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Abstract

Realistic models of biological processes typically involve interacting components on multiple

scales, driven by changing environment and inherent stochasticity. Such models are often

analytically and numerically intractable. We revisit a dynamic maximum entropy method that

combines a static maximum entropy with a quasi-stationary approximation. This allows us

to reduce stochastic non-equilibrium dynamics expressed by the Fokker-Planck equation to

a simpler low-dimensional deterministic dynamics, without the need to track microscopic

details. Although the method has been previously applied to a few (rather complicated)

applications in population genetics, our main goal here is to explain and to better understand

how the method works. We demonstrate the usefulness of the method for two widely studied

stochastic problems, highlighting its accuracy in capturing important macroscopic quantities

even in rapidly changing non-stationary conditions. For the Ornstein-Uhlenbeck process,

the method recovers the exact dynamics whilst for a stochastic island model with migration

from other habitats, the approximation retains high macroscopic accuracy under a wide

range of scenarios in a dynamic environment.

Author summary

Complex processes in biology and physics have much in common. Collective motion of

animals can be well described by models of interacting particles and emergent collective

behavior can often be characterized as phase transitions of such a model. When the system

is settled to a steady state, statistical physics connects random fluctuations of the process

with key macroscopic quantities, using the maximum entropy method. It is thus not sur-

prising that this method is in turn useful in understanding biological systems. However,

realistic problems such as structured population dynamics, studied in our work, are set in

dynamic environments, caused for instance by fluctuations in food supply. Therefore, we

use the dynamical maximum entropy approximation, which allows us to reduce the full

problem to simpler dynamics, without the need to track microscopic details. We focus on

two processes (one in physics, one in biology) in our study: the motion of a charged parti-

cle and the dynamics of structured populations, both in a changing environment. We
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show that the method is extremely accurate even when the environmental changes are

very fast, thus providing a powerful tool to study both biological and physical processes in

changing environments.

Introduction

Conceptual understanding of realistic problems in applied sciences is often hindered by the

curse of complexity, with quantities of interest coupling to finer features. Due to their multi-

scale character even simple questions lead to exploration of the full complexity of the system.

But how can we ever understand the processes around us if incremental learning is

impossible?

Statistical mechanics provides a clever way to understand complex multiscale problems by

linking processes on different scales through the parsimony principle—the method of maxi-

mum entropy (ME), introduced by [1]. ME has the form of a variational problem where an

entropy of the microscopic distribution is maximized, while enforcing macroscopic con-

straints, e.g. average energy of gas particles [1], see Fig 1A. The method gained popularity in

applied sciences in recent decades primarily as a tool for inference from empirical data, for

instance in bird flocking [2], neuronal firing [3], or protein variability [4].

However, realistic biological questions often do not adhere to the assumption of stationar-

ity. Adaptation of populations to spatial and temporal ecological gradients is an example of a

complex non-equilibrium processes in which ecological and evolutionary processes interact

[5–9]. How can a simple concept of ME be applied to such systems? The most straightforward

approach is to use ME on dynamic trajectories, forcing constraints on the dynamical features

(Fig 1B). This approach, called maximum caliber (MC), introduced by [10] is suitable for

Fig 1. Variational methods ME and MC compared to DME. (A) ME looks at a snapshot x of a process at a particular time and provides an

approximation �uMEðxÞ of the microscopic distribution, given knowledge of a few key macroscopic observables. (B) MC is analogous to ME, however,

each data point represents a trajectory x(t). MC connects the microscopic distribution over possible trajectories with macroscopic constraints and

approximates it by �uMCðxðtÞÞ. (C) DME is a quasi-stationary approximation of the stochastic dynamics, given by the FPE, which reduces the full

problem to a low-dimensional dynamics. This reduction is a consequence of a ME ansatz; the approximation at each time �uDMEðαðtÞÞ solves the ME

problem (stationary form in the FPE), where the dynamics of the effective forces α are systematically derived from the FPE.

https://doi.org/10.1371/journal.pcbi.1009661.g001
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inference of models and their parameters from dynamic data. Comprehensive reviews of MC

[11–13] provide multiple examples where the method has been successfully applied to non-sta-

tionary biological processes.

While such an inverse approach is useful for understanding temporal data, in many cases

data are not available but the dynamics, although often extremely complicated, are known to

be accurately described by the Fokker-Planck equation (FPE). The aim of our work is to dem-

onstrate usefulness of a theoretical dimensionality-reduction technique, which approximates

possibly many-dimensional stochastic dynamics to a low-dimensional deterministic dynamics

of a few key observable quantities (Fig 1C). The approximation combines a static ME ansatz in

the FPE equation with a quasi-stationary assumption. We refer to this method as dynamic ME

(DME). DME has been used before to solve problems in quantitative genetics [14–16] and

independently in cosmology [17–20]. While the problems in quantitative genetics are formu-

lated using a linear FPE and ME uses relative entropy, the applications in physics are formu-

lated using nonlinear FPE and the ME is based on Tsallis entropy. This work studies linear

dynamics, characterized by a linear FPE.

The most surprising feature of DME is its accuracy. The method, although derived from the

assumption of quasi-stationarity, remains extremely accurate even far-from-equilibrium.

Although numerical evidence of the method’s accuracy has been demonstrated in [14–16, 21],

explicit analysis is a challenging mathematical problem. This is analogous to problems in reac-

tion kinetics, where reduction of dynamics based on the quasi-stationary assumption is often

used but its validity has been shown rigorously only for a few basic systems using singular per-

turbation [22–24]. In comparison, the accuracy of DME still remains a mystery.

We will address this puzzle by focusing on two processes: the Ornstein-Uhlenbeck (OU)

process, and a logistic model of population growth in a continent-island model. The OU pro-

cess is studied as an example of a dynamics, for which DME gives an exact solution even in a

fully general (non-stationary) form, where the two key parameters are functions of time. We

derive the exact solution as well as the DME approximation and show that the dynamics are

the same. The stochastic island model, as one of the simplest, yet nonlinear, models in popula-

tion dynamics is studied as a first step to understand more complex population models where

ecological processes interact with evolutionary processes. Despite its simple form the DME is

no longer exact, and even fails when migration to the island is less than a threshold 1/2. On the

other hand, using numerical simulations we show that for migration rate above this threshold

the approximation is extremely accurate even far from equilibrium.

Dynamic maximum entropy

Here we present a dynamic maximum entropy (DME) method to approximate stochastic

dynamics by a FPE [14–21]. The method is based on a combination of ME in statistical physics

[1], which solves the stationary problem exactly, with a quasi-stationary assumption, as typi-

cally used in chemical kinetics [22] to reduce the number of equations. The method applies to

stochastic dynamics with an explicit stationary distribution, even though its application is not

limited to such problems (as shown in [21] a solution ansatz, which is not based on the station-

ary form can sometimes lead to more accurate approximation).

