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Abstract
The global existence of renormalised solutions and convergence to equilibrium for
reaction–diffusion systems with nonlinear diffusion are investigated. The system is
assumed to have quasi-positive nonlinearities and to satisfy an entropy inequality. The
difficulties in establishing global renormalised solutions caused by possibly degenerate
diffusion are overcome by introducing a new class of weighted truncation functions.
By means of the obtained global renormalised solutions, we study the large-time
behaviour of complex balanced systems arising from chemical reaction network the-
ory with nonlinear diffusion. When the reaction network does not admit boundary
equilibria, the complex balanced equilibrium is shown, by using the entropy method,
to exponentially attract renormalised solutions in the same compatibility class. This
convergence extends even to a range of nonlinear diffusion, where global existence
is an open problem, yet we are able to show that solutions to approximate systems
converge exponentially to equilibrium uniformly in the regularisation parameter.
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1 Introduction andMain Results

In this paper, we consider the evolution of concentrations u = (u1, . . . , uI ), I ∈ N, in
a bounded domain� ⊂ R

d with Lipschitz boundary ∂� subject to nonlinear diffusion
and reactions as modelled by the parabolic system

⎧
⎪⎨

⎪⎩

∂t ui − di�umi
i = fi (u) in QT ,

∇umi
i · ν = 0 on �T ,

ui (·, 0) = ui,0 in �.

(1.1)

Here and below, we set QT := �× (0, T ) and �T := ∂�× (0, T ) for any T > 0, and
we employ ν to denote the unit outward normal vector to ∂�. The diffusion constants
di are assumed to satisfy di > 0 throughout the paper. The admissible range of the
nonlinear diffusion exponents mi depends on the specific situation and will be clearly
stated at every occurrence below. For instance, for proving the existence of global
renormalised solutions, we demand mi ∈ (0, 2), while the exponential equilibration
of renormalised solutions is shown for mi >

(d−2)+
d with (d − 2)+ := max{0, d − 2}.

We will comment on the bounds on mi later on. Moreover, we generally assume
ui,0 ∈ L1(�), ui,0 ≥ 0, and impose the following assumptions on the reaction terms
fi (u), i = 1, . . . , I :

(F1) (Local Lipschitz continuity) fi : RI+ → R is locally Lipschitz continuous.
(F2) (Quasi-positivity) fi (u) ≥ 0 for all u = (u1, . . . , uI ) ∈ R

I+ with ui = 0.
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(F3) (Entropy inequality) There exist constants (μi )i=1,...,I ∈ R
I satisfying

I∑

i=1

fi (u)(log ui + μi ) ≤ C
I∑

i=1

(1 + ui log ui ) (1.2)

for all u ∈ R
I+, where C > 0 is independent of u.

The second assumption (F2) guarantees non-negativity of solutions provided that the
initial data are non-negative, which is a natural assumption since we consider here ui

as concentrations or densities. Assumption (F3), on the other hand, implies existence
and control of the entropy

I∑

i=1

∫

�

ui (log ui + μi − 1) dx

of the system, and (F3) is only slightly stronger than assuming control of the mass,
i.e.

I∑

i=1

fi (u) ≤ 0. (1.3)

As it is one of the goals of this article to provide a generalisation of the results in Fischer
(2015) to nonlinear diffusion models, we use the same entropy structure as in Fischer
(2015), where Boltzmann entropy–dissipating systems are considered. Observing that
(1.2) itself is just a condition on the involved reactions fi (u), it is reasonable to employ
the same entropy for both the linear and the nonlinear diffusive case. Other options
for an entropy were shown to be feasible if one focuses on different kinds of models
such as cross-diffusion population Chen et al. (2018); Chen and Jüngel (2019) or
energy–reaction–diffusion systems Fischer et al. (2022); Hopf (2022).

In general, assumptions (F1), (F2), and either (F3) or (1.3) of the nonlinearities
fi are not enough to obtain suitable a priori estimates which allow to extend local
strong solutions globally, see, e.g. Pierre and Schmitt (2000). On the one hand, for
the case of linear diffusion (i.e. mi = 1 for all i = 1, . . . , I ), the global existence
for (1.1) under extra assumptions on nonlinearities has been extensively investigated.
For instance, global bounded solutions were shown under (F3) for the case d = 1
with cubic nonlinearities and d = 2 with quadratic nonlinearities, see Goudon and
Vasseur (2010); Tang (2018). Recent works Souplet (2018); Caputo et al. (2019);
Fellner et al. (2020) showed under either (F3) or (1.3) that bounded solutions can
be obtained for (slightly super-)quadratic nonlinearities in all dimensions. We refer
the reader to the extensive review Pierre (2010) for related results concerning global
existence of boundedorweak solutions. It is remarked that in all such results, additional
assumptions on nonlinearities must be imposed. A breakthrough has been made in
Fischer (2015) where global renormalised solutions were obtained without any extra
assumptions on the nonlinearities. The notion of a renormalised solution was initially
introduced for Boltzmann’s equation in DiPerna and Lions (1989), and it has been
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applied subsequently to many other problems, see, e.g. Villani (1996); Dal Maso et al.
(1999); Desvillettes et al. (2007). On the other hand, the case of nonlinear, possibly
degenerate diffusion is much less understood. Up to our knowledge, there are only a
fewworks (Laamri and Pierre 2017; Laamri and Perthame 2020 andFellner et al. 2020)
which showedglobal existence of (very)weakor bounded solutions for porousmedium
type of diffusion, i.e.mi > 1, under (1.3) and some restricted growth conditions on the
nonlinearities. However, renormalised solutions to a system as in (1.1) but imposing
more regularity on the initial data and the underlying domain are provided in Lankeit
andWinkler (2022). Instead of an entropy condition as in (1.2), the authors of Lankeit
and Winkler (2022) assume an additional bound on cross-absorptive reaction terms.
Furthermore, Fellner et al. (2020) proved the convergence to equilibrium for (1.1)
modelling a single reversible chemical reaction. Recent results on the global existence
of renormalised solutions also include reaction–cross-diffusion models in population
dynamics Chen and Jüngel (2019) and energy–reaction–diffusion systems Fischer
et al. (2022).

The present study shows the existence of global renormalised solutions to (1.1)
featuring nonlinear diffusion of porous medium type or fast diffusion without any
extra conditions on the nonlinearities (up to assuming (F1)–(F3)). In addition,we show
that these solutions, in case (1.1) models general complex balanced chemical reaction
networks, converge exponentially to equilibrium with explicitly computable rates.
Our paper seems to be the first extensive contribution to the nonlinear diffusion-type
system (1.1) establishing—for specific parameter regimes—the existence of global
renormalised (or evenweak and bounded) solutions aswell as exponential convergence
to equilibrium in various L p spaces. A brief summary of our results is given in Table
1 at the end of this section.

The first part of this paper is concerned with the global existence of renormalised
solutions to (1.1). We consider the following definition of renormalised solutions.

Definition 1.1 (Renormalised solutions) Let mi ∈ [0, 2] for all 1 ≤ i ≤ I and u0 =
(ui,0)i ∈ L1(�)I be (componentwise) non-negative. A non-negative function u =
(u1, . . . , uI ) : � × (0,∞) → R

I+ is called a renormalised solution to (1.1) with
initial data u0 if the following holds:

• ui ∈ L∞
loc([0,∞), L1(�)) and ∇ui

mi
2 ∈ L2

loc([0,∞), L2(�)I ),
• for any smooth function ξ : RI+ → R with compactly supported derivative Dξ ,
any function ψ ∈ C∞(� × [0,∞)), and a.e. T > 0, we have

∫

�

ξ(u(·, T ))ψ(·, T ) dx −
∫

�

ξ(u0)ψ(·, 0) dx −
∫

QT

ξ(u)∂tψ dx dt

= −
I∑

i, j=1

di mi

∫

QT

ψ∂i∂ jξ(u)umi −1
i ∇ui · ∇u j dx dt

−
I∑

i=1

di mi

∫

QT

∂iξ(u)umi −1
i ∇ui · ∇ψ dx dt
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+
I∑

i=1

∫

QT

∂iξ(u) fi (u)ψ dx dt, (1.4)

• for a.e. 0 ≤ s < T , we have

I∑

i=1

∫

�

ui (log ui + μi − 1) dx

∣
∣
∣
∣

T

s
≤ −

I∑

i=1

4di

m2
i

∫ T

s

∫

�

|∇(ui )
mi
2 |2 dx dt

+
I∑

i=1

∫ T

s

∫

�

fi (u)(log ui + μi ) dx dt,

(1.5)

• and for a.e. t > 0, we have

I∑

i=1

∫

�

qi ui (x, t) dx =
I∑

i=1

∫

�

qi ui,0(x) dx, (1.6)

provided there exist some numbers qi ∈ R such that
∑I

i=1 qi fi (z) = 0 for all
z ∈ R

I .

Remark 1.2 • We notice that all integrals in (1.4) are well defined due to the compact
support of Dξ and as the integrals relating to gradients of solutions can be rewritten
as

∫

QT

ψ∂i∂ jξ(u)umi −1
i ∇ui · ∇u j dx dt

= 4

mi m j

∫

QT

ψ∂i∂ jξ(u)u
mi
2

i u
1− m j

2
j ∇u

mi
2

i · ∇u
m j
2

j dx dt

and
∫

QT

∂iξ(u)umi −1
i ∇ui∇ψ dx dt = 2

mi

∫

QT

∂iξ(u)u
mi
2

i ∇u
mi
2

i ∇ψ dx dt

which are both finite thanks to the boundedness of ∇u
mi
2

i in L2(QT ) and the
restriction mi ∈ [0, 2] for all 1 ≤ i ≤ I . Note that mi < 0 or mi > 2 is not
admissible as the integrals above may degenerate in this case even for small values
of ui .

• In the case of linear diffusion, the weak entropy law (1.5) and conservation laws
(1.6) in Definition 1.1 are redundant since they can be proved using (1.4), see
Fischer (2017). Unfortunately, this seems to be impossible in our present case due
to the degeneracy of the diffusion. Nevertheless, if the renormalised solution turns
out to be bounded, one can prove these laws directly (see the Proof of Theorem
1.7). Proving (1.5) and (1.6) using only (1.4) in the case of nonlinear diffusion
remains an interesting open problem.
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The first main result of this article is the following theorem. We stress that even
though Definition 1.1 allows for mi ∈ [0, 2], the construction of a renormalised
solution demands mi ∈ (0, 2) for all i = 1, . . . , I .

Theorem 1.3 (Global existence of renormalised solutions) Let � ⊂ R
d be a bounded

domain with Lipschitz boundary ∂�. Assume mi ∈ (0, 2) for all i = 1, . . . , I , and
that conditions (F1)–(F3) hold. Then, for any non-negative initial data u0 = (ui,0)i ∈
L1(�)I subject to

I∑

i=1

∫

�

ui,0 log ui,0 dx < ∞, (1.7)

there exists a global renormalised solution to (1.1).

Remark 1.4 • Relation (1.6) usually corresponds tomass conservation laws in chem-
ical reactions, see, e.g. Fellner and Tang (2018).

• The uniqueness of renormalised solutions is widely open. For a weaker notion
called weak–strong uniqueness, i.e. the renormalised solution is unique as long as
a strong solution exists, we refer the interested reader to Fischer (2017).

• The fact that (1.5) and (1.6) are satisfied by any renormalised solution plays an
important role in the next part of this paper where we show that all renormalised
solutions, instead of only some of them, converge to equilibrium.

• Assumption (1.7) on the initial data u0 ∈ L1(�)I is used on a technical level at
the end of the proof of Lemma 2.4 when showing that the candidate u = (ui )i for

a renormalised solution satisfies ui
mi
2 ∈ L2(0, T ; H1(�)) for all i ∈ {1, . . . , I }.

Moreover, the additional regularity (1.7) carries over to the renormalised solution
(cf. (1.5)) and, in particular, guarantees that the initial entropy (cf. (1.13)) is finite.

• A similar situation is considered in Laamri and Pierre (2017) with homogeneous
Dirichlet conditions. In fact, (Laamri and Pierre 2017, Theorem 2.6) is comparable
to our Theorem 1.3 but instead of (1.7), the authors assume that an a priori L1

estimate is available.

The strategy for constructing a global renormalised solution follows the ideas in
Fischer (2015).Given a sequence of approximate solutionsuε , one proves compactness
of the family uε by deriving bounds on truncations ϕE

i (uε), E ∈ N, i = 1, . . . , I , and
subsequently employing an Aubin–Lions lemma. The smooth functions ϕE

i defined
in (2.6) essentially truncate the mappings u 	→ ui if u becomes too large (measured
in terms of E) while leaving u 	→ ui unchanged for sufficiently small u. The main
difficulty in our current situation is caused by the different diffusion exponents mi

for each species ui , which makes the truncations ϕE
i provided in Fischer (2015) not

applicable. We overcome this issue by modifying the functions ϕE
i in such a way

that the truncation is not decided by
∑

j u j but by a weighted sum
∑

j E−αi
j u j with

suitable constants αi
j ≥ 1 chosen depending on the diffusion exponents mi . We then

pass to the limit ε → 0 in the equation for ϕE
i (uε) at the cost of an additional defect

measure which, nevertheless, vanishes in the subsequent limit E → ∞. Finally, an
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equation for ξ(ϕE
i (u)) is derived, where ξ is subject to the same assumptions as in

Definition 1.1, and the limit E → ∞ is performed resulting in the desired equation
(1.4) for ξ(u).

The restriction mi ∈ (0, 2) for i = 1, . . . , I is, on the one hand, necessary within
the construction of the truncations ϕE

i , see, e.g. (2.7), (2.9), and (2.10). On the other
hand, it is crucial in showing the vanishing of the defect measure when establishing the
renormalised solution. We do not know whether this restriction is purely technical or
due to a deeper reason. It is remarked that the same condition is heavily used in Laamri
and Pierre (2017), where global weak solutions to (1.1) are investigated. In particular,
models with logarithmic diffusion mi = 0 and ultra-fast diffusion processes are not
included in the subsequent results. Systems of porous medium type are, nevertheless,
covered to a large extent within Theorem 1.7.

