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Abstract

We derive optimal-order homogenization rates for random nonlinear elliptic
PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely,
for a random monotone operator on Rd with stationary law (that is spatially homo-
geneous statistics) and fast decay of correlations on scales larger than themicroscale
ε > 0, we establish homogenization error estimates of the order ε in case d � 3,
and of the order ε| log ε|1/2 in case d = 2. Previous results in nonlinear stochastic
homogenization have been limited to a small algebraic rate of convergence εδ . We
also establish error estimates for the approximation of the homogenized operator
by the method of representative volumes of the order (L/ε)−d/2 for a represen-
tative volume of size L . Our results also hold in the case of systems for which a
(small-scale) C1,α regularity theory is available.
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1. Introduction

In the present work, we establish quantitative homogenization results with op-
timal rates for nonlinear elliptic PDEs of the form

−∇ · (Aε(x,∇uε)
) = f in Rd , (1)

where Aε is a random monotone operator whose correlations decay quickly on
scales larger than a microscopic scale ε. For scalar problems and also certain sys-
tems, we obtain the optimal convergence rate O(ε) of the solutions uε towards the
solution uhom of the homogenized problem

−∇ · (Ahom(∇uhom)) = f in Rd (2)

in three or more spatial dimensions d � 3. In two spatial dimensions d = 2, we
obtain the optimal convergence rate O(ε| log ε|1/2) upon including a lower-order
term in the PDEs (1) and (2).

Our results may be seen as the optimal quantitative counterpart in the case of
2-growth to the qualitative stochastic homogenization theory for monotone systems
developed by Dal Maso and Modica [17,18], and as the nonlinear counterpart of
the optimal-order stochastic homogenization theory for linear elliptic equations
developed by Gloria and Otto [32,33] and Gloria, Otto, and the second author
[30,31]. Just like for [17,18], a key motivation for our work is the homogenization
of nonlinear materials.
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In the context of random materials, the first – and to date also the only –
homogenization rates for elliptic PDEs with monotone nonlinearity were obtained
byArmstrong andSmart [9],Armstrong andMourrat [7], andArmstrong, Ferguson,
and Kuusi [2] in the form of a small algebraic convergence rate εδ for some δ > 0.
The optimal convergence rates derived in the present work improve substantially
upon their rate: we derive an error estimate of the form

||u − uhom||L p(Rd ) �

⎧
⎪⎨

⎪⎩

C( f ) ε1/2 for d = 1,

C( f ) ε| log ε|1/2 for d = 2,

C( f ) ε for d � 3,

(3)

with p = 2d
d−2 for d � 3, and p = 2 for d = 1, 2. However, in contrast to the works

of Armstrong et al. we make no attempt to reach optimal stochastic integrability:
in our homogenization error estimate the random constant C( f ) in (3) has bounded
stretched exponential moments in the sense

E

[
exp

(( C( f )

C( f )

)ν̄
)]

� 2

for some universal constant ν̄ > 0 (which is in particular independent of the right-
hand side f ) and for some constant C( f ) = C(|| f ||L1, || f ||Ld+1). In comparison,
the homogenization error estimates for linear elliptic PDEs with optimal rate in [4,
34] establish (essentially) Gaussian stochasticmomentsE[exp(|C f /C( f, μ)|2−μ)]
� 2 for any μ > 0. Likewise, the homogenization error estimates for monotone
operators with non-optimal rate εδ of [2,7,9] include optimal stochastic moment
bounds.

Before providing a more detailed summary of our results, let us give a brief
overview of the previous quantitative results in nonlinear stochastic homogeniza-
tion. The first – logarithmic – rates of convergence in the stochastic homogenization
of a nonlinear second-order elliptic PDE were obtained by Caffarelli and Sougani-
dis [15] in the setting of non-divergence form equations. Subsequently, a rate of
convergence εδ has been derived both for equations in divergence form and non-
divergence form by Armstrong and Smart [8,9] and Armstrong and Mourrat [7].
In the homogenization of Hamilton-Jacobi equations, a rate of convergence of the
order ε1/8 has been obtained by Armstrong, Cardaliaguet, and Souganidis [6]. For
forced mean curvature flow, Armstrong and Cardaliaguet [1] have derived a con-
vergence rate of order ε1/90. These rates of convergence are all expected to be
non-optimal (compare, for instance, the result for Hamilton-Jacobi equations to the
rate of convergence ε known in the periodic homogenization setting [37]).

To the best of our knowledge, the presentwork constitutes the first optimal-order
convergence results for any nonlinear stochastic homogenization problem. How-
ever, we are aware of an independent work in preparation by Armstrong, Ferguson,
and Kuusi [3], which aims to address the same question. In contrast to our work
– which is inspired by the approach to quantitative stochastic homogenization via
spectral gap inequalities of [30–33] – the upcoming work [3] relies on the approach
of sub- and superadditive quantities of [2,4,9]. Nevertheless, both our present work
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and the approach of [2,3] use the concept of correctors for the linearized PDE, see
Sect. 3 for details.

Before turning to a more detailed description of our results, let us briefly com-
ment on the theory of periodic homogenization of nonlinear elliptic equations. A
quantitative theory for the periodic homogenization of nonlinear monotone opera-
tors has recently been derived byWang, Xu, and Zhao [44]. A corresponding result
for degenerate elliptic equations of p-Laplacian type may be found in [43]. In the
periodic homogenization of polyconvex integral functionals, the single-cell for-
mula for the effective material law (which determines the effective material law by
a variational problem on a single periodicity cell) may fail [12,26], a phenomenon
associated with possible “buckling” of the microstructure. A related phenomenon
of loss of ellipticity may occur in the periodic homogenization of linear elastic-
ity [14,24,35,36]. Note that polyconvex integral functionals occur naturally in the
framework of nonlinear elasticity [11]; however, their Euler-Lagrange equations
in general lack a monotone structure. Nevertheless, in periodic homogenization of
nonlinear elasticity the single-cell formula is valid for small deformations [40,41],
and rates of convergence may be derived.

1.1. Summary of Results

To summarize our results in a continuummechanical language, we consider the
effective macroscopic behavior of a nonlinear and microscopically heterogeneous
material. We assume that the behavior of the nonlinear material is described by the
solution uε : Rd → R

m of a second-order nonlinear elliptic system of the form

−∇ · (Aε(x,∇uε)
) = f

for some random monotone operator Aε : Rd × R
m×d → R

m×d with correlation

length ε and some right-hand side f ∈ L
2d
d+2 (Rd ;Rm). We further assume that

the random monotone operator Aε is of the form Aε(x, ξ):=A(ωε(x), ξ), where
ωε is a random field representing the random heterogeneities in the material; for
each realization of the random material (that is each realization of the probability
distribution), ωε selects at each point x ∈ R

d a local material law A(ωε(x), ·) :
R
m×d → R

m×d from a family A of potential material laws. Under some suitable
additional conditions, the theory of stochastic homogenization shows that for small
correlation lengths ε � 1 the above nonlinear elliptic system is well-approximated
by a homogenized effective equation. The effective equation again takes the form
of a nonlinear elliptic system, however now with a spatially homogeneous effective
material law Ahom : Rm×d → R

m×d . It is our goal to provide an optimal-order
estimate for the difference of the solution uε to the solution uhom of the effective
equation

−∇ · (Ahom(∇uhom)
) = f,

aswell as to give an optimal-order error bound for the approximation of the effective
material law Ahom by the method of representative volumes.
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To be mathematically more precise, we consider a random field taking values
in the unit ball of a Hilbert space ωε : � × R

d → H ∩ B1 and a family of
monotone operators A : (H∩ B1)×R

m×d → R
m×d indexed by the unit ball of this

Hilbert space. We then define a random monotone operator Aε(x, ·):=A(ωε(x), ·)
by selecting amonotone operator from the family A at each point x ∈ R

d according
to the value of the random field ωε(x). Note that the property of ωε being Hilbert-
space valued is not an essential point and just included for generality: Even the
homogenization for a scalar-valued random field (and correspondingly a single-
parameter family of monotone operators A : (R ∩ B1) × R

m×d → R
m×d ) would

be highly relevant and just as difficult, as it could describe for example composite
materials.

The conditions on the random field ωε and the family of monotone operators
A are as follows:

• We assume spatial statistical homogeneity of the material: The statistics of
the random material should not depend on the position in space. In terms of
a mathematical formulation, this assumption corresponds to stationarity of the
probability distribution of ωε under spatial translations.

• We assume sufficiently fast decorrelation of the material properties on scales
larger than a correlation length ε. In terms of a mathematical formulation, we
make this notion rigorous by assuming that a spectral gap inequality holds.
More precisely, we shall assume that ωε itself is a Hilbert-space valued random
field on R

d which satisfies a spectral gap inequality and on which the random
monotone operator Aε depends in a pointwise way as Aε(x, ξ):=A(ωε(x), ξ),
where the map A : (H ∩ B1) × R

m×d → R
m×d is continuously differentiable

and Lipschitz and where ∂ξ A is continuously differentiable and Lipschitz in its
first variable.

• We assume uniform coercivity and boundedness of the monotone operator in
the sense that (A(ω, ξ2) − A(ω, ξ1)) : (ξ2 − ξ1) � λ|ξ2 − ξ1|2 as well as
|A(ω, ξ2) − A(ω, ξ1)| � �|ξ2 − ξ1| hold for all ξ1, ξ2 ∈ R

m×d and every
ω ∈ H ∩ B1 for suitably chosen constants 0 < λ < � < ∞.

• For some of our results, we shall impose an additional condition, which essen-
tially entails a C1,α regularity theory for the equation (1) on the microscopic
scale ε. Namely, we shall assume Lipschitz continuity of the random field ωε

on the ε-scale with suitable stochastic moment bounds on the local Lipschitz
norm and a uniform bound on the second derivative ∂2ξ A, along with one of the
following three conditions:
– Our problem consists of a single nonlinear monotone PDE, that is m = 1.
– We are in the two-dimensional case d = 2.
– Our systemhasUhlenbeck structure, that is the nonlinearity has the structure

A(ω, ξ) = ρ(ω, |ξ |2)ξ for some scalar function ρ, and the same is true for
the homogenized operator.

Under these assumptions, we establish the following quantitative stochastic ho-
mogenization results with optimal rates for the nonlinear elliptic PDE (1).

• The solution uε to the nonlinear PDE with fluctuating random material law (1)
can be approximated by the solution uhom to a homogenized effective PDE of
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the form (2). In case d = 2 or d = 1, we include a lower-order term in the
PDEs, see Theorem 4. The homogenized effective material law is given by a
monotone operator Ahom : Rm×d → R

m×d which is independent of the spatial
variable x ∈ R

d and satisfies analogous uniform ellipticity and boundedness
properties. The error u − uhom is estimated by

||u − uhom||L p(Rd ) �

⎧
⎪⎨

⎪⎩

C( f ) ε for d � 3,

C( f ) ε| log ε|1/2 for d = 2,

C( f ) ε1/2 for d = 1,

with p and C( f ) as in (3). Without the additional small-scale regularity as-
sumption, we still achieve half of the rate of convergence ε1/2 for d � 3,

ε1/2| log ε|1/4 for d = 2, and ε
1
3 for d = 1, respectively — a result that we also

establish for the Dirichlet problem in bounded domains.
• The homogenized effective operator Ahom may be approximated by the method
of representative volumes, and this approximation is subject to the following
a priori error estimate: If a box of size L � ε is chosen as the representative
volume, the error estimate

∣∣ARVE
hom(ξ)− Ahom(ξ)

∣∣ � C(L , ξ)(1+ |ξ |)C |ξ |
(
L

ε

)−d/2

holds true for every ξ ∈ R
m×d , where ARVE

hom denotes the approximation of Ahom
by the method of representative volumes and where again C(L , ξ) denotes a
random constant with bounded stretched exponential moments (independent of
L , ξ , and ε). The systematic error is of higher order

∣∣E
[
ARVE
hom(ξ)

]− Ahom(ξ)
∣∣ � C(1+ |ξ |)C |ξ |

(
L

ε

)−d ∣∣∣∣ log
L

ε

∣∣∣∣

d+2

,

at least in case d � 4 (which includes the physically relevant cases d = 2 and
d = 3). Without the additional small-scale regularity assumption, we achieve
almost the same overall estimate |ARVE

hom(ξ)−Ahom(ξ)| � C(L , ξ)|ξ |(L/ε)−d/2

(log L
ε
)C , but not the improved bound for the systematic error.

Note that the rates of convergence ||uε − uhom||L2d/(d−2) � Cε in case d � 3
respectively ||uε − uhom||L2 � Cε| log ε|1/2 in case d = 2 coincide with the
optimal rate of convergence in the homogenization of linear elliptic PDEs, see
for example [4,30,31,34]. Similarly, the rate of convergence for the representative
volume approximation |ARVE

hom(ξ) − Ahom(ξ)| � C(L/ε)−d/2 coincides with the
corresponding optimal rate for linear elliptic PDEs, as does (essentially) the higher-
order convergence rate for the systematic error. As linear elliptic PDEs may be
regarded as a particular case of our nonlinear PDE (1), our rates of convergence are
optimal.

Beyond the scope of the present paper – but subject of current ongoing work
by various authors, and building in parts on the results of the present work – are
problems like describing the fluctuations in solutions to random nonlinear elliptic
PDEs or the quantitative homogenization of nonlinear elliptic PDEs with p growth
in the case p �= 2.
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1.2. Examples

To illustrate our results, let us mention two examples of random nonlinear
elliptic PDEs and systems to which our theorems apply, as well as an important
class of random fields ωε which satisfy our assumptions.

We first give an example for the random field ωε. Let θ : Rk → R
k ∩ B1 be

any Lipschitz map taking values only in the unit ball. Let Yε : Rd → R
k be any

stationary Gaussian random field whose correlations decay sufficiently quickly in
the sense that

∣∣Cov
[
Yε(x),Yε(y)

]∣∣ � 1

1+ ( |x−y|
ε

)d+δ

for some δ > 0. Set H:=R
k . Then the random field ωε : Rd → H defined by

ωε(x):=θ(Yε(x))

satisfies a spectral gap inequality with correlation length ε in the sense of Defini-
tion 16; for a proof see for example [20]. As stationarity is immediate, any such ωε

satisfies our key assumptions on the random field (P1) and (P2) stated in Sect. 2.1
below. Note in particular that the spectral gap assumption allows for the presence of
(sufficiently quickly decaying, namely integrable) long-range correlations. Typical
realizations for two such random fields are depicted in Fig. 1.

To state the first example of a randommonotone operator satisfying our assump-
tions, consider any two deterministic spatially homogeneous monotone operators
A1 : Rm×d → R

m×d and A2 : Rm×d → R
m×d subject to the ellipticity and Lip-

schitz continuity assumptions (A1) and (A2). Furthermore, consider any random
field ωε : Rd → [0, 1]. Then the operator

Aε(x, ξ):=ωε(x)A1(ξ)+ (1− ωε(x))A2(ξ)

satisfies our assumptions (A1)–(A3). Note that this operator corresponds to the
PDE

−∇ ·
(
ωε(x)A1(∇u) + (1− ωε(x))A2(∇u)

)
= f.

The additional small-scale regularity assumption (R) is satisfied whenever the op-
erators A1 and A2 have uniformly bounded second derivatives, the random field ωε

is regular enough, and one of the three following conditions holds: The equation is
scalar (m = 1), the spatial dimension is at most two (d � 2), or both A1 and A2 as
well as the homogenized operator Ahom are of Uhlenbeck structure.

As a second simple example of a monotone operator, consider for any random
field ωε : Rd → [0, 1] the operator

Aε(x, ξ):= 1+ |ξ |2
1+ (1+ ωε(x))|ξ |2 ξ.
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Fig. 1. Typical realizations of random fields obtained by applying a nonlinear map pointwise
to a stationary Gaussian random field with only short-range correlations (left), respectively
to a stationary Gaussian random field with barely integrable correlations (right)

This satisfies our assumptions, possibly with the exception of the additional regu-
larity condition (R). Note that this operator corresponds to the PDE

−∇ ·
(

1+ |∇u|2
1+ ωε(x)|∇u|2∇u

)
= f.

The additional small-scale regularity assumption – stated in (R) below – is satisfied
in the scalar case m = 1 as well as in the low-dimensional case d � 2, provided
that the random field ωε is sufficiently smooth on the microscopic scale ε.

1.3. Notation

The number of spatial dimensions will be denoted by d ∈ N. For a measurable
function u, we denote by ∇u its (weak) spatial derivative. For a function of two
variables A(ω, ξ), we denote its partial derivatives by ∂ωA and ∂ξ A. For a function
f : Rd → R, we denote by ∂i f its partial derivativewith respect to the coordinate i .
For a matrix-valued function M : Rd → R

m×d , we denote by ∇ ·M its divergence
with respect to the second index, that is (∇ · M)i =∑d

j=1 ∂ j Mi j .
Throughout the paper, we use standard notation for Sobolev spaces. In particu-

lar, we denote by H1(Rd) the space of all measurable functions u : Rd → Rwhose
weak spatial derivative ∇u exists and which satisfy ||u||H1 :=
(
´
Rd |u|2 + |∇u|2 dx)1/2 < ∞. Similarly, we denote by H1(Rd;Rm) the space

of Rm-valued vector fields with the analogous properties and the analogous norm.
For d � 3, we denote by Ḣ1(Rd;Rm) the space of all measurable functions u with
||u||Ḣ1 :=(

´
Rd |∇u|2 dx)1/2+||u||L2d/(d−2) < ∞. By H1

loc(R
d)we denote the space

of all measurable functions u : Rd → R for which all restrictions u|Br to finite balls
(0 < r < ∞) belong to H1(Br ). For a box [0, L]d , we denote by H1

per([0, L]d) the
closure in the H1([0, L]d) norm of the smooth L-periodic functions. By H1

uloc(R
d),
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we denote the space of measurable functions u whose weak derivative ∇u exists
and which satisfy the bound ||u||H1

uloc
:= supx∈Rd (

´
B1(x)

|∇u|2 + |u|2 dx̃)1/2 < ∞.

In order not to overburden notation,we shall frequently suppress the dependence
on the spatial variable x in many expressions, for instance we will write A(ωε, ξ) or
A(ωε,∇u) instead of A(ωε(x), ξ) respectively A(ωε(x),∇u(x)). By an expression
like ∂ξ A(ω, ξ)�, we denote the derivative of A with respect to the second variable
at the point (ω, ξ) evaluated in direction �. Similarly, by ∂ω∂ξ A(ω, ξ)δω� we
denote the second mixed derivative of A with respect to its two variables at the
point (ω, ξ) evaluated in directions δω and �. We use notation like δF or δωε

to indicate infinitesimal changes (that is differentials) of various quantities and
functions.

For two numbers a, b ∈ R, we denote by a ∧ b the minimum of a and b. We
write a ∼ b to indicate that two constants a, b ∈ (0,∞) are of a similar order of
magnitude. For amatrixM ∈ R

m×d , we denote by |M |:=∑i, j |Mi j |2 its Frobenius
norm. ByRd×d

skew we denote the set of skew-symmetric matrices of dimension d×d.
By Br (x) we denote the ball of radius r centered at x . By Br we will denote

the ball of radius r around the origin. For two sets A, B ⊂ R
d and a point x ∈ R

d ,
we denote by A+ B:={a + b : A ∈ A, b ∈ B} their Minkowski sum, respectively
by x + A the translation of A by x . By H we will denote a Hilbert space; we will
denote its unit ball by H ∩ B1.

By C and c we will denote – typically large respectively typically small – non-
negative constants, whose precise value may change from occurrence to occurrence
but which only depend on a certain set of parameters. For a set M , we denote by
�M the number of its elements.

We write ωε ∼ P to indicate that a random field ωε is distributed according to
the probability distribution P. For two random variables or random fields X and Y ,
we write X ∼ Y to indicate that their laws coincide.

Whenever we use the terms “coefficient field” or “monotone operator”, we shall
implicitly assume measurability.

2. Main Results

Before stating our main results and the precise setting, let us introduce the
key objects in the homogenization of nonlinear elliptic PDEs and systems with
monotone nonlinearity. To fix a physical setting, we will here give an outline of
the meaning of the objects in the context of electric fields and associated currents.
However, a major motivation for the present work – and in particular for the choice
to include the case of nonlinear elliptic systems – stems from the homogenization
of nonlinear elastic materials. While in this context the monotone structure is lost
[11], it may be retained for small deformations [16,25,40,41,45]. A corresponding
result in the context of stochastic homogenization will be established in [21]. The
homogenization of monotone operators may also be viewed as a simple but neces-
sary first step towards a possible quantitative homogenization theory for nonlinear
elastic materials for larger deformations.
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In the context of electric fields and currents, we are concerned with a scalar
equation (that is m = 1); the functions u and uhom in (1) and (2) correspond (up
to a sign) to the electric potential in the heterogeneous material respectively in the
homogenized picture. Their gradients ∇u respectively ∇uhom are the associated
electric fields. The monotone functions A(ωε(x), ξ) and Ahom(ξ) comprise the
material law and describe the electric current created by a given electric field ξ .
Note that in contrast to existing optimal results in stochastic homogenization, the
material law may be nonlinear in ξ . Finally, the PDEs (1) and (2) correspond to
prescribing the sources and sinks of the electric current.

The central object in the quantitative homogenization of elliptic PDEs is the
homogenization corrector φξ , which in our context is anRm -valued randomfield on
R
d . It provides a bridge between the microscopic (heterogeneous) and the macro-

scopic (homogenized) picture: For a given constant macroscopic field gradient
ξ ∈ R

m×d , the corrector φξ provides the correction yielding the associated micro-
scopic field gradient ξ + ∇φξ . The corrector φξ is defined as the unique (up to a
constant) sublinearly growing distributional solution to the PDE

−∇ · (A(ωε, ξ +∇φξ )) = 0; (4)

see Definition 1 for the precise definition. Note that a priori, similarly to the linear
elliptic case, the existence and uniqueness of such a solution is unclear. In the
setting of our main results, by our choice of scaling the corrector φξ is expected
to display fluctuations on the length scale ε with typical gradients of the order
|∇φξ | ∼ |ξ |; furthermore, in case d � 3 the typical magnitude of the corrector is
of order |φξ | ∼ |ξ |ε.

The effective (homogenized)material law Ahom (seeDefinition 1 for the precise
definition) may be determined in terms of the homogenization corrector: In prin-
ciple, at each point x ∈ R

d the microscopic material law A(ωε(x), ·) : Rm×d →
R
m×d associates a current A(ωε(x), ξε) to a given electric field ξε; likewise, the

effective macroscopic material law Ahom(·) : Rm×d → R
m×d associates a cur-

rent Ahom(ξ) to a given macroscopic electric field ξ . As the macroscopic current
corresponds to an “averaged” microscopic current, the macroscopic material law
should be obtained by averaging the microscopic flux. More precisely, the homog-
enization corrector φξ associates a microscopic electric field ξ + ∇φξ to a given
macroscopic electric field ξ ; therefore the macroscopic current Ahom(ξ) should be
given by the “average” of the microscopic current A(ωε, ξ +∇φξ ). In our setting,
due to stationarity and ergodicity “averaging” corresponds to taking the expected
value at an arbitrary point x ∈ R

d (and we will suppress the point x ∈ R
d in the

notation). In other words, we have

Ahom(ξ) = E[A(ωε, ξ + ∇φξ )] a. s.= lim
r→∞

 

Br
A(ωε(x), ξ + ∇φξ (x)) dx .

Our main results on the quantitative approximation of the solution uε to the
nonlinear elliptic PDE with randomly fluctuating material law

−∇ · (A(ωε,∇uε)) = f
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by the solution uhom to the homogenized equation

−∇ · (Ahom(∇uhom)) = f

are stated in Theorem 2 and Theorem 4 in the case of the full space Rd . The case
of a bounded domain – however with a lower rate of convergence – is considered
in Theorem 7.

Our second main result – the error estimates for the approximation of the ef-
fective material law Ahom by the method of representative volumes – is stated in
Theorem 14 and Corollary 15.

2.1. Assumptions and Setting

We denote by d ∈ N the spatial dimension and by m ∈ N the system size; in
particular, the case m = 1 corresponds to a scalar PDE. Let λ and �, 0 < λ �
� < ∞, denote ellipticity and boundedness constants. Let H and H∩ B1 denote a
Hilbert space and the open unit ball in H , respectively. We denote by

A : H× R
m×d → R

m×d

a family of operators, indexed by a parameter in H. We require A to satisfy the
following conditions:

(A1) Each operator A(ω, ·) in the family is monotone in the second variable in
the sense

(
A(ω, ξ2) − A(ω, ξ1)

) · (ξ2 − ξ1) � λ|ξ2 − ξ1|2

for every parameter ω ∈ H and all ξ1, ξ2 ∈ R
m×d .

(A2) Each operator A(ω, ·) is continuously differentiable in the second variable
and Lipschitz in the sense

|A(ω, ξ2) − A(ω, ξ1)| � �|ξ2 − ξ1|

for every parameter ω ∈ H and all ξ1, ξ2 ∈ R
m×d . Furthermore, we have

A(ω, 0) = 0 for every parameter ω ∈ H.
(A3) The operator A(ω, ξ) and its derivative ∂ξ A(ω, ξ) are continuously differ-

entiable in the parameter ω with bounded derivative in the sense

|∂ωA(ω, ξ)| � �|ξ |, |∂ω∂ξ A(ω, ξ)| � �,

for every ω ∈ H and all ξ ∈ R
m×d . Here, ∂ω and ∂ξ denote the Fréchet

derivative with respect to the first variable and the partial derivative with
respect to the second variable, respectively. Furthermore, | · | denotes the
operator norm on H → R

m×d and H× R
m×d → R

m×d , respectively.
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Throughout our paper, wewill reserve the term parameter field for ameasurable
function ω̃ : Rd → H ∩ B1. With help of the operator family A, we may associate
to each parameter field ω̃ a space-dependent monotone material law R

d � x →
A(ω̃(x), ·). We denote the space of all parameter fields by � and equip � with
the L1

loc(R
d;H) topology. We then equip the space of parameter fields � with a

probability measure P and write ωε : Rd → H∩ B1 to denote a random parameter
field sampled with P.

It will be our second key assumption that the probability measure P describes
a stationary random field with correlation length ε (which is also the reason why
we include the index “ε” in our notation). To be precise, we impose the following
conditions on P:

(P1) P is stationary in the sense that the probability distribution of ωε(· + y)
coincides with the probability distribution of ωε(·) for all y ∈ R

d . From
a physical viewpoint this corresponds to the assumption of statistical spa-
tial homogeneity of the random material: While each sample of the random
material is typically spatially heterogeneous, the underlying probability dis-
tribution is spatially homogeneous.

(P2) P features fast decorrelation on scales � ε in the sense of the spectral
gap assumption of Definition 16 below. Here, and throughout the paper
0 < ε � 1 is fixed and denotes the correlation length of the material. Note
that this corresponds to a quantitative assumption of ergodicity by assuming
a decorrelation in the coefficient field ωε on scales � ε.

Under the previous conditions homogenization occurs (in fact (P2) can be weakend
to qualitative assumption of ergodicity). In particular, we may introduce the cor-
rector of stochastic homogenization and define a homogenized monotone operator
(that is a homogenized material law) Ahom as follows. Note that we suppress the
(implicit) dependence of quantities like the corrector φξ on the correlation length
ε in order to not overburden notation.

Definition 1. (Corrector and homogenized operator). Let the assumptions (A1)–
(A3) and (P1)–(P2) be in place. Then for all ξ ∈ R

m×d there exists a unique
random field φξ : �×R

d → R
m , called the corrector associated with ξ , with the

following properties:

(a) For P-almost every realization of the random field ωε the corrector φξ (ωε, ·)
has the regularity φξ (ωε, ·) ∈ H1

loc(R
d ;Rm), satisfies

ffl
B1

φξ (ωε, ·) dx = 0,
and solves the corrector equation (4) in the sense of distributions.

(b) The gradient of the corrector ∇φξ is stationary in the sense that

∇φξ (ωε, · + y) = ∇φξ (ωε(· + y), ·) almost everywhere in Rd

holds for P-almost every ωε and all y ∈ R
d .

(c) The gradient of the corrector ∇φξ has finite second moments and vanishing
expectation, that is

E
[∇φξ

] = 0, E
[|∇φξ |2

]
< ∞.
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(d) The corrector P-almost surely grows sublinearly at infinity in the sense

lim
R→∞

1

R2

 

BR

|φξ (ωε, x)|2 dx = 0.

Moreover, for each ξ ∈ R
m×d we may define

Ahom(ξ):=E
[
A(ωε, ξ + ∇φξ )

]
, (5)

where the right-hand side in this definition is independent of the spatial coordinate
x . The map Ahom : Rm×d → R

m×d is called the effective operator or the effective
material law.

We shall see that the homogenized material law Ahom : R
m×d → R

m×d

defined by (5) inherits the monotone structure from the heterogeneous material law
A(ωε, ·), see Theorem 11 below.

For some of our results wewill assume that the followingmicroscopic regularity
condition is satisfied. Note that the condition essentially implies a small-scale C1,α

regularity theory (that is aC1,α theory on the ε scale) for the heterogeneous equation
and a global C1,α regularity theory for the homogenized (effective) equation.

(R) Suppose that at least one of the following three conditions is satisfied:
– The equation is scalar (that is m = 1).
– The number of spatial dimension is at most two (that is d � 2).
– The system is of Uhlenbeck structure in the sense that there exists a function

ρ : H ∩ B1 × R
+
0 → R

+
0 with A(ω, ξ) = ρ(ω, |ξ |2)ξ for all ω ∈ H ∩ B1

and all ξ ∈ R
m×d ; furthermore, the effective operator given by (5) is also

of Uhlenbeck structure.
Suppose in addition that the second derivative of A with respect to the second
variable exists and satisfies the bound |∂ξ ∂ξ A(ω, ξ)| � � for all ω ∈ H ∩ B1
and all ξ ∈ R

m×d .
Suppose furthermore that the random fieldωε is Lipschitz regular on small scales in
the following sense: There exists a randomfieldC with uniformly bounded stretched
exponential moments E[exp(ν|C(x)|ν)] � 2 for all x ∈ R

d for some ν > 0 such
that

sup
y∈Bε(x)

|∇ωε(y)| � C(x)ε−1

holds for all x ∈ R
d .

2.2. Optimal-order Homogenization Error Estimates

Our first main result is an optimal-order estimate on the homogenization error in
the stochastic homogenization of nonlinear uniformly elliptic PDEs (and systems)
with monotone nonlinearity. Note that our rate of convergence coincides with the
optimal rate of convergence for linear elliptic PDEs and systems [4,30–32,34],
which form a subclass of the class of elliptic PDEs with monotone nonlinearity. In
the theorems below, we present our homogenization errors in “a posteriori form”,



356 Julian Fischer & Stefan Neukamm

that is with norms of ∇uhom exlicitly appearing on the right-hand side of the error
estimates. These estimates can be combined with classical regularity results for
uniformly ellipticmonotone systemswith constant coefficients; seeRemarks 3, 5, 8.

Theorem 2. (Optimal-order estimates for the homogenization error for d � 3).
Let d � 3. Let the assumptions (A1)–(A3) and (P1)–(P2) be in place. Suppose
furthermore that the small-scale regularity condition (R) holds. Let the effective
(homogenized)monotone operator Ahom : Rm×d → R

m×d be given by the defining
formula (5). Let uhom ∈ H2(Rd ;Rm)∩W 1,∞(Rd ;Rm) and let uε ∈ H1(Rd ;Rm)

be the unique weak solution to

−∇ · (A(ωε,∇uε)) = −∇ · (Ahom(∇uhom)) in Rd

in a distributional sense. Then the estimate

||uε − uhom||L2d/(d−2)(Rd ) � C Ĉ(∇uhom) ε

holds, where

Ĉ(∇uhom) = (1+ sup
x∈Rd

|∇uhom|)C‖∇uhom‖H1(Rd )

and where C = C(ωε) is a random constant whose values may depend on ωε

and ∇uhom, but whose stretched exponential stochastic moments are uniformly
estimated by

E

[
exp

(C ν̄

C

)]
� 2.

Above, ν̄,C > 0 depend only on d, m, λ, �, ρ, and on ν from assumption (R).

Using classical regularity theory to estimate Ĉ(∇uhom), the theorem implies
the following homogenization error estimate formulated just in terms of the data:

Remark 3. In the situation of Theorem 2, additionally suppose that Ahom satisfies
the regularity condition (R), and let uhom ∈ H1(Rd;Rm) be the unique weak
solution to

−∇ · (Ahom(∇uhom)) = ∇ · g in Rd ,

where g ∈ H1(Rd;Rm×d) with ∇g ∈ L p(Rd;Rm×d×d) for some p > d. With
help of the regularity condition (R) we can show that

Ĉ(∇uhom) � C
(
1+ ‖g‖L2(Rd ) + ‖∇g‖L p(Rd )

)C‖g‖H1(Rd ),

(see the end of “Appendix A” for details). Thus, the estimate of Theorem 2 can be
upgraded to

||uε − uhom||L2d/(d−2)(Rd ) � C C (1+ ‖g‖L2(Rd ) + ‖∇g‖L p(Rd )

)C‖g‖H1(Rd ) ε.

In particular, for all 1 � θ < ∞ we obtain

E
[||uε−uhom||θL2d/(d−2)(Rd )

] 1
θ � θ

1
ν̄ C
(
1+‖g‖L2(Rd )+‖∇g‖L p(Rd )

)C‖g‖H1(Rd ) ε.

Above, ν̄,C > 0 only depend on d, λ,�, ρ, p and ν.
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In the case of low dimension d � 2 the rate of convergence becomes limited
by the central limit theorem scaling. In particular, as for linear elliptic equations,
the case d = 2 is critical, leading to a logarithmic correction. Furthermore, even
for the Poisson equation – which may be regarded as a very particular case of our
PDEs (1) or (2) – the gradient of solutions of the whole-space problem may fail to
be square-integrable. For this reason we include a lower order term in our PDEs.