DME was introduced in population genetics to understand how quantitative traits change

in time in the presence of various evolutionary mechanisms without resolving details about

the dynamics of the underlying gene frequencies. However, the origins reach back to [25]

studying genetic algorithms for finding the low-energy state in the Ising spin glass by an anal-

ogy with statistical mechanics. The problem reduced to an infinite-dimensional dynamics of

cumulants, which were solved numerically for the truncated system. Later, the authors of [26]
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derived the cumulant dynamics for the population genetics problem with population under

selection, mutation and drift. To close the infinite-dimensional dynamical system the authors

used perturbation theory in the weak selection regime and separation of time scales in the

weak mutation regime. The problem of obtaining closed macroscopic dynamics was systemati-

cally resolved in [14] by introducing the DME approximation for the dynamics of quantitative

traits under directional selection, mutation and drift. The low-dimensional macroscopic

dynamics were obtained by considering suitable macroscopic variables, consistent with the

ME solution of the stationary problem, and by using the local equilibrium approximation. The

method was further applied to a polygenic trait under stabilizing selection, mutation and drift

in [27] and its limitations in the small-mutation regime were resolved in [16] by distinguishing

the bulk and the boundary layers of the microscopic distributions of allele frequencies.

Although accuracy of the method is still not rigorously understood, the authors of [21] showed

an exponential convergence to equilibrium in the FPE by finding a positive spectral gap and

investigated an alternative formulation of the DME, which is not exact in the stationary case,

but leads to a lower error in the dynamical situation and avoids the problems with small muta-

tion rate.

Independent use of the method in statistical physics focused on exact and approximate

solutions of a nonlinear FPE arising in cosmology and in other areas of physics. We traced the

first relevant connection to [28], where a relationship was established between the linear Fok-

ker-Planck equation and maximum entropy problem, which uses the generalized Tsallis

entropy by finding a family of linear FPEs, whose stationary solutions solve the ME problem

with the Tsallis entropy. The use of the generalized entropy led to further studies of problems,

mathematically described by nonlinear Fokker-Planck equations. Namely, the authors of [20]

found particular time-dependent solutions of the nonlinear FPE with linear drift (generaliza-

tion of the Ornstein-Uhlenbeck process) and power-law noise, which are solutions of the ME

problem with the Tsallis entropy. Their ideas were further developed in [29], introducing an

approximate ME approach for the study of the nonlinear FPE, based on the Tsallis entropy,

called nonextensive maximum entropy approach. This approximation is analogous to the

DME approximation, although the class of problems, as well as the definition of the entropy

differs.

Although in most of the previous work the derivation of the DME method was presented

phenomenologically, a rigorous derivation of the approximation can be found in [21]. Here

we provide a comprehensive summary of the method.

Assume stochastic dynamics with a potential in the Langevin form

dxkðtÞ ¼
g2ðxkÞ

2

@

@xk

Xd

i¼1

aiðtÞAiðxÞ

" #

dt þ gðxkÞdxkðtÞ : ð1Þ

for x = (x1, . . ., xN), xk 2 OX, t> 0, and x(0) = x0. The potential in the first term (in the brack-

ets) is a linear combination of time-dependent forces αi(t), acting on functions Ai(x), which

may introduce coupling between equations. Function g(xk) represents amplitude of stochastic

fluctuations and ξk(t) are independent Wiener processes. Previous studies (e.g. [14–16, 27])

focused on examples in population genetics where xk corresponds to the frequency of a certain

gene, affecting some quantitative trait. This frequency depends on evolutionary processes, e.g.

selection, mutation, and inherent stochastic fluctuations, described by the forces αi(t). The dis-

tribution u(t, x) follows dynamics described by the FPE

@uðt; xÞ
@t

¼ �
XN

k¼1

Xd

i¼1

aiðtÞ
@

@xk

g2ðxkÞ
2

@AiðxÞ
@xk

uðt; xÞ
� �

þ
1

2

XN

k¼1

@
2

@x2
k
g2ðxkÞuðt; xÞ½ � ; ð2Þ
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which can be also expressed in the flux form @tuðt; xÞ ¼ �
PN

k¼1
@xk

Jk½t; x�. This FPE is com-

plemented with no-flux boundary conditions Jk[t, x] = 0 at xk 2 @OX and the initial condition

u(0, x) = u0(x).

Stationary solution and ME

If the vector of forces αðtÞ ¼ ða1ðtÞ; . . . ; adðtÞÞ 2 R
d is time-independent then at large times

the dynamics approach a stationary distribution, parametrized by the vector of limiting forces

�uαðxÞ ¼
1

Zα

YN

k¼1

1

g2ðxkÞ

 !

exp
Xd

i¼1

aiAiðxÞ

" #

ð3Þ

with the normalization coefficient (i.e., the partition function)

Zα ¼
R

ON
X

YN

k¼1

1

g2ðxkÞ

 !

exp
Xd

i¼1

aiAiðxÞ

" #

dx ; ð4Þ

where A = (A1, . . ., Ad) is a vector function of the state variables x which the forces αi act on.

Using the terminology of statistical physics we refer to functions Ai as observables, as their

expectations in problems in physics provide a macroscopic description of the system in terms of

its natural observable quantities (i.e., average energy of a gas particle, as formulated by [1]). We

extend our scope from looking at a problem with constant forces α to time-dependent forces

α(t) to account for realistic scenarios where the dynamics, initially settled to a stationary solu-

tion, are pushed out-of equilibrium by changes in the forces α. The dynamics of the expectation

hAji follows from the FPE. Using notation Bji ¼ h
PN

k¼1

gðxkÞ
2

@Aj
@xk

@Ai
@xk
i, Vj ¼ h

PN
k¼1

g2ðxkÞ
@2Aj
@x2

k
i we

obtain

@

@t
hAji ¼

Xd

i¼1

Bjiai þ
1

2
Vj : ð5Þ

This forms a system of ordinary differential equations for hAi, which is generally not closed

due to nonlinearity of the functions Aj(x). Next we define a logarithmic relative entropy

H½uj�uα�≔ �
Z

ON
X

u ln
u
�uα

dx ; ð6Þ

where u(t, x) is a solution of the FPE at time t� 0 and xk 2 OX. For any t� 0 relative entropy

in Eq 6 has a maximum at α = α�, which can be obtained by solving a set of first-order condi-

tions

0 ¼
d
dai

H½uj�uα� ¼

Z

ON
X

u
�uα

d
dai

�uαdx ¼ hAiiu � hAii�uα : ð7Þ

The above intriguing relationship states that if for a given time t there exists a maximum of

the relative entropy in Eq 6 with respect to all αi reached for some choice of parameters α�,
then the expectation of Ai through the distribution u(t, x) equals the expectation through the

stationary distribution �uα� ðxÞ at this time. This simple fact, shown previously in [21] and in a

slightly different form in [14–16] suggests that instead of the full representation of the problem

using FPE one could trace only the d-dimensional dynamics of α�, that parametrize the

approximate solution by the form in Eq 3. Furthermore, the two representations agree in

terms of the expectations hAii at a given time. Concavity of the relative entropy is implied by
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the following relationship

d2

daidaj
H½uj�uα� ¼ �

Z

ON
X

d
daj

ln �uα

" #
d
dai

ln �uα

� �

udx þ
Z

ON
X

1

�uα

d2

daidaj
�uα

" #

udx

¼ � CovðAi;AjÞ�ua

ð8Þ

analogous to similar expressions in [14–16, 21] stating that the Hessian of the relative entropy

is positive semidefinite. Note that the solvability of the Eq 7 (for α�) follows from Eq 8 when

the covariance matrix is positive definite [21] (it is always positive semidefinite).