In the second part of this paper, we study the large-time behaviour of reaction–
diffusion systems of type (1.1) modelling chemical reaction networks subject to the
complex balance condition. The main vocabulary is introduced below but we refer to
Desvillettes et al. (2017) for a more detailed discussion of the involved concepts. We
assume that there are I chemicals S1, . . . , SI reacting via the following R reactions

yr ,1S1 + · · · + yr ,I SI
kr−→ y′

r ,1S1 + · · · + y′
r ,I SI for all r = 1, . . . , R

(1.8)

where yr ,i , y′
r ,i ∈ {0}∪[1,∞) are stoichiometric coefficients, and kr > 0 are reaction

rate constants. Utilising the notation yr = (yr ,i )i=1,...,I and y′
r = (y′

r ,i )i=1,...,I , we
can rewrite the reactions in (1.8) as

yr
kr−→ y′

r for all r = 1, . . . , R. (1.9)

Denote by ui (x, t) the concentration of Si at position x ∈ � and time t ≥ 0.
The reaction network (1.8) results in the following reaction–diffusion system with
nonlinear diffusion for u = (u1, . . . , uI ):

⎧
⎪⎨

⎪⎩

∂t ui − di�umi
i = fi (u) in QT ,

∇umi
i · ν = 0 on �T ,

ui (x, 0) = ui,0(x) in �,

(1.10)

in which the reaction term fi (u) is determined using the mass action law,

fi (u) =
R∑

r=1

kr uyr (y′
r ,i − yr ,i ) where uyr =

I∏

j=1

u
yr , j
j . (1.11)

It is obvious that fi (u) is locally Lipschitz continuous; hence, (F1) is satisfied. For
(F2), it is easy to check that fi (u) ≥ 0 holds true for all u ∈ R

I+ satisfying ui = 0
since we assume kr > 0 and y ∈ ({0} ∪ [1,∞))I for all y ∈ {yr , y′

r }r=1,...,R . Before
verifying (F3), we recall the definition of a complex balanced equilibrium. A constant
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state u∞ = (ui,∞)i ∈ [0,∞)I is called a complex balanced equilibrium for (1.10)–
(1.11) if

∑

{r :yr =y}
kr uyr∞ =

∑

{s:y′
s=y}

ksuys∞ for all y ∈ {yr , y′
r }r=1,...,R . (1.12)

Intuitively, this condition means that for any complex the total outflow from the com-
plex and the total inflow into the complex are balanced at such an equilibrium. Using
complex balanced equilibria, one can show that the nonlinearities in (1.11) satisfy (F3)
by choosing μi = − log ui,∞ with a strictly positive complex balanced equilibrium
u∞ (see Desvillettes et al. 2017, Proposition 2.1). Therefore, one can apply Theorem
1.3 to obtain global renormalised solutions to (1.10) and (1.11).

In general, theremight exist infinitelymany solutions to (1.12). To uniquely identify
a positive equilibrium, we need a set of conservation laws.More precisely, we consider
the Wegscheider matrix (or stoichiometric coefficient matrix)

W = [
(y′

r − yr )r=1,...,R
]T ∈ R

R×I ,

and define m = dim(ker(W )). If m > 0, then we can choose a matrix Q ∈ R
m×I ,

where the rows form a basis of ker(W ). Note that this implies Q (y′
r − yr ) = 0 for all

r = 1, . . . , R. Therefore, by recalling f (u) = ( fi (u))i=1,...,I = ∑R
r=1 kr uyr (y′

r − yr )

we obtain

Q f (u) =
R∑

r=1

kr uyrQ(y′
r − yr ) = 0 for any u ∈ R

I .

By using the homogeneous Neumann boundary condition, we can then (formally)
compute that

d

dt

∫

�

Q u(t) dx =
∫

�

Q f (u) dx = 0

and, consequently, for a.e. t > 0,

Q

∫

�

u(t) dx = Q

∫

�

u0 dx .

In other words, systems (1.10) and (1.11) possess m linearly independent mass con-
servation laws. By the vocabulary used in the literature on chemical reaction network
theory, for any fixed non-negative mass vector M ∈ R

m , the set {u ∈ R
I+ : Q u = M}

is called the compatibility class corresponding to M . In case that for each strictly
positive vector M ∈ R

m , there exists a strictly positive complex balanced equilibrium,
one says that the chemical reaction network is complex balanced. This terminology is
well defined since it was proved in Horn (1972/73) that if one equilibrium is complex
balanced, then all equilibria are complex balanced. It was further shown that for each
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non-negative initial mass M ∈ R
m with M �= 0, there exists a unique strictly pos-

itive complex balanced equilibrium u∞ = (ui,∞)i ∈ R
I+ in the compatibility class

corresponding to M (cf. Horn and Jackson 1972; Feinberg 1979).
We stress that additionally there might exist many so-called boundary equilib-

ria, which are complex balanced equilibria lying on ∂RI+. It is remarked that there
exists a large class of complex balanced chemical reaction networks, called con-
cordant networks, which do not have boundary equilibria, see Shinar and Feinberg
(2013). For the sake of brevity, from now on we call the unique strictly positive com-
plex balanced equilibrium simply the complex balanced equilibrium. Note that all the
previous considerations—although established for ODE models for chemical reac-
tion networks—also apply to our PDE setting thanks to the homogeneous Neumann
boundary conditions, which allow for spatially homogeneous equilibria.

Theorem 1.5 (Exponential equilibration of renormalised solutions) Let � ⊂ R
d be a

bounded domain with Lipschitz boundary ∂�. Assume that the reaction network (1.9)
is complex balanced, suppose that (F1)–(F3) hold, and let any non-negative initial
data u0 = (ui,0)i ∈ L1(�)I with

∑I
i=1

∫

�
ui,0 log ui,0 dx < ∞ be given.

• If mi ∈ (0, 2) for all 1 ≤ i ≤ I , then there exists a global renormalised solution
to (1.10)–(1.11).

• If mi >
(d−2)+

d for all 1 ≤ i ≤ I and assuming that there exist no boundary
equilibria, all renormalised solutions to (1.10)–(1.11) converge exponentially to
the positive equilibrium u∞ ∈ R

I+ in the same compatibility class as u0 with a
rate which can be explicitly computed up to a finite dimensional inequality, i.e.

I∑

i=1

‖ui (t) − ui,∞‖L1(�) ≤ Ce−λt for all t ≥ 0,

for positive constants C > 0, λ > 0 depending on the initial entropy, the domain
�, the diffusion coefficients di and exponents mi , and the vectors of stoichiometric
coefficients {yr , y′

r }r=1,...,R.

We emphasise that the convergence to equilibrium in Theorem 1.5 is proved for all
renormalised solutions, not only the ones obtained via an approximation procedure.
This is possible because the proof of the convergence uses only the weak entropy–
entropy dissipation law (1.5) and the conservation laws (1.6) which are satisfied by all
renormalised solutions. It is noted that, when a system possesses boundary equilibria,
the convergence to the positive equilibrium (more precisely, the instability of boundary
equilibria) is very subtle and strongly connected to the famous Global Attractor Con-
jecture, see, for instance, Desvillettes et al. (2017); Fellner and Tang (2018); Craciun
(2015).

Theorem 1.5, up to our knowledge, is the first result of trend to equilibrium for
general complex balanced reaction networks with nonlinear diffusion. A special case
of a single reversible reaction was considered recently in Fellner et al. (2020) in which
the authors utilised a so-called indirect diffusion effect (see, e.g. Einav et al. 2020),
which seems difficult to be generalised to general systems. The proof of Theorem 1.5
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uses the relative entropy

E[u|u∞] =
I∑

i=1

∫

�

(

ui log
ui

ui,∞
− ui + ui,∞

)

dx (1.13)

and its corresponding entropy dissipation

D[u] =
I∑

i=1

di mi

∫

�

umi −2
i |∇ui |2 dx +

R∑

r=1

kr uyr∞
∫

�




(
uyr

uyr∞
; uy′

r

u
y′

r∞

)

dx

(1.14)

where 
(x; y) = x log(x/y) − x + y. It holds, at least formally, that

− d

dt
E[u|u∞] = D[u]

along any trajectory of (1.10) and (1.11). The degeneracy of the nonlinear diffusion
makes the classical logarithmic Sobolev inequality not applicable. Our main idea here
is to utilise some generalised logarithmic Sobolev inequalities (see Lemmas 3.3 and
3.4), which are suited for nonlinear diffusion, and the established results in Fellner
and Tang (2018) for the case of linear diffusion, to firstly derive an entropy–entropy
dissipation inequality of the form

D[u] ≥ C(E[u|u∞])α (1.15)

where α = maxi=1,...,I {1, mi }. Note that this functional inequality is proved for all
non-negative functions u : � → R

I+ satisfying the conservation laws Q
∫

�
u dx =

|�|Qu∞, and therefore is suitable for renormalised solutions, which have very low
regularity. If α = 1 in (1.15), one immediately gets exponential convergence of the
relative entropy to zero and, consequently, exponential convergence of the solutions to
equilibrium in L1 thanks to a Csiszár–Kullback–Pinsker-type inequality. If α > 1, we
first obtain an algebraic decay of the relative entropy to zero. Thanks to this, we can
explicitly compute a finite time T0 > 0 from which onwards (in time) the averages
of concentrations are strictly bounded below by a positive constant. This helps to
compensate the degeneracy of the diffusion and, therefore, to show that solutions with
such lower bounds satisfy the linear entropy–entropy dissipation inequality, i.e.

D[u(t)] ≥ CE[u(t)|u∞] for all t ≥ T0,

which recovers exponential convergence to equilibrium. ��
The use of renormalised solutions allows to deal with a large class of nonlinearities,

but on the other hand it restricts Theorem 1.5 to the case (d−2)+
d < mi < 2. When

the nonlinearities are of polynomial type, it was shown in Laamri and Pierre (2017);
Fellner et al. (2020), under the assumption of the mass dissipation (1.3) instead of the
entropy inequality (1.2), that one can get global weak or even bounded solutions if the
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porous medium exponents mi are large enough. In the following theorem, we show an
analogue result under the entropy inequality condition (1.2). Moreover, the solution
is shown to converge exponentially to the positive complex balanced equilibrium.

Definition 1.6 (Weak solutions)Avector of non-negative functionsu = (u1, . . . , uI ) :
� × (0,∞) → R

I+ is called a (global) weak solution to (1.1) if

ui ∈ Lmi +1(QT ), ∇u
mi
2

i ∈ L2(QT ), fi (u) ∈ L1(QT ),

∂t ui ∈ L1(QT ) + L
2(mi +1)
2mi +1

(
0, T ; (W 1,2(mi +1)(�)

)′)
,

and
∫

QT

∂t ui ψ dx dt + di

2

∫

QT

u
mi
2

i ∇u
mi
2

i · ∇ψ dx dt =
∫

QT

fi (u) ψ dx dt (1.16)

for all T > 0, i = 1, . . . , I , and test functions ψ ∈ L∞(QT ) ∩ L2(mi +1)(0, T ;
W 1,2(mi +1)(�)).

Theorem 1.7 (Existence and convergence ofweak andbounded solutions)Let� ⊂ R
d

be a bounded domain with Lipschitz boundary ∂�. Assume that the assumptions (F1)–
(F3) hold and that the nonlinearities are bounded by polynomials, i.e. there exist C > 0
and ρ j ≥ 1 for all j = 1, . . . , I such that

| fi (u)| ≤ C

⎛

⎝1 +
I∑

j=1

|u j |ρ j

⎞

⎠ for all u ∈ R
I , i = 1, . . . , I .

• If

mi ≥ ρi − 1 for all i = 1, . . . , I , (1.17)

then system (1.1) has a global non-negative weak solution for each non-negative
initial data u0 = (ui,0)i=1,...,I such that ui,0 log ui,0 ∈ L1(�) ∩ H−1(�) for all
i = 1, . . . , I .

• Under an even stronger condition with ρ := maxi ρi , namely

min
i=1,...,I

mi > max{ρ − 1, 1} for d ≤ 2,

min
i=1,...,I

mi > max
{
ρ − 4

d + 2
, 1

}
for d ≥ 3,

(1.18)

the weak solution to (1.1) subject to bounded non-negative initial data u0 ∈
L∞(�)I is locally bounded in time, i.e.

‖ui‖L∞(�×(0,T )) ≤ CT for all i = 1, . . . , I ,
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where CT is a constant growing at most polynomially in T > 0.

Assume now that the reaction network (1.9) is complex balanced and define

ρ = ρi := max
r=1,...,R

{|yr |, |y′
r |} for all i = 1, . . . , I , (1.19)

where |yr | = ∑I
j=1 yr , j . Assume moreover that (1.9) has no boundary equilibria.

• If (1.17) holds and 0 ≤ u0 such that ui,0 log ui,0 ∈ L1(�) ∩ H−1(�) for all
i = 1, . . . , I , all bounded weak solutions (locally in time) to (1.10) and (1.11)
converge exponentially to the complex balanced equilibrium in L1(�), i.e.

I∑

i=1

‖uε
i (t) − ui,∞‖L1(�) ≤ Ce−λt for all t ≥ 0,

for some C > 0, λ > 0depending on the initial entropy, the domain�, the diffusion
coefficients di and exponents mi , and the vectors of stoichiometric coefficients
{yr , y′

r }r=1,...,R.
• If (1.18) holds and 0 ≤ u0 ∈ L∞(�)I , weak solutions to (1.10) and (1.11) are

bounded locally in time and converge exponentially to equilibrium in any L p norm
with p ∈ [1,∞), i.e.

I∑

i=1

‖ui (t) − ui,∞‖L p(�) ≤ C pe−λpt for all t ≥ 0, (1.20)

with positive constants C p, λp > 0 depending on p, the initial entropy, the domain
�, the diffusion coefficients di and exponents mi , and the vectors of stoichiometric
coefficients {yr , y′

r }r=1,...,R.

Remark 1.8 In addition to Remark 1.4, we point out that another reason for assuming
ui,0 log ui,0 ∈ L1(�) ∩ H−1(�) for all i ∈ {1, . . . , I } (rather than demanding just
u0 ∈ (L1(�) ∩ H−1(�))I as in Laamri and Perthame 2020) is the supposed entropy
inequality (1.2). More precisely, we need this hypothesis on the initial data in the proof
of Lemma 3.6, which is itself a crucial ingredient of the proof of Theorem 1.7.

