
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-023-01903-7
Arch. Rational Mech. Anal. (2023) 247:76

The Dean–Kawasaki Equation and the
Structure of Density Fluctuations in Systems of

Diffusing Particles

Federico Cornalba & Julian Fischer

Communicated by G. Friesecke

Abstract

The Dean–Kawasaki equation—a strongly singular SPDE—is a basic equa-
tion of fluctuating hydrodynamics; it has been proposed in the physics literature
to describe the fluctuations of the density of N independent diffusing particles in
the regime of large particle numbers N � 1. The singular nature of the Dean–
Kawasaki equation presents a substantial challenge for both its analysis and its
rigorous mathematical justification. Besides being non-renormalisable by the the-
ory of regularity structures by Hairer et al., it has recently been shown to not even
admit nontrivial martingale solutions. In the present work, we give a rigorous and
fully quantitative justification of the Dean–Kawasaki equation by considering the
natural regularisation provided by standard numerical discretisations:We show that
structure-preserving discretisations of the Dean–Kawasaki equation may approx-
imate the density fluctuations of N non-interacting diffusing particles to arbitrary
order in N−1 (in suitable weak metrics). In other words, the Dean–Kawasaki equa-
tionmaybe interpreted as a “recipe” for accurate and efficient numerical simulations
of the density fluctuations of independent diffusing particles.

1. Introduction

The Dean–Kawasaki equation

∂tρ = 1

2
�ρ + N−1/2∇ · (√ρξ

)
(1)

with ξ denoting a vector-valued space-time white noise—has been proposed by
Dean [7] and Kawasaki [26] as a model for density fluctuations in a system of
N indistinguishable particles undergoing diffusion in the regime of large particle
numbers N � 1. Its mathematical analysis is complicated by its highly singular
nature: a scaling argument shows that (1) is not renormalisable by the theory of
regularity structures by Hairer et al., even in one spatial dimension d = 1.
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Recently, Konarovskyi, Lehmann, and von Renesse [29] have obtained a strik-
ing rigidity result for the Dean–Kawasaki equation (1): They show that the only
martingale solutions to (1) are of the form of an empirical measure for N indepen-
dent Brownian motions

μN
t := 1

N

N∑

k=1

δwk (t), (2)

where the {wk}N
k=1 denote the N independent Brownian motions. In particular, no

solution exists for non-integer values of N . This result may be viewed as casting
doubts on the mathematical meaningfulness of the Dean–Kawasaki equation: It
amounts to stating that the Dean–Kawasaki equation is just a mathematically com-
plex way of rewriting the diffusion of N particles. In turn, this naturally raises the
question what the advantages of the Dean–Kawasaki equation (1) might be over
the particle formulation of diffusion (2) from the point of view of physics.

In the present work, we provide a rigorous justification for the Dean–Kawasaki
equation. We show that standard numerical discretisations of the Dean–Kawasaki
equation (1)—such as finite difference or finite element schemes—provide accu-
rate descriptions of the density fluctuations in a system of N diffusing particles if
measured in suitably weak metrics. Roughly speaking, we show that, under certain
conditions, the solutions ρh to the discretised Dean–Kawasaki equation achieve the
approximation quality

dweak,2 j−1
(
ρh − E[ρh], μN − E[μN ]) � C( j)

(
E
[‖ρ−

h ‖]+ h p+1 + N− j/2
)

,

(3)

where j ∈ N is arbitrary, h is the spatial discretisation parameter, p +1 is the order
of convergence of the numerical scheme in the Sobolev space H−1, and dweak,2 j−1
is a suitable weak metric of negative Sobolev type. In particular, the accuracy
is of arbitrarily large order in N−1/2 and hence only limited by the numerical
discretisation error and the negative part ρ−

h . In addition, we show that E
[‖ρ−

h ‖]
decays exponentially fast in—roughly speaking—(hN 1/d)1/2, demonstrating that
the term becomes quickly negligible in the scaling regime

h � N−1/d (4)

(where we have dropped logarithmic corrections in N and contributions on the final
time horizon for the sake of this introductory exposition). In a nutshell, the bound
(3) implies that the Dean–Kawasaki equation can be used as a “recipe” for accurate
simulations of density fluctuations in systems of diffusing particles.

Note that our scaling regime (4) is not an actual restriction in the context of
numerical simulations; it ensures that the average number of particles per cell is
strictly larger than one. In fact, in the opposite regime h ≤ N−1/d , the direct
simulation of particles would become less expensive than the approximation by the
Dean–Kawasaki equation, as the numerical effort for the Dean–Kawasaki equation
is strictly larger than h−d .
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While the Dean–Kawasaki equation correctly describes the fluctuations around
the mean-field limit to arbitrarily large order in N−1/2, the well-known linearised
description of fluctuations given by the solution ρ̂ to

⎧
⎨

⎩
∂t ρ̂ = 1

2
�ρ̂ + N−1/2∇ · (

√
ρ̄ξ),

ρ̂(·, 0) = ρ0

(5)

is limited to the approximation quality dweak(ρ̂ − E[ρ̂], μN − E[μN ]) ≤ C N−1.
Here, ρ̄ denotes the mean-field limit given as the solution to

⎧
⎨

⎩
∂t ρ̄ = 1

2
�ρ̄,

ρ̄(·, 0) = ρ0.

In fact, the linearised description ρ̂ only captures the leading-order fluctuation cor-
rection to the mean-field limit correctly and hence carries a relative error of order
N−1/2 with respect to the fluctuation scaling. We provide numerical evidence of
such difference between the two models, and we also numerically verify conver-
gence rates for suitable discretisations of the Dean–Kawasaki model (1).

1.1. Related Literature

The theory of fluctuating hydrodynamics describes fluctuations in interacting
particle systems in the regime of large particle numbers using suitable SPDEs; see
e. g. [37]. In its form (1), the Dean–Kawasaki equation describes non-interacting
particles, with similar equations being available for weakly interacting particles
undergoing overdamped Langevin dynamics. In the recent contribution [12], the
authors also address quantitative fluctuation bounds in the non-interacting particle
case, but by means of a suitable approximated SPDEmodel rather than a numerical
scheme. While their setting grants several well-posedness results (non-negativity
of the solution, comparison principles, entropy estimates) and allows to consider
initial particle profiles which are more general than those treated here, their rel-
ative fluctuation error is however limited to N−1/(d/2+1) log N , while the rate of
fluctuations in (3) is—in suitable metrics—arbitrarily high.

For a more general particle setting, the SPDE of fluctuating hydrodynamics for
the zero range process given by

∂tρ = �(�(ρ)) + ∇ ·
(√

�(ρ)ξ
)

(6)

has been addressed in [11], and linked it to the large deviation principle for such
process in a suitable thermodynamic setting.A correspondingwell-posedness result
for truncated (low spatial frequency) noise and regularised nonlinearity has been
obtained in [18], see also [19]. In [20], the construction of random dynamical
systems for conservative SPDE is discussed, together with well-posedness theory
of invariant measures and mixing of the related Markov process. In [17], a large
deviation principle for regularised variants of (6) is shown; in a suitable limit, the
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rate functional of such large deviations principle and the corresponding one of the
interacting particle system are shown to approach each other.

The paper [10], written independently of—and simultaneously to—the present
manuscript, gives a rigorous justification of the fluctuating hydrodynamics SPDE
associated with the symmetric simple exclusion process

∂tρ = �ρ − ∇ ·
(√

ρ(1 − ρ)ξ
)

.

While in contrast to our work the authors in [10] only consider the continuum
SPDE, they regularise it by truncating the noise for small spatial wavelengths. In
a certain sense, this introduces a regularisation in the same spirit as our numerical
approach; however, their truncation criterion is somewhat more restrictive than our
condition h � N−1/d . While they face a more challenging problem with the more
complex noise intensity factor

√
ρ(1 − ρ) (whose square is not a linear function

of the density ρ) and also prove convergence results for the rate functions for large
deviation principles, they only establish a leading-order description of fluctuations
in the low deviations regime. In other words, in contrast to our present work, they
do not show superiority of fluctuating hydrodynamics to a linearised approach on
fluctuations for the “bulk” of the probability distribution.

For recent numerical approaches to fluctuating hydrodynamics, we refer the
reader e. g. to [1–3,9,13,14,24,33,36] (in particular, [2] contains the extension of
the current work to the case of weakly interacting particles). Note that the small
prefactor of the noise term in the Dean–Kawasaki equation (1) enables the use
of certain higher-order timestepping schemes [22], a fact that we also use in our
numerical simulations.

Concerning further mathematical results on Dean–Kawasaki models, the link
between fluctuating hydrodynamics and Wasserstein geometry has long been un-
derstood, and extensively studied in several works, see for instance [8,25,28,30–
32,38].

Dean–Kawasaki type models including the effects of inertia have been derived
and analysed by the first author, Shardlow, and Zimmer [4–6].

The fluctuation-dissipation relation—implicitly contained for instance in the
Dean–Kawasaki equation—may be used to recover macroscopic diffusion proper-
ties from fluctuations in finite particle number simulations, see for instance [16,33].
Outside of the realm of physics, the concept of fluctuating hydrodynamics has also
been applied to systems of interacting agents, see e. g. [13,24,27].

Finally, conservative stochastic PDEs have recently been shown to give optimal
convergence rates in the mean-field limit approximation of stochastic interacting
particle systems, such as those encountered in the stochastic gradient descent meth-
ods for overparametrised, shallow neural networks [21].

Remark 1. Given the nature of the metric dweak,2 j−1 in (3), it is natural to ask
whether or not the high-order fluctuation error of (3) could be formally derived
from suitable a priori estimates of negative Sobolev type for the continuous Dean–
Kawasaki model (1). An a purely formal level, testing the mild formulation of (1)

ρ(x, t) = G(t, ·) ∗ ρ(·, 0)(x) +
ˆ t

0

ˆ
Td

G(t − s, x − y)∇ ·
[√

ρ( y, s)ξ( y, s)ds
]
d y

(7)
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where G is the heat semigroup kernel—with trigonometric functions, and perform-
ing elementary computations, one arrives at the a priori estimate

E

[
‖ρ(·, t)‖2H− j

]
� E

[
‖ρ(·, 0)‖2H− j

]
+ N−1‖ρ(0)‖L1 , (8)

which is valid in the regime j > d/2.
Despite its formal validity—which, however, relies on the non-trivial negativity

requirement for the density ρ—the inequality (8) does not give any information
beyond the leading order N−1, and therefore is too weak an estimate to justify the
high-order fluctuation error bound in (3).

2. Main Results and Summary

The methodology of this paper can be applied to several standard numerical
discretisations of the Dean–Kawasaki model (1), including finite difference and
finite element schemes. In the interest of brevity, we only focus on a finite difference
discretisation: The corresponding results in the finite element case are given in
Appendix B. Specifically, on the periodic domain T

d := [−π, π)d , we denote
the uniform square grid with spacing h by Gh,d , the discrete inner product of
L2(Gh,d) by (·, ·)h , the interpolating operator onGh,d byIh , and define the distance
d− j [X,Y ] between two R

M -valued random variables as

d− j [X,Y ] := sup
ψ : max1≤ j̃≤ j ‖D j̃ ψ‖L∞≤1

|E [ψ (X − E[X])] − E [ψ (Y − E[Y ])]| .

(9)

Our first main result reads as follows:

Theorem 2. (Accuracy of description of fluctuations by the finite-difference discre-
tisedDean–Kawasakimodel of order p+1 ∈ N) Assume the validity of Assumption
FD1 (discretised differential operators), Assumption FD2 (Brownian particle sys-
tem), Assumption FD3 (scaling assumptions), and Assumption FD4 (discretised
mean-field limit), all given below. In particular, assume that the mean-field limit
ρh in (20) satisfies ρmin ≤ ρh ≤ ρmax for some positive ρmin, ρmax on [0, T ].
Let ρh be the solution of the discretised Dean–Kawasaki model given in Definition
FD-DK on [0, T ]. Set


 :=
{
0, if the discretisation (15) admits a maximum principle,
d/2 + 1, otherwise.

(10)

Then, for any j ∈ N, the discrete Dean–Kawasaki model FD-DK captures
the fluctuations of the empirical measure μN in the sense that, for any T =
(T1, . . . , TM ) ∈ [0, T ]M with 0 ≤ T1 ≤ · · · ≤ TM , the inequality

d−(2 j−1)

⎡

⎢
⎣N 1/2

⎛

⎜
⎝

(ρh(T1), Ihϕ1)h
...

(ρh(TM ), IhϕM )h

⎞

⎟
⎠ , N 1/2

⎛

⎜
⎝

〈μN
T1

, ϕ1〉
...

〈μN
TM

, ϕM 〉

⎞

⎟
⎠

⎤

⎥
⎦
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≤ C(M, p, j, ‖ϕ‖W p+
+ j+1,∞ , ρmin, ρmax , T )E

[

sup
t∈[0,T ]

‖ρ−
h (t)‖2h

]1/2

+ C(M, p, j, ‖ϕ‖W p+
+ j+1,∞ , ρmin, ρmax , T )h p+1

+ C(M, p, j, ‖ϕ‖W p+
+ j+1,∞ , ρmin, ρmax , T )N− j/2

=: Errneg + Errnum + Err f luct,rel

holds for any ϕ = (ϕ1, . . . , ϕM ) ∈ [W p+
+ j+1,∞(Td)]M such that ‖ϕm‖L2 =
1,∀m = 1, . . . , M and

´
Td ϕkϕldx = 0 whenever Tk = Tl . Finally, we have the a

posteriori bound

E

[

sup
t∈[0,T ]

‖ρ−
h (t)‖2h

]1/2
≤ CE(N , h) ,

where we have set

E(N , h) := C(d, ρmin, ρmax )

{

exp

(
− ρmin N 1/2hd/2

Cρ
1/2
max

)
+ exp

(− ch−1)
}

.

(11)

We make some observations in order to better illustrate the meaning of Theo-
rem 2.

• The quantities (ρh(Tm), Ihϕm)h , and 〈μN
Tm

, ϕm〉 are rescaled with the factor

N 1/2, as the natural order of density fluctuations is N−1/2. In other words, our
main error estimate basically provides an estimate for the relative error in the
fluctuations.

• The distances d− j [X,Y ] correspond to negative Sobolev norm differences of
the probability measures on R

M given by the laws of X and Y . In particular, it
holds d−1[X,Y ] = W1[X − E[X],Y − E[Y ]], whereW1 is the 1-Wasserstein
distance.

• The above estimates contain three types of error terms. The term Errneg quan-
tifies the a priori lack of knowledge concerning non-negativity of the solution
ρh ; the term Errnum encodes the numerical precision of the scheme; finally, the
term Err f luct,rel bounds the relative error in the fluctuations.

• The order of differentiation required for the functions ϕ should be thought of as
the sum of p+2+
 (accounts for the requirements of the spatial discretisation,
discussed below) and j − 1 (necessary due to an induction argument over j).

If one is only interested in moment bounds (i.e., in a polynomial ψ) then the
following estimate with no relative error in the fluctuations can be produced:

Theorem 3. (Estimates on the error for stochastic moments) In the same setting of
Theorem 2, fix times T = (T1, . . . , TM ) ∈ [0, T ]M , a vector j = ( j1, . . . , jM ) with
j := | j |1 = ∑M

m=1 | jm |, and a vector ϕ = (ϕ1, . . . , ϕM ) ∈ [W p+ j+1+
,∞]M .
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Then the difference of moments between ρh and the empirical density μN (2)
reads

∣∣∣∣∣
E

[
M∏

m=1

[
N 1/2(ρh(Tm) − E [ρh(Tm)] , Ihϕm)h

] jm
]

−E

[
M∏

m=1

[
N 1/2〈μN

Tm
− E

[
μN

Tm

]
, ϕm〉

] jm
]∣∣∣
∣∣

≤ {C(d, ρmax , ρmin)} j/2

[
M∏

m=1

T jm/2
m

]

jC1 j+C2

[
M∏

m=1

‖ϕm‖ jm
W j−1+
,∞

]

E

[

sup
t∈[0,T ]

‖ρ−
h (t)‖2h

]1/2

+ h p+1 {C(d, ρmax , ρmin)} j/2

[
M∏

m=1

[
Tm ∨ √

T m

] jm/2
]

jC3 j+C4

×
[

M∏

m=1

‖ϕm‖ jm
W p+ j+1+
,∞

]

=: Errneg + Errnum, (12)

with constants C, C1, . . . , C4 > 0 independent of j , h, N , T , and where we have
the bound

E

[

sup
t∈[0,T ]

‖ρ−
h (t)‖2h

]1/2
≤ CE(N , h) ,

where E(N , h) has been defined in (11).

2.1. Structure of the Paper

Section 3 lays out the finite difference discretisation of the Dean–Kawasaki
model. Section 3.1 (respectively, Section 3.2) lays out the necessary notation (re-
spectively, the relevant assumptions and definitions) related to the model. Sec-
tion 3.3—which has an informal flavour—brings forward some of the main ideas
used in the paper. This section lays the ground for Section 3.4 (respectively, Sec-
tion 3.6), which contains preparatory results for the proofs of Theorem 2 (respec-
tively, Theorem 3). The proof of Theorem 2 (respectively, Theorem 3) is finalised
in Section 3.5 (respectively, Section 3.7). Technical details are deferred to Sec-
tion 3.8 (bounds for all moments of ρh , and exponentially decaying bound for the
negative part ρ−

h ), and Appendix A (deterministic finite difference arguments and
relevant Itô calculus). The statements of results for finite element schemes are given
in Appendix B. Finally, Section4 contains numerical simulations associated with
Theorem 2, using a first-order finite difference discretisation (i.e., p = 1) in the
one-dimensional case d = 1.
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3. Analysis for Finite Difference Discretisations

3.1. Notation

Domain and Function Spaces Let N � d ≤ 3, and let T
d := [−π, π)d . Let

h := 2π/L , for some L ∈ 2N, be the discretisation parameter of the periodic square
grid

Gh,d := hZ
d ∩ T

d = {−π,−π + h, . . . , π − h}d .

We always work with periodic functions (defined either on T
d or Gh,d ). From

now on, this fact will be implicitly assumed and no longer stated. In particular, we
abbreviate Cβ = Cβ(Td) and W r,p = W r,p(Td). We use bold characters to denote
vector fields.

