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Abstract

The global existence of renormalised solutions and convergence to equilibrium for
reaction—diffusion systems with nonlinear diffusion are investigated. The system is
assumed to have quasi-positive nonlinearities and to satisfy an entropy inequality. The
difficulties in establishing global renormalised solutions caused by possibly degenerate
diffusion are overcome by introducing a new class of weighted truncation functions.
By means of the obtained global renormalised solutions, we study the large-time
behaviour of complex balanced systems arising from chemical reaction network the-
ory with nonlinear diffusion. When the reaction network does not admit boundary
equilibria, the complex balanced equilibrium is shown, by using the entropy method,
to exponentially attract renormalised solutions in the same compatibility class. This
convergence extends even to a range of nonlinear diffusion, where global existence
is an open problem, yet we are able to show that solutions to approximate systems
converge exponentially to equilibrium uniformly in the regularisation parameter.
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1 Introduction and Main Results

In this paper, we consider the evolution of concentrations u = (uy,...,uy), I € N,in
abounded domain © ¢ R? with Lipschitz boundary 92 subject to nonlinear diffusion
and reactions as modelled by the parabolic system

dui —di Au" = fi(w) in Qr,
Vi v =0 on 7, (1.1)

1

u,-(-,O) = Ui ,0 in Q.

Here and below, we set Q7 := Q2 x (0, T)and 't := 92 x (0, T) forany T > 0, and
we employ v to denote the unit outward normal vector to 9€2. The diffusion constants
d; are assumed to satisfy d; > 0 throughout the paper. The admissible range of the
nonlinear diffusion exponents m; depends on the specific situation and will be clearly
stated at every occurrence below. For instance, for proving the existence of global
renormalised solutions, we demand m; € (0, 2), while the exponential equilibration
of renormalised solutions is shown for m; > % with (d —2)4+ := max{0, d — 2}.
We will comment on the bounds on m; later on. Moreover, we generally assume
ui o € LY(Q), u; o > 0, and impose the following assumptions on the reaction terms

fiw,i=1,... I

(F1) (Local Lipschitz continuity) f; : Ri — R is locally Lipschitz continuous.
(F2) (Quasi-positivity) fij(u) > Oforall u = (uy,...,uy) € Rfr with u; = 0.
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(F3) (Entropy inequality) There exist constants (11;);—1.....; € R satisfying

,,,,,

I 1
> fiwyogu; + pi) < C Y (1 +u;logu;) (1.2)

i=1 i=1

forall u € Ri, where C > 0 is independent of u.

The second assumption (F2) guarantees non-negativity of solutions provided that the
initial data are non-negative, which is a natural assumption since we consider here u;
as concentrations or densities. Assumption (F3), on the other hand, implies existence
and control of the entropy

I
Z/ ui(logu; + p; —1)dx
i=17%

of the system, and (F3) is only slightly stronger than assuming control of the mass,
ie.

1
> fiw <o0. (1.3)
i=1

Asitis one of the goals of this article to provide a generalisation of the results in Fischer
(2015) to nonlinear diffusion models, we use the same entropy structure as in Fischer
(2015), where Boltzmann entropy—dissipating systems are considered. Observing that
(1.2)itself is just a condition on the involved reactions f; (u), it is reasonable to employ
the same entropy for both the linear and the nonlinear diffusive case. Other options
for an entropy were shown to be feasible if one focuses on different kinds of models
such as cross-diffusion population Chen et al. (2018); Chen and Jiingel (2019) or
energy—reaction—diffusion systems Fischer et al. (2022); Hopf (2022).

In general, assumptions (F1), (F2), and either (F3) or (1.3) of the nonlinearities
fi are not enough to obtain suitable a priori estimates which allow to extend local
strong solutions globally, see, e.g. Pierre and Schmitt (2000). On the one hand, for
the case of linear diffusion (i.e. m; = 1 foralli = 1,..., 1), the global existence
for (1.1) under extra assumptions on nonlinearities has been extensively investigated.
For instance, global bounded solutions were shown under (F3) for the case d = 1
with cubic nonlinearities and d = 2 with quadratic nonlinearities, see Goudon and
Vasseur (2010); Tang (2018). Recent works Souplet (2018); Caputo et al. (2019);
Fellner et al. (2020) showed under either (F3) or (1.3) that bounded solutions can
be obtained for (slightly super-)quadratic nonlinearities in all dimensions. We refer
the reader to the extensive review Pierre (2010) for related results concerning global
existence of bounded or weak solutions. It is remarked that in all such results, additional
assumptions on nonlinearities must be imposed. A breakthrough has been made in
Fischer (2015) where global renormalised solutions were obtained without any extra
assumptions on the nonlinearities. The notion of a renormalised solution was initially
introduced for Boltzmann’s equation in DiPerna and Lions (1989), and it has been
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applied subsequently to many other problems, see, e.g. Villani (1996); Dal Maso et al.
(1999); Desvillettes et al. (2007). On the other hand, the case of nonlinear, possibly
degenerate diffusion is much less understood. Up to our knowledge, there are only a
few works (Laamri and Pierre 2017; Laamri and Perthame 2020 and Fellner et al. 2020)
which showed global existence of (very) weak or bounded solutions for porous medium
type of diffusion, i.e. m; > 1, under (1.3) and some restricted growth conditions on the
nonlinearities. However, renormalised solutions to a system as in (1.1) but imposing
more regularity on the initial data and the underlying domain are provided in Lankeit
and Winkler (2022). Instead of an entropy condition as in (1.2), the authors of Lankeit
and Winkler (2022) assume an additional bound on cross-absorptive reaction terms.
Furthermore, Fellner et al. (2020) proved the convergence to equilibrium for (1.1)
modelling a single reversible chemical reaction. Recent results on the global existence
of renormalised solutions also include reaction—cross-diffusion models in population
dynamics Chen and Jiingel (2019) and energy-reaction—diffusion systems Fischer
et al. (2022).

The present study shows the existence of global renormalised solutions to (1.1)
featuring nonlinear diffusion of porous medium type or fast diffusion without any
extra conditions on the nonlinearities (up to assuming (F1)—(F3)). In addition, we show
that these solutions, in case (1.1) models general complex balanced chemical reaction
networks, converge exponentially to equilibrium with explicitly computable rates.
Our paper seems to be the first extensive contribution to the nonlinear diffusion-type
system (1.1) establishing—for specific parameter regimes—the existence of global
renormalised (or even weak and bounded) solutions as well as exponential convergence
to equilibrium in various L? spaces. A brief summary of our results is given in Table
1 at the end of this section.

The first part of this paper is concerned with the global existence of renormalised
solutions to (1.1). We consider the following definition of renormalised solutions.

Definition 1.1 (Renormalised solutions) Let m; € [0,2] forall 1 <i < I and up =
(ui0)i € L'(2)! be (componentwise) non-negative. A non-negative function u =
(uy,...,uy) : Q x (0,00) — Rfr is called a renormalised solution to (1.1) with
initial data u¢ if the following holds:
o ui € L2([0,00), L'(Q)) and Vu; T € L2 ([0, 00), L2()"),
e for any smooth function & : Rfr — R with compactly supported derivative D&,
any function ¢ € C°°(§ x [0, 00)), and a.e. T > 0, we have

/S(u(-, T))l/f(-,T)dx—f §uo)yY (-, 0)dx — §(u)d, v dx dr
Q Q or

1
=~ > dim; | p38;E@u" " Vu; - Vujdxd

ij=1 or

I
= dim; / & yu" ' Vu; - Vi dx dr
i=1 Or

@ Springer



Journal of Nonlinear Science (2023) 33:66 Page50f49 66

1
+Z/ £ u) fi )y dx dr, (1.4)
i=179r

e fora.e.0 <s < T, we have

1
Z/ ui(logu; + p; — 1) dx
i=1 v

T4 [T m o
5—2—2 [V(u;)2 |~ dxdr
s i=1 m; Js Q (15)

! T
+ 30 [ [ fotogu + ) arar
i=1"%

e and for a.e. t > 0, we have

1 1
quiu,-(x,ndx:Zf gitt; o(x) dx, (1.6)
i=1 Y% =17

provided there exist some numbers g; € R such that Zil:] qi fi(z) = 0 for all
ze R,

Remark 1.2 e We notice that all integrals in (1.4) are well defined due to the compact
support of D& and as the integrals relating to gradients of solutions can be rewritten

as
/ waiajg(u)ul’.”f*‘wi - Vujdxdt
or
4 mi "M mi mj
= V;0;E(wu;” u; > Vu,? - Vu? dxdt
mim;j Jor ! !
and
mi=1 2 P,
0;Eu;"  Vu;Vipdxdt = — 0;&(w)u;* Vu,;” Vi dx dt
or mi Jor
m

which are both finite thanks to the boundedness of Vu,” in L2(QT) and the
restriction m; € [0,2] forall 1 < i < I. Note that m; < 0 or m; > 2 is not
admissible as the integrals above may degenerate in this case even for small values
of Uuj.

e In the case of linear diffusion, the weak entropy law (1.5) and conservation laws
(1.6) in Definition 1.1 are redundant since they can be proved using (1.4), see
Fischer (2017). Unfortunately, this seems to be impossible in our present case due
to the degeneracy of the diffusion. Nevertheless, if the renormalised solution turns
out to be bounded, one can prove these laws directly (see the Proof of Theorem
1.7). Proving (1.5) and (1.6) using only (1.4) in the case of nonlinear diffusion
remains an interesting open problem.
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The first main result of this article is the following theorem. We stress that even
though Definition 1.1 allows for m; € [0, 2], the construction of a renormalised
solution demands m; € (0,2) foralli =1,...,1.

Theorem 1.3 (Global existence of renormalised solutions) Let 2 C R¥ be a bounded
domain with Lipschitz boundary 02. Assume m; € (0,2) foralli = 1,...,1, and
that conditions (F1)—(F3) hold. Then, for any non-negative initial data ug = (u; 0); €
LY()! subject to

1
Z/ ujo logui’o dx < 0, (1.7)
Q

i=1
there exists a global renormalised solution to (1.1).

Remark 1.4 e Relation (1.6) usually corresponds to mass conservation laws in chem-
ical reactions, see, e.g. Fellner and Tang (2018).

e The uniqueness of renormalised solutions is widely open. For a weaker notion
called weak—strong uniqueness, i.e. the renormalised solution is unique as long as
a strong solution exists, we refer the interested reader to Fischer (2017).

e The fact that (1.5) and (1.6) are satisfied by any renormalised solution plays an
important role in the next part of this paper where we show that all renormalised
solutions, instead of only some of them, converge to equilibrium.

e Assumption (1.7) on the initial data ug € L'(2)! is used on a technical level at
the end of the proof of Lemma 2.4 when showing that the candidate u = (u;); for
a renormalised solution satisfies u; 7 € L2(0,T; H'(Q)) foralli € {1,...,I}.
Moreover, the additional regularity (1.7) carries over to the renormalised solution
(cf. (1.5)) and, in particular, guarantees that the initial entropy (cf. (1.13)) is finite.

e A similar situation is considered in Laamri and Pierre (2017) with homogeneous
Dirichlet conditions. In fact, (Laamri and Pierre 2017, Theorem 2.6) is comparable
to our Theorem 1.3 but instead of (1.7), the authors assume that an a priori L
estimate is available.

