
On Achieving Scalability through
Relaxation

by

Giorgi Nadiradze

December, 2021

A thesis submitted to the
Graduate School

of the
Institute of Science and Technology Austria
in partial fulfillment of the requirements

for the degree of
Doctor of Philosophy

Committee in charge:
Marco Mondelli, Chair

Dan Alistarh
Krishnendu Chatterjee
Thomas Sauerwald
Christopher De Sa

The thesis of Giorgi Nadiradze, titled On Achieving Scalability through Relaxation, is approved
by:

Supervisor: Dan Alistarh, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Krishnendu Chatterjee, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Thomas Sauerwald, University of Cambridge, Cambridge, UK

Signature:

Committee Member: Christopher De Sa, Cornell University, Ithaca, USA

Signature:

Defense Chair: Marco Mondelli, IST Austria, Klosterneuburg, Austria

Signature:

Signed page is on file

© by Giorgi Nadiradze, December, 2021
All Rights Reserved

IST Austria Thesis, ISSN: 2663-337X

I hereby declare that this thesis is my own work and that it does not contain other people’s
work without this being so stated; this thesis does not contain my previous work without
this being stated, and the bibliography contains all the literature that I used in writing the
dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my
thesis committee, and that this thesis has not been submitted for a higher degree to any other
university or institution.

I certify that any republication of materials presented in this thesis has been approved by the
relevant publishers and co-authors.

Signature:

Giorgi Nadiradze
December, 2021

Signed page is on file

Abstract

The scalability of concurrent data structures and distributed algorithms strongly depends on
reducing the contention for shared resources and the costs of synchronization and communica-
tion. We show how such cost reductions can be attained by relaxing the strict consistency
conditions required by sequential implementations.
In the first part of the thesis, we consider relaxation in the context of concurrent data structures.
Specifically, in data structures such as priority queues, imposing strong semantics renders
scalability impossible, since a correct implementation of the remove operation should return
only the element with highest priority. Intuitively, attempting to invoke remove operations
concurrently creates a race condition. This bottleneck can be circumvented by relaxing
semantics of the affected data structure, thus allowing removal of the elements which are no
longer required to have the highest priority. We prove that the randomized implementations
of relaxed data structures provide provable guarantees on the priority of the removed elements
even under concurrency. Additionally, we show that in some cases the relaxed data structures
can be used to scale the classical algorithms which are usually implemented with the exact
ones.
In the second part, we study parallel variants of the stochastic gradient descent (SGD)
algorithm, which distribute computation among the multiple processors, thus reducing the
running time. Unfortunately, in order for standard parallel SGD to succeed, each processor has
to maintain a local copy of the necessary model parameter, which is identical to the local copies
of other processors; the overheads from this perfect consistency in terms of communication
and synchronization can negate the speedup gained by distributing the computation. We show
that the consistency conditions required by SGD can be relaxed, allowing the algorithm to be
more flexible in terms of tolerating quantized communication, asynchrony, or even crash faults,
while its convergence remains asymptotically the same.

vii

Acknowledgements

First and foremost, I would like to thank my supervisor, Dan Alistarh, for always finding time
for me, and for always steering me in the right direction, whenever I felt stuck on a project.
He accepted me as his PhD student, even though I did not have background in Distributed
Computing, and was very helpful, supportive and patient as I was learning new concepts.
I am grateful to Krishnendu Chatterjee, Thomas Sauerwald and Christopher De Sa for agreeing
to be on my thesis committee, and to Marco Mondelli for chairing the defense.
Many thanks to George Giakkoupis for hosting me in Rennes, and for giving very useful
feedback, on one of my papers, during the visit.
I was lucky to be affiliated with two different research groups during my PhD studies. I would
like to thank Peter Widmayer for welcoming me into his group at ETH, and all members of
the group for making my stay at ETH enjoyable. Similarly, I am grateful to all my colleagues
from the group Alistarh at IST.
I would also like to thank the lunch “team” of the groups Alistarh and Mondelli for their
company during the pandemic.
I gratefully acknowledge funding from Swiss National Fund Ambizione Project PZ00P2 161375,
and European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 805223 ScaleML).
Last but not least, I would like to thank my family and friends for their encouragement and
support.