For m ∈ N, let [L2(Gh,d)]m be the space of R
m-valued functions defined on

Gh,d . Such space is endowed with the inner product

(uh, vh)h :=
∑

x∈Gh,d

hduh(x) · vh(x), uh, vh ∈ [L2(Gh,d)]m,

and admits an orthonormal basis {em
x,
}(x,
)∈(Gh,d ,{1,...,m}), whose elements are de-

fined as

em
x,
( y) = h−d/2δx, y f 
,

where { f 
}d

=1 is the canonical basis of R

d . If m = 1, the notation is stripped down
to

ex( y) = h−d/2δx, y.

Interpolator Operator For φ ∈ [C0]m , we define Ihφ ∈ [L2(Gh,d)]m as the
function agreeing with φ on Gh,d . When there is no ambiguity, we simply write φ

instead of Ihφ.
Discrete Differential Operators We use the notation ∂h,x


to denote a finite
difference operator approximating the partial derivative ∂x


. We denote by ∇h :=
[∂h,x1, . . . , ∂h,xd ] the associated finite difference gradient operator. Furthermore,
for each 
, we define the discrete second partial derivative D2

h,x

as the operator for

which the standard integration by parts formula

(D2
h,x


ρh, vh)h = −(Dh,x

ρh, Dh,x


vh)h (13)

holds, where Dh,x

is some (possibly different) finite difference operator approx-

imating the partial derivative ∂x

. We abbreviate ∇D,h := [Dh,x1, . . . , Dh,xd ]. As

a result of (13), the discrete operators D2
h,x


are symmetric (in the sense of finite
difference operators). We abbreviate

�h :=
d∑


=1

D2
h,x


to indicate the discrete Laplace operator. Specific details on ∇h and �h will be
provided in the next subsection.
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Remark 4. The operators ∇h and ∇D,h (both providing an approximation of the
continuous gradient ∇) may be different, and have different uses in our discretised
Dean–Kawasaki model (Definition FD-DK below). The operator∇h is deployed in
the noise, while the operator ∇D,h in the integration by parts formula (13).

For reasons which will become clear in Section 3.3 (see Block 3 therein), we set the
notation for suitable continuous and discrete backwards heat flows. Specifically,
for a sufficiently regular function ϕ and a final time T , we denote by φt the solution
the continuous backwards heat equation

∂tφ
t = −1

2
�φt on T

d × (0, T ), (14)

with final datum φT = ϕ. Analogously, we denote by φt
h the solution to the discrete

backwards heat equation

∂tφ
t
h = −1

2
�hφt

h on Gh,d × (0, T ), (15)

with final datum φT
h = Ihϕ. In the following, we also use the alternative notation

P z(ϕ) := φT −z (respectively, P z
h(Ihϕ) := φT −z

h ), to stress that P z(ϕ) (respec-
tively, P z

h(Ihϕ)) is the result of evolving a backwards heat equation (respectively,
a discrete backwards heat equation) starting from ϕ (respectively, from Ihϕ) for a
timespan z.

For y ∈ R, we define y+ := max{y; 0} and y− := −min{y; 0}. In addition, as
usual, we use the letter C to denote a generic constant, whose value may change
from line to line in the computations.

3.2. Assumptions and Discretised Dean–Kawasaki Model

Assumption FD1. (Discrete differential operators) Let p ∈ N be fixed. We make
the following assumptions on the discrete operators ∂h,x


and D2
h,x


:

• the discrete operators ∂h,x

and D2

h,x

are finite difference operators of order

p + 1. Explicitly, this means that
∣∣∂h,x


Ihφ(x) − ∂x

φ(x)

∣∣ ≤ C‖φ‖C p+1h p+1, x ∈ Gh,d , 
 ∈ {1, . . . , d},
(16)

∣∣D2
h,x


Ihφ(x) − D2
x


φ(x)
∣∣ ≤ C‖φ‖C p+2h p+1, x ∈ Gh,d , 
 ∈ {1, . . . , d},

(17)

for any φ ∈ C p+2(Td);
• The operators ∂h,x


and D2
h,x


commute.

Assumption FD2. (Brownian particle system and initial datum of Dean–Kawasaki
dynamics) Let p be as in Assumption FD1.We assume to have N ∈ N independent
d-dimensional Brownian motions {wk}N

k=1 moving in T
d . Moreover:

• the initial positions {wk(0)}N
k=1 are deterministic;
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• there exists a deterministic function ρ0,h ∈ L2(Gh,d) (which will serve as the
initial datum of the discretised Dean–Kawasaki dynamics in Definition FD-DK
below), satisfying the following properties:
– there exist h-independent constants ρmin and ρmax such that

0 < ρmin ≤ ρ0,h ≤ ρmax ;
– the empirical density of the initial configuration μN

0 := N−1∑N
k=1 δwk (0)

approximates ρ0,h with accuracy p + 1, in the sense that the inequality
∣∣∣〈μN

0 , η〉 − (ρ0,h, Ihη)h

∣∣∣

=
∣∣∣∣∣
N−1

N∑

k=1

η(wk(0)) − (ρ0,h, Ihη)h

∣∣∣∣∣
≤ Ch p+1‖η‖C p+1 , (18)

holds for each function η ∈ C p+1.

Assumption FD3. (Scaling of relevant parameters) We assume the scaling

h ≥ C(d, ρmin, ρmax )N−1/d | log N |2/d(1 + T ), (19)

for some T > 0, and where ρmin and ρmax have been introduced in Assump-
tion FD2. This scalingwill be needed to produce an exponentially decaying estimate
associated with ρ−

h , see (66) below.

Assumption FD4. (Mean-field limit) The solution to the discrete heat equation
⎧
⎨

⎩
∂tρh = 1

2
�hρh,

ρh(0) = ρ0,h,

(20)

is such that ρmin ≤ ρh ≤ ρmax (where ρmin and ρmax have been introduced in
Assumption FD2) for all times up to T (where T has have been introduced in
Assumption FD3).

We can now state the precise definition of our finite difference Dean–Kawasaki
model.

Definition FD-DK. (Finite difference Dean–Kawasaki model of order p + 1) As-
sume the validity of Assumptions FD1–FD4. We say that the L2(Gh,d)-valued
process ρh solves a finite difference Dean–Kawasaki model of order p + 1 if it
solves the system of stochastic differential equations
⎧
⎪⎪⎨

⎪⎪⎩

d (ρh, ex)h = 1

2
(�hρh, ex)h dt − N−1/2

∑

( y,
)∈(Gh,d ,{1,...,d})

(
Fρed

h, y,
, ∇hex
)

h
dβ( y,
), ∀ex,

ρh(0) = ρ0,h,

(21)

where {β( y,
)}( y,
)∈(Gh,d ,{1,...,d}) are standard independent Brownian motions, and
where Fρ ∈ L2(Gh,d) is defined as

Fρ(x) :=
√

ρ+
h (x), ∀x ∈ Gh,d . (22)
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Remark 5. If (20) admits a discrete maximum principle, then Assumption FD4 is
satisfied for any T > 0 and any non-negative datum ρ0,h . For example, the dis-
cretemaximumprinciple applies for the second-order symmetrical discrete Laplace
operator

�h f (x) := −2d fh(x) +∑
y∼x fh( y)

h2 , (23)

where y ∼ x indicates that y and x are adjacent grid points.

Remark 6. One may also omit the contribution (1 + T ) in the scaling (19), at the
expense of obtaining results with a worse dependency on the final time T . We are
not interested in optimising time dependencies in this work, and we simply include
the term 1 + T in order to get cleaner final results.

3.3. Key Ideas Behind the Proofs of the Main Results

The proofs of Theorems 2 and 3 are of inductive type. In order to simplify their
exposition, it is useful to first list a skeleton of the main building blocks.
Block 1. Discrete Dean–Kawasaki model: cross-variation analysis. At their core,
both proofs use basic Itô calculus to describe the time evolution of suitable nonlinear
functionals ψ of the quantities

(ρh, φh)h, (μN , φ), (24)

and of their expected values, where φh and φ are suitable test functions. The quan-
tities in (24) are linear functionals of ρh and μN , respectively. What is crucial, is
that the cross-variation of the processes (24) are—up to a small error—also linear
functionals of ρh andμN . The argument forμN is straightforward, and we can thus
defer it to the proofs themselves. As for ρh , we use Definition FD-DK to write

d(ρh, φi,h)h = 1

2
(�hρh, φi,h)hdt − N−1/2

∑

( y,
)∈(Gh,d ,{1,...,d})

(
Fρed

h, y,
, ∇hφi,h

)

h
dβ( y,
)

(25)

for two different test functions φi,h , i ∈ {1, 2}. Using the Itô formula and the
Parseval identity in [L2(Gh,d)]d , one finds that the cross-variation of the stochastic
noise of (25) is
〈

∑

( y,
)∈(Gh,d ,{1,...,d})

(
Fρed

h, y,
, ∇hφ1,h

)

h
β̇( y,
),

∑

( y,
)∈(Gh,d ,{1,...,d})

(
Fρed

h, y,
, ∇hφ2,h

)

h
β̇( y,
)

〉

=
∑

( y,
)∈(Gh,d ,{1,...,d})

(
ed

h, y,
,Fρ∇hφ1,h

)

h

(
ed

h, y,
,Fρ∇hφ2,h

)

h
(26)

= (
F2

ρ , ∇hφ1,h · ∇hφ2,h
)

h
(27)

(22)= (
ρ+

h ,∇hφ1,h · ∇hφ2,h
)

h (28)
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= (
ρh,∇hφ1,h · ∇hφ2,h

)
h + (

ρ−
h ,∇hφ1,h · ∇hφ2,h

)
h . (29)

The first term in (29) is indeed a linear functional of ρh . The second term (which we
will show to be negligible for suitable scaling regimes, see Section 3.8) takes into
account the a priori lack of knowledge concerning the non-negativity of solutions
to the discrete Dean–Kawasaki model (21). We also stress that the validity of the
computations above is independent of the order of the finite difference scheme (i.e.,
p).

Expression (28) crucially preserves the cross-variation structure associatedwith
the continuous Dean–Kawasaki (1) for nonnegative densities. More precisely, for-
mally testing (1) with a smooth test functions φi , i ∈ {1, 2}, givesˆ

Td
∂tρ φidx = 1

2

ˆ
Td

�ρ φidx − N−1/2
ˆ
Td

√
u ξ · ∇φidx

= 1

2

ˆ
Td

�ρ φidx − N−1/2
∑

s∈Z

ˆ
Td

√
ρ es · ∇φidxβ̇s, (30)

where the last inequality if justified by the representation ξ = ∑
s∈Zd esβ̇s, where

{es}s∈Zd is an orthonormal basis of [L2(Td)]d and {βs}s∈Zd are independent Brow-
nian motions. The noise cross-variation is then obtained using the Itô formula and
the Parseval idendity—this time in [L2(Td)]d—to obtain

〈
∑

k∈Zd

ˆ
Td

√
ρek · ∇φ1dxβ̇k,

∑

l∈Zd

ˆ
Td

√
ρel · ∇φ2dxβ̇l

〉

=
∑

k∈Z

ˆ
Td

√
ρek · ∇φ1dx

ˆ
Td

√
ρek · ∇φ2dx =

ˆ
Td

ρ∇φ1 · ∇φ2dx, (31)

and thus the cross-variations (31) and (28) are (modulo positive partρ+
h ) structurally

identical.
Block 2. Numerical error. There are two contributions to the numerical error,
namely,

– the difference of initial data μN
0 and ρh(0), and

– the difference in the evolution of test functions (say, φ and φh),

and both are proportional to h p+1. While the first contribution has the correct
bound by Assumption FD2, the second contribution needs to be estimated: The
main difficulty is that the interpolation of the test function arising from the cross-
variation of the second quantity in (24) (i.e., Ih(∇φ1 ·∇φ2)) does not coincide—in
general—with∇hφ1,h ·∇hφ2,h (i.e., the cross-variation of the first quantity in (24)).
We therefore need to show the bound

∣∣Ih(∇φ1 · ∇φ2) − ∇hφ1,h · ∇hφ2,h
∣∣ � h p+1

in order not to lose h-regularity in consecutive steps of our inductive proofs (more
details inBlock5below). Thenecessary tools for this task are contained inSection5.
Block 3. Deterministic dynamics of the test functions. As we are interested only in
the analysis of the fluctuations for the Dean–Kawasaki model, it is convenient to
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choose the deterministic functions ψ , φ, φh in such a way that as many drift terms
as possible in relevant Itô differentials vanish. This is the reason behind the choice
of the backwards heat equation (14) (respectively, (15)) for φ (respectively, for φh),
which directly compensates the diffusive nature of the particle system (respectively,
of the Dean–Kawasaki model). In practice, this is reflected in the useful equalities
(which follow from Lemma 15)

(ρh(t), φt
h)h − (ρh(0), φ0

h)h = (ρh(t) − E [ρh(t)] , φt
h)h, (32)

〈μN
t , φt 〉 − 〈μN

0 , φ0〉 = 〈μN
t − E

[
μN

t

]
, φt 〉, (33)

for φ, φh as in (14), (15). The discussion for ψ in the case of Theorem 2 is concep-
tually analogous, but technically more involved, and is devolved to the proof itself.
As for Theorem 3,ψ is chosen to be static, therefore this discussion does not apply.

We expand these considerations in Appendix A.2.
Block 4. Stretched exponential bounds for centred moments of the particle sys-
tem and the Dean–Kawasaki solution. This block associates the scaling regime of
Assumption FD3 to the validity of the moment bounds

max
t∈[0,T ] E

[∣∣
∣∣∣

M∏

m=1

〈μN
Tm

− E

[
μN

Tm

]
, ϕm〉 jm

∣∣
∣∣∣

]

≤
{

N−1T
} j/2

j j

[
M∏

m=1

‖∇ϕm‖ jm∞

]

and

max
t∈[0,T ] E

[∣∣∣∣∣

M∏

m=1

(ρh(Tm) − E [ρh(Tm)] , Ihϕm)
jm
h

∣
∣∣∣∣

]

≤
{
2N−1T C (d, ρmin, ρmax )

} j/2
j3 j

(
M∏

m=1

‖ϕm‖ jm
C1+


)

,

where T1, . . . , Tm ∈ [0, T ], and 
 was introduced in (10). The difference in the
norms of the test functions stems from a difference in underlying mathematical
arguments (depending on the circumstance, we will either use the maximum prin-
ciple or the Sobolev embedding Theorem). The necessary tools for this point are
contained in Section A.2.
Block 5. Inductive argument. Block 1 essentially states that computing cross-
variations of discrete Dean–Kawasaki models yields linear functionals (24), as
well as negligible corrections related to the negative part ρ−

h . Taking Block 2 also
into account, this leads to the following crucial observation.

The Itô correction term in the Itô differential of smooth enough nonlinear func-
tions ψ applied to (24) and their expected values is a sum of:

– negligible terms featuring ρ−
h and the numerical error, and

– yet another (possibly different) nonlinear function ψ̃ applied to (24) and their
expected values.

This property allows to set up both proofs using an induction argument whose
inductive step is the change in nonlinear function (from ψ to ψ̃): the residual terms
(featuring ρ−

h and the numerical error) are estimated at each step, and are not fed
to the next step.
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3.4. The Key Step for the Accuracy Estimate for Fluctuations in Theorem 2

For use in the next proposition, we define the two function spacesLq
pow,r, L̃q

pow,r
as

Lq
pow,r :=

{
ψ : R

M → R : ‖ψ‖Lq
pow,r

:= max
0≤q̃≤q

∥∥
∥(1 + | · |2)−r/2Dq̃ψ(·)

∥∥
∥

L∞ < ∞
}

,

L̃q
pow,r :=

{
ψ : R

M → R : ‖ψ‖Lq
pow,r

:= max
1≤q̃≤q

∥
∥∥(1 + | · |2)−r/2Dq̃ψ(·)

∥
∥∥

L∞ < ∞
}

.

Furthermore, we emphasise that we use the shorthand notations

〈μN
T − E[μN

T ],φ〉 :=
⎛

⎜
⎝

〈μN
T1

− E[μN
T1

], φ1〉
...

〈μN
TM

− E[μN
TM

], φM 〉

⎞

⎟
⎠ ,

(
(ρh(T ) − E[ρh(T )]),φh

)
h :=

⎛

⎜
⎝

(
(ρh(T1) − E[ρh(T1)]), φ1,h

)
h

...(
(ρh(TM ) − E[ρh(TM )]), φM,h

)
h

⎞

⎟
⎠ ,

(
(ρh − E[ρh]),φh

)
h(T ) := (

(ρh(T ) − E[ρh(T )]),φT
h

)
h,

t ∧ T := (t ∧ T1, . . . , t ∧ TM ),

i.e., we implicitly multiply vectors in an element-wise fashion respectively evaluate
vectorial functions by a vector of (time) parameters in an element-wise way.

Theorem 2 will be seen to be an easy consequence of the following crucial
proposition and an inductive argument:

Proposition 7. Let μN
t denote the empirical measure of N independent Brownian

particles as defined in (2).

Let ρh be a solution to the Dean–Kawasaki equation discretised using finite
differences on a uniform grid (21). Suppose furthermore that Assumption FD1
(details of operators �h and ∇h), Assumption FD2 (initial condition on Brownian
particle system), Assumption FD3 (scaling assumptions), and Assumption FD4
(positivity-preserving properties of mean-field limit) hold.

Let M, p ∈ N, q ∈ N, and r ∈ N0. Let ψ : R
M → R satisfy ψ ∈ Lq+2

pow,r. Let
ϕ ∈ [W 2+p+
,∞]M . Finally, let T = (T1, . . . , TM ) such that 0 < T1 ≤ . . . ≤
TM ≤ T .