As one can see from Theorems 1.5 and 1.7, the global existence and trend to
equilibrium for (1.10) and (1.11) are well established for either (d−2)+

d < mi < 2
for all i = 1, . . . , I , or mi large enough in the sense of (1.17) or (1.18) for all
i = 1, . . . , I . There exists, therefore, a gap in which the global existence of any kind
of solution remains open. Remarkably, the proof of the convergence to equilibrium
in this paper does not rely on the restriction mi < 2, and it therefore is applicable to
any global solution to (1.10) and (1.11) as long as it satisfies the entropy law (1.5)
and the mass conservation laws (1.6). We, thus, arrive at the following result on the
convergence to equilibrium for approximating systems of (1.10) and (1.11) uniformly
in the approximation parameter.

123



Journal of Nonlinear Science (2023) 33 :66 Page 13 of 49 66

Theorem 1.9 (Uniform convergence of approximate solutions) Let � ⊂ R
d be

a bounded domain with Lipschitz boundary ∂�. Assume that (1.10) and (1.11)
subject to (F1)–(F3), non-negative initial data u0 = (ui,0)i ∈ L1(�)I with
∑I

i=1

∫

�
ui,0 log ui,0 dx < ∞, and mi >

(d−2)+
d for all i = 1, . . . , I admits

a complex balanced equilibrium but no boundary equilibria. For any ε > 0, let
uε = (uε

i )i=1,...,I be the solution to the approximate system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u
ε
i − di�(uε

i )
mi = fi (uε)

1 + ε| f (uε)| in QT ,

∇(uε
i )

mi · ν = 0 on �T ,

uε
i (x, 0) = uε

i,0(x) in �,

(1.21)

where uε
i,0 ∈ L∞(�) satisfies

max
i

lim
ε→0

‖uε
i,0 − ui,0‖L1(�) = 0 and max

i
sup
ε>0

∫

�

uε
i,0 log uε

i,0 dx < ∞.

(1.22)

Moreover, the approximated initial data uε
0 are chosen such that, for all ε > 0,

Q

∫

�

uε
0 dx = Q

∫

�

u0 dx . (1.23)

(This implies that system (1.21)admits a unique positive complex balanced equilibrium
u∞ ∈ R

I+, which is independent of ε > 0.)
Then, uε converges exponentially to u∞ with a rate which is uniform in ε, i.e.

I∑

i=1

‖uε
i (t) − ui,∞‖L1(�) ≤ Ce−λt for all t ≥ 0,

where C > 0, λ > 0 are constants depending on the initial entropy, the domain
�, the diffusion coefficients di and exponents mi , and the vectors of stoichiometric
coefficients {yr , y′

r }r=1,...,R but independent of ε > 0.

To prove Theorem 1.9, we make use of the same relative entropy as in (1.13),

E[uε|u∞] =
I∑

i=1

∫

�

(

uε
i log

uε
i

ui,∞
− uε

i + ui,∞
)

dx,
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Table 1 Summarisation of global existence and convergence to equilibrium for mass action reaction–
diffusion systems (1.10) and (1.11) with nonlinear diffusion in various parameter regimes

Diffusion exponents Global existence Convergence to equilibrium

0 < m ≤ (d−2)+
d Renormalised solution unknown

(d−2)+
d < m < 2 Renormalised solution Exponential in L1

2 ≤ m < ρ − 1 unknown Exponential in L1 for
approximate solutions
uniformly in the
approximation parameter

ρ − 1 ≤ m ≤ ρ − 4
d+2 Weak solution Exponential in L1

ρ − 4
d+2 < m Bounded solution Exponential in any L p ,

p < ∞

where uε is the solution to (1.21). The corresponding non-negative entropy dissipation
can be calculated as

D[uε] =
I∑

i=1

di

∫

�

mi (u
ε
i )

mi −2|∇ui |2 dx

+
R∑

r=1

kr uyr∞
∫

�

1

1 + ε| f (uε)|

(

(uε)yr

uyr∞
; (uε)y′

r

u
y′

r∞

)

dx .

Since there is no uniform-in-ε L∞ bound for uε available, the factor 1
1+ε| f (uε)| is not

bounded below uniformly in ε > 0. Therefore, it seems to be impossible to use the
entropy dissipation (for limit solutions) in (1.14) as a lower bound for D[uε]. We
overcome this issue by using the ideas in Fellner and Tang (2018). Roughly speaking,
we deal with the second sum inD[uε] by estimating it below by a term involving only
spatial averages of uε (rather than uε pointwise as above), and then exploiting the fact
that these averages are bounded uniformly in ε > 0.

We summarise the global existence and convergence to equilibrium for the mass
action system (1.10) and (1.11) in Table 1 (assuming the existence of a unique strictly
positive complex balanced equilibrium and the absence of boundary equilibria). Note
that in our framework the global existence of any kind of solution remains open as
soon as there exist i, j ∈ {1, . . . , I } such that the corresponding diffusion exponents
satisfy mi ≥ 2 and m j < ρ − 1, where ρ is defined in (1.19). In order to keep the
presentation simple, we assume within Table 1 that all diffusion exponents mi = m
coincide.

The rest of this paper is organised as follows. In Sect. 2,we show the global existence
of renormalised solutions for the general system (1.1). The proofs of Theorems 1.5, 1.7,
and 1.9 on the convergence to equilibrium of chemical reaction networks are presented
in Sect. 3. Some technical proofs of auxiliary results are postponed to Appendix.
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2 Global Existence of Renormalised Solutions

2.1 Existence of Approximate Solutions

Let mi ∈ (0, 2) for all i ∈ {1, . . . , I } and ε > 0 and consider the following approxi-
mating system for uε = (uε

1, . . . , uε
I ),

∂t u
ε
i − di�(uε

i )
mi = f ε

i (uε) := fi (uε)

1 + ε| f (uε)| , ∇(uε
i )

mi · ν = 0, uε
i (·, 0) = uε

i,0,

(2.1)

where uε
i,0 ∈ L∞(�) is non-negative and uε

i,0
ε→0−−→ ui,0 in L1(�). Moreover, we

demand

sup
ε>0

∫

�

uε
i,0 log uε

i,0 dx < +∞. (2.2)

With this approximation, it is easy to check that the approximated nonlinearities f ε
i

still satisfy assumptions (F1)–(F3).

Lemma 2.1 Provided mi ∈ (0, 2) for all i ∈ {1, . . . , I } and ε > 0, there exists a
global weak solution uε = (uε

i )i ∈ L∞
loc([0,∞), L∞(�))I to the approximate system

(2.1) with ∇(uε
i )

mi
2 ∈ L2

loc([0,∞), L2(�)) and ∂t uε
i ∈ L2

loc([0,∞), (H1(�))′). In
detail,

∫ t1

t0

〈
d

dt
uε

i , ψ

〉

(H1(�))′,H1(�)

dt = − di mi

∫ t1

t0

∫

�

(uε
i )

mi −1∇uε
i · ∇ψ dx dt

+
∫ t1

t0

∫

�

fi (uε)

1 + ε| f (uε)|ψ dx dt

(2.3)

for all ψ ∈ L2
loc([0,∞), H1(�)), i ∈ {1, . . . , I }, and a.e. 0 ≤ t0 < t1. Moreover,

each uε
i is a.e. non-negative and

I∑

i=1

∫

�

uε
i (t1)[log uε

i (t1) + μi − 1] dx + C
∫ t1

t0

∫

�

I∑

i=1

∣
∣
∣∇(uε

i )
mi
2

∣
∣
∣
2
dx dt

≤ eC(t1−t0)

(∫

�

I∑

i=1

uε
i (t0)[log uε

i (t0) + μi − 1] dx + C(t1 − t0)

)

(2.4)

for a.e. 0 ≤ t0 < t1.

Proof For each ε > 0, we see by recalling | f (uε)| = ∑I
i=1 | fi (uε)| that

fi (uε(x, t))

1 + ε| f (uε(x, t))| ≤ 1

ε
for all (x, t) ∈ QT .
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The existence of bounded weak solutions to (2.1) is therefore standard. However,
since we are not able to find a precise reference, a proof is given in Appendix 1. By
multiplying (2.1) by log(uε

i ) + μi (or more rigorously by log(uε
i + δ) + μi for some

δ > 0, then let δ → 0), summing the resultants over i = 1, . . . , I , and then integrating
over �, we obtain

d

dt

∫

�

I∑

i=1

uε
i (log uε

i + μi − 1) dx +
I∑

i=1

4di

mi

∫

�

∣
∣
∣∇(uε

i )
mi
2

∣
∣
∣
2
dx

=
∫

�

1

1 + ε| f (uε)|
I∑

i=1

fi (u
ε)(log uε

i + μi ) dx

≤ C
I∑

i=1

∫

�

uε
i (log uε

i + μi − 1) dx + C

(2.5)

where we used (F3) and x ≤ δx log x +Cδ for all x ≥ 0 and any δ > 0 at the last step.
Hence, by integrating (2.5) over (t, T ) and using Gronwall’s inequality, we obtain
the desired estimate (2.4). The uniform bound on uε

i log uε
i in L∞(0, T ; L1(�)) and

|∇(uε
i )

mi
2 | in L2(0, T ; L2(�)) follow immediately from (2.4). ��

2.2 Existence of Renormalised Solutions

As it can be seen from Lemma 2.1, the a priori estimates of uε
i are not enough to

extract a convergent subsequence. Following the idea fromFischer (2015),we consider
another approximation of uε

i by defining

ϕE
i (v) = (vi − 3E) ξ

⎛

⎝
I∑

j=1

v j

Eαi
j

− 1

⎞

⎠ + 3E (2.6)

for E ∈ N, and a smooth function ξ : R → [0, 1] satisfying ξ ≡ 1 on (−∞, 0)
and ξ ≡ 0 on (1,∞). The constants αi

j are given by (recall that m j ∈ (0, 2) for all
j ∈ {1, . . . , I })

αi
i := 1, αi

j := 2

min(m j , 2 − m j )
for j �= i . (2.7)

Remark 2.2 The αi
j are chosen in (2.7) for the sake of simplicity. In fact, we can choose

any αi
j such that

αi
i = 1, and αi

j ≥ max

{
2 − mi

2 − m j
; mi

m j

}

.

See the proof of (E2) in Lemma 2.3.
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Lemma 2.3 The smooth truncations ϕE
i defined in (2.6) have the following properties:

(E1) ϕE
i ∈ C2(RI+).

(E2) For any i ∈ {1, . . . , I }, there exists a constant Ki > 0 such that

max
1≤ j,k≤I

sup
E≥1

sup
v∈RI+

v

m j
2

j v
1− mk

2
k |∂ j∂kϕ

E
i (v)| ≤ Ki . (2.8)

(E3) For every E, the set supp DϕE
i is bounded.

(E4) For all j ∈ {1, . . . , I } and all v ∈ R
I+, there holds limE→∞ ∂ jϕ

E
i (v) = δi j .

(E5) There exists a constant K > 0 such that

max
1≤ j≤I

sup
E≥1

sup
v∈RI+

|∂ jϕ
E
i (v)| ≤ K .

(E6) ϕE
i (v) = vi for any v ∈ R

I+ with
∑I

j=1 v j E−αi
j ≤ 1.

(E7) For every K > 0 and every j, k, there holds

lim
E→∞ sup

|v|≤K
|∂ j∂kϕ

E
i (v)| = 0.

(E8) ϕE
i (v) = vi for any v ∈ R

I+ with
∑I

j=1 ϕE
j (v)E−αi

j ≤ 1.

Proof Properties (E1), (E3), (E4), and (E6) are immediate. To prove (E2), we first
compute

∂iϕ
E
i (v) = (vi − 3E)ξ ′(· · · )E−αi

i + ξ(· · · ),
∂ jϕ

E
i (v) = (vi − 3E)ξ ′(· · · )E−αi

j

for j �= i , where for brevity we write (· · · ) instead of
(∑I

j=1 E−αi
j v j − 1

)
. From

that, one further gets the second derivatives

∂2i ϕE
i (v) = (vi − 3E)ξ ′′(· · · )E−2αi

i + 2ξ ′(· · · )E−αi
i ,

∂i∂ jϕ
E
i (v) = (vi − 3E)ξ ′′(· · · )E−αi

i −αi
j + ξ ′(· · · )E−αi

j ,

∂ j∂kϕ
E
i (v) = (vi − 3E)ξ ′′(· · · )E−αi

j −αi
k

for j �= i and k �= i .
To show (2.8), we will consider the following cases:

• When i = j = k, we have

v
mi
2

i v
1− mi

2
i |∂2i ϕE

i (v)| = vi |∂2i ϕE
i (v)|

≤ |vi ||vi − 3E |E−2αi
i |ξ ′′(· · · )| + 2vi E−αi

i |ξ ′(· · · )|.
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Employing the identities ξ ′(· · · ) = ξ ′′(· · · ) = 0 for vi ≥ 2Eαi
i as well as the

bound |ξ ′(· · · )| + |ξ ′′(· · · )| ≤ C , we can further estimate

v
mi
2

i v
1− mi

2
i |∂2i ϕE

i (v)| ≤ C E−αi
i |Eαi

i + E | + C .

Therefore, by choosing αi
i = 1, we have the desired estimate (2.8) for i = j = k.

• When k = i and j �= i , we estimate using αi
i = 1, ξ ′(· · · ) = ξ ′′(· · · ) = 0 when

v j ≥ 2Eαi
j or vi ≥ 2E , and |ξ ′(· · · )| + |ξ ′′(· · · )| ≤ C ,

v

m j
2

j v
1− mi

2
i |∂ j∂iϕ

E
i (v)|

≤ v

m j
2

j v
1− mi

2
i |ξ ′(· · · )|E−αi

j + v

m j
2

j v
1− mi

2
i |ξ ′′(· · · )||vi − 3E |E−αi

j −1

≤ C E
m j
2 αi

j E1− mi
2 |ξ ′(· · · )|E−αi

j + C E
m j
2 αi

j E1− mi
2 |ξ ′′(· · · )||E + 3E |E−αi

j −1

≤ C Eαi
j (

m j
2 −1)+(1− mi

2 )
.

Thus, (2.8) is proved in the case k = i �= j if we choose αi
j such that

αi
j (

m j

2
− 1) + (1 − mi

2
) ≤ 0 or equivalently αi

j ≥ 2 − mi

2 − m j
. (2.9)

• When j = i and k �= i , we estimate similarly to the previous cases

v
mi
2

i v
1− mk

2
k |∂i∂kϕ

E
i (v)| ≤ C E

mi
2 −αi

k
mk
2 .