viii

About the Author

Giorgi Nadiradze completed a BSc in Informatics at Tbilisi State University and a MSc in
Applied Mathematics at Central European University. In September 2016, he started his PhD
studies at ETH Zurich, under the supervision of Dan Alistarh. In October 2018, he joined
the Alistarh Group at IST Austria. His research mainly focuses on concurrent data structures
and distributed optimization, besides that, he has also worked on various topics, such as load
balancing on graphs, shared-memory leader election and the strip packing problem.

ix

List of Collaborators and Publications

The list of all publications which appear in this thesis:

1. Dan Alistarh, Trevor Brown, Justin Kopinsky, Jerry Z. Li, and Giorgi Nadiradze. Distri-
butionally linearizable data structures. In Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures, SPAA ’18, pages 133–142, New York, NY,
USA, 2018. ACM

2. Dan Alistarh, Giorgi Nadiradze, and Nikita Koval. Efficiency guarantees for parallel
incremental algorithms under relaxed schedulers. In Christian Scheideler and Petra
Berenbrink, editors, The 31st ACM on Symposium on Parallelism in Algorithms and
Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019, pages 145–154. ACM,
2019

3. Giorgi Nadiradze, Ilia Markov, Bapi Chatterjee, Vyacheslav Kungurtsev, and Dan Alistarh.
Elastic consistency: A practical consistency model for distributed stochastic gradient
descent. Proceedings of the AAAI Conference on Artificial Intelligence, 35(10):9037–9045,
May 2021

4. Giorgi Nadiradze, Amirmojtaba Sabour, Peter Davies, Shigang Li, and Dan Alistarh.
Asynchronous decentralized SGD with quantized and local updates. In Thirty-Fifth
Conference on Neural Information Processing Systems, 2021

x

Table of Contents

Abstract vii

Acknowledgements viii

About the Author ix

List of Collaborators and Publications x

Table of Contents xi

List of Figures xii

List of Tables xii

List of Algorithms xiii

1 Introduction 1
1.1 Concurrent Data Structures . 2
1.2 Distributed Optimization . 3

2 Distributionally Linearizable Data Structures 9
2.1 Introduction . 9
2.2 System Model . 11
2.3 The MultiCounter Algorithm . 12
2.4 Distributional Linearizability . 13
2.5 Analysis of the MultiCounter . 15
2.6 Distributional Linearizability for Concurrent Relaxed Queues 27
2.7 Experimental Results . 33
2.8 Related Work . 35

3 Applications of Relaxed Scheduler 37
3.1 Introduction . 37
3.2 Relaxed Schedulers: The Sequential Model 39
3.3 Analyzing SSSP under Relaxed Scheduling 41
3.4 Experiments . 43
3.5 Incremental Algorithms . 45
3.6 Lower Bound on Wasted Work . 49
3.7 Related Work . 51

4 Elastic Consistency: A Practical Semantics Model for Distributed Stochas-
tic Gradient Descent 53

xi

4.1 Introduction . 53
4.2 Elastic Consistency . 55
4.3 Elastic Consistency and SGD Convergence 57
4.4 Distributed System Models and their Elastic Consistency Bounds 59
4.5 Detailed Convergence Analysis . 62
4.6 Elastic Consistency Bounds . 67
4.7 Related Work . 75

5 Asynchronous Decentralized SGD with Quantized and Local Updates 77
5.1 Introduction . 77
5.2 Preliminaries . 79
5.3 The SwarmSGD Algorithm . 81
5.4 The Convergence of SwarmSGD . 83
5.5 The Complete Analysis . 85
5.6 Related Work . 105
5.7 Detailed Analytical Comparison . 106

Bibliography 109

List of Figures

2.1 Experimental Results for the Concurrent Counter. 33

3.1 Overheads (left) and speedups (right) for parallel SSSP Dijkstra’s algorithm
executed via a MultiQueue relaxed scheduler on random, road network, and social
network graphs. The overhead is measured as the ratio between the number of
tasks executed via a relaxed scheduler versus an exact one. 43