Theorem 4. (Optimal-order estimates for the homogenization error for d = 2 and
d = 1). Let d = 2 or d = 1 and let otherwise the assumptions of Theorem 2 be
in place. Let uhom ∈ H2(Rd;Rm)∩W 1,∞(Rd;Rm) and let uε ∈ H1(Rd ;Rm) be
the unique weak solution to

−∇ · (A(ωε,∇uε)) + uε = −∇ · (Ahom(∇uhom)) + uhom in Rd

in a distributional sense. Then the estimate

||uε − uhom||L2(Rd ) � C Ĉ(∇uhom)

{
ε1/2 for d = 1,

ε| log ε|1/2 for d = 2

holds, where Ĉ(∇uhom) and C are defined as in Theorem 2.

Again, we may make use of classical regularity results to obtain a homogeniza-
tion error estimate in terms of only the data.

Remark 5. In the situation of Theorem 4 suppose that uhom ∈ H1(Rd;Rm) is the
unique weak solution to

−∇ · (Ahom(∇uhom)) + uhom = ∇ · g in Rd ,

where g ∈ H1(Rd;Rm×d) with ∇g ∈ L p(Rd;Rm×d×d) for some p > d. Since
d � 2, by appealing to Meyers’ estimate we can show that

Ĉ(∇uhom) � C
(
1+ ‖g‖H1(Rd ) + ‖∇g‖L p(Rd )

)C‖g‖H1(Rd ),

(see the end of “Appendix A” for details). Thus, the estimate of Theorem 4 can be
upgraded to

||uε − uhom||L2(Rd )

� C C (1+ ‖g‖H1(Rd ) + ‖∇g‖L p(Rd )

)C‖g‖H1(Rd )

{
ε1/2 for d = 1,

ε| log ε|1/2 for d = 2.

In particular, for all 1 � θ < ∞ we obtain

E
[||uε − uhom||θL2(Rd )

] 1
θ

� θ
1
ν̄ C
(
1+ ‖g‖H1(Rd ) + ‖∇g‖L p(Rd )

)C‖g‖H1(Rd )

{
ε1/2 for d = 1,

ε| log ε|1/2 for d = 2.

Above, ν̄,C > 0 only depend on d, λ,�, ρ, p and ν.
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Remark 6. Instead of the right-hand side ∇ · g, we may consider in Theorem 2
and Theorem 4 a right-hand side f ∈ L1(Rd;Rm) ∩ Ld+1(Rd ;Rm) with q > d
by solving for −�v = f and setting g:= − ∇v. In this way we recover the
homogenization error estimate in the form of (3) as claimed in the introduction.

In the absence of the small-scale regularity condition (R), we still obtain half
of the optimal rate of convergence. However, we also directly obtain this result in
bounded domains. Note that in order to recover the optimal rates of convergence
fromTheorem2 andTheorem4 also for theDirichlet problemon bounded domains,
one would need to construct boundary correctors, as done for linear elliptic PDEs
for instance in [10] in the setting of periodic homogenization or in [5,23] in the
setting of stochastic homogenization.

Theorem 7. (Estimates for the homogenization error on bounded domains). Let
d � 1, letO ⊂ R

d be a bounded C1-domain or a convex Lipschitz domain, and let
the assumptions (A1)–(A3) and (P1)–(P2) be in place. Define Ahom as in formula
(5). Let uhom ∈ H2(O;Rm) and let uε ∈ uhom + H1

0 (O;Rm) be the unique weak
solution to

−∇ · (A(ωε,∇uε)) = −∇ · (Ahom(∇uhom)) in O
in a distributional sense. Then

||uε − uhom||L2(O) � C C(O) ‖∇uhom‖H1(O)

⎧
⎪⎪⎨

⎪⎪⎩

ε
1
3 for d = 1,

ε
1
2 | log ε| 14 for d = 2,

ε
1
2 for d � 3.

Here, C = C(ωε) denotes a random constant whose values may depend on ωε, O,
and ∇uhom, but whose (stretched exponential) stochastic moments are uniformly
estimated by

E

[
exp

(C ν̄

C

)]
� 2.

Above, ν̄,C > 0 depend only on d, m, λ,�, and ρ, and C(O) additionally depends
on O.

Remark 8. In the situation of Theorem 7 additionally suppose that O is of class
C1,1. Let uDir ∈ H2(O;Rm), f ∈ L2(O;Rm), g ∈ H1(O;Rm×d), and let uhom ∈
uDir + H1

0 (O;Rm) be the unique weak solution to the boundary value problem

−∇ · (Ahom(∇uhom)) = f +∇ · g in O
in a distributional sense. Then uhom ∈ H2(O;Rm) holds with the estimate

‖uhom‖H2(O) � C
(‖ f ‖L2(O) + ‖g‖H1(O) + ‖uDir‖H2(O)

)
,

where C only depends on d,m, λ,� and O, see [39, Theorem 5.2]. We thus can
upgrade the estimate of Theorem 7 to

||uε − uhom||L2(O)
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� C C (‖ f ‖L2(O) + ‖g‖H1(O) + ‖uDir‖H2(O)

)

⎧
⎪⎪⎨

⎪⎪⎩

ε
1
3 for d = 1,

ε
1
2 | log ε| 14 for d = 2,

ε
1
2 for d � 3.

Remark 9. An error estimate analogous to Theorem 7 also holds on the full space
R
d , provided that in case d � 3 we measure the error uε − uhom in the L2d/(d−2)

norm as in Theorem 2 and assume additionally f ∈ L1 ∩ L
2d
d+2 , and provided that

in case d = 1, 2 we include a massive term in the equation as in Theorem 4.

Remark 10. (Error estimate for a piecewise affine two-scale expansion). In the
proof of these theorems we also establish an H1-error estimate for a two-scale
expansion of ∇uhom. More precisely, we consider a two-scale expansion of the
form

ûε = uhom +
∑

k∈K
ηkφk, (6)

where {ηk}k∈K is a smooth partition of unity that only depends on the domain
and a suitably chosen discretization scale δ (with ε � δ � 1), and φk is the
corrector associated with the local approximation ξk = 1´

O ηk dx

´
O ∇uhomηk dx ,

see Proposition 36 below. (We remark that there is no ε in front of the φk in (6),
since we define the correctors with respect to the original coefficients that oscillate
on scale ε and not— as it is often done— for rescaled coefficients.) In the situation
of Theorem 2 and Theorem 4 we show that

‖∇uε − ∇ûε‖L2(Rd ) � CĈ(∇uhom)

⎧
⎪⎪⎨

⎪⎪⎩

ε
1
2 for d = 1,

ε| log ε| 12 for d = 2,

ε for d � 3;
see Step 2 in the proof of Theorem 2 and Theorem 4. For bounded domains, we
also obtain an estimate for the two-scale expansion with suboptimal scaling and
away from the boundary.

We next establish several structural properties of the homogenized operator
Ahom, including in particular the statement that the homogenized operator Ahom
inherits the monotone structure from Aε. Note that these properties are actually
true even in the context of qualitative stochastic homogenization, and their proof is
fairly elementary. Themonotonicity of the effective operator Ahom has (essentially)
already been established by Dal Maso and Modica [17,18], at least in the setting of
convex integral functionals. We also give sufficient criteria for frame-indifference
and isotropy of the homogenized operator Ahom.

Theorem 11. (Structure properties of the homogenized equation). Let the assump-
tions (A1)–(A3) and (P1)–(P2) be in place. Define the effective (homogenized)
material law Ahom : Rm×d → R

m×d by (5). Then Ahom has the following proper-
ties:
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(a) The map Ahom is monotone and Lipschitz continuous in the sense that
(
Ahom(ξ2) − Ahom(ξ1)

) · (ξ2 − ξ1) � λ|ξ2 − ξ1|2

and

|Ahom(ξ2) − Ahom(ξ1)| � C(d,m)
�2

λ
|ξ2 − ξ1|

hold for all ξ1, ξ2 ∈ R
m×d . Furthermore, if in addition the condition (R) holds

for A, Ahom is continuously differentiable and satisfies Ahom(0) = 0.
(b) If the operator A is frame-indifferent in the sense A(ω, Oξ) = OA(ω, ξ) for

all O ∈ SO(m), all ξ ∈ R
m×d , and all ω ∈ H, the operator Ahom inherits the

frame-indifference in the sense Ahom(Oξ) = OAhom(ξ) for all O ∈ SO(m)

and all ξ ∈ R
m×d .

(c) If the law of the operator Aε(x, ξ):=A(ωε(x), ξ) is isotropic in the sense that
the law of the rotated operator AO

ε (x, ξ):=Aε(x, ξO)O coincides with the law
of Aε for all O ∈ SO(d), the operator Ahom inherits the isotropy in the sense
Ahom(ξO) = Ahom(ξ)O for all O ∈ SO(d) and all ξ ∈ R

m×d .

2.3. Optimal-order Error Estimates for the Approximation of the Homogenized
Operator by Periodic RVEs

To perform numerical simulations based on the homogenized PDE (2), the ef-
fectivematerial law Ahommust be determined. The theoretical expression (5) for the
effective material law Ahom is essentially an average over all possible realizations
of the random material; it is therefore a quantity that is not directly computable. To
numerically determine the effective (homogenized) material law Ahom in practice,
the method of representative volumes is typically employed: A finite sample of the
random medium is chosen, say, a cube [0, L]d of side length L � ε, and the cell
formula from homogenization theory is evaluated on this sample.

In most cases, a representative volume of mesoscopic size ε � L � 1 is
sufficient to approximate the effective material law Ahom well. For this reason, at
least in the case of a clear separation of scales ε � 1, numerical simulations based
on the homogenized equation (2) and the RVE method are several to many orders
of magnitude faster than numerical simulations based on the original PDE (1).

In our next theorem, we establish a priori error estimates for the approximation
of the effective material law Ahom by the method of representative volumes. Our
a priori error estimates are of optimal order in the physically relevant cases d � 4,
at least if the issue of boundary layers on the RVE is addressed appropriately. More
precisely, we show that the homogenized coefficients Ahom may be approximated
by the representative volume element method on an RVE of size L up to an error
of the order of the natural fluctuations ( L

ε
)−d/2. This rate of convergence coincides

with the optimal rate in the case of linear elliptic PDEs and systems, see [32,33].
There exist various options to define the RVE approximation, see for exam-

ple [22, Section 1.4] for a discussion in the linear elliptic setting. In the present
work, we shall consider the case of periodic RVEs: One considers an L-periodic
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approximation PL of the probability distribution P of the random fieldωε, that is an
L-periodic variant ωε,L of the random field ωε (see below for a precise definition),
and imposes periodic boundary conditions on the RVE boundary ∂[0, L]d .

Before rigorously defining the notion of periodization, we first note that to any
periodic parameter field ω̃L one can unambiguously (and deterministically) asso-
ciate a homogenized coefficient via the classical periodic homogenization formula.

Definition 12. (Periodic RVE approximation). Let A : H × R
m×d → R

m×d be a
family of monotone operators satisfying (A1)–(A3). To any L-periodic parameter
field ω̃L and any ξ ∈ R

m×d we associate the RVE approximation ARVE,L(ω̃L , ξ)

for the effective coefficient Ahom(ξ) given by

ARVE,L(ω̃L , ξ):=
 

[0,L]d
A(ω̃L , ξ + ∇φξ ) dx,

where the (periodic) corrector φξ = φξ (ω̃L , ·) is defined as the unique solution in
H1
per([0, L]d;Rm) with vanishing mean

ffl
[0,L]d φξ dx = 0 to the corrector equation

−∇ · (A(ω̃L(x), ξ + ∇φξ )) = 0 in Rd .

We next define our notion of L-periodic approximation of the coefficient field
ωε. The main condition will be that the statistics of ωε and ωε,L must coincide on
balls of the form B L

4
(x0) around any x0 ∈ R

d .

Definition 13. (L-periodic approximation of P). Let P satisfy the assumptions (P1)
and (P2). Let L � ε. We say that PL is an L-periodic approximation to P, if PL is
stationary in the sense of (P1), concentrates on L-periodic parameter fields, satisfies
the periodic spectral gap of Definition 16b, and the following property holds: For
random fields ωε and ωε,L we have

ωε ∼ P and ωε,L ∼ PL ⇒ ωε|B L
4
∼ ωε,L |B L

4
,

that is, ifωε is distributed with P, andωε,L is distributed with PL , then the restricted
random fields ωε|B L

4
and ωε,L |B L

4
have the same distribution.

For such an L-periodic approximationPL , we abbreviate the representative vol-
umeapproximation as introduced inDefinition12by ARVE,L(ξ):=ARVE,L(ωε,L , ξ).

Note, however, that the existence of such an L-periodic approximation PL of P
has to be proven on a case-by-case basis, depending on the probability distribution.
To give one example, for a random field ωε of the formωε(x):=θ(Yε(x)), where Yε

is a stationaryGaussian randomfield arising as the convolution Yε(x):=(βε∗W )(x)
of white noise W with a kernel βε with suppβε ⊂ Bε, one may construct an L-
periodic approximation simply by replacing the white noiseW by L-periodic white
noise WL , that is by defining ωε,L(x):=θ((βε ∗WL)(x)). We remark that for more
complex probability distributions it may become necessary to generalize the notion
of periodization of Definition 13, for example by relaxing the condition of identical
distributions ωε|BL/4 ∼ ωε,L |BL/4 to the two distributions just being sufficiently
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similar (in a suitable metric). In such a case, our proofs for Theorem 14 below
would need to be adapted in a suitable way.

For the approximation of the effective material law Ahom by an L-periodic
representative volume in the sense of Definition 12–13, we establish the following
a priori error estimate (again, our rates of convergence coincide with the optimal
rates of convergence for linear elliptic PDEs and systems [30–32]):

Theorem 14. (Error estimate for periodic RVEs). Let A : H × R
m×d → R

m×d

satisfy the assumptions (A1)–(A3) and let P satisfy the assumptions (P1)–(P2). Let
L � 2ε, let PL be an L-periodic approximation of P in the sense of Definition 13,
and denote by ARVE,L(ξ) the corresponding representative volume approximation
for the homogenized material law Ahom(ξ).

(a) (Estimate on random fluctuations). For all ξ ∈ R
m×d we have the estimate on

random fluctuations

∣∣ARVE,L(ξ)− EL

[
ARVE,L(ξ)

] ∣∣ � C|ξ |
(
L

ε

)− d
2

,

whereC denotes a randomvariable that satisfies a stretched exponentialmoment
bound uniformly in L, that is there exists C = C(d,m, λ,�, ρ) such that

EL

[
exp

(C1/C
C

)]
� 2.

(b) (Estimate for the systematic error). Suppose that P and PL additionally satisfy
the small-scale regularity condition (R). Then for any ξ ∈ R

m×d the systematic
error of the representative volume method is of higher order in the sense

∣∣EL
[
ARVE,L(ξ)

]− Ahom(ξ)
∣∣ � C(1+ |ξ |)C |ξ |

(
L

ε

)−(d∧4) ∣∣∣∣ log
(
L

ε

) ∣∣∣∣

αd

.

Here, αd is given by

αd :=d ∧ 4+
{
2 for d ∈ {2, 4},
0 for d = 3, d = 1, and d � 5

for some C = C(d,m, λ,�, ν, ρ). In dimension d � 4 the estimate is optimal
(up to the logarithmic factor). Without the small-scale regularity condition (R),
the suboptimal estimate

∣∣EL
[
ARVE,L(ξ)

]− Ahom(ξ)
∣∣ � C |ξ |

(
L

ε

)− d∧4
2
∣∣∣∣ log

(
L

ε

) ∣∣∣∣

αd

holds, where

αd :=d ∧ 4

2
+
{

1
2 for d ∈ {2, 4},
0 for d = 3, d = 1, and d � 5.
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In particular, we derive the following overall a priori error estimate for the
method of representative volumes:

Corollary 15. (Total L2-error for periodic RVEs). Let assumptions (A1)–(A3) and
(P1)–(P2) be in place. Let L � ε. Let PL be a L-periodic approximation to P in
the sense of Definition 13.

(a) If the small-scale regularity condition (R) is satisfied, then for 2 � d � 7 we
obtain the optimal estimate

EL

[
|ARVE,L(ξ)− Ahom(ξ)|2

] 1
2 � C(1+ |ξ |)C |ξ |

(
L

ε

)− d
2

.

Moreover, for d > 7 we obtain the suboptimal estimate

EL

[
|ARVE,L(ξ)− Ahom(ξ)|2

] 1
2 � C(1+ |ξ |)C |ξ |

(
L

ε

)−4 ∣∣∣∣ log
(
L

ε

) ∣∣∣∣

C(d)

.

(b) If (R) is not satisfied, then for any d � 2 we obtain the subotimal estimate

EL

[
|ARVE,L(ξ)− Ahom(ξ)|2

] 1
2 � C |ξ |

(
L

ε

)− d∧4
2
∣
∣∣∣ log

(
L

ε

) ∣∣∣∣

C(d)

.

For d � 4 this estimate is optimal except for the logarithmic factor.

In the above estimates, we have C = C(d,m, λ,�, ρ).

Let us briefly comment on the prefactor (1 + |ξ |)C in the error estimates of
Corollary 15. It originates from the corresponding prefactor in the estimates on
the linearized correctors in Proposition 20. On a mathematical level, this prefactor
reflects the fact that a large macroscopic slope ξ may increase the sensitivity of the
correctors φξ and σξ with respect to perturbations in the coefficient field (at least
given just our assumptions (A1)–(A3) and (P1)–(P2)), as an inspection of (126) and
(125) in the proof of Lemma 28 reveals. It may be possible to mitigate this prefactor
by imposing a sharper (but still natural) condition like |∂ω∂ξ A(ω, ξ)| � �

1+|ξ | (as
opposed to just |∂ω∂ξ A| � � in (A3)); however, this would require to rigorously
establish a nontrivial nonlocal cancellation in (126) and (125). For this reason, it is
beyond the scope of our paper.

2.4. The Decorrelation Assumption: Spectral Gap Inequality

We finally state and discuss the quantitative assumption on the decorrelation
of the random field ωε. The majority of results in the present work require the
correlations of the random parameter field ωε to decay on scales larger than ε in a
quantified way. This quantified decay is enforced by assuming that the probability
distribution P satisfies the following spectral gap inequality. As already mentioned
previously, this spectral gap inequality holds for example for random fields of the
form ωε(x) = β(ω̃ε(x)), where β : R → (−1, 1) is a 1-Lipschitz function and
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where ω̃ε is a stationary Gaussian random field subject to a covariance estimate of
the form

∣∣Cov
[
ω̃ε(x), ω̃ε(y)

]∣∣ � C

(
ε

ε + |x − y|
)d+κ

for all x, y ∈ R
d for some κ > 0 and some C < ∞. The derivation is standard and

may be found, for example, in [20].

Definition 16. (Spectral gap inequality encoding fast decorrelation on scales � ε).

(a) We say that the probability distributionP of random fieldsωε satisfies a spectral
gap inequality with correlation length ε and constant ρ > 0 if any random
variable F = F(ωε) satisfies the estimate

E

[∣∣F − E
[
F
]∣∣2
]

� εd

ρ2E

[ˆ

Rd

(  

Bε(x)

∣∣∣∣
∂F

∂ωε

∣∣∣∣ dx̃
)2

dx

]
. (7)

Here,
ffl
Bε(x)

∣∣ ∂F
∂ωε

(ωε)
∣∣ dx̃ stands short for

sup
δωε

lim sup
t→0

|F(ωε + tδωε) − F(ωε)|
t

,

where the sup runs over all random fields δωε : Rd → H supported in Bε(x)
with ‖δωε‖L∞(Rd ) � 1.

(b) Let L � ε and let PL be a probability distribution of L-periodic random fields
ωε,L . We say that PL satisfies a periodic spectral gap inequality with correlation
length ε and constant ρ > 0 if any random variable F = F(ωε,L) satisfies the
estimate

EL

[∣∣F − EL
[
F
]∣∣2
]

� εd

ρ2EL

[ ˆ

[0,L)d

(  

Bε(x)

∣∣∣
∣

∂F

∂ωε,L

∣∣∣
∣ dx̃
)2

dx

]
. (8)

Here,
ffl
Bε(x)

∣∣ ∂F
∂ωε,L

(ωε,L)
∣∣ dx̃ stands short for

sup
δωε,L

lim sup
t→0

|F(ωε,L + tδωε,L) − F(ωε,L)|
t

,

where the sup runs over all L-periodic random fields δωε,L : Rd → H with
‖δωε,L‖L∞([0,L)d ) � 1 and support in Bε(x) + LZd .

For a reader not familiar with the concept of spectral gap inequalities, it may be
instructive to inserting the spatial average F(ωε):=

ffl
Br

ωε dx into the definition (7).
For this particular choice, the Fréchet derivative is given by ∂F

∂ωε
= 1

|Br |χBr and the
expression on the right-hand side in (7) is of the order ( ε

r )
d . Thus, the fluctuations of

the spatial average F(ωε) =
ffl
Br

ωε(x) dx are (at most) of the order ( ε
r )

d/2, just as
expected when averaging ( r

ε
)d independent random variables of similar variance.

However, the importance of spectral gap inequalities in stochastic homogenization
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[29,31,38] stems from the fact that they also entail fluctuation bounds for appropri-
ate nonlinear functionals of the random field ωε, as the homogenization corrector
φξ is a nonlinear function of the randomfieldωε (even in the setting of linear elliptic
PDEs). To give a simple example for fluctuation bounds for a nonlinear functional
of ωε, the reader will easily verify that the spectral gap inequality (7) also implies a
fluctuation bound of the order ( ε

r )
d/2 for a quantity like f

( ffl
Br

g(ωε(x)) dx
)
with

two 1-Lipschitz functions f, g : R → R.
We remark that in the present paper, we only consider the spectral gap inequality

of Definition 16; it is satisfied for many random fields taking continuum values.
For random fields taking only a discrete set of values, a different notion of spectral
gap inequality phrased in terms of finite differences (also called osc spectral gap)
is available; see for instance [20]. Proving corrector estimates given an osc spectral
gap inequality would in particular require a nontrivial additional decay result for
the difference between the homogenization corrector and the corrector for a locally
perturbed operator.

For strongly correlated random fields (with non-integrable tails), the spectral
gap inequality of Definition 16 does not hold; instead, an appropriate multiscale
spectral gap inequality has been derived [20]. In this setting, our strategy for ob-
taining corrector estimates does not apply directly, but would require an additional
regularity ingredient analogous to [30].

3. Strategy and Intermediate Results

3.1. Key Objects: Localized Correctors, the Two-scale Expansion, and Linearized
Correctors

Before turning to the description of our strategy (see Fig. 2 for an illustration
of its structure), we introduce the central objects for our approach. Besides the
homogenization corrector φξ defined in Definition 1, these key objects include
the flux corrector σξ , localized versions φT

ξ and σ T
ξ of the corrector and the flux

corrector, as well as the homogenization correctors φT
ξ,� and flux correctors σ T

ξ,�

for an associated linearized PDE. At the end of the section we also state optimal
stochastic moment bounds for these correctors, which will play a central role in the
derivation of our main results.

The flux corrector σξ is an important quantity in the quantitative homogeniza-
tion theory of elliptic PDEs, see [31] for a first reference in the context of quantita-
tive stochastic homogenization. Recall that the correctorφξ provides the connection
between a givenmacroscopic constant field gradient ξ and the correspondingmicro-
scopic field gradient ξ +∇φξ . Similarly, the flux corrector σξ : Rd → R

m ⊗R
d×d
skew

provides a “vector potential” for the difference between the “microscopic” and the
“macroscopic” flux in the sense

∇ · σξ = A(ωε, ξ + ∇φξ ) − Ahom(ξ). (9)

The central importance of the flux corrector σξ is that it allows for an elementary
representation of the error of the two-scale expansion, see below.
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Lemma 24
Estimates on functionals

of ∇φξ, ∇σξ

Proposition 19
Estimates on the corrector φξ, σξ

Lemma 31
Pointwise regularity
theory for ∇φξ,Ξ

Lemma 43 and 44
Linear elliptic regularity:

Caccioppoli, Hole-filling, Meyers

Proposition 20
Estimates on the

linearized corrector φξ,Ξ, σξ,Ξ

Lemma 28
Estimates on functionals

of ∇φξ,Ξ, ∇σξ,Ξ

Theorem 2 and 4
Optimal homogenization

error estimates

Theorem 7
Non-optimal homogenization

error estimates

Fig. 2. The structure of the proof of the main results. Note that the dashed arrows each
involve an application of Lemma 32 and each result in an estimate for the corresponding
minimal radii r∗,ξ respectively r∗,ξ,� (see Lemma 26 and Lemma 30). For simplicity, we
have omitted the localization parameter T and the associated technicalities throughout the
diagram

The flux corrector σξ is a d − 1-form, that is it satisfies the skew-symmetry
condition σξ (x) ∈ R

m ⊗ R
d×d
skew for each x ∈ R

d . As σξ is a “vector potential” (a
d − 1-form), the equation (9) only defines σξ up to gauge invariance. It is standard
to fix the gauge by requiring σξ to satisfy

−�σξ, jk = ∂ j (A(ωε, ξ + ∇φξ ) · ek)− ∂k(A(ωε, ξ + ∇φξ ) · e j ). (10)

Definition 17. (Flux corrector). Let the assumptions (A1)–(A3) and (P1)–(P2) be
in place. Then for all ξ ∈ R

m×d there exists a unique random field σξ : � ×
R
d → R

m ⊗R
d×d
skew, called the flux corrector associated with ξ , with the following

properties:

(a) ForP-almost every realization of the randomfieldωε the flux correctorσξ (ωε, ·)
has the regularity σξ (ωε, ·) ∈ H1

loc(R
d ;Rm), satisfies

ffl
B1

σξ (ωε, ·) dx = 0, and
solves the equations (9) and (10) in the sense of distributions.

(b) The gradient of the flux corrector ∇σξ is stationary in the sense that

∇σξ (ωε, · + y) = ∇σξ (ωε(· + y), ·) almost everywhere in Rd

holds for P-almost every ωε and all y ∈ R
d .
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(c) The gradient of the flux corrector∇σξ has finite secondmoments and vanishing
expectation, that is,

E
[∇σξ

] = 0, E
[|∇σξ |2

]
< ∞.

(d) The flux corrector P-almost surely grows sublinearly at infinity in the sense

lim
R→∞

1

R2

 

BR

|σξ (ωε, x)|2 dx = 0.

Localized correctors. It is cumbersome to work directly with the corrector φξ and
flux corrector σξ in a rigorous manner; in particular, since we need to consider
derivatives of (φξ , σξ ) with respect to compactly supported perturbations of the
parameter field ωε. For this reason, we shall frequently work with the localized
correctors φT

ξ and σ T
ξ , which for T > 0 and any parameter field ω̃ : Rd → H∩ B1

can be defined unambiguously on a purely deterministic level.

Lemma 18. (Existence of localized correctors). Let assumptions (A1)–(A3) be in
place. Let ω̃ : Rd → H∩B1 be a parameter field, T � 1, and ξ ∈ R

m×d . There exist
unique vector fields φT

ξ :=φT
ξ (ω̃, ·) and unique tensor fields σ T

ξ :={σ T
ξ, jk(ω̃, ·)} jk

with

φT
ξ ∈ H1

uloc(R
d ;Rm), σ T

ξ ∈ H1
uloc(R

d;Rm × R
d×d
skew),

which solve the PDEs

−∇ · (A(ω̃, ξ + ∇φT
ξ )) + 1

T
φT

ξ = 0, (11a)

qTξ :=A(ω̃, ξ + ∇φT
ξ ), (11b)

−�σ T
ξ, jk +

1

T
σ T

ξ, jk = ∂ j q
T
ξ,k − ∂kq

T
ξ, j , (11c)

in a distributional sense inRd . Furthermore, the map ω̃ → (φT
ξ , σ T

ξ ) is continuous

as a map L∞(H) → H1
uloc.

Note that the additional term 1
T φT

ξ introduces an exponential localization effect.
As a consequence, existence and uniqueness of φT

ξ follow by standard arguments.
For example, existence follows by considering the sequence of solutions to the
PDEs −∇ · (A(ω̃, χBr (x0)ξ + ∇wr )) + 1

T wr = 0 (which admit a unique solution
wr ∈ H1 by standard monotone operator theory) and passing to the limit r →∞;
the exponential localization of Lemma 45 below then yields the convergence and
the independence of the limit from the choice of x0. The argument for σ T

ξ is similar.
For a detailed proof see [21].

Note also that for a stationary random field ωε, by uniqueness the associated
localized homogenization corrector φT

ξ and the localized flux corrector σ T
ξ inherit

the property of stationarity.
The localized correctors approximate the original correctors (φξ , σξ ) in the

sense that

(∇φT
ξ ,∇σ T

ξ ) → (∇φξ ,∇σξ ) in L2(� × Br ) for any r > 0 (12)
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in the limit T → ∞; for d � 3, we even have the convergence of φT
ξ and σ T

ξ

itself to stationary limits φξ and σξ (which however may differ from the φξ and σξ

from Definition 1 by an additive constant). A proof of these facts is provided in
Lemma 33.

Two-scale expansion. The correctors (φξ , σξ ) provide a link between the gradient
of the homogenized solution ∇uhom and the gradient of the solution to the random
PDE ∇uε to (1) via the two-scale expansion: Indeed, the two-scale expansion

ûε(x):=uhom(x) + φ∇uhom(x)(x) (13)

is a (formal) approximate solution to the equation with microscopically varying
material law in the sense

−∇ · (A(ωε,∇ûε)) = f − ∇ · R (14)

with the residual R given by

R = (∂ξ A(ωε, ξ +∇φξ )∂ξφξ − ∂ξσξ )|ξ=∇uhom(x) : ∇2uhom. (15)

If ε is much smaller than the scale on which ∇uhom changes, the residual R will
be small (as we will typically have ∂ξφξ ∼ ε and ∂ξσξ ∼ ε, see Proposition 20 for
a more precise statement). In this case, taking the difference of (1) and (14) one
obtains

−∇ · (A(ωε,∇uε) − A(ωε,∇ûε)
) = ∇ · R with R ∼ ε,

which by virtue of the monotonicity of the material law A (see (A1)–(A2)) gives
rise to an estimate on ∇uε − ∇ûε. From this estimate, one may then derive a
bound on uε − uhom. For a derivation of the error expression in the two-scale
expansion in the form (14), which leads to some subtleties regarding measurability,
we refer to the forthcoming paper [21]. In our result, we will replace the term
∂ξφξ |ξ=∇uhom in the two-scale expansion by a piecewise constant approximation
for uhom (with interpolation); for this variant of the two-scale expansion, essentially
finite differences of the form φξ1 − φξ2 appear in the error expression. Details may
be found in Proposition 36 respectively in its proof.

Linearized correctors. In the error expression (15) for the residual of the two-scale
expansion the derivatives ∂ξφξ and ∂ξσξ of the corrector and the flux corrector with
respect to the field ξ appear. For this reason, we need optimal-order estimates on
these derivatives in order to derive an optimal-order error bound for uε−uhom.More
precisely, in our variant of the two-scale expansion we need improved estimates
for finite differences φξ1 − φξ2 which reflect both the magnitude of the difference
|ξ1−ξ2| and the decorrelation in order to derive optimal-order error estimates. Note,
however, that this is basically an equivalent problem to estimating the derivatives
∂ξφξ . It is interesting to observe that the derivatives ∂ξφξ and ∂ξσξ are at the same
time the homogenization corrector and the flux corrector for the PDE linearized
around the field ξ +∇φξ : With the coefficient field

aξ (x) = aξ (ωε, x):=∂ξ A(ωε(x), ξ + ∇φξ (ωε, x)),
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we deduce by differentiating (4) and (10) that the equalities ∂ξφξ� = φξ,� and
∂ξσξ� = σξ,� hold, where φξ,� and σξ,� are defined as the solution to the PDEs

−∇ · (aξ (x)(� +∇φξ,�)) =0, (16a)

qξ,� =aξ (�+ ∇φξ,�), (16b)

−�σξ,�, jk =∂ j qξ,�,k − ∂kqξ,�, j , (16c)

that is φξ,� and σξ,� are the homogenization correctors for the linear elliptic PDE
with random coefficient field aξ .

In our analysis we will first estimate the differences φT
ξ1
− φT

ξ2
of the localized

correctors and obtain the estimate on the differences φξ1 − φξ2 by passing to the
limit T → ∞. For this reason, we introduce the linearized localized correctors
φT

ξ,� and σ T
ξ,� as the unique solutions in H1

uloc to the PDEs

−∇ · (aTξ (�+∇φT
ξ,�))+ 1

T
φT

ξ,� =0, (17a)

qTξ,� =aTξ (�+ ∇φT
ξ,�), (17b)

−�σ T
ξ,�, jk +

1

T
σ T

ξ,�, jk =∂ j q
T
ξ,�,k − ∂kq

T
ξ,�, j , (17c)

where we have abbreviated

aTξ (x) = aTξ (ωε, x):=∂ξ A(ωε(x), ξ +∇φT
ξ (ωε, x)).

By differentiating (11a) and (11c), we identify ∂ξφ
T
ξ � = φT

ξ,� and ∂ξσ
T
ξ � = σ T

ξ,�,
a fact made rigorous in Lemma 27.

Note that by our assumption of monotonicity and Lipschitz continuity of A
(A1)–(A2), the linearized coefficient fields aξ and aTξ are uniformly elliptic and
bounded random coefficient fields with a stationary and ergodic distribution. There-
fore, the existence (and the notion) of solution to (16a)–(16c) and (17a)–(17c)
would follow by the linear theory of stochastic homogenization (see for example
[31, Lemma 1]), a fact that we however do not need to use: Again, the existence
of solutions to the localized corrector problems (17a) and (17c) is evident for any
parameter field ω̃; see Lemma 27 for a proof.

The linearized corrector problem (16a) has also been central for the homoge-
nization result for the linearized equation by Armstrong, Ferguson, and Kuusi [2],
and some of our lemmas are analogues of results from [2]: For instance, our dif-
ferentiability result for the corrector φT

ξ in Lemma 27 is essentially analogous to
[2, Lemma 2.4]. Furthermore, in the proofs of [2] small-scale regularity estimates
similar to our estimate (42) have been employed. However, in contrast to [2] we es-
tablish optimal-order estimates on the linearized correctorsφT

ξ,� (see Proposition 20
below), a result that will be of key importance for our main theorems.