Note that the DME can be also defined using the relative entropy, which compares the dis-

tribution u with the reference distribution ϕ, where ϕ is a solution of the problem in the

absence of forces α. This approach was used in the population genetic applications where ϕ
represented the neutral distribution in the absence of selection and mutation [14, 16, 27]. ME

is then formulated as a constrained optimization where each force αi (evolutionary/ecological)

enters the problem in the form of the Lagrange multiplier, corresponding to a constraint on a

specific complementary macroscopic quantity Ai. The alternative formulation of the ME leads

to the same mathematical outcome as the one presented in this section. Moreover, it allows us

to keep some of the forces constant throughout the evolutionary timescales considered by

including them in the reference distribution, while others, which are dynamically adapting,

added through the constraints.

Dynamical approximation

We have established a relationship between the solution of the full stochastic dynamics in Eq 2

and a stationary form uα� parametrized by suitable effective forces α� following ME. However,

as we demonstrated in Fig 1A, ME is applicable only to static problems. When the system is

out-of-equilibrium, we need to establish a dynamic relationship between the values α�(t1) and

α�(t2) for t1 6¼ t2 by using the information captured by the FPE.

To derive the DME approximation of Eq 2 we use an ansatz uðt; xÞ ¼ �uαðtÞðxÞ þ Rðt; xÞ for

some continuous α(t) where R(t, x) is the time-dependent residual. The dynamics of the expec-

tations in Eq 5 become

@

@t
hAiα ¼ BααðtÞ þ

1

2
Vα þ BRαðtÞ þ

1

2
VR �

@

@t
hAiR

� �

: ð9Þ

where h�iu represents expectation through distribution u and hf ðxÞiα≔ hf ðxÞi�uαðtÞ . Now we

make two key assumptions. First, we assume that the residual terms in the bracket of Eq 9 are

small and we neglect them. In addition, we also impose a quasi-stationarity approximation,

assuming that α� are chosen to satisfy the equilibrium relationship

Bα�α
�ðtÞ þ

1

2
Vα� ¼ 0 ð10Þ

for all t> 0. Both steps are easy to justify if the forces α(t) are slowly changing (in the adiabatic

regime) and the solution of the FPE is thus close to an equilibrium form in Eq 3. However, its

validity when out-of-equilibrium is not clear. We use Eq 10 to replace Vα by Vα� and Bα by

Bα� in Eq 9 to approximate

@

@t
hAiα� � Bα� ðαðtÞ � α�Þ : ð11Þ
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Finally, to obtain a closed dynamical system for α� we use the chain rule, noting that
@hAiα�
@t ¼

@hAiα�
@α�

@α�

@t . Combination of Eqs 7 and 8 imply that differentiation of an expectation

hAiiα� with respect to αj gives us a covariance Cα�≔ Cov(Ai, Aj)α�. Therefore

@α�

@t
¼ C� 1

α�Bα� ðαðtÞ � α�Þ ; αð0Þ ¼ α0
ð12Þ

together with a parametric form in Eq 3 represent DME approximation of dynamics in Eq 2.

Solution of Eq 12 can be plugged into the stationary parametric form in Eq 3, which allows us

to not only study the accuracy of the key moments used in DME, but also to compute any sta-

tistical feature of the approximate solution and compare it with the exact solution.

Note that Eq 12 can be solved for any prescribed continuous function α(t) and in the most

extreme case, the forces α(t) can contain step changes, which clearly violate the quasi-statio-

narity assumption. However, all previously studied applications of DME approach showed

that the approximation captures extremely well the expectations of the key functions even

when the forces change rapidly. This is one of the most remarkable and unexpected features of

the DME approach which will be studied here.

Realistic situations (e.g. selection acting on quantitative traits that depend on many alleles)

typically involve high-dimensional stochastic dynamics with nonlinearities and coupling

terms [14–16]. However, for simplicity we consider examples leading to a simpler one-dimen-

sional form with a remark that more complex models can be analyzed using this approach as

long as the stationary distribution of the FPE is explicit. However, even when x is a scalar A

and α are vectors in all problems studied here: these vectors summarise the infinite-dimen-

sional distribution of x.

Ornstein-Uhlenbeck process

The model

The importance of examples where the DME becomes exact may lead us to the understanding

of why the approximation works even for more general cases. In the area of nonlinear FPE

such an example was provided by [20] who analyzed a stochastic process with a linear advec-

tion and power-law noise, i,e, a generalization of the Ornstein-Uhlenbeck process. They

showed that the nonextensive maximum entropy method is exact for the studied process.

Here we outline a simple example of stochastic dynamics where DME reproduces the exact

dynamics, namely the standard OU process with linear relaxation to an equilibrium in the

presence of constant Gaussian noise (examples include a particle under friction, animal

motion, financial time series, etc.). The presentation in this section is partly pedagogical,

although we are not aware of other works where the OU process is studied within the context

of DME. The state variable x in the OU process dynamically adapts to the value μ at a speed

given by β, further affected by a white noise of a magnitude σ

dx ¼ bðm � xÞdt þ sdxðtÞ : ð13Þ

We consider β(t) and μ(t) to be time-dependent, with long-time limits β1 and μ1 and

unless otherwise stated we consider σ(t) = σ0 to be constant. Note that σ(t) can be replaced by a

constant using transformation of time in Eq 13 (when σ(t) is smooth and invertible) without

changing the character of the problem. The stationary distribution of the Eq 13 can be

obtained from the FPE, which describes time-evolution of the probability distribution of x,
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denoted by u(t, x)