The strategy for constructing a global renormalised solution follows the ideas in
Fischer (2015). Given a sequence of approximate solutions u*, one proves compactness
of the family u® by deriving bounds on truncations <pl.E w®),EeN,i=1,...,1,and
subsequently employing an Aubin—Lions lemma. The smooth functions (piE defined
in (2.6) essentially truncate the mappings u — u; if u becomes too large (measured
in terms of E) while leaving u +— u; unchanged for sufficiently small #. The main
difficulty in our current situation is caused by the different diffusion exponents m;
for each species u;, which makes the truncations (pl.E provided in Fischer (2015) not
applicable. We overcome this issue by modifying the functions <pl.E in such a way

that the truncation ig not decided by »_ ; u; but by a weighted sum ) ; E “%uj with
suitable constants a’j > 1 chosen depending on the diffusion exponents m;. We then

pass to the limit ¢ — 0 in the equation for (piE (u®) at the cost of an additional defect
measure which, nevertheless, vanishes in the subsequent limit £ — oo. Finally, an
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equation for é((piE (u)) is derived, where £ is subject to the same assumptions as in
Definition 1.1, and the limit £ — oo is performed resulting in the desired equation
(1.4) for £(u).

The restriction m; € (0,2) fori = 1, ..., [ is, on the one hand, necessary within
the construction of the truncations goiE, see, e.g. (2.7), (2.9), and (2.10). On the other
hand, it is crucial in showing the vanishing of the defect measure when establishing the
renormalised solution. We do not know whether this restriction is purely technical or
due to a deeper reason. It is remarked that the same condition is heavily used in Laamri
and Pierre (2017), where global weak solutions to (1.1) are investigated. In particular,
models with logarithmic diffusion m; = 0 and ultra-fast diffusion processes are not
included in the subsequent results. Systems of porous medium type are, nevertheless,
covered to a large extent within Theorem 1.7.

In the second part of this paper, we study the large-time behaviour of reaction—
diffusion systems of type (1.1) modelling chemical reaction networks subject to the
complex balance condition. The main vocabulary is introduced below but we refer to
Desvillettes et al. (2017) for a more detailed discussion of the involved concepts. We
assume that there are / chemicals Sy, ..., S; reacting via the following R reactions

kr
yeaSt+ -4 yeaSr =y Si+-- 4y S forall r=1,...,R
(1.8)

where y; ;, y; ; € {0}U[1, oo) are stoichiometric coefficients, and k, > 0 are reaction
rate constants. Utilising the notation y, = (y,;)i=1,...; and y, = (y.,)i=1,...1, We
can rewrite the reactions in (1.8) as

ve 25y forall r=1,...,R. (1.9)

Denote by u;(x, t) the concentration of S; at position x € Q and time ¢ > 0.
The reaction network (1.8) results in the following reaction—diffusion system with
nonlinear diffusion for u = (uy, ..., uy):

dui —diAu?" = fi(u)  inQr,
Vi v =0 onTr, (1.10)

1

ui(x,0) =u;o(x) inQ,
in which the reaction term f; («) is determined using the mass action law,
R I
filw) = Zkruy’ (yy; — yri) where uw’ = 1_[ u;"’. (1.11)
r=1 j=1

It is obvious that f;(u) is locally Lipschitz continuous; hence, (F1) is satisfied. For
(F2), it is easy to check that f; () > 0 holds true for all u € Rfr satisfying u; = 0
since we assume k > 0 and y € ({0} U [1, 00))! for all y € {yr, y/}r=1....r. Before
verifying (F3), we recall the definition of a complex balanced equilibrium. A constant
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state oo = (Ui 0)i € [0, 00)! is called a complex balanced equilibrium for (1.10)-
(1.11)if

D hud= ) kul forall yel{y.yl=oi.r  (112)
{ryr=y} {s:y5=y}

Intuitively, this condition means that for any complex the total outflow from the com-
plex and the total inflow into the complex are balanced at such an equilibrium. Using
complex balanced equilibria, one can show that the nonlinearities in (1.11) satisfy (F3)
by choosing p; = —logu; o With a strictly positive complex balanced equilibrium
U (see Desvillettes et al. 2017, Proposition 2.1). Therefore, one can apply Theorem
1.3 to obtain global renormalised solutions to (1.10) and (1.11).

In general, there might exist infinitely many solutions to (1.12). To uniquely identify
a positive equilibrium, we need a set of conservation laws. More precisely, we consider
the Wegscheider matrix (or stoichiometric coefficient matrix)

and define m = dim(ker(W)). If m > 0, then we can choose a matrix Q € R"™*/,
where the rows form a basis of ker(W). Note that this implies Q (y. — y,) = 0 for all
r =1,..., R.Therefore, by recalling f(u) = (fi®))i=1...1 = Zf;] kpu?r (v, — yr)
we obtain

R
Qfw) = Zkrum@(y; —y)=0 forany ueR’

r=1

By using the homogeneous Neumann boundary condition, we can then (formally)
compute that

i/@u(t)dx:/(@f(u)dx:o
dr Jo Q

and, consequently, for a.e. t > 0,

Q/ u(t)dx:@/ ugdx.
Q Q

In other words, systems (1.10) and (1.11) possess m linearly independent mass con-
servation laws. By the vocabulary used in the literature on chemical reaction network
theory, for any fixed non-negative mass vector M € R, the set {u € ]Rfr :Qu =M}
is called the compatibility class corresponding to M. In case that for each strictly
positive vector M € R™, there exists a strictly positive complex balanced equilibrium,
one says that the chemical reaction network is complex balanced. This terminology is
well defined since it was proved in Horn (1972/73) that if one equilibrium is complex
balanced, then all equilibria are complex balanced. It was further shown that for each

@ Springer



Journal of Nonlinear Science (2023) 33:66 Page90f49 66

non-negative initial mass M € R™ with M # 0, there exists a unique strictly pos-
itive complex balanced equilibrium us = (4 00)i € Ri in the compatibility class
corresponding to M (cf. Horn and Jackson 1972; Feinberg 1979).

We stress that additionally there might exist many so-called boundary equilib-
ria, which are complex balanced equilibria lying on 31&1. It is remarked that there
exists a large class of complex balanced chemical reaction networks, called con-
cordant networks, which do not have boundary equilibria, see Shinar and Feinberg
(2013). For the sake of brevity, from now on we call the unique strictly positive com-
plex balanced equilibrium simply the complex balanced equilibrium. Note that all the
previous considerations—although established for ODE models for chemical reac-
tion networks—also apply to our PDE setting thanks to the homogeneous Neumann
boundary conditions, which allow for spatially homogeneous equilibria.

Theorem 1.5 (Exponential equilibration of renormalised solutions) Ler Q@ C R? be a
bounded domain with Lipschitz boundary 0S2. Assume that the reaction network (1.9)
is complex balanced, suppose that (F1)—(F3) hold, and let any non-negative initial
data ug = (u;0)i € LYQ)! with Zil=l fQ ui.ologu; odx < oo be given.

e [fm; € (0,2) forall 1 <i < I, then there exists a global renormalised solution
to (1.10)—(1.11).

o Ifm; > % forall 1 < i < I and assuming that there exist no boundary
equilibria, all renormalised solutions to (1.10)—(1.11) converge exponentially to
the positive equilibrium u, € Ri in the same compatibility class as uy with a
rate which can be explicitly computed up to a finite dimensional inequality, i.e.

1
D ui ) = i soll 19y < Ce™™ forall t >0,

i=1

for positive constants C > 0, A > 0 depending on the initial entropy, the domain
Q, the diffusion coefficients d; and exponents m;, and the vectors of stoichiometric
coefficients {yy, y.}r=1....R-

We emphasise that the convergence to equilibrium in Theorem 1.5 is proved for all
renormalised solutions, not only the ones obtained via an approximation procedure.
This is possible because the proof of the convergence uses only the weak entropy—
entropy dissipation law (1.5) and the conservation laws (1.6) which are satisfied by all
renormalised solutions. It is noted that, when a system possesses boundary equilibria,
the convergence to the positive equilibrium (more precisely, the instability of boundary
equilibria) is very subtle and strongly connected to the famous Global Attractor Con-
Jecture, see, for instance, Desvillettes et al. (2017); Fellner and Tang (2018); Craciun
(2015).

Theorem 1.5, up to our knowledge, is the first result of trend to equilibrium for
general complex balanced reaction networks with nonlinear diffusion. A special case
of a single reversible reaction was considered recently in Fellner et al. (2020) in which
the authors utilised a so-called indirect diffusion effect (see, e.g. Einav et al. 2020),
which seems difficult to be generalised to general systems. The proof of Theorem 1.5
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uses the relative entropy

Ui 0o

1
5[u|uoo]:Z/ <uilog i —u,~+u,»,oo)dx (1.13)
i=1 78

and its corresponding entropy dissipation

I R , J
_ o mj—2 2 yr u'r . u'r
Dlu] = E 1 dim; /Qui |Vu;|“dx + E k,uoo-/Q\IJ <@ MT;> dx
1=

r=1

where W (x; y) = x log(x/y) — x + y. It holds, at least formally, that
d
———&lulucc] = Dlu]
dt

along any trajectory of (1.10) and (1.11). The degeneracy of the nonlinear diffusion
makes the classical logarithmic Sobolev inequality not applicable. Our main idea here
is to utilise some generalised logarithmic Sobolev inequalities (see Lemmas 3.3 and
3.4), which are suited for nonlinear diffusion, and the established results in Fellner
and Tang (2018) for the case of linear diffusion, to firstly derive an entropy—entropy
dissipation inequality of the form

Dlu] = C(Elulus® (1.15)

where @ = max;=1,_s{1, m;}. Note that this functional inequality is proved for all
non-negative functions u : 2 — Rﬂ_ satisfying the conservation laws Q fQ udx =
|2|Quo, and therefore is suitable for renormalised solutions, which have very low
regularity. If @ = 1 in (1.15), one immediately gets exponential convergence of the
relative entropy to zero and, consequently, exponential convergence of the solutions to
equilibrium in L' thanks to a Csiszar-Kullback—Pinsker-type inequality. If o > 1, we
first obtain an algebraic decay of the relative entropy to zero. Thanks to this, we can
explicitly compute a finite time 7y > 0 from which onwards (in time) the averages
of concentrations are strictly bounded below by a positive constant. This helps to
compensate the degeneracy of the diffusion and, therefore, to show that solutions with
such lower bounds satisfy the linear entropy—entropy dissipation inequality, i.e.

Dlu(t)] = CElu(t)|luss] forall > Ty,

which recovers exponential convergence to equilibrium. O

The use of renormalised solutions allows to deal with a large class of nonlinearities,
but on the other hand it restricts Theorem 1.5 to the case % < m; < 2. When
the nonlinearities are of polynomial type, it was shown in Laamri and Pierre (2017);
Fellner et al. (2020), under the assumption of the mass dissipation (1.3) instead of the
entropy inequality (1.2), that one can get global weak or even bounded solutions if the
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porous medium exponents m; are large enough. In the following theorem, we show an
analogue result under the entropy inequality condition (1.2). Moreover, the solution
is shown to converge exponentially to the positive complex balanced equilibrium.

Definition 1.6 (Weak solutions) A vector of non-negative functionsu = (uy, ..., uy) :
Q x (0, 00) —> Ri is called a (global) weak solution to (1.1) if

ui € L"), Vu? e LXQr). fitu) e L'(Qr).