Corrector estimates. In view of the form of the formula for the residual (15) of
the two-scale expansion it is clear that a key ingredient in the quantification of
the homogenization error are estimates on the correctors. In this section we state
estimates on the localized correctors and its linearizations.
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As the typical size of the correctors φT
ξ and φT

ξ,� will be at least of order ε due
to small-scale fluctuations, the corrector bounds alone cannot capture the decay of
fluctuations in d � 3 optimally. For d � 3, it is therefore useful to state estimates
also for associated vector potentials for the correctors φT

ξ and φT
ξ,�. In case d � 3,

we introduce a (vector) potential θTξ : Rd → R
m×d for the corrector φT

ξ as the (up
to an additive constant unique) sublinearly growing solution to the equation

�θTξ,i = ∂iφ
T
ξ (18a)

which entails

∇ · θTξ = φT
ξ , (18b)

as well as the corresponding quantity θTξ,� defined by

�θTξ,�,i = ∂iφ
T
ξ,�, (19a)

which yields

∇ · θTξ,� = φT
ξ,�. (19b)

Note that as the equations (18a) and (19a) feature a non-decaying right-hand side
but lack a massive term, their solvability is not guaranteed for arbitrary parameter
fields ω̃. For random fields ωε subject to (P1)–(P2), in d � 3 the existence of
solutions to (18a) and (19a) is a consequence of standard methods in qualitative
stochastic homogenization, see for example [31].

Proposition 19. (Estimates on thehomogenization corrector for the nonlinearmono-
tone PDE). Let the assumptions (A1)–(A3) and (P1)–(P2) be in place. Then the
localized homogenization correctors φT

ξ and the localized flux correctors σ T
ξ – de-

fined as the (unique) solution in H1
uloc to the PDEs (11a) respectively (11c) – are

subject to the estimate

( 

Br (x0)

∣∣
∣
∣φ

T
ξ −

 

Bε(x0)
φT

ξ (x̃) dx̃

∣∣
∣
∣
2
dx

)1/2

+
( 

Br (x0)

∣
∣∣
∣σ

T
ξ −

 

Bε(x0)
σ T
ξ (x̃) dx̃

∣
∣∣
∣
2
dx

)1/2
� C(x0)|ξ |ε

⎧
⎪⎨

⎪⎩

(r/ε)1/2 for d = 1,
∣
∣ log r

ε

∣
∣1/2 for d = 2,

1 for d � 3

(20)

for any r � 2ε, any x0 ∈ R
d , any T � 2ε2, and any ξ ∈ R

m×d . Furthermore, for
d � 3 we even have

(  

Br (x0)

∣∣φT
ξ

∣∣2 dx
)1/2

+
(  

Br (x0)

∣∣σ T
ξ

∣∣2 dx
)1/2

� C(x0)|ξ |ε (21a)
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for any r � 2ε, any x0 ∈ R
d , any T � 2ε2, and any ξ ∈ R

m×d , while for d = 1
and d = 2 we have

∣∣∣∣

 

Br (x0)
φT

ξ dx

∣∣∣∣+
∣∣∣∣

 

Br (x0)
σ T

ξ dx

∣∣∣∣ � C(x0)|ξ |ε
{

(
√
T /ε)1/2 for d = 1,

∣∣ log
√
T
ε

∣∣1/2 for d = 2.
(21b)

Here and below, C = C(ωε, x0) denotes a nonnegative stationary random field
that, in particular, depends on ξ , the localization parameter T and the radius r ,
but whose (stretched exponential) stochastic moments are uniformly estimated by

E

[
exp

(C ν̄

C

)]
� 2

for some ν̄ > 0 and C > 0 depending only on d, m, λ, �, and ρ (in particular,
independently of T ).

In the case of three and more spatial dimensions d � 3, the potential field θTξ
exists and satisfies the estimate

(  

Br (x0)

∣
∣∣∣θ

T
ξ −

 

Br (x0)
θTξ (x̃) dx̃

∣
∣∣∣

2

dx

)1/2
� C(x0)|ξ |ε2

⎧
⎪⎨

⎪⎩

(r/ε)1/2 for d = 3,
∣∣ log r

ε

∣∣1/2 for d = 4,

1 for d � 5
(22)

for any r � 2ε, any x0 ∈ R
d , any T � 2ε2, and any ξ ∈ R

m×d .
Furthermore, the estimates (20), (21a), and (22) also hold for the L p norm in

place of the L2 norm as long as 2 � p � 2d
d−2 in case d � 3 and 2 � p < ∞ in

case d � 2, up to the following modifications: The constant ν̄ may now also depend
on p, and the factor | log(r/ε)|1/2 in (20) and (22) is replaced by | log(r/ε)| in the
cases d = 2 respectively d = 4.

Under the additional small-scale regularity assumption (R), we establish the
following estimates on the homogenization corrector φT

ξ,� associated with the lin-
earized operator −∇ · (∂ξ A(ωε, ξ +∇φT

ξ )∇ · ). Recall that this homogenization
corrector φT

ξ,� is equivalently given as the derivative of the homogenization cor-

rector φT
ξ with respect to ξ in direction �, see Lemma 27.

Proposition 20. (Estimates on the homogenization corrector for the linearized
PDE). Let the assumptions (A1)–(A3) and (P1)–(P2) be in place. Suppose further-
more that the small-scale regularity condition (R) holds. Then the homogenization
corrector for the linearized equation φT

ξ,� = ∂ξφ
T
ξ � and the corresponding flux

corrector σ T
ξ,� = ∂ξσ

T
ξ � given as the solutions to the PDEs (17a) and (17c) are

subject to the estimates
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( 

Br (x0)

∣∣∣∣φ
T
ξ,� −

 

Bε(x0)
φT

ξ,�(x̃) dx̃

∣∣∣∣

2

dx

)1/2

+
( 

Br (x0)

∣∣
∣∣σ

T
ξ,� −

 

Bε(x0)
σ T

ξ,�(x̃) dx̃

∣∣
∣∣

2

dx

)1/2

� C(x0)(1+ |ξ |)C |�|ε

⎧
⎪⎨

⎪⎩

(r/ε)1/2 for d = 1,
∣∣ log r

ε

∣∣1/2 for d = 2,

1 for d � 3,

(23)

for any r � 2ε, any x0 ∈ R
d , any T � 2ε2, and any ξ,� ∈ R

m×d . Furthermore,
for d � 3 we even have
(  

Br (x0)

∣∣φT
ξ,�

∣∣p dx
)1/p

+
( 

Br (x0)

∣∣σ T
ξ,�

∣∣p dx
)1/p

� C(x0)(1+ |ξ |)C |�| ε
(24)

for any r � 2ε, any x0 ∈ R
d , any p ∈ [2, 2d

(d−2)+ ] ∩ [2,∞), any T � 2ε2, and any

ξ,� ∈ R
m×d , while for d = 1 and d = 2 we have

∣
∣∣
∣

 

Bε(x0)
φT

ξ,� dx

∣
∣∣
∣+
∣
∣∣
∣

 

Bε(x0)
σ T
ξ,� dx

∣
∣∣
∣ � C(x0)(1+ |ξ |)C |�|ε

{
(
√
T /ε)1/2 for d = 1,

∣
∣ log

√
T
ε

∣
∣1/2 for d = 2.

Here and below, C = C(ωε, x0) denotes a nonnegative, stationary random field
that, in particular, depends on ξ, �, the localization parameter T , and the radius
r , but whose (stretched exponential) stochastic moments are uniformly estimated
by

E

[
exp

(C ν̄

C

)]
� 2

for some ν̄ > 0 and some C. The constants ν̄ and C depend only on d, m, λ, �, ν,
p, and ρ (in particular, they are independent of T ).

In the case of three and more spatial dimensions d � 3, the potential field θTξ,�

exists and satisfies the estimate
(  

Br (x0)

∣∣
∣∣θ

T
ξ,� −

 

Br (x0)
θTξ,�(x̃) dx̃

∣∣
∣∣

2

dx

)1/2

� C(x0)(1+ |ξ |)C |�|ε2
⎧
⎪⎨

⎪⎩

(r/ε)1/2 for d = 3,
∣∣ log r

ε

∣∣1/2 for d = 4,

1 for d � 5

(25)

for any r � 2ε, any x0 ∈ R
d , any T � 2ε2, and any ξ,� ∈ R

m×d .
Furthermore, all of these estimates also hold for the correctors associated with

the adjoint coefficient field aT,∗
ξ .

Finally, the estimates (23), (24), and (25) also hold for the L p norm with 2 �
p � 2d

(d−2)+ and p < ∞ in place of the L2 norm, up to the following modifications:
The constant ν̄ may now also depend on p, and the factor | log(r/ε)|1/2 in (23) and
(25) is replaced by | log(r/ε)| in the cases d = 2 respectively d = 4.
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A key consequence of our estimates on the linearized correctors φT
ξ,� and σ T

ξ,�

is the following estimate on differences of the correctors φξ and σξ for different
values of ξ :

Corollary 21. Let the assumptions (A1)–(A3) and (P1)–(P2) be in place. Then for
T →∞ the centered correctorsφT

ξ −
ffl
Bε(0)

φT
ξ dx̃ and σ T

ξ −ffl
Bε(0)

σ T
ξ dx̃ converge

to solutions φξ and σξ to (4) and (9) in the sense of Definition 1 und Definition 17,
respectively. Furthermore,

• For d � 3, we have

(  

Br (x0)

∣∣φξ

∣∣p + ∣∣σξ

∣∣p dx
)1/p

� C(x0)|ξ |ε (26)

for any r � 2ε, any x0 ∈ R
d , any p ∈ [2, 2d

d−2 ], and any ξ ∈ R
m×d . Here,

C = C(ωε, x0) denotes a nonnegative random field depending on ξ and the
radius r with bounded stretched exponential moments in the sense

E

[
exp

(C ν̄

C

)]
� 2

for some ν̄ > 0 and some C > 0 depending only on d, m, λ, �, p, and ρ.
• For d = 1, 2, we have

(  

Br (x0)

∣∣φξ

∣∣2 + ∣∣σξ

∣∣2 dx
)1/2

� C(x0)|ξ |ε
{( r+|x0|

ε

)1/2
for d = 1,

∣∣ log r+|x0|
ε

∣∣1/2 for d = 2
(27)

for any r � 2ε, any x0 ∈ R
d , and any ξ ∈ R

m×d .

If additionally the small-scale regularity condition (R) holds, then the difference of
homogenization correctors φξ1 − φξ2 and σξ1 − σξ2 is estimated by

(  

Br (x0)

∣∣φξ1 − φξ2

∣∣2 + ∣∣σξ1 − σξ2

∣∣2 dx
)1/2

� C(x0)(1+ |ξ1|C + |ξ2|C )|ξ1 − ξ2|ε

⎧
⎪⎨

⎪⎩

( |x0|
ε
+ 1
)1/2

for d = 1,
∣
∣ log

( |x0|
ε
+ 2
)∣∣1/2 for d = 2,

1 for d � 3

(28)

for any ξ1, ξ2 ∈ R
m×d , any r � 2ε, and any x0 ∈ R

d , where C = C(ωε, x0) denotes
a nonnegative, stationary random field depending on ωε, ξ1, ξ2, x0, r satisfying the
stretched exponential moment bound

E

[
exp

(C ν̄

C

)]
� 2

for some ν̄ > 0 and some C > 0. Here, ν̄ and C depend only on d, m, λ, �, ρ, and
ν.
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Remark 22. For d � 3 in the situation of Corollary 21, the correctors φT
ξ and

σ T
ξ (without renormalization) converge to the unique stationary solution to the

correction equations (4) and (9) with vanishing expectation E[φξ ] = 0 = E[σξ ],
respectively.

3.2. The Strategy of Proof for Corrector Estimates

A major difficulty in quantitative stochastic homogenization is the derivation
of appropriate estimates on the (localized) homogenization correctors φT

ξ and the
(localized) flux corrector σ T

ξ : As previously mentioned, corrector bounds form
the basis for homogenization error estimates and the analysis of the representative
volume approximation. For our purposes, we for example need to show that the
homogenization corrector φT

ξ and the flux corrector σ T
ξ are at most of order |ξ |ε

(at least in case d � 3).
In periodic homogenization, that is for ε-periodic operators −∇ · (Aε(x,∇·)),

such corrector bounds are an easy consequence of the periodicity: By the defining
equation (11a), the correctorφT

ξ is ε-periodic, has vanishing average on each period-

icity cell [0, ε]d , and is subject to an energy estimate of the form
ffl
[0,ε]d |∇φT

ξ |2 dx �
C |ξ |2. By the Poincaré inequality on the periodicity cell, this implies a bound of
order |ξ |ε on the homogenization corrector φT

ξ . The derivation of the corresponding
estimate for the flux corrector σ T

ξ is analogous.
In contrast, in quantitative stochastic homogenization the derivation of such

estimates on the correctors is much more involved and presents one of the main
challenges. Our strategy for the derivation of bounds on φT

ξ , which is strongly
inspired by [30–33] but streamlined by minimizing the use of elliptic regularity,
proceeds as follows:

• As outlined in Proposition 19, it is our goal to prove a corrector estimate of
essentially the form

inf
b∈Rm

(  

BR(x0)
|φT

ξ − b|p dx
)1/p

� C(x0)

⎧
⎪⎨

⎪⎩

ε(R/ε)1/2 for d = 1,

ε| log(R/ε)| for d = 2,

ε for d � 3,

for any R � ε, where C is a random field with stretched exponential moments
in the sense E[exp(C1/C/C)] � 2.

• In principle, the technical Lemma 32 (see below) reduces the derivation of such
estimates on the corrector φT

ξ to (mostly) the derivation of bounds on stochastic
moments of integral functionals of the form

F(ωε):=
ˆ

Rd
g · ∇φT

ξ dx, (29)

where g basically takes a weighted average of ∇φT
ξ on a certain scale r with

ε � r � R.
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• The random variables F(ωε) as defined in (29) have vanishing expectation
E[F(ωε)] = 0 due to the vanishing expectation of the corrector gradient
E[∇φT

ξ ] = 0. The latter property is a consequence of stationarity of the cor-
rector φT

ξ : Since the probability distribution of the random monotone operator
A(ωε(x), ·) is invariant under spatial translations, the expectation of the cor-
rector E[φT

ξ (x)] is the same for all points x ∈ R
d . This yields E[∇φT

ξ (x)] =
∇E[φT

ξ (x)] = 0. As a consequence of the vanishing expectation, it suffices
to bound the centered moments of F(ωε), that is, the stochastic moments of
F(ωε) − E[F(ωε)].

• Concentration inequalities – like the spectral gap inequality – are one of themost
widespread probabilistic tools for establishing bounds on centered moments of
random variables. In our context, that is for random fields ωε with correlations
restricted to the length scale ε, they will read for example

E

[∣∣
∣F(ωε) − E

[
F(ωε)

]∣∣
∣
2]

� εd

ρ2E

[ˆ

Rd

∣∣∣
∣

 

Bε(x)

∣∣∣
∣
∂F

∂ωε

∣∣∣
∣ dx̃
∣∣∣
∣

2

dx

]
(30)

for all randomvariables F = F(ωε). Here, ∂F
∂ωε

denotes (essentially) the Frechét
derivative of F with respect to the field ωε and ρ > 0 denotes a constant.
Note that in stochastic homogenization it is an assumption that a spectral gap
inequality like (30) holds for the random field ωε. This assumption on the prob-
ability distribution of the random field ωε encodes the decorrelation properties
of ωε. Recall that (30) implies an estimate for the average F(ωε):=

ffl
Br

ωε dx
of the order of the CLT-scaling, see discussion below Definition 16.
A spectral gap inequality of the form (30) is valid for many classes of random
fields, see Fig. 1 and the accompanying text. It also implies estimates on higher
centered moments, see Lemma 23 below.

• In order to employ the spectral gap inequality (30) to estimate the stochastic
moments of random variables F(ωε) = ´

g · ∇φT
ξ dx as defined in (30), we

need to estimate the right-hand side of (30), that is we need to estimate the
sensitivity of the functionals F(ωε) with respect to changes in the coefficient
field ωε. By standard computations (see the proof of Lemma 24a for details),
one may show that the Frechét derivative of F with respect to ωε is given by

∂F

∂ωε

= ∂ωA(ωε, ξ +∇φT
ξ ) ⊗∇h (31)

where h is the solution to the auxiliary linear elliptic PDE

−∇ · (aT,∗
ξ (x)∇h) + 1

T
h = ∇ · g (32)

(the uniformly elliptic and bounded coefficient field aT,∗
ξ being given by the

transpose of aTξ (x):=∂ξ A(ω(x), ξ +∇φT
ξ )).

By the (standard) growth assumptions for A(ωε, ·) in (A3), the representation
(31) implies that the sensitivity ∂F

∂ωε
may be estimated by C |ξ + ∇φT

ξ ||∇h|. In



376 Julian Fischer & Stefan Neukamm

conclusion, by the spectral gap inequality (30) respectively its version for higher
stochastic moments in Lemma 23 we see that we have

E[|F |q ]1/q � qεd/2
E

[∣∣∣∣

ˆ

Rd

∣∣∣∣

 

Bε(x)

∣∣ξ +∇φT
ξ

∣∣|∇h| dx̃
∣∣∣∣

2

dx

∣∣∣∣

q/2]1/q
. (33)

• Let us next discuss how to estimate the right-hand side of (33). Recall that g
basically takes aweighted average on a scale r (see (29)), that is g is supported on
a ball Br and satisfies an estimate like |g| � r−d . As a consequence, we obtain
the deterministic estimate

´
Rd |∇h|2 dx � r−d by a simple energy estimate

for the defining equation (32). If we knew that the small-scale averages of the
corrector gradient were bounded in the sense

ffl
Bε(x)

|ξ + ∇φT
ξ |2 dx̃ � |ξ |2, by

Hölder’s inequality we would directly obtain the deterministic bound
ˆ

Rd

∣∣∣
∣

 

Bε(x)

∣∣ξ +∇φT
ξ

∣∣|∇h| dx̃
∣∣∣
∣

2

dx � |ξ |2
ˆ

Rd
|∇h|2 dx � |ξ |2r−d .

By (33) this would imply an estimate of fluctuation order on the functionals (29)
of the form E[|F |q ]1/q � q|ξ |(ε/r)d/2. This would be precisely the bound we
seek to obtain.
However, in the context of stochastic homogenization we cannot expect a
uniform bound on the locally averaged corrector gradient

ffl
Bε(x)

|ξ +∇φT
ξ |2 dx̃ ,

as in general the random field ωε may contain geometric configurations which
could cause the corrector gradient to be arbitrarily large. As we are dealing
with the case of systems, we also cannot expect more than L p integrability
of the gradient ∇h of the auxiliary function for a Meyers exponent p slightly
larger than 2. We therefore need (almost) an L∞ bound on the local averagesffl
Bε(x)

|ξ +∇φT
ξ |2 dx̃ . It is here useful to introduce an auxiliary quantity, namely

the minimal radius r∗,T,ξ (x) above which the corrector φT
ξ satisfies a bound of

the form

1

R2

 

BR(x)
|φT

ξ |2 dx̃ � 1 for all R � r∗,T,ξ (x)

(plus one additional technical condition). Nowusing the trivial estimate
ffl
Bε

f dx

� ( r
ε
)d
ffl
Br

f dx and the Caccioppoli inequality, we get the bound

 

Bε(x)
|ξ + ∇φT

ξ |2 dx̃ �
(
r∗,T,ξ (x)

ε

)d  

Br∗,T,ξ (x)(x)
|ξ +∇φT

ξ |2 dx̃
︸ ︷︷ ︸

�C|ξ |2

.

This estimate is however again not sufficient for our purposes. It is here that
elliptic regularity theory in form of the hole-filling estimate enters and provides
a slight but crucial improvement

 

Bε(x)
|ξ + ∇φT

ξ |2 dx̃ � C

(
r∗,T,ξ

ε

)d−δ

|ξ |2

for some δ > 0 (see Lemma 48 for details).
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Together with a version of the spectral gap estimate – see Lemma 23 below –
and the vanishing expectation E[∇φT

ξ ] = 0, this estimation strategy yields a
bound of the form

E
[|F |2q]1/2q � C |ξ |q

(
ε

r

)d/2

E

[(
r∗,T,ξ

ε

)(d−δ)q/(1−τ)](1−τ)/2q

(34)

for any 0 < τ < 1 and any q large enough (the latter of which is not a problem).
• One then observes that one may control the moments of r∗,T,ξ on the right-hand

side of (34) in terms of moments of functionals F = ´
g · ∇φT

ξ dx (see the
proof of Proposition 19). It is here that the slight gain δ in the exponent (from
hole-filling) is crucial, as it causes the estimate to buckle, yielding a bound of
the form

E

[(
r∗,T,ξ

ε

)q]1/q
� qC .

The resulting moment bounds on r∗,T,ξ then allow to deduce the corrector esti-
mate in Proposition 19.

• The derivation of the estimates for the flux corrector σ T
ξ and the linearized

correctors φT
ξ,�, σ

T
ξ,� follows a similar strategy. However, in the case of the lin-

earized correctors φT
ξ,�, σ

T
ξ,� the derivation of the sensitivity estimates involves

an additional integrability issue on small scales, making it necessary to use a
C1,α regularity theory on the microscopic scale. It is here that our additional
regularity assumption (R) enters. For details, see the derivation of Lemma 28.

Let us now state the lemmas used in the course of the proof of our main re-
sults. An immediate consequence of the spectral gap inequality of Definition 16
is the following version for the q-th centered moment; for a proof, we refer to for
example [19, Proposition 3.1]. Note that the proof in [19, Proposition 3.1] works
in microscopic spatial coordinates, that is, it considers the case ε:=1; by rescaling,
the result holds also for general correlation lengths ε > 0.

Lemma 23. Suppose P satisfies (P1) and (P2). Then for any q � 1 we have

E

[∣∣∣F(ωε) − E
[
F(ωε)

]∣∣∣
2q]1/q

� Cq2εdE

[∣∣∣∣

ˆ

Rd

(  

Bε(x)

∣
∣∣∣
∂F

∂ωε

∣
∣∣∣

)2
dx

∣
∣∣∣

q]1/q
.

A central step towards the proof of the corrector estimates of Proposition 19 are
the following estimates on stochastic moments of linear functionals of the localized
corrector and the localized flux corrector.

Lemma 24. (Estimates for linear functionals of the corrector and the flux corrector
for the monotone system). Let the assumptions (A1)–(A3) and (P1)–(P2) be satis-
fied. Let ξ ∈ R

m×d , T � 2ε2, Kmass � C(d,m, λ,�), and let φT
ξ , σ

T
ξ be defined

as in Lemma 18. In case d � 3, let θTξ be the (up to constants unique) sublinearly
growing solution to (18a). Define, for any x0 ∈ R

d ,
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r∗,T,ξ (x0):= inf

{
r = 2kε : k ∈ N0 and for all R = 2�ε � r, � ∈ N0, we have both

1

R2

 

BR(x0)

∣∣∣
∣φ

T
ξ −

 

BR(x0)
φT

ξ dx̃

∣∣∣
∣

2

dx � |ξ |2

and
1√
T

∣∣∣∣

 

BR(x0)
φT

ξ dx

∣∣∣∣ � Kmass |ξ |
}
. (35)

Then the random field r∗,T,ξ is well-defined and stationary. Moreover, the following
statement holds: Let F denote one of the following random variables

F :=
ˆ

Rd
g(x) · ∇φT

ξ (x) dx,

or F :=
ˆ

Rd
g(x) · ∇σ T

ξ, jk(x) dx, 1 � i, j � d,

or F :=
ˆ

Rd
g(x) · 1

r
∇θTξ,i (x) dx, 1 � i � d, (in the case d � 3 only),

for a deterministic vector field g ∈ L p(Rd;Rm×d) satisfying for some x0 ∈ R
d ,

r � ε, and some exponent 2 < p < 2+ c (with a constant c = c(d,m, λ,�) > 0
defined in the proof below),

supp g ⊂ Br (x0) and

(  

Br (x0)
|g|p dx

)1/p
� r−d .

Then there exists an exponent δ = δ(d,m, λ,�) > 0 (coming from hole-filling)
such that the stochastic moments of the functional F satsify

E
[|F |2q]1/2q � C |ξ |q

(
ε

r

)d/2

E

[(
r∗,T,ξ

ε

)(d−δ)q/(1−τ)](1−τ)/2q

for any 0 < τ < 1 and any q � C. Here, the constant C may depend on d, m, λ,
�, ρ, Kmass , p, and τ (but not on ε and r). In particular, all of our estimates are
independent of T � 2ε2.

We also obtain the following estimates on averages of the correctors:

Lemma 25. Given the assumptions of Lemma 24, for any 0 < τ < 1, any q � C,
any x0 ∈ R

d , any r � ε, and any R � r we have the estimate

E

[∣∣∣∣

 

Br (x0)
φT

ξ dx −
 

BR(x0)
φT

ξ dx

∣∣∣∣

2q]1/2q

+ E

[∣∣
∣∣

 

Br (x0)
σ T

ξ dx −
 

BR(x0)
σ T

ξ dx

∣∣
∣∣

2q]1/2q

� Cq|ξ |E
[(

r∗,T,ξ

ε

)(d−δ)q/(1−τ)](1−τ)/2q( log2
R
r∑

l=0

(2lr)2
(

ε

2lr

)d)1/2
. (36)



Optimal Homogenization Rates in Stochastic Homogenization 379

Furthermore, for any R �
√
T we have the bound

E

[∣∣
∣∣

 

BR(x0)
φT

ξ dx

∣∣
∣∣

q]1/q
+ E

[∣∣
∣∣

 

BR(x0)
σ T

ξ dx

∣∣
∣∣

q]1/q

� Cq|ξ |√T

(
ε

R

)d/2

E

[(
r∗,T,ξ

ε

)(d−δ)q/(1−τ)](1−τ)/2q

. (37)

We then establish the following moment bounds on the minimal radius r∗,T,ξ ,
which will enable us to deduce the corrector bounds in Proposition 19:

Lemma 26. (Moment bound on the minimimal radius). Given the assumptions of
Lemma 24, there exists Kmass = Kmass(d,m, λ,�) such that the minimal radius
r∗,T,ξ has stretched exponential moments in the sense that

E

[
exp

(
1

C

(r∗,T,ξ

ε

)1/C)]
� 2

for some constant C = C(d,m, λ,�, ρ) independent of ξ .

It will be central for our optimal-order homogenization error estimates to obtain
optimal-order estimates on differences of correctors for different macroscopic field
gradients ξ , like φξ1 −φξ2 for ξ1, ξ2 ∈ R

m×d . To estimate such differences, we will
rely on estimates for the derivative φT

ξ,� of the corrector φT
ξ with respect to ξ in

direction �. Formally differentiating the corrector equation (11a) with respect to
ξ , we obtain for φT

ξ,�:=∂ξφ
T
ξ � the PDE

−∇ · (∂ξ A(ωε, ξ +∇φT
ξ )
(
� +∇φT

ξ,�

))+ 1

T
φT

ξ,� = 0

(see also (17a) above). It is interesting that this PDE again takes the form of a
corrector equation, namely the corrector equation for the linear elliptic equation
with random coefficient field ∂ξ A(ωε, ξ +∇φT

ξ ).
We next show that this differentiation can be justified rigorously.

Lemma 27. (Differentiability of the corrector with respect to ξ ). Let T > 0 and
assume (A1)–(A2). For any ξ ∈ R

m×d and any parameter field ω̃, let φT
ξ denote the

unique solution in H1
uloc(R

d ;Rm) to the localized corrector equation (11a). Denote
by φT

ξ,� the unique solution in H1
uloc(R

d ;Rm) to the localized linearized corrector

equation (17a). Then the map ξ → φT
ξ – as a map R

m×d → H1
uloc(R

d ;Rm) – is
differentiable with respect to ξ in the Frechét sense with

∂ξφ
T
ξ � = φT

ξ,� (38)

for any � ∈ R
m×d .

Similarly, denoting by σ T
ξ and σ T

ξ,� the unique solutions in H1
uloc to the PDEs

(11c) and (17c), the map ξ → σ T
ξ – as a map Rm×d → H1

uloc(R
d ;Rm ⊗ R

d×d
skew) –

is differentiable with respect to ξ in the Frechét sense with

∂ξσ
T
ξ � = σ T

ξ,�

for any � ∈ R
m×d .
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In order to establish appropriate estimates on the linearized corrector φT
ξ,�, we

again start by deriving estimates for linear functionals of the corrector gradient.

Lemma 28. (Estimates for linear functionals of the corrector and the flux corrector
for the linearized equation). Let the assumptions (A1)–(A3) and (P1)–(P2) be satis-
fied. Suppose in addition that the regularity condition (R) holds. Let ξ,� ∈ R

m×d ,
Kmass � C(d,m, λ,�), T � 2ε2, and let φT

ξ,�, σ T
ξ,� be the unique solutions in

H1
uloc to the corrector equations for the linearized problem (17a) and (17c). In case

d � 3, denote by θTξ the (up to constants unique) sublinearly growing solution to

(19a). Define for any x0 ∈ R
d

r∗,T,ξ,�(x0):= inf

{
r = 2kε : k ∈ N0 and for all R = 2�ε � r, � ∈ N0,

we have both

1

R2

 

BR(x0)

∣∣∣
∣φ

T
ξ,� −

 

BR(x0)
φT

ξ,� dx̃

∣∣∣
∣

2

dx � |�|2

and
1√
T

∣∣∣∣

 

BR(x0)
φT

ξ,� dx

∣∣∣∣ � Kmass |�|
}
. (39)

Then the random field r∗,T,ξ,� is well-defined and stationary. Let F denote one
of the following random variables

F :=
ˆ

Rd
g(x) · ∇φT

ξ,�(x) dx,

or F :=
ˆ

Rd
g(x) · ∇σ T

ξ,�, jk(x) dx, 1 � i, j � d,

or F :=
ˆ

Rd
g(x) · 1

r
∇θTξ,�,i (x) dx, 1 � i � d, (in the case d � 3 only),

for a deterministic vector field g ∈ L p(Rd;Rm×d) satisfying for some x0 ∈ R
d ,

r � ε, and some exponent 2 < p < 2+ c (with a constant c = c(d,m, λ,�) > 0
defined in the proof below),

supp g ⊂ Br (x0) and

(  

Br (x0)
|g|p dx

)1/p
� r−d .

Then there exists an exponent δ = δ(d,m, λ,�) > 0 (coming from hole-filling)
such that the stochastic moments of the functional F satsify

E
[|F |2q]1/2q � C(1+ |ξ |C )|�|qC

(
ε

r

)d/2

E

[(r∗,T,ξ,�

ε

)(d−δ)q/(1−τ)
](1−τ)/2q

for any 0 < τ < 1 and any q � C. Here, the constant C may depend on d, m, λ,
�, ρ, Kmass , p, ν, and τ (but not on ε, ξ , �, x0, and r).

In particular, all of our estimates are independent of T � 2ε2.

We also derive estimates on the averages of the linearized correctors that are
analogous to the ones of Lemma 25.
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Lemma 29. Given the assumptions of Lemma 28, for any 0 < τ < 1, any x0 ∈ R
d ,

any r � ε, and any R � r we have the estimate

E

[∣∣∣
∣

 

Br (x0)
φT

ξ,� dx −
 

BR(x0)
φT

ξ,� dx

∣
∣∣
∣

2q]1/2q

+ E

[∣∣
∣
∣

 

Br (x0)
σ T

ξ,� dx −
 

BR(x0)
σ T

ξ,� dx

∣
∣
∣
∣

2q]1/2q

� C(1+ |ξ |)C |�|qCE
[(

r∗,T,ξ,�

ε

)(d−δ)q/(1−τ)](1−τ)/2q( log2
R
r∑

l=0

(2lr)2
(

ε

2lr

)d)1/2
.

(40)

Furthermore, for any R �
√
T we have the bound

E

[∣∣∣∣

 

BR(x0)
φT

ξ,� dx

∣∣∣∣

q]1/q
+ E

[∣∣∣∣

 

BR(x0)
σ T

ξ,� dx

∣∣∣∣

q]1/q

� C(1+ |ξ |)C |�|qC√T

(
ε

R

)d/2

E

[(
r∗,T,ξ,�

ε

)(d−δ)q/(1−τ)](1−τ)/2q

. (41)

We then establish moment bounds on the minimal radius r∗,T,ξ,�.

Lemma 30. (Moment bound on the minimimal radius of the linearized equation).
Given the assumptions of Lemma 28, the minimal radius r∗,T,ξ,� has stretched
exponential moments in the sense

E

[
exp

(
1

C

( r∗,T,ξ,�

(1+ |ξ |C )ε

)1/C)]
� 2

for some constant C = C(d,m, λ,�, ρ, ν).

Note that under a different decorrelation assumption – namely, finite range of
dependence as opposed to a spectral gap inequality – stochastic moment bounds for
(basically) the quantity r∗,∞,ξ,� have already been established in [2]. The estimates
in [2] even achieve optimal stochastic integrability.

A necessary ingredient for the sensitivity estimates for functionals of the lin-
earized corrector φT

ξ,� – as derived in Lemma 28 – is the following regularity
estimate with rather strong stochastic integrability. It is a consequence of our cor-
rector estimates for the nonlinear problem and the small-scale regularity condition
(R).

Lemma 31. Let the assumptions (A1)–(A3) and (P1)–(P2) be satisfied. Suppose
furthermore that the small-scale regularity condition (R) holds. Then there exist
δ = δ(d,m, λ,�, ρ, ν) > 0 and a stationary nonnegative random field Creg,ξ =
Creg,ξ (ωε, x0) with uniformly bounded stretched exponential moments

E

[
exp
( 1
C
C1/Creg,ξ

)]
� 2
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such that the estimate

sup
x̃∈Bε/2(x0)

|�+ ∇φT
ξ,�|(x̃) � Creg,ξ (x0)(1+ |ξ |)C |�|

(
r∗,T,ξ,�(x0)

ε

)(d−δ)/2

(42)

holds for any x0 ∈ R
d . Here, C = C(d,m, λ,�, ρ, ν).