@

@t
u ¼ �

@

@x
b tð Þ m tð Þ � xð Þu½ � þ

s2
0

2

@
2

@x2
u ; ð14Þ

by letting t!1. Defining

�uαðxÞ ¼
1

Z
exp

1

s2
α � A

� �

; ð15Þ

this yields

�uα1
ðxÞ ¼

1

Z
exp

2m1b1
s2

0

x �
b1
s2

0

x2

� �

¼
1

Z
exp

1

s2
0

α1 � A
� �

; ð16Þ

where Z ¼ expðm2
1
=s2

0
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

0
=b1

p
is the normalization factor, α1 = (2μ1 β1, −β1) and A =

(x, x2). If the initial condition in Eq 13 is the stationary distribution corresponding to the

parameters (β0, μ0, σ0), i.e., as a Gaussian x0 � N ðm0; s
2
0
=2b0Þ, then the solution of Eq 14 is a

Gaussian N ðmðtÞ; vðtÞÞ for every t� 0. This well-known result can be found for instance in

[30, 31]. The general form of this solution is u(x, t) = f(t)exp[−g(t)(x − h(t))2] where the func-

tions f, g, h satisfy the following dynamical system

df
dt
¼ f ðbðtÞ � s2

0
gÞ ; f ð0Þ ¼

b0ffiffiffiffiffiffiffiffiffiffi
2ps2

0

p ; ð17Þ

dg
dt
¼ 2gðbðtÞ � s2

0
gÞ ; gð0Þ ¼ b0=s

2
0
; ð18Þ

dh
dt
¼ bðtÞðmðtÞ � hÞ ; hð0Þ ¼ m0 : ð19Þ

Note that the last equation is just the deterministic version of the OU process. In the special

case when the coefficients β(t) = β1 and μ(t) = μ1 for all t> 0 while β1 6¼ β0, μ1 6¼ μ0 and σ0

are constants the mean m(t) and the variance v(t) solve the system of ODEs

_m ¼ b1ðm1 � mÞ ; _v ¼ s2
0
� 2b1v ; ð20Þ

with initial conditions m(0) = μ0 and vð0Þ ¼ s2
0

2b0
. This system has an explicit solution

mðtÞ ¼ m1 þ ðm0 � m1Þe� b1t ; ð21Þ

vðtÞ ¼
s2

0

2b0

e� 2b1t þ
s2

0

2b1
ð1 � e� 2b1tÞ ; ð22Þ

which satisfies m(t)!μ1 and vðtÞ ! s2
0
=2b1 as t!1.

The stationary solution �uα1
ðxÞ in Eq 16 solves a variational ME problem with the relative

entropy defined in Eq 6 using forces α1 and observables A. Even though the OU process has

three natural parameters (β, μ, σ) ME implies that the stationary solution is a 2-parameter fam-

ily of functions of form in Eq 16, due to the fact that time-dependence in σ(t) can be removed

by transforming time in the dynamics. This allows us to keep the volatility of the process fixed

in the DME approach.

We briefly outline the key steps in the derivation of DME. The forces and observables are

α(t) = (2μ(t)β(t), −β(t)) and A = (x, x2). In the following calculations we assume temporal
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dependence of α but we suppress its notation. The expectations hAii follow a closed system of

ODEs

d
dt
hAi ¼

1=2 hxi

hxi 2hx2i

 !

α þ
0

s2
0

 !

¼ Bα þ V : ð23Þ

To apply the DME approximation we assume that at every time there are effective forces α�

= (2μ� β�, −β�) such that Bα� α� + V� = 0 (with the moments in matrix Bα� evaluated at the sta-

tionary distribution �uα�). Using the stationarity condition V� = −Bα� α� to substitute V by V�

and B by Bα� in Eq 23 we obtain

d
dt
hAi ¼ Bα� ðα � α�Þ : ð24Þ

In essence, DME approximates the general solution of Eq 14 with the Gaussian initial con-

dition by a stationary form �uα�ðtÞ with time-dependent parameters α�(t). The matrix Bα� can be

expressed in terms of the effective forces α�, although we will write most of the expressions in

terms of μ� and β� (the transformation from α� to (μ�, β�) is regular). The matrix Bα� can be

expressed as

Bα� ¼
1=2 m�

m� 2ðm�Þ
2
þ s2

0
=b
�

 !

: ð25Þ

Finally, we change variables in Eq 24 using the scaled covariance matrix fCα�gij ¼

CovðAi;AjÞ=s
2
0

to obtain dynamics of α�

Cα� ¼
dhAiα�
dα�

¼
1

2b
�

1 2m�

2m� s2
0
=b
�
þ 4ðm�Þ

2

 !

; ð26Þ

C� 1

α� ¼
2b
�

s2
0

4b
�
ðm�Þ

2
þ s2

0
� 2m�b

�

� 2m�b
�

b
�

0

@

1

A : ð27Þ

Plugging this into Eq 24 leads to

dα�

dt
¼ C� 1

α�Bα� ðα � α�Þ ¼ 2b
�

1

2
� m�

0 1

0

B
@

1

C
A

2bm � 2b
�
m�

b
�
� b

 !

: ð28Þ

After some algebraic manipulation we obtain a 2-dimensional dynamical system for the

effective forces α�

d
dt
ð2m�b

�
Þ ¼ 2b

�
ðmb � m�b

�
Þ þ 2m�b

�
ðb � b

�
Þ ; ð29Þ

d
dt
ð� b

�
Þ ¼ 2b

�
ðb
�
� bÞ : ð30Þ
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This coupled dynamical system can be transformed into decoupled dynamics of μ� and β�

of the form

dm�

dt
¼ bðtÞðmðtÞ � m�Þ ; ð31Þ

db�

dt
¼ 2b

�
ðbðtÞ � b�Þ : ð32Þ

First, note that the dynamical system Eqs 31 and 32 is independent of the noise magnitude

σ0, which is considered constant. This is expected and follows from the same scaling of the var-

iance of the OU process (exact or DME approximation) and s2
0
. For the exact OU process, this

scaling can be confirmed for instance by the dynamics of the variance in the form dv
dt ¼

� 2bðtÞvþ s2
0

derived from Eq 14. On the other hand, the DME solution has an explicit Gauss-

ian form �uα�ðtÞ, introduced in Eq 15, which leads to the same scaling between its variance and

s2
0

provided β�(t) is independent of σ0.

The dynamical system in Eqs 31 and 32 is explicitly solvable since it is decoupled and while

the first equation is linear, the second one is logistic. The DME solution is consistent with Eqs

18 and 19 with the relationship between the dynamic variables h(t) = μ�(t) and s2
0
gðtÞ ¼ b�ðtÞ.

The first two moments of the distribution are given by m(t) = μ�(t) and vðtÞ ¼ s2
0
=ð2b

�
ðtÞÞ,

which are functions of effective forces α�. This is due to the linearity of the OU process, which

yields a closed dynamics of the first two moments and thus preserves a Gaussian form of the

solution at each time, provided we started with a Gaussian initial condition. Note that the OU

process is not the only stochastic process where DME provides an exact solution. As [18]

showed, a nonlinear extension of the OU process can be solved exactly using a ME ansatz.