2(m;+1)

atui c LI(QT) +L m;+1 (O’ T’ (W1,2(mi+l)(g2))/)’

and

d; mi_omp
/ Btuinxdt+E’ I/tl-z Vuiz -Vyrdxdr = fi(u) ¢y dxdt (1.16)
or or or

forall T > 0,i = 1,..., 1, and test functions ¥ € L*(Q7) N Lz(’"i“)(O, T;
W1,2(m,‘+l)(Q))'

Theorem 1.7 (Existence and convergence of weak and bounded solutions) Let 2 C R4
be a bounded domain with Lipschitz boundary 0S2. Assume that the assumptions (F1)—
(F3) hold and that the nonlinearities are bounded by polynomials, i.e. there exist C > 0
and pj > 1forall j =1, ..., I such that

1
i@ <C {14+ fu;| | forall ueR' i=1,... 1
j=1

o If
m;>pi—1 forall i=1,...,1, (1.17)
then system (1.1) has a global non-negative weak solution for each non-negative
initial data uo = (u;,0)i=1,...,1 such that u; ologu; o € LY Q@) n H-Y(Q) for all

i=1,...,1.
o Under an even stronger condition with p := max; p;, namely

.....

_ nllinlmi >max{p — 1,1} for d <2,
1=1,...,

(1.18)

for d >3,

4
min m; >max{,o——,1}
i I d+2

i=l1,...,

the weak solution to (1.1) subject to bounded non-negative initial data uy €
LX) is locally bounded in time, i.e.

luillLe@x©,1) < Cr forall i=1,...,1,
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where Ct is a constant growing at most polynomially in T > 0.

Assume now that the reaction network (1.9) is complex balanced and define

0 =pi:i= maxR{|y,|,|y;|} forall i=1,...,1, (1.19)

r=1,...,

where |y,| = 25:1 Yr,j- Assume moreover that (1.9) has no boundary equilibria.

o If (1.17) holds and 0 < ug such that u;ologu; o € L](Q) N H’I(Q) for all
i =1,...,1, all bounded weak solutions (locally in time) to (1.10) and (1.11)
converge exponentially to the complex balanced equilibrium in L' (Q), i.e.

1

D M) = ticollpiqy < Ce™™ forall >0,
i=1

forsome C > 0, A > O0depending on the initial entropy, the domain Q, the diffusion
coefficients d; and exponents m;, and the vectors of stoichiometric coefficients
{vrs ylr=1. k-

o If (1.18) holds and 0 < ug € L>®(Q)!, weak solutions to (1.10) and (1.11) are
bounded locally in time and converge exponentially to equilibrium in any LP norm
with p € [1, 00), i.e.

1
D i) = uisollLriey < Cpe™™" forall t >0, (1.20)

i=1

with positive constants Cp,, X, > 0 depending on p, the initial entropy, the domain
Q, the diffusion coefficients d; and exponents m;, and the vectors of stoichiometric

coefficients {yy, y.}r=1....R-

Remark 1.8 In addition to Remark 1.4, we point out that another reason for assuming
uiologuio € L'(Q2) N H™'(Q) forall i € {1,..., I} (rather than demanding just
ug € (L'(Q) N H~1(Q))! as in Laamri and Perthame 2020) is the supposed entropy
inequality (1.2). More precisely, we need this hypothesis on the initial data in the proof
of Lemma 3.6, which is itself a crucial ingredient of the proof of Theorem 1.7.

As one can see from Theorems 1.5 and 1.7, the global existence and trend to
d=2)4

equilibrium for (1.10) and (1.11) are well established for either =+ < m; < 2
foralli = 1,...,1, or m; large enough in the sense of (1.17) or (1.18) for all
i =1,..., 1. There exists, therefore, a gap in which the global existence of any kind

of solution remains open. Remarkably, the proof of the convergence to equilibrium
in this paper does not rely on the restriction m; < 2, and it therefore is applicable to
any global solution to (1.10) and (1.11) as long as it satisfies the entropy law (1.5)
and the mass conservation laws (1.6). We, thus, arrive at the following result on the
convergence to equilibrium for approximating systems of (1.10) and (1.11) uniformly
in the approximation parameter.
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Theorem 1.9 (Uniform convergence of approximate solutions) Ler Q@ C R be
a bounded domain with Lipschitz boundary 0Q2. Assume that (1.10) and (1.11)
subject to (FI1)~(F3), non-negative initial data uo = (u;0); € LY with
Zi]:lfg uiologu;odx < oo, and m; > % for all i = 1,...,1 admits
a complex balanced equilibrium but no boundary equilibria. For any ¢ > 0, let
u® = (uf)i=1,...1 be the solution to the approximate system

,,,,,

A &
du — diawdym = —1) o
! ! I+ el f(u®)]
V)" -v=0 onTr, (1.21)
ui (x,0) = uf o(x) in Q,

where “f,() € L*®(Q) satisfies

max lim [lu o —uiollp1q) =0 and max sup/ uj glogug g dx < oo.
i &—=0 i ¢=0JQ

(1.22)

Moreover, the approximated initial data ugy are chosen such that, for all & > 0,

Q/ uﬁdx:(@/ ug dx. (1.23)
Q Q

(This implies that system (1.21) admits a unique positive complex balanced equilibrium
Uso € ]Rﬂ_, which is independent of ¢ > 0.)
Then, u® converges exponentially to u, with a rate which is uniform in ¢, i.e.

1
D N (1) = uiooll i@y < Ce™™ forall >0,

i=1

where C > 0,) > 0 are constants depending on the initial entropy, the domain
Q, the diffusion coefficients d; and exponents m;, and the vectors of stoichiometric
coefficients {yy, y}r=1,...r but independent of ¢ > 0.

To prove Theorem 1.9, we make use of the same relative entropy as in (1.13),

! &
u-:
Eufluse] = E / (uf log —" —ul + Mi,oo) dx,
-1/ Uj,0o
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Table 1 Summarisation of global existence and convergence to equilibrium for mass action reaction—
diffusion systems (1.10) and (1.11) with nonlinear diffusion in various parameter regimes

Diffusion exponents Global existence Convergence to equilibrium
0O<m< % Renormalised solution unknown

% <m<?2 Renormalised solution Exponential in L!
2<m<p-—1 unknown Exponential in L! for

approximate solutions
uniformly in the
approximation parameter

p—1<m<p-— diﬂ Weak solution Exponential in L!
p— ﬁ <m Bounded solution Exponential in any L7,
p <00

where u® is the solution to (1.21). The corresponding non-negative entropy dissipation
can be calculated as

1
D) = Yo [ i)y 219u P

i=1

. o
% ! ((uﬁ)yr )Y >
+§kruoo/sz 1+8|f(1,¢5)|\y Vo dx.

v}
U ux

Since there is no uniform-in-¢ L bound for u? available, the factor W is not
bounded below uniformly in ¢ > 0. Therefore, it seems to be impossible to use the
entropy dissipation (for limit solutions) in (1.14) as a lower bound for D[u®]. We
overcome this issue by using the ideas in Fellner and Tang (2018). Roughly speaking,
we deal with the second sum in D[u] by estimating it below by a term involving only
spatial averages of u® (rather than u® pointwise as above), and then exploiting the fact
that these averages are bounded uniformly in ¢ > 0.

We summarise the global existence and convergence to equilibrium for the mass
action system (1.10) and (1.11) in Table 1 (assuming the existence of a unique strictly
positive complex balanced equilibrium and the absence of boundary equilibria). Note
that in our framework the global existence of any kind of solution remains open as
soon as there exist i, j € {1, ..., I} such that the corresponding diffusion exponents
satisfy m; > 2 and m; < p — 1, where p is defined in (1.19). In order to keep the
presentation simple, we assume within Table 1 that all diffusion exponents m; = m
coincide.

The rest of this paper is organised as follows. In Sect. 2, we show the global existence
of renormalised solutions for the general system (1.1). The proofs of Theorems 1.5, 1.7,
and 1.9 on the convergence to equilibrium of chemical reaction networks are presented
in Sect. 3. Some technical proofs of auxiliary results are postponed to Appendix.
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2 Global Existence of Renormalised Solutions

2.1 Existence of Approximate Solutions

Letm; € (0,2) foralli € {I,..., I} and ¢ > 0 and consider the following approxi-
mating system for u® = (uf, ..., u*;),
fiw®)

Ouf — di A)™ = fF () = V)" v =0, uf(.0) = uf,

L+el f )]’
2.1)

. . e—0 .
where ufo € L*°(R) is non-negative and ufo —> u; 0 in LY(Q). Moreover, we
demand

supf uj glogus o dx < +oo. (2.2)
Q

e>0

With this approximation, it is easy to check that the approximated nonlinearities f;°
still satisfy assumptions (F1)—(F3).

Lemma 2.1 Provided m; € (0, 2) for alli € {1,...,1} and ¢ > 0, there exists a
global weak solution u® = (uf); € Li..([0, 00), LOO(Q))I to the approximate system

(2.1) with V(uf)rg € leoc([O, 00), LE(Q)) and opui € ([0, 00), (HY())). In
detail,

I3l d 141
/ <—u, W> dr = — dimi/ / @)™ IVul - Vi dx dt
1 dt (HY(Q)),H ()

/f S
L+ el f(u®)]

for all w S LIOC([O, 00), Hl(Q)), ief{l,....I},and ae. 0 < ty < t1. Moreover,
each u; is a.e. non-negative and

loc

(2.3)

dx dr

’ h ! m; |2
Z/ ui (t)[log uj (1) + p; — 11dx + C/ / Z ‘V(uf)T
i=1 Y% 0 IR

I

< Ci—t) (/ Zuf(to)[log uf(t()) 4+ wui —1ldx + C(t; — to)) 2.4)

€

forae 0 <ty <t.

Proof For each ¢ > 0, we see by recalling | f (u®)| = Zl-lzl | fi (u®)| that

Ji(u® (x, 1))
L+ el f(u®(x, )]

1
<- forall (x,1)€ Qr.
&
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The existence of bounded weak solutions to (2.1) is therefore standard. However,
since we are not able to find a precise reference, a proof is given in Appendix 1. By
multiplying (2.1) by log(u?) + p; (or more rigorously by log(u? + &) + u; for some
8 > 0, thenleté — 0), summing the resultantsoveri = 1, ..., I, and then integrating
over 2, we obtain

d [ < ' 44, g
€ e i oy i
o /Q iEZI u; logu; +p; —1)dx + iE:1 m_,/sz ‘V(ui) 2

2
dx

1 1
— | e X oz + ) ds @
i=1

1
< CZ/ uf (loguf 4+ p; — 1)dx +C
i=1 78

where we used (F3) and x < §xlogx + Cs forall x > 0 and any § > O at the last step.
Hence, by integrating (2.5) over (¢, T) and using Gronwall’s inequality, we obtain
the desired estimate (2.4). The uniform bound on u{ logu; in L>°(0, T'; LY(Q)) and

|V(uf)%| in L2(0, T; L*(R2)) follow immediately from (2.4). o

2.2 Existence of Renormalised Solutions

As it can be seen from Lemma 2.1, the a priori estimates of u; are not enough to
extracta convergent subsequence. Following the idea from Fischer (2015), we consider
another approximation of u{ by defining

1
oF) =i —30)8 [ Y2 — 1] +3E 2.6)
j=1 E%

for E € N, and a smooth function & : R — [0, 1] satisfying £ = 1 on (—o00, 0)
and & = 0 on (1, 0o0). The constants a’j are given by (recall that m; € (0, 2) for all
Jell,.... 1}

2

l: = 1’ i. = f j .. 27
¢ % min(m;,2 —mj) orJ #1 @7

Remark 2.2 The aé are chosen in (2.7) for the sake of simplicity. In fact, we can choose
any a; such that

i i 2—m,- n;
a; =1, and o > max T— 1t

b
2—mj mj

See the proof of (E2) in Lemma 2.3.
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Lemma 2.3 The smooth truncations <piE defined in (2.6) have the following properties:

(ED) ¢f € C2R)).