Proof. We use the assumption of small-scale regularity (R) to yield by Proposi-
tion 51

sup
x̃∈Bε/2(x0)

|�+ ∇φT
ξ,�|(x̃) � Creg,ξ (x0)(1+ |ξ |)C

(
|�|2 +

 

Bε(x0)
|�+ ∇φT

ξ,�|2 dx̃
) 1

2
.

Using (100) to estimate the right-hand side in this equation, we obtain the
desired bound. ��

The following result converts estimates on linear functionals of the gradient of
a random field and estimates on the gradient of the random field into L p-estimates
for the random field:

Lemma 32. (Estimate on the L p norm by a multiscale decomposition). Let γ > 0,
ε > 0, m � 2, and K � 0. Let u = u(ωε, x) be a random field subject to the
estimates

E

[( 

Bε(x0)
|∇u|2 dx

)m/2
]1/m

� K for all x0 ∈ R
d (43)

and

E

[(ˆ

Rd
∇u · g dx

)m]1/m
� K

(
ε

r

)γ

(44)

for all r � 2ε, all x0 ∈ R
d , and all vector fields g : Rd → R

d supported in Br (x0)
satisfying

(  

Br (x0)
|g|2+1/d dx

)1/(2+1/d)

� r−d .

Then for all r � ε and 2 � p < ∞ with p � 2d
(d−2)+ , we have

E

[( 

Br (x0)

∣∣∣
∣u −

 

Br (x0)
u

∣∣∣
∣

p

dx

)m/p
]1/m

� C3K ε

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(r/ε)1−γ for γ < 1,√
log(r/ε) for γ = 1 and p = 2,

log(r/ε) for γ = 1 and p > 2,

1 for γ > 1,

with C3 depending on γ and p, but being independent of m.
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Proof. The L2-version of the statement is shown for example in [13, Lemma 12].
The L p version is proven analogously. ��

Finally, note that our main results rely on estimates for the correctors φξ and σξ

(and not the localized approximations φT
ξ and σ T

ξ ). While all of our bounds on the

localized correctors φT
ξ and σ T

ξ are uniform with respect to the parameter T � 2ε2,
it remains to justify the passage to the limit T →∞.

Lemma 33. (Convergence of the localized correctors in the limit T → ∞). Let
(A1)–(A3) and (P1)–(P2) be satisfied. Let φT

ξ and σ T
ξ be the unique solutions to the

localized corrector equations (11a) and (11c) in H1
uloc. For any r > 0, as T →∞

the stationary random fields ∇φT
ξ and ∇σ T

ξ, jk converge strongly in L2(�× Br ) to
the corrector gradients ∇φξ and ∇σξ, jk , with the correctors φξ and σξ as defined
in Definition 1.

For the proof we refer to the beginning of the proof of Lemma 40. There, a
quantitative argument for φξ is carried out. It extends to σξ . We remark that the
statement (as in the linear case) can also be shown by a purely qualitative argument
that only requires stationarity and ergodicity.

3.3. Quantitative Two-scale Approximation

The estimate on the homogenization error invokes a quantitative two-scale ex-
pansion of the homogenized equation. As indicated earlier, for technical reasons,
we do not work with the usual expansion uhom+∇φ∇uhom , but consider the (easier)
case of a piecewise affine approximation of the form

uhom +
∑

k∈K
ηkφξk ,

where {ηk}k∈K denotes a partition of unity subordinate to a cover of Rd on a
scale δ � ε, and {ξk} denotes the associated piecewise-constant approximation of
∇uhom.1 Depending on our application, we will choose either δ:=ε or δ:=ε1/2 (at
least for d � 3).

We first introduce the construction of the piecewise-constant approximation.

Lemma 34. (Piecewise constant approximation).LetO either denoteRd , a bounded
C1-domain or a bounded, convex Lipschitz domain in R

d . Then there exists a
constant C̄ � 1 that only depends on O, such that the following holds: For all
0 < δ � 1

C̄
there exists a partition of unity

{ηk}k∈K ⊂ C∞
c (Rd) with K ⊂ O at most countable,

1 The authors are indebted to Gilles Francfort for this suggestion, which led to a simpli-
fication of the proof.
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such that for all k ∈ K,
∑

k∈K
ηk = 1 in O, 0 � ηk � 1, δ|∇ηk |∞ � C̄, (45a)

supp ηk ⊂ B2δ(k),
1

C̄
δd �

ˆ

O
ηk dx � C̄δd , (45b)

and such that the partition is locally finite in the sense that for all k ∈ K

#(K ∩ B4δ(k)) � C̄ . (45c)

Furthermore, for all g ∈ H1(O) the local averages

ξk := 1
´
O ηk dx

ˆ

O
g(x)ηk(x) dx, k ∈ K , (46)

satisfy for all 1 � p < ∞ with a constant C (only depending on p and O)

|ξk | �C

(
δ−d

ˆ

B2δ(k)∩O
|g|p dx

) 1
p

, (47a)

(ˆ

B2δ(k)∩O
|ξk − g|p dx

) 1
p

�Cδ

(ˆ

B2δ(k)∩O
|∇g|p dx

) 1
p

, (47b)

Moreover, for all k, k̃ ∈ K that are closed by in the sense that |k − k̃| � 4δ, we
have

δ−1|ξk − ξk̃ | �C

(
δ−d

ˆ

B6δ(k̃)∩O
|∇g|2 dx

) 1
2

. (47c)

Remark 35. In the case O = R
d the partition can be simply chosen as

K = δZd , ηk :=η( ·−k
δ

),

for a suitable cut-off function η ∈ C∞
c (Rd) with supp η ⊂ [−1, 1]d that only

depends on the dimension d.

Proposition 36. (Error representation by the two-scale expansion). Let Aε : Rd ×
R
m×d → R

m×d be a monotone operator satisfying uniform ellipticity and bound-
edness conditions (A1) and (A2). For any ξ ∈ R

m×d , denote by φξ a solution to
the corrector equation (4) on R

d in the sense of Definition 1 and denote by σξ a
solution to the equation for the flux corrector (9) on R

d .
LetO either denoteRd , a bounded C1-domain, or a bounded, convex Lipschitz

domain inRd . Let C̄, K , and {ηk}k∈K be defined as in Lemma 34 for a discretization
scale 0 < δ � 1

C̄
. Given ū ∈ H2(O) we consider the two-scale expansion,

ûε:=ū +
∑

k∈K
ηkφk, (48)
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with recentered correctors

φk :=
(
φξk −

 

Bε(k)
φξk dx

)
, σk :=

(
σξk −

 

Bε(k)
σξk dx

)

associated with the local averages ξk (as defined in (46)) of the function g:=∇ū.
Then in a distributional sense we have

−∇ · (Aε(x,∇ûε)) = −∇ · (Ahom(∇ū)) +∇ · R in O,

with a residuum R ∈ L2(O;Rm×d) satisfying for all � ∈ K,

ˆ

O
η�|R|2 dx

� C

⎛

⎜
⎝
ˆ

B2δ(�)∩O
δ2|∇2ū|2 dx + 1

δ2

∑

k∈K
|�−k|�4δ

ˆ

B6δ(�)
|φ� − φk |2 + |σ� − σk |2 dx

⎞

⎟
⎠ .

(49)

Above the constant C only depends on d, m, λ, �, and the domain O.

3.4. The Approximation of the Homogenized Operator by Periodic Representative
Volumes

In this section we outline the general strategy for the proof of the a priori
estimates for the RVE approximation of the effective material law Ahom stated in
Theorem 14. It is inspired by [29], where the first optimal result for periodic RVEs
in a linear discrete setting has been established. In the following we focus on the
situation where the small-scale regularity assumption (R) is satisfied, since in that
case we can obtain better rates. The argument features additional subtleties (even
compared to the linear case of [29]). We start with the observation that the total
approximation error decomposes into a random and a systematic part

ARVE,L(ξ)− Ahom(ξ)

=
(
ARVE,L(ξ)− EL

[
ARVE,L(ξ)

] )
+
(
EL

[
ARVE,L(ξ)

]
− Ahom(ξ)

)
.

The random error (the first term on the RHS) is a random variable with vanishing
expectation and corresponds to the fluctuations of the periodic RVE approximation
around its expected value. Theorem 14a asserts that this error decays with the same
rate as the fluctuations of a linear average of the random parameter field on scale L ,

that is like ( L
ε
)− d

2 . The second term on the RHS is the systematic error. It captures
the error coming from approximating the whole-space law P by the L-periodic law
PL . As in [29] we decompose the systematic error into different contributions. In
particular, we introduce the following notion of localized RVE approximation:
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Definition 37. (Localized RVE approximation). Let A satisfy (A1)–(A3). Let T �
2ε2, let η be a non-negative weight η : Rd → R with

´
Rd η dx = 1, and let ω̃ :

R
d → H∩B1 be a parameter field.We then define the localizedRVEapproximation

of size L with localization parameter T ∈ [2ε2, L2] for the effective operator Ahom
by the expression

ARVE,η,T (ω̃, ξ) · �:=
ˆ

Rd
η

(
A(ω̃, ξ + ∇φT

ξ ) ·� − 1

T
φT

ξ φ
∗,T
ξ,�

)
dx (50)

for any ξ,� ∈ R
m×d , whereφT

ξ = φT
ξ (ω̃) andφ

∗,T
ξ,� = φ

∗,T
ξ,�(ω̃) denote the localized

corrector and the localized linearized adjoint corrector, that is φT
ξ is the unique

solution in H1
uloc(R

d;Rm) to the equation (11a) and φ
T,∗
ξ,� is the unique solution in

H1
uloc(R

d;Rm) to the equation (17a) but with aTξ replaced by its transpose aT,∗
ξ .

If we choose in the previous definition a random field ωε with some probability
distribution P subject to (P1)–(P2), the localized RVE approximation ARVE,η,T (ξ)

converges almost surely for T →∞ to the (still random) material law ARVE,η(ξ) ·
� = ´

Rd η
(
A(ξ + ∇φξ ) · �

)
dx , whose expectation is given by the effective

material law Ahom(ξ). To see this (and in particular that the contribution of the
term 1

T φT
ξ φ

∗,T
ξ,� vanishes in this limit), one may for example use ergodicity and

stationarity as well as the sublinear growth of correctors. However, in contrast
to the periodic RVE approximation ARVE,L to the effective material law or the
homogenized material law Ahom itself, the localized RVE can be defined for all
parameter fields ω̃, since it only invokes the localized correctors. This allows to
couple parameter fields sampled with P and PL , respectively. More precisely, with
the restriction map

(πL ω̃)(x):=
{

ω̃(x) if x ∈ B L
4
,

0 else,
(51)

we note that if PL is an L-periodic approximation of P in the sense of Definition 13
and if ωε,L and ωε denote random fields distributed according to PL respectively
P, then the equality of laws

πLωε,L ∼ πLωε

holds. Hence, if the weight η of the localized RVE is supported in B L
4
and PL is a

L-periodic approximation of P, then

EL

[
ARVE,η,T (πLωε,L , ξ)

]
= E

[
ARVE,η,T (πLωε, ξ)

]
. (52)

This identity couples localized approximations for the homogenized material
law associated withP andPL . Motivated by this we decompose the systematic error
as

EL

[
ARVE,L(ξ)

]
− Ahom(ξ) =EL

[
ARVE,L(ξ)

]
− EL

[
ARVE,η,T (ξ)

]

+ EL

[
ARVE,η,T (ξ)

]
− EL

[
ARVE,η,T (πLωε,L , ξ)

]
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+ E

[
ARVE,η,T (πLωε, ξ)

]
− E

[
ARVE,η,T (ξ)

]

+ E

[
ARVE,η,T (ξ)

]
− Ahom(ξ). (53)

The differences in the second and third row capture the error coming from replacing
ωε,L with πLωε. As our next lemma shows, this error becomes small upon choosing
the localization parameter T suitably. At the heart of the proof of the lemma is
the exponential locality of the localized corrector equations (11a) and (17c), see
Lemma 45.

Lemma 38. (Estimate for the coupling error). Let A : Rd × R
m×d → R

m×d be
a monotone operator subject to conditions (A1)-(A2) and subject to the Lipschitz
estimate for ∂ξ A as in (R). Let L �

√
T � 2ε and let ηL denote a non-negative

weight supported in B L
8
with |ηL | � C(d)L−d and |∇η| � C(d)L−d−1. Then

there exist q = q(d,m, λ,�), γ = γ (d,m, λ,�), and C = C(d,m, λ,�) such
that for all parameter fields ω̃ and all ξ,� ∈ R

m×d we have
∣∣ARVE,ηL ,T (ω̃, ξ) ·� − ARVE,ηL ,T (πL ω̃, ξ) · �∣∣

� C exp
(
− γ

64
· L√

T

)(
|ξ ||�| + (1+ |ξ |)|ξ |‖�+ ∇φT

ξ,�‖q,L ,T

)
,

where

‖� +∇φT
ξ,�‖q,L ,T

:= 1

#XL ,T

∑

x0∈XL ,T

(√
T
−d

ˆ

Rd
|�+∇φT

ξ,�(ω̃, x)|q exp
(
− γ

2

|x − x0|√
T

)
dx

) 1
q

,

and where XL ,T ⊂ B L
8
denotes an arbitrary finite set with cardinality #XL ,T �

C(d)( L√
T
)d and ∪x0∈XL ,T B

√
T (x0) ⊃ B L

8
.

The differences in the first and last row of the right-hand side in (53) are the
systematic localization errors, which originate from the localizationwith parameter
T . The systematic localization error can be estimated as follows:

Proposition 39. (Systematic error of localized RVE). Let A : H×R
m×d → R

m×d

satisfy (A1)-(A3). Let P be stationary in the sense of assumption (P1). Then the
following holds for all ξ ∈ R

m×d :

(a) E
[
ARVE,η,T (ξ)

]
as defined in (50) is independent of the weight η.

(b) Suppose that P satisfies a spectral gap estimate in the sense of assumption (P2).
Assume furthermore that the small-scale regularity condition (R) holds. Then
for all T � 2ε2 and all ξ,� ∈ R

m×d we have
∣
∣Ahom(ξ) ·� − E

[
ARVE,η,T (ξ) · �

] ∣
∣

� C(1+ |ξ |)C |ξ ||�|
(

ε√
T

)d∧4
×
{∣
∣ log(

√
T /ε)

∣
∣2 for d = 2 and d = 4,

1 for d = 3, d = 1, and d � 5

with a constant C = C(d,m, λ,�, ρ, ν).
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(c) IfP concentrates on L-periodic parameter fields and satisfies aperiodic spectral
gap estimate in the sense of Definition 7b as well as the regularity condition
(R), then we have for all T ∈ [2ε2, L2] and all ξ,� ∈ R

m×d

|E
[
ARVE,η(ξ) ·�

]
− E

[
ARVE,η,T (ξ) · �

]
|

� C(1+ |ξ |)C |ξ ||�|
(

ε√
T

)d∧4
×
{∣
∣ log(

√
T /ε)

∣
∣2 for d = 2 and d = 4,

1 for d = 3, d = 1, and d � 5.

In order to prove this result, we need to quantify the systematic error on the level
of the correctors. Note that this estimate is slightly pessimistic (by the logarithmic
factor) for d = 2 and d = 4. Moreover, note that for d � 5 the estimate saturates,
an effect that is also observed in the stochastic homogenization of linear elliptic
PDEs, see [33, Corollary 1].

Lemma 40. (Localization error in the corrector). Let A satisfy the assumptions
(A1)–(A3) and let P satisfy the assumptions (P1)–(P2). Then for all T � 2ε2 and
all x0 ∈ R

d we have
( 

B√T (x0)

(∣∣∇φ2T
ξ − ∇φT

ξ

∣∣2 + 1

T

∣∣φ2T
ξ − φT

ξ

∣∣2
)
dx

) 1
2

� C|ξ |
(

ε√
T

) d∧4
2
{∣∣ log(

√
T /ε)

∣∣1/2 for d ∈ {2, 4},
1 for d = 3, d = 1, and d � 5.

Here C denotes a random constant as in Proposition 20.

With help of Meyers estimate we may upgrade the previous estimate to an L p

bound.

Corollary 41. Consider the setting of Lemma 40. Then there exists a Meyers expo-
nent p̄ = p̄(d,m, λ,�) > 2 such that for any p ∈ [2, p̄] the estimate

E

[
|∇φ2T

ξ −∇φT
ξ

∣∣p
] 1

p

� C |ξ |
(

ε√
T

) d∧4
2 ×

{∣∣ log(
√
T /ε)

∣∣ for d ∈ {2, 4},
1 for d = 3, d = 1, and d � 5

holds, where C = C(d,m, λ,�, p, ρ).

We also require control of the localization error for the linearized corrector.

Lemma 42. (Localization error for linearized corrector). Consider the setting of
Lemma40.Furthermore, assume that the small-scale regularity condition (R) holds.
Then

E

[
|∇φT

ξ,� −∇φ2T
ξ,�|2 +

1

T
|φT

ξ,� − φ2T
ξ,�|2

]1/2

� C(1+ |ξ |)C |�|
(

ε√
T

) d∧4
2 ×

{∣∣ log(
√
T /ε)

∣∣ for d ∈ {2, 4},
1 for d = 3, d = 1, and d � 5,

where C = C(d,m, λ,�, ρ, ν).
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4. Proof of the Main Results

4.1. Ingredients from Regularity Theory

Our estimates crucially rely on three basic regularity estimates for elliptic PDEs,
the first two being the Caccioppoli inequality and the hole-filling estimate for non-
linear elliptic equations (and systems) with monotone nonlinearity and the last one
being a weighted Meyers estimate for linear elliptic equations (and systems). We
first state the Caccioppoli inequality and the hole-filling estimate in the nonlinear
setting. The (standard) proofs are provided in “Appendix A”.

Lemma 43. (Caccioppoli inequality and hole-filling estimate for monotone sys-
tems). Let A(x, ξ) be a monotone operator subject to the assumptions (A1)–(A2).
Let 0 < T � ∞ and let u be a solution to the system of PDEs

−∇ · (A(x,∇u)) + 1

T
u = ∇ · g + 1

T
f

for some f ∈ L2(Rd;Rm) and some g ∈ L2(Rd ;Rm×d). Then there exist constants
C > 0 and δ > 0 depending only on d, m, λ, and � with the following property:
For any R, r > 0 with R � r we have the Caccioppoli inequality

 

BR/2(x0)
|∇u|2 + 1

T
|u|2 dx

� C

R2

 

BR(x0)
|u − b|2 dx + C

T
|b|2 + C

 

BR(x0)
|g|2 + 1

T
| f |2 dx (54)

for any b ∈ R
m and the hole-filling estimate
ˆ

Br (x0)
|∇u|2 + 1

T
|u|2 dx

� C

(
r

R

)δ( ˆ

BR(x0)
|∇u|2 + 1

T
|u|2 dx

)

+ C
ˆ

BR(x0)

(
r

r + |x − x0|
)δ(

|g|2 + 1

T
| f |2

)
dx . (55)

We next state a weighted Meyers-type estimate for linear uniformly elliptic
equations and systems. Its proof (which is provided in “Appendix C”) relies on the
usualMeyers estimate, along with a duality argument and a hole-filling estimate for
the adjoint operator. The details are provided in [13] for the case T = ∞; however,
the proof applies verbatim to the case T > 0, as the only ingredients are theMeyers
estimate for the PDE and the hole-filling estimate for the adjoint PDE.

Lemma 44. (Weighted Meyers estimate for linear elliptic systems). Let a : Rd →
R
m×d ⊗R

m×d be a uniformly elliptic and bounded coefficient field with ellipticity
and boundedness constants λ and �. Let r > 0 be arbitrary. Let v ∈ H1(Rd;Rm)

and g ∈ L2(Rd;Rm×d), f ∈ L2(Rd;Rm) be functions related through

−∇ · (a∇v) + 1

T
v = ∇ · g + 1√

T
f.
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There exists a Meyers exponent p̄ > 2 and a constant c > 0, which both only
depend on d, m, λ, and �, such that for all 2 � p < p̄ and all 0 < α0 < c we have

(ˆ

Rd

(
|∇v|p +

∣∣
∣
1√
T

v

∣∣
∣
p)(

1+ |x |
r

)α0

dx

) 1
p

� C

(ˆ

Rd
(|g|p + | f |p)

(
1+ |x |

r

)α0

dx

) 1
p

, (56)

where the constant C depends only on d, m, λ, �, p, and α0.

The localization ansatz for the correctors relies crucially on the following ele-
mentary deterministic energy estimate with exponential localization. As the proof
is short and elementary, we directly provide it here.

Lemma 45. (Exponential localization). Suppose that A : Rd ×R
m×d → R

m×d is
a monotone operator satisfying (A1) and (A2). Let T > 0 and L �

√
T . Consider

u ∈ H1
loc(R

d ;Rm) and f ∈ L2
loc(R

d;Rm), F ∈ L2
loc(R

d ;Rm×d) related by

−∇ · (A(x,∇u)) + 1

T
u = ∇ · F + 1

T
f

in a distributional sense in Rd . Suppose that u, f , and F have at most polynomial
growth in the sense that

∃k ∈ N : lim sup
R→∞

R−k
( 

BR

(|u| + |∇u| + | f | + |F |)2
) 1

2 = 0.

Then for 0 < γ � c(d,m, λ,�) we have

ˆ

Rd

(
|∇u|2 + 1

T
|u|2
)
exp(−γ |x |/L) dx

� C(d,m, λ,�)

ˆ

Rd

(
|F |2 + 1

T
| f |2

)
exp(−γ |x |/L) dx .

Proof. Set η(x):= exp(−γ |x |/L). We test the equation with uη (which can be
justified by approximation thanks to the polynomial growth assumption). By an
integration by parts, the ellipticity and Lipschitz continuity of A, and using |∇η| �
γ
L η � γ√

T
η, we get

λ

ˆ

Rd
|∇u|2η + 1

T
|u|2η dx

� γ

ˆ

Rd
�|∇u| 1√

T
|u|η dx +

ˆ

Rd
|F |
(
|∇u| + γ

1√
T
|u|
)
η dx + 1

T

ˆ

Rd
| f ||u|η dx

The claim now follows for γ � c by absorbing the terms with u and ∇u on the
right-hand side into the left-hand side with help of Young’s inequality. ��
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Remark 46. We frequently apply the exponential localization in the following
form: Suppose that A : Rd × R

m×d → R
m×d is a monotone operator satisfy-

ing (A1) and (A2). Let T > 0 and L �
√
T . Consider u1, u2 ∈ H1

loc(R
d;Rm) and

f ∈ L2
loc(R

d;Rm), F ∈ L2
loc(R

d ;Rm×d), all with at most polynomial growth and
related by

−∇ · (A(x,∇u1) − A(x,∇u2)) + 1

T
(u1 − u2) = ∇ · F + 1

T
f

in a distributional sense in R
d . Then, for 0 < γ � c(d,m, λ,�), we have

ˆ

Rd

(
|∇u1 −∇u2|2 + 1

T
|u1 − u2|2

)
exp(−γ |x |/L) dx

� C(d,m, λ,�)

ˆ

Rd

(
|F |2 + 1

T
| f |2

)
exp(−γ |x |/L) dx .

Indeed, with a(x):= ´ 1
0 ∂ξ A(x, ξ+(1−s)∇u1(x)+s∇u2(x)) ds and δu:=u1−u2,

we have −∇ · (a(x)∇δu) + 1
T δu = ∇ · F + 1

T f . Since A is a monotone operator
satisfying (A1) and (A2), the derivative ∂ξ A(x, ξ) is a uniformly elliptic matrix
field; hence, a(x) is a uniformly elliptic coefficient field and the claimed estimate
follows from the linear version of Lemma 45.

4.2. The Convergence Rate of the Solutions

We first provide the proof of the error estimate for ||uε − uhom||L2 . It is based
on a two-scale expansion with a piecewise constant approximation for the slope of
the limiting solution uhom, whose approximation properties are stated in Lemma 34
and Proposition 36.

Proof of Lemma 34. Step 1. Construction of the partition of unity.The construc-
tion of the partition of unity in the caseO = R

d is elementary, see Remark 35. We
thus only discuss the case of a bounded domain. In the following C̄ > 1 denotes a
constant that may vary from line to line, but that can be chosen only depending on
O and the dimension d. We fix the length scale δ with 0 < δ � 1

C̄
. Thanks to the

assumptions on O (C1-boundary or Lipschitz boundary & convexity), for C̄ > 0
large enough, we have that

B6δ(x) ∩O is connected for all x ∈ O, (57)

and we may cover O (enlarged by a layer of thickness δ/2) by balls of radius Bδ ,
whose volume interesected with O is comparable with δd ; more precisely,

O + Bδ/2(0) ⊂
⋃

x∈K ′′
Bδ(k), K ′′:={ x ∈ O : Bδ/C̄ (x) ⊆ O }.

Since the set on the left is compact, we can find a finite subset K ′ ⊂ K ′′ such that
the above inclusion holds with K ′′ replaced by K ′. Moreover, by the Vitali covering
lemma we can find a finite subset K ⊆ K ′ such that the balls {Bδ/3(k)}k∈K are
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disjoint andO+Bδ/2 ⊆⋃k∈K Bδ(k).With this covering at hand,wemay iteratively
define (measurable) functions χk : Rd → {0, 1} such that

1Bδ/3(k) � χk � 1Bδ(k) and
∑

k∈K
χk = 1 on O + Bδ/2(0). (58)

Let ηδ/2 denote the standard mollifier with support in Bδ/2(0). For k ∈ K set
ηk :=χk ∗ ηδ/2. By construction {ηk}k∈K is a smooth partition of unity for O satis-
fying (45a) and (45b) (the latter is a consequence of (58) and the fact that the balls
Bδ/C̄ (k), k ∈ K , are disjoint and contained in O) as well as (45c).

Step 2. Estimates. The arguments for (47a) and (47b) are standard. We prove
(47c). We first note that for all k, k̃ ∈ K with |k − k̃| � 4δ we have supp ηk ∪
supp ηk̃ ⊂ B6δ(k̃). Moreover, by (57) the set B6δ(k̃) ∩O is connected. Denote by
v ∈ H1(O∩B6δ(k̃)) the unique mean-free weak solution to the Neumann problem

−�v = ηk´
O ηk dx

− ηk̃´
O ηk̃ dx

in B6δ(k̃) ∩O,

∂νv = 0 on ∂(B6δ(k̃) ∩O).

The standard a priori estimate, Poincaré’s inequality and (45b) yield
ˆ

B6δ(k̃)∩O
|∇v|2 dx � Cδ2−d ,

for a constant C only depending on C̄ . This implies (47c), since

ξk − ξk̃ =
ˆ

O

(
ηk´
O ηk

− ηk̃´
O ηk̃

)
g dx =

ˆ

O∩B6δ(k̃)
∇g · ∇v dx,

as can be seen by an integration by parts. ��
Proof of Proposition 36. To shorten the notation, we implicitly assume that k, k̃ ∈
K and we shall use the shorthand notation

k ∼ k̃ :⇔ k, k̃ are nearby sites, that is |k − k̃| � 4δ.

Note that supp ηk ∩ supp ηk̃ �= ∅ implies k ∼ k̃. We shall also use the notation
A � B if A � CB for a constant C that only depends on d,m, λ,�, C̄ and O.
First, we note that in the sense of distribution in O, we have

∇ · (Aε(x,∇ûε))

= ∇ ·
(
Aε

(
x,∇ū +

∑

k

ηk∇φk

))

+∇ ·
(
Aε

(
x,∇ū +

∑

k

ηk∇φk +
∑

k∈K
φk∇ηk

)

− Aε

(
x,∇ū +

∑

k

ηk∇φk

))
.
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Adding and subtracting intermediate terms and using the fact that the ηk form a
partition of unity (that is

∑
k ηk = 1), we get

∇ · (Aε(x,∇ûε))

= ∇ · (Ahom
(∇ū

))

+ ∇ ·
(∑

k

ηk
(
Ahom(ξk) − Ahom(∇ū)

)
)

+ ∇ ·
(∑

k

ηk
(
Aε

(
x, ξk + ∇φk

)− Ahom
(
ξk
)))

+ ∇ ·
(∑

k

ηk
(
Aε

(
x,∇ū +∇φk

)− Aε

(
x, ξk +∇φk

)))

+ ∇ ·
(
Aε

(
x,∇ū +

∑

k

ηk∇φk

)
−
∑

k

ηk Aε

(
x,∇ū + ∇φk

))

+ ∇ ·
(
Aε

(
x,∇ū +

∑

k

ηk∇φk +
∑

k

φk∇ηk

)

− Aε

(
x,∇ū +

∑

k

ηk∇φk

))
.

Using the equation for the flux corrector∇ ·σk = Aε

(
x, ξk+∇φk

)− Ahom
(
ξk
)
(see

(9)) and the skew-symmetry of σk (which implies ∇ · (η∇ · σk) = −∇ · (σk∇η)),
we obtain

∇ · (Aε(x,∇ûε)) = ∇ · (Ahom
(∇ū

))+∇ · R,

with a residuum R:=I + I I + I I I where

I :=
∑

k

ηk
(
Ahom(ξk)− Ahom(∇ū)

)

+
∑

k

ηk
(
Aε

(
x,∇ū + ∇φk

)− Aε

(
x, ξk + ∇φk

))

and

I I := −
∑

k

σk∇ηk

+ Aε

(
x,∇ū +

∑

k

ηk∇φk +
∑

k

φk∇ηk

)
− Aε

(
x,∇ū +

∑

k

ηk∇φk

)

as well as

I I I :=Aε

(
x,∇ū +

∑

k

ηk∇φk

)
−
∑

k

ηk Aε

(
x,∇ū + ∇φk

)
.

It is our goal to show that R can be estimated for all � as
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ˆ

O
η�|R|2 dx �

ˆ

O
η�(|I |2 + |I I |2 + |I I I |2) dx

� δ2
ˆ

B2δ(�)∩O
|∇2ū|2 dx + 1

δ2

∑

k : k∼�

ˆ

B6δ(�)
|φ� − φk |2 + |σ� − σk |2 dx . (59)

For the argument we first argue that
´

η�|I |2 may be bounded by the first term
on the right-hand side of (59). Indeed, by Lipschitz continuity of Aε and Ahom in
ξ (see (A2) and Theorem 11a, respectively), we have the pointwise bound |I | �∑

k ηk |∇ū − ξk |, and thus (with help of (47b)),
ˆ

O
η�|I |2 dx �

∑

k : k∼�

ˆ

B2δ(k)∩O
|∇ū − ξk |2 dx

� δ2
∑

k : k∼�

ˆ

B2δ(k)∩O
|∇2ū|2 dx � δ2

ˆ

B6δ(�)∩O
|∇2ū|2 dx .

Next, we show that
´

η�|I I |2 dx may be bounded by the second term on the right-
hand side of (59). By the Lipschitz-continuity of Aε in ξ and the fact that

∑
k ∇ηk =

0 (as the ηk form a partition of unity), we have |I I | �
∣∣ ∑

k(σ� − σk)∇ηk
∣∣ +∣∣∑

k(φ� − φk)∇ηk
∣∣. Since |∇ηk | � C̄δ−1, we deduce that

ˆ

O
η�|I I |2 dx � δ−2

∑

k:k∼�

ˆ

B2δ(�)
|φ� − φk |2 + |σ� − σk |2 dx .

Finally, we estimate the third term I I I . Since
∑

k̃ ηk̃ = 1 we have

I I I =
∑

k̃

ηk̃

(
Aε

(
x,∇ū +

∑

k

ηk∇φk
)− Aε

(
x,∇ū + ∇φk̃

))
.

Hence, the Lipschitz-continuity of Aε in ξ yields |I I I | �
∑

k̃,k ηk̃ηk |∇φk −∇φk̃ |.
By the support property of ηk and ηk̃ we get

ˆ

O
η�|I I I |2 dx � C

∑

k : k∼�

ˆ

B2δ(�)
|∇φ� − ∇φk |2 dx . (60)

Thus, we need to bound the difference of the two corrector gradients ∇φ� and ∇φk

for nearby grid points k and �. To this aim, note that the corrector equation (4)
implies

−∇ · (Aε(x, ξ� + ∇φ�) − Aε(x, ξk +∇φk)) = 0.

An energy estimate based on assumptions (A1) and (A2) thus yields
 

B2δ(�)
|∇φ� − ∇φk |2 dx � |ξ� − ξk |2 + 1

δ2

 

B6δ(�)
|φ� − φk |2 dx .

In conjunction with (47b) and (60), we see that
´

η�|I I I |2 dx may be bounded by
the right-hand side of (59). ��
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Proof of Theorem 2, Theorem 4, and Theorem 7. We use the notation A � B if
A � CB for a constant C that only depends on d,m, λ,�, C̄ and O.

Step 1: Proof of Theorem 7 – the case of a bounded domainO. For the proof
we appeal to the two-scale expansion introduced in Proposition 36. Let δ denote
a discretization scale that satisfies ε � δ � 1

C and that we fix later. According to
Proposition 36 we denote by {ηk}k∈K the partition of unity of Lemma 34 and by ûε

the two-scale expansion defined in (48) associated with ū:=uhom. Moreover, we
define the correctors φk, σk as in Proposition 36. Note that by the proposition and
the identity ∇ · (A(ωε,∇uε)) = ∇ · (Ahom(∇ū)) in O, we have

∇ · (A(ωε,∇uε) − A(ωε,∇ûε)) = ∇ · R in a distributional sense in O,

(61)

with a residuum R ∈ L2(O;Rm×d).
Step 1.1: We claim that

ˆ

O
|R|2 dx � C2‖∇uhom‖2H1(O)

(
δ2 +

(ε

δ

)2
μd

(δ

ε

))
. (62)

Here and below we denote by C a random constant that might change from line to
line, but that satisfies the stretched exponential moment bound

E

[
exp
(C ν̄

C

)]
� 2, (63)

with ν̄ only depending on d,m, λ,�, ρ and with C > 0 depending only on
d,m, λ,�, ρ, and O. Below, we shall tacitly use the calculus rules for random
constants with stretched exponential moments, see Lemma 47.

The starting point for the argument is the local residuum estimate (49), which
we post-process by appealing to the triangle inequality:

ˆ

O
|R|2 =

∑

�∈K

ˆ

O
η�|R|2

� δ2
ˆ

O
|∇2uhom|2 dx + δ−2

∑

�∈K

∑

k∈K
|k−�|�4δ

ˆ

B6δ(�)
(|φk |2 + |σk |2) dx .