Then there exist test functions ψ̃ t
kl , φ̃

t
kl , ψ0, and φ0 as well as T̃ kl ∈ R

M+1

such that
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E

[
ψ

(
N 1/2

〈
μN
T − E[μN

T ],ϕ
〉 )]

= ψ0(0) + 1

2N 1/2

M∑

k,l=1

ˆ Tk∧Tl

0
E

[
ψ̃ t

kl

(
N 1/2

〈
μN

t∧T̃
− E[μN

t∧T̃
], φ̃t

kl

〉 )]
dt

(34a)

and

E

[
ψ

(
N 1/2((ρh(T ) − E[ρh(T )]),Ihϕ

)
h

)]

= E

[
ψ

(
N 1/2((ρh − E[ρh]),φh

)
h(T )

)]

= ψ0(0) + 1

2N 1/2

M∑

k,l=1

ˆ Tk∧Tl

0
E

[
ψ̃ t

kl

(
N 1/2(ρh − E[ρh],Ih φ̃kl

)
h(t ∧ T̃ kl)

)]
dt

+ Errnum + Errneg (34b)

hold. Here, φ̃
t
kl is subject to the estimate

‖φ̃t
kl‖W q−1,∞ ≤ C(q, M, ‖ϕ‖W q,∞) for all t ≤ T, (35a)

while, if q ≥ 2, ψ̃ t is subject to the estimate

‖ψ̃ t‖Lq−2
pow,r+1

≤ C(q, r, M, ‖ϕ‖2W 1,∞ , T )‖ψ‖L̃q
pow,r

for all t ≤ T . (35b)

Furthermore, Errnum and Errneg are subject to the estimate

|Errnum | ≤ C(M, ρmax , r, ‖ϕ‖C p+2+
, T )
(‖ψ‖L̃2

pow,r
+ N−1/2‖Dψ‖L̃2

pow,r

)
h p+1,

(35c)

|Errneg| ≤ C(M, ρmax , r, ‖ϕ‖C1+
, T )‖ψ‖L̃2
pow,r

E(N , h) , (35d)

where E(N , h) is defined in (11).
Under the additional assumption that ‖ϕk‖L2 = 1 and

´
Td ϕk dx = 0 for all k,

that
´
Td ϕkϕl dx = 0 whenever Tk = Tl , and that

m(1/2)T1 := inf
x∈Td ,t> 1

2 T1
E[μN

t ](x) ≥ ρmin > 0,

we have the additional bounds

‖ψ̃ t
kl‖Lq−1

pow,r+1
≤ C(q, r, M, ‖ϕ‖2

W 1,∞ , T )
√

ρmin min
{
minm:Tm≥t (Tm − t) , mink,l:Tk �=Tl |Tk − Tl |

}‖ψ‖L̃q
pow,r

(35e)

and

|Errnum | ≤ C(r, ρmax , ρmin, d, M, ‖ϕ‖C p+2+
)
(‖ψ‖L̃1

pow,p
+ N−1/2‖Dψ‖L̃1

pow,p

)
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× 1
√

ρmin mink,l:Tk �=Tl |Tk − Tl |
h p+1, (35f)

as well as

|Errneg| ≤ C(M, ρmax , ρmin, d, r, ‖ϕ‖C1+
, T )‖ψ‖L̃1
pow,r

E(N , h)

× 1
√

ρmin mink,l:Tk �=Tl |Tk − Tl |
. (35g)

The proof is split into four steps. In Step 1, we provide deterministic estimates
of suitable backwards diffusive equations of relevance, as well as basic stochastic
estimates associated with the Dean–Kawasaki dynamics FD-DK. Step 2 (respec-
tively, Step 3) is devoted to obtaining (34a) (respectively, (34b)). Step 4 bounds the
residual terms Errnum,Errneg in (34b).

Proof of Proposition 7. Step 1: Definitions and Elementary Estimates Let φt
m sat-

isfy the backwards heat equation (14) subject to φ
Tm
m := ϕi . Define the function

ψ t : R
M → R by setting ψT := ψ and by evolving ψ t backward in time using

the backward diffusion equation

−∂tψ
t = 1

2

M∑

k,l=1

(
χt≤Tk χt≤Tl

〈
E[μN

t ],∇φt
k · ∇φt

l

〉
∂k∂lψ

t
)

. (36)

The purpose of the definitions of φt
m and ψ t will become clear in Step 2 and 3

below. Note that these definitions entail

Dq̃ψ t ( y) =
ˆ
RM

1

(det(2π�))1/2
exp

(− 1
2�

−1 z̃ · z̃)Dq̃ψ(z − z̃) d z̃,

(where for simplicitywe have assumed that the eigenvalues of� are nondegenerate;
otherwise, we replace the formula by its natural analogue) with

�t :=
ˆ T

t

1

2

M∑

k,l=1

χt̃<Tk
χt̃<Tl

〈
E[μN

t ],∇φt
k · ∇φt

l

〉
ek ⊗ el dt̃ . (37)

This implies
∣∣(1 + |z|2)r/2Dq̃ψ t (z)

∣∣

≤ C(r)

ˆ
RM

1

(det(2π�))1/2
exp

(− 1
2�

−1 z̃ · z̃)∣∣(1 + |z|2)r/2Dq̃ψ(z − z̃)
∣∣ d z̃

≤ C(r)

ˆ
RM

(1 + | z̃|2)r/2 1

(det(2π�))1/2
exp

(− 1
2�

−1 z̃ · z̃)

× ∣
∣(1 + |z − z̃|2)r/2Dq̃ψ(z − z̃)

∣
∣ d z̃,

and thus

‖(1 + | · |2)r/2Dq̃ψ t (·)‖L∞ ≤ C(r, p)(1 + |�|r/2)‖(1 + | · |2)r/2Dq̃ψ(·)‖L∞ .



Arch. Rational Mech. Anal. (2023) 247:76 Page 17 of 59 76

Observing that |�| ≤ C supt∈[0,T ] ‖φt∧T‖2
W 1,∞ T ≤ C‖ϕ‖2

W 1,∞ T , we conclude
that

‖ψ t‖L̃q
pow,r

≤ C(q, r, M, ‖ϕ‖2W 1,∞ , T )‖ψ‖L̃q
pow,r

. (38)

Arguing similarly, we deduce
∣∣(1 + |z|2)r/2Dq̃∂kψ

t (z)
∣∣

≤ C(r)

ˆ
RM

|�−1 z̃| 1

(det(2π�))1/2
exp

(− 1
2�−1 z̃ · z̃)∣∣(1 + |z|2)r/2Dq̃ψ(z − z̃)

∣
∣ d z̃

≤ C(r)

ˆ
RM

(1 + | z̃|2)r/2|�−1 z̃ · ek | 1

(det(2π�))1/2
exp

(− 1
2�−1 z̃ · z̃)

× ∣∣(1 + |z − z̃|2)r/2Dq̃ψ(z − z̃)
∣∣ d z̃,

and therefore

‖∂kψ
t‖Lq

pow,r
≤ C(q, r, M, ‖ϕ‖2W 1,∞ , T )|�−1/2ek |‖ψ‖Lq

pow,r
.

Using the estimate (49), under the additional assumptions on the ϕk stated above
we infer

‖∂kψ
t‖Lq

pow,r
≤ C(q, r, ‖ϕ‖2

W 1,∞ , T, M)

m1/2
(1/2)T1

min
{
minm:Tm≥t (Tm − t) , mink,l:Tk �=Tl |Tk − Tl |

}1/2 ‖ψ‖Lq
pow,r

(39)

whenever Tk > t . This in particular implies (35e). A similar argument yields

‖∂k∂lψ
t‖Lq

pow,r
≤ C(q, r, ‖ϕ‖2

W 1,∞ , T, M)

m1/2
(1/2)T1

min
{
minm:Tm≥t (Tm − t) , mink,l:Tk �=Tl |Tk − Tl |

}1/2 ‖∂kψ‖Lq
pow,r

(40)

whenever Tk, Tl > t .
Now fix η ∈ W 1+
. Let ηh satisfy the discrete backwards heat equation (15)

subject to ηT
h := Ihη. We observe that the moment estimate

E

[
sup

t∈[0,T ]

∣∣
∣∣
(
ρh − E[ρh], ηh

)
h(t)

∣∣
∣∣

2 j]1/2 j

≤ C( j, ρmax , ρmin, d)N−1/2T 1/2‖η‖W 1+


(41)

holds for any j ∈ N. To see this, we use (21) and deduce that, for any t > 0,
(
ρh − E[ρh], ηh

)
h(t) = Mt

where Mt is a martingale satisfying E[Mt ] = 0 and

〈Mt ,Mt 〉 = 1

2N
E

[ ∑

( y,
)∈(Gh,d ,{1,...,d})
(Fρ(t)ed

h, y,
,∇hηt
h

)
h(Fρ(t)ed

h, y,
,∇hηt
h

)
h

]

(28)= 1

2N
E
[(

ρ+
h (t),∇hηt

h · ∇hηt
h

)
h

]
.
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Doob’s martingale inequality, the moment bound (65), and the estimate

sup
t∈[0,T ]

‖∇hηt
h‖h,∞ ≤ ‖η‖W 1+
, (42)

(which is, depending on
, a consequence of either the discrete maximum principle
or the Sobolev embedding theorem) yield (41). It is also straightforward to notice
that

(
Ih[η], Ih[η]

)

h
≤ C‖η‖W 1,∞ . (43)

‖Ih[∇η1 · ∇η2]‖L∞ ≤ C‖η‖2W 2,∞ . (44)

Furthermore, we write
(
E[ρh(T )], Ihη

)

h
− 〈E

[
μN

T

]
, η〉

(32),(33),F D2=
(
ρh(0),PT

h (Ihη)
)

h
− 〈μN

0 ,PT η〉
=
(
ρh(0),PT

h (Ihη) − Ih[PT (η)]
)

h
+
{(

ρh(0), Ih[PT (η)]
)

h
− 〈μN

0 ,PT η〉
}

=: T1 + T2,

where P · and P ·
h have been introduced in Section 3.1. Term T1 is bounded using

(73), while T2 is settled using (18) from Assumption FD2. Altogether, this leads to
∣∣∣∣
(
E[ρh(T )], Ih[η]

)

h
−
〈
E

[
μN

T

]
, η
〉 ∣∣∣∣ ≤ C‖ρh(0)‖h‖η‖C p+1h p+1. (45)

Step 2: Proof of (34a) Using Itô’s formula and the fact that 〈μN
t − E[μN

t ], η〉 =
N−1∑N

n=1(η(wn(t)) − E[η(wn(t))]) holds for all η ∈ C0, we compute

d

(
ψ t
(

N 1/2
〈
μN

t∧T − E[μN
t∧T ],φt

〉 ))

= (∂tψ
t )

(
N 1/2

〈
μN

t∧T − E[μN
t∧T ],φt

〉 )
dt

+
M∑

k=1

∂kψ
t
(

N 1/2
〈
μN

t∧T − E[μN
t∧T ],φt

〉 )

× N−1/2
N∑

n=1

(
(∂tφ

t
k)(wn(t)) − E

[
(∂tφ

t
k)(wn(t))

])
dt

−
M∑

k=1

∂kψ
t
(

N 1/2
〈
μN

t∧T − E[μN
t∧T ],φt

〉 )
N 1/2

〈
∂tE[μN

t∧Tk
], φt

k

〉
dt

+
M∑

k=1

∂kψ
t
(

N 1/2
〈
μN

t∧T − E[μN
t∧T ],φt

〉 )
χt≤Tk N−1/2

N∑

n=1

∇φt
k(wn(t)) · dwn



Arch. Rational Mech. Anal. (2023) 247:76 Page 19 of 59 76

+
M∑

k=1

∂kψ
t
(

N 1/2
〈
μN

t∧T − E[μN
t∧T ],φt

〉 )1

2
χt≤Tk N−1/2

N∑

n=1

�φt
k(wn(t)) dt

+ 1

2

M∑

k,l=1

∂k∂lψ
t
(

N 1/2
〈
μN

t∧T − E[μN
t∧T ],φt

〉 )

× χt≤Tk χt≤Tl N−1
N∑

n=1

∇φt
k(wn(t)) · ∇φt

l (wn(t)) dt.

Using the fact that ∂tE[μN
t ] = 1

2�E[μN
t ], plugging in the equation (14) satisfied

by φt , and taking the expected value, we obtain

dE

[
ψ t
(

N 1/2
〈
μN

t∧T − E[μN
t∧T ],φt

〉 )]

= E

[
(∂tψ

t )

(
N 1/2

〈
μN

t∧T − E[μN
t∧T ],φt

〉 )]
dt

+ 1

2
E

[ M∑

k,l=1

χt≤Tk χt≤Tl ∂k∂lψ
t
(

N 1/2
〈
μN

t∧T − E[μN
t∧T ],φt

〉 )

× N−1
N∑

n=1

∇φt
k(wn(t)) · ∇φt

l (wn(t))

]
dt.

Integrating in t , recalling that φT = ϕ, and plugging in the equation (36) satisfied
by ψ t , we obtain

E

[
ψ

(
N 1/2

〈
μN
T − E[μN

T ],ϕ
〉 )]

= E

[
ψ0
(

N 1/2
〈
μN
0 − E[μN

0 ],φ0
〉 )]

+ 1

2N 1/2

ˆ T

0

M∑

k,l=1

χt≤Tk χt≤Tl E

[
∂k∂lψ

t
(

N 1/2
〈
μN

t∧T − E[μN
t∧T ],φt

〉 )

(46)

× N 1/2
〈
μN

t − E[μN
t ],∇φt

k · ∇φt
l

〉 ]
dt.

We then define ψ̃ t
kl : R

M+1 → R as

ψ̃ t
kl(s1, . . . , sM+1) := χt≤min{Tk ,Tl }∂k∂lψ

t (s1, . . . , sM )sM+1 (47a)

and φ̃
t
kl : T

d → R
M+1 as

φ̃
t
kl(x) :=

⎛

⎜⎜⎜
⎝

φt
1(x)
...

φt
M (x)

∇φt
k(x) · ∇φt

l (x)

⎞

⎟⎟⎟
⎠

. (47b)
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Moreover, we set T̃ kl := (T1, . . . , TM ,min{Tk, Tl}). With these definitions, and
in view of μN

0 = E[μN
0 ] (which follows from Assumption FD2), equation (46)

directly implies (34a).
Furthermore, the estimate (35a) follows immediately from

‖φt (·)‖W q,∞ ≤ ‖φT (·)‖W q,∞

(which is a consequence of the maximum principle) and the definition of φ̃
t
kl .

Likewise, the estimate (35b) is immediate by the definition of ψ̃ t
kl , the estimate

(38), and the definition of the norms ‖ · ‖Lq
pow,r

. Finally, from (39) and the definition

of ψ̃ t
kl we deduce (35e).

Step 3: Proof of (34b). Using Itô’s formula and (21), we infer

d

(
ψ t
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
))

= (∂tψ
t )
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)
dt

+
M∑

k=1

∂kψ
t
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)

N 1/2(ρh − E[ρh], ∂tφh,k
)

h(t) dt

+ 1

2

M∑

k=1

∂kψ
t
(

N 1/2(ρh − E[ρh],φh
)

h(t ∧ T )
)
χt≤Tk

× N 1/2(�hρh − E[�hρh], φh,k
)

h(t) dt

−
M∑

k=1

∂kψ
t
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)

× χt≤Tk

∑

( y,
)∈(Gh,d ,{1,...,d})
(Fρ(t)ed

h, y,
, ∇hφt
k

)
h dβ( y,
)

+ 1

2

M∑

k,l=1

∂k∂lψ
t
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)

× χt≤Tk∧Tl

∑

( y,
)∈(Gh,d ,{1,...,d})
(Fρ(t)ed

h, y,
,∇hφt
h,k

)
h(Fρ(t)ed

h, y,
,∇hφt
h,l

)
h dt.

Using the fact that −∂tφh,k = χt≤Tk
1
2�hφh,k and taking the expected value, we

obtain

dE

[
ψ t
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)]

= E

[
(∂tψ

t )
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)]

dt

+ 1

2

M∑

k,l=1

χt≤Tk∧Tl E

[
∂k∂lψ

t
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)

×
∑

( y,
)∈(Gh,d ,{1,...,d})
(Fρ(t)ed

h, y,
, ∇hφt
h,k

)
h(Fρ(t)ed

h, y,
,∇hφt
h,l

)
h

]
dt.
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Using the cross-variation identity (28), we get

dE

[
ψ t
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)]

= E

[
(∂tψ

t )
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)]

dt

+ 1

2

M∑

k,l=1

χt≤Tk∧Tl E

[
∂k∂lψ

t
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)

× (
ρ+

h (t),∇hφt
h,k · ∇hφt

h,l

)
h

]
dt.

Switching to integral notation, using (36) as well as φT
h = Ihϕ, and adding zero,

we obtain

E

[
ψ
(

N 1/2(ρh(T ) − E[ρh(T )],Ihϕ
)

h

)]

= E

[
ψ0
(

N 1/2(ρh − E[ρh],φh
)

h(0)
)]

− 1

2

M∑

k,l=1

ˆ Tk∧Tl

0
E

[
∂k∂lψ

t
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)] 〈

E[μN
t ], ∇φt

k · ∇φt
l

〉
dt

+ 1

2

M∑

k,l=1

ˆ Tk∧Tl

0
E

[
∂k∂lψ

t
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)

× (
ρh(t),∇hφt

h,k · ∇hφt
h,l

)
h

]
dt

+ 1

2

M∑

k,l=1

ˆ Tk∧Tl

0
E

[
∂k∂lψ

t
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)

× (
ρ−

h (t),∇hφt
h,k · ∇hφt

h,k

)
h

]
dt.

Adding zero once more and using the fact that ρh(0) = E[ρh(0)] (which is a
consequence of Assumption FD2), we arrive at

E

[
ψ
(

N 1/2(ρh(T ) − E[ρh(T )], Ihϕ
)

h

)]

= ψ0(0) + 1

2N 1/2

M∑

k,l=1

ˆ Tk∧Tl

0
E

[
∂k∂lψ

t
(

N 1/2(ρh − E[ρh], Ihφ
)

h(t ∧ T )
)

× N 1/2(ρh(t) − E[ρh(t)], Ih[∇φt
k · ∇φt

l ]
)

h

]
dt

+ Errnum,1 + Errnum,2 + Errneg,

where we have set

Errneg := 1

2

M∑

k,=1

ˆ Tk∧Tl

0
E

[
∂k∂lψ

t
(

N 1/2(ρh − E[ρh], φt
h

)
h(t ∧ T )

)
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× (
ρ−

h (t),∇hφt
h,k · ∇hφt

h,l

)
h

]
dt,

as well as

Errnum,1 :=1

2

M∑

k,l=1

ˆ Tk∧Tl

0
E

[
∂k∂lψ

t
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)]

×
((

E[ρh],Ih[∇φt
k · ∇φt

l ]
)

h −
〈
E[μN

t ], ∇φt
k · ∇φt

l

〉 )
dt

+ 1

2

M∑

k,l=1

ˆ Tk∧Tl

0
E

[
∂k∂lψ

t
(

N 1/2(ρh − E[ρh], φh
)

h(t ∧ T )
)

×
((

ρh(t),∇φt
h,k · ∇φt

h,l

)
h − (

ρh(t),Ih[∇φt
k · ∇φt

l ]
)

h

)]
dt,

and

Errnum,2 := 1

2N 1/2

M∑

k,l=1

ˆ Tk∧Tl

0
E

[(
∂k∂lψ

t
(

N 1/2(ρh − E[ρh],φh
)

h(t ∧ T )
)

− ∂k∂lψ
t
(

N 1/2(ρh − E[ρh], Ihφ
)

h(t ∧ T )
))

× N 1/2(ρh(t) − E[ρh(t)],Ih[∇φt
k · ∇φt

l ]
)

h

]
dt.

