th Annual Symposium on Switching Circuit
Theory and Logical Design, pp. 3—16. IEEE Computer Society, Chicago, Illinois, USA (1963). https:/
doi.org/10.1109/SWCT.1963.8

Peldnek, R.: BEEM: benchmarks for explicit model checkers. In: Bosnacki, D., Edelkamp, S. (eds.) Model
Checking Software, 14th International SPIN Workshop, Berlin, Germany, July 1-3, 2007, Proceedings,
Lecture Notes in Computer Science, vol. 4595, pp. 263-267. Springer (2007). https://doi.org/10.1007/
978-3-540-73370-6_17

Piterman, N.: From nondeterministic Biichi and Streett automata to deterministic parity automata. In:
21th IEEE Symposium on Logic in Computer Science (LICS 2006), 12—15 August 2006, Seattle, WA,
USA, Proceedings, pp. 255-264 (2006). https://doi.org/10.1109/LICS.2006.28

Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Verification, Model Checking,
and Abstract Interpretation, 7th International Conference, VMCAI 2006, Charleston, SC, USA, January
8-10, 2006, Proceedings, pp. 364-380 (2006). https://doi.org/10.1007/11609773_24

Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer
Science, Providence, Rhode Island, USA, 31 October—1 November 1977, pp. 46-57 (1977). https://doi.
org/10.1109/SFCS.1977.32

Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference Record of the Sixteenth
Annual ACM Symposium on Principles of Programming Languages, Austin, Texas, USA, January 11-13,
1989, pp. 179-190 (1989). https://doi.org/10.1145/75277.75293

Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Am. Math. Soc.
141, 1-35 (1969)

@ Springer

https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1007/978-3-662-54577-5_26
https://doi.org/10.1109/SFCS.2005.66
https://doi.org/10.1007/3-540-46691-6_8
https://doi.org/10.4230/LIPIcs.CSL.2020.27
https://doi.org/10.5281/zenodo.4651156
https://doi.org/10.5281/zenodo.4651156
https://doi.org/10.1007/978-3-319-46520-3_17
https://doi.org/10.1007/3-540-16066-3_15
https://doi.org/10.1007/3-540-16066-3_15
https://doi.org/10.1109/SWCT.1963.8
https://doi.org/10.1109/SWCT.1963.8
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1109/LICS.2006.28
https://doi.org/10.1007/11609773_24
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293

J. Ketinsky et al.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Renkin, F.,, Duret-Lutz, A., Pommellet, A.: Practical “paritizing” of Emerson—-Lei automata. In: Hung,
D.V., Sokolsky, O. (eds.) Automated Technology for Verification and Analysis—18th International Sym-
posium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings, Lecture Notes in Computer
Science, vol. 12302, pp. 127-143. Springer (2020). https://doi.org/10.1007/978-3-030-59152-6_7
Safra, S.: On the complexity of w-automata. In: 29th Annual Symposium on Foundations of Computer
Science, White Plains, New York, USA, 24-26 October 1988, pp. 319-327 (1988). https://doi.org/10.
1109/SFCS.1988.21948

Safra, S.: Exponential determinization for w-automata with strong-fairness acceptance condition
(extended abstract). In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May
4-6, 1992, Victoria, British Columbia, Canada, pp. 275-282 (1992). https://doi.org/10.1145/129712.
129739

Schewe, S.: Tighter bounds for the determinisation of Biichi automata. In: Foundations of Software
Science and Computational Structures, 12th International Conference, FOSSACS 2009, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March
22-29, 2009. Proceedings, pp. 167181 (2009). https://doi.org/10.1007/978-3-642-00596-1_13
Schwoon, S.: Determinization and complementation of Streett automata. In: Automata, Logics, and Infi-
nite Games: A Guide to Current Research [Outcome of a Dagstuhl Seminar, February 2001], pp. 79-91
(2001). https://doi.org/10.1007/3-540-36387-4_5

Sickert, S., Esparza, J., Jaax, S., Kretinsky, J.: Limit-deterministic Biichi automata for linear temporal
logic. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification—28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, Lecture Notes in Computer
Science, vol. 9780, pp. 312-332. Springer (2016). https://doi.org/10.1007/978-3-319-41540-6_17
Somenzi, F., Bloem, R.: Efficient Biichi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P.
(eds.) Computer Aided Verification, 12th International Conference, CAV 2000, Chicago, IL, USA, July
15-19, 2000, Proceedings, Lecture Notes in Computer Science, vol. 1855, pp. 248-263. Springer (2000).
https://doi.org/10.1007/10722167_21

Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily decidable. Inf. Control
54(1/2), 121-141 (1982). https://doi.org/10.1016/S0019-9958(82)91258-X

Tsai, M., Tsay, Y., Hwang, Y.: GOAL for games, omega-automata, and logics. In: Computer Aided
Verification—25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, pp. 883-889 (2013). https://doi.org/10.1007/978-3-642-39799-8_62

Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees.
Theor. Comput. Sci. 200(1-2), 135-183 (1998). https://doi.org/10.1016/S0304-3975(98)00009-7

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1007/978-3-030-59152-6_7
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1145/129712.129739
https://doi.org/10.1145/129712.129739
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/3-540-36387-4_5
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1007/10722167_21
https://doi.org/10.1016/S0019-9958(82)91258-X
https://doi.org/10.1007/978-3-642-39799-8_62
https://doi.org/10.1016/S0304-3975(98)00009-7

	Index appearance record with preorders
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 ω-Automata
	2.1.1 State-based acceptance
	2.1.2 Strongly connected components

	2.2 Preorders

	3 Index appearance record
	3.1 Proof of correctness
	3.2 Relation to previous appearance-record constructions

	4 Optimizations
	4.1 Choosing the initial order
	4.2 Refinement
	4.3 SCC decomposition
	4.4 Optimal choice of the initial order with SCCs
	4.5 Applicability to other constructions

	5 Experimental results
	5.1 DRA to DPA
	5.2 LTL to DPA

	6 Conclusion
	A Further evaluation details
	A.1 List of tools
	A.1.1 DRA to DPA tools
	A.1.2 LTL to DPA tools

	A.2 List of datasets
	A.3 Comparisons for DRA-to-DPA translation
	A.4 Comparisons for LTL-to-DPA translation
	A.4.1 ltl2dpa-rand comparison
	A.4.2 ltl2dpa-lit comparison

	References