(64)

Aswe shall show in Step 3, fromCorollary 21wemay obtain the corrector estimate

∑

�∈K

∑

k∈K
|k−�|�4δ

ˆ

B6δ(�)
|φk |2 + |σk |2 dx � C2

ˆ

O
|∇uhom|2 ε2μd

(δ

ε

)
, (65)

where

μd(s):=

⎧
⎪⎨

⎪⎩

s for d = 1,

| log(s)| for d = 2,

1 for d � 3.

Now, (62) follows by combining the previous two estimates.
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Step 1.2:Toderive a bound on the difference∇uε−∇ûε from the above estimate
on the residuum, we would like to test the equation with uε − ûε. Thus, we need to
modify ûε close to the boundary to obtain an admissible test function. Let τ � ε.
Set (∂O)τ :={x ∈ O : dist(x, ∂O) < τ }. We denote by ψ a cut-off function with
ψ ≡ 1 in {x ∈ O : dist(x, ∂O) > τ }, ψ = 0 on ∂O, and |∇ψ | � τ−1. We claim
that

ˆ

O
|∇uε −∇ûε − ∇((1− ψ)(ū − ûε))|2 dx

� C2 ‖∇uhom‖2H1(O)

(
τ + δ2 +

(ε

δ

)2
μd

(δ

ε

)
+ ε2

τ
μd

(δ

ε

))
. (66)

Note that the terms with the factors τ and ε2

τ
μd(

δ
ε
) are due to the cut-off close

to the boundary. For the argument, we test the equation (61) with the difference
(uε − ûε + (1 − ψ)(ûε − ū)) ∈ H1

0 (O). By the monotonicity property (A1) and
the Lipschitz continuity (A2) we get

ˆ

O
λ|∇uε −∇ûε|2 dx �−

ˆ

O
R · ∇(uε − ûε) dx

+�

ˆ

O
|∇uε −∇ûε||∇((1− ψ)(ûε − ū))| dx

−
ˆ

O
R · ∇((1− ψ)(ûε − ū)) dx .

This entails the estimate

ˆ

O
|∇uε − ∇ûε − ∇((1− ψ)(ū − ûε))|2 dx �

ˆ

O
|R|2 dx +

ˆ

(∂O)τ

|∇ûε − ∇ū|2 dx

+ τ−2
ˆ

(∂O)τ

|ûε − ū|2 dx .

By the definition of ûε and the properties of the partition of unity (cf. (45a),(45b)), this
implies

ˆ

O
|∇uε −∇ûε − ∇((1− ψ)(ū − ûε))|2 dx

�
ˆ

O
|R|2 dx +

∑

k∈K

ˆ

(∂O)τ

ηk(|∇φk |2 + τ−2|φk |2) dx .

We combine this estimate with the following estimate, the proof of which is
postponed to Step 3:

ˆ

(∂O)τ

∑

k∈K
ηk
(|∇φk |2 + τ−2|φk |2) dx �

(
Cτ + C2 ε2

τ
μd

(δ

ε

))
‖∇uhom‖2H1(O)

.

(67)
Thus, (66) follows from the previous two estimates and (62).
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Step 1.3: From the definition of the two-scale expansion ûε and the Poincaré
inequality we obtain

‖uε − uhom‖L2(O) =
∣∣∣
∣

∣∣∣
∣uε − ûε + (1− ψ)

∑

k∈K
ηkφk

∣∣∣
∣

∣∣∣
∣
L2(O)

+
∣∣∣
∣

∣∣∣
∣
∑

k∈K
ηkφk

∣∣∣
∣

∣∣∣
∣
L2(O)

� ‖∇uε −∇ûε − ∇((1− ψ)(ū − ûε))‖L2(O) +
(
∑

k∈K

ˆ

B2δ(k)
|φk |2 dx

) 1
2

.

Thus, with (66) and (65) we obtain

‖uε − uhom‖2L2(O)
� C2 ‖∇uhom‖2H1(O)

(
τ + δ2 +

(ε

δ

)2
μd

(δ

ε

)
+ ε2

τ
μd

(δ

ε

))
.

By setting τ :=δ2 and

δ:=

⎧
⎪⎨

⎪⎩

ε1/3 for d = 1,

ε1/2| log ε|1/4 for d = 2,

ε1/2 for d � 3,

this completes the proof of Theorem 7.
Step 2: Proof of Theorem 2 and Theorem 4 – the cases with O = R

d . As
before we appeal to the two-scale expansion ûε of Proposition 36 and thus recall
the definitions of {ηk}k∈K , φk, σk and ûε from Step 1. To improve the scaling of the
error, we will crucially use the improved estimate on the difference of correctors
φξk −φξ�

and σξk −σξ�
provided by Corollary 21; however, as these estimates grow

with a factor of (1+ |ξk |C + |ξ�|C ), the L∞-norm for the gradient ∇uhom appears
on the right-hand side of the estimate. As in Step 1 we deduce from Proposition 36
that

∇ · (A(ωε,∇uε)− A(ωε,∇ûε)) = ∇ · R, for d � 3, (68)

and

∇ · (A(ωε,∇uε)− A(ωε,∇ûε)) − (uε − ûε) = ∇ · R +
∑

k∈K
ηkφk for d = 1, 2.

(69)

Step 2.1: We claim that

ˆ

Rd
|R|2 � C2Ĉ(∇uhom)2

(
δ2 + ε2μd

(δ

ε

))
(70)

where

Ĉ(∇uhom)2:=‖∇uhom‖2H1(Rd )
+ (1+ sup

Rd
|∇uhom|)2C

ˆ

Rd
|∇2uhom|2 dx .
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Here and below we denote by C a random constant that might change from line to
line, but that satisfies the stretched exponential moment bound

E

[
exp
(C ν̄

C

)]
� 2,

with ν̄ only depending on d,m, λ,�, ρ, ν and with C > 0 only depending on
d,m, λ,�, ρ, ν as well as O.

Indeed, the local residuum estimate (49) yields

ˆ

Rd
|R|2 dx � δ2

ˆ

Rd
|∇2uhom|2 dx

+ δ−2
∑

�∈K

∑

k∈K
|k−�|�4δ

ˆ

B6δ(�)
(|φk − φ�|2 + |σk − σ�|2) dx . (71)

We combine it with the improved corrector estimate

δ−2
∑

�∈K

∑

k∈K
|k−�|�4δ

ˆ

B6δ(�)
(|φk − φ�|2 + |σk − σ�|2) dx

� C2 (1+ sup
Rd

|∇uhom|)2C
( ˆ

Rd
|∇2uhom|2 dx

)
ε2μd

(δ

ε

)
. (72)

The proof of the above estimate is postponed to Step 3. It exploits the regularity
assumption (R). The combination of the previous two estimates yields (70).

Step 2.2: We fix δ as follows:

δ:=
{

ε| log ε| 12 d = 2,

ε d �= 2.

We first note that with this choice, we have for d � 3

‖uε − uhom‖L2d/(d−2)(Rd ) �
∣∣∣∣

∣∣∣∣
∑

k∈K
ηkφk

∣∣∣∣

∣∣∣∣
L2d/(d−2)(Rd )

+ C Ĉ(∇uhom) ε, (73)

while for d = 1, 2 we have

‖uε − uhom‖L2(Rd ) �
∣∣
∣∣

∣∣
∣∣
∑

k∈K
ηkφk

∣∣
∣∣

∣∣
∣∣
L2(Rd )

(74)

+ C Ĉ(∇uhom)

{
ε for d = 1,

ε| log ε| 12 for d = 2.

Indeed, for d = 3 the estimate follows from the energy energy estimate for the PDE
(68) combined with (70) and the Sobolev embedding. For d = 1, 2 the estimate
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can be directly obtained from the energy estimate for the PDE (69) in combination
with (70). As we shall prove in Step 3, we have

∥∥
∥∥
∑

k∈K
ηkφξk

∥∥
∥∥
L p(Rd )

� C Ĉ(∇uhom)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε
1
2 for d = 1 and p = 2,

ε| log ε| 12 for d = 2 and p = 2,

ε for d � 3 and p = 2d

d − 2
.

(75)
Combining the previous three estimates, we obtain the statements of Theorem 2
and Theorem 4.

Step 3: Proofs of the corrector estimates (65), (67), (72), and (75).
Step 3.1 - Proof of (65). We first claim that there exists a positive constant

C � 1 and ν̄ > 0 only depending on d,m, λ,� and ρ such that, for k, � ∈ K with
|k − �| � 4δ, we have

ˆ

B6δ(�)
|φk |2 + |σk |2 dx � C2k

(ˆ

B2δ(k)∩O
|∇uhom|2 dx

)
ε2μd

(δ

ε

)
, (76)

with a random constant Ck satisfying

E

[
exp
(C ν̄

k

C

)]
� 2. (77)

For the argument, we first recall thatφk(ωε, x) = φξk (ωε, x)−
ffl
Bε(k)

φξk (ωε, y) dy.
Thus, by translation of ωε, we may assume without loss of generality that k = 0
and |�| � 4δ. The claim then follows from Corollary 21 (applied with r = 10δ and
x0 = � ∈ B4δ(0)) and the estimate of |ξk | via (47a).

Summation of (76) thus yields (65) with a random constant C given by the
expression

C =
(ˆ

O
|∇uhom|2 dx

)− 1
2

⎛

⎜⎜
⎝
∑

�,k∈K
|�−k|�4δ

C2k
( ˆ

B2δ(k)∩O
|∇uhom|2 dx

)

⎞

⎟⎟
⎠

1
2

.

Since
∑

�,k∈K
|�−k|�4δ

´
B2δ(k)∩O |∇uhom|2 dx �

´
O |∇uhom|2 dx , we deduce with help

of the calculus rules for random variables with stretched exponential moments (see
Lemma 47) that C satisfies the claimed moments bounds.

Step 3.2 - Proof of (67). We first claim that there exists a positive constant
C � 1 and ν̄ > 0 only depending on d,m, λ,� and ρ such that for k ∈ K we have
ˆ

(B2δ(k)∩∂O)τ

|∇φk |2+τ−2|φk |2 dx � τ

δ

(
1+C2k

( ε

τ

)2
μd

( δ

ε

))ˆ

O∩B3δ(k)
|∇uhom|2 dx

(78)
with a random constant Ck satisfying (77). For the argument, we first note thatffl
B2τ (y) |∇φk |2 dx � |ξk |2+τ−2

ffl
B4τ (y) |φk |2 dx thanks to the Caccioppoli inequal-

ity. The remaining argument is similar to the one in Step 3.1, covering the set
(B2δ(k) ∩ ∂O)τ with balls of the form B4τ (y).
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Thanks to the properties of the partition of unity (45b), we deduce from (78),

∑

k∈K

ˆ

(∂O)τ

ηk(|∇φk |2 + τ−2|φk |2) dx

� τ

δ

∑

k∈K
dist(k,∂�)�3δ

(
1+ C2k

( ε

τ

)2
μd

(δ

ε

))( ˆ

O∩B2δ(k)
|∇uhom|2 dx

)

� τ

δ

(
1+ C2

( ε

τ

)2
μd

(δ

ε

)) ˆ

(∂O)5δ

|∇uhom|2 dx,

with a random constant given by

C =
(ˆ

(∂O)5δ

|∇uhom|2 dx
)− 1

2

⎛

⎜
⎝

∑

k∈K
dist(k,∂�)�3δ

C2k
ˆ

O∩B3δ(k)
|∇uhom|2 dx

⎞

⎟
⎠

1
2

.

As in Step 3.1 we deduce that C satisfies the claimed moments bounds. To conclude
(67), it remains to prove the trace-type estimate

ˆ

(∂O)r

|∇uhom|2 dx � r‖∇uhom‖2H1(O)
(79)

for r = 5δ. In fact, the estimate holds for any v ∈ H1(O) (instead of ∇uhom). To
see this it suffices to consider a smooth v : Rd+ → R with Rd+:=R

d−1× (0,∞).
Then
ˆ

Rd−1×(0,r)
|v|2 dx =

ˆ

Rd−1

ˆ r

0
|v(x ′, s)|2 ds dx ′

�2r
ˆ

Rd−1
|v(x ′, 0)|2 dx ′ + 2

ˆ

Rd−1

ˆ r

0

∣
∣∣∣

ˆ s

0
∂dv(x ′, t) dt

∣
∣∣∣

2

ds dx ′

�2r
ˆ

Rd−1
|v(x ′, 0)|2 dx ′ + 2r2

ˆ

Rd−1

ˆ r

0
|∂dv(x ′, t)|2 dt dx ′

�r‖v‖2H1(O)
,

where the last line holds thanks to the trace estimate. The case of a general Lipschitz
or C1-domain can be reduced to Rd+ by appealing to a partition of unity and a local
straightening of the boundary.

Step 3.3 - Proof of (72).With the regularity assumption (R) at hand,Corollary 21
in combination with (47c) yields

δ−2
∑

k∈K
|k−�|�4δ

ˆ

B6δ(�)
(|φk − φ�|2 + |σk − σ�|2) dx

� C2� (1+ sup
Rd

|∇uhom|)2C
ˆ

B6δ(�)∩O
|∇2uhom|2 dx ε2μd

(δ

ε

)
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where C� denotes a random constant satisfying E[exp(Cν̄
�

C )] � 2 with C, ν̄ only
depend on d,m, λ,�, ρ and ν. A summation in � ∈ K and the calculus rules for
random variable with stretched exponential moments (see Lemma 47) yield (72).

Step 3.4 - Proof of (75). The estimate follows from Corollary 21 and (47a) by
an argument similar to the one in Step 3.1. ��

Lemma 47. Let J denote a countable index set. For j ∈ J let C j be a non-negative
random variable with stretched exponential moments of the form

E

[
exp

(Cν j
j

C j

)]
� 2,

with positive constants C j and exponents 0 < ν j � 2. Suppose that (a j ) j∈J is a
summable sequence of non-negative numbers. Then the random variable

C:=
∑

j∈J a jC j
∑

j∈J a j
satisfies E

[
exp

(C ν̂

Ĉ

)]
� 2,

where ν̂:= inf j∈J ν j and Ĉ :=C(ν1, . . . , νJ ) sup j∈J C
ν̂/ν j
j .

Proof. We first note that there exist universal constants 0 < c′ � C ′ < ∞ such
that for any non-negative random variable Z we have the chain of implications

E

[
exp(C ′Z)

]
� 2 ⇒ ∀p � 1 : E[Z p] 1p � p ⇒ E

[
exp(c′Z)

]
� 2.

We now estimate

E

[(Cν

Ĉ

)p]
1

ν̂ p = 1

Ĉ1/ν̂
E

[((∑
j∈J a jC j
∑

j∈J a j

)ν̂)p]
1

ν̂ p

� 1

Ĉ1/ν̂

∑
j∈J a jE

[(C ν̂
j

)p]
1

ν̂ p

∑
j∈J a j

� 1

Ĉ1/ν̂

∑
j∈J a jE

[(Cν j
j

)p]
1

ν j p

∑
j∈J a j

� 1

Ĉ1/ν̂

∑
j∈J a j (pC j )

1
ν j

∑
j∈J a j

,

�
(
c′ p
) 1

ν̂ ,

and thus the claimed estimate follows. ��

4.3. Estimates on the Random Fluctuations of the RVE Approximation for the
Effective Material Law

We next establish the estimates on fluctuations of the representative volume
approximation for the effective material law stated in Theorem 14a.
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Proof of Theorem 14a. To ease the notationwe drop the indices ε and L and simply
write ω instead of ωε,L . Consider the random variable

F(ω):=ARVE,L(ω, ξ) ·� =
 

[0,L]d
A(ω(x), ξ + ∇φξ (ω, x)) · � dx .

Let δω denote a periodic infinitesimal perturbation in the sense of Definition 16b.
Then for all L-periodic parameter fields ω we have

δF(ω):= lim
t→0

F(ω + tδω) − F(ω)

t

=
 

[0,L]d
∂ωA(ω(x), ξ + ∇φξ (ω, x))δω(x) · �
+ aξ (x)∇δφξ (ω, x) · � dx, (80)

where

aξ (x) = ∂ξ A(ω(x), ξ +∇φξ (ω, x)),

and where δφξ = δφξ (ω, ·) is the unique (L-periodic) solution with mean zero to

−∇ · (aξ∇δφξ ) = ∇ · (∂ωA(ω(x), ξ + ∇φξ (ω, x))δω(x)). (81)

Introducing the unique L-periodic solution h with vanishing mean to the PDE

−∇ · (a∗ξ∇h) = ∇ · (a∗ξ (x)�), (82)

we deduce by testing (82) with δφξ and testing (81) with h

δF(ω) =
 

[0,L]d
∂ωA(ω(x), ξ +∇φξ (ω, x))δω(x) · � dx

+
 

[0,L]d
∂ωA(ω(x), ξ +∇φξ (ω, x))δω(x) · ∇h dx .

This establishes by (A3)
∣∣∣∣
∂F(ω)

∂ω

∣∣∣∣ � CL−d |ξ + ∇φξ |(|�| + |∇h|)

which yields by the q-thmoment version of the spectral gap inequality in Lemma 23

EL

[∣∣F − EL [F]
∣∣2q
]1/2q

� Cqε
d
2 L−d

EL

[( ˆ

[0,L]d

( 

Bε(x)
|ξ + ∇φξ |(|�| + |∇h|) dx̃

)2
dx

)q]1/2q
.

By Hölder’s inequality, we infer for any p > 2

EL

[∣∣F − EL [F]
∣∣2q
]1/2q



Optimal Homogenization Rates in Stochastic Homogenization 403

� Cq
( ε

L

) d
2
EL

[( 

[0,L]d

∣∣∣∣

 

Bε(x)
|ξ +∇φξ |2 dx̃

∣∣∣∣

p/(p−2)

dx

)q(p−2)/p

×
(  

[0,L]d
(|�| + |∇h|)p dx

)2q/p]1/2q
.

Bounding the last integral by C |�| by Meyers estimate for (82) (see Lemma 44)
and using the estimate (99), we obtain

EL

[∣
∣F − EL [F]

∣
∣2q
]1/2q

� Cq
( ε

L

) d
2 |ξ ||�|EL

[(  

[0,L]d
∣∣r∗,L ,ξ (x)

∣∣(d−δ)p/(p−2) dx

)q(p−2)/p]1/2q
.

Using stationarity of r∗,L ,ξ and the moment bound of Lemma 26 (which we prove
explicitly for the probability distribution P, but which may be established for PL

analogously; furthermore, while the estimates of Lemma 26 are stated for finite
T < ∞, they are uniform in T � ε2 and therefore also hold in the limit T →∞),
we deduce for q large enough

EL

[∣∣F − EL [F]
∣∣2q
]1/2q

� CqC
( ε

L

) d
2 |ξ ||�|.

This is the assertion of Theorem 14a. ��

4.4. Estimates for the Error Introduced by Localization

We next establish the estimates from Lemma 40, Corollary 41, and Lemma 42
for the error introduced in the correctors by the exponential localization on scale

√
T

via the massive term.We then prove Proposition 39, which estimates the systematic
error in the approximation for the effective coefficient E[ARVE,η,T ] introduced by
the finite localization parameter T < ∞.

Proof of Lemma 40. We will use the exponential weight η(x):= exp(−γ |x |/√T )

with 0 < γ � 1. Note that

|∇η| � γ√
T

η. (83)

By the localized corrector equation (11a) we have

−∇ · (A(ωε, ξ +∇φ2T
ξ ) − A(ωε, ξ + ∇φT

ξ )) + 1

2T
(φ2T

ξ − φT
ξ ) = 1

2T
φT

ξ .

Testing with (φ2T
ξ − φT

ξ )η and using the monotonicity and Lipschitz continuity of
A (see (A1)-(A2)) as well as (83), we get
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ˆ

Rd

(
λ
∣∣∇φ2T

ξ − ∇φT
ξ

∣∣2 + 1

2T

∣∣φ2T
ξ − φT

ξ

∣∣2
)
η dx

� 1

2T

ˆ

Rd
φT

ξ (φ2T
ξ − φT

ξ )η dx + γ

ˆ

Rd
�|∇φ2T

ξ −∇φT
ξ |

1√
T
|φ2T

ξ − φT
ξ |η dx .

Choosing γ � c(d,m, λ,�), we may absorb the second term on the RHS into
the LHS to obtain
ˆ

Rd

(∣∣∇φ2T
ξ −∇φT

ξ

∣∣2+ 1

T

∣∣φ2T
ξ −φT

ξ

∣∣2
)
η dx � C

T

ˆ

Rd
φT

ξ (φ2T
ξ −φT

ξ )η dx . (84)

In the following, we treat dimensions d � 2 and d � 3 separately. In the case
d � 2, by Young’s inequality and absorption the previous inequality yields

ˆ

Rd

(∣∣∇φ2T
ξ − ∇φT

ξ

∣∣2 + 1

T

∣∣φ2T
ξ − φT

ξ

∣∣2
)
η dx � C

T

ˆ

Rd
|φT

ξ |2η dx .

Note that by Proposition 19 (in connection with a dyadic decomposition of Rd

for d = 1, 2 into the ball B√T (0) and the annuli {2i√T � |x | < 2i+1
√
T },

i = 0, 1, 2, . . .) we obtain

1

T

ˆ

Rd
|φT

ξ |2η dx �
{C|ξ |2ε for d = 1,

C|ξ |2ε2
∣
∣∣ log

√
T
ε

∣
∣∣ for d = 2.

Since η � exp(−1) on B√T , the claimed estimate follows for d � 2.

In the case d � 3 we can use in (84) the representation φT
ξ = ∇ · (θTξ − b)

for any b ∈ R
m×d (see (18b)). We obtain by an integration by parts and by the

Cauchy-Schwarz inequality the estimate

1

T

ˆ

Rd
φT

ξ (φ2T
ξ − φT

ξ )η dx

� 1

T

ˆ

Rd
|θTξ − b|

(
|∇φ2T

ξ − ∇φT
ξ | +

γ√
T
|φ2T

ξ − φT
ξ |
)
η dx

With Young’s inequality we may absorb the second factor into the LHS of (84).
We thus obtain

ˆ

Rd

(∣
∣∇φ2T

ξ −∇φT
ξ

∣
∣2 + 1

T

∣
∣φ2T

ξ − φT
ξ

∣
∣2
)
η dx � C

T 2

ˆ

Rd
|θTξ − b|2η dx .

By appealing to Proposition 19 (in connection with a dyadic decomposition ofRd ),
and the fact that η � exp(−1) on B√T , the claimed estimate follows for d � 3.
��
Proof of Corollary 41. Set u:=φ2T

ξ −φT
ξ and note that with â(ξ):= ´ 1

0 ∂ξ A(ωε, ξ+
(1− s)∇φT

ξ + s∇φ2T
ξ ) ds we have by (11a)

−∇ · (â∇u) + 1

T
u = 1

2T
φ2T

ξ .
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Applying the Meyers estimate of Lemma 54 to this PDE – upon rewriting the
right-hand side using (18b) in case d � 3 – we obtain, for 0 � p − 2 � 1, that

(  

B√T (x0)
|∇(φ2T

ξ − φT
ξ )|p dx

)1/p

� C(d,m, λ,�, p)

(  

B2
√
T (x0)

|∇u|2 +
∣∣∣
1√
T
u
∣∣∣
2
dx

)1/2

+

⎧
⎪⎪⎨

⎪⎪⎩

C(d,m, λ,�, p)

(
ffl
B2

√
T (x0)

∣∣∣ 1√
T
φ2T

ξ

∣∣∣
p
dx

)1/p
in case d � 2,

C(d,m, λ,�, p)

(
ffl
B2

√
T (x0)

∣∣∣ 1T (θ2Tξ − b)
∣∣∣
p
dx

)1/p
in case d � 3.

This implies, by Proposition 19 and Lemma 40, that

(  

B√T (x0)
|∇(φ2T

ξ − φT
ξ )|p dx

)1/p

� C|ξ |
(

ε√
T

) d∧4
2
{∣
∣ log(

√
T /ε)

∣
∣ for d ∈ {2, 4},

1 for d = 3, d = 1, and d � 5.

Taking the p-th stochastic moment and using stationarity, we conclude. ��
Proof of Lemma 42. Again, we use the weight η(x):= exp(−γ |x |/√T ) for 0 <

γ � 1. We subtract the equations for φ2T
ξ,� and φT

ξ,� (see (17a)) to obtain

−∇ ·
(
a2Tξ (� +∇φ2T

ξ,�) − aTξ (�+∇φT
ξ,�)
)
+ 1

T
(φ2T

ξ,� − φT
ξ,�) = 1

2T
φ2T

ξ,�.

By adding and subtracting aTξ (� + φ2T
ξ,�) and by additionally appealing to the

representation ∇ · (θ2Tξ,� − b) = φ2T
ξ,� for any b ∈ R

m×d (see (19b)) in the case
d � 3, we get

− ∇ · (aTξ (∇φ2T
ξ,� −∇φT

ξ,�)
)+ 1

T
(φ2T

ξ,� − φT
ξ,�)

= ∇ ·
(
(a2Tξ − aTξ )(�+ ∇φ2T

ξ,�)
)
+
{

1
2T φ2T

ξ,� for d � 2,

∇ · ( 1
2T (θ2Tξ,� − b)) for d � 3.

(85)

Testing the equation with (φ2T
ξ,� − φT

ξ,�)η (with 0 < γ � 1) yields the expo-
nentially localized energy estimate

ˆ

Rd

(
λ|∇φ2T

ξ,� − ∇φT
ξ,�|2 +

1

T
|φ2T

ξ,� − φT
ξ,�|2

)
η dx

� C
ˆ

Rd
|a2Tξ − aTξ |2|�+ ∇φ2T

ξ,�|2η dx + C

{
1
T

´
Rd |φ2T

ξ,�|2η dx for d � 2,
1
T 2

´
Rd |θ2Tξ,� − b|2η dx for d � 3.
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By taking the expectation and exploiting stationarity of the LHS, we get

E

[
|∇φ2T

ξ,� −∇φT
ξ,�|2 +

1

T
|φ2T

ξ,� − φT
ξ,�|2

]

� CE

[
|a2Tξ − aTξ |2|�+∇φ2T

ξ,�|2
]
+ C

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

T
E

[
|φ2T

ξ,�|2
]

for d � 2,

1

T 2E

[ˆ

Rd
|θ2Tξ,� − b|2 η√

T
d
dx

]

for d � 3.

The second term on the RHS can be estimated with help of Proposition 20.
We estimate the first term on the RHS: Since ∂ξ A is Lipschitz by assumption (R)

and since aTξ (x) = A(ωε(x), ξ +∇φT
ξ ), we have |a2Tξ − aTξ | � C |∇φ2T

ξ −∇φT
ξ |.

Hence, with Hölder’s inequality with exponents 0 < p − 1 � c(d,m, λ,�) and
p

p−1 , the bound on �+∇φT
ξ,� from (42) and Lemma 30, and Corollary 41, we get

E

[
|a2Tξ − aTξ |2|� +∇φ2T

ξ,�|2
]

� CE

[
|∇φ2T

ξ − ∇φT
ξ |2p

] 1
p
E

[
|� +∇φ2T

ξ,�|2
p

p−1

] p−1
p

� C |�|2(1+ |ξ |)C |ξ |2
(

ε√
T

)d∧4
×
{∣∣ log(

√
T /ε)

∣∣2 for d ∈ {2, 4},
1 for d = 3, d = 1, and d � 5.

��
Proof of Proposition 39. Step 1: Proof of (a). This is a direct consequence of
stationarity ofP (see assumption (P1)) and stationarity of the randomfield A(ωε, ξ+
∇φT

ξ ) · �− 1
T φT

ξ φ
∗,T
ξ,� , the latter of which is a consequence of the former.

Step 2: Proof of (b). First note that it suffices to prove for any T � 2ε2 the
estimate
∣
∣∣E
[
ARVE,η,2T (ξ) · �

]
− E

[
ARVE,η,T (ξ) ·�

]∣∣∣

� C(1+ |ξ |)2C |ξ ||�|
(

ε√
T

)d∧4 {∣∣ log(
√
T /ε)

∣
∣2 for d = 2 and d = 4,

1 for d = 3, d = 1, and d � 5.

(86)

Indeed, the claimed estimate then follows by rewriting the systematic localiza-
tion error as a telescopic sum,

Ahom(ξ) · � − E

[
ARVE,η,T (ξ) ·�

]

=
∞∑

i=0

(
E

[
ARVE,η,2i+1T (ξ) · �

]
− E

[
ARVE,η,2i T (ξ) · �

])
,

which holds, since

lim
T→∞E

[
ARVE,η,T (ξ) · �

]
= Ahom(ξ) · � P-almost surely.
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We present the argument for (86). In view of (a), we may assume without loss of
generality that the weight η satisfies

supp η ⊂ B√T ,

ˆ

Rd
η dx = 1, |η| + √

T |∇η| � C(d)
√
T
−d

.

Let φ∗,T
ξ,� denote the localized, linearized, adjoint corrector (that is the T -localized

homogenization corrector associated with the linear elliptic PDE with coefficient
field (aTξ )∗). The localized corrector equation (11a) yields

−
ˆ

Rd
η
(
A(ωε, ξ +∇φ2T

ξ ) − A(ωε, ξ +∇φT
ξ )
)
· ∇φ

∗,T
ξ,� dx

=
ˆ

Rd

(
A(ωε, ξ +∇φ2T

ξ ) − A(ωε, ξ +∇φT
ξ )
)
· (φ∗,T

ξ,�∇η)

+ η
( 1

2T
φ2T

ξ − 1

T
φT

ξ

)
φ
∗,T
ξ,� dx . (87)

Combined with the definition of the localized RVE approximation in Defini-
tion 37, we get
(
ARVE,η,2T (ξ)− ARVE,η,T (ξ)

)
·�

=
ˆ

Rd
η

((
A(ωε, ξ +∇φ2T

ξ ) − A(ωε, ξ + ∇φT
ξ )
)
· �− 1

2T
φ2T

ξ φ
∗,2T
ξ,�

+ 1

T
φT

ξ φ
∗,T
ξ,�

)
dx

=
ˆ

Rd
η

((
A(ωε, ξ +∇φ2T

ξ ) − A(ωε, ξ + ∇φT
ξ )
)
· (�+∇φ

∗,T
ξ,�)

− 1

2T
φ2T

ξ φ
∗,2T
ξ,� + 1

T
φT

ξ φ
∗,T
ξ,�

)
dx

+
ˆ

Rd

(
A(ωε, ξ + ∇φ2T

ξ ) − A(ωε, ξ +∇φT
ξ )
)
· (φ∗,T

ξ,�∇η)

+ η
( 1

2T
φ2T

ξ − 1

T
φT

ξ

)
φ
∗,T
ξ,� dx

=
ˆ

Rd
η

((
A(ωε, ξ +∇φ2T

ξ ) − A(ωε, ξ + ∇φT
ξ )
)
· (�+∇φ

∗,T
ξ,�)

− 1

2T
φ2T

ξ (φ
∗,2T
ξ,� − φ

∗,T
ξ,�)

)
dx

+
ˆ

Rd

(
A(ωε, ξ + ∇φ2T

ξ ) − A(ωε, ξ +∇φT
ξ )
)
· (φ∗,T

ξ,�∇η) dx .

We subtract the linearized corrector equation (17a) in its form for the adjoint coef-
ficient field and the corresponding corrector
ˆ

Rd
aT,∗
ξ

(
�+ ∇φ

∗,T
ξ,�

) · ∇(η(φ2T
ξ − φT

ξ )
)+ 1

T

ˆ

Rd
ηφ

∗,T
ξ,�(φ2T

ξ − φT
ξ ) dx = 0,
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where aT,∗
ξ :=(∂ξ A(ξ +∇φT

ξ ))∗. We get

(
ARVE,η,2T (ξ)− ARVE,η,T (ξ)

)
·�

=
ˆ

Rd
η
(
A(ωε, ξ + ∇φ2T

ξ ) − A(ωε, ξ +∇φT
ξ ) − aTξ (∇φ2T

ξ − ∇φT
ξ )
)

· (� +∇φ
∗,T
ξ,�) dx

+
ˆ

Rd

(
A(ωε, ξ + ∇φ2T

ξ ) − A(ωε, ξ +∇φT
ξ )
)
· φ∗,T

ξ,�∇η

− aTξ (�+∇φ
∗,T
ξ,�) · (φ2T

ξ − φT
ξ )∇η dx

−
ˆ

Rd
η
( 1

2T
φ2T

ξ (φ
∗,2T
ξ,� − φ

∗,T
ξ,�) + 1

T
φ
∗,T
ξ,�(φ2T

ξ − φT
ξ )
)
dx . (88)

We take the expectation of this identity and note that the expectation of the second
integral on the right-hand side vanishes: Indeed, since it is of the formE

[ ´
Rd B∇η

]

where B is a stationary random field and η is compactly supported, we have
E
[ ´

Rd B∇η
] = E

[
B
] ´

Rd ∇η = 0. Moreover, for the first term on the RHS of
(88) we appeal to the uniform bound on ∂2ξ A from assumption (R) in form of

(recall that aTξ = ∂ξ A(ωε, ξ +∇φT
ξ ))

∣∣A(ωε, ξ +∇φ2T
ξ )− A(ωε, ξ +∇φT

ξ )−aTξ (∇φ2T
ξ −∇φT

ξ )
∣∣ � C

∣∣∇φ2T
ξ −∇φT

ξ

∣∣2.

We thus get
∣∣∣E
[(

ARVE,η,2T (ξ) − ARVE,η,T (ξ)
)
· �
]∣∣∣

� CE

[
|∇φ2T

ξ − ∇φT
ξ |2|�+∇φ

∗,T
ξ,� |
]

+
∣
∣∣∣E
[ ˆ

Rd
η
( 1

2T
φ2T

ξ (φ
∗,2T
ξ,� − φ

∗,T
ξ,�) + 1

T
φ
∗,T
ξ,�(φ2T

ξ − φT
ξ )
)
dx

]∣∣∣∣

=:I1 + I2. (89)

To estimate I1 we first apply Hölder’s inequality with exponents p and p
p−1 with

0 < p − 1 � c(d,m, λ,�) to obtain

I1 � CE
[∣∣∇φ2T

ξ − ∇φT
ξ

∣∣2p]
1
pE
[∣∣� +∇φT

ξ,�

∣∣
p

p−1
] p−1

p .