Using the definitions (47a) and (47b) and setting Errnum := Errnum,1 + Errnum,2,
this yields the representation (34b).
Step 4: Estimates for Errneg and Errnum,i We begin with Errneg; it is easily seen to
be bounded by

|Errneg|
(41)≤ C(ρmax , r, ‖ϕ‖C1+
, T )

M∑

k,l=1

ˆ Tk∧Tl

0
‖∂k∂lψ

t‖L0
pow,r

E
[‖ρ−

h (t)‖h
]1/2

dt

(66), F D3≤ C(ρmax , ρmin, d, r, ‖ϕ‖C1+
, T )E(N , h)

M∑

k,l=1

ˆ Tk∧Tl

0
‖∂k∂lψ

t‖Lr
pow,0

dt.

This entails (35d). Furthermore, the analogue of (39) for the second derivative, and
the time integrability of the singularity {minm:Tm≥t (Tm − t)}−1/2 entail (35g).

We next note that E[ρh(t)] simply solves the discretised heat equation, while
E[μN

t ] solves the exact heat equation. Using (75), (45), (65), and (41), we obtain

|Errnum,1|
(75),(45),(41)≤ C(r, ρmax , T )

M∑

k,l=1

ˆ Tk∧Tl

0

(
1 + T (r+1)/2‖ϕ‖r+1

C1+


)
‖∂k∂lψ

t‖L0
pow,r

×
(
‖ϕ‖2C p+2‖ρh(0)‖hh p+1 + E

[‖ρh(t)‖r+1
L2(Td )

]1/(r+1)‖ϕ‖2C p+2+
h p+1
)
dt
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(65)≤ C(r, ρmax , ρmin, d, T )

M∑

k,l=1

ˆ Tk∧Tl

0

(
‖ϕ‖2C p+2+
h p+1

)

×
(
1 + T (r+1)/2‖ϕ‖r+1

C1+


)
‖∂k∂lψ

t‖L0
pow,r

dt. (48a)

Finally, we deduce from (41), (44), (64) and (73)

|Errnum,2| ≤ C(r, ρmax , ρmin, d, T )

N 1/2

M∑

k,l=1

‖ϕ‖C p+1h p+1
(
1 + T (r+1)2‖ϕ‖r+1

C2+


)

×
ˆ Tk∧Tl

0
‖∂k∂l Dψ t‖L0

pow,r
dt. (48b)

Combining (48a) and (48b) with (38) and (65), we infer (35c). Using in addition
(39) and (40), we deduce (35f). The proof is complete. ��
Lemma 8. Let 0 ≤ T1 ≤ T2 ≤ . . . ≤ TM ≤ T . Suppose that all ϕm have vanishing
average and are normalized in the sense ‖ϕm‖L2(Td ) = 1; suppose furthermore
that whenever Tm = Tm̃, the corresponding ϕm and ϕm̃ are orthogonal to each
other in L2(Td). Define

m(1/2)T1 := inf
x∈Td ,t≥ 1

2 T1

E[μN
t ](x).

Denoting the pseudo-inverse of the (possibly degenerate) nonnegative symmet-
ric matrix �t defined in (37) by �−1

t , we have the estimate

|�−1
t | ≤ C(M)

m(1/2)T1 min
{
minm:Tm≥t (Tm − t) , mink,l:Tk �=Tl |Tk − Tl |

} . (49)

Proof. To simplify notation, we define T0 := 1
2T1. Estimating the matrix in (37),

writing ϕk(x) := ∑
n∈Zd ak,n exp(−in ·x), and using the fact that−∂tφ

t
k = 1

2�φt
k ,

we get for any α ∈ R
d

2

m(1/2)T1
�tα · α

≥ 1

m(1/2)T1

M∑

m=1

ˆ Tm∨t

Tm−1∨t

〈

E[μN
t ], ∇

( M∑

k=m

αkφ
t
k

)
· ∇
( M∑

l=m

αlφ
t
l

)〉

dt

≥
M∑

m=1

ˆ Tm∨t

Tm−1∨t

ˆ
Td

∇
( M∑

k=m

αkφ
t
k

)
· ∇
( M∑

l=m

αlφ
t
l

)
dx dt

=
M∑

m=1

∑

n∈Zd

M∑

k,l=m

ˆ Tm∨t

Tm−1∨t
e− 1

2 (Tk−t)|n|2e− 1
2 (Tl−t)|n|2 dt

× |n|2ak,nal,nαkαl
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=
M∑

m=1

∑

n∈Zd

M∑

k,l=m

(
e
−
(
1
2 (Tl+Tk )−Tm∨t

)
|n|2 − e

−
(
1
2 (Tl+Tk )−Tm−1∨t

)
|n|2
)

× ak,nal,nαkαl

=
M∑

m=1

∑

n∈Zd

M∑

k,l=m

(
1 − e−(Tm∨t−Tm−1∨t)|n|2

)
ak,nal,nαkαl

× e− 1
2 (Tl−Tm∨t)|n|2e− 1

2 (Tk−Tm∨t)|n|2

≥ 1

2

M∑

m=1

∑

n∈Zd\{0}

M∑

k,l=m

(
(Tm ∨ t − Tm−1 ∨ t) ∧ 1

)
ak,nal,nαkαl

× e− 1
2 (Tl−Tm∨t)|n|2e− 1

2 (Tk−Tm∨t)|n|2

= 1

2

M∑

m=1

(
(Tm ∨ t − Tm−1 ∨ t) ∧ 1

)

×
ˆ
Td

(
M∑

k=m

αk

(
φ

Tm∨t
k − −

ˆ
Td

φ
Tm∨t
k dx̃

))( M∑

l=m

αl

(
φ

Tm∨t
l − −

ˆ
Td

φ
Tm∨t
l dx̃

))

dx.

Using the fact thatφTk
k = ϕk , that ‖φt

k‖L2(Td ) ≤ 1 for all t , that theϕk have vanishing
average, and our assumption on the orthogonality of the ϕk with the same Tk , we
deduce

2

m(1/2)T1
�tα · α ≥ c(M)min

{
min

m:Tm≥t
(Tm − t) , min

k,l:Tk �=Tl
|Tk − Tl |

} ∑

1≤m≤M :Tm≥t

|αm |2.

Note that (�t )kl = 0 whenever Tk < t or Tl < t . This concludes our proof. ��

3.5. Proof of Theorem 2

For finite difference discretization schemes, Theorem 2 is an easy consequence
of Proposition 7.

Proof of Theorem 2 in the finite difference case. Taking the difference of (34b) and
(34a) and using (35f) and (35g), we see that Proposition 7 implies
∣∣
∣∣E
[
ψ

(
N 1/2(ρh(T ) − E[ρh(T )], Ihϕ

)
h

)]
− E

[
ψ

(
N 1/2

〈
μN
T − E[μN

T ],ϕ
〉 )]∣∣

∣∣

(50)

≤ 1

2N 1/2

M∑

k,l=1

ˆ Tk∧Tl

0

∣
∣∣∣E
[
ψ̃ t

kl

(
N 1/2(ρh − E[ρh], Ih φ̃kl

)
h(t ∧ T̃ kl)

)]

− E

[
ψ̃ t

kl

(
N 1/2

〈
μN

t∧T̃
− E[μN

t∧T̃
], φ̃t

kl

〉 )] ∣∣∣∣ dt

+ C(M, ρmax , ρmin, d, r, ‖ϕ‖C p+2+
)
(‖ψ‖L1

pow,1
+ N−1/2‖Dψ‖L1

pow,1

)



Arch. Rational Mech. Anal. (2023) 247:76 Page 25 of 59 76

× 1
√

ρmin mink,l:Tk �=Tl |Tk − Tl |
h p+1

+ C(M, ρmax , ρmin, d, r, ‖ϕ‖C1+
, T )‖ψ‖L1
pow,1

E(N , h)

× 1
√

ρmin mink,l:Tk �=Tl |Tk − Tl |
. (51)

The inequality (40) implies

ˆ T

0
‖ψ̃ t

kl‖L̃2 j−2
pow,r+1

dt ≤ C( j, M, ‖ϕ‖2W 1,∞ , m(1/2)T1, T )‖ψ‖L2 j−1
pow,r

. (52)

In case j = 1, (51) entails the desired bound by the estimate on ψ̃ t
kl upon replacing

ψ in (50) by its convolution with a mollifier on the scale N−1/2, which we denote
by ηN−1/2 . This is a straightforward result of the convolutional inequalities

‖D(ηN−1/2 ∗ ψ)‖L1
pow,1

≤ C N 1/2‖ψ‖L1
pow,1

,

|ηN−1/2 ∗ ψ − ψ | ≤ C N−1/2‖ψ‖L1
pow,0

.

For j > 1, taking the difference of (34b) and (34a), using the bounds (35a), (35c),
(35d), and iterating this estimate j − 1 times (i. e. using in each step again (34b)
and (34a) to estimate the terms of the form

E

[
ψ̃ t

kl

(
N 1/2(ρh − E[ρh], Ih φ̃kl

)
h(t ∧ T̃ kl)

)]
−
[
ψ̃ t

kl

(
N 1/2

〈
μN

t∧T̃
− E[μN

t∧T̃
], φ̃t

kl

〉 )]
,

only bounding the terms in ‖ψ̃ t
kl‖L̃2 j−2

pow,r+1
using (52) in the last step), we deduce

E

[
ψ̃ t

kl

(
N 1/2(ρh − E[ρh],Ih φ̃kl

)
h(t ∧ T̃ kl)

)]
−
[
ψ̃ t

kl

(
N 1/2

〈
μN

t∧T̃
− E[μN

t∧T̃
], φ̃t

kl

〉 )]

≤
j−1∑

j̃=1

{
N−( j̃−1)/2

(
C(M, ρmax , ρmin, d, j, ‖ϕ‖C p+2+
+ j̃−1)h

p+1

+ C(M, ρmax , ρmin, d, j, ‖ϕ‖C1+
+ j̃−1 , T )E(N , h)

)
‖ψ‖L2 j−1

pow, j̃

+ C(M, ρmax , ρmin, d, j, ‖ϕ‖C p+2+
+ j̃−1)N− j̃/2h p+1‖Dψ‖L2 j−1
pow, j̃

}

+ C(M, ρmax , ρmin, d, j, ‖ϕ‖2W j−1,∞ T )‖ψ‖L2 j−1
pow,1

N− j/2. (53)

We use estimate (53) in (51) to bound the terms of the form

ˆ Tk∧Tl

0

∣∣∣∣E
[
ψ̃ t

kl

(
N 1/2(ρh − E[ρh], Ih φ̃kl

)
h(t ∧ T̃ kl)

)]

−
[
ψ̃ t

kl

(
N 1/2

〈
μN

t∧T̃
− E[μN

t∧T̃
], φ̃t

kl

〉 )]∣∣∣∣ dt,
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Therefore, estimate (53) turns into
∣∣
∣∣E
[
ψ

(
N 1/2((ρh − E[ρh]), Ihϕ

)
h(T )

)]
− E

[
ψ

(
N 1/2

〈
μN
T − E[μN

T ],ϕ
〉 )]∣∣

∣∣

≤ C(M, ρmax , ρmin, d, j, T , ‖ϕ‖C p+2+
+ j−1 , m(1/2)T1)h
p+1‖ψ‖L2 j−1

pow,0

+ C(M, ρmax , ρmin, d, j, T , ‖ϕ‖C p+2+
+ j−1 , m(1/2)T1)N− j/2h p+1‖Dψ‖L2 j−1
pow,0

+ C(M, ρmax , ρmin, d, j, T , ‖ϕ‖C1+
+ j−1 , m(1/2)T1)E(N , h) ‖ψ‖L2 j−1
pow,0

+ C(M, ρmax , ρmin, d, j, T , ‖ϕ‖2W j,∞ , m(1/2)T1)‖ψ‖L2 j−1
pow,0

N− j/2.

Finally, we replace ψ by ηN− j/2 ∗ ψ in (50) (note that we have |ψ − ηN− j/2 ∗ ψ | ≤
C‖Dψ‖L∞ N− j/2 and ‖D(ηN− j/2 ∗ψ)‖Lm

pow,r
≤ C N j/2‖ψ‖Lm

pow,r
). This, together

with the fact that m(1/2)T1 is controlled by ρmin , proves Theorem 2 in the case of
finite difference discretisations. ��

3.6. Recursive Step for Theorem 3

In Theorem 2, one is forced to distinguish between the different final times
T1, . . . , TM due to the singular nature of the evolution equation for ψ (36). In
contrast, ψ is static in Theorem 3: therefore, its proof can be detailed in the (no-
tationally much more convenient) case of equal final times T1 = · · · = Tm = T
without losing in generality.

We first introduce some handy notation. For t ≤ T , we abbreviate

TN (ϕ, T, t) := 〈μN
t , φt 〉 − 〈μN

0 , φ0〉 = 1

N

N∑

k=1

φt (wk(t)) − 1

N

N∑

k=1

φ0(wk(0))

and

SN (Ihϕ, T, t) := (ρh(t), φt
h)h − (ρh(0), φ0

h)h,

where φt (respectively, φt
h) solves the backwards heat equation (14) (respectively,

the backwards discrete heat equation (15)) with datum ϕ (respectively, Ihϕ) at
time T . Given a multi-index j = ( j1, . . . , jM ) such that | j |1 = j ∈ N and a set of
smooth test functions ϕ = (ϕ1, . . . , ϕM ), we abbreviate

S j
N (Ihϕ, T, t) :=

M∏

m=1

S jm
N (Ihϕm, T, t), T j

N (ϕ, T, t) :=
M∏

m=1

T jm
N (ϕm, T, t)

(54)

and we set

D( j ,ϕ, T ) :=
∣∣∣E
[
S j

N (Ihϕ, T, T )
]

− E

[
T j

N (ϕ, T, T )
]∣∣∣ . (55)

In order to show Theorem 3, we first provide a series of preliminary results.
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Lemma 9. (First moments) The first moments of the Dean–Kawasaki model in
Definition FD-DK agree with those of the Brownian particle system. Namely, for
ϕ ∈ C1, we have E [SN (Ihϕ, T, T )] = E [TN (ϕ, T, T )] = 0, where SN and TN

have been defined in (54).

Proof. This follows promptly from Lemma 15, as neither SN (Ihϕ, T, t) nor
TN (ϕ, T, t) admits drift. ��
Lemma 10. (Second moments) Let 
 be as in (10). Assume the validity of As-
sumptions FD1, FD2, FD4, FD3. Fix ϕ1, ϕ2 ∈ C3+p+
. Let ρh be as given in
Definition FD-DK. Then

|E [SN (Ihϕ1, T, T )SN (Ihϕ2, T, T )] − E [TN (ϕ1, T, T )TN (ϕ2, T, T )]|
≤ N−1T ‖ϕ1‖C1+
‖ϕ2‖C1+
 E(N , h)

+ h p+1N−1 max{T 1/2; T }C(d, ρmax , ρmin)‖ϕ1‖C p+3+
‖ϕ2‖C p+3+
, (56)

where SN and TN have been defined in (54), and E(N , h) has been introduced in
(11).

Proof. Set r t
h := ∇hφt

1,h · ∇hφt
2,h − Ih

{∇φt
1 · ∇φt

2

}
. The Itô differential formula

for SN (ϕ1, T, t)SN (ϕ2, T, t) stated in Lemma 15 gives

dE [SN (Ihϕ1, T, t)SN (Ihϕ2, T, t)]

= N−1
E
[
(ρ+

h (t),∇hφt
1,h · ∇hφt

2,h)h
]
dt

= N−1
E
[
(ρh(t),∇hφt

1,h · ∇hφt
2,h)h

]
dt + N−1

E
[
(ρ−

h (t),∇hφt
1,h · ∇hφt

2,h)h
]
dt

= N−1
E
[(

ρh(t),Ih
{∇φt

1 · ∇φt
2

})
h

]
dt + N−1

E
[
(ρ−

h (t),∇hφt
1,h · ∇hφt

2,h)h
]
dt

+ N−1
E
[
(ρh(t), r t

h)h
]
dt

= N−1
E
[{(

ρh(t),Ih
{∇φt

1 · ∇φt
2

})
h − (

ρh(0),P t
h

(
Ih
{∇φt

1 · ∇φt
2

}))
h

}]
dt

+ N−1
E
[(

ρh(0),P t
h

(
Ih
{∇φt

1 · ∇φt
2

}))
h

]
dt

+ N−1
E
[
(ρ−

h (t),∇hφt
1,h · ∇hφt

2,h)h
]
dt + N−1

E
[
(ρh(t), r t

h)h
]
dt =:

4∑

i=1

Ai dt,

where P ·
h is the solution operator for the discrete backwards heat equation, see

Section 3.1. On the other hand Lemma 15 also implies

dE [TN (ϕ1, T, t)TN (ϕ2, T, t)]

= N−1
E

[
1

N

N∑

k=1

∇φt
1(wk(t)) · ∇φt

2(wk(t))

]

dt

= N−1
E

[(
1

N

N∑

k=1

∇φt
1(wk(t)) · ∇φt

2(wk(t)) − 1

N

N∑

k=1

P t (∇φt
1 · ∇φt

2)(wk(0))

)]

dt

+ N−1
E

[
1

N

N∑

k=1

P t (∇φt
1 · ∇φt

2)(wk(0))

]

dt =:
2∑

i=1

Bidt,
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where P · is the solution operator for the backwards heat equation, see Section 3.1.
We get A1 = B1 since the first (centred) moments agree (see Lemma 9). Further-
more, (66) and (19) grant

|A3|dt ≤ N−1‖∇hφt
1,h‖∞‖∇hφt

2,h‖∞E(N , h) dt

≤ N−1‖∇hφt
1,h‖∞‖∇hφt

2,h‖∞E(N , h) dt ≤ N−1‖ϕ1‖C1+
‖ϕ2‖C1+
E(N , h) dt.