If we choose

mi

2
− αi

k
mk

2
≤ 0 or equivalently αi

k ≥ mi

mk
, (2.10)

then obviously (2.8) holds true for j = i �= k.
• Finally, when j �= i and k �= i , we estimate

v

m j
2

j v
1− mk

2
k |∂ j∂kϕ

E
i (v)| ≤ C Eαi

j
m j
2 Eαi

k (1− mk
2 )|ξ ′′(· · · )|E−αi

j −αi
k E

≤ C Eαi
j (

m j
2 −1)−αi

k
mk
2 +1

.

It is easy to see that from (2.9) and (2.10) it follows

αi
j

(m j

2
− 1

)
− αi

k
mk

2
+ 1 ≤ 0,

and hence (2.8) is proved in this case.
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From (2.9) and (2.10), we see that αi
j > 1 for all j �= i ; hence, (E5) and (E7)

follow.
For (E8), it is enough to show that

∑I
j=1 ϕE

j (v)E−αi
j ≤ 1 yields

∑I
j=1 v j E−αi

j ≤
1. Set

y :=
I∑

j=1

v j

Eαi
j

− 1 and z :=
I∑

j=1

1

Eαi
j

.

From ϕE
j (v) = (v j − 3E)ξ(y) + 3E and

∑I
j=1 ϕE

j (v)E−αi
j ≤ 1, we deduce

ξ(y)(y + 1) + 3E(1 − ξ(y))z ≤ 1.

Due to ξ ≤ 1 and Ez ≥ 1, we are now led to

yξ(y) ≤ (1 − 3Ez)(1 − ξ(y)) ≤ 0.

This entails y ≤ 0 and, thus, completes the proof of the lemma. ��
Lemma 2.4 Consider non-negative functions u0 = (ui,0)i ∈ L1(�)I which satisfy

I∑

i=1

∫

�

ui,0 log ui,0 dx < ∞.

Let uε = (uε
1, . . . , uε

I ) for ε → 0 be the sequence of solutions to the regularised
problems as stated in Lemma 2.1.

Then, there exists a subsequence uε converging a.e. on � × [0,∞) to a limit u ∈
L∞
loc([0,∞), L1(�))I with ui log ui ∈ L∞

loc([0,∞), L1(�)) for all i ∈ {1, . . . , I }.
Furthermore, (uε

i )
mi
2 ⇀ui

mi
2 weakly in L2(0, T ; H1(�)) for all i ∈ {1, . . . , I } and

T > 0.

Proof Due to the lack of uniform-in-ε estimates of the nonlinearities, it is difficult
to show directly, for instance, by means of an Aubin–Lions lemma, that uε

i has a
convergent subsequence. Following the ideas from Fischer (2015), we first prove that
ϕE

i (uε) converges (up to a subsequence) to zE
i as ε → 0, and then that zE

i converges to
ui (up to a subsequence) as E → ∞. In combination with the convergence of ϕE

i (uε)

to uε
i for E → ∞, this leads to the desired result.
Due to the bound ϕE

i ≤ 3E , it follows at once that {ϕE
i (uε)} is bounded in

L2(0, T ; L2(�)) uniformly in ε > 0 for each E ∈ N. Next, by the chain rule we
have

∇ϕE
i (uε) =

I∑

j=1

∂ jϕ
E
i (uε)∇uε

j =
I∑

j=1

2

m j
∂ jϕ

E
i (uε)

(
uε

j

)1− m j
2 ∇(uε

j )
m j
2 .

Thus,
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∫

QT

|∇ϕE
i (uε)|2 dx dt ≤ I

I∑

j=1

4

m2
j

∫

QT

|∂ jϕ
E
i (uε)|2|uε

j |2−m j

∣
∣
∣∇(uε

j )
m j
2

∣
∣
∣
2
dx dt

≤ C(E)

I∑

j=1

∫

QT

∣
∣
∣∇(uε

j )
m j
2

∣
∣
∣
2

dx dt

thanks to the compact support of DϕE
i , m j < 2, and the L2(0, T ; L2(�)) bound on

∇(uε
j )

m j
2 from Lemma 2.1. As a consequence, we know that {ϕE

i (uε)} is bounded

(uniformly in ε) in L2(0, T ; H1(�)).
To apply the Aubin–Lions Lemma, we need an estimate concerning the time deriva-

tive of ϕE
i (uε). Using ∂ jϕ

E
i (uε)ψ as a test function in (2.3) and summing over

j ∈ {1, . . . , I }, we obtain for almost all t2 > t1 ≥ 0,

∫

�

ϕE
i (uε(·, t2))ψ(·, t2) dx −

∫

�

ϕE
i (uε(·, t1))ψ(·, t1) dx −

∫ t2

t1

∫

�

ϕE
i (uε)∂tψ dx dt

= −
I∑

j,k=1

4d j

mk

∫ t2

t1

∫

�

ψ
[
∂ j∂kϕ

E
i (uε)(uε

j )
m j
2 (uε

k)
1− mk

2

]
∇(uε

j )
m j
2 · ∇(uε

k)
mk
2 dx dt

−
I∑

j=1

2d j

∫ t2

t1

∫

�

∂ jϕ
E
i (uε)(uε

j )
m j
2 ∇(uε

j )
m j
2 · ∇ψ dx dt

+
I∑

j=1

∫ t2

t1

∫

�

∂ jϕ
E
i (uε)

f j (uε)

1 + ε| f (uε)|ψ dx dt . (2.11)

The third term on the right-hand side is clearly bounded uniformly in ε for each fixed
E ∈ N since DϕE

i has a compact support. The first and second terms are bounded

uniformly in ε thanks to the boundedness of ∇(uε
k)

mk
2 in L2(0, T ; L2(�)) for all

k = 1, . . . , I , and properties (E2), (E3) in Lemma 2.3. It follows then that ∂tϕ
E
i (uε)

is bounded uniformly (w.r.t. ε > 0) in L1(0, T ; (W 1,∞(�))′) for each fixed E ∈ N.
Therefore, by applying an Aubin–Lions lemma to the sequence {ϕE

i (uε)}ε>0, for
fixed E ∈ N, there exists a subsequence (not relabeled) of ϕE

i (uε) converging strongly
in L2(0, T ; L2(�)) and, thus, almost everywhere as ε → 0.Using a diagonal sequence
argument, one can extract a further subsequence such that ϕE

i (uε) converges a.e. in
QT to a measurable function zE

i for all E ∈ N and i = 1, . . . , I .
We next prove that zE

i converges a.e. to some measurable function ui as E → ∞.

First, since
∑I

j=1 uε
j log uε

j is uniformly bounded w.r.t. to ε > 0 in L∞(0, T ; L1(�)),

it follows that ϕE
i (uε) logϕE

i (uε) is uniformly bounded w.r.t. to ε > 0 and E ∈ N in

L∞(0, T ; L1(�)). This is trivial in case E ≤ 1, ϕE
i (uε) ≤ 1, or

∑I
j=1 uε

j E−αi
j ≤ 1.

Otherwise, there exists some j such that uε
j E−αi

j > 1/I holds true. And as αi
j > 1,

we derive
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ϕE
i (uε) ≤ 3E ≤ 3E I uε

j E−αi
j ≤ 3I uε

j .

The bound ϕE
i (uε) > 1 ensures ϕE

i (uε) logϕE
i (uε) ≤ 3I uε

j log(3I uε
j ) and the

claim follows. Thus, zE
i log zE

i is uniformly bounded in L∞(0, T ; L1(�)) w.r.t.

E ∈ N by Fatou’s Lemma. Secondly, zE
j (x, t) = z Ẽ

j (x, t) for all Ẽ > E , if
∑I

j=1 zE
j (x, t)E−αi

j < 1. Indeed,

I∑

j=1

zE
j (x, t)E−αi

j = lim
ε→0

I∑

j=1

ϕE
j (uε(x, t))E−αi

j ,

guarantees that
∑I

j=1 ϕE
j (uε(x, t))E−αi

j < 1 holds true for sufficiently small ε > 0.

Thanks to property (E8) in Lemma 2.3, it follows that ϕE
i (uε(x, t)) = uε

i (x, t) =
ϕ Ẽ

i (uε(x, t)) for small enough ε and all Ẽ > E . Therefore, due to zE
i (x, t) =

limε→0 ϕE
i (uε(x, t)), we obtain zE

i (x, t) = z Ẽ
i (x, t) for all Ẽ > E as desired. As

a result, if
∑I

j=1 zE
j (x, t)E−αi

j < 1 for some (x, t), then limE→∞ zE
i (x, t) exists and

is finite for all i = 1, . . . , I . Using the fact that
∑I

j=i zE
j log zE

j is bounded uniformly

w.r.t. E ∈ N in L∞(0, T ; L1(�)), we have

lim
E→∞Ln+1

⎛

⎝

⎧
⎨

⎩
(x, t) ∈ QT :

I∑

j=1

zE
j (x, t)E−αi

j ≥ 1

⎫
⎬

⎭

⎞

⎠ = 0

where Ln+1 is the Lebesgue measure in R
n+1. Hence, the limit ui (x, t) =

limE→∞ zE
i (x, t) exists for a.e. (x, t) ∈ QT . Moreover, ui log ui ∈ L∞(0, T ; L1(�))

due to Fatou’s lemma and zE
i log zE

i ∈ L∞(0, T ; L1(�)). Since
∑I

j=1 uε
j is uniformly

bounded in L1(QT ), we find

0 = lim
E→∞Ln+1

⎛

⎝

⎧
⎨

⎩
(x, t) ∈ QT :

I∑

j=1

uε
j (x, t)E−αi

j ≥ 1

⎫
⎬

⎭

⎞

⎠

≥ lim
E→∞Ln+1

({
(x, t) ∈ QT : uε

i (x, t) �= ϕE
i (uε)(x, t)

})

and this limit is uniform in ε > 0. Now, we estimate for δ > 0

Ld+1
({

(x, t) ∈ QT : |uε
i (x, t) − ui (x, t)| > δ

})

≤ Ld+1
({

(x, t) ∈ QT : uε
i (x, t) �= ϕE

i (uε)(x, t)

})

+ Ld+1
({

(x, t) ∈ QT : |ϕE
i (uε)(x, t) − zE

i (x, t)| >
δ

2

})
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+ Ld+1
({

(x, t) ∈ QT : |zE
i (x, t) − ui (x, t)| >

δ

2

})

.

As we have proved that ϕE
i (uε) → zE

i a.e. in QT for ε → 0 and fixed E ∈ N and that
zE

i → ui a.e. in QT as E → ∞, we infer the convergence in measure of uε
i to ui for

ε → 0, and convergence a.e. of another subsequence.
The uniform bound on uε

i log uε
i in L∞(0, T ; L1(�)) and the convergence uε

i → ui

a.e. ensure that uε
i → ui strongly in L p(0, T ; L1(�)) for all p ≥ 1. One can easily

prove this by truncating uε
i at a sufficiently large threshold. By the strong convergence

of uε
i to ui in L1(0, T ; L1(�)), we are able to prove the distributional convergence

of (uε
i )

mi
2 to (ui )

mi
2 by noting that mi < 2. The uniform L2(0, T ; H1(�)) bound

on (uε
i )

mi
2 then leads to a subsequence (uε

i )
mi
2 which converges to (ui )

mi
2 weakly in

L2(0, T ; H1(�)). Thanks to the weak lower semicontinuity of the L2(0, T ; L2(�))

norm, we also deduce

∫ T

0

∫

�

∣
∣
∣∇u

mi
2

i

∣
∣
∣
2
dx dt ≤ lim inf

ε→0

∫ T

0

∫

�

∣
∣
∣∇(uε

i )
mi
2

∣
∣
∣
2
dx dt

for all i ∈ {1, . . . , I }, where the right-hand side is bounded via the uniform

L2(0, T ; H1(�)) bound on (uε
i )

mi
2 . This completes the proof of the lemma. ��

At this point, we expect the function u = (u1, . . . , uI ) in Lemma 2.4 to be a renor-
malised solution to (1.1).Wewill first derive an equation admittingϕE

i (u) as a solution.
This equation is already “almost”matching the formulation for a renormalised solution
(1.4) except for a “defect measure”.

Lemma 2.5 Let u = (u1, . . . , uI ) be the functions constructed in Lemma 2.4. Then,
for any ψ ∈ C∞([0, T ], C∞

0 (�)), the truncated functions ϕE
i (u), i ∈ {1, . . . , I },

satisfy

∫

�

ϕE
i (u(·, T ))ψ(·, T ) dx −

∫

�

ϕE
i (u(·, 0))ψ(·, 0) dx −

∫

QT

ϕE
i (u)∂tψ dx dt

= −
∫

QT

ψ dμE
i (x, t) −

I∑

j=1

d j m j

∫

QT

∂ jϕ
E
i (u)u

m j −1
j ∇u j · ∇ψ dx dt

+
I∑

j=1

∫

QT

∂ jϕ
E
i (u) f j (u)ψ dx dt (2.12)

where μE
i is a signed Radon measure satisfying

lim
E→∞ |μE

i |(� × [0, T )) = 0 (2.13)

for all T > 0 and i ∈ {1, . . . , I }.
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Proof Choosing t1 = 0, t2 = T , and using the convergence uε → u a.e. in QT , the

weak convergence ∇(uε
i )

mi
2 ⇀∇ui

mi
2 in L2(0, T ; L2(�)), and the fact that DϕE

i (uε)

vanishes when uε is too large, we straightforwardly obtain the convergence of the
left-hand side and the last two terms on the right-hand side of (2.11). It remains to
establish

−4
I∑

j,k=1

d j

mk

∫

QT

ψ
[
∂ j∂kϕ

E
i (uε)(uε

j )
m j
2 (uε

k)
1− mk

2

]
∇(uε

j )
m j
2 · ∇(uε

k)
mk
2 dx dt

−→ −
∫

QT

ψ dμE
i (x, t)

with a signed Radon measure μE
i satisfying (2.13). By denoting

μE
i,ε := 4

I∑

j,k=1

d j

mk

[
∂ j∂kϕ

E
i (uε)(uε

j )
m j
2 (uε

k)
1− mk

2

]
∇(uε

j )
m j
2 · ∇(uε

k)
mk
2 dx dt,

we can use property (E2) of the truncation function ϕE
i and the ε-uniform bound of

∇(uε
i )

mi
2 in L2(0, T ; L2(�)), to obtain

|μE
i,ε|(QT ) ≤ C

for all ε > 0. Therefore, by passing to a subsequence, we know that μE
i,ε weak-∗

converges on QT to a signed Radon measure μE
i as ε → 0. It remains to prove (2.13).