We then appeal to Corollary 41 and the moment bound on the linearized corrector
from (42) as well as Lemma 30 to deduce

I1 � C |ξ |2(1+|ξ |)C |�|
(

ε√
T

)d∧4 {∣∣ log(
√
T /ε)

∣∣2 for d ∈ {2, 4},
1 for d = 3, d = 1, and d � 5.

Regarding I2 we distinguish the cases d � 2 and d � 3. In the case d = 2, we
apply Lemma 42, Lemma 40, as well as Proposition 19 and Proposition 20 to obtain

I2 � CE

[
1

T
|φ2T

ξ |2
] 1

2

E

[
1

T
|φ∗,2T

ξ,� − φ
∗,T
ξ,� |2

] 1
2 + E

[
1

T
|φ∗,T

ξ,� |2
] 1

2

E

[
1

T
|φ2T

ξ − φT
ξ |2
] 1

2
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� C(1+ |ξ |)C |ξ ||�|ε2√T
−2∣∣ log(

√
T /ε)

∣
∣2,

and in case d = 1 we proceed similarly.
In the case d � 3 we appeal to the representation of φ2T

ξ and φ
∗,T
ξ,� as ∇ · θ2Tξ

and ∇ · θ∗,2Tξ,� by (18b) and (19b), respectively. To shorten the notation, in the
following we assume without loss of generality that

ffl
B√T

θ2Tξ = ffl
B√T

θ
∗,T
ξ,� = 0.

An integration by parts thus yields

I2 =
∣∣∣
∣E
[ ˆ

Rd
η
( 1

2T
θ2Tξ · (∇φ

∗,2T
ξ,� −∇φ

∗,T
ξ,�) + 1

T
θ
∗,T
ξ,� · (∇φ2T

ξ − ∇φT
ξ )
)
dx

+
ˆ

Rd
∇η ·

( 1

2T
θ2Tξ (φ

∗,2T
ξ,� − φ

∗,T
ξ,�) + 1

T
θ
∗,T
ξ,� (φ2T

ξ − φT
ξ )
)
dx

]∣∣∣
∣.

With the properties of η (in particular, |∇η| �
√
T
−d−1

and supp η ⊂ B√T ), by
the Cauchy-Schwarz inequality, and by stationarity of the localized correctors, we
get

I2 � C

T
E

[  

B√T

|θ2Tξ |2 dx
] 1

2

E

[
|∇φ

∗,2T
ξ,� − ∇φ

∗,T
ξ,� |2 +

1

T
|φ∗,2T

ξ,� − φ
∗,T
ξ,�|2

] 1
2

+ C

T
E

[  

B√T

|θ∗,2Tξ,� |2 dx
] 1

2

E

[
|∇φ2T

ξ −∇φT
ξ |2 +

1

T
|φ2T

ξ − φT
ξ |2
] 1

2

.

Byappealing toProposition 19 andLemma42 for thefirst termand toProposition20
and Lemma 40 for the second term, we obtain

I2 � C(1+ |ξ |)C |ξ ||�|
(

ε√
T

)d∧4 {1 for d = 3 and d � 5,
∣∣ log(

√
T /ε)

∣∣2 for d = 4.

Plugging in the estimates on I1 and I2 into (89), this establishes the estimate
on the localization error for the representative volume element method for P.

Step3:Proof of (c).For the periodizedprobability distributionPL , onemaypro-
ceed analogously to (b), deriving an error estimate onEL [ARVE,η,T ]−EL [ARVE,L ].
��

4.5. Coupling Error for RVEs

Proof of Lemma 38. To shorten the presentation we set ω̂:=πL ω̃ and similarly
mark quantities that are associated with ω̂, that is,

φ̂T
ξ (x) = φT

ξ (ω̂, x), φ̂T
ξ,�(x):=φT

ξ,�(ω̂, x), âTξ (x):=A(ω̂, ξ +∇φ̂T
ξ ).

Moreover, we shall use the following notation for the differences:

δ̂φT
ξ :=φT

ξ − φ̂T
ξ , δ̂φT

ξ,�:=φT
ξ,� − φ̂T

ξ,�
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(we use the symbol δ̂ to distinguish the quantity from the sensitivities considered
in Sects. 5 and 6). In the proof we make use of the exponential test-functions

η(x):= exp(−γ |x |/√T ),

where 0 < γ � 1 is chosen such that the exponential localization estimate
Lemma 45 applies.
Step 1. Estimate for δ̂φT

ξ . We claim that

sup
x0∈BL/8

ˆ

Rd

(
|∇ δ̂φT

ξ |2 +
1

T
|δ̂φT

ξ |2
)
η(x − x0) dx � C

√
T
d
exp(− γ

16 L/
√
T )|ξ |2.

(90)
Indeed, by subtracting the equations for φT

ξ and φ̂T
ξ , we find that

−∇ · (a(x)∇ δ̂φT
ξ ) + 1

T
δ̂φT

ξ = ∇ · F, (91)

where

a(x):=
ˆ 1

0
∂ξ A(ω̃, ξ + (1− s)∇φT

ξ + s∇φ̂T
ξ ) ds,

F :=A(ω̃, ξ + ∇φ̂
ξ
T )− A(ω̂, ξ + ∇φ̂

ξ
T ).

By the exponentially localized energy estimate of Lemma 45, we have

ˆ

Rd

(
|∇ δ̂φT

ξ |2 +
1

T
|δ̂φT

ξ |2
)
η(x − x0) dx � C

ˆ

Rd
|F |2η(x − x0) dx .

Since |x0| � L
8 , for all x with |x | � L

4 the estimate |x − x0| � L
16 + 1

2 |x − x0|
applies. This yields, for such x , that

η(x − x0) � exp(− γ
16 L/

√
T ) exp(− γ

2 |x − x0|/
√
T ) (92)

As ω̂(x) = ω̃(x) holds for |x | � L
4 , we see that F vanishes on BL/4.We thus obtain

ˆ

Rd
|F |2η(x − x0) dx � C exp(− γ

16 L/
√
T )

ˆ

Rd
|ξ +∇φ̂T |2 exp(− γ

2 |x − x0|/
√
T ) dx

� C exp(− γ
16 L/

√
T )
√
T
d |ξ |2,

where for the last estimate we appealed to the localized energy estimate for φ̂T
ξ ,

see Lemma 45. We conclude that (90) holds. For further reference, we note that we
may similarly derive that

sup
x0∈BL/8

ˆ

Rd

(
|∇ δ̂φT

ξ |p+
∣∣∣
1√
T

δ̂φT
ξ

∣∣∣
p)

η(x−x0) dx � C
√
T
d
exp(− γ

16 L/
√
T )|ξ |p

(93)
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for some p = p(d,m, λ,�) > 2 by applying the Meyers estimate of Lemma 54
to (91) with the dyadic decomposition Rd = B√T ∪

⋃∞
k=1(B2k

√
T \ B2k−1

√
T ), the

estimate (90), and the bound
ˆ

Rd
|F |pη(x − x0) dx � C exp(− γ

16 L/
√
T )

ˆ

Rd
|ξ +∇φ̂T |p exp(− γ

2 |x − x0|/
√
T ) dx

� C exp(− γ
16 L/

√
T )
√
T
d |ξ |p.

Note that in the last step of of the last inequality we have again used the Meyers
estimate of Lemma 54 together with the localized energy estimate of Lemma 45
and a dyadic decomposition.
Step 2. Estimate for δ̂φT

ξ,�. We claim that there exists q = q(d,m, λ,�) such that
for all x0 ∈ B L

8
we have

ˆ

Rd

(
|∇ δ̂φT

ξ,�|2 +
1

T
|δ̂φT

ξ,�|2
)
η(x − x0) dx

� C
√
T
d
exp(− γ

32 L/
√
T )(1+ |ξ |2)‖� +∇φT

ξ,�‖2q,T,x0 , (94)

where

‖� +∇φT
ξ,�‖q,T,x0 :=

(√
T
−d

ˆ

Rd
|�+ ∇φT

ξ,�|q exp(− γ
2 |x − x0|/

√
T ) dx

) 1
q

.

Indeed, by subtracting the equations (17a) for φT
ξ,� and φ̂T

ξ,�, we get

−∇ · (̂aTξ ∇ δ̂φT
ξ,�) + 1

T
δ̂φT

ξ,� = ∇ · ((aTξ − âTξ )(�+ ∇φT
ξ,�)
)
.

Note that

aTξ − âTξ = ∂ξ A(ω̃, ξ + ∇φT
ξ ) − ∂ξ A(ω̂, ξ +∇φ̂T

ξ )

= (∂ξ A(ω̃, ξ + ∇φT
ξ ) − ∂ξ A(ω̂, ξ +∇φT

ξ )
)

+ (∂ξ A(ω̂, ξ + ∇φT
ξ )− ∂ξ A(ω̂, ξ + ∇φ̂T

ξ )
)

=:F1 + F2.

By exponential localization in form of Lemma 45, the Lipschitz continuity of ∂ξ A
(see (R)), the fact that F1 vanishes on B L

4
by ω̃ = ω̂ on B L

4
, and the uniform bound

on ∂ξ A from (A2), we get
ˆ

Rd

(
|∇ δ̂φT

ξ,�|2 +
1

T
|δ̂φT

ξ,�|2
)
η(x − x0) dx

� C
ˆ

Rd
|F1|2|�+ ∇φT

ξ,�|2η(x − x0) dx + C
ˆ

Rd
|F2|2|�+ ∇φT

ξ,�|2η(x − x0) dx

� C
ˆ

{|x |> L
4 }
|� +∇φT

ξ,�|2η(x − x0) dx

+ C
ˆ

Rd
|∇ δ̂φT

ξ |2|�+ ∇φT
ξ,�|2η(x − x0) dx . (95)



412 Julian Fischer & Stefan Neukamm

We estimate the first term on the RHS by Hölder’s inequality as
ˆ

{|x |> L
4 }
|�+∇φT

ξ,�|2η(x − x0) dx

� C(d,m, λ,�, q)
√
T
d
exp
(− γ

16 L/
√
T
)‖� +∇φT

ξ,�‖2q,T,x0 .

Next, we estimate the second term on the RHS in (95). Using Hölder’s inequality
with exponents p/2 and p

p−2 (with 0 < p−2 � 1), setting q:= 2p
p−2 , and recalling

(93) from Step 1, we get
ˆ

Rd
|∇ δ̂φT

ξ |2|�+ ∇φT
ξ,�|2η(x − x0) dx

� C
√
T
d
(√

T
−d

ˆ

Rd
|∇ δ̂φT

ξ |pη(x − x0) dx

) 2
p ‖� + ∇φT

ξ,�‖2q,T,x0

� C
√
T
d
exp(− γ

32 L/
√
T )|ξ |2‖� +∇φT

ξ,�‖2q,T,x0 .

This completes the argument for (94).
Step 3. Conclusion. Set

ζ(ω̃, x):=
(
A(ω̃(x), ξ +∇φT

ξ (ω̃, x)) · �− 1

T
φT

ξ (ω̃, x)φ∗,T
ξ,�(ω̃, x)

)
.

Since ηL is supported in B L
8
and ηL � L−d , we have

I1:=
∣
∣∣
(
ARVE,ηL ,T (ω̃, ξ)−ARVE,ηL ,T (ω̂, ξ)

)·�
∣
∣∣ � CL−d

ˆ

B L
8

|ζ(ω̃, x)−ζ(ω̂, x)| dx .

We cover B L
8
by balls of radius

√
T � L and centers in B L

8
; more precisely, there

exists a set XL ,T ⊂ B L
8
with #XL ,T � C(d)

(
L/
√
T
)d and ∪x0∈XL ,T B

√
T (x0) ⊃

B L
8
. Thus,

I1 � CL−d
∑

x0∈XL ,T

ˆ

B√T (x0)∩BL/8

|ζ(ω̃, x) − ζ(ω̂, x)| dx

� C
√
T
−d( 1

#XL ,T

∑

x0∈XL ,T

ˆ

BL/8(x0)∩BL/8

|ζ(ω̃, x) − ζ(ω̂, x)|η(x − x0) dx
)
.

By the definition of ζ , the estimates in (90) and (94) from Step 1 and Step 2, and the
deterministic exponentially localized bounds on 1√

T
φT

ξ and 1√
T
φ
∗,T
ξ,� (which are a

consequence of Lemma 45), and the Lipschitz continuity of A with respect to the
second variable (see (A2)), we conclude for x0 ∈ XL ,T ⊂ B L

8
that

ˆ

BL/8(x0)∩BL/8

|ζ(ω̃, x) − ζ(ω̂, x)|η(x − x0) dx
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� C
ˆ

Rd

(∣∣A(ω̃, ξ +∇φT
ξ ) − A(ω̃, ξ +∇φ̂T

ξ )
∣∣|�|

+ 1

T
|φT

ξ ||δ̂φ∗,T
ξ,�| +

1

T
|δ̂φT

ξ ||φ̂∗,T
ξ,�|
)
η(x − x0) dx

� C

(ˆ

Rd
|�|2η(x − x0) dx

) 1
2
(ˆ

Rd
|∇ δ̂φT

ξ |2η(x − x0) dx

) 1
2

+ C

(ˆ

Rd

1

T
|φT

ξ |2η(x − x0) dx

) 1
2
(ˆ

Rd

1

T
|δ̂φ∗,T

ξ,�|2η(x − x0) dx

) 1
2

+ C

(ˆ

Rd

1

T
|δ̂φT

ξ |2η(x − x0) dx

) 1
2
(ˆ

Rd

1

T
|φ̂∗,T

ξ,�|2η(x − x0) dx

) 1
2

� C
√
T
d(

exp(− γ
32 L/

√
T )
) 1

2
(
|ξ |2|�|2 + (1+ |ξ |2)|ξ |2‖�+ ∇φT

ξ,�‖2q,T,x0

) 1
2
.

In total, we have shown the desired deterministic estimate

|ARVE,ηL ,T (ω̃, ξ) − ARVE,ηL ,T (πL ω̃, ξ)|
� C exp

(
− γ

64
· L√

T

)(
|ξ ||�| + (1+ |ξ |)|ξ |‖�+ ∇φT

ξ,�‖q,L ,T

)
.

��

4.6. Estimate on the Systematic Error of the RVE Method

Wenowestimate the systematic error of theRVEapproximation for the effective
material law.We begin with the case in the presence of the regularity condition (R).

Proof of Theorem 14b – the case with (R). By rescaling we may assume without
loss of generality that ε = 1. In the following η : Rd → R denotes a non-negative
weight supported in B L

8
with |η| � C(d)L−d and

´
Rd η dx = 1. Moreover, we

consider a localization parameter T according to

√
T = γ

64

L

log((L/ε)d∧4)
(96)

for the γ = γ (d,m, λ,�) from Lemma 38. Our starting point is the error decom-
position (53), which yields for any � ∈ R

m×d

EL

[
ARVE,L(ξ)

]
· �− Ahom(ξ) · �

= EL

[
ARVE,L(ξ) · �

]
− EL

[
ARVE,η,T (ξ) ·�

]

+ EL

[
ARVE,η,T (ξ) · �

]
− EL

[
ARVE,η,T (πLωε,L , ξ) · �

]

+ E

[
ARVE,η,T (πLωε, ξ) · �

]
− E

[
ARVE,η,T (ξ) · �

]

+ E

[
ARVE,η,T (ξ) ·�

]
− Ahom(ξ) · �
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=:I1 + I2 + I3 + I4. (97)

Note that in the above decomposition we already used the equality

EL

[
ARVE,η,T (πLωε,L , ξ)

]
= E

[
ARVE,η,T (πLωε, ξ)

]
,

which is valid since PL is assumed to be a L-periodic approximation of P in the
sense of Definition 13 (recall also (51)). The terms I2 and I3 are coupling errors
that can be estimated deterministically with help of Lemma 38. Combined with
the choice of T in (96) and the bound on high moments of ∇φT

ξ,� obtained by
combining (42) and Lemma 30, we arrive at

|I2| + |I3| � C(1+ |ξ |C )|ξ ||�|
(
L

ε

)−(d∧4)
.

The terms I1 and I4 are systematic localization errors that can be estimated with
help of Proposition 39b,c. We obtain using again (96)

|I1| + |I4| � C(1+ |ξ |)C |ξ ||�|
(
L

ε

)−(d∧4)
| log(L/ε)|αd .

Having estimated all terms in (97), this establishes the first estimate in Theorem 14b
upon taking the supremum with respect to �, |�| � 1. ��

We next establish the suboptimal estimate for the systematic error of the RVE
method in the case without the small-scale regularity condition (R).

Proof of Theorem 14b – the case without (R). As in the case with small scale reg-
ularity (R), we denote by η : Rd → R a non-negative weight supported in B L

8
with

|η| � C(d)L−d and
´
Rd η = 1. Moreover, we consider a localization parameter√

T � L , whose relative scaling with respect to L will be specified below in Step 3.
For any parameter field ω̃ we consider the localized RVE-approximation

ARVE,η,T (ω̃, ξ):=
ˆ

Rd
ηA(ω̃, ξ +∇φT

ξ ) dx .

Note that it has a simpler form compared to the quantity introduced in Defini-
tion 37. In particular, the above expression does not invoke the linearized corrector
(for which we cannot derive suitable estimates without the small scale regular-
ity condition (R)). As in the case with small scale regularity, the starting point is
estimate (97), that is the decomposition of the systematic error

EL [ARVE,L(ξ)] − Ahom(ξ) = I1 + I2 + I3 + I4

into the two coupling errors

I2:=EL

[
ARVE,η,T (ξ)

]
− EL

[
ARVE,η,T (πLωε,L , ξ)

]
,

I3:=E

[
ARVE,η,T (πLωε, ξ)

]
− E

[
ARVE,η,T (ξ)

]
,
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and the two systematic localization errors

I1:=EL

[
ARVE,L(ξ)

]
− EL

[
ARVE,η,T (ξ)

]
,

I4:=E

[
ARVE,η,T (ξ)

]
− Ahom(ξ).

Step 1. Estimate of the coupling errors. We claim that

|I2| + |I3| � C exp
(
− γ

32
L/
√
T
)
|ξ |.

Indeed, this can be seen by an argument similar to the proof of Lemma 38. In
fact the argument is significantly simpler thanks to the absence of the linearized
corrector in the definition of the localized RVE-approximation. We only discuss
the argument for I3, since the one for I2 is analogous. We first note that, thanks to
the assumptions on η and the Lipschitz continuity of A (see (A2)) we have

∣∣∣ARVE,η,T (ωε, ξ) − ARVE,η,T (πLωε, ξ)

∣∣∣ � C
 

B L
8

|∇ δ̂φT
ξ | dx, (98)

where δ̂φT
ξ is defined by (91). As in Sect. 4.6 we consider a minimal cover of B L

8

by balls of radius
√
T ; more precisely, let XL ,T ⊂ B L

8
denote a finite set of points

such that #XL ,T � C(d)(L/
√
T )d and ∪x0∈XL ,T B

√
T (x0) ⊃ B L

8
. Then

[RHS of (98)] � C
√
T
−d 1

#XL ,T

∑

x0∈XL ,T

ˆ

B L
8

(x0)
|∇ δ̂φT

ξ | exp(−γ |x − x0|/
√
T ) dx

� C
√
T
− d

2 1

#XL ,T

∑

x0∈XL ,T

(ˆ

Rd
|∇ δ̂φT

ξ |2 exp(−γ |x − x0|/
√
T ) dx

) 1
2

where 0 < γ � 1 is chosen such that the exponential localization estimate of
Lemma 45 applies. Combining the estimate with (90) thus yields

∣
∣∣ARVE,η,T (ωε, ξ) − ARVE,η,T (πLωε, ξ)

∣
∣∣

� C
√
T
−d/2

sup
x0∈B L

8

(ˆ

Rd
|∇ δ̂φT

ξ |2 exp(−γ |x − x0|/
√
T ) dx

) 1
2

� C exp
(− γ

32 L/
√
T
)|ξ |.

Step 2. Estimate of the systematic localization errors. We claim that

|I1| + |I4| � C |ξ |
(

ε√
T

) d∧4
2
{∣∣ log

√
T
∣∣
1
2 for d ∈ {2, 4},

1 for d = 3 and d � 5.

We only discuss I4, since the argument for I1 is similar. The Lipschitz continuity
of A (see (A2)) and the localization error estimate for the corrector in form of
Lemma 40 yield

∣∣∣E
[
ARVE,η,2T (ξ)− ARVE,η,T (ξ)

] ∣∣∣
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� CE

[
|∇φ2T

ξ − ∇φT
ξ |2
] 1
2

� C |ξ |
(

ε√
T

) d∧4
2 ×

{∣∣ log(ε/
√
T )
∣∣
1
2 for d ∈ {2, 4},

1 for d = 3 and d � 5.

The claimed estimate now follows by a telescopic sum argument similar to Step 2
of the proof of Proposition 39.
Step 3. Conclusion. The combination of the previous steps yields

|I1| + |I2| + |I3| + |I4|
|ξ |

� C exp
(
− γ

32

L√
T

)
+
(

ε√
T

) d∧4
2 ×

{∣∣ log(
√
T /ε)

∣∣
1
2 for d ∈ {2, 4},

1 otherwise.

With
√
T = γ

32 L
(
log ((L/ε)

d∧4
2 )
)−1, the RHS turns into

C

(
ε

L

) d∧4
2 + C

(
ε

L

) d∧4
2

(log(L/ε))
d∧4
2 ×

{∣∣ log L
∣∣
1
2 for d ∈ {2, 4},

1 otherwise.

This establishes the result. ��

5. Corrector Estimates for the Nonlinear Monotone PDE

5.1. Estimates on Linear Functionals of the Corrector and the Flux Corrector

Wenow turn to the firstmajor step, the estimate on the localized homogenization
corrector φT

ξ and the localized flux corrector σ T
ξ . For the proof of the estimate on

linear functionals of the corrector and the flux corrector in Lemma 24, we need
the following auxiliary lemma, which follows by a combination of the Caccioppoli
inequality with hole-filling:

Lemma 48. Let the assumptions (A1)–(A2) be satisfied, let ε > 0 be arbitrary, let
ω̃ be an arbitrary parameter field, let the correctors φT

ξ and φT
ξ,� be defined as

the unique solutions to the corrector equations (11a) and (17a) in H1
uloc, and let

r∗,T,ξ and r∗,T,ξ,� be as in (35) and (39). Let the parameter Kmass in (35), (39)
be chosen as Kmass � C(d,m, λ,�) for some C determined in the proof below
(independently of ε). Then for any x0 ∈ R

d the estimates

 

Bε(x0)
|ξ +∇φT

ξ |2 dx � C |ξ |2
(
r∗,T,ξ (x0)

ε

)d−δ

(99)

and
 

Bε(x0)
|�+∇φT

ξ,�|2 dx � C |�|2
(
r∗,T,ξ,�(x0)

ε

)d−δ

(100)
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hold true for some δ = δ(d,m, λ,�), 0 < δ < 1
2 . Furthermore, we have

r∗,T,ξ (x0) � C
√
T , (101)

r∗,T,ξ,�(x0) � C
√
T . (102)

Note that r∗,T,ξ and r∗,T,ξ,� as defined in (35) and (39) are well-defined, as by
considerations in the proof below the conditions in the definition of r∗,T,ξ are
satisfied for all r � C

√
T .

Proof. The estimates (101) and (102) are a simple consequence of the definitions
(35) and (39), the assumed lower bound on Kmass , and the bounds

 

BR

1

T
|φT

ξ |2 dx � C |ξ |2
 

BR

1

T
|φT

ξ,�|2 dx � C |�|2

valid for all R �
√
T which are a consequence of Lemma45 applied to the corrector

equations (11a) (with u:=φT
ξ , F :=A(x, ξ +∇φT

ξ )− A(x,∇φT
ξ ), and f ≡ 0) and

(17a).
Toprove (99),we employ the hole-filling estimate (55) for the functionu(x):=ξ ·

(x − x0) + φT
ξ , which by (11a) solves the PDE

−∇ · (A(ω̃,∇u
))+ 1

T
u = 1

T
ξ · (x − x0).

In combination with the Caccioppoli inequality (54), this yields
 

Bε(x0)
|ξ +∇φT

ξ |2 dx

� C

(
r∗,T,ξ

ε

)d−δ

inf
b∈Rm

(
1

r2∗,T,ξ

 

Br∗,T,ξ
(x0)

|ξ · (x − x0)+ φT
ξ − b|2 dx + 1

T
|b|2

+
 

Br∗,T,ξ
(x0)

1

T
|ξ · (x − x0)|2 dx

)

+ C

(
r∗,T,ξ

ε

)d  

Br∗,T,ξ
(x0)

(
ε

ε + |x − x0|
)δ 1

T
|ξ · (x − x0)|2 dx .

Splitting the last integral into the integrals
´
Bε(x0)

and
´
Br∗,T,ξ

(x0)\Bε(x0)
, we see

(since r∗,T,ξ � ε) that the term in the last line is bounded by

Cε−drd∗,T,ξ

1

T
|ξ |2ε2 + Cε−dεδ 1

T
|ξ |2rd+2−δ

∗,T,ξ � C
1

T
|ξ |2
(
r∗,T,ξ

ε

)d−δ

r2∗,T,ξ .

Choosing b:= ffl
Br∗,T,ξ

(x0)
φT

ξ dx and using the definition of r∗,T,ξ (35) as well as

the fact that r∗,T,ξ � C
√
T therefore entails (99). To show (100), one argues

analogously. ��
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The following estimate is a consequence of a straightforward application of
Hölder’s inequality and Jensen’s inequality, but we state it to avoid repetition of
the same computations, as it is used several times in the proofs of Lemma 24 and
Lemma 28.

Lemma 49. Let ε > 0 and let b and B be stationary random fields with
 

Bε(x)
|b|2 dx̃ � |B(x)|2.

Let h be a random field satisfying ∇h ∈ L p(Rd) almost surely. Let 0 < α0 � 1
and 0 < τ < 1. Let p > 2 be close enough to 2 depending only on d and on (a
lower bound on) α0, but otherwise arbitrary. Then for any q � C(p, α0, τ ) and
for any r � ε, the estimate

E

[(ˆ

Rd

∣
∣∣∣

 

Bε(x)
|b||∇h| dx̃

∣
∣∣∣

2

dx

)q]1/2q

� C(d, α0, p, τ )rd/2
E
[|B|2q/(1−τ)

](1−τ)/2q

× E

[(
r−d

ˆ

Rd
|∇h|p

(
1+ |x |

r

)α0

dx

)2q/pτ]τ/2q

holds true.

Proof of Lemma 49. Several applications of Hölder’s inequality yield, together
with the bound on b, that

E

[( ˆ

Rd

∣∣∣
∣

 

Bε(x)
|b||∇h| dx̃

∣∣∣
∣

2

dx

)q]1/2q

� E

[(ˆ

Rd

 

Bε(x)
|b|2 dx̃

 

Bε(x)
|∇h|2 dx̃ dx

)q]1/2q

� E

[(ˆ

Rd
|B(x)|2

 

Bε(x)
|∇h|2 dx̃ dx

)q]1/2q

� rd/2
E

[(
r−d

ˆ

Rd
|B(x)|2p/(p−2)

(
1+ |x |

r

)−2α0/(p−2)

dx

)q(p−2)/p

×
(
r−d

ˆ

Rd

(  

Bε(x)
|∇h|2 dx̃

)p/2(
1+ |x |

r

)α0

dx

)2q/p]1/2q
.

This implies, using Hölder’s inequality with exponents 1
1−τ

and 1
τ
and Jensen’s

inequality, that

E

[(ˆ

Rd

∣
∣∣
∣

 

Bε(x)
|b||∇h| dx̃

∣
∣∣
∣

2

dx

)q]1/2q

� rd/2
E

[(
r−d

ˆ

Rd
|B(x)|2p/(p−2)

(
1+ |x |

r

)−2α0/(p−2)

dx

)q(p−2)/p(1−τ)](1−τ)/2q
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× E

[(
r−d

ˆ

Rd

 

Bε(x)
|∇h|p dx̃

(
1+ |x |

r

)α0

dx

)2q/pτ]τ/2q

.

Assuming that q � p/(p − 2) and 2α0/(p − 2) � 2d, we obtain using Jensen’s
inequality in the first term (note that the integral r−d

´
Rd

(
1+ |x |

r

)α0/(p−2) dx is
bounded by C(d, α0, p)) as well as the fact that the supremum and the infimum of
the function 1+ |x |

r on an ε-ball differ by at most a factor of 2 in the second term

E

[( ˆ

Rd

∣
∣∣
∣

 

Bε(x)
|b||∇h| dx̃

∣
∣∣
∣
2
dx

)q]1/2q

� C(d, α0, p, τ )rd/2
E

[
r−d

ˆ

Rd
|B(x)|2q/(1−τ)

(
1+ |x |

r

)−2α0/(p−2)
dx

](1−τ)/2q

× E

[(
r−d

ˆ

Rd
|∇h|p

(
1+ |x |

r

)α0

dx

)2q/pτ]τ/2q

.

By the stationarity of B, this yields the assertion of the lemma. ��
We now prove the estimate in Lemma 24 for functionals of the localized correc-

tor φT
ξ for the nonlinear elliptic PDE and the corresponding localized flux corrector

σ T
ξ . As the proof of Lemma 25 is very similar, we combine their proofs.

Proof of Lemma 24 and Lemma 25. Part a: Estimates for linear functionals of
the homogenization corrector φT

ξ . Taking the derivative of the corrector equation
(11a) with respect to a perturbation δωε of the random field ωε, we see that the
change δφT

ξ of the corrector under such an infinitesimal perturbation satisfies the
linear elliptic PDE

−∇ · (∂ξ A
(
ωε, ξ +∇φT

ξ

)∇δφT
ξ

)+ 1

T
δφT

ξ = ∇ · (∂ωA
(
ωε, ξ + ∇φT

ξ

)
δωε

)
.

(103)

Define the coefficient field aTξ (x):=∂ξ A(ωε(x), ξ +∇φT
ξ (x)). By our assumptions

(A1) and (A2), the coefficient field aTξ : Rd → R
m×d ⊗ R

m×d exists and is uni-
formly elliptic and bounded in the sense aTξ v · v � λ|v|2 and |aTξ v| � �|v| for any
v ∈ R

m×d .
Now, consider a functional of the form F := ´

Rd g · ∇φT
ξ dx for a determinis-

tic compactly supported function g. Denoting by h ∈ H1(Rd ;Rm) the (unique)
solution to the dual equation

−∇ · (aT,∗
ξ ∇h) + 1

T
h = ∇ · g, (104)

we deduce

δF =
ˆ

Rd
g · ∇δφT

ξ dx
(104)= −

ˆ

Rd
aTξ ∇δφT

ξ · ∇h + 1

T
δφT

ξ h dx

(103)=
ˆ

Rd
∂ωA

(
ωε, ξ + ∇φT

ξ

)
δωε · ∇h dx,
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that is, we have

∂F

∂ωε

= ∂ωA
(
ωε, ξ +∇φT

ξ

) · ∇h. (105)

By the assumption (A3), this implies

ˆ

Rd

∣∣∣∣

 

Bε(x)

∣∣∣∣
∂F

∂ωε

∣∣∣∣ dx̃
∣∣∣∣

2

dx

� C
ˆ

Rd

∣∣
∣∣

 

Bε(x)
|ξ +∇φT

ξ ||∇h| dx̃
∣∣
∣∣

2

dx .

Using theversionof the spectral gap inequality for theq-thmoment (seeLemma23),
we deduce, for any q � 1,

E

[∣∣F − E[F]∣∣2q
]1/2q

� Cqεd/2
E

[(ˆ

Rd

∣∣∣
∣

 

Bε(x)
|ξ + ∇φT

ξ ||∇h| dx̃
∣∣∣
∣

2

dx

)q]1/2q
.

As φT
ξ is a stationary vector field, we have E[F] = ´

Rd g · ∇E[φT
ξ ] dx = 0. By

(99), we have

 

Bε(x)
|ξ + ∇φT

ξ |2 dx̃ � C |ξ |2
(
r∗,T,ξ (x0)

ε

)d−δ

=:B(x)2.

An application of Lemma 49 therefore yields for any 0 < τ < 1, any 0 < α0 < c,
any p ∈ (2, 2+ c(d,m, λ,�, α0)), and any q � C(d,m, λ,�, τ, α0, p) (note that
∇h ∈ L p holds by Lemma 44 and our assumptions on g)

E
[|F |2q]1/2q � C |ξ |qεd/2rd/2

E

[(
r∗,T,ξ

ε

)(d−δ)q/(1−τ)](1−τ)/2q

× E

[(
r−d

ˆ

Rd
|∇h|p

(
1+ |x |

r

)α0

dx

)2q/pτ]τ/2q

. (106)

Applying the weighted Meyers estimate of Lemma 44 to the equation (104) and
using our assumption (

ffl
Br (x0)

|g|p dx)1/p � r−d , the integral in the last term may
be estimated to yield

E
[|F |2q]1/2q � C |ξ |q

(
ε

r

)d/2

E

[(
r∗,T,ξ

ε

)(d−δ)q/(1−τ)](1−τ)/2q

for any 2 < p < 2 + c, any 0 < τ < 1, and any q � C(d,m, λ,�, p, τ ). This is
the desired estimate for functionals of φT

ξ in Lemma 24.
Next, we establish (37). To this end, we consider the random variable

F := ffl
BR(x0)

φT
ξ dx for R �

√
T . By E[φT

ξ ] = 0 – which follows since φT
ξ is

the divergence of a stationary random field – we see that we have E[F] = 0. We
may therefore repeat the previous computation to estimate the stochastic moments
of F , up to the following changes: The equation (104) is replaced by the equation
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with non-divergence form right-hand side −∇ · (aT,∗
ξ ∇h) + 1

T h = 1
|BR |χBR(x0),

and the estimate for ∇h deduced from Lemma 44 now reads as
(
R−d

ˆ

Rd
|∇h|p

(
1+ |x |

R

)α0

dx

)1/p

� C
√
T

(
R−d

ˆ

Rd

∣∣
∣∣

1

|BR |χBR(x0)

∣∣
∣∣

p

dx

)1/p
.