Numerical example

Fig 2A shows a numerical simulation of the OU process for three choices of initial Gaussian

distribution (centered at x0 = 0.1, 0.6, 1.2) for 3000 trajectories for each case (all parameters

summarized in the figure legend). Initially, the system is in a stationary state corresponding to

parameters μ0, β0, σ0 (Gaussian form with parameters x0; s
2
0
=2b0). However, at t = 0 the

parameters of the OU process rapidly change, pushing the system out-of-equilibrium. As a

response, the distribution of sample trajectories follows a Gaussian form at each time, eventu-

ally converging to N ðm1; s2
0
=2b1Þ. In Fig 2B we plot the 2-dimensional DME dynamics of

effective forces β�, μ�, which is exact. Each trajectory (the vector field of the dynamical system

is plotted as well) represents the complete solution of the FPE for a given parameter choice (at

each time it is a Gaussian). The microscopic distribution at four different times in panel C

shows an agreement between stochastic simulations (histograms) and microscopic distribu-

tions obtained from the DME approach (solid curves). In general, the goal of DME is to

approximate the dynamics on the macroscale, thus, we do not expect DME to capture also the

microscopic distribution. However, for the OU process DME is exact and thus the method

recovers both the macroscale and the microscale properties of the process without loss of

precision.

Dynamics of a single island with immigration

Here we use the DME method to approximate stochastic population dynamics. We will study

a simple, yet nonlinear model—stochastic logistic population growth in a single island with

immigration from other habitats.
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The model

In the case of unlimited resources and in the absence of predation, populations would grow

indefinitely. However, in natural populations this is not the case: various factors impose

bounds on this exponential growth. The logistic growth model describes population size regu-

lation in the absence of demographic stochasticity (i.e., when the population size is infinite).

At low population sizes, when resources are abundant and competition is low, the population

grows with its intrinsic growth rate, r. However, the total growth rate of the population

decreases linearly with increasing population size. In particular, the growth rate is zero when

the population is at carrying capacity, K, when each individual replaces itself in each genera-

tion. The carrying capacity represents the maximal sustainable population size. We follow the

population in a single island, with a migration from other habitats at rate m. In the presence of

demographic stochasticity the described population dynamics can be formulated using a sto-

chastic differential equation

dn ¼ ½nðr � lnÞ þm�dt þ ffiffiffiffiffi
gnp dx ; ð33Þ

where n(t) represents the population size at time t, λ = r/K is the density regulation and γ
describes the variance in population size. For the sake of simplicity we fix γ = 1 corresponding

to a Poisson(1) number of offspring for each individual (with total variance n). Extinction in

this stochastic dynamics for m = 0 is unavoidable from a mathematical point of view (as the

process is a critical branching process) but can be prevented by migration when m> 0.

Fig 2. Numerical example of the OU process. (A) Numerical simulations of the OU process with parameters β1 = 0.7, μ1 = 1, σ0 = 0.1.

We used three random initial conditions from a distribution N ðx0; s0Þ with μ0 = x0 = 1.2, 0.6, 0.1 and β0 = 0.7, 0.5, 0.45. (B) Effective forces

(μ�, β�) following dynamics in Eqs 31 and 32 corresponding to the same set of initial conditions as in panel A. (C) Histograms of x(t) at

times t = 0.3, 1, 2, 5 (initial condition β0 = 0.45, μ0 = 0.1, σ0 = 0.1 as in panel A) from the simulated data and approximated distributions in

Eq 16 for the effective forces. The time points correspond to the diamonds of matching color in the panels A-B. Code in S1 Code.

https://doi.org/10.1371/journal.pcbi.1009661.g002
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In general, complex eco-evolutionary interaction requires including changes in population

size due to demographic processes, changes occurring in gene frequencies due to selection, as

well as the various feedback mechanisms connecting them. Feedback loops between popula-

tion sizes and gene frequencies can result from migration and hard selection, i.e. when the size

of the population depends on its genetic composition. Such questions were studied in [32], but

only in a stationary case. Relaxing the assumption of stationarity makes the problem more

realistic, and inherently more difficult. The stochastic logistic dynamics with immigration in

Eq 33, despite its simplicity, serves as the first step to understanding the biologically more real-

istic scenario of stochastic models in population dynamics [33]. We are interested in how

changes in the environment reflect the dynamics of biological quantities, particularly when the

system is out of equilibrium. Since the model is nonlinear, the dynamics of moments, i.e., aver-

age population size, etc., are not closed. Nevertheless, the DME method can be applied to

reduce the stochastic dynamics to a low-dimensional deterministic dynamics of the key

observables.

Based on Eq 33, we find the corresponding FPE describing the time evolution of the proba-

bility distribution u(t, n) (which is of the same form as Eq 2):

@u
@t
¼ �

@

@n
n r � lnð Þ þmð Þu½ � þ

1

2

@
2

@n2
½nu�: ð34Þ

The stationary solution of Eq 34 can be found in the form of a potential function. Note that

it indeed has the same form as the distribution that we observed earlier in Eq 3 to maximize

entropy:

uðnÞ ¼
1

Z
1

n
exp

(

2 rn �
ln2

2
þm logðnÞ

� �)

¼
1

Z
vðnÞe2α�A; ð35Þ

where vðnÞ ¼ 1

n is the baseline distribution (the stationary solution without any forces acting

on the system), A ¼ n; � n2

2
; logðnÞ

� �
is a set of observables, and α = (r, λ, m) is a set of the eco-

logical forces driving the system. The potential function α � A consists of the effects of growth,

density regulation, and migration. We assume that migration is strong (m> 1/2) so even

though the function v(n) is not integrable on OX = (0,1), the function u(n) is both integrable

and bounded for small population sizes n. The expectations of the observables have biologi-

cally meaningful interpretations, and can, in principle, be measured. In our case, hni corre-

sponds to the expected population size, hn2i to the second moment of population size, and the

third term, hlog(n)i is the logarithm of the geometric mean of the population size. The normal-

izing constant Z, which is the function of the effective forces α, plays an important role, as a

generating function for quantities of interest [14]

@logðZÞ
@ð2ajÞ

¼ hAjðnÞi;
@

2logðZÞ
@ð2aiÞ

2
¼ CovðAiðnÞ;AjðnÞÞ ¼ Ci;j: ð36Þ

Given a set of forces α, the system evolves to a stationary distribution in Eq 35 that maxi-

mizes entropy with constraints on the observables, where 2α serve as the Lagrange multipliers.

We are interested in how the dynamics change when the set of forces changes in time, and in

the most extreme case when the set of initial forces α0 change rapidly to a new set of values α1.

The observables will evolve towards the new stationary state, which creates a path between α0

and α1 in the space of effective forces.