(E2) Foranyi € {1,..., 1}, there exists a constant K; > 0 such that
i M E
max sup sup vj2 v, 190k ()| < K. (2.8)

1=j.k=I g>1 UERi

(E3) For every E, the set supp D(pl.E is bounded.
(E4) Forall j € {1,...,1}and all v € RL, there holds limg_, « ngol.E(v) = §ij.
(E5) There exists a constant K > O such that

max sup sup |8j¢)iE(v)| K.

I=j=I g>1 veRL

IA

(B6) ¢F (v) = v forany v € RL with y°!_, v;E‘“? <1
(E7) Forevery K > 0 and every j, k, there holds

lim sup |3;dcqpf (v)| = 0.
E—o0 lv|<K
(E8) gpiE(v) = v; forany v € Rﬂr with 25»:1 gof(v)E_a} <1
Proof Properties (E1), (E3), (E4), and (E6) are immediate. To prove (E2), we first
compute
dipf (v) = (v = BE)E (- )E™" +&(--),
dj¢f (v) = (v; =3E)E'(--)E™%
for j # i, where for brevity we write (---) instead of (Z§=1 E_a; vj — l). From
that, one further gets the second derivatives
2 E (. " —2a! / —al
7o (V) = (vi —3E)§"(--- )E™% + 28 (- )E™™,
0i0j¢f (v) = (i =3E)E"(--)E % £ (- )ET,
3okl (v) = (v; —3E)E"(---)E~ ™%

for j #iand k #i.
To show (2.8), we will consider the following cases:

e Wheni = j =k, we have

"ll'
- 1=

v, T|<‘9l-2<piE(v)| = vi|3i2<ﬂ,-E(v)|

vl l
< villv; = 3E|E24|E"(-- )| + 20, ET4|E(- ).
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Employing the identities &'(---) = &”(---) = 0 for v; > 2E% as well as the
bound |£'(---)| + |£”(---)| < C, we can further estimate

mioo i i i
v2 v, 2 10%0E W) < CET%|E% + E| +C.

1 L
Therefore, by choosing ozf = 1, we have the desired estimate (2.8) fori = j = k.
e When k =i and j # i, we estimate using a,’f =1,&(--)=¢&"(--) = 0when
v; > 2E% orv; > 2E, and [§'(---)| + |€"(-+)| < C,

4 1-5 E
v;o v T 1997 (V)]
sviy CECIE T vy T IENC)lvi = 3E|E T

1

<CEZTYUE'"-5 /(. ) E ™ +CETYE"5€"(.. )||E +3E|E%!

mj

< cpYiE-nra=
Thus, (2.8) is proved in the case k =i # j if we choose a’;. such that

: Z—m,-

Oli‘(ﬂ -+ 1- ﬁ) <0 orequivalently o' > 2.9)
102 27~ T 2—mj’
e When j =i and k # i, we estimate similarly to the previous cases
mTi 1777'71( E gl Tk
V" v [0;0kp; (V)] < CEZ2 %2,
If we choose
% — a,’;% <0 orequivalently a,i > :17; (2.10)

then obviously (2.8) holds true for j =i # k.
e Finally, when j # i and k # i, we estimate

mj

-+ l—mTl‘ E ol ol (1= 1 -
Vo S 0ok () = CET 2 ESTTRUEN( - )|E T TRE
Cm; -
< CEa;.(T/—l)—a,’('Tk—H'

It is easy to see that from (2.9) and (2.10) it follows

i(MJ i Mk
aj<7—1>—(xk7+150,

and hence (2.8) is proved in this case.
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From (2.9) and (2.10), we see that a; > 1 for all j # i; hence, (ES) and (E7)
follow. : :

For (ES), it is enough to show that 25»:1 gof(v)Eia-/’ < 1 yields Z§'=1 v,ETY <
1. Set

1

1 I
y::Z vj.v—l and Z::Z—i.
j=1

i
Ea.l j:l Ea/

From (p]E(v) = (v; —3E)&(y) + 3E and 2521 (pf(v)E‘“§' < 1, we deduce

EMO+D+3EA -8z =1L

Dueto& < 1and Ez > 1, we are now led to

yE(Y) < (1 =3Ez2)(1 —&(y)) <0.

This entails y < 0 and, thus, completes the proof of the lemma. O

Lemma 2.4 Consider non-negative functions ug = (u; 0); € LY Q) which satisfy

I
Z/ ui ologu; odx < oo.
i=1Y%

Let u® = (u,...,u%) for e — 0 be the sequence of solutions to the regularised
problems as stated in Lemma 2.1.

Then, there exists a subsequence u® converging a.e. on 2 x [0, 00) to a limit u €
L2 ([0, oo),Ll(Q?n)I with uilogu; € Ly ([0, 00), LYQ)) for all i € {1,...,1}.
Furthermore, (uf)Tl—\uiTl weakly in L0, T; H'(Q)) foralli € {1,...,1} and
T > 0.

Proof Due to the lack of uniform-in-¢ estimates of the nonlinearities, it is difficult
to show directly, for instance, by means of an Aubin-Lions lemma, that uf has a
convergent subsequence. Following the ideas from Fischer (2015), we first prove that
(piE (u®) converges (up to a subsequence) to ziE as & — 0, and then that zlE converges to
u; (up to a subsequence) as E — oo. In combination with the convergence of gpiE (u®)
to uf for E — o0, this leads to the desired result.

Due to the bound ¢f < 3E, it follows at once that {pf (u®)} is bounded in
L2(0, T; L3()) uniformly in ¢ > 0 for each E € N. Next, by the chain rule we
have

1 1 mj
2 -~ mj
Vol w®) = dj0F w)vus = ;ajgo,»’f(us) (uj) T V)T
j=1 j=1

Thus,
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m; 2
V(uj)T’ dx dt

1
4 s
/ |V¢F(u£>|2dxdr512—2/ 10j0f )P | [P~
or =1 m; Jor

dx dt

! mj 2
ey [ |van®
j=1 or

thanks to the compact support of D(piE, mj < 2, and the L2(0, T; Lz(Q)) bound on

V(u;)Tj from Lemma 2.1. As a consequence, we know that {(piE (u®)} is bounded
(uniformly in ¢) in L2(0, T; H ().

To apply the Aubin-Lions Lemma, we need an estimate concerning the time deriva-
tive of gplE(ue). Using aj<p,.E(u€)¢ as a test function in (2.3) and summing over
je{l,..., I}, weobtain for almost all £, > #; > 0,

5]
/fﬂiE(us(',fz))l/f(',tz)dx—/ qo,E(u’f(-,n))w(-,n)dx—/ /Qwﬂua)afwdxdr
151

/ / Bjakgo, (u‘g)(u ) 7 (uk)l ]V(u ) 7 V(ui)"% dx dt
k 1
—sz]/ / % (zf)(u) V(u) -V dx dt
1

J=
£)
E el u® dxdt. 2.11
+j=1/n ey s s

The third term on the right-hand side is clearly bounded uniformly in & for each fixed
E € N since D(piE has a compact support. The first and second terms are bounded
uniformly in ¢ thanks to the boundedness of V(ui)’% in LZ(O, T; Lz(Q)) for all
k=1,...,1,and properties (E2), (E3) in Lemma 2.3. It follows then that a,<pf (u®)
is bounded uniformly (w.r.t. ¢ > 0) in LY, T; (Wh°())) for each fixed E € N.

Therefore, by applying an Aubin-Lions lemma to the sequence {gol.E (u®)}e=0, for
fixed E € N, there exists a subsequence (not relabeled) of (plE (u®) converging strongly
in L2(0, T; L?>(2)) and, thus, almost everywhere as ¢ — 0. Using a diagonal sequence
argument, one can extract a further subsequence such that <piE (u®) converges a.e. in
Q7 to a measurable function zlE forall Ee Nandi =1,...,1.

We next prove that ziE converges a.e. to some measurable function u; as E — oo.
First, since Z;:l ui log uj is uniformly bounded w.r.t. toe > 0in L>(0, T; L' (Q)),
it follows that ¢ (u?) log ¢F (u®) is uniformly bounded w.r.t. to & > O and E € N in
L>°(0, T; L'()). This is trivial in case E < 1, ¢ (u®) < 1, or Zle uj.E*“'f <1.

Otherwise, there exists some j such that u‘jE %> 1 /1 holds true. And as a;'. > 1,
we derive '
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oF () < 3E < 3EIuSE™ < 31,

The bound gol.E(ue) > 1 ensures golE(ue)log(pl.E(ug) < 31148/. 10g(31u§) and the
claim follows. Thus, zf log zlE is uniformly bounded in L*>(0, T; L'(Q)) w.r.t.
E € N by Fatou’s Lemma. Secondly, zf(x,t) = zf(x,t) for all £ > E, if

Z§:1 ZE(X, HE™ < 1. Indeed,

I 1

E - . E( ¢ —a
> F (. )E™" —ggrbi @; W (x,0))E "/,
i—1 j=1

guarantees that 2521 (pJE W (x,t)E =% < 1 holds true for sufficiently small ¢ > O.
Thanks to property (E8) in Lemma 2.3, it follows that (pl.E(ug(x, 1) = uj(x,t) =
(pig(ug(x, t)) for small enough ¢ and all E > E. Therefore, due to zlE(x, t) =
im0 @F (u (x, 1)), we obtain zZ(x, 1) = zE(x, 1) for all E > E as desired. As
aresult, if Z§=1 zf(x t)E_“;' < 1 for some (x, 1), then limg_, o zf (x, 1) exists and
is finite for alli = 1, ..., I. Using the fact that Z
w.rt. E € Nin L*°(0, T, L'()), we have

j=i%j logz is bounded uniformly

Il
=

Jim £ (e € Or Zz (,DE™ = 1
j=1

where £t is the Lebesgue measure in R"t!. Hence, the limit u; (x,1) =
limg_ o ziE(x, t) exists fora.e. (x, ) € Q7. Moreover, u; logu; € L*°(0, T; LY(Q))
due to Fatou’s lemma and zlE log zlE € L°(0, T; L' (RQ)). Since 25:1 u‘j is uniformly
bounded in L' (Q7), we find

0= tim £+ [{ (e eor: Zlu (,NE™ > 1
J
> gim £ (fen € 0r ufn # o ). n))
and this limit is uniform in ¢ > 0. Now, we estimate for § > 0
£d+l<{(x, e 07 u(x, 1) —ui(x,1)| > 3})
scd“({(x 1) € O uf(x, 1) # of W)(x, t)})

+£d+1<{<x 1) e Or: lpF W) (x, 1) —2F(x, 1) > %})
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)
+£d+‘({(x,r> € 0r:lzf (x, 1) —ui(x, 0] > 5})
As we have proved that <pl.E (uf) — zl-E a.e.in Q7 fore — O and fixed E € N and that
ZzE — u; a.e.in Q7 as E — oo, we infer the convergence in measure of uf to u; for
¢ — 0, and convergence a.e. of another subsequence.