In total, we deduce

E

[∣∣
∣∣

 

BR(x0)
φT

ξ dx

∣∣
∣∣

q]1/q
� C |ξ |q√T

(
ε

R

)d/2

E

[(
r∗,T,ξ

ε

)(d−δ)q/(1−τ)](1−τ)/2q

.

This is precisely the desired estimate on the average of φT
ξ from (37).

Part b: Estimates for linear functionals of the flux corrector σ T
ξ . Taking the

derivative of the flux corrector equation (11c) with respect to a perturbation δωε

of the random field ωε, we see that the change δσ T
ξ of the corrector under such an

infinitesimal perturbation satisfies the linear elliptic PDE

−�δσ T
ξ, jk +

1

T
δσ T

ξ, jk =∇ · (∂ωA(ωε, ξ +∇φT
ξ )δωε · (ek ⊗ e j − e j ⊗ ek))

+∇ · (∂ξ A(ωε, ξ +∇φT
ξ )∇δφT

ξ · (ek ⊗ e j − e j ⊗ ek)).
(107)

For the sensitivity of the functional

F :=
ˆ

Rd
g · ∇σ T

ξ, jk dx,

we obtain by defining h̄ ∈ H1(Rd ;Rm×d) as the unique decaying solution to the
(system of) Poisson equation(s) with massive term

−�h̄ + 1

T
h̄ = ∇ · g, (108)

and defining ĥ ∈ H1(Rd ;Rm×d) as the unique decaying solution to the uniformly
elliptic PDE (with aTξ (x):=∂ξ A(ωε(x), ξ +∇φT

ξ ))

−∇ · (aT,∗
ξ ∇ĥ) + 1

T
ĥ = ∇ · ((∂ j h̄ek − ∂k h̄e j ) · ∂ξ A(ωε, ξ +∇φT

ξ )
)
, (109)

that

δF =
ˆ

Rd
g · ∇δσ T

ξ, jk dx
(108)= −

ˆ

Rd
∇ h̄ · ∇δσ T

ξ, jk +
1

T
h̄ δσ T

ξ, jk dx

(107)=
ˆ

Rd
∇h̄ · (∂ωA(ωε, ξ +∇φT

ξ )δωε · (ek ⊗ e j − e j ⊗ ek)
)
dx

+
ˆ

Rd
∇h̄ · (∂ξ A(ωε, ξ +∇φT

ξ )∇δφT
ξ · (ek ⊗ e j − e j ⊗ ek)

)
dx
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(109)=
ˆ

Rd
∇h̄ · (∂ωA(ωε, ξ +∇φT

ξ )δωε · (ek ⊗ e j − e j ⊗ ek)
)
dx

−
ˆ

Rd
∂ξ A(ωε, ξ +∇φT

ξ )∇δφT
ξ · ∇ ĥ + 1

T
δφT

ξ ĥ dx

(103)=
ˆ

Rd
∇h̄ · (∂ωA(ωε, ξ +∇φT

ξ )δωε · (ek ⊗ e j − e j ⊗ ek)
)
dx

+
ˆ

Rd
∂ωA(ωε, ξ +∇φT

ξ )δωε · ∇ ĥ dx .

that is, we have

∂F

∂ωε

= (∂ j h̄ek − ∂k h̄e j ) · ∂ωA(ωε, ξ + ∇φT
ξ ) +∇ĥ · ∂ωA(ωε, ξ +∇φT

ξ ).

Using again the version of the spectral gap inequality for the q-th moment from
Lemma 23, the fact that E[F] = ´

Rd g · ∇E[σ T
ξ, jk] dx = 0 by stationarity, and the

bound |∂ωA(ω, ξ)| � �|ξ | (recall (A1)-(A2)), we obtain

E
[|F |2q]1/2q � Cqεd/2

E

[( ˆ

Rd

∣∣∣∣

 

Bε(x)
|ξ +∇φT

ξ |(|∇h̄| + |∇ĥ|) dx̃
∣∣∣∣

2

dx

)q]1/2q
.

By (99), we have

 

Bε(x)
|ξ + ∇φT

ξ |2 dx̃ � C |ξ |2
(
r∗,T,ξ (x0)

ε

)d−δ

=:B(x)2.

Using Lemma 49 we deduce that for any α0 ∈ (0, c(d,m, λ,�)), any p ∈ (2, 2+
c(d,m, λ,�, α0)), any τ ∈ (0, 1), and any q � q(d,m, λ,�, α0, p)

E
[|F |2q]1/2q � C |ξ |qεd/2rd/2

E

[(
r∗,T,ξ

ε

)(d−δ)q/(1−τ)](1−τ)/2q

× E

[(
r−d

ˆ

Rd
(|∇h̄|p + |∇ĥ|p)

(
1+ |x |

r

)α0

dx

)2q/pτ]τ/2q

.

By the weighted Meyers estimate of Lemma 44 and the defining equation (109)
for ĥ as well as the uniform bound on ∂ξ A inferred from (A2), we deduce for any
α1/2 ∈ (α0, c)

E
[|F |2q]1/2q � C |ξ |qεd/2rd/2

E

[(
r∗,T,ξ

ε

)(d−δ)q/(1−τ)](1−τ)/2q

× E

[(
r−d

ˆ

Rd
|∇h̄|p

(
1+ |x |

r

)α1/2

dx

)2q/pτ]τ/2q

.

Applying Lemma 44 to the equation (108) and using (
ffl
Br (x0)

|g|p dx)1/p � r−d ,
the integral in the last term may be estimated to yield

E
[|F |2q]1/2q � C |ξ |q

(
ε

r

)d/2

E

[(
r∗,T,ξ

ε

)(d−δ)q/(1−τ)](1−τ)/2q

.
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This is the desired estimate on functionals of σ T
ξ in Lemma 24.

As in Part a, the estimate on the average of σ T
ξ from (37) follows upon re-

placing the equation for h̄ by the PDE −�h̄ + 1
T h̄ = 1

|BR |χBR(x0) in the previous
computation.

Part c: Estimates on linear functionals of the potential θTξ,i . We consider the
case

F =
ˆ

Rd
g(x) · 1

r
∇θTξ,i (x) dx .

In order to remain entirely rigorous, for the purpose of the present argument we
would in principle need to approximate θTξ,�,i by quantities like θ

T,S
ξ,�,i defined as the

solution to the PDE−�θ
T,S
ξ,�,i + 1

S θ
T,S
ξ,�,i = −∂iφ

T
ξ,�. After obtaining our estimates,

wewould let S →∞ to conclude. However, as this step is analogous to ourmassive
regularization of the corrector equation which we perform in full detail, we omit
this additional technicality.

Taking the derivative of the equation (18a) with respect to a perturbation δωε

of the random field ωε, we get

�δθTξ,i = ∂iδφ
T
ξ . (110)

Defining ḡ ∈ H1(Rd;Rm) as the unique decaying solution to the PDE

−�ḡ = ∇ · g, (111)

we obtain

δF = 1

r

ˆ

Rd
g · ∇δθTξ,i dx

(111)= −1

r

ˆ

Rd
∇ ḡ · ∇δθTξ,i dx

(110)= 1

r

ˆ

Rd
ḡ(ei · ∇)δφT

ξ dx .

In other words, we are back in the situation of Part a, the only difference being
that the function g has been replaced by the function 1

r ḡei . The function ḡ now
no longer has compact support; rather, being the solution to the Poisson equation
(111) in d � 3 dimensions, for any 0 < α1 < 1 and any p � 2 it satisfies the
weighted Calderon-Zygmund estimate

( 

Rd
|ḡ|p

(
1+ |x − x0|

r

)α1
dx

)1/p
� Cr

( 

Br (x0)
|g|p dx

)1/p
.

Now, we may follow the estimates from Part a leading to (106) line by line. In the
next step, we again employ Lemma 44, which by the previous estimate on ḡ gives

E
[|F |2q]1/2q � C |ξ |q

(
ε

r

)d/2

E

[(
r∗,T,ξ

ε

)(d−δ)q/(1−τ)](1−τ)/2q

.

This is our desired estimate.
Part d: Proof of the estimate (36). Let w ∈ H1(Rd) be arbitrary. Assuming

for the moment R = 2Nr for some N ∈ N, we may write

∣∣∣∣

 

BR(x0)
w dx −

 

Br (x0)
w dx

∣∣∣∣

2

=
N∑

n=1

∣∣〈 fn, w〉L2

∣∣2
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with fn := 1
|B2nr |χB2nr (x0)− 1

|B2n−1r |χB2n−1r (x0)
, where we have used the orthogonal-

ity of the functions fn . Solving the PDEs �v = fn on B2nr (x0) with Neumann
boundary conditions, we see that gn :=∇vχB2nr (x0) solves ∇ · gn = fn on R

d and
satisfies for any p � 2 the estimate (

ffl
B2nr (x0)

|gn|p dx)1/p � C(2nr)1−d . This
implies

E

[∣∣∣
∣

 

BR(x0)
w dx −

 

Br (x0)
w dx

∣∣∣
∣

2q]1/q
�

N∑

n=1

E

[∣∣∣
∣

ˆ

Rd
gn · ∇w

∣∣∣
∣

2q]1/q
.

Combining this estimate with the bounds on gn and the estimates from Lemma 24,
we deduce the estimate (36) if R is of the form R = 2Nr . If R is not of this form,
we need one additional step to estimate the difference of the averages on the radius

2%log2 R
r &r and R. ��

5.2. Estimates on the Corrector for the Nonlinear PDE

We will need the following technical lemma.

Lemma 50. Let R > 0 and K ∈ N. For any function v ∈ H1([−R, R]d ;Rm) the
estimate

 

[−R,R]d

∣∣∣
∣v −

 

[−R,R]d
v dx̃

∣∣∣
∣

2

dx

� C
∑

k∈{0,...,K }d
R2
∣∣∣
∣

 

[−R,R]d

d∏

i=1

cos
(πki (xi + R)

2R

)
∇φT

ξ dx

∣∣∣
∣

2

+ C

K 2 R
2
 

[−R,R]d
|∇v|2 dx

holds.

Proof. The proof is an elementary consequence of the Fourier series representation
of v. ��

Combining the estimates on linear functionals of the corrector from Lemma 24
with the estimate on the corrector gradient (99) and the technical Lemma 50, we
now derive stochastic moment bounds on the minimal radius r∗,T,ξ .

Proof of Lemma 26. In order to obtain a bound for the minimal radius r∗,T,ξ , we
derive an estimate on the probability of the event r∗,T,ξ (x0) = R = 2�ε for a fixed
x0 ∈ R

d and any R = 2�ε > ε. In the case of this event, we have by the Caccioppoli
inequality (54) applied to the function ξ · (x − x0) + φT

ξ , which solves the PDE

−∇ · (A(ωε,∇(ξ · (x − x0) + φT
ξ )) + 1

T
(ξ · (x − x0)+ φT

ξ ) = 1

T
ξ · (x − x0),
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the definition of r∗,T,ξ (x0) in (35), and the fact that r∗,T,ξ � C
√
T (see (101))

 

BdR(x0)
|∇φT

ξ |2 dx � C |ξ |2. (112)

Furthermore, in the event r∗,T,ξ (x0) = R > ε we also know by the definition (35)
that at least one of the inequalities

1

R2

 

x0+[−R,R]d

∣∣∣∣φ
T
ξ −

 

x0+[−R,R]d
φT

ξ dx̃

∣∣∣∣

2

dx

= inf
b∈Rm

1

R2

 

x0+[−R,R]d
|φT

ξ − b|2 dx

� c(d) inf
b∈Rm

1

(R/2)2

 

BR/2(x0)
|φT

ξ − b|2 dx

> c(d)|ξ |2 (113)

or

1√
T

∣∣∣∣

 

BR/2(x0)
φT

ξ dx

∣∣∣∣ > Kmass |ξ | (114)

holds. We now distinguish these two cases.
Case 1: The estimate (113) holds. By Lemma 50, we have for any δ > 0 for a

sufficiently large K = K (d, δ), that

1

R2

 

x0+[−R,R]d

∣∣∣∣φ
T
ξ −

 

x0+[−R,R]d
φT

ξ dx̃

∣∣∣∣

2

dx

� δ

 

x0+[−R,R]d
|∇φT

ξ |2 dx

+ C
∑

k∈{0,...,K }d

∣∣∣∣

 

x0+[−R,R]d

d∏

i=1

cos
(πki (xi + R)

2R

)
∇φT

ξ dx

∣∣∣∣

2

. (115)

Now let gn,R be the family of all functions

1x0+[−R,R]d (x)(2R)−d
d∏

i=1

cos

(
πki ((x0)i + R)

2R

)
el ⊗ e j

with 1 � l � m, 1 � j � d, and k ∈ {0, . . . , K }d . Note that all gn,R are supported
in BdR(x0) and satisfy, for any p ∈ [1,∞],

(  

BdR(x0)
|gn,R|p dx

)1/p
� C(d, p)(dR)−d . (116)
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Inserting both (113) and (112) in (115) and choosing δ > 0 small enough (depend-
ing only on d and the constants c and C from (113) and (112)), we obtain

1

2
c|ξ |2 �C

∑

k∈{0,...,K }d

∣∣∣∣

 

x0+[−R,R]d

d∏

i=1

cos
(πki (xi + R)

2R

)
∇φT

ξ dx

∣∣∣∣

2

.

This implies that for at least one of the N = N (d, K ) functionals
´
Rd gn,R ·∇φT

ξ dx
we have

∣
∣∣∣

ˆ

Rd
gn,R · ∇φT

ξ dx

∣
∣∣∣ � c(d,m, λ,�, K )|ξ |.

Fixing δ and K depending only on d, m, λ, and �, this entails, for any q � 1, by
Chebyshev’s inequality,

P[r∗,T,ξ (x0) = R and (113) holds] �
N∑

n=1

E
[∣∣ ´

Rd gn,R · ∇φT
ξ dx

∣∣q]

cq |ξ |q

with c = c(d,m, λ,�). Estimating the weighted averages of ∇φT
ξ by means of

Lemma 24 – note that by (116) and the support property of the gn,R the lemma is
indeed applicable to the function gn,R

C(d,p) – we obtain, for any 0 < τ < 1 and any
q � C(d,m, λ,�, τ),

P[r∗,T,ξ (x0) = R and (113) holds]

� Cqqq
(

ε

R

)qd/2

E

[(
r∗,T,ξ

ε

)(d−δ)q/2(1−τ)](1−τ)

. (117)

Case 2: The estimate (114) holds. We first observe that as a consequence of
Lemma 45 and (11a) – rewritten in form of −∇ · (A(ω̃,∇φT

ξ )) + 1
T φT

ξ = ∇ · ĝ
with ĝ:=A(ω̃, ξ + ∇φT

ξ ) − A(ω̃,∇φT
ξ ) – we have

∣
∣∣∣

 

B√T (x0)
φT

ξ dx

∣
∣∣∣ �

(  

B√T (x0)
|φT

ξ |2 dx
)1/2

� C |ξ |√T .

Upon choosing Kmass � C + 1, (114) is seen to imply
∣∣∣
∣

 

BR/2(x0)
φT

ξ dx −
 

B√T (x0)
φT

ξ dx

∣∣∣
∣ � |ξ |√T .

In particular, we have for any q � 1 that

P[r∗,T,ξ (x0) = R and (114) holds]
� E

[∣∣∣∣
1

|ξ |√T

 

BR/2(x0)
φT

ξ dx − 1

|ξ |√T

 

B√T (x0)
φT

ξ dx

∣
∣∣∣

q]
.

Inserting the estimate (36), we deduce
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P[r∗,T,ξ (x0) = R and (114) holds]

� CqqqE

[(
r∗,T,ξ

ε

)(d−δ)q/2(1−τ)](1−τ)( log2
√
T
R∑

l=0

(
2l R√
T

)2(
ε

2l R

)d)q/2

� Cqqq
(

ε

R

)qd/2

E

[(
r∗,T,ξ

ε

)(d−δ)q/2(1−τ)](1−τ)

. (118)

Conclusion: Estimates on the minimal radius. Taking the sum of (117) and
(118) over all dyadic R = 2kε > ε and using the fact that r∗,T,ξ � ε by its
definition (35), we deduce

E

[(r∗,T,ξ (x0)

ε

)q(d−δ/2)/2
]

� 1+
∞∑

k=1

(2k)q(d−δ/2)/2
P
[
r∗,T,ξ (x0) = 2kε

]

(117),(118)
� 1+ Cqqq

∞∑

k=1

(2k)q(d−δ/2)/2
(

ε

ε2k

)qd/2
E

[(
r∗,T,ξ

ε

)(d−δ)q/2(1−τ)](1−τ)

� 1+ CqqqE

[(
r∗,T,ξ

ε

)(d−δ)q/2(1−τ)](1−τ)

,

where C = C(d,m, λ,�, ρ, δ, τ ) and where q � C(d,m, λ,�, δ). Now, fixing
δ > 0 small enough (depending only on d, m, λ, and �) and choosing τ ∈ (0, 1)
such that 1 − τ = (d − δ)/(d − δ/2), the estimate buckles and yields a bound of
the form

E

[(r∗,T,ξ (x0)

ε

)(d−δ/2)q/2]τ
� C(d,m, λ,�, ρ)qqq

for all q � C(d,m, λ,�). This may be rewritten as

E

[(r∗,T,ξ (x0)

ε

)(d−δ/2)q/2]1/q
� C(d,m, λ,�, ρ)qC ,

which establishes Lemma 26. ��
We now derive the estimates on the corrector φT

ξ , the flux corrector σ T
ξ , and

the potential field θTξ . Note that the only required ingredients for the proof are
the estimate for functionals of the corrector from Lemma 24, the estimate on the
corrector gradient given by (99), the moment bounds for the minimal radius from
Lemma 26, as well as the general technical results of Lemma 50 and Lemma 32.

Proof of Proposition 19. We insert the estimate on r∗,T,ξ from Lemma 26 into
Lemma 24. For any x0 ∈ R

d , any r � ε, and any g with supp g ⊂ Br (x0) and

(  

Br (x0)
|g|p dx

)1/p
� r−d ,
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this provides bounds of the form

E

[∣∣∣∣

ˆ

Rd
g · ∇φT

ξ dx

∣∣∣∣

q]1/q
� C |ξ |qC(d,m,λ,�)

(
ε

r

)d/2

(119)

and

E

[∣∣
∣∣

ˆ

Rd
g · ∇σ T

ξ, jk dx

∣∣
∣∣

q]1/q
� C |ξ |qC(d,m,λ,�)

(
ε

r

)d/2

(120)

as well as

E

[∣∣∣∣

ˆ

Rd
g · ∇θTξ dx

∣∣∣∣

q]1/q
� Cr |ξ |qC(d,m,λ,�)

(
ε

r

)d/2

(121)

for any q � C(d,m, λ,�).
Plugging in the estimates on r∗,T,ξ from Lemma 26 into (99), we deduce for

any x0 ∈ R
d

E

[∣∣∣∣

 

Bε(x0)
|∇φT

ξ |2 dx
∣∣∣∣

q/2]1/q
� C |ξ |qC(d,m,λ,�) (122)

for any q � C(d,m, λ,�). Plugging in this bound and (119) into the (spatially
rescaled) multiscale estimate for the L2 norm from Lemma 32, we obtain

(  

Br (x0)

∣∣∣∣φ
T
ξ −

 

Br (x0)
φT

ξ (x̃) dx̃

∣∣∣∣

2

dx

)1/2
� C(x0)|ξ |ε

⎧
⎪⎨

⎪⎩

(r/ε)1/2 for d = 1,
∣
∣ log r

ε

∣
∣1/2 for d = 2,

1 for d � 3,

as well as the corresponding estimate for the L p norm (with an additional fac-
tor | log r

ε
|1/2 in case d = 2). Combining these bounds with Lemma 25 (and

Lemma 26), this establishes the estimate on φT
ξ stated in (20) as well as the corre-

sponding L p norm bound.
The estimates on φT

ξ in (21a) and (21b) are shown by combining (20) with the
estimates from Lemma 25 and (122) as well as using in case d � 3 the relation

lim
R→∞

 

BR(x0)
φT

ξ dx = 0.

In view of this use of Lemma 32, in order to obtain the estimates on σ T
ξ, jk and θTξ

stated in (20) and (22), we only need to establish estimates on
ffl
Bε(x0)

|∇σ T
ξ i j |2 dx

and
ffl
Bε(x0)

|∇θTξ |2 dx . The Caccioppoli inequality (54) for the defining equation
of the flux corrector (11c) yields, in conjunction with (A2),
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x0+[−ε,ε]d
|∇σ T

ξ, jk |2 dx �C

ε2

 

x0+[−2ε,2ε]d

∣∣∣∣σ
T
ξ, jk −

 

x0+[−2ε,2ε]d
σ T

ξ, jk dx̃

∣∣∣∣

2

dx

+ C
 

x0+[−2ε,2ε]d
|ξ + ∇φξ |2 dx

+ C

T

∣∣∣
∣

 

x0+[−2ε,2ε]d
σ T

ξ, jk dx̃

∣∣∣
∣

2

.

Estimating the first term on the right-hand side by Lemma 50 and taking stochastic
moments, we deduce

E

[∣∣∣
∣

 

x0+[−2ε,2ε]d
|∇σ T

ξ, jk |2 dx
∣∣∣
∣

q/2]1/q

� C

K
E

[∣∣∣∣

 

x0+[−2ε,2ε]d
|∇σ T

ξ, jk |2 dx
∣∣∣∣

q/2]1/q

+
N (d,K )∑

n=1

CE

[∣∣∣∣

ˆ

Rd
gn · ∇σ T

ξ, jk dx

∣∣∣∣

q]1/q

+ CE

[∣∣∣
∣

 

x0+[−2ε,2ε]d
|ξ +∇φT

ξ |2 dx
∣∣∣
∣

q/2]1/q

+ C√
T
E

[∣∣∣∣

 

x0+[−2ε,2ε]d
σ T

ξ, jk dx̃

∣∣∣∣

q]1/q
.

Choosing K large enough and using stationarity, we may absorb the first term on
the right-hand side in the left-hand side. Estimating the linear functionals of∇σ T

ξ, jk
by (120), bounding the third term on the right-hand side by (122), and estimating
the last term by (36) and (37) (where we may replace the average over the box
x0 + [−2ε, 2ε]d by the average over the ball Bε(x0) using (120)), we deduce

E

[∣∣
∣∣

 

x0+[−ε,ε]d
|∇σ T

ξ, jk |2 dx
∣∣
∣∣

q/2]1/q
� C |ξ |qC .

Together with (120) and Lemma 32, we deduce the bound for σ T
ξ, jk in (20).

The estimates on σ T
ξ in (21a) and (21b) are again shown by combining (20)

with the estimate from Lemma 25 and (122), as well as using, in case d � 3, the
relation,

lim
R→∞

 

BR(x0)
σ T

ξ dx = 0.

The estimate for the gradient of the potential field ∇θTξ is analogous but even
simpler (due to the lack of themassive regularization in (18a)).We obtain the bound

E

[∣∣
∣∣

 

x0+[−ε,ε]d
|∇θTξ |2 dx

∣∣
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q/2]1/q
� CqCε|ξ |.

Using this estimate and (120) in Lemma 32, we obtain (22). ��
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6. Corrector Estimates for the Linearized PDE

6.1. Estimates on Linear Functionals of the Corrector and the Flux Corrector for
the Linearized PDE

Proof of Lemma 28 and Lemma 29. Part a: Estimates for linear functionals of
the homogenization corrector φT

ξ,�. Without loss of generality we may assume
in the following argument that x0 = 0, that is g is supported in Br (0), and that
(
ffl
Br
|g|p2/2 dx)2/p2 � 1 – otherwise replace in the following argument p by

√
2p.

The argument is similar to the case of the corrector φT
ξ . We first observe that the

expectation E[F] vanishes. Indeed, φT
ξ,� is easily seen to be a stationary random

field, which entails E[F] = ´
Rd g · ∇E[φT

ξ,�] dx = 0. By Lemma 23, to obtain
stochastic moment bounds for F it suffices to estimate the sensitivity of F with
respect to changes in the random field ωε. Taking the derivative with respect to ωε

in (17a), we obtain

−∇ · (∂ξ A(ωε(x), ξ +∇φT
ξ )∇δφT

ξ,�

)+ 1

T
δφT

ξ,�

= ∇ · (∂ω∂ξ A(ωε(x), ξ +∇φT
ξ )δωε

(
� +∇φT

ξ,�

))

+∇ · (∂2ξ A(ωε(x), ξ +∇φT
ξ )
(
� +∇φT

ξ,�

)∇δφT
ξ

)
. (123)

Denoting by h the unique solution in H1(Rd;Rm) to the auxiliary PDE

−∇ · (aT,∗
ξ ∇h) + 1

T
h = ∇ · g (124)

(where we again used the abbreviation aT,∗
ξ :=(∂ξ A(ωε(x), ξ + ∇φT

ξ ))∗) and de-

noting by ĥ ∈ H1(Rd;Rm) the unique solution to the auxiliary PDE

−∇ · (aT,∗
ξ ∇ĥ) + 1

T
ĥ

=
d∑

j=1

m∑

l=1

∂ j
(
∂2ξ A(ωε(x), ξ +∇φT

ξ )(� +∇φT
ξ,�)(el ⊗ e j ) · ∇h

)
el , (125)

we deduce

δF =
ˆ

Rd
g · ∇δφT

ξ,� dx
(124)= −

ˆ

Rd
aTξ ∇δφT

ξ,� · ∇h + 1

T
δφT

ξ,� h dx

(123)=
ˆ

Rd
∂ω∂ξ A(ωε(x), ξ +∇φT

ξ )δωε(� +∇φT
ξ,�) · ∇h dx

+
ˆ

Rd
∂2ξ A(ωε(x), ξ +∇φT

ξ )(� +∇φT
ξ,�)∇δφT

ξ · ∇h dx

(125)=
ˆ

Rd
∂ω∂ξ A(ωε(x), ξ +∇φT

ξ )δωε(� +∇φT
ξ,�) · ∇h dx

−
ˆ

Rd
aT,∗
ξ ∇ĥ · ∇δφT

ξ + 1

T
ĥ δφT

ξ dx
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(103)=
ˆ

Rd
∂ω∂ξ A(ωε(x), ξ +∇φT

ξ )δωε(�+ ∇φT
ξ,�) · ∇h dx

+
ˆ

Rd
∂ωA(ωε(x), ξ + ∇φT

ξ )δωε · ∇ ĥ dx .

In other words, we have the representation

∂F

∂ωε

= ∂ω∂ξ A(ωε(x), ξ +∇φT
ξ )(� +∇φT

ξ,�) · ∇h + ∂ωA(ωε(x), ξ + ∇φT
ξ ) · ∇ĥ.

(126)

By (A3), this implies the sensitivity estimate
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Bε(x)
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ξ ||∇ ĥ| dx̃
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Plugging this bound into the version of the spectral gap inequality for the q-th
moment (see Lemma 23) and using E[F] = 0, we deduce for any q � 1 that
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.

By Lemma 49 and (100) as well as (99), this entails for any τ, τ̄ ∈ (0, 1), that
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(127)

withC = C(d,m, λ,�, ρ, α0, p, τ, τ̄ ). By theweightedMeyers estimate inLemma44
– applied to (125) – and the uniform bound |∂2ξ A| � � from (R), we infer
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(128)
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with C = C(d,m, λ,�, ρ, α0, p, τ, τ̄ ). Inserting the bound (42) into (128), we
get
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,

where C now additionally depends on ν. To proceed further, we write the second
factor on the right-hand side in the form

E

[( ˆ

Rd
v1v2 dx

)2q/pτ̄]τ̄ /2q

,

with

v1 = C p
reg,ξ

(
r∗,T,ξ,�

ε

)(d−δ)p/2

, v2 = r−d |∇h|p
(
1+ |x |

r

)α0

.

By first smuggling in the weight

ϕ(x) = r−d
(
1+ |x |

r

)−(d+1)

via Hölder’s inequality with exponents p
p−2 and p

2 in space, and next by Hölder’s

inequality with exponents τ̄
τ̄−τ/2 and 2τ̄

τ
in probability (here we need to assume

τ̄ > τ
2 ), we get
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.

By Jensen’s inequality for the integral
´
Rd f ϕ dx – using that ϕ has mass of order

unity and assuming also that q � C(p, τ, τ̄ ) – and by exploiting the fact that v1
is a stationary random field, we deduce that the right-hand side is bounded from
above by

CE

[
v

2q
p(τ̄−τ/2)
1

] τ̄−τ/2
2q

E

[(ˆ

Rd
v

p
2
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2 dx

) 8q
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4q

.

By combining the previous estimates and plugging in the definitions of v1, v2 and
ϕ, we thus arrive at
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E
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.

Applying Hölder’s inequality once more to the first expected value on the right-
hand side, choosing τ̄ ∈ (1 − τ

2 , 1), and using the stretched exponential moment
bounds for Creg,ξ , we deduce
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(129)

Plugging in this estimate into (127) and estimating r∗,T,ξ in (127) via Lemma 26
yields
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.

Choosing p close enough to 2 and choosing α0 small enough (all depending only on
d, m, λ, and �), we may estimate the last factor by applying the weighted Meyers
estimate from Lemma 44 to the PDE (124). This yields by our assumed bound on
g
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(130)

for any q � C with C = C(d,m, λ,�, ρ, ν, τ ) and any 0 < τ < 1, which is the
desired bound for functionals of φT

ξ,� in Lemma 28.

Partb:Estimates for linear functionals of thefluxcorrectorσ T
ξ,�.Differentiating

the equation (17c), we see that the infinitesimal perturbation δσ T
ξ,� caused by an

infinitesimal perturbation δωε in the random field ωε satisfies the PDE
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− �δσ T
ξ,�, jk +

1

T
δσ T

ξ,�, jk

= ∇ · (∂ξ A(ωε, ξ +∇φT
ξ )∇δφT

ξ,� · (ek ⊗ e j − e j ⊗ ek))

+∇ · (∂2ξ A(ωε, ξ + ∇φT
ξ )(�+∇φT

ξ,�)∇δφT
ξ · (ek ⊗ e j − e j ⊗ ek))

+∇ · (∂ω∂ξ A(ωε, ξ +∇φξ )δωε(�+ ∇φξ,�) · (ek ⊗ e j − e j ⊗ ek)). (131)

Introducing the solution h̄ ∈ H1(Rd;Rm) to the equation

−�h̄ + 1

T
h̄ = ∇ · g, (132)
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(where aTξ (x):=∂ξ A(ωε(x), ξ +∇φT
ξ (x))), and the solution h3 ∈ H1(Rd;Rm) to
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we may compute the sensitivity of linear functionals of the form
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Indeed, we have
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Inserting (134) and (103), we obtain
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This identification of ∂F
∂ωε

together with assumption (A3) gives rise to the sensitivity
estimate
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Plugging in this bound into Lemma 23 and usingE[F] = ´
Rd g ·∇E[σ T

ξ,�, jk] dx =
0 by stationarity of σ T

ξ,�, jk , we infer
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By Lemma 49 and (100) as well as (99), we obtain, for τ, τ̄ ∈ (0, 1) and for p close
enough to 2,
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By the weighted Meyers estimate in Lemma 44 applied to (134) and the uniform
bound on ∂2ξ A from (R), we infer for any α0, that
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Arguing analogously to the derivation of (130) from (127) but using also the esti-
mate

ˆ
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forα1:=α0 p/2+(d+1)(p−2)/2 (which follows from (133), (A2), andLemma44),
we deduce
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for any 0 < τ < 1 and any q � C . This establishes the estimate on functionals of
σ T

ξ,� in Lemma 28.

Part c: Estimates for linear functionals of the potential field θTξ,�. We consider

F :=
ˆ

Rd
g · 1

r
∇θTξ,�,i dx .
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The argument is exactly the same as in part c of the proof of Lemma 24, as the
relation between θTξ,� and φT

ξ,� is exactly the same as the one between θTξ and φT
ξ,�.

As in the proof of Lemma 24, we introduce ḡ as the solution to the PDE

−�ḡ = ∇ · g.
We then obtain an estimate for F of the form (127), but with an additional factor 1

r
on the right-hand side, with h solving the PDE −∇ · (aT,∗

ξ ∇h) + 1
T h = ∇ · (ḡei ),

and with ĥ solving the same PDE but with the new h. Inserting the Calderon-
Zygmund bounds on ḡ and the modified bound on ∇ĥ in the steps leading to (128)
and (130), we deduce the desired estimate
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for any 0 < τ < 1 and any q � C .
Part d: Proof of Lemma 29. The proof of the estimates (40) and (41) is

analogous to the proof of (36) and (37). ��

6.2. Estimates on the Corrector

We first establish the moment bounds on r∗,T,ξ,�.

Proof of Lemma 30. The proof is entirely analogous to the proof of Lemma 26: Re-
call that the only required ingredients for the proof of moment bounds for r∗,T,ξ in
Lemma 26 were the estimate for functionals of the corrector φT

ξ from Lemma 24,
the estimate on corrector averages from Lemma 25, the estimate on the correc-
tor gradient given by (99), as well as the general technical results of Lemma 50
and Lemma 32. Lemma 28 provides bounds on the stochastic moments of linear
functionals of the corrector φT

ξ,� for the linearized PDE that are essentially anal-

ogous (up to the prefactor qC (1 + |ξ |)C ) to the bounds for functionals of φT
ξ in

Lemma 24. Similarly, Lemma 29 provides estimates on averages of the linearized
corrector φT

ξ,� that are (again up to the prefactor qC (1 + |ξ |)C ) analogous to the

bounds on averages of φT
ξ from Lemma 25. Furthermore, the estimate (100) for the

gradient of φT
ξ,� is completely analogous to the estimate (99) for the gradient of

φT
ξ . In conclusion, by the same arguments as the proof of Lemma 26 (up to replac-

ing φT
ξ by φT

ξ,�, ξ by �, r∗,T,ξ by r∗,T,ξ,�, and including an additional prefactor

qC (1+ |ξ |)C in the bounds), we obtain

E

[(r∗,T,ξ (x0)

ε

)(d−δ/2)q/2]1/q
� C(d,m, λ,�, ρ, ν)qC (1+ |ξ |)C .