PLOS COMPUTATIONAL BIOLOGY Dynamic maximum entropy provides accurate approximation of structured population dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009661 December 1, 2021 12 / 22

https://doi.org/10.1371/journal.pcbi.1009661


Under the diffusion approximation we can derive ordinary differential equations (similarly

to Eq 5 for the changes in the mean of the observables A ¼ n; � n2

2
; logðnÞ

� �

d
dt
hni ¼ rhni � lhn2i þm; ð37Þ

d
dt
�
hn2i

2

� �

¼ � mþ
1

2

� �

hni � rhn2i þ lhn3i; ð38Þ

d
dt
hlogðnÞi ¼ r � lhni þ m �

1

2

� �
1

n

� �

; ð39Þ

where the choice of A follows from the stationary form in Eq 35. Eqs 37–39 can be written

using the matrix notation:

d
dt
hAi ¼

hni � hn2i 1

� hn2i hn3i � hni

1 � hni
1

n

� �

0

B
B
B
B
B
@

1

C
C
C
C
C
A

α þ

0

�
1

2
hni

�
1

2

1

n

� �

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

¼ Bα þ V: ð40Þ

This dynamical system is not closed, yet, we may apply the DME method to derive a

3-dimensional approximation for the dynamics of effective forces α� of the form in Eq 12 with

a particular form of matrices Bα� and Cα�. To do this, we approximate the elements of B and V

using the stationary approximation Bα� α� + V� = 0. Substituting V = −Bα� α� into Eq 40 and

using that B� Bα�, we obtain
@hAiðnÞi

@t �
P

jB
�
i;jðaj � a

�
j Þ. Change of variables yields

dα�

dt
¼

@hAiα�
@α�

� �� 1 dhAiα�
dt

¼ C� 1

α�Bα� ðα � α�Þ: ð41Þ

The expectations of various functions of variable n appearing in matrices Bα� and Cα� can

be expressed analytically under the condition that the migration rate is not too low (m > 1

2
).

Let us call the kth moment of the stationary distribution G(k), this can be expressed analytically

in terms of hypergeometric functions (suppressing � notation)

GðkÞ ¼
Z 1

0

nkvðnÞe2αA ¼

Z 1

0

nkþ2m� 1expf� ln2 þ 2rng ¼
1

2
l

1
2
ð� 1� k� 2mÞ

� ð42Þ

�
ffiffiffi
l
p

G
k
2
þm

� �

1F1

k
2
þm;

1

2
;
r2

l

� �

þ ð43Þ

�

þ2rG
kþ 1

2
þm

� �

1F1

kþ 1

2
þm;

3

2
;
r2

l

� �

Þ; ð44Þ

if Re(k + 2m/γ)>0. Using the function G, all the moments of interest can be expressed as

Gð0Þ ¼ Z;
Gð1Þ
Gð0Þ

¼ hni ;
Gð2Þ
Gð0Þ

¼ hn2i ;
Gð3Þ
Gð0Þ

¼ hn3i ;
Gð� 1Þ

Gð0Þ
¼

1

n

� �

: ð45Þ
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Thus

Bα� ¼
1

Gð0Þ

Gð1Þ � Gð2Þ Gð0Þ

� Gð2Þ Gð3Þ � Gð1Þ

Gð0Þ � Gð1Þ Gð� 1Þ

0

B
B
B
@

1

C
C
C
A
: ð46Þ

Furthermore, we can express hlog(n)i analytically by taking the jth derivative of G(k) with

respect to m:

Hðk; jÞ ¼ hnk logðnÞji ¼
1

2j
@
ðjÞGk

@mj
: ð47Þ

The covariance matrix of the observables evaluated at the quasi-stationary distribution

parametrized by the effective forces can then be written as

Cα� ¼

Gð2Þ
Gð0Þ

�
Gð1Þ2

Gð0Þ2
1

2

Gð1ÞGð2Þ
Gð0Þ2

�
Gð3Þ
Gð0Þ

 !
Hð1; 1Þ
Hð0; 0Þ

�
Gð1ÞHð0; 1Þ
Gð0ÞHð0; 0Þ

1

2

Gð1ÞGð2Þ
Gð0Þ2

�
Gð3Þ
Gð0Þ

 !
1

4

Gð4Þ
Gð0Þ

�
Gð2Þ2

Gð0Þ2

 !
1

2

Gð2ÞHð0; 1Þ
Gð0ÞHð0; 0Þ

�
Hð2; 1Þ
Hð0; 0Þ

� �

Hð1; 1Þ
Hð0; 0Þ

�
Gð1ÞHð0; 1Þ
Gð0ÞHð0; 0Þ

1

2

Gð2ÞHð0; 1Þ
Gð0ÞHð0; 0Þ

�
Hð2; 1Þ
Hð0; 0Þ

� �
Hð0; 2Þ
Hð0; 0Þ

�
Hð0; 1Þ2

Hð0; 0Þ2

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

: ð48Þ

The 3-dimensional nonlinear dynamical system in Eq 41 along with Eqs 46 and 48 defines

the DME approximation of the island model. Note that the method is fully general and may be

applied for arbitrary functions α(t), capturing non-stationary ecological situations.

Failure of the DME method for small migration rate

An apparent failure of the DME for the island model arises in the parameter regime m< 1/2.

The stationary form, which is used as a parametric ansatz in the DME, behaves for low popula-

tion sizes as n2m−1 leading to a singularity at n = 0 for m< 1/2. Even though the population

size distribution is integrable, the average hn−1i, appearing in the matrix B� is unbounded. A

similar problem arises when a quantitative trait is studied under selection, mutation and inher-

ent stochasticity when mutation is weak. In [16] we showed how to resolve this problem by

splitting the domain of the independent variable to a bulk and the boundary, where the singu-

larity occures. A similar approach can be applied here as well.

Numerical example

To understand the relationship between the dynamics of the original system in Eq 33 and the

dynamics of the reduced system we simulated individual population size trajectories using the

Euler-Maruyama method and then compared them to the predictions of the DME method. In

Fig 3A, we see the simulated trajectories for three sets of initial conditions. The initial condi-

tions were not fixed, but instead were randomly drawn from a stationary initial distribution,

parametrized by the growth rate (r0), the strength of density regulation (λ0), and migration

(m0). Starting in equilibrium, we changed the environmental forces abruptly to new values α =

(r, λ, m) at time t = 0. This forced the system out of equilibrium and shifted the trajectories

toward the new equilibrium, independent of the initial condition.
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Instead of using the original stochastic differential equation, in the DME we follow the

dynamics of the effective forces α� = (r�, λ�, m�) as they move to the new equilibrium shown

in Fig 3B. Note, that the parameter space is 3 dimensional, but only a 2 dimensional projection

is presented here. A single point in this space describes the full distribution of population sizes.