Due to Young’s inequality, we have

|μE
i,ε|(QT )

≤ C
I∑

j,k=1

∞∑

K=1

∫

QT

|∂ j∂kϕ
E
i (uε)|(uε

j )
m j
2 (uε

k)
1− mk

2 χ{K−1≤|uε |<K }
∣
∣
∣∇(uε

j )
m j
2

∣
∣
∣
2

dx dt

≤ C
I∑

l=1

∞∑

K=1

νε
l,K (QT ) sup

1≤ j,k≤I
K−1≤|v|<K

|∂ j∂kϕ
E
i (v)|v

m j
2

j v
1− mk

2
k

where

νε
l,K := χ{K−1≤|uε |<K }

∣
∣
∣∇(uε

l )
ml
2

∣
∣
∣
2
dx dt .

We stress that νε
l,K is uniformly bounded w.r.t. l, K , and ε. Consequently, we may

pass to a subsequence νε
l,K which converges weak-∗ on QT to a Radon measure νl,K
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as ε → 0. Together with the weak-∗ convergence of μE
i,ε to μE

i on QT , we derive

|μE
i |(QT ) ≤ lim inf

ε→0
|μE

i,ε|(QT )

≤ C
I∑

l=1

∞∑

K=1

νl,K (QT ) sup
1≤ j,k≤I

K−1≤|v|<K

|∂ j∂kϕ
E
i (v)|v

m j
2

j v
1− mk

2
k .

Moreover,

∞∑

K=1

νε
l,K (QT ) =

∫

QT

∣
∣
∣∇(uε

j )
m j
2

∣
∣
∣
2
dx dt,

which is bounded uniformly in ε. Fatou’s Lemma applied to the counting measure on
N now entails

∞∑

K=1

νl,K (QT ) ≤ lim inf
ε→0

∞∑

K=1

νε
l,K (QT ) < +∞.

Therefore, employing the dominated convergence theorem, we can finally estimate

lim
E→∞ |μE

i |(QT ) ≤ C
I∑

l=1

∞∑

K=1

νl,K (QT ) lim
E→∞ sup

1≤ j,k≤I
K−1≤|v|<K

|∂ j∂kϕ
E
i (v)|v

m j
2

j v
1− mk

2
k

= C
I∑

l=1

∞∑

K=1

νl,K (QT ) · 0 = 0

thanks to properties (E2) and (E7) of the truncation function ϕE
i . ��

To prove Theorem 1.3, we use the following technical lemma whose proof can be
found in Fischer (2015).

Lemma 2.6 (Fischer 2015, Lemma 4)(A weak chain rule for the time derivative)
Let � be a bounded domain with Lipschitz boundary. Assume that T > 0,
v ∈ L2(0, T ; H1(�)I ), and v0 ∈ L1(�)I . Let νi be a Radon measure on QT ,
wi ∈ L1(QT ), and zi ∈ L2(0, T ; L2(�)I ) for 1 ≤ i ≤ I . Assume moreover that
for any ψ ∈ C∞(QT ) with compact support we have

∫

�

vi (T )ψ(T ) dx −
∫

QT

vi
d

dt
ψ dx dt −

∫

�

v0ψ(0) dx

=
∫

QT

ψ dνi +
∫

QT

wiψ dx dt +
∫

QT

zi · ∇ψ dx dt .
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Let ξ : R
I → R be a smooth function with compactly supported first derivatives.

Then, we have for all ψ ∈ C∞(QT ) with compact support

∣
∣
∣
∣

∫

�

ξ(v(T ))ψ(T ) dx

−
∫

QT

ξ(v)
d

dt
ψ dx dt −

∫

�

ξ(v0)ψ(0) dx −
I∑

i=1

∫

QT

ψ∂iξ(v)wi dx dt

−
I∑

i=1

∫

QT

∂iξ(v)zi · ∇ψ dx dt −
I∑

i,k=1

∫

QT

ψ∂i∂kξ(v)zi · ∇vk dx dt

∣
∣
∣
∣

≤ C(�)‖ψ‖∞(sup
u

|Dξ(u)|)
I∑

i=1

|νi |(QT ).

We are now ready to prove the existence of global renormalised solutions.

Proof of Theorem 1.3 By applying Lemma 2.6 to (2.12), we obtain an approximate
relation for the weak time derivative of ξ(ϕE (u)), which leads to the desired equation
for ξ(u) when passing to the limit E → ∞. In detail, we set vi := ϕE

i (u), (v0)i :=
ϕE

i (u0), νi := −μE
i ,

zi := −
I∑

j=1

d j m j∂ jϕ
E
i (u)u

m j −1
j ∇u j , wi :=

I∑

j=1

∂ jϕ
E
i (u) f j (u),

and obtain for any smooth function ξ with compactly supported first derivatives

∣
∣
∣
∣

∫

�

ξ(ϕE (u))ψ(T ) dx −
∫

QT

ξ(ϕE (u))
d

dt
ψ dx dt −

∫

�

ξ(ϕE (u0))ψ(0) dx

−
I∑

i=1

I∑

j=1

∫

QT

ψ∂iξ(ϕE (u))∂ jϕ
E
i (u) f j (u) dx dt

+
I∑

i=1

I∑

j=1

∫

QT

d j m j∂iξ(ϕE (u))∂ jϕ
E
i (u)u

m j −1
j ∇u j · ∇ψ dx dt

+
I∑

i,k=1

I∑

j,�=1

∫

QT

d j m jψ∂i∂kξ(ϕE (u))∂ jϕ
E
i (u)∂�ϕ

E
k (u)u

m j −1
j ∇u j · ∇u� dx dt

∣
∣
∣
∣

≤ C(�)‖ψ‖∞(sup
u

|Dξ(u)|)
I∑

i=1

|μE
i |(QT ).

(2.14)

We now want to pass to the limit E → ∞ in (2.14) to obtain (1.4). Note first that due
to (2.13), we obtain in the limit an equality instead of just an estimate. Since ξ has
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compactly supported first derivatives, ∂ jϕ
E
i (u) is bounded (see (E5)), andϕE

i (u) → ui

a.e. as E → ∞, we directly obtain the following limits for the first line in (2.14):

∫

�

ξ(ϕE (u(T )))ψ(T ) dx −→
∫

�

ξ(u(T ))ψ(T ) dx,

∫

QT

ξ(ϕE (u))
d

dt
ψ dx dt −→

∫

QT

ξ(u)
d

dt
ψ dx dt,

∫

�

ξ(ϕE (u0))ψ(0) dx −→
∫

�

ξ(u0)ψ(0) dx .

By employing m j u
m j −1
j ∇u j = 2u j

m j
2 ∇u j

m j
2 and u j

m j
2 ∈ L2(0, T ; H1(�)), we also

derive

I∑

i=1

I∑

j=1

∫

QT

d j m j∂iξ(ϕE (u))∂ jϕ
E
i (u)u

m j −1
j ∇u j · ∇ψ dx dt

−→
I∑

i=1

∫

QT

di mi∂iξ(u)umi −1
i ∇ui · ∇ψ dx dt .

It remains to ensure the convergence of the third and fourth line of (2.14). To this end,

we recall u j

m j
2 ∈ L2(0, T ; H1(�)), and we utilise the following observation: there

exists a constant E0 > 0 such that for all E > E0 the inequality
∑I

i=1 ui ≥ E0 implies
∂iξ(ϕE (u)) = ∂iξ(u) = 0 and ∂i∂kξ(ϕE (u)) = ∂i∂kξ(u) = 0 for all i, k ∈ {1, . . . , I }.
The convergence of the third and fourth line above is now a consequence of this
auxiliary result, as the derivatives of ξ are zero provided maxi ui is larger than E0:

I∑

i=1

I∑

j=1

∫

QT

ψ∂iξ(ϕE (u))∂ jϕ
E
i (u) f j (u) dx dt −→

I∑

i=1

∫

QT

ψ∂iξ(u) fi (u) dx dt,

I∑

i, j,k,�=1

∫

QT

d j m jψ∂i∂kξ(ϕE (u))∂ jϕ
E
i (u)∂�ϕ

E
k (u)u

m j −1
j ∇u j · ∇u� dx dt

−→
I∑

i,k=1

∫

QT

di miψ∂i∂kξ(u)umi −1
i ∇ui · ∇uk dx dt .

The previous observation readily follows by choosing E0 > 0 such that supp(Dξ) ⊂
BE0/

√
I (0). Given E > E0 and

∑I
i=1 ui ≥ E0, one gets

∑I
i=1 ϕE

i (u) ≥ E0 from

the definition of ϕE
i in (2.6). In particular, u, ϕE (u) /∈ BE0/

√
I (0), which proves the

claim. ��
Finally, we show that the constructed renormalised solution satisfies the weak

entropy law (1.5) and, when it is applicable, the conservation laws (1.6).
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Proof of (1.5) and (1.6) Since uε
i → ui a.e. in QT and fi are continuous, we have

1

1 + ε| f (uε)|

[
I∑

i=1

fi (u
ε)(log uε

i + μi ) − C
I∑

i=1

(1 + uε
i log uε

i )

]

a.e. in QT−−−−−−→
I∑

i=1

fi (u)(log ui + μi ) − C
I∑

i=1

(1 + ui log ui ) ≤ 0. (2.15)

We rewrite (2.5) as

d

dt

∫

�

I∑

i=1

uε
i (log uε

i + μi − 1) dx +
I∑

i=1

4di

mi

∫

�

∣
∣
∣∇(uε

i )
mi
2

∣
∣
∣
2
dx

=
∫

�

1

1 + ε| f (uε)|

(
I∑

i=1

fi (u
ε)(log uε

i + μi ) − C
I∑

i=1

(1 + uε
i log uε

i )

)

dx

+
∫

�

1

1 + ε| f (uε)|C
I∑

i=1

(1 + uε
i log uε

i ) dx .

We now integrate this relation on (s, T ) and use (2.15) and Fatou’s lemma for the
first integral on the right-hand side, and the uniform-in-ε in Lemma 3.6 for the second
integral to obtain

I∑

i=1

∫

�

ui (log ui + μi − 1) dx

∣
∣
∣
∣

T

s
+

I∑

i=1

4di

m2
i

∫ T

s

∫

�

|∇(ui )
mi
2 |2 dx dt

≤
I∑

i=1

∫ T

s

∫

�

fi (u)(log ui + μi ) dx dt,

which is (1.5). To show (1.6), we take t0 = 0 and ψ = qi in (2.3) and sum over i to
get

I∑

i=1

∫

�

qi u
ε
i (x, t) dx =

I∑

i=1

∫

�

qi u
ε
i,0(x) dx .

Letting ε → 0 proves (1.6). ��
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3 Exponential Convergence to Equilibrium

3.1 Entropy–Entropy Dissipation Inequality

Without loss of generality, we assume that the domain� has unit volume, i.e. |�| = 1.
We employ the following notation:

ui :=
∫

�

ui dx and u := (ui )i=1,...,I .

To show the convergence to equilibrium for (1.10), we exploit the so-called entropy
method. Assuming the complex balanced condition, system (1.10) possesses the rel-
ative entropy functional

E[u|u∞] =
I∑

i=1

∫

�

(

ui log
ui

ui,∞
− ui + ui,∞

)

dx (3.1)

and the corresponding entropy dissipation function

D[u] =
I∑

i=1

di mi

∫

�

umi −2
i |∇ui |2 dx +

R∑

r=1

kr uyr∞
∫

�




(
uyr

uyr∞
; uy′

r

u
y′

r∞

)

dx (3.2)

with 
(x; y) = x log(x/y)− x + y (see (Desvillettes et al. 2017, Proposition 2.1) for
a derivation of D[u]). Formally, we have

D[u] = − d

dt
E[u|u∞]

along the trajectory of (1.10). The following lemma shows that the L1 norm can be
bounded by the relative entropy.

Lemma 3.1 Assume that E[u|u∞] < +∞. Then,

‖ui‖L1(�) = ui ≤ K̃ := 2

(

E(u|u∞) +
I∑

i=1

ui,∞

)

for i = 1, . . . , I .

Proof The elementary inequalities x log(x/y) − x + y ≥ (
√

x − √
y)2 ≥ 1

2 x − y
ensure that

E[u|u∞] =
I∑

i=1

∫

�

(

ui log
ui

ui,∞
− ui + ui,∞

)

dx ≥ 1

2

I∑

i=1

∫

�

ui dx −
I∑

i=1

ui,∞.

Taking the non-negativity of the solution u into account allows to conclude. ��
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Lemma 3.2 (Fellner and Tang 2017, Lemma 2.3) (Csiszár–Kullback–Pinsker-type
inequality) Fix a non-negative mass M ∈ R

m+. For all measurable functions u : � →
R

I+ satisfying the mass conservation Q u = M, the following inequality holds,

E[u|u∞] ≥ CCKP

I∑

i=1

‖ui − ui,∞‖2L1(�)
,

in which CCKP > 0 is a constant depending only on � and u∞.

The following two lemmas provide generalisations of the classical logarithmic
Sobolev inequality, which are suited for nonlinear diffusion.

Lemma 3.3 Dolbeault et al. (2008)(Lm-logarithmic Sobolev inequality) For any m ≥
1, there exists a constant C(�, m) > 0 such that we have

∫

�

∣
∣
∣∇u

m
2

∣
∣
∣
2
dx ≥ C(�, m)

(∫

�

u log
u

u
dx

)m

.

Lemma 3.4 Mielke and Mittnenzweig (2018) (Generalised logarithmic Sobolev
inequality) For any m >

(d−2)+
d , there exists a constant C(�, m) > 0 such that

∫

�

um−2|∇u|2 dx ≥ C(�, m) um−1
∫

�

u log
u

u
dx .

The cornerstone of the entropy method is the entropy–entropy dissipation inequality
which is proved in the following lemma.