��
Proof of Proposition 20. By the same arguments as in the proof of Proposition 19,
we obtain the desired bounds on φT

ξ,�, σ
T
ξ,�, and θTξ,�. Note that we simply need to

replace the use of Lemma 24 by Lemma 28, the use of Lemma 25 by Lemma 29,
the use of Lemma 26 by Lemma 30, and the use of (99) by (100). ��



438 Julian Fischer & Stefan Neukamm

Proof of Corollary 21. To establish the estimate (26), we simply pass to the limit
T →∞ in the L p version of the estimate (21a) for φT

ξ and σ T
ξ . By combining (20)

with Lemma 25 and Lemma 26, we deduce
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)1/2

� C|ξ | εμ((|x0| + r)/ε),

withμ(s):=1 for d � 3,μ(s):=(log(2+s))1/2 for d = 2, andμ(s):=(1+s)1/2 for
d = 1. Passing to the limit T →∞, the quantities φT

ξ − ffl
Bε(0)

φT
ξ (x̃) dx̃ converge

to a solution φξ to the corrector equation with vanishing average in Bε(0) subject
to the bound (27) (and similarly for σξ ).

It remains to show that the limit σξ satisfies the PDE (9), as passing to the limit
in the equation (11c) yields only

−�σξ, jk = ∂ j (A(ωε, ξ +∇φξ ) · ek) − ∂k(A(ωε, ξ +∇φξ ) · e j ).
However, as we have ∇ · (A(ωε, ξ +∇φξ )) = 0 by the equation for φξ , we deduce

−�
∑

k

∂kσξ, jk = −�(A(ωε, ξ +∇φξ ) · e j ).

By the sublinear growth of σξ, jk , it follows that

∇ · σξ = A(ωε, ξ + ∇φξ ) − E[A(ωε, ξ +∇φξ )] = A(ωε, ξ +∇φξ ) − Ahom(ξ),

which is the flux corrector equation (9).
In order to derive (28), we first write

φT
ξ2
− φT

ξ1
=
ˆ 1

0
φT

(1−s)ξ1+sξ2,� ds

with �:=ξ2 − ξ1. This entails in case d � 3, using Proposition 20,
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and in case d � 2, using Proposition 20, Lemma 29, and Lemma 30,
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� CqC (1+ |ξ1| + |ξ2|)C |ξ2 − ξ1|εμ((r + |x0|)/ε).
We may then pass to the limit T → ∞ in these estimates to deduce (28). The
corresponding bound for σξ2 − σξ2 is derived analogously. ��
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7. Structural Properties of the Effective Equation

We finally establish the structural properties of the effective (homogenized)
equation, as stated in Theorem 11.

Proof of Theorem 11. Part a. The fact that the homogenized material law Ahom
inherits the monotonicity properties of the law of the random material A(ω, ·) has
already been established in [17,18] for Euler-Lagrange equations associated with
convex integral functionals. Nevertheless, we shall briefly recall the (standard)
proof of this result. The result Ahom(0) = 0 is immediate from the definition
Ahom(ξ):=E[A(ω, ξ +∇φξ )] and (A2), as φ0 ≡ 0 is the (up to additive constants
unique) solution to the corrector equation for ξ = 0. We next have

|Ahom(ξ2) − Ahom(ξ1)| =
∣∣E[A(ωε, ξ2 + ∇φξ2)] − E[A(ωε, ξ1 + ∇φξ1)]

∣∣

(A2)
� �E[|ξ2 +∇φξ2 − ξ1 −∇φξ1 |]. (135)

Subtracting the corrector equations (4) for ξ1 and ξ2 from each other and testing
the resulting equation with (φξ2 −φξ1)η

2(x/r) for some cutoff η with supp η ⊂ B2
and η ≡ 1 in B1, we deduce

ˆ

Rd

(
A(ωε, ξ2 +∇φξ2) − A(ωε, ξ1 +∇φξ1)

) · (∇φξ2 −∇φξ1

)
η2
( x
r

)
dx

�
ˆ

Rd

∣∣A(ωε, ξ2 +∇φξ2) − A(ωε, ξ1 +∇φξ1)
∣∣1
r
|φξ2 − φξ1 ||∇η2|

( x
r

)
dx .

This implies by (A1), (A2), and Young’s inequality that

ˆ

Rd
|∇φξ2 −∇φξ1 |2η2

( x
r

)
dx

� 4�2

λ2
|ξ1 − ξ2|2

ˆ

Rd
η2
( x
r

)
dx

+ C

r2

ˆ

Rd
|φξ2 − φξ1 |2|∇η|2

( x
r

)
dx .

Dividing by
´
Rd η2( xr ) dx , taking the expectation, using stationarity, and passing

to the limit r → ∞ (using the fact that the correctors φξ grow sublinearly), we
deduce

E[|∇φξ1 −∇φξ2 |2] � C(d)
�2

λ2
|ξ1 − ξ2|2. (136)

Inserting this into (135), we deduce the Lipschitz estimate in Theorem 11a.
Concerning the monotonicity property, we deduce, by testing the corrector

equations (4) for ξ1 and ξ2 with (φξ1 − φξ2)η(x/r),
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ˆ

Rd
η
( x
r

)(
A(ωε, ξ2 + ∇φξ2 )− A(ωε, ξ1 +∇φξ1)

) · (ξ2 − ξ1) dx

=
ˆ

Rd
η
( x
r

)(
A(ωε, ξ2 + ∇φξ2 )− A(ωε, ξ1 +∇φξ1)

) · (ξ2 +∇φξ2 − ξ1 − ∇φξ1) dx

+ 1

r

ˆ

Rd
(φξ2 − φξ1)(∇η)

( x
r

)
· (A(ωε, ξ2 +∇φξ2 )− A(ωε, ξ1 +∇φξ1 )

)
dx

� λ

ˆ

Rd
η
( x
r

)∣
∣ξ2 + ∇φξ2 − ξ1 − ∇φξ1

∣
∣2 dx

+ 1

r

ˆ

Rd
(φξ2 − φξ1)(∇η)

( x
r

)
· (A(ωε, ξ2 +∇φξ2 )− A(ωε, ξ1 +∇φξ1 )

)
dx,

which, after dividing by
´
Rd η( xr ) dx , taking the expectation and using stationarity,

and passing to the limit r →∞, yields by the sublinear growth of the φξ that
(
Ahom(ξ2) − Ahom(ξ1)

) · (ξ2 − ξ1)

= E
[(
A(ω, ξ2 + ∇φξ2) − A(ω, ξ1 +∇φξ1)

) · (ξ2 − ξ1)
]

� λ|ξ1 − ξ2|2.
It only remains to show that Ahom ∈ C1, provided that additionally the condition
(R) is satisfied by the coefficient field A(ωε, ξ). Taking the derivative with respect
to ξ in the relation AT

hom(ξ):=E[A(ωε, ξ +∇φT
ξ )], we obtain

∂ξ A
T
hom(ξ)� = E

[
∂ξ A(ωε, ξ + ∇φT

ξ )(�+ ∇φT
ξ,�)
]
.

Passing to the limit T →∞ using Lemma 40 and Lemma 42, we deduce

∂ξ Ahom(ξ)� = E
[
∂ξ A(ωε, ξ +∇φξ )(�+∇φξ,�)

]
.

Theassertion Ahom ∈ C1 is then a consequenceof (136) and the estimateE[|∇φξ1,�−
∇φξ2,�|2] � C |ξ1−ξ2|θ |�| for some θ > 0, which is derived analogously to (136)
using the equation

−∇ · (∂ξ A(ωε, ξ1 + ∇φξ1)(∇φξ1,� −∇φξ2,�)
)

= ∇ ·
((

∂ξ A(ωε, ξ1 + ∇φξ1) − ∂ξ A(ωε, ξ2 +∇φξ2)
)
(� +∇φξ2,�)

)

as well as the higher integrability resultE[|�+∇φξ2,�|p] � C |�|p for some p > 2
(the latter being a consequence of Meyers).
Part b. We next show that frame-indifference of the material law – in the sense
that A(ωε, Oξ) = OA(ωε, ξ) for all x ∈ R

d , almost every ωε, all ξ ∈ R
m×d ,

and all O ∈ SO(m) – is preserved under homogenization. Indeed, if φξ solves the
corrector equation ∇ · (A(ωε, ξ +∇φξ )) = 0 and if O ∈ SO(m), then Oφξ solves
the corrector equation ∇ · (A(ωε, Oξ +∇Oφξ )) = 0. Using the uniqueness of the
corrector up to additive constants, we obtain ∇Oφξ = ∇φOξ . This entails

Ahom(Oξ) = E[A(ωε, Oξ + ∇φOξ )]
= E[A(ωε, Oξ + ∇Oφξ )] = E[OA(ωε, ξ +∇φξ )]
= OAhom(ξ).
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Part c. We next show that isotropy of the probability distribution of the material
law implies isotropy of the homogenized material law. Let V ∈ SO(d). In this
case, if φξ solves the corrector equation ∇ · (A(ωε(x), ξ +∇φξ (x))) = 0, then the
rotated function φξ (V ·) solves the corrector equation ∇ · (A(ωε(V x), ξVV−1 +
∇(φξ (V x))V−1

)
V
) = 0 for a rotated monotone operator, that is φ̃ξV (x):=φξ (V x)

is the corrector associated with the rotated operator

AV
ε (x, ξ̃ ):=A(ωε(V x), ξ̃V−1)V

and slope ξV and we have ∇φ̃ξV (x) = ∇φξ (V x)V . This entails, by the assumed
equality of the laws of Aε(x, ξ̃ ):=A(ωε(x), ξ̃ ) and AV

ε , that

Ahom(ξV ) = E[Aε(x, ξV +∇φξV (x))]
= E[AV

ε (x, ξV +∇φ̃ξV (x))]
= E[AV

ε (x, ξVV−1 +∇(φξ (V x))V−1)V ]
= E[Aε(ωε(V x), ξ + ∇φξ (V x))V ]
= Ahom(ξ)V .
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Appendix A. Auxiliary Results from Regularity Theory

We now provide the (standard) proof of the Caccioppoli inequality and the hole-filling
estimate for nonlinear elliptic PDEs with monotone nonlinearity from Lemma 43.

Proof of Lemma 43. Let R > 0 and let η be a standard cutoff with η ≡ 0 outside of BR ,
η ≡ 1 in BR/2, and |∇η| � CR−1. Testing the equation with η2(u − b) for some b ∈ R

m

to be chosen, we obtain by (A1)–(A2),

λ

ˆ

Rd
η2|∇u|2 dx + 1

T

ˆ

Rd
η2|u|2 dx

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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(A1)
�

ˆ

Rd
A(x,∇u) · η2∇u dx + 1

T

ˆ

Rd
η2|u|2 dx

� −
ˆ

Rd
2η(A(x,∇u)+ g) · (u − b)⊗∇η dx + 1

T

ˆ

Rd
η2ub dx

+
ˆ

Rd
η2
(
− g · ∇u + 1

T
f (u − b)

)
dx

(A2)
� C�

R

ˆ

BR(x0)\BR/2(x0)
η(|∇u| + |g|)|u − b| dx + 1

T

ˆ

Rd
η2ub dx

+
ˆ

Rd
η2
(
− g · ∇u + 1

T
f (u − b)

)
dx .

Young’s inequality and an absorption argument yields the Caccioppoli-type inequality

ˆ

BR/2(x0)
|∇u|2 + 1

T
|u|2 dx

� C

R2

ˆ

BR(x0)\BR/2(x0)
|u − b|2 dx + C

T

ˆ

BR(x0)
|b|2 dx + C

ˆ

BR(x0)
|g|2 + 1

T
| f |2 dx,

which directly implies (54).
An application of the Poincaré inequality on the annulus BR(x0) \ BR/2(x0) in the previous
estimate gives upon choosing b:= ffl

BR(x0)\BR/2(x0)
u dx , using also Jensen’s inequality and

the fact that |BR(x0)| ∼ |BR(x0) \ BR/2(x0)| to estimate the second term on the right-hand
side,

ˆ

BR/2(x0)
|∇u|2 dx + 1

T

ˆ

BR/2(x0)
|u|2 dx

� C
ˆ

BR(x0)\BR/2(x0)
|∇u|2 dx + C

T

ˆ

BR(x0)\BR/2(x0)
|u|2 dx

+ C
ˆ

BR(x0)
|g|2 + 1

T
| f |2 dx .

This in turn yields, by the hole-filling argument,
ˆ

BR/2(x0)
|∇u|2 dx + 1

T

ˆ

BR/2(x0)
|u|2 dx

� θ

( ˆ

BR(x0)
|∇u|2 dx + 1

T

ˆ

BR(x0)
|u|2 dx

)
+ C

ˆ

BR(x0)
|g|2 + 1

T
| f |2 dx

for θ = C
C+1 . Iterating this estimate with R replaced by 2−k R, we deduce our desired

estimate (55) if r is of the form r = 2−K R. For other values of r , we may simply use the
already-established inequality for the next bigger radius of the form r = 2−K R and increase
the constant C if necessary. ��
We next provide a small-scale Hölder regularity result for the linearized corrector φT

ξ,�.

Proposition 51. Let the assumptions (A1)–(A3) and (P1)–(P2) as well as (R) be in place.
Then there exists α > 0 such that for all ξ, � ∈ R

m×d and all T � ε2 the gradient of the
linearized corrector φT

ξ,� is subject to a Hölder regularity estimate of the form
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|(�+ ∇φT
ξ,�)(x)− (� +∇φT

ξ,�)(y)|

� Cξ,T (x0)(1+ |ξ |)C
( |x − y|

ε

)α(  

Bε(x0)
|�+ ∇φT

ξ,�|2 dx + |�|2
)1/2

for all x, y ∈ Bε/2(x0), where Cξ,T = Cξ,T (ωε, x0) denotes a stationary random field

with stretched exponential moment bounds E[exp( 1
C C1/C

ξ,T )] � 2 for some constant C =
C(d,m, λ, �, ρ, ν).

Proof. The result is a straightforward consequence of classical Schauder theory (see for
example the proof of [27, Theorem 5.19]) applied to the equation

−∇ · (∂ξ A(ωε, ξ +∇φT
ξ )(�+ ∇φT

ξ,�))+ 1

T
(� · (x − x0)+ φT

ξ,�) = 1

T
� · (x − x0),

which is possible by the Hölder continuity of the coefficient ∂ξ A(ωε, ξ +∇φT
ξ ) on Bε(x0),

which in turn may be deduced from Proposition 52, our regularity assumptions on ωε (see
(R)), and the Lipschitz dependence of ∂ξ A on both variables (see (A3) and (R)). ��
Proposition 52. Let the assumptions (A1)–(A3) and (P1)–(P2) as well as (R) be in place.
Then there exists α > 0 such that for all ξ ∈ R

m×d and all T � ε2 the gradient of the
corrector φT

ξ is subject to a Hölder regularity estimate of the form

|(ξ +∇φT
ξ )(x)− (ξ +∇φT

ξ )(y)| � Cξ,T (x0)(1+ |ξ |)
( |x − y|

ε

)α

for all x, y ∈ Bε/2(x0), where Cξ,T = Cξ,T (x0) denotes a stationary random field with

stretched exponential moment bounds E[exp( 1
C C1/C

ξ,T )] � 2 for some constant
C = C(d,m, λ,�, ρ, ν).

Proof. We differentiate the equation −∇ · (A(ωε, ξ +∇φT
ξ ))+ 1

T φT
ξ = 0. This yields

−∇ · (∂ξ A(ωε, ξ + ∇φξ )∇∂iφ
T
ξ )+ 1

T
∂iφ

T
ξ = ∇ · (∂ω∂ξ A(ωε, ξ + ∇φT

ξ )∂iωε). (137)

By (A1)–(A3), this is a linear elliptic system for the derivative ∂iφ
T
ξ with uniformly elliptic

and bounded coefficient field.
Case a: Two-dimensional systems with smooth coefficients. Meyers estimate for the PDE
(137) in the form of Lemma 54 with T :=∞ and the condition (A3) imply for some p =
p(d,m, λ, �) > 2 and any b ∈ R

m

(  

Bε/2(x0)
|∇∂iφ

T
ξ |p dx

)1/p

� C

(  

Bε(x0)
|∇∂iφ

T
ξ |2 dx

)1/2
+ C

(  

Bε(x0)
|∇ωε|p +

∣∣
∣
1

T
(φT

ξ − b)
∣∣
∣
p
dx

)1/p

Using the Caccioppoli inequality (54) with T = ∞ for the PDE (137), choosing p− 2 > 0
small enough, and using the Poincaré-Sobolev inequality, we get by T � ε2

( 

Bε/2(x0)
|∇∂iφ

T
ξ |p dx

)1/p
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� C

ε

( 

B2ε(x0)
|∇φT

ξ |2 dx
)1/2

+ C

( 

B2ε(x0)
|∇ωε|p dx

)1/p
.

By our estimate (99), Lemma 26, and the bound on ∇ωε in (R), the right-hand side may be
bounded by Cε−1(|ξ |+1) for some random constant C with stretched exponential moments.
By Morrey’s embedding, we obtain the desired estimate.
Case b: Scalar equations and systems with Uhlenbeck structure with smooth coefficients.
In the case of a scalar equation, we infer the desired Hölder continuity of ∂iφ

T
ξ from

De Giorgi-Nash-Moser theory: Applying [28, Theorem 8.24] to the equation (137), we
deduce

εα−1 sup
x1,x2∈Bε/2(x0)

|∂iφT
ξ (x1)− ∂iφ

T
ξ (x2)|

|x1 − x2|α

� Cε−1
( 

Bε(x0)
|∂iφT

ξ |2 dx
)1/2

+ C

(  

Bε(x0)
|∇ωε|2d dx

)1/2d
.

Using our regularity assumption onωε from (R) and again (99) and Lemma 26, we conclude.
In the systems’ case, one replaces the De Giorgi-Nash-Moser theory by Uhlenbeck’s regu-
larity result [42]. ��
We present the arguments for Remark 3 and Remark 5.

Proof of Remark 3. The existence of uhom is guaranteed (and only requires g ∈ H1(Rd ;
R
m×d )), since in view of Theorem 11, the effectivematerial law Ahom inherits themonotone

structure from the heterogeneous material law A(ω, ·). A standard energy estimate yields

‖∇uhom‖L2(Rd ) � C‖g‖L2(Rd ),

where here and below C only depends on d,m, λ and �. By appealing to the difference
quotient technique of L. Nirenberg we may differentiate this equation with respect to the
spatial coordinate xi and we get the linear system

−∇ · (aξ∇∂i uhom) = ∇ · (∂i g), (138)

where aξ :=∂ξ Ahom(∇uhom) is a uniformly elliptic and bounded coefficient field by the
structure properties of Ahom stated in Theorem 11a. An energy estimate thus yields

‖∇∂i uhom‖H1(Rd ) � C‖g‖H1(Rd ).

We claim that with help of the small-scale regularity condition (R) we get the Lipschitz-
estimate,

||∇uhom||L∞(Rd ) � C(||∇g||L p(Rd ) + ||∇uhom||L2(Rd )). (139)

For the argument note that condition (R) for d � 3 either assumes that we are in the scalar
case, that is m = 1, or that Ahom has Uhlenbeck structure. In the scalar case, (139) follows
from a Moser iteration for (138) (cf. [28, Theorem 8.15]), while in the vector-valued case
we have to appeal to the Uhlenbeck structure of the limiting equation (and hence, in essence,
use the fact that |∇uhom|2 is a subsolution to a suitable elliptic PDE, which allows one to
apply a Moser iteration again). In summary we get the claimed estimate on Ĉ(∇uhom). ��
Proof of Remark 5. The existence of uhom is guaranteed, since in view of Theorem 11, the
effectivematerial law Ahom inherits themonotone structure from the heterogeneousmaterial
law A(ω, ·). The standard energy estimate yields

‖uhom‖H1(Rd ) � C‖g‖L2(Rd ),
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where here and below C only depends on d,m, λ and �. Differentiation with respect to xi
yields the linear system

∂i uhom − ∇ · (aξ∇∂i uhom) = ∇ · (∂i g), (140)

where aξ :=∂ξ Ahom(∇uhom). Meyers’ estimate implies that ‖∇∂i uhom‖L p′ (Rd )
� C ′

‖∇g‖L p′ (Rd )
for some 2 < p′ � p only depending on d,m, λ and �. By Sobolev embed-

ding (and an interpolation inequality used to estimate ‖∇g‖L p′ (Rd )
in terms of ‖∇g‖L2(Rd )

and ‖∇g‖L p(Rd )), we obtain

||∇uhom||L∞(Rd ) � C
(‖g‖H1(Rd ) + ‖∇g‖L p(Rd )

)
.

Our claim Ĉ(∇uhom) � C
(
1+ ‖g‖H1(Rd ) + ‖∇g‖L p(Rd )

)C‖g‖H1(Rd ) thus follows. ��
Proof of Remark 8. The difference quotient technique of L. Nirenberg yields the desired
bound ‖uhom‖H2(O) � C

(‖ f ‖L2(O) + ‖g‖H1(O) + ‖uDir‖H2(O)

)
. Note that in this

argument in fact no C1 differentiability of Ahom is required: As the difference quotient
technique works with finite differences and not with the formally differentiated PDE −∇·
(aξ∇∂i uhom) = ∂i f + ∇ · (∂i g), there is no need to rigorously justify the formally differ-
entiated PDE. ��

Appendix B. Qualitative Differentiability of Correctors

We now provide the proof of the qualitative differentiability results for the homogenization
correctors that we have used throughout the present work.

Proof of Lemma 27. Let h > 0. Subtracting the equations for φT
ξ+h�

and φT
ξ , we obtain

−∇ · ((A(ω̃, ξ + h� +∇φT
ξ+h�)− A(ω̃, ξ +∇φT

ξ )
)+ 1

T
(φT

ξ+h� − φT
ξ ) = 0 (141)

which we may rewrite as

−∇ · ((A(ω̃, ξ +∇φT
ξ+h�)− A(ω̃, ξ + ∇φT

ξ )
)+ 1

T
(φT

ξ+h� − φT
ξ )

= ∇ · (A(ω̃, ξ + h�+ ∇φT
ξ+h�)− A(ω̃, ξ +∇φT

ξ+h�)).

Note that by (A2) we have |A(ω̃, ξ + h� + ∇φT
ξ+h�

) − A(ω̃, ξ + ∇φT
ξ+h�

)| � Ch|�|.
Lemma 45 yields

ˆ

Rd

(
|∇φT

ξ+h� −∇φT
ξ |2 +

1

T
|φT

ξ+h� − φT
ξ |2
)
exp(−c|x |/√T ) dx

� C
ˆ

Rd
h2|�|2 exp(−c|x |/√T ) dx � Ch2|�|2√T

d

and Meyers estimate (see Lemma 54) with a dyadic decomposition of Rd into B√T and
B2k

√
T \ B2k−1

√
T for k ∈ N upgrades this to

ˆ

Rd
|∇φT

ξ+h� −∇φT
ξ |2p exp(−c|x |/√T ) dx � Ch2p|�|2p√T

d
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for some p > 1.
Subtracting a multiple of the PDE for the linearized corrector φT

ξ,� from (141), we deduce

−∇ · ((A(ω̃, ξ + h� +∇φT
ξ+h�)− A(ω̃, ξ + ∇φT

ξ )− h∂ξ A(ω̃, ξ +∇φT
ξ )(�+∇φT

ξ,�)
)

+ 1

T
(φT

ξ+h� − φT
ξ − hφT

ξ,�) = 0.

Using Taylor expansion, the uniform bound |∂2ξ A| � � from (R), and the Lipschitz estimate
for A from (A2), we obtain for any δ ∈ (0, 1]

− ∇ · (∂ξ A(ω̃, ξ +∇φT
ξ )(∇φT

ξ+h� − ∇φT
ξ − h∇φT

ξ,�)
)+ 1

T
(φT

ξ+h� − φT
ξ − hφT

ξ,�)

= ∇ · R

with |R| � Ch1+δ |�|1+δ + C |∇φT
ξ+h�

−∇φT
ξ |1+δ . Choosing δ such that 1+ δ < p and

applying Lemma 45, this finally yields the estimate
ˆ

Rd
|∇φT

ξ+h� − ∇φT
ξ − h∇φT

ξ,�|2 exp(−c|x |/√T ) dx � Ch2+2δ |�|2+2δ
√
T
d
.

The proof of the corresponding result for σξ is even easier, as the equation for σξ is linear
in qTξ = A(ω̃, ξ +∇φT

ξ ). ��

Appendix C. Meyers Estimate for Elliptic Equations with Massive Term

We recall Gehring’s lemma in the following form.

Lemma 53. (see for example [27, Theorem 6.38]). Let K > 0, m ∈ (0, 1), s > 1 and
B = BR(x0) for some x0 ∈ R

d and R > 0 be given. Suppose that f ∈ L1(B) and
g ∈ Ls(B) are such that for every z ∈ R

d and r > 0 with Br (z) ⊂ B it holds that

 

Br/2(z)
| f | dx � K

( 

Br (z)
| f |m dx

)1/m
+
 

Br (z)
|g| dx .

Then there exist q = q(K ,m) ∈ (1, s] and C = C(K ,m) ∈ [1,∞) such that f ∈
Lq (BR/2(x0)) and the estimate

( 

BR/2(z)
| f |q dx

)1/q
� C

 

BR(z)
| f | dx + C

(  

BR(z)
|g|q dx

)1/q
.

holds.

Lemma 54. (Meyers estimate for PDEswithmassive term). Let d,m ∈ N, T > 0, and let a :
R
d → (Rm×d ⊗R

m×d ) be a uniformly elliptic and bounded coefficient field with ellipticity
and boundedness constants 0 < λ � � < ∞. Let f ∈ L2(Rd ;Rm) ∩ L p(Rd ;Rm),
g ∈ L2(Rd ;Rm×d ) ∩ L p(Rd ;Rm×d ), and let v ∈ H1(Rd ;Rm) be the (unique) weak
solution to the linear system

−∇ · (a∇v)+ 1

T
v = ∇ · g + 1√

T
f on Rd .
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Then there exists p0 = p0(d,m, λ,�) > 2 such that for all 2 � p � p0, any x0 ∈ R
d , and

any R > 0 we have

 

BR(x0)
|∇v|p +

∣
∣
∣
1√
T

v

∣
∣
∣
p
dx

� C(d,m, λ, �, p)
 

B2R(x0)
|g|p + | f |p dx

+ C(d,m, λ,�, p)

(  

B2R(x0)
|∇v|2 +

∣
∣
∣
1√
T

v

∣
∣
∣
2
dx

)p/2
.

Proof. Since a is uniformly elliptic and bounded, we deduce by the Caccioppoli inequality
(54) for any b ∈ R

m , and r > 0, and any z ∈ R
d that

ˆ

B r
2
(z)

|∇v|2 + 1

T
|v|2 dx � C(d,m, λ, �)

ˆ

Br (z)
r−2|v − b|2 + 1

T
|b|2 + |g|2 + | f |2 dx .

Choosing b:= ffl
Br

v dx and using the Poincaré-Sobolev inequality as well as Jensen’s in-
equality, we deduce

 

B r
2
(z)

|∇v|2 + 1

T
|v|2 dx

� C(d,m, λ, �)

( 

Br (z)
|∇v|2d/(d+2) +

∣
∣∣
1√
T

v

∣
∣∣
2d/(d+2)

dx

)(d+2)/d

+ C(d,m, λ, �)

 

Br (z)
|g|2 + | f |2 dx .

Lemma 53 now yields the desired estimate. ��
Proof of Lemma 44. Let R > 0. We split v as v = vout +∑∞

k=1 vin,k , where vin,k ∈
H1(Rd ;Rm) is the unique weak solution to the PDE

−∇ · (a∇vin,k)+ 1

T
vin,k =∇ · (gχB2−k R(x0)\B2−k−1R(x0))

+ 1√
T

f χB2−k R(x0)\B2−k−1R(x0), (142a)

and where vout ∈ H1(Rd ;Rm) is the unique weak solution to the PDE,

−∇ · (a∇vout )+ 1

T
vout = ∇ · (gχ

Rd\BR/2(x0))+
1√
T

f χ
Rd\BR/2(x0). (142b)

Passing to the limit R → ∞ in the hole-filling estimate (55) for vout and inserting 4R in
place of r in the resulting bound, we deduce, for any δ > 0 with δ < c,

ˆ

B4R(x0)
|∇vout |2 + 1

T
|vout |2 dx

� C
ˆ

Rd\BR/2(x0)

(
R

R + |x − x0|
)δ(|g|2 + | f |2) dx . (143)
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This yields, by dividing by c(d)Rd and applying Hölder’s inequality, that

 

B4R (x0)
|∇vout |2 + 1

T
|vout |2 dx

� C(d,m, λ,�, p, γ )

( ˆ

Rd\BR/2(x0)
R−d

(
R

R + |x − x0|
)δp/2−γ (|g|p + | f |p) dx

)2/p

for any γ with d(p − 2)/2 < γ < δ. Plugging this bound into Lemma 54, we obtain
ˆ

B2R(x0)
|∇vout |p +

∣∣
∣
1√
T

vout

∣∣
∣
p
dx

� C(d,m, λ,�, p)
ˆ

B4R(x0)\BR/2(x0)
|g|p + | f |p dx

+ C(d,m, λ,�, p, γ )

ˆ

Rd\BR/2(x0)

(
R

R + |x − x0|
)δp/2−γ (|g|p + | f |p) dx

� C(d,m, λ,�, p, γ )

ˆ

Rd\BR/2(x0)

(
R

R + |x − x0|
)δp/2−γ (|g|p + | f |p) dx . (144)

We next estimate the contributions of vin,k . We have

ˆ

B4R(x0)\BR/2(x0)
|∇vin,k |2 + 1

T
|vin,k |2 dx � 2

∣
∣
∣
∣ sup
g̃, f̃

ˆ

Rd
g̃ · ∇vin,k + 1√

T
vin,k f̃ dx

∣
∣
∣
∣
2
,

where the supremum runs over all functions g̃ and f̃ with supp g̃ ∪ supp f̃ ⊂ B4R(x0) \
BR/2(x0) and

´
Rd |g̃|2 + | f̃ |2 dx � 1. Denoting by w ∈ H1(Rd ;Rm) the unique solution

to the dual PDE

−∇ · (a∗∇w) + 1

T
w = −∇ · g̃ + 1√

T
f̃ ,

we obtain
ˆ

B4R(x0)\BR/2(x0)
|∇vin,k |2 + 1

T
|vin,k |2 dx

� 2

∣
∣
∣∣ sup
g̃, f̃

ˆ

Rd
a∇vin,k · ∇w + 1

T
vin,k w dx

∣
∣
∣∣
2

� 2 sup
g̃, f̃

∣∣
∣
∣

ˆ

B2−k R(x0)\B2−k−1R(x0)
g · ∇w − 1√

T
f w dx

∣∣
∣
∣
2

� 2
ˆ

B2−k R(x0)\B2−k−1R(x0)
|g|2 + | f |2 dx

× sup
g̃, f̃

ˆ

B2−k R(x0)\B2−k−1R(x0)
|∇w|2 + 1

T
|w|2 dx .

By the hole-filling estimate for w in the form analogous to (143), we deduce
ˆ

B2−k R(x0)\B2−k−1R(x0)
|∇w|2 + 1

T
|w|2 dx



Optimal Homogenization Rates in Stochastic Homogenization 449

� C
ˆ

Rd

(
2−k R

2−k R + |x − x0|
)δ(|g̃|2 + | f̃ |2) dx,

which entails, by the properties of g̃ and f̃ ,
ˆ

B4R(x0)\BR/2(x0)
|∇vin,k |2 + 1

T
|vin,k |2 dx

� C(2−k)δ
ˆ

B2−k R(x0)\B2−k−1R(x0)
|g|2 + | f |2 dx .

An application of Lemma 54 to (142a) (with a covering argument for the annulus B2R(x0)\
BR(x0)) yields by the preceding estimate and Jensen’s inequality that

ˆ

B2R(x0)\BR(x0)
|∇vin,k |p + 1

T
|vin,k |p dx

� C(2−k)δp/2+d(p−2)/2
ˆ

B2−k R(x0)\B2−k−1R(x0)
|g|p + | f |p dx .

Taking the sum in k and adding (144), we deduce by requiring p to be close enough to 2 and
then choosing γ > 0 small enough

ˆ

B2R(x0)\BR(x0)
|∇v|p +

∣∣
∣
1√
T

v

∣∣
∣
p
dx

� C
ˆ

BR(x0)

( |x − x0|
R

)pδ/3(|g|p + | f |p) dx

+ C
ˆ

Rd\BR/2(x0)

(
R

|x − x0|
)pδ/3(|g|p + | f |p) dx .

Multiplying both sides by ( Rr )α0 , taking the sum over all dyadic R = 2l r , l ∈ N, and using
a standard Meyers estimate on the ball Br (x0), we obtain

ˆ

Rd

(
|∇v|p +

∣
∣∣
1√
T

v

∣
∣∣
p)(

1+ |x − x0|
r

)α0
dx

� C
∞∑

l=1

ˆ

B2l r (x0)

( |x − x0|
2l r

)pδ/3
(2l )α0

(|g|p + | f |p) dx

+ C
∞∑

l=1

ˆ

Rd\B2l r (x0)

(
2l r

|x − x0|
)pδ/3

(2l )α0
(|g|p + | f |p) dx .

We may estimate the last sum as
∞∑

l=1

ˆ

Rd\B2l r (x0)

(
2l r

|x − x0|
)pδ/3

(2l )α0
(|g|p + | f |p) dx

� C(δ)

∞∑

l=1

∞∑

n=l

ˆ

B2n+1r (x0)\B2nr (x0)
(
2l−n)pδ/3(2l )α0

(|g|p + | f |p) dx

� C(δ, α0, α1)

∞∑

n=1

ˆ

B2n+1r (x0)\B2nr (x0)
(2n)α0

(|g|p + | f |p) dx .

If α0 > 0 is chosen small enough, the previous two estimates imply (56). ��
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