Fig 3C shows that the dynamics of the effective forces in the DME approximation of the sto-

chastic logistic model with migration are irreversible, i.e., the trajectory in the space of effective

forces when the system changes from α0 to α1 is different from changing α1 to α0. In both

cases the system was initialized with the stationary distribution and the forces were changed at

time t = 0.

How close is the distribution approximated by DME to the real distribution? Despite the

simple form of our equations, it is not possible to solve it explicitly analytically. Thus, we com-

pared the numerically computed distributions for the original (i.e., exact) problem with the

numerically computed distributions obtained by the DME approximation (in Fig 3D). We

used three approximations to solve the original problem: (1) using the full stochastic

Fig 3. Numerical example of the island model. (A) Numerical simulations of stochastic population dynamics on a single island with immigration.

Parameters are α1 = {r, λ, m} = {0.1, 0.002, 3}. We used initial conditions, α0,1 = {0.05, 0.005, 1} (black), α0,2 = {0.15, 0.005, 5} (blue), and α0,3 = {0.08,

0.001, 2} (green). (B) Corresponding dynamics of the effective forces projected to the (r, λ) space. (C) Irreversibility of the process: 2D projections of the

trajectories between α1 = {0.1, 0.002, 3} and α0,1 = {0.05, 0.005, 1} and reversed are not the same. (D) Histograms of population sizes at t = 1, 5, 10, 40

with initial condition α0,1 = {0.05, 0.005, 1} (black curves in panels A-B). The numerical solution of the corresponding FPE, the discrete transition

matrix prediction, and the DME all show a close match. (E) The three observables n, log(n), and n2/2. Code in S1 Code.

https://doi.org/10.1371/journal.pcbi.1009661.g003
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simulation (Fig 3A, distribution at each time approaches the exact distribution when the time

step in the stochastic simulation is small and the number of trajectories is large), (2) numeri-

cally solving the FPE for the process by the native solver of Mathematica, and (3) using the

transition matrix method, where we follow a Markov-chain, a continuous time birth-death

process on the discrete space of non-negative integers. On the other hand, we used an Euler

scheme to solve the DME system.

Although all methods are approximate, the original problem can be solved with any preci-

sion using methods (1–2) and thus we may focus here on the accuracy of the DME method

itself. We find that they are in a good agreement with each other, the only exception being the

transition matrix method, which is defined on a discrete space (and to retain biological mean-

ing also has a slightly different variance from Eq 33). We compared the distributions at differ-

ent time points in panel D. We observe that although the transition in the observable

quantities is rather slow and monotonic, the changes in the effective forces can be abrupt and

non-monotonic. Note, that the DME method does not guarantee that the microscopic popula-

tion size distributions are identical, in fact, they can differ substantially. Nevertheless, the

DME method aims to capture the agreements between the macroscopic variables. Fig 3E

shows all three key observables and shows that the DME method is in an excellent agreement

with the model.

In the previous example we demonstrated that the method works well in the most extreme

case, when the forces in the dynamics change abruptly. This is surprising, as the DME approxi-

mation is based on a quasi-stationary assumption, which would intuitively work only when

the forces are changing slowly. This may suggest that the method will perform even better

under slow environmental changes, which in reality may be more likely to happen than an

abrupt change. Temporal differences in the environment can be abrupt, causing populations

to become maladapted and possibly drive them to extinction. Less rapid environmental

changes can be observed on various timescales, for example the warming of the oceans [34] or

the yearly cycle of seasons [35], resulting in different migration rates throughout the year due

to varying resource abundance.

In Fig 4 we compare periodic changes for three scenarios: an abrupt, a slow and a fast but

continuous change. We see that the solution of the non-equilibrium dynamics lags behind the

equilibrium of the environment, and that the amount of this lag depends on the speed of

change of the ecological forces. While the faster environmental oscillations result in a smaller

range of average population sizes, the range of effective forces, on the contrary, increases. In

the extreme case of very fast environmental changes (e.g. oscillations with large frequency, or

environmental temporal noise of a fixed variation) one expects that the average population

size will stay almost stationary as the convergence to equilibrium is much slower than the time-

scale of environmental fluctuations, while the rapid fluctuations will impact the effective

forces, similarly to our first scenario in Fig 4A.

We found that the solution of DME is in a good agreement with that of the FPE, with the

temporal dynamics in the DME and the moments in the FPE equation being indistinguishable

by eye (white or black lines). We quantified the error of the DME approximation by the rela-

tive entropy between the exact population density, which solves the FPE equation, and the

DME approximation, which is computed from the dynamics of the effective forces. The mag-

nitude of this error is larger in the scenario A where the environmental parameters change

abruptly, as compared to their smooth changes in cases B-C (note the diferences in the range

between the panels). Surprisingly, even in the first scenario where the environmental parame-

ters change abruptly, and the dynamics have time to adapt to the changed environment, the

relative entropy does not decay monotonically during the adaptation period. We observe that

after a brief initial exponential drop (showed on a logarithmic scale in S1 Fig), the relative
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entropy follows a slower non-monotonous pattern. This is likely caused by the dynamics of the

effective forces, each of which shows non-monotonous convergence to the new equilibrium at

a different time scale. This non-monotonicity of the relative entropy, which we observe in all

studied scenarios, makes the problem difficult to study analytically.

Fig 4. Periodic changes in carrying capacity between 20 and 50. The system starts from equilibrium with parameters {0.05, 0.005, 1} (as in Fig 3), then

periodic shifts occur between {0.1, 0.0005, 3} and {0.1, 0.0002, 3} (blue, red, yellow). The equilibrium distribution of population size is shown as it

changes in time (background colors). The black dashed line is the mean equilibrium population size, the black solid line shows the solution of the DME,

whereas the white is the solution of the FPE. The error is measured by relative entropy, see the Eq 6.

https://doi.org/10.1371/journal.pcbi.1009661.g004

PLOS COMPUTATIONAL BIOLOGY Dynamic maximum entropy provides accurate approximation of structured population dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009661 December 1, 2021 17 / 22

https://doi.org/10.1371/journal.pcbi.1009661.g004
https://doi.org/10.1371/journal.pcbi.1009661


Discussion

We presented an application of the dynamic maximum entropy method, which helps reduce

complexity of the stochastic process by linking microscopic quantities to macroscopic

observables.

We first studied the Ornstein-Uhlenbeck process with time-dependent parameters. We

used the DME method—instead of following the full stochastic dynamics, we followed just the

key observables (in this case the first two moments), which change deterministically. The

observables and the forces acting on them were identified from the potential form of the sta-

tionary solution (in this case Gaussian). The dynamic problem was solved by the DME

method, which uses the stationary ansatz with time-dependent parameters to best approximate

the dynamics of observables. We derived a two-dimensional dynamical system of the effective

forces that characterize the solution of the OU dynamics. We showed that despite the intrica-

cies of the DME approximation, the DME dynamics coincide with an exact solution of the OU

process. This is because the dynamical equations for the first two moments are closed and thus

the solution is Gaussian at all times. However, even though the OU dynamics are linear, the

effective forces solve a nonlinear system of ordinary differential equations.