Lemma 3.5 Let K > 0 and mi >
(d−2)+

d for all 1 ≤ i ≤ I . There exist constants
C > 0 and α ≥ 1 depending on K such that for any measurable function u : � → R

I+
subject to Qu = Qu∞ and E[u|u∞] ≤ K , we have

D[u] ≥ C(E[u|u∞])α.

Proof First, similar to Lemma 3.1, we have the following L1 bounds:

ui = ‖ui‖L1(�) ≤ M1 := 2

(

K +
I∑

i=1

ui,∞

)

.

For all i with (d−2)+
d < mi < 1, we apply Lemma 3.4 to have

∫

�

umi −2
i |∇ui |2 dx ≥ C(�, mi ) umi −1

i

∫

�

ui log
ui

ui
dx

≥ C(�, mi ) Mmi −1
1

∫

�

ui log
ui

ui
dx

(3.3)
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since mi < 1 and ui ≤ M1. Therefore, by applying Lemma 3.3, we can estimate the
entropy dissipation from below as follows:

D[u] ≥ K1

[
I∑

i=1

(∫

�

ui log
ui

ui
dx

)max{1,mi }
+

R∑

r=1

kr uyr∞
∫

�




(
uyr

uyr∞
; uy′

r

u
y′

r∞

)

dx

]

.

For simplicity, we denote α = maxi=1,...,I {1, mi },

Di =
∫

�

ui log
ui

ui
dx for i = 1, . . . , I , and F =

R∑

r=1

kr uyr∞
∫

�




(
uyr

uyr∞
; uy′

r

u
y′

r∞

)

dx .

If Di ≥ 1 for some i ∈ {1, . . . , I } or F ≥ 1, then we have

D[u] ≥ K1 ≥ K1

K α
(E[u|u∞])α (3.4)

using E[u|u∞] ≤ K . It remains to consider the case Di ≤ 1 for all i = 1, . . . , I and
F ≤ 1. Here, we find

D[u] ≥ K1

[
I∑

i=1

Dmax{1,mi }
i + F

]

≥ K1

[
I∑

i=1

Dα
i + Fα

]

≥ K2

[
I∑

i=1

Di + F

]α

.

(3.5)

By applying now the entropy–entropy production estimate for the case of linear dif-
fusion (cf. Fellner and Tang 2018, Theorem 1.1), we have

I∑

i=1

Di + F ≥ K3E[u|u∞] (3.6)

and, thus,

D[u] ≥ K4(E[u|u∞])α.

From (3.4) and (3.6), we obtain the desired estimate. ��

3.2 Convergence of Renormalised Solutions

Proof of Theorem 1.5 The global existence of renormalised solutions for (1.10) follows
from Theorem 1.3. Indeed, assumptions (F1) and (F2) can be easily checked using
(1.11), and (F3) follows from the identity (cf. Desvillettes et al. 2017, Proposition 2.1)

I∑

i=1

fi (u)(− log ui,∞ + log ui ) = −
R∑

r=1

kr uyr∞


(
uyr

uyr∞
; uy′

r

u
y′

r∞

)

≤ 0
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recalling 
(x; y) = x log(x/y) − x + y.
Thanks to (1.6) and (1.5), we have the conservation laws

Qu(t) = Qu0 for all t ≥ 0,

and

E[u(t)|u∞] +
∫ t

s
D[u(τ )]dτ ≤ E[u(s)|u∞] for all 0 ≤ s ≤ t .

We now apply Lemma 3.5 to get

E[u(t)|u∞] + C
∫ t

s
(E[u(τ )|u∞])α dτ ≤ E[u(s)|u∞] for all 0 ≤ s ≤ t .

(3.7)

If α = 1, we immediately get the exponential convergence

E[u(t)|u∞] ≤ e−λtE[u0|u∞] for all t ≥ 0

for some constant λ > 0. For α > 1, we first obtain the algebraic decay

E[u(t)|u∞] ≤ 1
(E[u0|u∞]1−α + C(α − 1)t

)1/(α−1)
. (3.8)

Indeed, we define

ψ(t) = E[u(t)|u∞] and ϕ(s) =
∫ t

s
(E[u(τ )|u∞])α dτ.

It follows from (3.7) that

ψ(t) + Cϕ(s) ≤ ψ(s).

Differentiating ϕ(s) with respect to s gives

d

ds
ϕ(s) = −(ψ(s))α ≤ − (ψ(t) + Cϕ(s))α

and consequently,

d

ds
[ψ(t) + Cϕ(s)] + C [ψ(t) + Cϕ(s)]α ≤ 0.
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Applying a nonlinear Gronwall inequality yields

ψ(t) + Cϕ(s) ≤ 1
[
(ψ(t) + Cϕ(0))1−α + C(α − 1)s

]1/(α−1)

≤ 1
[
ψ(0)1−α + C(α − 1)s

]1/(α−1)

thanks to ψ(t) + Cϕ(0) ≤ ψ(0) and α > 1. Setting s = t and using ϕ(t) = 0 leads
us to the desired estimate (3.8). Owing to the Csiszár–Kullback–Pinsker inequality, it
follows

I∑

i=1

‖ui (t) − ui,∞‖2L1(�)
≤ C−1

CKP
(E[u0|u∞]1−α + C(α − 1)t

)1/(α−1)
.

Therefore, there exists an explicit T0 > 0 such that

‖ui (t) − ui,∞‖L1(�) ≤ 1

2
ui,∞ for all t ≥ T0

and, thus,

ui (t) = ‖ui (t)‖L1(�) ≥ 1

2
ui,∞ for all t ≥ T0.

Using this property, we estimate D[u(t)] for t ≥ T0 as follows. If mi < 1, then it is
similar to (3.3) that

∫

�

ui (t)
mi −2|∇ui (t)|2 dx ≥ C(�, mi ) ui (t)

mi −1
∫

�

ui (t) log
ui (t)

ui (t)
dx

≥ C(�, mi ) K̃ mi −1
∫

�

ui (t) log
ui (t)

ui (t)
dx,

(3.9)

and for mi ≥ 1,

∫

�

ui (t)
mi −2|∇ui (t)|2 dx ≥ C(�, mi ) ui (t)

mi −1
∫

�

ui (t) log
ui (t)

ui (t)
dx

≥ C(�, mi )
(ui,∞

2

)mi −1
∫

�

ui (t) log
ui (t)

ui (t)
dx

(3.10)

since ui (t) ≥ 1
2ui,∞ for all t ≥ T0. Therefore, for all t ≥ T0, we can estimateD[u(t)]

as

D[u(t)] ≥ K5

[
I∑

i=1

∫

�

ui (t) log
ui (t)

ui (t)
dx +

R∑

r=1

kr uyr∞
∫

�




(
u(t)yr

uyr∞
; u(t)y′

r

u
y′

r∞

)

dx

]

.
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Using again the entropy–entropy production estimate in the case of linear diffusion
(cf. Fellner and Tang 2018, Theorem 1.1), we have

D[u(t)] ≥ K6E[u(t)|u∞] for all t ≥ T0,

which leads to the exponential convergence

E[u(t)|u∞] ≤ e−K6(t−T0)E[u(T0)|u∞] for all t ≥ T0.

Since T0 can be explicitly computed, we in fact get the exponential convergence for
all t ≥ 0, i.e.

E[u(t)|u∞] ≤ Ce−λtE[u0|u∞] for all t ≥ 0,

for some constants C > 0 and λ > 0. Thanks to the Csiszár–Kullback–Pinsker
inequality, we finally obtain the desired exponential convergence to equilibrium. ��

3.3 Convergence ofWeak and Bounded Solutions

We consider the approximate uε to the regularised system (2.1). From Lemma 2.4, we
know that, up to a subsequence,

uε
i

ε→0−−→ ui a.e. in QT . (3.11)

The next lemma establishes uniform-in-ε a priori bounds.

Lemma 3.6 Under assumptions (F1)–(F3), u ≥ 0 with ui,0 log ui,0 ∈ L1(�) ∩
H−1(�), and mi > 0 for all i = 1, . . . , I , there exists a constant CT > 0 which
depends on T > 0 but not on ε > 0, such that

∫

QT

(log uε
i )

2(uε
i )

mi +1 dx dt ≤ CT for all i = 1, . . . , I . (3.12)

Proof The proof uses the idea from Laamri and Perthame (2020). For completeness,
we present it in Appendix 2. ��
Proof of Theorem 1.7 By testing (2.1) withψ ∈ L∞(QT )∩L2(mi +1)(0, T ; W 1,2(mi +1)

(�)), we have

∫

QT

∂t u
ε
i ψ dx dt + di

2

∫

QT

(uε
i )

mi
2 ∇(uε

i )
mi
2 · ∇ψ dx dt =

∫

QT

f ε
i (uε) ψ dx dt

(3.13)

From (3.11) and (3.12), we can use Vitali’s lemma to deduce

(uε
i )

mi
2 → u

mi
2

i strongly in L
2(mi +1)

mi (QT ).
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This combined with Lemma 2.1 gives

∇(uε
i )

mi
2 ⇀∇u

mi
2

i weakly in L2(QT ).

Therefore,
∫

QT

(uε
i )

mi
2 ∇(uε

i )
mi
2 · ∇ψ dx dt →

∫

QT

u
mi
2

i ∇u
mi
2

i · ∇ψ dx dt . (3.14)

From the definition of f ε
i in (2.1) as well as (3.11), we have

f ε
i (uε) → fi (u) a.e. in QT . (3.15)

We show that the set { f ε
i (uε)}ε>0 is uniformly integrable. Indeed, let K ⊂ QT be a

measurable and compact set with its measure being denoted by |K |. From (1.19) and
(1.17), we have

∫

K
| f ε

i (uε)| dx dt ≤
∫

K
| fi (u

ε)| dx dt ≤ C
∫

K

⎛

⎝1 +
I∑

j=1

|uε
j |ρ j

⎞

⎠ dx dt

≤ C

⎡

⎣|K | +
∫

K

I∑

j=1

|uε
j |m j +1 dx dt

⎤

⎦ .

(3.16)

It is easy to see that for any δ > 0, there exists some Cδ > 0 such that for all x ≥ 0,

xmi +1 ≤ δ(log x)2xmi +1 + Cδ.

It follows from (3.16) and Lemma 3.6 that

∫

K
| f ε

i (uε)| dx dt ≤ C

[

|K | + δ

∫

K

I∑

i=1

(log uε
i )

2(uε
i )

mi +1 + I Cδ|K |
]

≤ Cδ|K | + Cδ.

Therefore, for any τ > 0, we first choose δ > 0 fixed such that Cδ < τ/2 and then
K ⊂ QT arbitrarily according to Cδ|K | < τ/2 to ultimately obtain

∫

K
| f ε

i (uε)| dx dt ≤ τ,

which is exactly the uniform integrability of { f ε
i (uε)}ε>0. From this and (3.15), we can

apply Vitali’s lemma again to get f ε
i (uε) → fi (u) strongly in L1(QT ) and, therefore,

∫

QT

f ε
i (uε)ψ dx dt →

∫

QT

fi (u)ψ dx dt . (3.17)
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Finally, using the boundedness of {uε
i }ε>0 in Lmi +1(QT ), of

{∇(uε
i )

mi
2
}

ε>0 in
L2(QT ), and of { f ε

i (uε)}ε>0 in L1(QT ), it follows that

{∂t u
ε
i }ε>0 is bounded in L1(QT ) + L

2(mi +1)
2mi +1

(
0, T ; (W 1,2(mi +1)(�)

)′)

and, consequently,

∫

QT

∂t u
ε
i ψ dx dt →

∫

QT

∂t ui ψ dx dt . (3.18)

From (3.14), (3.17), and (3.18), we obtain that u = (ui )i=1,...,I is a global weak solu-
tion to (1.1). It is remarked that a weak solution is not automatically a renormalised
solution; therefore, the weak entropy–entropy dissipation relation (1.5) and the con-
servation laws (1.6) are not immediate consequences. On the one hand, we can use
Definition 1.6 to show directly that (1.6) also holds for weak solutions. Indeed, by
choosingψ = qi as the test function for the equation of ui and summing the resultants
using

∑I
i=1 qi fi (u) = 0, we obtain the conservation laws (1.6).

On the other hand, for verifying the entropy law (1.5), we need to restrict ourselves
to bounded weak solutions in order to make the subsequent arguments rigorous. We
start with a sequence of functions {uγ

i }γ>0 ⊂ L2(mi +1)(0, T ; W 1,2(mi +1)) such that

uγ

i → ui a.e. in QT and ∇(uγ

i )mi /2⇀∇umi /2
i in L2(QT ) as γ → 0. We may further

assume that the functions {uγ

i }γ>0 are uniformly bounded, and satisfying uγ

i ≥ ui a.e.
in QT . For δ > 0, we test (1.16) with log(uγ

i + δ) + μi and sum over i = 1, . . . , I to
get

I∑

i=1

∫

QT

∂t ui (log(u
γ

i + δ) + μi ) dx dt +
I∑

i=1

di

2

∫

QT

u
mi
2

i ∇u
mi
2

i · ∇(uγ

i )

uγ

i + δ
dx dt

=
I∑

i=1

∫

QT

fi (u)(log(uγ

i + δ) + μi ) dx dt .

Thanks to umi /2
i ∇umi /2

i · ∇(uγ
i )

uγ
i +δ

= 2
mi

u
mi /2
i (uγ

i )1−mi /2

uγ
i +δ

∇umi /2
i · ∇(uγ

i )mi /2 and

u
mi /2
i (uγ

i )1−mi /2

uγ
i +δ

≤ 1, we conclude the convergence of the corresponding integral above

taking the convergence properties of uγ

i and∇uγ

i into account. As the dominated con-
vergence theorem applies to the integral on the right-hand side, we can continuously
extend the linear functional ∂t ui to log(ui + δ), which is a priori not contained in the
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domain of definition of ∂t ui . Therefore,

I∑

i=1

∫

QT

∂t ui (log(ui + δ) + μi ) dx dt +
I∑

i=1

di

2

∫

QT

u
mi
2

i ∇u
mi
2

i · ∇ui

ui + δ
dx dt

=
I∑

i=1

∫

QT

fi (u)(log(ui + δ) + μi ) dx dt .