3.2 Relaxation overheads versus relaxation factor/queue multiplier for parallel SSSP
Dijkstra’s algorithm. The number of queues is the multiplier (x axis) times the
number of threads, and is proportional to the average relaxation factor of the
queue [AKLN17]. 44

List of Tables

4.1 Summary of elastic consistency bounds. 61

xii

List of Algorithms

1 Pseudocode for the MultiCounter Algorithm. 13
2 Pseudocode for Relaxed Queue Algorithm. 28
3 SSSP algorithm based on a relaxed priority queue. 41
4 General Framework for incremental algorithms. 46
5 General Framework for executing incremental algorithms using relaxed priority

schedulers. 46
6 Iteration t+ 1 at node i ∈ P , for Crash faults model with variance 67
7 Iteration t+ 1 at node i ∈ P , for Crash faults model 69
8 Iteration t+ 1 at node i ∈ P , for message delays 70
9 Iteration t+ 1, processor q. 72
10 Iteration t+ 1 at a node i ∈ P . 73
11 Sequential SwarmSGD pseudocode for each interaction between nodes i and j. 83

xiii

CHAPTER 1
Introduction

The performance thresholds reached by single-processor computing, together with advances in
parallel hardware, have brought up the need to design scalable algorithms and data structures,
which allow computation to be distributed efficiently among multiple nodes. Scalability can be
hindered by resource contention, as well as synchronization and communication costs. Some
data structures, such as queues and stacks, have inherently strict semantics, which induce
race conditions when concurrent threads attempt to retrieve the element with highest priority
(the element which was inserted last in stack and the element which was inserted first in
queue), without breaking correctness. This creates necessity to relax the strict semantics
and allow threads to remove an element which does not necessarily have the highest priority.
Reducing contention at the expense of relaxing semantics gives rise to two important questions,
which this thesis aims to answer. First, can we assess the quality of the removed element by
providing provable rank guarantees? Second, is it possible to apply relaxed data structures to
the problems which are known to be solvable using their exact counterparts?

Further, some algorithms, for example mini-batch stochastic gradient descent are naturally
parallel. More precisely, mini-batch stochastic gradient is an iterative algorithm, where at each
iteration, parameter is updated using the average of n stochastic gradients. In the parallel
version, computation is distributed among n processors: each processor maintains local copy of
the parameter and computes stochastic gradient using the local copy. In order to achieve the
same convergence rate as the sequential version, processors need to keep their local parameters
consistent: at each iteration processors need to receive all the stochastic gradients computed
by the other processors, then they apply average of all the stochastic gradients to their local
parameter and proceed to the next iteration. Maintaining the local parameters consistent
requires all to all communication and synchronization among the processors, which in practice
is costly and becomes a bottleneck which limits scalability. We show that this issue can be
circumvented by relaxing parameter consistency. Specifically, we show that under asynchrony
and reduced communication, even though the local parameters are no longer consistent, they
do not have a large deviation, and this allows us to prove that the convergence is not affected.

This thesis consists of four chapters: the first two contain results about concurrent data
structures with relaxed semantics, and third and fourth address the distributed optimization
(distributed stochastic gradient descent in particular) under the relaxed consistency setting.
We go over the results in more detail below.