The bounds (75) and (19) promptly give

ˆ T

0
|A4|dt ≤ N−1 sup

t∈[0,T ]
‖r t

h‖h

ˆ T

0
E [‖ρh(t)‖h] dt

≤ C N−1 sup
t∈[0,T ]

‖r t
h‖h T 1/2

(ˆ T

0
E
[‖ρh(t)‖2h

]
dt

)1/2

(75)≤ Ch p+1N−1‖ϕ1‖C p+2+
‖ϕ2‖C p+2+
 T 1/2
(ˆ T

0
E
[‖ρh(t)‖2h

]
dt

)1/2

(19)(65)≤ h p+1N−1 max{T 1/2; T }C(d, ρmax , ρmin)‖ϕ1‖C p+2+
‖ϕ2‖C p+2+
.

We decompose A2 − B2 as

A2 − B2 = N−1
E
[(

ρh(0),P t
h

(
Ih
{∇φt

1 · ∇φt
2

}))
h

]
dt

− N−1
E

[
1

N

N∑

k=1

P t (∇φt
1 · ∇φt

2)(wk(0))

]

dt

= −N−1

{

E

[
1

N

N∑

k=1

P t (∇φt
1 · ∇φt

2)(wk(0))

]

dt

− (
ρh(0), Ih[P t (∇φt

1 · ∇φt
2)]
)

h dt
}

+ N−1 (ρh(0),P t
h

(
Ih
{∇φt

1 · ∇φt
2

})− Ih[P t (∇φt
1 · ∇φt

2)]
)

h dt

=: C1 + C2, (57)

where we have also used that ρh(0) is deterministic. The term C1 is bounded using
(18) applied to the function η := P t (∇φt

1 · ∇φt
2), while the term C2 is dealt with

using (73) with choice ϕ := ∇φt
1 · ∇φt

2. All together, we obtain the bound

|A2 − B2| ≤ Ch p+1N−1(C + ρmax )‖ϕ1‖C p+3‖ϕ2‖C p+3dt. (58)

The proof is complete. ��
Proposition 11. (Recursive formula for higher moments) Let 
 be as in (10). Fix

ϕ = (ϕ1, . . . , ϕK ) ∈ [C p+3+

]M

, a vector j = ( j1, . . . , jM ) such that | j |1 = j .
For each pair i, j ∈ {1, . . . , M}, let j i j be as defined in Lemma 15. Let E(N , h)

be as defined in (11). Assume the validity of Assumptions FD1, FD2, FD4, FD3.
We recall the abbreviation for the difference of moments [see (54), (55)]

D( j ,ϕ, T ) :=
∣∣∣E
[
S j

N (Ihϕ, T, T )
]

− E

[
T j

N (ϕ, T, T )
]∣∣∣
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=
∣∣∣∣∣
E

[
M∏

m=1

{
(ρh(T ), φT

m,h)h − (ρh(0), φ0
m,h)h

} jm
]

−E

⎡

⎣
M∏

m=1

{
1

N

N∑

k=1

φT
m(wk(T )) − 1

N

N∑

k=1

φ0
m(wk(0))

} jm
⎤

⎦

∣∣
∣∣∣∣
.

Then we have the recursive formula

D( j ,ϕ, T ) ≤ N−1
M∑

k,l=1

( jk − δkl) jl
2

ˆ T

0
D({ jkl ; 1}, {φt ; ∇φt

k · ∇φt
l }, t)dt

+ N−1ρmax

M∑

k,l=1

( jk − δkl) jl
2

ˆ T

0
D( jkl , φt , t)‖ϕk‖C1+
‖ϕl‖C1+
dt

+ {
C N−1T C(d, ρmax , ρmin)

} j/2
(2 j)3( j−2)E(N , h)

×
⎛

⎝
M∑

k,l=1

( jk − δkl) jl
2

⎞

⎠
(

M∏

m=1

‖ϕm‖ jm
C1+


)

+ h p+1 {C N−1 max{T 1/2; T }C(d, ρmax , ρmin)
} j/2

(2 j)3( j−2)

×
⎛

⎝
M∑

k,l=1

( jk − δkl) jl
2

⎞

⎠
(

M∏

m=1

‖ϕm‖ jm
C p+3+


)

=: A j−1
recursion + A j−2

recursion + Errneg + Errnum . (59)

Proof. We use Lemma 15 to deduce

dE

[
S j

N (Ihϕ, T, t)
]

= N−1
E

⎡

⎣
M∑

k,l=1

( jk − δkl) jl
2

S jkl

N (Ihϕ, T, t)
(
ρ+

h (t),∇hφt
k,h · ∇hφt

l,h

)
h

⎤

⎦ dt

= N−1
E

⎡

⎣
M∑

k,l=1

( jk − δkl) jl
2

S jkl

N (Ihϕ, T, t)
(
ρh(t),∇hφt

k,h · ∇hφt
l,h

)
h

⎤

⎦ dt

+ N−1
E

⎡

⎣
M∑

k,l=1

( jk − δkl) jl
2

S jkl

N (Ihϕ, T, t)
(
ρ−

h (t),∇hφt
k,h · ∇hφt

l,h

)
h

⎤

⎦ dt.

In analogy to the notation of Lemma 10, we define

r t
k,l,h := ∇hφt

k,h · ∇hφt
l,h − Ih

{∇φt
k · ∇φt

l

}
.

Let P · (respectively, P ·
h) be the solution operator for the backwards heat equation

(respectively, for the discrete backwards heat equation), see Section 3.1. We then
proceed above as

dE

[
S j

N (Ihϕ, T, t)
]
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= N−1
E

⎡

⎣
M∑

k,l=1

( jk − δkl) jl
2

S jkl

N (Ihϕ, T, t)
(
ρh(t),Ih

{∇φt
k · ∇φt

l

})
h

− (
ρh(0),P t

h

(
Ih
{∇φt

k · ∇φt
l

}))
h

]
dt

+ N−1
E

⎡

⎣
M∑

k,l=1

( jk − δkl) jl
2

S jkl

N (Ihϕ, T, t)
(
ρh(0),P t

h

(
Ih
{∇φt

k · ∇φt
l

}))
h

⎤

⎦ dt

+ N−1
E

⎡

⎣
M∑

k,l=1

( jk − δkl) jl
2

S jkl

N (Ihϕ, T, t)
(
ρ−

h (t),∇hφt
k,h · ∇hφt

l,h

)
h

⎤

⎦ dt

+ N−1
E

⎡

⎣
M∑

k,l=1

( jk − δkl) jl
2

S jkl

N (Ihϕ, T, t)(ρh(t), r t
k,l,h)h

⎤

⎦ dt =:
4∑

i=1

Aidt .

On the other hand

dE

[
T j

N (ϕ, T, t)
]

= N−1
E

⎡

⎣
M∑

k,l=1

( jk − δkl) jl
2

T jkl

N (ϕ, T, t)

(
1

N

N∑

r=1

∇φt
k(wr (t)) · ∇φt

l (wr (t))

)⎤

⎦ dt

= N−1
E

⎡

⎣
M∑

k,l=1

( jk − δkl) jl
2

T jkl

N (ϕ, T, t)

×
(

1

N

N∑

r=1

∇φt
k(wr (t)) · ∇φt

l (wr (t)) − 1

N

N∑

r=1

P t {∇φt
k · ∇φt

l

}
(wr (0))

)]

dt

+ N−1
E

⎡

⎣
M∑

k,l=1

( jk − δkl) jl
2

T jkl

N (ϕ, T, t)

(
1

N

N∑

r=1

P t {∇φt
k · ∇φt

l

}
(wr (0))

)⎤

⎦ dt

=:
2∑

i=1

Bidt .

It is straightforward to notice that A1− B1 can be settled using the estimates for the
moments of order j − 1, as (for each pair k, l) the exponent vector j is decreased
by two units to jkl , while the additional test function ∇φt

k · ∇φt
l is picked up. The

bound for A3 relies on the Cauchy-Schwartz inequality, Corollary 17, (19), and
(66), and reads

|A3|
(93)≤

M∑

k,l=1

( jk − δkl) jl
2

N−1‖∇hφt
k,h‖∞‖∇hφt

l,h‖∞CE(N , h)

×
[{

2N−1T C (d, ρmax , ρmin)
}(2 j−4)/2

(2 j − 4)3(2 j−4)
]1/2

×
[

M∏

m=1

‖ϕm‖ jm−δkm−δlm

C1+


]

dt
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≤
(

M∏

m=1

‖ϕm‖ jm
C1+


)⎛

⎝
M∑

k,l=1

( jk − δkl) jl
2

⎞

⎠ N−1CE(N , h)

×
{

N−1T C (d, ρmax , ρmin)
}( j−2)/2

(2 j)3( j−2)dt

(19)≤ T j/2−1
{

N−1C (d, ρmax , ρmin)
} j/2

(2 j)3( j−2)E(N , h)

×
(

M∏

m=1

‖ϕm‖ jm
C1+


)⎛

⎝
M∑

k,l=1

( jk − δkl) jl
2

⎞

⎠ dt.

The term A4 may be bounded as

ˆ T

0
|A4|dt ≤ N−1

M∑

k,l=1

( jk − δkl) jl
2

ˆ T

0
E

[∣∣∣S jkl

N (Ihϕ, T, t)
∣
∣∣ ‖ρh(t)‖h‖r t

k,l,h‖h

]
dt

(75)≤ Ch p+1N−1
M∑

k,l=1

‖ϕk‖C2+p+
‖ϕl‖C2+p+


( jk − δkl) jl
2

×
(

max
t∈[0,T ] E

[∣
∣
∣S jkl

N (Ihϕ, T, t)
∣
∣
∣
2
]1/2)

T 1/2
(ˆ T

0
E
[‖ρh(t)‖2h

]
dt

)1/2

(19)(65)(93)≤ Ch p+1N−1
M∑

k,l=1

‖ϕk‖C2+p+
‖ϕl‖C2+p+


( jk − δkl) jl
2

× C(d, ρmax , ρmin)max{T 1/2; T }

× {
C N−1T C(d, ρmax , ρmin)

}( j−2)/2
(2 j)3( j−2)

(
M∏

m=1

‖ϕm‖ jm−δkm−δlm

C1+


)

≤ Ch p+1 {C N−1 max{T 1/2; T }C(d, ρmax , ρmin)
} j/2

× (2 j)3( j−2)

⎛

⎝
M∑

k,l=1

( jk − δkl) jl
2

⎞

⎠
(

M∏

m=1

‖ϕm‖ jm
C2+p+


)

.

The difference A2 − B2 is rewritten as

A2 − B2

= N−1
E

⎡

⎣
M∑

k,l=1

( jk − δkl) jl
2

[
S jkl

N (Ihϕ, T, t) − T jkl

N (ϕ, T, t)
]

× (
ρh(0),P t

h

(
Ih
{∇φt

k · ∇φt
l

}))
h

]
dt

− N−1
E

⎡

⎣
K∑

i, j=1

( ji − δi j ) j j

2
T j i j

N (ϕ, t, s)

×
(

1

N

N∑

r=1

P t {∇φt
k · ∇φt

l

}
(wr (0)) − (

ρh(0),P t
h

(
Ih
{∇φt

k · ∇φt
l

}))
h

)]

dt
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= N−1
M∑

k,l=1

( jk − δkl) jl
2

(
E

[
S jkl

N (Ihϕ, T, t)
]

− E

[
T jkl

N (ϕ, T, t)
])

× (
ρh(0),P t

h

(
Ih
{∇φt

k · ∇φt
l

}))
h dt

− N−1
E

⎡

⎣
M∑

k,l=1

( jk − δkl) jl
2

T jkl

N (ϕ, T, t)

×
(
1

N

N∑

r=1

P t {∇φt
k · ∇φt

l

}
(wr (0)) − (

ρh(0),P t
h

(
Ih
{∇φt

k · ∇φt
l

}))
h

)]

dt

=: T1 + T2, (60)

where equality (60) is valid because the term

(
ρh(0),P t

h

(
Ih
{∇φt

k · ∇φt
l

}))
h

is deterministic. The term T1 is dealt with using the estimates of order j − 2 (as,
for each k, l, the exponent vector is decreased by two units to jkl ). The term T2 is
settled with the same arguments as for term C2 in (57), with the additional use of
the Hölder inequality and of (92). We obtain

|T2| ≤ N−1
M∑

k,l=1

[
( jk − δkl) jl

2

{
C N−1T

}( j−2)/2
j j−2

M∏

m=1

‖∇ϕm‖ jm−δkm−δlm∞

×
{

h p+1C(d, ρmax , ρmin)‖ϕi‖C p+3‖ϕ j‖C p+3

}]
dt

≤ h p+1T j/2−1
{

C N−1C(d, ρmax , ρmin)
} j/2

j j−2

×
(

M∏

m=1

‖ϕm‖ jm
C p+3

)⎛

⎝
M∑

k,l=1

( jk − δkl) jl
2

⎞

⎠ dt.

Putting together all the estimates and integrating in time gives (59). ��

Remark 12. The finite-difference error in (59) accounts for two different errors:

• the difference between the initial conditions ρh,0 and the empirical density
μN
0 , as well as the difference between the solutions to continuous and discrete

backwards heat equations. This is captured in the term A2 − B2 for the second
order moment, and in the term T2 for higher moments.

• the difference between Ih(∇φt
k · ∇φt

l ) and ∇hφt
k,h · ∇hφt

l,h . As anticipated in
Section 3.3, Block 3, the high-order accuracy of the difference between the
solutions to continuous and discrete backwards heat equations relies on the
discrete final datum to be the interpolant of the continuous final datum. Since
∇hφt

k,h ·∇hφt
l,h does not interpolate∇φt

k ·∇φt
l in general, we quantify Ih(∇φt

k ·
∇φt

l ) − ∇hφt
k,h · ∇hφt

l,h .
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3.7. Proof of Theorem 3

Step 1: Interpreting (59). The recursive relation (59) may be visualised in the
following way:

i) Each moment of order j produces residuals Errneg and Errnum .
ii) Eachmoment of order j is linked recursively to a collection ofmoments of order

j − 1 (A j−1
recursion) and a collection of moments of order j − 2 (A j−2

recursion).
iii) The overall bound for D( j ,ϕ, T ) is given by summing all the residuals for all

moments found by exhausting the recursive relation. More specifically, it holds

D( j ,ϕ, T ) ≤
j−2∑

K=0

RK ,

where RK is the sum of all residuals associated with the moments explored
after exactly K steps. Therefore, we only need to suitably control RK for
K = 0, . . . , j − 2. In order to do this, we need the following auxiliary bound.

Step 2: Auxiliary bound. At every step of the recursive relation, the sets of test
functions which are fed into the lower order terms A j−1

recursion and A j−2
recursion are

modifications of the current set of test functions, specifically:

• in the case of A j−1
recursion , one instance for each of two functionsϕk, ϕl is replaced

by the product ∇ϕk · ∇ϕl ;
• in the case of A j−2

recursion , one instance for each of two functionsϕk , ϕl is removed
from the set of test functions, and a pre-factor ‖ϕk‖C1+
‖ϕl‖C1+
 is gained.

It is thus natural to define the object
{
(ψ K ,r , jK ,r ), YK ,r

}
,

where r is a given way of exhausting the recursive relation for K steps (i.e., a
sequence of K moves dictating whether moments of type A j−1

recursion or A j−2
recursion

are explored at each step), where ψ K ,r is the set of test functions after K steps
with sequence r , where jK ,r is the corresponding set of powers, and where YK ,r

is the overall pre-factor cumulated from all the moments of type A j−2
recursion for the

sequence r .
For each γ ∈ N0, we have the bound

⎛

⎝
MK ,r∏

m=1

‖ψK ,r,m‖ jK ,r,m
Cγ

⎞

⎠× |YK ,r | ≤ j2K j j (max{γ ;1+
}+1) ·
M∏

m=1

‖ϕm‖ jm
Cmax{γ ;1+
}+K ,

(61)

which is justified by the following observations:

• The number of occurrences of the original functions ϕ (i.e., j ) is preserved,
regardless of the path r . This is straightforward to verify by direct inspection
of how the recursive terms A j−1

recursion and A j−2
recursion handle the test functions.
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• The factor j2K provides a bound on the product of the number of individual
addends making up the functions {ψK ,r,m}m and of the number of individual
addends making up the functions of type ψK̃ ,r,m (where K̃ < K ) found in the
term YK ,r . This is a simple consequence of the fact that, whenever a step of type
A j−1

recursion is performed, such product can be multiplied by at most K · K = K 2

(i.e., by the product of the maximum lengths of the addends making up the two
functions φk and φl which give rise to the new test function ∇φk · ∇φl ). When
a step of type A j−2

recursion is performed, such product does not increase.

• The factor
∏M

m=1 ‖ϕm‖ jm
Cmax{γ ;1+
}+K takes into account the evaluation of the

norms for all functions (both {ψK ,r,m}m and those associated with YK ,r ) by
using the most restrictive exponent between 1+ 
 (needed in any step of type
A j−2

recursion) and γ (which is the exponent we are interested in), and adding K
(to reflect the unitary increment of differentiation entailed by each step of type
A j−1

recursion).
• The term j (max{γ ;1+
}+1) is associated with the pre-factor of the inequality

∥∥∥∥∥


∏

i=1

fi

∥∥∥∥∥
Cβ

≤ 
β+1

∏

i=1

‖ fi‖Cβ

applied with 
 ≤ j ( j is the maximum number of factors in the addends of type∏

i=1 fi making up any functionψK ,r,m and any function associatedwith YK ,r ),

and with β = max{γ ; 1 + 
}. The overall pre-factor j j (max{γ ;1+
}+1) results
from multiplying j (max{γ ;1+
}+1) by itself j times ( j being an upper bound for
the total number of functionsψK ,r,m together with all functions associated with
YK ,r ).