The focus of our work is on the stochastic island model, represented by nonlinear popula-

tion dynamics based on a logistic equation supplemented by migration from other islands.

The key parameters of the problem, the intrinsic growth rate, the carrying capacity, and the

migration rate, are in general functions of time, reflecting temporal environmental changes,

which take the problem out-of-equilibrium. Nonlinearity of the process results in the dynam-

ics of moments hnki which are not closed for any k. Therefore we used DME to derive a

3-dimensional nonlinear dynamical system for the effective forces using DME. The associated

observables are no longer just the first three moments but include hni, h−n2/2i and hlogni.
Unlike for the OU model, the DME approximation of the island model with migration is no

longer exact. The system is not fully explicit but contains terms using hypergeometric func-

tions. Nevertheless, it can be solved for dynamic environmental forces using standard numeri-

cal solvers.

We found that the effective forces in the DME approximation lag behind the true environ-

mental forces, which is more pronounced when the environmental forces change faster. How-

ever, even in cases of rapid changes of the environmental forces the observables in the DME

approximation are still extremely accurate at all times and thus the effective forces serve as a

proxy for the dynamics. When the environmental forces settle to constant values, the effective

forces also converge to these values. The DME serves as a change of optics where we represent

the non-equilibrium dynamics using a series of equilibria parametrized by dynamical effective

forces. The strength of the DME method in our view is not in speeding up the numerical

method for solving the problem but in better understanding the underlying dynamics in an

appropriate low-dimensional space.

Although the FP equations give a complete description of how the whole probability distri-

bution evolves through time, it is not feasible to solve them numerically for more than two or

three variables, and analytic results become intractible, once one moves away from linear mod-

els. The FP equations do not bring much actual understanding, without the help of heuristic

approximations such as ME. Although it is possible to use the quasi-stationary approximation

without the connection to ME, the method provides us with useful information. By formulat-

ing the suitable ME problem for the stationary distribution we learned which macroscopic

quantities are important for the low-dimensional projection of the dynamics. More specifi-

cally, DME identifies pairs of complementary variables—for example, in the population

dynamic example, (n, −n2, log(n)) correspond to growth rate, strength of density regulation,
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and migration. While the observables enter the variational problem via the constraints, the

forces are the corresponding Lagrange multipliers in ME. This is an intriguing extension to

more general nonlinear stochastic processes of an idea familiar from statistical

thermodynamics.

In addition, the DME method can be placed into the arsenal of methods for non-equilib-

rium dynamics, as we have shown in Fig 1. It is built from the stationary ME method but

unlike the MC method, which is essentially a ME method applied on temporal trajectories, it

uses the FPE to establish relationships between the time points.

One of the most striking properties of the DME method is its accuracy on the macroscopic

level. This is surprising because the quasi-stationary assumption suggests validity of the

approach only when the applied forces change slowly (i.e., adiabatically). However, even for

fast-changing forces the approximation stays very accurate. We have shown numerically that

the relative entropy between the exact and approximate solutions does not decay monotoni-

cally even in the simplest scenario of an abrupt change in the ecological forces. This along with

the unusual form of the DME approximation makes analytical study of the accuracy of the

method a difficult mathematical problem which remains open to date, despite insight provided

in [21].

The remarkable accuracy of the DME approximation, even when conditions change

abruptly, remains mysterious to us. We can draw an analogy with path integration, where the

approximation that fluctuations around the most likely path are Gaussian is exactly correct for

all cases that can be solved explicitly, and is accurate even with strong nonlinearity [36]. The

breakdown of DME when m < 1

2
is more understandable: then, the concentration of probabil-

ity near the small population boundary in effect constrains one of the free variables, so that the

approximation cannot fit as well, based on the remaining variables. This problem can be

resolved by considering boundary layer in the probability distribution, thus effectively increas-

ing the number of free variables, as investigated in detail in [16].

This work outlines the first step towards studying more complex questions where the com-

plexity of the problem is prohibitive for studying the full problem. In particular, our future

goal is to explore eco-evolutionary dynamics where the ecological and population genetic

timescales interact. Such interaction has been studied in [32] but only in the stationary case.

Although the existence of an explicit stationary distribution in principle allows us to explore

the dynamics in the non-stationary environment using DME, the structure of the problem

poses multiple difficulties that need to be resolved first.

The approach may also be suited to stochastic problems in different disciplines. The

method is based on the structure of the problem, in which the stochastic dynamics are

described by the FPE and the stationary solution is explicit. This includes a wide range of prob-

lems accross disciplines, for example stochastic coagulation-fragmentation dynamics when the

rates satisfy a detailed balance condition (existence of an explicit stationary distribution for

this problem was shown in [37]).

Supporting information

S1 Fig. The logarithmic error of the DME approximation. The error corresponds to the

dynamic scenario in Fig 4A. The dashed gray lines depict the times at which the changes of the

ecological forces occur. The exponential decay is highlighted in green.

(TIF)

S1 Code. Code in mathematica and Matlab. The enclosed files Matlab_OrnsteinUhlenbeck_-

matlab.m and Mathematica_IslandWithMigration.nb contain code behind our results. The

first file, executable in Matlab, shows implementation of the Ornstein-Uhlenbeck process, its
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stochastic simulation and the DME method. It returns a figure similar to Fig 2 in our work.

The second file, executable in Mathematica, contains en example simulation of the stochastic

island model. All parts of the code are supplemented by an explanation and the outcome fig-

ures, similar to the figures in the main paper.

(ZIP)
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12. Dixit PD, Wagoner J, Weistuch C, Pressé S, Ghosh K, Dill KA. Perspective: Maximum caliber is a gen-

eral variational principle for dynamical systems. J Chem Phys. 2018 Jan; 148: 010901. https://doi.org/

10.1063/1.5012990 PMID: 29306272

13. Ghosh K, Dixit PD, Agozzino L, Dill KA. The Maximum Caliber Variational Principle for Nonequilibria.

Ann Rev Phys Chem. 2020 Apr; 71:213–38. https://doi.org/10.1146/annurev-physchem-071119-

040206 PMID: 32075515

14. Barton NH, de Vladar HP. Statistical mechanics and the evolution of polygenic quantitative traits.

Genetics. 2009 Mar; 181: 997–1011. https://doi.org/10.1534/genetics.108.099309 PMID: 19087953

15. de Vladar HP, Barton NH. The statistical mechanics of a polygenic character under stabilizing selection,

mutation and drift. J R Soc Interface. 2011 Nov; 8(58): 720–739. https://doi.org/10.1098/rsif.2010.0438

PMID: 21084341
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