The uniform bound on u; log uf in L*°(0, T'; L'(2)) and the convergence ui — u;
a.e. ensure that uf — u; strongly in LP(0, T} LY(Q)) for all p > 1. One can easily
prove this by truncating u? at a sufficiently large threshold. By the strong convergence
of uf to u; in L1(0, T; L()), we are able to prove the distributional convergence
of (uf)% to (u,')% by noting that m; < 2. The uniform L2(0, T; H'(2)) bound
on (uf )% then leads to a subsequence (u;:€ )% which converges to (ui)"% weakly in
L2(0, T: H'(€)). Thanks to the weak lower semicontinuity of the L2(0, T: L2())
norm, we also deduce

T m; T m;
f f‘w? dxdtfliminf/ f‘V(uf)T
o Ja e=0 Jo Jo

for all i € {l,...,1}, where the right-hand side is bounded via the uniform
L2(0, T; H'(£2)) bound on (u?) 2. This completes the proof of the lemma. O

2 2
dx dr

At this point, we expect the function u = (u1, ..., uy) in Lemma 2.4 to be a renor-
malised solution to (1.1). We will first derive an equation admitting (piE (u) as a solution.
This equation is already “almost” matching the formulation for a renormalised solution
(1.4) except for a “defect measure”.

Lemma22.5 Letu = (uy,...,us) be the functions constructed in Lemma 2.4. Then,
for any ¥ € C*°([0, T1, C(‘)’O(ﬁ)), the truncated functions gol.E(u), ief{l,..., I},
satisfy

/Qso,-Ew(-,T»w(-,T)dx—fgwf(u(-,0>>w<~,0>dx—f oF )d,y dx dr

or

1
=—/ I/Iduf(x,t)—zczjmj/ ajwiE(u)MTj_IVuj-ledxdt
or j=1 or
1
+ZfQ 3;0F (u) fj ()¢ dx dr (2.12)
j=17"0r

where ,ulE is a signed Radon measure satisfying
lim [uF|( @ % [0,T)) =0 (2.13)
E—o0
forallT >0andi €{1,...,1}.
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Proof Choosing 1; = 0, 7, = T, and using the convergence u® — u a.e. in Qr, the
weak convergence V(uf)’% —~Vu; % in L?(0, T; L*(2)), and the fact that D(piE (u®)
vanishes when u® is too large, we straightforwardly obtain the convergence of the
left-hand side and the last two terms on the right-hand side of (2.11). It remains to
establish

m

1
—4 Z d_//Q v [a hof () (u ) (uk) ]V(u )7 V(ui)mTk dx dt
jk=1 r

— — | Ydufx,0n
or

with a signed Radon measure ,ul.E satisfying (2.13). By denoting
1

ko= 3 S ot wp' ¥ van ¥ - vap® avar,
J.k=1

we can use property (E2) of the truncation function (piE and the e-uniform bound of
V()7 in L2(0, T; L*(R)), to obtain

luF 1(0r) < C

for all ¢ > 0. Therefore, by passing to a subsequence, we know that ufs weak-*

converges on Q7 to a signed Radon measure M,E as ¢ — 0. It remains to prove (2.13).
Due to Young’s inequality, we have

m{i@n
> m; my mj 2

=C Z Z/ 103k )@ T ()™ F xk-1zper<x) V@) 7| dxar

k: :

I oo mo_m
<C Z Z V sup |8/8k(plE(1))|v]2 Vg 2

I=1 K=1 I<j.k=<I

K—-1<|v|<K
where
V[ k= X(K—1<[uf|<K} ‘V(u, dx dz.

We stress that v} ;. is uniformly bounded w.r.t. /, K, and e. Consequently, we may
pass to a subsequence v; , which converges weak-* on ‘07 to a Radon measure VI K
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as ¢ — 0. Together with the weak-* convergence of uF, to u¥ on Qr, we derive

IkF1(Qr) < liminf |uf,|(07)
e—0

1 00 ’"j 1 my
_ e mjog_m
<CY Y k(@) swp [ddef vy 7
I=1 K=1 1=j k=l
K—1<|v|<K
Moreover,
0 - mj 2
& EN 5
Zu,,K(QT)=/ V@) 7| drdr,
K=1 Or

which is bounded uniformly in €. Fatou’s Lemma applied to the counting measure on
N now entails

Z v,k (07) < 11m1nf Z vy K(QT) < 400.

K=1

Therefore, employing the dominated convergence theorem, we can finally estimate

3

I m;
. _ i . Lok
lim |uf1(Qr) <CY > wk(Qp) lim  sup  [9;00f W)v;7 v,
E—o0 =1 k=1 E—oo  1<jk<I
K—-1<|v|<K
I o0
=CY Y wk(@r)-0=0
=1 K=1
thanks to properties (E2) and (E7) of the truncation function (p,.E . O

To prove Theorem 1.3, we use the following technical lemma whose proof can be
found in Fischer (2015).

Lemma 2.6 (Fischer 2015, Lemma 4)(A weak chain rule for the time derivative)
Let Q be a bounded domain with szschztz boundary. Assume that T > 0,
v E L2(O T; HY()!), and vy € LY(Q)!. Let v; be a Radon measure on Qr,

w; € LY(Q7), and z; € L0, T; L>(2)!) for 1 < i < I. Assume moreover that
for any Y € C*°(Q7) with compact support we have

/v,-(T)lp(T)dx—/ viiwdxdt—f v (0) dx
Q or dt Q

=ﬁ lﬂdUH‘/ w,-xﬂdxdt+f Zi - Virdx dr.
Or or or
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Let £ : R — R be a smooth Junction with compactly supported first derivatives.
Then, we have for all v € C*°(Qr) with compact support

‘/Qé(v(T))lﬂ(T)dx

d 1
— o E(v)d—tlﬂdxdt—/gé(vo)l/f(O)dx—;/QT Yo;&(v)w; dx dt

1 1
—Z/ 0iE()zi - Virdedr — Y / V0 k€ (v)z; - Vg dx dt
i=170r Or

ik=1

1
< CIY loo(sup [DE@)) D [vil (7).

i=1
We are now ready to prove the existence of global renormalised solutions.

Proof of Theorem 1.3 By applying Lemma 2.6 to (2.12), we obtain an approximate
relation for the weak time derivative of £(¢* (1)), which leads to the desired equation

for £(u) when passing to the limit £ — oo. In detail, we set v; = (p,.E(u), (vo)i =
oF (o), vi == —pf,
I 1 I
mi—
==y dimdief uTT Vg, wi=)"0;0F ) fiw),

Jj=1 J=1

and obtain for any smooth function & with compactly supported first derivatives
E E d E
(" @)Y (T)dx — | &(@™ () —ydxdr — | §(¢~ (u0)¥(0)dx
Q or dt Q

1 1
- fQ YOiE(p" ))djpf () £ () dx dr
T

i=1 j=1

1 1
+2.2 fQ ) djm ;& (0" @)d;pf (u ™ Vu; - vy dxdr 2.14)

i=1 j=1

1 1
i—1
+> > /Qd,-mjwa,»akg«pE(u))a,-cpf(u)ag(p,f(u)uj’f Vu; - Vugdx dt
ik=1je=1"%T

1
< CIYlloo(sup [DE@D Y 14F1(Q7).

i=1

We now want to pass to the limit £ — oo in (2.14) to obtain (1.4). Note first that due
to (2.13), we obtain in the limit an equality instead of just an estimate. Since £ has
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compactly supported first derivatives, 9; (pl.E (u) isbounded (see (ES)), and <pl.E (u) — u;
a.e. as E — oo, we directly obtain the following limits for the first line in (2.14):

/QE@E(M(T)))W(T)dX — /QE(M(T)W(T)dx,

E d d
/QT §(p (u))Ewdxdt — é(u)Elﬁdxdt,

or
fgé(wE(uo))llf(O)dx—>/Q§(uo)w(0)dx.

By employing mjul;l'/_]Vuj = 2ujTjVujTj and ujTj € L*(0, T; H(Q)), we also
derive

I 1
> / djmj3i§(<pE(u))ijf(u)uT’_le .V dx dr
or

i=1 j=1

1
— Z/ dim; 3 yu!™ ™' Vu; - Vi dx dr.
i=1 QT

It remains to ensure the convergence of the third and fourth line of (2.14). To this end,

we recall u jTJ e L%(0, T; HY(Q)), and we utilise the following observation: there
exists aconstant Eg > O such thatforall E > Ej the inequality Z{Il u; > Eqimplies
0:E(F (u)) = 9;E(u) = 0and 8; & (pF (1)) = ;0 (u) = Oforalli, k e {1,...,1}.
The convergence of the third and fourth line above is now a consequence of this
auxiliary result, as the derivatives of & are zero provided max; u; is larger than Ej:

1 1

1
ZZ/Q wal-sw‘f(u))ajwf(u)fj(u)dxdr—>ZfQ YOEw) fi(u) dx dr,
T i=1 T

i=1 j=1

1
i—1
> / djmjwa,-3k§(<pE(u))ajgoiE(u)ag(p,f(u)u?’ Vi - Vg dx dr
i jke=1"9T

1
N Z/ dimi 3 E (yu Vg - Vuy dx de.
ik=170r

The previous observation readily follows by choosing Ey > 0 such that supp(D&) C
BEo/ﬁ(O)’ Given E > Ej and ZiI:l u; > Ep, one gets Zi]:l gol.E(u) > Eg from

the definition of (p[.E in (2.6). In particular, u, £ (1) ¢ B Eo) +7(0), which proves the
claim. O

Finally, we show that the constructed renormalised solution satisfies the weak
entropy law (1.5) and, when it is applicable, the conservation laws (1.6).
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Proof of (1.5) and (1.6) Since uf — u; a.e.in Q7 and f; are continuous, we have

S — Zf,(ug)(logu +,ul)—CZ(1 uf loguy)
I+ el fu®)]

i=1
e Or, Zfl(u)(logul+Mz)—CZ(1+M110g“)<O 2.15)

i=1 i=1

We rewrite (2.5) as

d ! & & ! 4d; ey |?
E/Qi_glui(logui—i—/u—l)dx+E m—i/;z‘V(ui)Z dx

1 &€
:/;ZW(E fiw®)(ogu; + i) — C E (1 + u; log u§ ))

i=1

1
+/ ———C ) (1+uflogu?)dx.
o 1+elf®)] ; ' '

We now integrate this relation on (s, 7) and use (2.15) and Fatou’s lemma for the
first integral on the right-hand side, and the uniform-in-¢ in Lemma 3.6 for the second
integral to obtain

1 T 1 4d: T e
Z/ ui(logu; + ;i — 1) dx +Z—2’/ /IV(ui)T'lzdxdt
i=179 s =1 M s e

LT
=3[ [ Aotogu + i arar
i=1%

which is (1.5). To show (1.6), we take o = 0 and ¥ = ¢; in (2.3) and sum over i to
get

I I
Z/ giut (x,1)dx = Z/ qiufyo(x) dx.
i=1 v i=1 78

Letting ¢ — 0 proves (1.6). O
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3 Exponential Convergence to Equilibrium
3.1 Entropy-Entropy Dissipation Inequality

Without loss of generality, we assume that the domain €2 has unit volume, i.e. |2| = 1.
We employ the following notation:

To show the convergence to equilibrium for (1.10), we exploit the so-called entropy
method. Assuming the complex balanced condition, system (1.10) possesses the rel-
ative entropy functional

1
5[u|uoo]:Z/ <u,~log i —ui—f—u,-,oo)dx 3.1
i=1 78

Ui, 0o
and the corresponding entropy dissipation function
! R W oun
D[u]:Zd,-m,-/ u;"f*2|wi|2dx+2k,u§g/ U= — |dx (32
rtoy,
i=I @ r=1 @ \Moo ug

with W(x; y) = xlog(x/y) —x +y (see (Desvillettes et al. 2017, Proposition 2.1) for
a derivation of D[u]). Formally, we have

d
Dlu] = ——-&lulucc]
dt
along the trajectory of (1.10). The following lemma shows that the L' norm can be

bounded by the relative entropy.