Crucially, (61) only depends on K and j , and not on the specific path r .
Step 3: Bounding RK . The quantity 2K j4(K+1) = 2K × j4K × j4 is a bound for
both the number of residuals of type Errneg and Errnum associatedwith themoments
explored after exactly K steps: Such a quantity is the product of 2K (accounting
for the recursive splitting of (59) into two families of moments of lower order),
of j4K (accounting for a bound of the pre-factor

∑M
k,l=1 ( jk − δkl) jl/2 multypling

each of the two families of moments), and of j4 (accounting for a bound of the
pre-factor

∑M
k,l=1 ( jk − δkl) jl/2 multypling the residual terms). Using (59) and

(61), we obtain

RK ≤
(
2K j4(K+1)

)
×

⎡

⎢⎢
⎣
{

N−1T C(d, ρmax , ρmin)
} j/2

(2 j)3( j−2)E(N , h)
︸ ︷︷ ︸

Errneg contributions, see (59)

× j2K+(2+
) j

(
M∏

m=1

‖ϕm‖ jm
C1+
+K

)

︸ ︷︷ ︸
see (61)

+ h p+1 {N−1 max{T 1/2; T }C(d, ρmax , ρmin)
} j/2

(2 j)3( j−2)

︸ ︷︷ ︸
Errnum contributions, see (59)
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× j2K+(3+p+
) j

(
M∏

m=1

‖ϕm‖ jm
C p+3+
+K

)

︸ ︷︷ ︸
see (61)

⎤

⎥⎥⎥
⎥⎥
⎦

. (62)

Step 4: Concluding the argument. Since D( j ,ϕ, T ) ≤ ∑ j−2
K=0 RK , we obtain

D( j ,ϕ, T )
(62)≤

j−2∑

K=0

[(
2K j4(K+1)

) {
N−1T C(d, ρmax , ρmin)

} j/2
(2 j)3( j−2)

× E(N , h) j2K j j (max{1+
;1+
}+1)

(
M∏

m=1

‖ϕm‖ jm
C1+
+K

)

+
(
2K j4(K+1)

)
h p+1 {N−1 max{T 1/2; T }C(d, ρmax , ρmin)

} j/2
(2 j)3( j−2)

× j2K j j (max{p+3+
;1+
}+1)

(
M∏

m=1

‖ϕm‖ jm
C p+3+
+K

)]

≤ {
N−1T C(d, ρmax , ρmin)

} j/2
jC1 j+C2E(N , h)

(
M∏

m=1

‖ϕm‖ jm
C j−1+


)

+ h p+1 {N−1 max{T 1/2; T }C(d, ρmax , ρmin)
} j/2

× jC3 j+C4

(
M∏

m=1

‖ϕm‖ jm
C p+ j+1+


)

,

which—up to trivial rescaling in N 1/2—is precisely (12).

3.8. Exponentially Decaying Estimate for E
[‖ρ−

h ‖2h
]

and Moment Bounds for ρh

Proposition 13. Let the assumptions and notation of the finite difference case of
Theorem 2 be in place; in particular, let ρh be a solution to the Dean–Kawasaki
equation discretised using finite elements in the sense of (21). Assuming in addition
the scaling (19), namely h ≥ C(d, ρmin, ρmax )N−1/d | log N |2/d(T + 1), we then
have the estimate

P

[
sup

x∈Gh,d ,t∈[0,T ]
|ρh − E[ρh]|(x, t) ≥ B

ρmin

4

]

≤ C exp

(
− ρmin B1/2N 1/2hd/2

Cρ
1/2
max

)
+ C exp

(− cB1/4h−1) (63)

for any B ≥ 1. In particular, we can deduce

E

[
sup

x∈Gh,d ,t∈[0,T ]
|ρh − E [ρh] | j (x, t)

]1/j

≤ C(d, ρmax , ρmin) j4 (64)

E

[
sup

x∈Gh,d ,t∈[0,T ]
|ρh(x, t)| j

]1/j

≤ C(d, ρmax , ρmin) j4 (65)
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for any j ≥ 1, as well as

E

[

sup
t∈[0,T ]

‖ρ−
h (t)‖2h

]

≤ C(d, ρmin, ρmax )

{

exp

(
− ρmin N 1/2hd/2

Cρ
1/2
max

)
+ exp

(− ch−1)
}

.

(66)

Proof. We split the proof into several steps.
Step 1: energy estimates for test functions. In order to evaluate ρh(x0, T ) at
a given point x0, we choose φh(·, T ) ∈ L2(Gh,d) as the function satisfying
(φh(·, T ), ηh)h = ηh(x0) for all ηh ∈ L2(Gh,d) and evolve φh in time by the
backward heat equation

∂tφh = −1

2
�hφh . (67)

By the standard energy estimate for the discrete heat equation we get
ˆ T

0
‖∇φh‖2h dt ≤ 2‖φh(T )‖2h ≤ Ch−d . (68)

Step 2: exponentially decaying bounds for |ρh − E [ρh] |(x0) for chosen point
x0. Using (96), (97), and (67), we obtain by the Itô formula for any positive integer
j

d
(
ρh − E[ρh], φh

) j
h = j

(
ρh − E[ρh], φh

) j−1
h N−1/2

∑

( y,
)∈(Gh,d ,{1,...,d})

(
Fρed

h, y,
,∇hφh

)

h
dβ( y,
)

+ j ( j − 1)

2

(
ρh − E[ρh], φh

) j−2
h N−1(ρ+

h , |∇φh |2)h dt.

In particular, (ρh −E[ρh], φh)h is a martingale. Integrating in time up to a stopping
time Ts and taking the expected value, we obtain

E

[((
ρh − E[ρh])(·, T ∧ Ts), φh(·, T ∧ Ts)

) j
h

]

= j ( j − 1)

2
E

[ˆ T ∧Ts

0

(
ρh − E[ρh], φh

) j−2
h N−1(ρ+

h , |∇φh |2)hdt

]
.

Choosing Ts for arbitrary but fixed B ≥ 1 as

Ts := inf
{

t > 0 : sup
x∈Gh,d

|ρh − E[ρh]|(t, x) ≥ B
ρmin

2

}
,

we get using ρmax ≥ ρmin and the assumption |E[ρh]| ≤ ρmax

E

[((
ρh − E[ρh])(·, T ∧ Ts), φh(·, T ∧ Ts)

) j
h

]

≤ j ( j − 1)N−1BρmaxE

[ˆ T ∧Ts

0

(
ρh − E[ρh], φh

) j−2
h ‖∇φh‖2 dt

]

≤ j2N−1BρmaxE

[

sup
t∈[0,T ∧Ts ]

(
ρh − E[ρh], φh

) j
h

]( j−2)/j ˆ T

0
‖∇φh‖2 dt
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(68)≤ C j2N−1BρmaxE

[
sup

t∈[0,T ∧Ts ]
(
ρh − E[ρh], φh

) j
h

]( j−2)/j

h−d .

Using Doob’s martingale inequality, we deduce for nonnegative even integers j

E

[

sup
t∈[0,T ∧Ts ]

(
ρh − E[ρh], φh

) j
h

]2/j

≤ C j2
Bρmax

Nhd
.

Raising both sides to the power j/2 and using Chebyshev’s inequality, we get after
optimizing in j

P

[

sup
t∈[0,T ∧Ts ]

∣∣(ρh − E[ρh], φh
)

h

∣∣ ≥ B
ρmin

8

]

≤ 2 exp

(

−ρmin B N 1/2hd/2

C B1/2ρ
1/2
max

)

.

In particular, we deduce by the definition of φh(·, T )

P

[
T ≤ TS and |ρh − E[ρh]|(x0, T ) ≥ B

ρmin

8

]
≤ 2 exp

(

−ρmin B1/2N 1/2hd/2

Cρ
1/2
max

)

.

Step 3: extending the estimate to finitely many time points in [0, T ∧ Ts].
Applying the previous estimate for all x0 ∈ Gh,d (there are ∝ h−d of such points),
and for all times hβ , 2hβ , 3hβ , . . ., for some β > 0 to be chosen, we obtain

P

[
||(ρh − E[ρh])(·, ihβ)||L∞ ≥ B

ρmin

8
for some i ∈ N with ihβ ≤ T ∧ TS

]

≤ Ch−d T

hβ
exp

(

−ρmin B1/2N 1/2hd/2

Cρ
1/2
max

)

. (69)

Step 4: extending the estimate to all times in [0, T ]. It only remains to pass from
the discrete times ihβ to all times t and to remove the restriction to times t ≤ TS .
Let ek ∈ L2(Gh,d) be nodal function satisfying ek(x j ) = δk j . Then the differential

d(ρh, ek)h = 1

2
(�ρh, ek)h − N−1/2

∑

( y,
)∈(Gh,d ,{1,...,d})

(
Fρed

h, y,
,∇hek

)

h
dβ( y,
),

entails, using in a second step also Doob’s maximal inequality and abbreviating

W(ρ+
h , ek) := ∑

( y,
)∈(Gh,d ,{1,...,d})
(
Fρed

h, y,
,∇hek

)

h
dβ( y,
)

∑

k

E

[

χihβ≤TS
sup

t∈[ihβ ,(i+1)hβ ]

∣∣(ρh(·, t), ek)h − (ρh(·, ihβ), ek)h
∣∣ j

]1/j

≤ Ch−2
∑

k

E

[

χihβ≤TS

(ˆ (i+1)hβ

ihβ

|(ρh(·, t), ek)h | dt

) j
]1/j

+ C N−1/2
∑

k

E

[

χihβ≤TS
sup

t∈[ihβ ,(i+1)hβ ]

∣∣W(ρ+
h , ek)(t) − W(ρ+

h , ek)(ihβ)
∣∣ j

]1/j
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≤ Ch−2
∑

k

E

[

χihβ≤TS

(ˆ (i+1)hβ

ihβ

|(ρh(·, t), ek)h | dt

) j
]1/j

+ C N−1/2
∑

k

E

[
χihβ≤TS

∣∣W(ρ+
h , ek)((i + 1)hβ) − W(ρ+

h , ek)(ihβ)
∣∣ j
]1/j

.

Using the triangle inequality for the first term on the right-hand side and a (straight-
forward but rather pessimistic) estimate on the quadratic variation ofW , we obtain

∑

k

E

[

χihβ≤TS
sup

t∈[ihβ ,(i+1)hβ ]

∣
∣(ρh(·, t), ek)h − (ρh(·, ihβ), ek)h

∣
∣ j

]1/j

≤ Chβ−2
∑

k

E

[

χihβ≤TS
sup

t∈[ihβ ,(i+1)hβ ]

∣∣(ρh(·, t), ek)h − (ρh(·, ihβ), ek)h
∣∣ j

]1/j

+ Chβ−2
∑

k

E

[
χihβ≤TS

∣∣(ρh(·, ihβ), ek)h
∣∣ j
]1/j

+ C jh−2N−1/2
∑

k

E

[

χihβ≤TS

( ˆ (i+1)hβ

ihβ

(ρ+
h , 1)h dt

) j/2
]1/j

.

By absorption, the triangle inequality, the fact that
∑

k 1 ≤ Ch−d , this implies for
h ≤ c(β)

∑

k

E

[

χihβ≤TS
sup

t∈[ihβ ,(i+1)hβ ]

∣∣(ρh(·, t), ek)h − (ρh(·, ihβ), ek)h
∣∣ j

]1/j

≤ Chβ−2
∑

k

E

[
χihβ≤TS

∣∣(ρh(·, ihβ), ek)h
∣∣ j
]1/j

+ C jhβ/2−d−2N−1/2
∑

l

E

[
χihβ≤TS

∣
∣(ρh(·, ihβ), el)h

∣
∣ j/2

]1/j

+ C jhβ/2−d−2N−1/2

×
∑

l

E

[

χihβ≤TS
sup

t∈[ihβ ,(i+1)hβ ]

∣
∣(ρh(·, t), el)h − (ρh(·, ihβ), el)h

∣
∣ j/2

]1/j

.

Using Young’s inequality and absorbing as well as using the fact that for ihβ ≤ TS
we have |ρh | ≤ (B + 1)ρmax , we obtain

∑

k

E

[

χihβ≤TS
sup

t∈[ihβ ,(i+1)hβ ]

∣∣(ρh(·, t), ek)h − (ρh(·, ihβ), ek)h
∣∣ j

]1/j

≤ Chβ−d−2(B + 1)ρmax + C jhβ/2−d−2(B + 1)1/2N−1/2ρ
1/2
max + C j2hβ−2d−4N−1.

For β ≥ 6d + 8 and for all h ≤ c(ρmin, ρmax ), we obtain

P

[

ihβ ≤ TS, sup
t∈[ihβ ,(i+1)hβ ]

‖ρh(·, t) − ρh(·, jhβ)‖L∞ ≥ B
ρmin

10

]

≤ C exp(−B1/4h−β/8).

(70)
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Step 5: obtaining (63). Overall, from (69) and (70) we conclude

P

[
sup

t∈[0,T ]
(
ρh − E[ρh])(x0, t) ≥ B

ρmin

4

]

≤ CT h−β−d exp

(
− ρmin B1/2N 1/2hd/2

Cρ
1/2
max

)
+ C exp

(− cB1/4h−1).

Upon choosing h ≥ C(d, ρmin, ρmax )N−1/d | log N |2/d(1 + T ), this implies (63).
Step 6: obtaining (64)–(65). For any z ≥ 0, we use (63) to write

P

[

sup
x∈Td ,t∈[0,T ]

|ρh − E [ρh] | j (x, t) > z

]

(63)≤ 1{z1/j <ρmin/4}

+ 1{z1/j ≥ρmin/4}

(

CT exp

(
− ρ

1/2
min z1/2 j N 1/2hd/2

Cρ
1/2
max

)
+ C exp

(− cρ−1/4
min z1/4 j h−1)

)

For a non-negative random variable Z , we know that E [Z ] = ´ ∞
0 P(Z > z)dz. We

set Z := supx∈Td ,t∈[0,T ] |ρh − E [ρh] | j (x, t) and deduce

E

[

sup
x∈Td ,t∈[0,T ]

|ρh − E [ρh] | j (x, t)

]

≤
ˆ (ρmin/4) j

0
dz

+
ˆ ∞

(ρmin/4) j

(

CT exp

(
− ρ

1/2
minz1/2 j N 1/2hd/2

Cρ
1/2
max

)
+ C exp

(− cρ−1/4
min z1/4 j h−1)

)

dz

≤ C j (ρmin, ρmax )(1 + T ) j4 j
{
(N−1h−d )C j + 1

}
,

where we have used the Gaussian moments estimates in the last inequality, and
(64) is proved. Inequality (65) follows from the triangle inequality, the assumption
E [|ρh |] ≤ ρmax and (64).
Step 7: obtaining (66).We use the Hölder inequality and the lower boundE [ρh] ≥
ρmin and obtain (66) via the estimate

E

[

sup
t∈[0,T ]

‖ρ−
h (t)‖2h

]

≤ CE

[

sup
t∈[0,T ]

‖1{|(ρh−E[ρh ])(t)|≥ρmin} · (ρh − E [ρh])(t)‖2L∞

]

≤ CE

[

sup
t∈[0,T ]

‖1{|(ρh−E[ρh ])(t)|≥ρmin}‖4L∞

]1/2

× E

[

sup
t∈[0,T ]

‖(ρh − E [ρh])(t)‖4L∞

]1/2

(63)(64)≤ C(d, ρmin, ρmax )

[

exp

(

−ρmin(Nhd )1/2

Cρ
1/2
max

)

+ exp(−ch−1)

]

.

��
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4. Numerical Examples

In this section, we give numerical examples that illustrate that the Dean–
Kawasaki equation correctly captures the fluctuations of diffusing non-interacting
particles.1 We limit our attention to the case d = 1.

To compute themotion of N Brownian particles, we perform a direct simulation
based on the transition probabilities; this is feasible as our numerical experiments
only concern empirical measures μN

t at two different times T1 and T2 (see below).
Our discretisation of the Dean–Kawasaki equation is obtained as follows:

• For the spatial discretisation of the Dean–Kawasaki equation (1), we use the
finite difference scheme from Definition FD-DK with order p = 1.

• To discretise the spatially semi-discrete equation in time, we use the (two-
step) BDF2 scheme (see, e.g., [22]). The first timestep is performed using an
explicit treatment for the noise and a mixed implicit-explicit Euler scheme for
the deterministic diffusion.

• Overall, our discrete scheme for the Dean–Kawasaki equation (1) reads for the
first timestep

ρ�t
h = ρ0

h +
(
1
4�hρ�t

h + 1
4�hρ0

h

)
�t

+
∑

y∈Gh,1

∇h ·
(√

(ρ0
h)+e1y

)(
β̃ y(�t) − β̃ y(0)

)
, (71)

and for the (m + 1)-th timestep, m ≥ 1,

ρ
(m+1)�t
h = 4

3ρ
m�t
h − 1

3ρ
(m−1)�t
h + 2

3�hρ
(m+1)�t
h �t

− 1
3

∑

y∈Gh,1

∇h ·
(√

(ρ
(m−1)�t
h )+e1y

)(
β̃ y(m�t) − β̃ y((m − 1)�t)

)

+
∑

y∈Gh,1

∇h ·
(√

(ρm�t
h )+e1y

)(
β̃ y((m + 1)�t) − β̃ y(m�t)

)
,

(72)

where (β y) are independent Brownian motions.
• We place the initial positions {wk(0)}N

k=1 of the Brownian particles only at grid
points of Gh,1. Consequently, we define the initial condition ρh(0) by requiring
that the equality 〈μN

0 , η〉 = (ρh(0), Ihη)h holds for any test function η. This
way, we avoid any error caused by deviating initial conditions.

• As we are primarily interested in scaling in h and N , we make the following
choices:
• weset the time-step�t := 0.001,which, according to our numerical conver-
gence tests, is small enough for the spatial discretisation error to dominate
over the time error, and

1 The datasets generated and analysed during the current study are available from the
corresponding author on reasonable request.
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Fig. 1. Top: A plot of the initial datum ρ0(x) := 1/2 + | sin( x−π
2 )|1/2 (dashed red line),

its deterministic evolution by the heat equation at time T1 := 0.4 (dashed black line), and a
sample path from the Dean–Kawasaki equation at time T1 := 0.4 for N := 8137 particles
(blue solid line). Bottom: The test functions ϕ1, ϕ2 used for the moment computations (blue
solid line, red dotted line) (colour figure online)

• we keep the discretisation parameter h above or equal to the threshold
2π · 2−7 ≈ 0.05, so that the finite difference error dominates over the error
associated with the negative part of ρh (Figs. 1, 2).