(3.19)

The convergence of the first two sums is now straightforward thanks to the regularity
of weak solutions. To pass to the limit for the last sum, we rewrite

I∑

i=1

∫

QT

fi (u)(log(ui + δ) + μi ) dx dt

=
∫

QT

(
I∑

i=1

fi (u + δ)(log(ui + δ) + μi ) − C
I∑

i=1

(1 + (ui + δ) log(ui + δ))

)

dx dt

+ C
I∑

i=1

∫

QT

(1 + (ui + δ) log(ui + δ)) dx dt

−
I∑

i=1

∫

QT

[ fi (u + δ) − fi (u)](log(ui + δ) + μi ) dx dt =: (I ) + (I I ) − (I I I )

(3.20)

where u + δ = (ui + δ)i=1,...,I and C > 0 is the constant from (1.2). The convergence
of (I I ) is straightforward:

lim
δ→0

(I I ) = C
I∑

i=1

∫

QT

(1 + ui log ui ) dx dt .

For (I ), we use (F3) and Fatou’s lemma to obtain

lim sup
δ→0

∫

QT

(
I∑

i=1

fi (u + δ)(log(ui + δ) + μi ) − C
I∑

i=1

(1 + (ui + δ) log(ui + δ))

)

dx dt

≤
∫

QT

(
I∑

i=1

fi (u)(log ui + μi ) − C
I∑

i=1

(1 + ui log ui )

)

dx dt .

Finally, from (1.11) it follows that |D fi (z)| ≤ C
(
1 + ∑I

j=1 |z j |ρ−1
)
and, hence,

lim sup
δ→0

|(I I I )| ≤ lim sup
δ→0

C
I∑

i=1

∫

QT

(

1 +
I∑

j=1

|u j |ρ−1
)

(δ| log(ui + δ)| + δ|μi |)dxdt = 0

thanks to (3.12) and the dominated convergence theorem. Inserting the estimates of
(I ), (I I ), and (I I I ) into (3.20), then letting δ → 0 in (3.19), we conclude that any
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bounded weak solution to (1.1) satisfies the weak entropy–entropy dissipation law
(1.5).

Concerning bounded solutions, we first obtain from Lemma 3.6 that

‖ui‖Lmi +1(QT ) ≤ CT for all i = 1, . . . , I .

Under assumptions (1.18) on the porous medium exponent, we can apply (Fellner
et al. 2020, Lemma 2.2) to get

‖ui‖L∞(QT ) ≤ CT for all i = 1, . . . , I .

Note that the constant CT grows at most polynomially in T . This implies the expo-
nential convergence to equilibrium in L p(�) for any 1 ≤ p < ∞ in (1.20). Indeed,
from the exponential convergence in L1(�), we can use the interpolation inequality
to have

‖ui (T ) − ui,∞‖L p(�) ≤ ‖ui (T ) − ui,∞‖1−1/p
L∞(�)‖ui (T ) − ui,∞‖1/p

L1(�)

≤ C1−1/p
T

(
Ce−λT )1/p ≤ C pe−λp T

for some 0 < λp < λ, since CT grows at most polynomially in T . ��

3.4 Uniform Convergence of Approximate Solutions

We remark that all the involved constants in the following results do not depend on ε.

Lemma 3.7 There exists a constant L0 > 0 such that

sup
t≥0

max
i=1,...,I

‖uε
i (t)‖L1(�) ≤ L0. (3.21)

Proof It follows from

d

dt
E[uε|u∞] = −D[uε] ≤ 0

that

E[uε(t)|u∞] ≤ E[uε
0|u∞]. (3.22)

Thanks to (1.22), supε>0 maxi=1,...,I E[uε
0|u∞] < +∞. The L1 bound (3.21) follows

with the same arguments as in Lemma 3.1. ��
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Lemma 3.8 There exists a constant L2 > 0 such that

I∑

i=1

‖
√

uε
i −

√

uε
i ‖2L2(�)

+
R∑

r=1

∫

�

1

1 + ε| f (uε)|

[√
uε

u∞

yr

−
√

uε

u∞

y′
r
]2

dx

≥ L2

R∑

r=1

⎡

⎣

√
uε

yr

√
u∞yr

−
√

uε
y′

r

√
u∞y′

r

⎤

⎦

2

.

Proof We introduce the shorthand notation

vε
i =

√

uε
i , vε = (vε

i )i=1,...,I , vi,∞ = √
ui,∞, v∞ = (vi,∞)i=1,...,I ,

and g(vε) = f ((vε)2) = f (uε). Moreover, for each i ∈ {1, . . . , I }, we set

vε
i (x) = vε

i + δi (x), x ∈ �.

The desired inequality in Lemma 3.8 becomes

I∑

i=1

‖δi‖2L2(�)
+

R∑

r=1

∫

�

1

1 + ε|g(vε)|

[
(vε)yr

v
yr∞

− (vε)y′
r

v
y′

r∞

]2

dx

≥ L2

R∑

r=1

[
vε yr

v
yr∞

− vε y′
r

v
y′

r∞

]2

. (3.23)

Using Lemma 3.7, we observe by Hölder’s inequality, noting that |�| = 1, that

vε
i =

√

uε
i ≤

√

uε
i ≤ √

L0

and

‖δi‖L2(�) =
√

(vε
i )

2 − vε
i
2 ≤

√

uε
i ≤ √

L0.

Therefore, there exists a constant K7 > 0 such that

R∑

r=1

⎡

⎣

√
uε

yr

√
u∞yr

−
√

uε
y′

r

√
u∞y′

r

⎤

⎦

2

≤ K7. (3.24)

We decompose � into � = �1 ∪ �2 where

�1 = {x ∈ � : |δi (x)| ≤ 1 ∀i = 1, . . . , I } and �2 = �\�1.
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Note that on �1 we have

0 ≤ vε
i (x) = vε

i + δi ≤ √
L0 + 1 for all i = 1, . . . , I .

Therefore, there exists a constant K8 > 0 such that

1

1 + ε|g(vε(x))| ≥ K8 for all x ∈ �1. (3.25)

By using Taylor’s expansion, we have for all x ∈ �1,

[
(vε(x))yr

v
yr∞

− (vε(x))yr

v
yr∞

]2

=
[

1

v
yr∞

I∏

i=1

[
vε

i + δi (x)
]yr ,i − 1

v
y′

r∞

I∏

i=1

[
vε

i + δi (x)
]y′

r ,i

]2

=
[

1

v
yr∞

I∏

i=1

(
vε

i
yr ,i + R1δi (x)

)
− 1

v
y′

r∞

I∏

i=1

(
vε

i
y′

r ,i + R2δi (x)
)
]2

≥ 1

2

[
vε yr

v
yr∞

− vε y′
r

v
y′

r∞

]2

− K9

I∑

i=1

|δi (x)|2 (3.26)

for some K9 > 0. From (3.25) and (3.26), we can estimate the second sum on the
left-hand side of (3.23) as

R∑

r=1

∫

�

1

1 + ε|g(vε)|

[
(vε)yr

v
yr∞

− (vε)y′
r

v
y′

r∞

]2

dx

≥
R∑

r=1

∫

�1

1

1 + ε|g(vε)|

[
(vε)yr

v
yr∞

− (vε)y′
r

v
y′

r∞

]2

dx

≥ K8

R∑

r=1

∫

�1

⎛

⎝
1

2

[
vε yr

v
yr∞

− vε y′
r

v
y′

r∞

]2

− K9

I∑

i=1

|δi (x)|2
⎞

⎠ dx

≥ K8

2
|�1|

R∑

r=1

[
vε yr

v
yr∞

− vε y′
r

v
y′

r∞

]2

− K8K9R
I∑

i=1

‖δi‖2L2(�)
.

(3.27)

On the other hand, the first sum on the left-hand side of (3.23) is estimated as

I∑

i=1

‖δi‖2L2(�)
≥ 1

2

I∑

i=1

‖δi‖2L2(�)
+ 1

2

∫

�2

I∑

i=1

|δi (x)|2dx

≥ 1

2

I∑

i=1

‖δi‖2L2(�)
+ 1

2
|�2|

≥ 1

2

I∑

i=1

‖δi‖2L2(�)
+ 1

2K7
|�2|

R∑

r=1

[
vε yr

v
yr∞

− vε y′
r

v
y′

r∞

]2

.

(3.28)
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By combining (3.27) and (3.28), we have for any θ ∈ (0, 1],

LHS of (3.23) ≥
(

θ
K8

2
|�1| + 1

2K7
|�2|

) R∑

r=1

[
vε yr

v
yr∞

− vε y′
r

v
y′

r∞

]2

+
(
1

2
− θ K8K9R

) I∑

i=1

‖δi‖2L2(�)
.

(3.29)

Thus, by choosing θ = min
{
1; 1

2K8K9R

}
, we finally obtain the desired inequality

(3.23) with L2 = min
{

θ K8
2 ; 1

2K7

}
. ��

Lemma 3.9 There exists a constant L3 > 0 such that

I∑

i=1

‖
√

uε
i −

√

uε
i ‖2L2(�)

+
R∑

r=1

⎡

⎣

√
uε

yr

√
u∞ yr

−
√

uε
y′

r

√
u∞ y′

r

⎤

⎦

2

≥ L3

R∑

r=1

⎡

⎢
⎣

√

uε

u∞

yr

−
√

uε

u∞

y′
r
⎤

⎥
⎦

2

.

Proof The proof of this lemma follows by the same arguments as in (Fellner and Tang
2018, Lemma 2.7), so we omit it here. ��

We are now ready to prove Theorem 1.9.

Proof of Theorem 1.9 We proceed similarly to the proof of Lemma 3.5. If (d−2)+
d <

mi < 1, we have, thanks to Lemma 3.4 and bound (3.21),

∫

�

(uε
i )

mi −2|∇uε
i |2 dx ≥ Cuε

i
mi −1

∫

�

uε
i log

uε
i

uε
i

dx ≥ C Lmi −1
0

∫

�

uε
i log

uε
i

uε
i

dx

with a constant C = C(�, mi ) > 0. If mi ≥ 1, we apply Lemma 3.3 to get

∫

�

(uε
i )

mi −2|∇uε
i |2 dx ≥ C(�, mi )

(∫

�

uε
i log

uε
i

uε
i

dx

)mi

.

Therefore, by using 
(x, y) = x log(x/y) − x + y ≥ (√
x − √

y
)2 and noting that

∫

�

uε
i log

uε
i

uε
i

dx =
∫

�

(

uε
i log

uε
i

uε
i

− uε
i + uε

i

)

dx ≥ ‖
√

uε
i −

√

uε
i ‖2L2(�)

,
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there exists a constant K10 > 0 such that

D[uε] ≥ K10

[ I∑

i=1

(

‖
√

uε
i −

√

uε
i ‖2L2(�)

)max{1,mi }

+
R∑

r=1

kr uyr∞
∫

�

1

1 + ε| f (uε)|
(√

uε

u∞

yr

−
√

uε

u∞

y′
r )2

dx

]

.

(3.30)

We define

D̂i := ‖
√

uε
i −

√

uε
i ‖2L2(�)

, F̂ :=
R∑

r=1

kr uyr∞
∫

�

1

1 + ε| f (uε)|

[√
uε

u∞

yr

−
√

uε

u∞

y′
r
]2

dx,

and we consider the following two cases.
Case 1. If F̂ ≥ 1 or if there exists some i ∈ {1, . . . , I } such that D̂i ≥ 1, we

estimate from (3.30) that

D[uε] ≥ K10 ≥ K10
1

E[u0|u∞]E[uε|u∞]. (3.31)

Case 2. If F̂ ≤ 1 and D̂i ≤ 1 for all i = 1, . . . , I , thenwithα = maxi=1,...,I {1, mi },
we have from (3.30) that

D[uε] ≥ K10

[
I∑

i=1

D̂α
i + F̂α

]

≥ K11

[
I∑

i=1

D̂i + F̂

]α

(3.32)

for some K11 = K11(K10, α). Thanks to Lemmas 3.8 and 3.9, we have

I∑

i=1

D̂i + F̂

≥ min
r=1,...,R

{1, kr uyr∞}
⎡

⎢
⎣
1

2

I∑

i=1

‖
√

uε
i −

√

uε
i ‖2L2(�)

+ L2

2

R∑

r=1

⎛

⎝

√
uε

yr

√
u∞ yr

−
√

uε
y′

r

√
u∞ y′

r

⎞

⎠

2
⎤

⎥
⎦

≥ K12

R∑

r=1

⎡

⎢
⎣

√

uε

u∞

yr

−
√

uε

u∞

y′
r
⎤

⎥
⎦

2

(3.33)

where

K12 = 1

2
min

r=1,...,R
{L2, 1, kr uyr∞}L3.
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From here, we can use (Fellner and Tang 2018, Lemma 2.5) to estimate

E[uε|u∞] ≤ K13

I∑

i=1

⎛

⎝

√

uε
i

ui,∞
− 1

⎞

⎠

2

,

and (Fellner and Tang 2018, Eq. (11)) to get

R∑

r=1

⎡

⎢
⎣

√

uε

u∞

yr

−
√

uε

u∞

y′
r
⎤

⎥
⎦

2

≥ K14

I∑

i=1

⎛

⎝

√

uε
i

ui,∞
− 1

⎞

⎠

2

≥ K14

K13
E[uε|u∞].

(3.34)

It follows from (3.32), (3.33), and (3.34) that

D[uε] ≥ K11

(
K12K14

K13

)α

E[uε|u∞]α. (3.35)

Owing to (3.31) and (3.35), there exists some L4 > 0 such that

D[uε] ≥ L4E[uε|u∞]max{1,α}.

The rest of this proof follows exactly from that of Theorem 1.5, which helps us to
eventually obtain the exponential convergence to equilibrium

I∑

i=1

‖uε
i (t) − ui,∞‖2L1(�)

≤ Ce−λt

where C, λ > 0 are independent of ε. ��
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Appendix A:Proof of the Global Existence of Approximate Solutions

In this appendix, we provide a proof for the existence of a global solution to the
approximate system (2.1). While a similar proof, with Dirichlet instead of Neumann
boundary conditions, can be found in (Laamri and Pierre 2017, Proof of Lemma 2.3),
we mainly follow a standard Galerkin approach as presented in many textbooks.