Lemma 3.1 Assume that E[ulus] < +00. Then,

1
luill 1y = <K =2 (5(u|uoo> - Zui,oo>

i=1
fori=1,...,1.

Proof The elementary inequalities x log(x/y) — x +y > (V/x — ﬁ)z > % x—y

ensure that

1 1 1
u; 1
Eluluce] = E / (u,- log " —u; + u,-,oo> dx > 3 E / u;dx — E Ui co-
i=17% Hi,00 =17 i=1

Taking the non-negativity of the solution u into account allows to conclude. O
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Lemma 3.2 (Fellner and Tang 2017, Lemma 2.3) (Csiszar—Kullback—Pinsker-type
inequality) Fix a non-negative mass M € R”. For all measurable functions u : Q —
Rﬂr satisfying the mass conservation Qu = M, the following inequality holds,

1
2
Eluluce] = Cexp Y llui = i ool 1 g
i=1

in which Ccxp > 0 is a constant depending only on Q and u .

The following two lemmas provide generalisations of the classical logarithmic
Sobolev inequality, which are suited for nonlinear diffusion.

Lemma 3.3 Dolbeault et al. (2008)(L™ -logarithmic Sobolev inequality) For any m >
1, there exists a constant C (2, m) > 0 such that we have

m 2 m
f‘VuT dx > C(Q, m) </ulogidx> .
Q Q u

Lemma 3.4 Mielke and Mittnenzweig (2018) (Generalised logarithmic Sobolev
inequality) For any m > %, there exists a constant C(2, m) > 0 such that

uloggdx.
u

/u’"*zwuﬁdx > C(Q,m)ﬁm’]/
Q

Q

The cornerstone of the entropy method is the entropy—entropy dissipation inequality
which is proved in the following lemma.

Lemma3.5 Let K > 0 and m; > (d_%for all 1 < i < I. There exist constants
C > 0anda > 1depending on K such that for any measurable functionu : Q — Rﬂ_
subject to Qu = Quy, and Elulux] < K, we have

Dlu] = C(EluluscD®.
Proof First, similar to Lemma 3.1, we have the following L' bounds:
I
wi = luillp @) < M1 =2 (K + Zu,-,oo) :
i=1

For all i with % < m; < 1, we apply Lemma 3.4 to have

/ W2V P dx > C(Q,m) ! f u; log = dx

@ @ “ (3.3)

> C(Q,m,-)M;"f‘I/ u; log — dx
Q

Ui
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since m; < 1 and u; < M. Therefore, by applying Lemma 3.3, we can estimate the
entropy dissipation from below as follows:

! w: max{1,m;} R wr I/ty;
Dlu] > K, Z(/ uilog_—ldx) +Zk,ugg/\p —i— | dx |
i=1 Q uj —l Q Uno uéro

For simplicity, we denote o = max;—1, {1, m;},

u; R v u’r uy;
Di:/uilogjdx fori=1,...,1, and F:Zk,wog/w —- — | dx.
Q u; = Q u)’r

i Méo
o0
If D; > 1forsomei € {1,...,I}or F > 1, then we have
Ky o
Dlu]l = K1 > — (Eluluco]) 3.4
KOl
using E[u|us] < K. It remains to consider the case D; < 1foralli =1,..., I and

F < 1. Here, we find

1 1 I @
Dlu] = K, [Z ptmd F} > K, [Z Df + F“} > K> [Z D + F} :
i=1 i=1 i=l1
(3.5)

By applying now the entropy—entropy production estimate for the case of linear dif-
fusion (cf. Fellner and Tang 2018, Theorem 1.1), we have

I

Z Di + F > K3E[uluso] (3.6)
i=1
and, thus,
Dlu] = Ka(EluluoD®.
From (3.4) and (3.6), we obtain the desired estimate. O

3.2 Convergence of Renormalised Solutions

Proof of Theorem 1.5 The global existence of renormalised solutions for (1.10) follows
from Theorem 1.3. Indeed, assumptions (F1) and (F2) can be easily checked using
(1.11), and (F3) follows from the identity (cf. Desvillettes et al. 2017, Proposition 2.1)

-
o0

1 R yr y/
u- u’r
> fiw)(—logu o +loguy) = — Y kudW (g 7) <0

i=1 r=1
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recalling W(x; y) = x log(x/y) — x + y.
Thanks to (1.6) and (1.5), we have the conservation laws

QW:QM_O forall >0,

and
t
Elu(t)|uco] +/ Dlu(t)ldt < E[u(s)|luse] forall 0<s <t.
s
We now apply Lemma 3.5 to get

t
Elu(t)|usol + C/ EMu@)|ucc)®dt < E[u(s)|uce] forall 0<s <t.

(3.7
If « = 1, we immediately get the exponential convergence
Elu®)|use] < e ME[upluss] forall >0
for some constant A > 0. For &« > 1, we first obtain the algebraic decay
Elu®uce] = : (3.8)

(Eluolusc)' =% + C(a — 1);)1/<“—1>'
Indeed, we define
t
VO = EuOlie] and o) = [ EluColune])d.
It follows from (3.7) that

Y () + Cols) < P (s).

Differentiating ¢ (s) with respect to s gives

d
2P0 = (W ($)N* == W) + Cos)”

and consequently,

d
7 PO+ Col+ Cly @) + Co()]* 0.
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Applying a nonlinear Gronwall inequality yields

1
[(I/I(t) + Co(O)' ¥ + C(a — 1)S]1/(a—1)

1
<

T [pO) e+ Cla — 1s]VT

Y1)+ Cols) <

thanks to ¥ (t) + C¢(0) < ¥(0) and @ > 1. Setting s = ¢ and using ¢(¢) = 0 leads
us to the desired estimate (3.8). Owing to the Csiszar—Kullback—Pinsker inequality, it
follows

1 C—l
i (1) = i ool 1 < CKP —.
; 7 (Eluolucel e + Cla — 1yr) /@Y

Therefore, there exists an explicit 7y > O such that
1
lui () — ui ool < Eui’oo forall 1>Tp

and, thus,

v

_ 1
ui(t) = lui@®ll 1 Flico forall 7> Tp.

Using this property, we estimate D[u(¢)] for t > Ty as follows. If m; < 1, then it is
similar to (3.3) that

/ﬂ,-a)"“*zm,-(rnzdxzcm,mnﬁi(r)mi*‘/u (01o gi)d
Q Q l() 3.9
) wi®) (3.9)
zC(Q,mi)K’”"_I/ wi (1) log 22 gy,
Q u; (1)
and form; > 1,
/ﬁ,-(t)mf*ﬂw,-(znzdx zC(Q,mi)ﬁi(t)’”""f u; (t)log_l()
Q u;(t) (3.10)

Ui 0o m;—1 z()
C(, 1
= c@mp (“52)" /u(t)og_l()

since u; (t) > %ui,oo for all + > Ty. Therefore, for all 1 > T, we can estimate D[u(t)]
as

! i (1) AN w() ()
Dlu)] > Ks ;/Qu,-(t)logﬁi(t) dx—i—rz:;k,uoo/Q\I/ KK dx |.
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Using again the entropy—entropy production estimate in the case of linear diffusion
(cf. Fellner and Tang 2018, Theorem 1.1), we have

Dlu(t)] > KeElu(t)|us] forall > Ty,
which leads to the exponential convergence
Elu®)|use] < e KT e[y(T)) luso] forall ¢ > Tp.

Since Ty can be explicitly computed, we in fact get the exponential convergence for
allt >0, i.e.

Elu®)|use] < Ce M Eupluss] forall >0,

for some constants C > 0 and A > 0. Thanks to the Csiszar—Kullback—Pinsker
inequality, we finally obtain the desired exponential convergence to equilibrium. 0O

3.3 Convergence of Weak and Bounded Solutions

We consider the approximate u® to the regularised system (2.1). From Lemma 2.4, we
know that, up to a subsequence,

w8 up ae.in Q7. G.11)

The next lemma establishes uniform-in-& a priori bounds.

Lemma 3.6 Under assumptions (FI1)—(F3), u > 0 with u;ologu;o € LY(Q) N
H_I(S'Z), and m; > 0O foralli = 1,...,1, there exists a constant Ct > 0 which
depends on T > 0 but not on ¢ > 0, such that

/ (loguf)* )" dxdt < Cr forall i=1,...,1. (3.12)
or

Proof The proof uses the idea from Laamri and Perthame (2020). For completeness,
we present it in Appendix 2. O
Proof of Theorem 1.7 By testing (2.1) with ¢y € L>®(Q7)NL>™i+D, T; wl.2mi+D
(2)), we have
& di ey oL ey oL Ly
atuiwdxdt+3 ;)2 V(u;j)?2 -Vydxdt = ff W)y dxde
or or or
(3.13)

From (3.11) and (3.12), we can use Vitali’s lemma to deduce

m; 2(m;+1)
2

(“f)%_)“i stronglyin L ™ (Qr).
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This combined with Lemma 2.1 gives

V(uf)%—\vu% weakly in  L%(Q7).

;
Therefore,

mj
7

mi
2

@IV T - Vydedt — | u?Vu? Vyded  (3.14)

or or

i i

From the definition of f; in (2.1) as well as (3.11), we have
ffw®) — fi(u) ae.in Q7. (3.15)
We show that the set { ff(us )}e=0 is uniformly integrable. Indeed, let K C Qr be a

measurable and compact set with its measure being denoted by | K |. From (1.19) and
(1.17), we have

1
/|ff(u8)|dxdz5/ |fi(u8)|dxdt§C/ LY uflP | dxde
K K K

J=1

1
<C |K|~I—/ Dbt dx e
K -
j=1

(3.16)

It is easy to see that for any § > 0, there exists some Cs > 0 such that for all x > 0,
XMt < 8 (logx) 2™t 4 Gy

It follows from (3.16) and Lemma 3.6 that

1
f |ff )| dxdi < C | K| +6f > (loguf)* @)™ 4+ 1Cs|K |
K Kz
< Cs|K|+ C8.

Therefore, for any t > 0, we first choose 6 > 0 fixed such that C§ < 7/2 and then
K C Qr arbitrarily according to Cs|K| < /2 to ultimately obtain

/ | ff®)|dxdr <,
K

which is exactly the uniform integrability of { f° (u®)}¢~ 0. From this and (3.15), we can
apply Vitali’s lemma again to get f°(u®) — f;(u) strongly in L '(Q7) and, therefore,

/ fig(ug)l// dxdr — / fiw)ydxdt. (3.17)
Oor or
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Finally, using the boundedness of {uf},~o in L™ *1(Q7r), of {V(uf)%}

in
e>0
L%(Q7), and of {f @®)}e=0in L'(Qr), it follows that
1 D 1,2(m;+1 /
{9t Yo is bounded in L' (Q7) + L2+ (0, T; (Wh2m+D(@)))
and, consequently,
/ Oui Y dxdr — Opu; W dx dz. (3.18)
or or

From (3.14), (3.17), and (3.18), we obtain that u = (u;);=1,....1 is a global weak solu-
tion to (1.1). It is remarked that a weak solution is not automatically a renormalised
solution; therefore, the weak entropy—entropy dissipation relation (1.5) and the con-
servation laws (1.6) are not immediate consequences. On the one hand, we can use
Definition 1.6 to show directly that (1.6) also holds for weak solutions. Indeed, by
choosing ¥ = ¢; as the test function for the equation of #; and summing the resultants
using Zi]:l qi fi(u) = 0, we obtain the conservation laws (1.6).