Using a Monte-Carlo approach with M � 1 realizations, we next computed
the centered stochastic moments

M DK
j1, j2 :=E

[
(ρh(T1) − E[ρh(T1)], Ihϕ1)

j1
h (ρh(T2) − E[ρh(T2)], Ihϕ2)

j2
h

]
,
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Fig. 2. Top Left: A plot of the initial datum ρ0(x) := 3 − 2e− sin8(x/2)/0.03 (black solid
line), its deterministic evolution by the heat equation at time T1 := 0.4 (dashed red line), a
sample path from the Dean–Kawasaki equation at time T1 := 0.4 for N := 2011 particles
(blue solid line), and a sample path from the linearised Dean–Kawasaki equation at time
T1 := 0.4 (pink solid line). Top Right: same as Top Left, but with N = 4096. Bottom: The
test functions ϕ1, ϕ2 used for the moment computations (blue solid line, red dotted line).
More specifically, ϕ1 = ρ0(x) while ϕ2(·) ≈ |∇ϕ1(·, T/4)|2 (colour figure online)

for test functions ϕ1, ϕ2, times T1, T2, and integer exponents j1, j2 specified be-
low. We then compared these stochastic moments to the corresponding centered
stochastic moments of the empirical density μN

M Brownian
j1, j2 :=E

[
〈μN

T1 − E[μN
T1 ], ϕ1〉 j1〈μN

T2 − E[μN
T2 ], ϕ2〉 j2

]
,

the latter being also computed by aMonteCarlo approximationwith M realizations.

We have performed various simulations in order to assess the convergence of the
moments with respect to h, N , and to compare the discretisations to the linearised
Dean–Kawasaki model (5) and to the Dean–Kawasaki model (1).
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Fig. 3. Top: A plot of the initial datum ρ0(x) := 3 − 2e− sin6(x/2)/0.05 (dashed red line),
its deterministic evolution by the heat equation at time T1 := 0.4 (dashed black line), and a
sample path from the Dean–Kawasaki equation at time T1 := 0.4 for N := 8211 particles
(blue solid line). Bottom: The test functions ϕ1, ϕ2 used for the moment computations (blue
solid line, red dotted line) (colour figure online)

4.1. Moment Error Decay (With Respect to h)

For two different choices of initial data ρ0(x), test functions ϕi (x), and times
Ti , the resulting errors

|M DK
j1, j2 − M Brownian

j1, j2 |



76 Page 44 of 59 Arch. Rational Mech. Anal. (2023) 247:76

Fig. 4. A log–log plot of the error |M DK
j1, j2

− M Brownian
j1, j2

| in the numerical examples illus-
trated in Fig. 3 (top, with T1 := 0.4, T2 := 0.32, and particle number N = 8211) respectively
for the numerical examples illustrated in Fig. 1 (bottom, with T1 := 0.4, T2 := 0.32, and
particle number N = 524291). It is clearly visible that (after an initial preasymptotic region)
a second-order convergence rate O(h2) is achieved for all computed moments

have been plotted in Fig. 4 as a function of the discretisation parameter h.We clearly
observe a convergence rate O(h2) for the accuracy of the computed moments.

4.2. Moment Error Decay (With Respect to N)

In Fig. 5, we have plotted the error |M DK
j1, j2

− M Brownian
j1, j2

| as a function of the
particle number N . We observe that the absolute error decays with the same rate
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Fig. 5. A log–log plot of the error |M DK
j1, j2

− M Brownian
j1, j2

| for the numerical examples in
Fig. 3 for varying values of N (with T1 := 0.4, T2 := 0.32, and h = 0.098175). Note
that the relative error in the computation of the moments M Brownian

j1, j2
that is achieved by

the discretized Dean–Kawasaki equation is basically independent of the particle number N :

The errors decay essentially uniformly according to the rate N− j1+ j2
2 , which coincides with

the rate of decay of the moments M Brownian
j1, j2

N−( j1+ j2)/2 as the centered moments M Brownian
j1, j2

, i. e. our relative error is basically
independent of the particle number N and only depends on the grid size h.

4.3. Comparison with Linearised Dean–Kawasaki Model (5)

For the same choice of initial data ρ0(x), test functions ϕi (x), and times Ti , and
two different choices of N , we investigate the difference of performance between
the time-discretised Dean–Kawasaki model (71)-(72) and the equivalent scheme
associated with the linearised Dean–Kawasaki model (5) (whose discretisation is
obtained as a straightforward adaptation of (71)-(72)).

More precisely, we have plotted both

|M DK
j1, j2 − M Brownian

j1, j2 |
and

|M DK ,linearised
j1, j2

− M Brownian
j1, j2 |,

where M DK ,linearised
j1, j2

is the natural counterpart to M DK
j1, j2

, in Fig. 6 as a function of
the discretisation parameter h.

Weobserve that the twomodels show the samebehaviour for the secondmoment
associated with the exponents ( j1, j2) = (2, 0). This is expected, as both models
share the same quadratic variation structure of the noise (more explicitly, one can
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Fig. 6. A log–log plot comparing the error |M DK
j1, j2

− M Brownian
j1, j2

| for the Dean–Kawasaki
model (continuous lines) and the linearised Dean–Kawasaki model (dotted lines), in the
context of the numerical examples illustrated in Fig. 2 for varying values of h (with T1 := 0.4,
T2 := 0.2, and either N = 2011 (Top) or N = 4096 (Bottom)). We observe that the
discretised Dean–Kawasaki model outperforms—to a good extent—the linearised version
for the moment associated with ( j1, j2) = (2, 1)
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readapt Lemma 10 to the linearised case). On the contrary, the nonlinear model
visibly outperforms the linearised model for the higher moment associated with
( j1, j2) = (2, 1). The reason for this is that one can not readapt Proposition 11 to
the linearised case, as doing so would result in lower order moments comprising
both the Dean–Kawasaki solution and its mean-field limit, thus breaking the very
recursive structure of the Proposition.

We have chosen a relatively low number of particles N a particular couple of test
functions (with ϕ2 approximately matching the quadratic variation associated with
the second test function after some time, i.e., ϕ2 ≈ ∇|ϕ1(T/4)|2, thus giving non-
trivial correlation between ϕ1 and ϕ2) in order to make the difference between the
two models more pronounced. Such difference is not completely clear cut though,
as one can see for the lowest values of h in the bottom figure. This behaviour is
likely caused by:

• the reduced accuracy of the BDF2 integration method for low h;
• in the case of Fig. 6 (Bottom), an accuracy saturation.
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Appendix A: Standard Estimates for Finite Difference Discretisation

A.1 Error Bounds for Continuous and Discretised Heat Flows

In order to prove the following lemma, we introduce a minimal amount of tools related to
Fourier analysis for functions belonging to [L2(Gh,d )]m . This is an adaptation of the contents
of [23, Section 2.3]. Set Ih := h−1Gh,d = {−L/2, −L/2 + 1, . . . , L/2 − 1, L/2 − 1}d .

The discrete Fourier transform of vh ∈ [L2(Gh,d )]m is the periodic function

v̂(ξ) := hd
∑

x∈Gh,d

vh(x)e−ix·ξ , ξ ∈ Ih .

Furthermore, the function vh may be reconstructed as

v(x) =
∑

ξ∈Ih

v̂(ξ)eix·ξ , x ∈ Gh,d .

Lemma 14. Let φ1 (respectively, φ2) be the solution to (14) with final datum φT
1 = ϕ1

(respectively, with final datum φT
2 = ϕ2), for some ϕ1, ϕ2 ∈ C p+2+
, where 
 is given

in (10). Let φ1,h (respectively, φ2,h) be the solution of (15) with final datum φT
1,h = Ihϕ1

(respectively, with final datum φT
2,h = Ihϕ2). Assume the validity of Assumption FD1. Then,

for t ≤ T , we have

‖φt
i − φt

i,h‖h ≤ C‖ϕi ‖C p+1h p+1, i = 1, 2, (73)

‖∇φt
i − ∇hφt

i,h‖ ≤ C‖ϕi ‖C p+2h p+1, i = 1, 2, (74)

‖∇hφt
1,h · ∇hφt

2,h − ∇φt
1 · ∇φt

2‖ ≤ C‖ϕ1‖C p+2+
‖ϕ2‖C p+2+
 h p+1, (75)

where C is independent of T .

Proof. Werecall the relationN � L = 2π/h anddefinition Ih = h−1Gh,d = {−L/2, −L/2+
1, . . . , L/2 − 1, L/2 − 1}d . It is easy to use the continuous and discrete backwards heat
equations (14)–(15) to deduce that the Fourier coefficients of φt

i and φt
i,h , i ∈ {1, 2}, are

φ̂t
i (ξ) = 1

πd/2

ˆ
Td

φt
i ( y)e

−i y·ξd y = e−(|ξ |2/2)(T −t)ϕ̂i (ξ), ξ ∈ Z
d , (76)

φ̂t
i,h(ξ) = hd

∑

x∈Gh,d

φt
i,h(x)e−ix·ξ = e−P(h,ξ)(T −t)Îhϕi (ξ), ξ ∈ Ih , (77)

for some functional P(h, ξ). As the discrete Laplacian�h is a (p+1)-th order approximation
of the true Laplacian with order p + 1, it is easy to see that

∥
∥
∥ξ |2/2 − P(h, ξ)

∣
∣
∣ ≤ |ξ |p+3h p+1. (78)

Furthermore, since�h is a symmetric finite difference operator, it is easy to see that P(h, d)
is nonnegative. This fact, together with the convexity of the exponential function (which in
turn implies themonotonicity of the ratio (ex −ey)/(x − y) in either one of the two variables,
provided the other one is kept fixed) gives

∣∣
∣e−(|ξ |2/2)(T −t) − e−P(h,ξ)(T −t)

∣∣
∣

∣∣(−(|ξ |2/2) + P(h, ξ)
)
(T − t)

∣∣ ≤
∣∣
∣e−(|ξ |2/2)(T −t) − 1

∣∣
∣

(|ξ |2/2)(T − t)
≤ 1

(|ξ |2/2)(T − t)
,
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and therefore

∣∣∣e−(|ξ |2/2)(T −t) − e−P(h,ξ)(T −t)
∣∣∣ ≤

∣∣
∣
(
−|ξ |2

2 + P(h, ξ)
)

(T − t)
∣∣
∣

(|ξ |2/2)(T − t)

(78)≤ C |ξ |p+1h p+1.

(79)

We can deduce that the discrete Fourier expansion of Ihφt
i from (76) is

Ihφt
i (x) =

∑

ξ∈Ih

⎛

⎝
∑

z∈Zd

φ̂t
i (ξ + L z)

⎞

⎠ eix·ξ =
∑

ξ∈Ih

̂Ihφt
i (ξ)eix·ξ , (80)

where we have also used the fact that Z
d = Ih + LZ

d . We deduce

‖Ihφt
i − φt

i,h‖2h =
∑

ξ∈Ih

∣
∣∣φ̂t

i,h(ξ) − Îhφt
i (ξ)

∣
∣∣
2

(76)(77)≤ C
∑

ξ∈Ih

∣
∣∣
∣∣∣
e−(|ξ |2/2)(T −t)

⎛

⎝
∑

z∈Zd

ϕ̂i (ξ + L z)

⎞

⎠− e−P(h,ξ)(T −t)φ̂T
i,h(ξ)

∣
∣∣
∣∣∣

2

+ C
∑

ξ∈Ih

∣∣
∣∣∣
∣

∑

z∈Zd\0

(
e−(|ξ |2/2)(T −t) − e−(|ξ+L z|2/2)(T −t)

)
ϕ̂i (ξ + L z)

∣∣
∣∣∣
∣

2

.

Since Ihϕi = φT
i,h , we carry on in and write

‖φt
i − φt

i,h‖2h ≤ C
∑

ξ∈Ih

∣∣
∣e−(|ξ |2/2)(T −t) − eP(h,ξ)(T −t)

∣∣
∣
2 |̂Ihϕi (ξ)|2

+ C
∑

ξ∈Ih

∣∣
∣
∣
∣∣

∑

z∈Zd\0
ϕ̂i (ξ + L z)

∣∣
∣
∣
∣∣

2

(79)≤ Ch2(p+1)
∑

ξ∈Ih

(1 + |ξ |2)p+1 |̂Ihϕi (ξ)|2

+ C
∑

ξ∈Ih

⎛

⎝
∑

z∈Zd\0
|ϕ̂i (ξ + L z)|2(1 + |ξ + L z|2)p+1

⎞

⎠

×
⎛

⎝
∑

z∈Zd\0
(1 + |ξ + L z|2)−(p+1)

⎞

⎠ . (81)

We estimate
∑

z∈Zd\0
(1 + |ξ + L z|2)−(p+1) ≤

∑

z∈Zd\0
(2L2|z|2)−(p+1) ≤ Ch2(p+1)

∑

z∈Zd\0
|z|−2(p+1)

≤ Ch2(p+1),

where the final step is justified byˆ
Rd\{z∈Rd : |z|≥1}

|z|−2(p+1)dz = C(d)

ˆ ∞
1

|r |−2(p+1)+d−1dr ∝ r−2(p+1)+d
∣
∣
∣
∞
1

< ∞,

(82)
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which is valid since 2(p + 1) > d , as d ≤ 3 and p ≥ 1. We continue in (81) as

‖φt
i − φt

i,h‖2h ≤ Ch2(p+1)
∑

ξ∈Ih

(1 + |ξ |2)p+1|Îhϕi (ξ)|2

+ Ch2(p+1)
∑

ξ∈Zd

|ϕ̂i (ξ)|2(1 + |ξ |2)p+1

≤ Ch2(p+1){‖Ihϕi ‖p+1,h + ‖ϕi ‖C p+1 } ≤ Ch2(p+1)‖ϕi ‖C p+1 ,

and (73) is proved.
We adapt the arguments carried out so far and write

‖∇φt
i − ∇hφt

i,h‖2

≤ C
∑

ξ∈Ih

∣∣
∣ ̂∇hIhφt

i (ξ) − ∇̂φt
i,h(ξ)

∣∣
∣
2

(76)(77)≤ C
∑

ξ∈Ih

∣∣
∣
∣
∣∣
e−(|ξ |2/2)(T −t)

⎛

⎝
∑

z∈Zd

∇̂ϕi (ξ + L z)

⎞

⎠− eP(h,ξ)(T −t)∇̂hIhϕi (ξ)

∣∣
∣
∣
∣∣

2

+ C
∑

ξ∈Ih

∣
∣
∣
∣∣
∣

∑

z∈Zd\0

(
e−(|ξ |2/2)((T −t) − e−(|ξ+L z|2/2)(T −t)

)
∇̂ϕi (ξ + L z)

∣
∣
∣
∣∣
∣

2

, (83)

After simple algebraic rearrangements in (83), we get

‖∇φt
i − ∇hφt

i,h‖2

≤ C
∑

ξ∈Ih

∣∣
∣e−(|ξ |2/2)(T −t) − eP(h,ξ)(T −t)

∣∣
∣
2 ∣∣
∣∇̂hIhϕi (ξ)

∣∣
∣
2

+ C
∑

ξ∈Ih

∣
∣
∣e−(|ξ |2/2)(T −t)

∣
∣
∣
2

∣∣
∣
∣
∣∣

⎛

⎝
∑

z∈Zd

∇̂ϕi (ξ + L z)

⎞

⎠− ∇̂hIhϕi (ξ)

∣∣
∣
∣
∣∣

2

+ C
∑

ξ∈Ih

∣
∣
∣∣
∣
∣

∑

z∈Zd\0

∣∣∇̂ϕi (ξ + L z)
∣∣

∣
∣
∣∣
∣
∣

2

=: T1 + T2 + T3. (84)

The term T1 is estimated using (79), giving T1 ≤ Ch2(p+1)‖ϕi ‖2C p+2 . The term T2 is

estimated by relying on (16), giving T2 ≤ Ch2(p+1)‖ϕi ‖2C p+1 . As for T3, we rely on the

fact that ∇̂ϕi (ξ + L z) = −iξ ϕ̂i (ξ + L z) and write

T3 ≤ C
∑

ξ∈Ih

⎛

⎝
∑

z∈Zd\0
|ϕ̂i (ξ + L z)|2(1 + |ξ + L z|2)p+2

⎞

⎠

×
⎛

⎝
∑

z∈Zd\0
(1 + |ξ + L z|2)−(p+1)

⎞

⎠

(82)≤ Ch2(p+1)
∑

ξ∈Ih

⎛

⎝
∑

z∈Zd\0
|ϕ̂i (ξ + L z)|2(1 + |ξ + L z|2)p+2

⎞

⎠
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≤ Ch2(p+1)
∑

ξ∈Zd

|ϕ̂i (ξ)|2(1 + |ξ |2)p+2 ≤ Ch2(p+1)‖ϕi ‖C p+2 ,

and (74) is proved. To prove (75), we write
∥
∥∥∇hφt

1,h · ∇hφt
2,h − ∇φt

1 · ∇φt
2

∥
∥∥

≤
∥
∥∥
(
∇hφt

1,h − ∇φt
1

)
· ∇hφt

2,h

∥
∥∥+

∥
∥∥
(
∇hφt

2,h − ∇φt
2

)
· ∇φt

1

∥
∥∥ =: T4 + T5.

Now let φ be the solution to (15) with final datum φT = ϕ ∈ C1+
. If (15) admits a discrete
maximum principle, then

max
t∈[0,T ]{‖∇hφt

h‖∞} ≤ ‖∇hIhϕ‖∞ ≤ ‖ϕ‖C1 .

If (15) does not admit a discrete maximum principle, then we rely on the Sobolev embedding
Hs ⊂ C0, where s = d/2 + 1, and get

max
t∈[0,T ]{‖∇hφt

h‖∞} ≤ ‖ϕ‖C2+d/2 .

and the last two expressions can be summarised as

max
t∈[0,T ]{‖∇hφt

h‖∞} ≤ ‖ϕ‖C1+
 (85)

We focus on T4. It is easy to see that

T4 ≤
∥
∥
∥∇hφt

1,h − ∇φt
1

∥
∥
∥ ‖∇hφt

2,h‖∞
(74)(85)≤ C‖ϕ1‖C p+2‖ϕ2‖C1+
h p+1.

The estimate for T5 is even more straightforward, and it reads

T5 ≤
∥∥
∥∇hφt

2,h − ∇φt
2

∥∥
∥ ‖∇φt

1‖∞
(74)≤ C‖ϕ2‖C p+2‖ϕ1‖C1h p+1,

and (75) is proved. ��

A.2 Stretched Exponential Moment Bounds for the Dean–Kawasaki Solution and
the Particle System

We compute the Itô differential of the quantities in (54).