For 0 < δ ≤ 1 and 1 ≤ i ≤ I , we consider the regularised system

∂t u
ε,δ
i − di∇ ·

[(
mi |uε,δ

i |mi −1

1 + δmi |uε,δ
i |mi −1

+ δ

)

∇uε,δ
i

]

= f ε
i (uε,δ), ν · ∇uε,δ

i = 0,

(A.1)

with initial datauε,δ
i (x, 0) = uε

i,0(x)+δ,whereweextend f ε
i to a locallyLipschitz con-

tinuous function on RI by setting f ε
i (v) := f ε

i (max{v1, 0}, . . . ,max{vI , 0}). For the
sake of readability,we subsequentlywritewi := uε,δ

i and H δ(wi ) := mi |wi |mi −1

1+δmi |wi |mi −1 +δ.

We employ the ansatz wk
i (x, t) = ∑k

j=1 ξ
j,k

i (t)e j (x) with k ∈ N, scalar coefficient

functions ξ
j,k

i (t), and the Schauder basis e j ∈ H1(�) of L2(�) given by the orthonor-
mal eigenfunctions of the Laplace operator satisfying ν · ∇e j = 0 on ∂�. Along with

the initial condition ξ
j,k

i (0) = ∫

�
(w0)i e j dx , the functions ξ

j,k
i , 1 ≤ j ≤ k, are

solutions to the set of equations

∫

�

∂tw
k
i e j dx = −di

∫

�

H δ(wk
i )∇wk

i · ∇e j dx +
∫

�

f ε
i (wk

i )e j dx (A.2)

for 1 ≤ j ≤ k, which can be recast into an ODE system for the time-dependent
coefficient vector ξ̂ k

i (t) := (ξ
1,k
i (t), . . . , ξ k,k

i (t)). As the right-hand side continuously
depends on ξ̂ k

i (t) via the bounded and continuous functions H δ and f ε
i , we know that

a solution ξ̂ k
i (t) ∈ C1([0, τ ],RI ) exists for some τ > 0. The energy estimate below,

which is essentially obtained by multiplying (A.2) with ξ
j,k

i (t) and summing over j ,
will indeed show that the solution exists for all times t ≥ 0. Integrating (A.2) over
[0, t] ⊂ [0, τ ), we have

‖wk
i (t)‖2L2(�)

+ δdi

∫ t

0
‖∇wk

i (s)‖2L2(�)
ds ≤ C

(

‖wk
i (0)‖2L2(�)

+
∫ t

0

∫

�

ε−1|wk
i | dx ds

)

,

where C > 0 is independent of k by the uniform bounds H δ(wk
i ) ≥ δ and f ε

i (wk
i ) ≤

ε−1. In order to control the H1(�) norm of wk
i , we first observe that e1 is constant in

space. Hence, (A.2) leads for all t ∈ (0, τ ) to

∣
∣
∣
∣

∫

�

wk
i (x, t) dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

�

wk
i (x, 0) dx +

∫ t

0

∫

�

f ε
i (wk

i ) dx ds

∣
∣
∣
∣ ≤ ‖wk

i (0)‖L1(�) + |�|t
ε

.
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Poincaré’s inequality now yields

‖wk
i (t)‖2H1(�)

≤ C

(

‖∇wk
i (t)‖2L2(�)

+ ‖wk
i (0)‖2L2(�)

+ |�|2τ 2
ε2

)

.

As a result, we arrive at

‖wk
i (t)‖2L2(�)

+
∫ t

0
‖wk

i (s)‖2H1(�)
ds ≤ C

(

1 + ‖wi (0)‖2L2(�)

)

, (A.3)

where C > 0 is independent of k, and which shows that the solution is bounded on
[0, τ ) and, thus, existing for all t ≥ 0. Note that we applied the elementary estimate
‖wk

i (0)‖L2(�) ≤ ‖wi (0)‖L2(�) in the last step.
Let Pk : L2(�) → L2(�) be the orthogonal projection in L2(�) onto

span{e1, . . . , ek}, and let φ ∈ L2(0, T ; H1(�)) for some arbitrary but fixed T > 0.
We recall the uniform bounds H δ(wk

i ) ≤ δ−1 + δ and f ε
i (wk

i ) ≤ ε−1 leading to

∫

QT

∂tw
k
i φ dx dt =

∫

QT

∂tw
k
i Pkφ dx dt

= −di

∫

QT

H δ(wk
i )∇wk

i · ∇(Pkφ) dx dt +
∫

QT

f ε
i (wk

i )Pkφ dx dt

≤ C
∫ T

0
‖∇wk

i (t)‖L2(�)‖∇(Pkφ)(t)‖L2(�) dt + C
∫ T

0
‖(Pkφ)(t)‖L2(�) dt

≤ C(1 + ‖wk
i ‖L2(0,T ;H1(�)))‖φ‖L2(0,T ;H1(�))

with a constant C > 0 independent of k. We stress that the last estimate also employs
the bound ‖(Pkφ)(t)‖H1(�) ≤ ‖φ(t)‖H1(�) for a.e. t ∈ [0, T ], which provides a
uniform-in-k bound for ∂tw

k
i ∈ L2(0, T ; (H1(�))′) together with (A.3).

Wemaychoose a (not relabelled) subsequencewk
i beingweakly converging for k →

∞ to some wi in L2(0, T ; H1(�)) and in H1(0, T ; (H1(�))′). Strong convergence
wk

i → wi in L2(0, T ; L2(�)) ∼= L2(QT ) now follows by means of the Aubin–Lions
lemma. Choosing another subsequence, we obtain for all i = 1, . . . I , wk

i → wi and,
hence, H δ(wk

i ) → H δ(wi ) and f ε
i (wk

i ) → f ε
i (wi ) a.e. in � due to the continuity of

H δ and f ε
i . The boundedness of H δ and f ε

i further guarantees H δ(wk
i ) → H δ(wi )

and f ε
i (wk

i ) → f ε
i (wi ) strongly in L2(QT ). This allows us to pass to the limit k → ∞

in an integrated version of (A.2) resulting in

∫

�

wiφ dx

∣
∣
∣
∣

T

0
−

∫

QT

wi∂tφ dx dt + di

∫

QT

H δ(wi )∇wi · ∇φ dx dt

=
∫

QT

f ε
i (wi )φ dx dt

for all φ ∈ C∞(QT ). By a density argument, (A.1) holds as an identity in
L2(0, T ; (H1(�))′).
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Thanks to the quasi-positivity assumption (F2), the solutionwi is also non-negative.
For p > 1, we have

∂t‖wi‖p
L p(�) + di p(p − 1)

∫

�

H δ(wi )w
p−2
i |∇wi |2dx

= p
∫

�

w
p−1
i f ε

i (w)dx ≤ p‖ f ε
i (w)‖L p(�)

(
‖wi (t)‖p

L p(�)

)1− 1
p
. (A.4)

Applying theGronwall lemma y′ ≤ α(t)y1−1/p ⇒ y(t) ≤
(

y(0)1/p + 1
p

∫ t
0 α(s)ds

)p

for y(t) = ‖wi (t)‖p
L p(�) entails

‖wi (t)‖p
L p(�) ≤

(

‖wi (0)‖L p(�) +
∫ t

0
‖ f ε

i (w(s))‖L p(�)ds

)p

≤
(

‖wi (0)‖L p(�) + ‖ f ε
i (w)‖L p(QT )T

p−1
p

)p

.

Taking the root of order p on both sides and letting p → ∞, this leads to

sup
t∈(0,T )

‖wi (t)‖L∞(�) ≤ ‖wi (0)‖L∞(�) + T ‖ f ε
i (w)‖L∞(QT ),

which means

‖wi‖L∞(QT ) ≤ Cε,T for all i = 1, . . . , I , (A.5)

where Cε,T is independent of δ > 0. Therefore,

H δ(wi ) = miw
mi −1
i

1 + δmiw
mi −1
i

+ δ ≥ miw
mi −1
i

1 + mi C
mi −1
ε,T

+ δ.

By integrating (A.4) on (0, T ), and using (A.5), we get

mi

∫

QT

w
mi −1
i w

p−2
i |∇wi |2 dx dt + δ

∫

QT

w
p−2
i |∇wi |2 dx dt

≤ 1

di (p − 1)

(

‖wi (0)‖p
L p(�) +

∫

QT

f ε
i (w)w

p−1
i dx dt

)

≤ 1

di (p − 1)

(
‖wi (0)‖p

L p(�) + |�|T ‖ f ε
i (w)‖L∞(QT )C

p−1
ε,T

)
,

(A.6)

which implies, in particular,

∥
∥
∥∇

(
w

mi +p−1
2

i

)∥
∥
∥

L2(QT )
≤ Cε,T (A.7)
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for all p > 1. By testing equation (A.1) with φ ∈ L2(0, T ; H1(�)) and keeping
(A.5) in mind, we see that {∂twi } is bounded in L2(0, T ; (H1(�))

′
) uniformly in

δ > 0. Hence, from this, (A.5), and (A.7), we can apply a nonlinear Aubin–Lions
lemma, see e.g. (Moussa 2016, Theorem 1), to ensure the existence of a subsequence
(not relabelled) such that wi = uε,δ

i → uε
i strongly in L2(QT ) as δ → 0. From

here onwards, we will write uε,δ
i instead of wi . Thanks to the L∞ bound (A.5), this

convergence in fact holds in L p(QT ) for any 1 ≤ p < ∞. It remains to pass to the
limit δ → 0 in the weak formulation of (A.1) with ψ ∈ L2(0, T ; H1(�)),

∫ t1

t0
〈∂t u

ε,δ
i , ψ〉(H1(�))′,H1(�) dt + di

∫ t1

t0

∫

�

mi (u
ε,δ
i )mi −1

1 + δmi (u
ε,δ
i )mi −1

∇uε,δ
i · ∇ψ dx dt

+diδ

∫ t1

t0

∫

�

∇uε,δ
i · ∇ψ dx dt =

∫ t1

t0

∫

�

f ε
i (uε,δ)ψ dx dt . (A.8)

The convergence of the first term on the left-hand side and the last term on the right-
hand side of (A.8) is immediate. From

∇uε,δ
i = 2

mi + p − 1
(uε,δ

i )
3−mi −p

2 ∇(uε,δ
i )

mi +p−1
2 ,

we can choose 1 < p < 3 − mi (since mi < 2) to get

‖∇uε,δ
i ‖L2(QT ) ≤ Cε,T (A.9)

thanks to the uniform bounds (A.5) and (A.7). For the third term on the left-hand side
of (A.8), we estimate

∣
∣
∣
∣δ

∫ t1

t0

∫

�

∇uε,δ
i · ∇ψ dx dt

∣
∣
∣
∣ ≤ δ‖∇uε,δ

i ‖L2(QT )‖∇ψ‖L2(QT ) ≤ Cε,T δ‖∇ψ‖L2(QT ),

and, therefore, it converges to zero as δ → 0. Finally, the convergence

∫ t1

t0

∫

�

mi (u
ε,δ
i )mi −1

1 + δmi (u
ε,δ
i )mi −1

∇uε,δ
i · ∇ψ dx dt

δ→0−−−→
∫ t1

t0

∫

�
mi (u

ε
i )

mi −1∇uε
i · ∇ψ dx dt

follows from
mi (u

ε,δ
i )mi −1

1+δmi (u
ε,δ
i )mi −1

δ→0−−→ mi (uε
i )

mi −1 a.e. in QT , (A.5), and (A.9).

Appendix B:Proof of a Uniform Bound on Approximate Solutions

We provide a proof of Lemma 3.6. Define the new variables

wε
i = uε

i log uε
i + (μi − 1)uε

i + e−μi ≥ 0

123



Journal of Nonlinear Science (2023) 33 :66 Page 47 of 49 66

and

zε
i = (log uε

i + μi )(u
ε
i )

mi − (uε
i )

mi − e−μi mi

mi
≥ 0,

where the non-negativity follows from elementary calculus. Direct computations give

∂tw
ε
i − di�zε

i = (log uε
i + μi ) f ε

i (uε) − di mi (u
ε
i )

mi −2|∇uε
i |2

leading to

∂t

(
I∑

i=1

wε
i

)

− �

(
I∑

i=1

di z
ε
i

)

=
I∑

i=1

(log uε
i + μi ) f ε

i (uε) −
I∑

i=1

di mi (u
ε
i )

mi −2|∇uε
i |2.

Thanks to (1.2) and an elementary estimate, there exist constants A, β > 0 such that

I∑

i=1

(log uε
i + μi ) f ε

i (uε) ≤ C
I∑

i=1

(
1 + uε

i log uε
i

) ≤ A + β

I∑

i=1

wε
i .

Defining the non-negative function

F̃ = A + β

I∑

i=1

wε
i −

I∑

i=1

(log uε
i + μi ) f ε

i (uε) +
I∑

i=1

di mi (u
ε
i )

mi −2|∇uε
i |2 ≥ 0,

we infer that

∂t

(
I∑

i=1

wε
i

)

− �

(
I∑

i=1

di z
ε
i

)

= A + β

I∑

i=1

wε
i − F̃,

while Gronwall’s inequality gives

I∑

i=1

∫

QT

wε
i dx dt +

∫

QT

F̃ dx dt ≤ C(T , ‖wε
0‖L1(�)). (B.1)

By introducing v(x, t) = e−βt ∑I
i=1 wε

i , we obtain

∂tv − �

(

e−βt
I∑

i=1

di z
ε
i

)

= Ae−βt − e−βt F̃ .
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Therefore, by applying (Laamri and Perthame 2020, Lemma 1) and (B.1), we have

∫

QT

e−2βt

(
I∑

i=1

wε
i

)(
I∑

i=1

di z
ε
i

)

dx dt ≤ 1

2

∥
∥
∥
∥
∥

I∑

i=1

wε
i,0

∥
∥
∥
∥
∥

2

H−1(�)

+C
∫ T

0

(

e−βt
I∑

i=1

∫

�

di z
ε
i dx +

∫

�

F̃ dx

)(

Ae−βt t +
I∑

i=1

∫

�

wε
i,0

)

dt .

From the definition of wε
i and zε

i , it is easy to see that for any δ > 0, there exists some
Cδ > 0 such that

I∑

i=1

di z
ε
i ≤ δ

(
I∑

i=1

wε
i

)(
I∑

i=1

di z
ε
i

)

+ Cδ

and, hence,

∫

QT

(
I∑

i=1

wε
i

)(
I∑

i=1

di z
ε
i

)

dx dt ≤ C(T , ‖wε
0‖L1(�)∩H−1(�)).

The desired estimate (3.12) is now an immediate consequence.
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