On the other hand, for verifying the entropy law (1.5), we need to restrict ourselves
to bounded weak solutions in order to make the subsequent arguments rigorous. We
start with a sequence of functions {u! },~o C L*™i+D(0, T; W20 +D) such that

u! — u; a.e.in Qr and V(ul’.’)’”f/z—\Vul’.""/2 in L>(Q7) as y — 0. We may further
assume that the functions {ug/ }y >0 are uniformly bounded, and satisfying ug/ > u; a.e.
in Q7. For § > 0, we test (1.16) with log(ug/ +8)+ p; andsumoveri =1,...,1to

get

! ! d m;j m; V(My)
dyu;(log(u?” + 8) + ;) dx dt + —l/ u?vu? . L~ dxdt
; /QT l ,Z 2 Joy l l ”3/ +8

I
= Z/ fiw)(og(u! + 8) + w;) dx dr.
i=179r

. . v mil2 7y 1=m; /2 .
Thanks to «™/>vu™/* . —ﬁu’) = 24 ) 0 (L;’) vu"i/?
! i u; +6 mi u;y +6 !

m; /2 .
u; il (ug/)]—m,/Z

14 m; 2
- V(uy) /2 and
o < 1, we conclude the convergence of the corresponding integral above
i
taking the convergence properties of uly and Vu?’ into account. As the dominated con-
vergence theorem applies to the integral on the right-hand side, we can continuously
extend the linear functional d;u; to log(u; + 8), which is a priori not contained in the

@ Springer



66 Page 36 0f 49 Journal of Nonlinear Science (2023) 33:66

domain of definition of d;u;. Therefore,

Zf oru; (log(u; +8)+M1)dxdt+2 / 7Vu71 .

Y dxdr
P)
(3.19)

= Z/ fiw)(log(u; + 8) + pi) dx dr.

uj

The convergence of the first two sums is now straightforward thanks to the regularity
of weak solutions. To pass to the limit for the last sum, we rewrite

1
Zf fi ) (log(u; + 8) + ;) dx dr
i=179r
1 1

= / (Z fiu + 8)(ogu; +8) + pi) — C Y (1 + (u; + 8) log(u; + 5))) dx dr

Or \;= —

e = (3.20)
+CY | A+ i+ 8)logu; +8)) dx dr

1
—Z/ [fi(u+6) — fi(w)](log(u; +8) + p;j)dxdt =: (I) + (U1) — (I11])
; or

where u +8 = (u; +98)i=1
of (I1) is straightforward:

7 and C > 0 is the constant from (1.2). The convergence

.....

I
lim (1) = C Z/Q (1 + uj logu;) dx dr.
i=1 T
For (1), we use (F3) and Fatou’s lemma to obtain

1 1
lim sup/ (Z fiu+ 8)(og(u; +8) + pi) — C (1 + (u; + 8) log(u; + 3))) dx dt
or

80 i=1 i=1

I I
5/ <Z fiw)y(logu; + nij) — C Z(l + u; 10gu,-)> dx dr.
or

i=1 i=1
Finally, from (1.11) it follows that | Df; (z)| < C(l + Z§=1 |zj|p’]) and, hence,
11msup|(l]])| < hmsupCZ/ (l + Z 7 1)(8|10g(u, +8)| + 8|pil)dxdr =0
0
j=1

thanks to (3.12) and the dominated convergence theorem. Inserting the estimates of
(I), (II), and (I111) into (3.20), then letting § — 0 in (3.19), we conclude that any
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bounded weak solution to (1.1) satisfies the weak entropy—entropy dissipation law
(1.5).

Concerning bounded solutions, we first obtain from Lemma 3.6 that
lwill pmi+10,y < Cr forall i=1,...,1.

Under assumptions (1.18) on the porous medium exponent, we can apply (Fellner
et al. 2020, Lemma 2.2) to get

””i”LOO(QT)SCT forall i=1,...,1.

Note that the constant C7 grows at most polynomially in 7. This implies the expo-
nential convergence to equilibrium in L?(2) for any 1 < p < oo in (1.20). Indeed,
from the exponential convergence in L!(2), we can use the interpolation inequality
to have

-1 1
i (T) — uicollLr@) < lui(T) — Mi,oollLOO(/gf)llui(T) - ui,00||L/11(79)

< C;_l/p(Ce_”)l/” < C,,e_AI’T
for some 0 < A, < A, since Cr grows at most polynomially in 7'. O

3.4 Uniform Convergence of Approximate Solutions
We remark that all the involved constants in the following results do not depend on ¢.

Lemma 3.7 There exists a constant Ly > 0 such that

sup max |[luf () 1@ < Lo (3.21)
tzol:l ,,,,, 1

Proof 1t follows from
iE[u"slu 1=-Dluf1<0
dt o -
that
Eluf (D) |uoo] < Elugluse]. (3.22)

Thanks to (1.22), sup,. o max;—1,.. s 5[u8|uoo] < +00. The L! bound (3.21) follows
with the same arguments as in Lemma 3.1. O
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Lemma 3.8 There exists a constant Lo > O such that

ZII\F \/7”L2(Q)+Z/1+€|f(“8)| [\/?y \/?y}

R ,—)’r ,—)r
z L, Z e
r=1 vV uooyr

Proof We introduce the shorthand notation

v =\ Jui = (V])i=1,...1» Vico = /Uioor Voo = (Vi co)i=l....I,
and g(v%) = f((v%)?) = f(u®). Moreover, for each i € {1, ..., I}, we set
Vs (x) :E—i—ﬁi(}c), x € Q.

The desired inequality in Lemma 3.8 becomes

/2
W) )
2”5 ||L2(Q) +Z/ 1 +8|g(v5)| |: vy; :| dx

R _sy’ U_gvr 2
=LY | 5 Al (3.23)

Voo

r=1

Using Lemma 3.7, we observe by Holder’s inequality, noting that |2| = 1, that

e _ /e /7€ /
v = Mi§ M,'f Lo

and

e — —
18ill 120y = V (W])? — v~ < \Jui <+/Lo.

Therefore, there exists a constant K7 > 0 such that

2

zR: ﬁyr ﬁ v

N o < K7. (3.24)
r= \'

We decompose 2 into 2 = Q| U Q, where
Q={xeQ:|6;x)<1 Vi=1,...,1} and Qp = Q\Q.
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Note that on ©2; we have

0<vi(x)=vi+8 <Lo+1 forall i=1,...

Therefore, there exists a constant Kg > 0 such that

1
———— > Kg forall x e Q.
I+ ¢|g(v®(x))]

By using Taylor’s expansion, we have for all x € Q,

1

.

(3.25)

£ )r & . 72 1 i . " 2
[(U Sr))y - ijcr))y ] = |: 17 1_[ [v + 8 (x)]} ly; l_[ [vf +5i()€):|y”i|

v X
=1

o0 i=1

1t 1
=|— H( A R15i(x)) -
Voo Voo =1
/ 2
1[v v !
> [ e )} — Ko ) 180
o0 Voo i=1

ﬁ( P Ryby <x))}

2

(3.26)

for some K9 > 0. From (3.25) and (3.26), we can estimate the second sum on the

left-hand side of (3.23) as

(US)yr (ve)yﬁ 2
z |, | ax
1+€|g(v*’")l na
R

;2
1 £)r €)Y
22/ “’3 ERCRLA R
o T4elgd | vk WY

) (3.27)
Uey) Ugyr
zng/ ahea —K92|6(x)| dx
R [—v  —071° 1
K v® Ve’ 2
>l )] [ - T} — KsKoR ) 1i172 -
r=1 o0 Voo i=1
On the other hand, the first sum on the left-hand side of (3.23) is estimated as
1
2
D o 8illTag = 5 Z 18:172 g + 5 / Z 18; (x)|*dx
i=1
1
> = Z 18i1172q) + 51l (3.28)
2
1 ) ,Ugyr Ugyr
> EZnaian(Qﬁ |92|2[ } :
i=1 oo
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By combining (3.27) and (3.28), we have for any 6 € (0, 1],

r=1

1
1 2
+ (5 - 9K8K9R> Z} 18172,
1=

/ 2
R —Vr =Y
Kg 1 veé ver
LHS of (3.23) > | 0 — |2 — | - —
of ( )_( 5 11+ 5| z|)2[vy, y;}

Thus, by choosing # = min [1? 21(811(9 R }’ we finally obtain the desired inequality

Lemma 3.9 There exists a constant L3 > O such that

2
NG L I e o
Z”f \/>”L2(m [F’V’_\/E”} —L3; \/; _\/;

Proof The proof of this lemma follows by the same arguments as in (Fellner and Tang
2018, Lemma 2.7), so we omit it here. O

We are now ready to prove Theorem 1.9.

Proof of Theorem 1.9 We proceed similarly to the proof of Lemma 3.5. If % <

m; < 1, we have, thanks to Lemma 3.4 and bound (3.21),

_ —mi—1 ut . u®
W™ 2\ Vul > dx > cut" ulog == dx > CL" Ve log == dx
i i i i 0 i
Q Q u‘g Q &

i i

with a constant C = C(2, m;) > 0. If m; > 1, we apply Lemma 3.3 to get

e mi
/Q(uf)mf'*zwuﬂzdx > C(Q.m)) (/Q uflog%dx> .

1

Therefore, by using W(x, y) = xlog(x/y) —x +y > (V/x — ﬁ)z and noting that

& & gy
/ u log =L dx =/ uflog 2 — uf +uf | dx = I Juf — Jul 122
Q ut Q ut

i i
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there exists a constant Ko > 0 such that
1 e max{1,m;}
Dlu] > KIO[Z (n,/uf — \/ufniz(g))
R Vr }
ub‘ ue r
k d
+ 2 ke “/ 1+s|f(u£)|<\’ Vs ) x}

r=1

(3.30)

We define

R R 1 o r s y. 2
D, = 2 7 o— r
Dii= It = il F’_Zk’"""/gwﬂf(um[\/uoo - } “
r=1

and we consider the following two cases. R
Case 1. If F > 1 or if there exists some i € {1,..., 7} such that D; > 1, we
estimate from (3.30) that

1
Dlu®] = K10 > Kjom———E[uf|uco]. (3.31)
Eluoluco]

Case2.If F < land D; < 1foralli = 1,..., I,thenwither = max;—;.___;{1,m;},
we have from (3.30) that

I I o
Dlu’] > Ko [Z DY + f“] > Kiy [Z Di + F} (3.32)

= i=1

for some K| = K11(K10, «). Thanks to Lemmas 3.8 and 3.9, we have
I
> D
i=1

’ 2
N
=, min (1 ke Z”\f Viitiza + 5 (ﬁo m”‘)

/72

r{ln {L2, 1, kyuzo)Ls.
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From here, we can use (Fellner and Tang 2018, Lemma 2.5) to estimate

1
Elufluoo] < K13 )

i=1

and (Fellner and Tang 2018, Eq. (11)) to get

Vr y/ 2
Ry wE uF .
)l B A e,
Uoso Uso
r=1
(3.34)
It follows from (3.32), (3.33), and (3.34) that
KK «
D[us]zK“(%> Eluf oo (3.35)
13

Owing to (3.31) and (3.35), there exists some L4 > 0 such that
D[u] = La€lu |uce]™™ ).