Lemma 15. (Itô differential for moments S j
N (Dean–Kawasaki model) and T j

N (Brownian
particles)) Fix M ∈ N, a multi-index j = ( j1, . . . , jM ), and a set of test functions ϕ =
(ϕ1, . . . , ϕM ) ∈

[
C2
]M

. For any (k, l) ∈ {1, . . . , M}, denote by jkl the vector j with both

jk and jl decreased by one unit (if k = l, then jk is understood to be reduced by two units).
For any k ∈ {1, . . . , M}, denote by jk the vector j with jk decreased by one unit. Let ρh be
as given in Definition FD-DK. We recall the following definitions

S j
N (Ihϕ, T, t) :=

M∏

m=1

S jm
N (Ihϕm , T, t) =

M∏

m=1

{
(ρh(t), φt

m,h)h − (ρh(0), φ0
m,h)h

} jm
,

T j
N (ϕ, T, t) :=

M∏

m=1

T jm
N (ϕm , T, t) =

M∏

m=1

{
〈μN

t , φt
m〉 − 〈μN

0 , φ0
m〉
} jm
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from Section 3.1. Then

dS j
N (Ihϕ, T, t)

= −N−1/2
m∑

m=1

jmS jm

N (Ihϕ, T, t)
∑

( y,
)

(Fρ(t)ed
h, y,
, ∇hφt

i,h)hdβ y,


+ N−1
M∑

k,l=1

( jk − δkl ) jl
2

S jkl

N (Ihϕ, T, t)(ρ+
h (t),∇hφt

k,h · ∇hφt
l,h)hdt, (86a)

and

dT j
N (ϕ, T, t)

= −
M∑

m=1

jmT jm
(ϕ, T, t)

[

N−1
N∑

k=1

∇φt
m(wk(t)) · dwk(t)

]

+ N−1
M∑

k,l=1

( jk − δkl) jl
2

T jkl

N (ϕ, T, t)

[

N−1
N∑

r=1

∇φt
k(wr (t)) · ∇φt

l (wr (t))

]

dt .

(86b)

Proof. All differentials in this proof are with respect to the variable t . We prove (86a) in
three steps.
Step 1: Case M = | j |1 = 1. We just need to compute the differential for (ρh(t), φt

1,h)h −
(ρh(0), φ0

1,h)h . We use an L2(Gh,d )-expansion and the Itô formula to deduce

d
{
(ρh(t), φt

1,h)h − (ρh(0), φ0
1,h)h

}

= d
∑

x
(ρh(t), ex)h(φt

1,h , ex)h

=
∑

x
d
[
(ρh(t), ex)h

]
(φt

1,h , ex)h +
∑

x
(ρh(t), ex)hd(φ

t
1,h , ex)h

(15)(21)=
∑

x

(
1

2
�ρh(t), ex

)

h
(φt

1,h , ex)hdt +
∑

x
(ρh(t), ex)h

(
−1

2
φt
1,h , ex

)

h
dt

− N−1/2
∑

( y,
)

(Fρ(s)ed
h, y,
, ∇hφt

1,h)dβ( y,
)

(13)= −N−1/2
∑

( y,
)

(Fρ(t)ed
h, y,
, ∇hφt

1,h)dβ( y,
). (87)

Step 2: Case M = 1, | j |1 = j1 > 1. The Itô formula applied to composition of the function
z �→ z j with the process (ρh, φ1,h)h gives

d
{
(ρh(t), φt

1,h)h − (ρh(0), φ0
1,h)h

} j1

(87)= −N−1/2 j1S j1−1(ϕ1, T, t)
∑

( y,
)

(Fρ(t)ed
h, y,
, ∇hφt

1,h)dβ( y,
)

+ N−1 j1( j1 − 1)

2
S j1−2(ϕ1, T, t)

∑

( y,
)

(Fρ(t)ed
h, y,
, ∇hφt

1,h)2dt
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= −N−1/2 j1S j1−1(ϕ1, T, t)
∑

( y,
)

(Fρ(t)ed
h, y,
, ∇hφt

1,h)dβ( y,
)

+ N−1 j1( j1 − 1)

2
S j1−2(ϕ1, T, t)(ρ+

h (t),∇hφt
1,h · ∇hφt

1,h)hdt. (88)

Step 3: Inductive step in the index M . Assume the validity of (86a) for some M , some
vector of exponents j̃ , and some vector of functions ϕ̃ = (ϕ1, . . . , ϕM ). For an additional
test function ϕM+1 with associated cardinality jM+1, define j := ( j̃ , jM+1) and ϕ :=
(ϕ1, . . . , ϕM+1). We use the Itô formula for the product of the two real-valued processes

S j̃
N (Ih ϕ̃, T, t) = ∏M

m=1 S j̃m (Ihϕm , T, t) and S jM+1(IhϕM+1, T, t), namely

dS j (Ihϕ, T, t) = d

{
S j̃

N (Ih ϕ̃, T, t) · S jM+1(ϕM+1, T, t)

}

= d

{
S j̃

N (Ih ϕ̃, T, t)

}
S jM+1(IhϕM+1, T, t)

+ S j̃
N (Ih ϕ̃, T, t)dS jM+1(IhϕM+1, T, t)

+
〈
S j̃

N (Ih ϕ̃, T, t),S jM+1(IhϕM+1, T, t)

〉
,

and take (88) and the inductive hypothesis into account, thus getting

dS j (Ihϕ, T, t)

= −N−1/2
M∑

m=1

j̃mS j̃
m

N (Ihϕ̃, T, t)S jM+1 (IhϕM+1, T, t)
∑

( y,
)

(Fρ(t)ed
h, y,
,∇hφt

m,h)hdβ y,


+ N−1
M∑

k,l=1

( j̃k − δkl) j̃l
2

S j̃
kl

N (Ihϕ̃, T, t)S jM+1 (IhϕM+1, T, t)(ρ+
h (t),∇hφt

k,h · ∇hφt
l,h)hdt

− N−1/2 jM+1S j̃
N (Ih ϕ̃, T, t)S jM+1−1(IhϕM+1, T, t)

∑

( y,
)

(Fρ(t)ed
h, y,
,∇hφt

M+1,h)dβ( y,
)

+ N−1 jM+1( jM+1 − 1)

2
S j̃

N (Ih ϕ̃, T, t)S jM+1−2(IhϕM+1, T, t)

× (ρ+
h (t),∇hφt

M+1,h · ∇hφt
M+1,h)hdt.

+ N−1
M∑

m=1

jM+1 j̃m
2

S j̃
m

N (Ih ϕ̃, T, t)S jM+1−1(IhϕM+1, T, t)

× (ρ+
h (t),∇hφt

m,h · ∇hφt
M+1,h)hdt,

which is as prescribed by (86a). The proof of (86b) is analogous, and we omit it.
��

Lemma 16. Let φ solve the heat equation (14), with final datum φT = ϕ and t ≤ T . Let ρh
be as given in Definition FD-DK. For any 2 ≤ j ∈ N, we have

max
t∈[0,T ] E

[
|SN (Ihϕ, T, t)| j

]
≤
{
2N−1T C (d, ρmax , ρmin) max

t∈[0,T ]{‖∇hφt
h‖2∞}

} j/2

j3 j .

(89)
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Proof. It is a straightforward task to modify the computations in (88) by replacing the map
z �→ z j with the map z �→ |z| j . As a result, we get

d|SN (Ihϕ, T, t)| j

= −N−1/2 j |SN (Ihϕ, T, t)| j−1(1 − 2χSN (ϕ,T,t)<0)
∑

( y,
)

(Fρ(t)ed
h, y,
, ∇hφt

h)dβ( y,
)

+ N−1 j ( j − 1)

2
|SN (Ihϕ, T, t)| j−2(ρ+

h (t), ∇hφt
h · ∇hφt

h)hdt.

Taking the expected value, we obtain

dE

[
|SN (Ihϕ, T, t)| j

]

= N−1 j ( j − 1)

2
E

[
|SN (Ihϕ, T, t)| j−2(ρ+

h (t),∇hφt
h · ∇hφt

h)h

]
dt

≤ N−1 j ( j − 1)E
[∣∣(ρ+

h (t),∇hφt
h · ∇hφt

h

)
h

∣∣ j−1
]1/( j−1)

E

[
|SN (Ihϕ, T, t)| j−1

]( j−2)/( j−1)
dt

≤ N−1 j ( j − 1)‖∇hφt
h‖2∞E

[
‖ρ+

h (t)‖ j−1
h

]1/( j−1)
E

[
|SN (Ihϕ, T, t)| j−1

]( j−2)/( j−1)
dt

(65)≤ 2N−1 j4( j − 1)2‖∇hφt
h‖2∞C (d, ρmin, ρmax ) E

[
|SN (Ihϕ, T, t)| j−1

]( j−2)/( j−1)
dt.

(90)

Taking the supremum in time, (90) promptly implies

max
t∈[0,T ] E

[
|SN (Ihϕ, T, t)| j

]
≤
{
2N−1T C (d, ρmin, ρmax ) max

t∈[0,T ]{‖∇hφt
h‖2∞}

}

× j6
(

max
t∈[0,T ] E

[
|SN (Ihϕ, T, t)| j−1

])( j−2)/( j−1)
.

(91)

We prove (89) by induction on j . The case j = 2 is easily settled. Now take j > 2 and
assume the validity of (89) for j − 1. We use (91) and close off the proof by the estimate

max
t∈[0,T ] E

[
|SN (Ihϕ, T, t)| j

]

(91)≤
{
2N−1T C (d, ρmin, ρmax ) max

t∈[0,T ]{‖∇hφt
h‖2∞}

}

× j6
(

max
t∈[0,T ] E

[
|SN (Ihϕ, T, t)| j−1

]) j−2
j−1

≤
{
2N−1T C (d, ρmin, ρmax ) max

t∈[0,T ]{‖∇hφt
h‖2∞}

}

×
{
2N−1T C (d, ρmin, ρmax ) max

t∈[0,T ]{‖∇hφt
h‖2∞}

}( j−2)/2
j6( j − 1)3( j−2)

≤
{
2N−1T C (d, ρmin, ρmax ) max

t∈[0,T ]{‖∇hφt
h‖2∞}

} j/2
j3 j .

��
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Corollary 17. Let 
 be as in (10). Let ρh be as given in Definition FD-DK. Given a jndex

j = ( j1, . . . , jM ) with | j |1 = j and a set of test functions ϕ = (ϕ1, . . . , ϕM ) ∈
[
C1+


]M
,

we have

max
t∈[0,T ] E

[∣∣
∣T j

N (ϕ, T, t)
∣∣
∣
]

≤ {
N−1T

} j/2
j j

(
M∏

m=1

‖∇ϕm‖ jm∞

)

, (92)

max
t∈[0,T ] E

[∣∣∣S j
N (Ihϕ, T, t)

∣
∣∣
]

≤ {
2N−1T C (d, ρmin, ρmax )

} j/2
j3 j

(
M∏

m=1

‖ϕm‖ jm
C1+


)

.

(93)

Proof. Lemma 16 and a multifactor Hölder inequality promptly give the inequality

max
t∈[0,T ] E

[∣∣
∣S j

N (Ihϕ, T, t)
∣
∣
∣
]

≤
{

N−1T C (d, ρmin, ρmax )
} j/2

j3 j
M∏

m=1

max
t∈[0,T ]{‖∇hφt

h,m‖∞} jm .

Inequality (93) is then proved by using (85).
Inequality (92) may be deduced from adapting (90). Namely, using the Itô formula and the
maximum principle for the continuous heat equation, we get

dE

[
|TN (ϕ, T, t)| j

]
≤ N−1 j ( j − 1)E

[

|TN (ϕ, T, t)| j−2

(

N−1
N∑

k=1

|∇φ(wk(t))|2
)]

dt

≤ N−1 j ( j − 1)‖∇φt‖2∞E

[
|TN (ϕ, T, t)| j−1

]( j−2)( j−1)
dt.

≤ N−1 j ( j − 1)‖∇ϕ‖2∞E

[
|TN (ϕ, T, t)| j−1

]( j−2)( j−1)
dt. (94)

We deal with (94) using the same induction argument deployed for (91), and (92) is proved,
again following a multifactor Hölder inequality. ��

Appendix B: Finite Element Discretisations

B.1. Notation

For h > 0, we split T
d , d = 2, 3, according to a standard admissible triangulation Th ,

namely T
d = ⋃

K∈Th
K , where h bounds the diameter of each polyhedron K . We assume

the triangulation to be regular and quasi-uniform (see [15, Chapter 1, Definition 1.30] or
[35, Section 3.1]). For p ∈ N, let X p

h be the space of continuous finite elements of order p
defined on the triangulation Th . Furthermore, letRh be the Ritz operator [34, (5)]. Finally,
the symbol ‖·‖ (respectively, (·, ·)) denotes the standard L2-norm (respectively, the standard
L2-inner product).

B.2. Assumptions and Dean–Kawasaki Model

Assumption FE1. (Brownian particle system) This is the same as Assumption FD2, but
with the interpolation operator Ih replaced by the Ritz operatorRh .
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Assumption FE2. (Scaling of parameters) This is the same as Assumption FD3.

Assumption FE3. (Mean-field limit) The solution to the discrete heat equation
{

∂t (ρh , fh) = − 1
2

(∇ρh , ∇ fh
)
, ∀ fh ∈ X p

h ,

ρh(0) = ρ0,h ,
(95)

is such that ρmin ≤ ρh ≤ ρmax (where ρmin and ρmax have been introduced in Assump-
tion FE1) for all times up to T (where T has have been introduced in Assumption FE2).

We now introduce our finite-element discretisation of the Dean–Kawasaki equation (1).

Definition FE-DK. (Finite element Dean–Kawasaki model of order p + 1) We say that the
X p

h -valued process ρh solves a (p + 1)-th order finite element Dean–Kawasaki model if it
solves

{
d (ρh , fh) = − 1

2 (∇ρh ,∇ fh) dt − N−1/2dW(ρ+
h , fh), ∀ fh ∈ X p

h ,

ρh(0) = ρ0,h ,
(96)

where N−1/2W(ρ+
h , ei ) is a real-valued martingale with quadratic variation given by

〈
N−1/2W(ρ+

h (t), φ1,h), N−1/2W(ρ+
h (t), φ2,h)

〉
= N−1

(
ρ+

h (t),∇φ1,h · ∇φ2,h

)
.

(97)

Remark 18. Unlike in the finite-difference case, we can only provide an explicit representa-
tion of the Dean–Kawasaki noise in the case p = 1. This is due to the fact noise is nonlinear,
and only preserves piece-wise constant functions (these being gradients of test functions in
X p

h , p = 1). We are not aware of any finite-dimensional representation of the martingale

term N−1/2W(ρ+
h , ei ) in (96) in the case p > 1.

We now present the finite element counterparts of Theorems 2–3.

Theorem 19. (Accuracy of description of fluctuations by the finite element discretised
Dean–Kawasaki model of order p + 1 ∈ N) Assume the validity of Assumptions FE1–FE2.
Let ρh be the solution of the discretised Dean–Kawasaki model given in Definition FE-DK
on the time interval [0, T ]. Set

νp(h) :=
{
1 + | ln(h)|, if p = 1,
1, if p > 1. (98)

Then, for any j ∈ N, the discrete Dean–Kawasaki model FE-DK captures the fluctuations
of the empirical measure μN in the sense that, for any T = (T1, . . . , TM ) ∈ [0, T ]M with
0 ≤ T1 ≤ · · · ≤ TM , the following inequality

d−(2 j−1)

⎡

⎢
⎢
⎣N1/2

⎛

⎜
⎝

´
Td ρh(T1)Rhϕ1dx

...´
Td ρh(TM )RhϕMdx

⎞

⎟
⎠ , N1/2

⎛

⎜
⎜
⎝

〈μN
T1

, ϕ1〉
...

〈μN
TM

, ϕM 〉

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

≤ C(M, p, j, ‖ϕ‖W p+ j+3,∞ , ρmin, ρmax , T )E

[

sup
t∈[0,T ]

‖ρ−
h (t)‖2h

]1/2

+ C(M, p, j, ‖ϕ‖W p+ j+3,∞ , ρmin, ρmax , T )ν2p(h)h p+1

+ C(M, p, j, ‖ϕ‖W p+ j+3,∞ , ρmin, ρmax , T )N− j/2
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=: Errneg + Errnum + Err f luct,rel

holds for any ϕ = (ϕ1, . . . , ϕM ) ∈ [W p+ j+3,∞(Td )]M such that ‖ϕm‖L2 = 1 for all
m = 1, . . . , M and

´
Td ϕkϕldx = 0 whenever Tk = Tl . Finally, we have the bound

E

[

sup
t∈[0,T ]

‖ρ−
h (t)‖2h

]1/2
≤ CE(N , h) ,

where E(N , h) has been defined in (11).

Theorem 20. (Estimates on the error for stochastic moments) In the same setting of Theo-
rem 19, fix times T = (T1, . . . , TM ) ∈ [0, T ]M , a vector j = ( j1, . . . , jM ) with j := | j |1,
and a vector ϕ = (ϕ1, . . . , ϕM ) ∈ [W p+ j+2,∞]M .
Then the difference of moments between ρh and the empirical density μN (2) reads

∣
∣
∣
∣∣
E

[
M∏

m=1

(
N 1/2

ˆ
Td

(ρh(Tm) − E [ρh(Tm)])Rhϕmdx
) jm

]

−E

[
M∏

m=1

[N 1/2〈μN
Tm

− E

[
μN

Tm

]
, ϕm〉] jm

]∣∣
∣
∣
∣

≤ {C(C + ρmax )} j/2

[
M∏

m=1

q(Tm) jm/2

]

jC1 j+C2

×
[

M∏

m=1

‖ϕm‖ jm
W p+ j+2,∞

]

E

[

sup
t∈[0,T ]

‖ρ−
h (t)‖2h

]1/2

+ h p+1ν2k (h) {C(C + ρmax )} j/2

[
M∏

m=1

q(Tm) jm/2

]

jC3 j+C4

[
M∏

m=1

‖ϕm‖ jm
W p+ j+2,∞

]

=: Errneg + Errnum , (99)

for some positive constants C, C1, . . . , C4 independent of j , h, N , and T , where q is a
polynomial vanishing at 0, and where we have the bound

E

[

sup
t∈[0,T ]

‖ρ−
h (t)‖2h

]1/2
≤ CE(N , h) ,

where E(N , h) has been defined in (11).
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