The rest of this proof follows exactly from that of Theorem 1.5, which helps us to
eventually obtain the exponential convergence to equilibrium

1
2 _
Z”uf(t)_ui,OOHLI(Q) =< Ce M

i=1

where C, A > 0 are independent of ¢. O
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Appendix A:Proof of the Global Existence of Approximate Solutions

In this appendix, we provide a proof for the existence of a global solution to the

approximate system (2.1). While a similar proof, with Dirichlet instead of Neumann

boundary conditions, can be found in (Laamri and Pierre 2017, Proof of Lemma 2.3),

we mainly follow a standard Galerkin approach as presented in many textbooks.
For0 <8 <1land1 <i <[, we consider the regularised system

e, miluf’(s'w_l £,8 g, &8 X
ou’ —d;V - +8)Vu;" | = fFfw>°), v-Vu:;" =0,
’ 14 Smy|ufdmi=t i ! i
i1

(A1)

with initial data uf’a (x,0) = u ,(x)+38, where we extend f;° toalocally Lipschitz con-

tinuous function on RY by setting ff(v) = ff (max{vy, 0}, ..., max{vy, 0}). For the
s i1
sake of readability, we subsequently write w; := u’® and H® (w;) := % +3.

We employ the ansatz wf‘ (x,t) = lezl &'ij ’k(t)e j(x) with k € N, scalar coefficient
functions Eij ok (¢), and the Schauder basise; € H L) of L2(Q) given by the orthonor-
mal eigenfunctions of the Laplace operator satisfying v - Ve; = 0 on 2. Along with
the initial condition &/ *0) = Jo(wo)iej dx, the functions &/ K1 <j <k, are
solutions to the set of equations

/a,w,’.‘ej dx = —d,-/ H3 (wk)Vuwk - Ve; dx—i—/ ffwhe; dx (A2)
Q Q Q

for 1 < j < k, which can be recast into an ODE system for the time-dependent
coefficient vector éik (1) := (éi] ’k(t), cees éik’k(t)). As the right-hand side continuously
depends on éik (¢) via the bounded and continuous functions H® and /> we know that
a solution él.k ) € CY([0, 7], RY) exists for some 7 > 0. The energy estimate below,
which is essentially obtained by multiplying (A.2) with éij ‘k(t) and summing over j,
will indeed show that the solution exists for all times # > 0. Integrating (A.2) over
[0,¢] C [0, T), we have

t t
lwi (172, + 3 /O VW ()72, ds < C<||w{-‘(0>||iz(m+ /O /Q e*1|wf|dxds>,

where C > 0 is independent of k by the uniform bounds H ‘S(wl{‘) > § and ff(wf‘) <
e~1. In order to control the H'(2) norm of wt/.‘, we first observe that e is constant in
space. Hence, (A.2) leads for all t € (0, 7) to

t
U wh(x, 1) dx =’/ wf(x,0>dx+/ /ff(w{f)dxds il
Q Q 0 JQ

< i Ol + =
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Poincaré’s inequality now yields

|Q|2‘L'2
lwi )31 < C(Hwamniz(m +lwf 0172, + )
As a result, we arrive at

t
lwf (D172 + /0 lwf ()31 gy ds < c(l + ||wi<0)||§z(m>, (A3)

where C > 0 is independent of k, and which shows that the solution is bounded on
[0, T) and, thus, existing for all # > 0. Note that we applied the elementary estimate
lwf )l 120y < i (0)l12(g in the last step.

Let P, : L*(Q) — L%*Q) be the orthogonal projection in L?*() onto
spanfeq, ..., ex}, and let ¢ € L2(0, T; H'(2)) for some arbitrary but fixed 7 > 0.
We recall the uniform bounds H%(w¥) < §~! + § and ff(w¥) < e~ leading to

/ Blwllfd)dxdt:/ dwk Pegpdx dt
or or

=—d; | H@WHVwE V(P dxdr+ | fF(wh)Pepdx dr
or or

T T
<C / IVwE Ol 20 IV (Ped) () 2y dt + C f 1(Pe) (Dl 2 dt
0 0
< CU + w207 w1 @91 20,711 )

with a constant C > 0 independent of k. We stress that the last estimate also employs
the bound [[(Pk@)()l g1y < ¢l g1q) for ae. t € [0, T], which provides a
uniform-in-k bound for 3,wf € L2(0, T; (H'(Q))') together with (A.3).

We may choose a (notrelabelled) subsequence wl].‘ being weakly converging fork —
oo to some w; in L%(0, T; H'(Q)) and in H' (0, T; (H(Q))"). Strong convergence
wl’.‘ — w; in L0, T; L%()) = L%(Q7) now follows by means of the Aubin—Lions
lemma. Choosing another subsequence, we obtain foralli =1, .../, wlk — w; and,
hence, H® (wl].‘) — H%(w;) and 1 (wf.‘) — ff(w;) a.e. in Q due to the continuity of
HY and ff. The boundedness of H® and ff further guarantees H s (wl’.‘) — H(w;)
and f (wlk) — ff (w;) strongly in L2(Qr). This allows us to pass to the limitk — oo
in an integrated version of (A.2) resulting in

/ w,»qb dx
Q

T
— f w; 0 dx dt + d; H‘s(wi)Vwi -V dxdt
0 or or

= / fi‘s(wi)¢dx dt
or

for all ¢ € C*®(Qr). By a density argument, (A.1) holds as an identity in
L*(0, T; (H'())).

@ Springer



Journal of Nonlinear Science (2023) 33:66 Page 450f49 66

Thanks to the quasi-positivity assumption (F2), the solution w; is also non-negative.
For p > 1, we have

-2
101+ dip(p = 1) [ H il (VP
Q
1

-1
=p fQ w!™ fE@dx < pl e (i1 g) " (A4

P
Applying the Gronwall lemma y’ < a(;)ylfl/lﬂ = y(1) < (y(o)]/p + % fota(s)ds)
for y(t) = w; ()] ) entails

! p
||wi(f)||lzp(gz) < (”wi(o)“L!’(Q) +/0 IIﬁ(w(s))Ile(Q)ds>
&€ 2L P
< (”wi(o)”LP(Q) +If;i WlizronT 7 ) .
Taking the root of order p on both sides and letting p — oo, this leads to

sup fJwi (Olzo@) < lwi(0)lzoo@) + T I (w)llL=or),
te(0,7)

which means
||w,'||L90(QT) < Cs,T forall i= 1, ey I, (A.5)

where C; 7 is independent of § > 0. Therefore,

1 1

m;— mi—
miwi miwi

He (w;) = +8> ——L—— 8.
’ ! L+ mCl!

l+8m,~wlmi_

By integrating (A.4) on (0, T'), and using (A.5), we get

mi/ w;”"‘lw{"2|Vw,~|2dxdr+3/ w? |V, | dx di
or

or
= L <Ilwi(0)||{p +/ FEwyw’ ™ dx dt) (A.6)
di(p—1) () o7 i i
< (IO gy + IRITIFE Wl 7).
di(p—1) () i )%e,T

which implies, in particular,

mj+p—1
7))

<C A7
rop = 7 A7
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for all p > 1. By testing equation (A.1) with ¢ € L?(0, T; H'(R)) and keeping
(A.5) in mind, we see that {3;w;} is bounded in L2(0, T; (H'(2))) uniformly in
6 > 0. Hence, from this, (A.5), and (A.7), we can apply a nonlinear Aubin—Lions
lemma, see e.g. (Moussa 2016, Theorem 1), to ensure the existence of a subsequence
(not relabelled) such that w; = uf"s — uf strongly in LZ(QT) as 6 — 0. From
here onwards, we will write uf"s instead of w;. Thanks to the L° bound (A.5), this

convergence in fact holds in L?(Q7) for any 1 < p < oo. It remains to pass to the
limit § — 0 in the weak formulation of (A.1) with ¢ € L2(0, T; H'(R)),

1 t ’,n(u"3 a)ml—l
/ <8tuf’65 1/f)(Hl(Q))/JL]I(Q) dt + d; / /S; L Vuf’a -Vyrdxdt
[{ fo

0 1 8 (a2 ymi=!

1 n
+di8f /wf"s-vwdxdm/ /ff(us’a)llfdxdt. (A.8)
1o Q fo Q

The convergence of the first term on the left-hand side and the last term on the right-
hand side of (A.8) is immediate. From

2 3—m;—p ,+ 1
e p——7 s S (S
mi+p—1
we can choose 1 < p < 3 — m; (since m; < 2)to get
1V 2oy < Cer (A9)

thanks to the uniform bounds (A.5) and (A.7). For the third term on the left-hand side
of (A.8), we estimate

4
.8 8
‘5/ /QVM,E -Viyrdxdt| < 5||Vu}g l2com V¥ IL2c0p) < CerdlIVYIlL200,)s

and, therefore, it converges to zero as § — 0. Finally, the convergence

i Py 50 [N L
[ / — V -V dx dt —— / / m; )™ Vul - Vi dx dt
1 JQ 14 5m; (ue ymi—1 fn JQ

m; (u”)m -1 §—0

1+8m; (uf‘s)'"ﬁl

follows from m; (ue)’"' a.e.in Qr, (A.5), and (A.9).

Appendix B:Proof of a Uniform Bound on Approximate Solutions
We provide a proof of Lemma 3.6. Define the new variables
wi = uj loguj + (ni — Duj +e >0
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and

(u?)mi — e limi

m;

s)m,- _

z; = (loguf + p) (u; >0,

where the non-negativity follows from elementary calculus. Direct computations give
dowf — di Azf = (loguf + i) fi (u) — dim; uf)™ | Vus

leading to

1 1 1 1
0 (Z wf) - A (Z dm;?) =Y (oguf + ) f{ (u®) =y " dim; )™ = |Vuf .
i=1 i=1

i=1 i=1

Thanks to (1.2) and an elementary estimate, there exist constants A, 8 > 0 such that

I I I
Z(loguf +ui) ffw®) <C Z(l +uflogu;) < A +,3wa.
i=1

i=1 i=1
Defining the non-negative function

I 1 I
F=A+pY wi— (oguf +u)ff @)+ dimi))" | Vuf > = 0,
i=1 i=1 i=1

we infer that

I I I
9, (wa) —A <Zd,~zf) :A+,BX:w;8 —F,
i=1 i=1 i=1

while Gronwall’s inequality gives
I
Z/ w; dx dt +/ Fdxdt < C(T, [lwgll 1 (e)- (B.1)
i=170r or

By introducing v(x, 1) = e % 3°1_, w?, we obtain

I
v — A <e5’ ZdiZf) =Ae Pt — e PF.
i=1
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Therefore, by applying (Laamri and Perthame 2020, Lemma 1) and (B.1), we have

I 2

I I
1
/Q e (S ) (st ) aar = 5 |37 wt
T

i=1 i=1 i=1 H-1(Q)
T 1 1
—I—C/ e_ﬂ’Z/ d,-zfdx—i—f Fdx Ae_ﬁ’t—i—Z/ w; | dr.
0 oY Q oJe

From the definition of wf and zf, it is easy to see that for any 6 > 0, there exists some
Cs > 0 such that

1 1 1
Zdizf§8 wa Zdizf + Cs
i=1

i=1 i=1

and, hence,

1 1
fQ D owf | (D dizf ) dxde < C(T, [wll i @)nu-1 ()
T

i=1 i=l1

The desired estimate (3.12) is now an immediate consequence.
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