1

1. Introduction

1.1 Concurrent Data Structures
In Chapter 2 we consider relaxed concurrent data structures. As an illustration, let us consider
the following implementation of a relaxed counter algorithm. Recall that an exact counter is a
data structure which supports the following two methods: Increment(), which, as the name
suggests, increments the value of counter, and Read(), which returns the current value of the
counter. In a sequential setting, it is easy to see that in order for the counter implementation
to be correct, every Read() operation should return a value which is equal to the number
of Increment() operations which were invoked before the Read(). The classic correctness
measure used for the concurrent implementations of the counter is linearizability [HW90]:
that is, each method should atomically happen at some point between its invocation and
response. The point at which the method is executed is called a linearization point, and
every Read() operation should return the value which is equal to the number of Increment()
operations whose linearization points precede the linearization point of the Read(). The naive
implementation which uses single sequential counter with synchronization primitive is not
scalable at higher thread count, because of the contention for the counter, and this can even
be proved theoretically [AACH+14, EHS12].
Instead, we consider a relaxed version of the counter, which uses n sequential counters, instead
of a single one. The Increment() operation picks two counters uniformly at random, atomically
reads their values and atomically increments the one with the smaller value. The Read()
operation chooses one counter uniformly at random and returns its value multiplied by n. The
linearization point of Increment() operation corresponds to the atomic write(increment) it
performs, and the linearization point of Read() operation corresponds to its atomic read. Since
the relaxed counter is randomized and no longer returns the exact value of the counter we
need to introduce the new correctness condition - Distributional Linearizability. Distributional
Linearizability can be seen as the version of classical linearizability, but with additional
probabilistic costs which are caused by relaxation (The exact versions of data structures have
cost zero). In the case of relaxed counter, if the values of counters are x1, x2, ...xn at the
point Read() does atomic read (linearization point), then if Read() chooses counter i then
the cost is n

∣∣∣∣xi − ∑n

j=1 xj

n

∣∣∣∣. Notice that in the absence of concurrency the relaxed counter is
the analogue of the classical balls into bins process with two choices [ABKU99]. Hence for any
i, the expected cost nE

∣∣∣∣xi − ∑n

j=1 xj

n

∣∣∣∣ can be upper bounded by O(n log n) and the cost is
O(n log n) with high probability as well [PTW15, BCSV00]. The main challenge introduced by
the concurrency is that the values of the counters are no longer consistent: at the point when
Increment() operation performs atomic write, we are no longer guaranteed that it increments
the counter with the smaller value. We are first to show that in this setting the cost can be
upper bounded by O(n log2 n), both in expectation and with high probability. We also provide
empirical results which show that the relaxed counter does indeed scale well. Next, we consider
relaxed queues [RSD15] and show that the expected cost is upper bounded by O(n log2 n) as
well. Here, the cost is defined in terms of the rank of returned element, which is equal to one
plus the number of elements which were enqeueud before it. The result can be extended to
the relaxed priority queues as long as the elements are inserted in decreasing priority order. In
the proof we use techniques derived in [AKLN17]; an important and non-trivial distinction is
that we have to deal with concurrency between operations.
In Chapter 3 we show that in some algorithms relaxed data structures can be efficiently used
instead of exact ones. We are given a relaxed priority scheduler which contains tasks with
priorities. The rank of the task is one plus the number of tasks with higher priority, which are

2

1.2. Distributed Optimization

currently in the scheduler. For a task u, let inv(u) be the number of tasks with higher rank
(lower priority) which are returned by the scheduler during the period when u is the highest
priority task and let rank(t) be the rank of the returned task at time step t (here, timestep
corresponds to the number of tasks returned by the scheduler).

We require that the relaxed scheduler has the following properties. For any task u, inv(u) < k
and for any t > 0, rank(t) ≤ k. The results from Chapter 2 can be used to show that
MultiQueue [RSD15] satisfies the above properties with high probability. Algorithms such as
single source shortest path algorithm [Dij59] can be implemented using the exact scheduler.
For example, in the case of [Dij59], each node corresponds to task and the rank of a task is
a current distance from the source node to the node it corresponds to. While the scheduler
is not empty, the algorithm gets the task with the highest priority (shortest distance) from
the scheduler and executes it by relaxing the outgoing edges of the retrieved node. The
parallel implementations of Dijkstra’s algorithm have limited scalability since we again have
the unavoidable bottleneck caused by high contention on the node with the shortest distance.

Hence the need to use the relaxed scheduler. Notice that it is not clear how the running time
of the algorithm is affected by priority inversions caused by relaxation. That is, the nodes
returned by the scheduler are no longer at the optimal distance and the algorithm is forced to
process them multiple times (we count such occurrences towards extra/wasted work performed
by the algorithm). We show that the number of times the nodes are processed in total is
at most n+O(poly(k) dmax

wmin
), where n is the number of the nodes in the graph, dmax is the

maximum shortest distance from the source node to some other node and wmin is the smallest
edge weight. Here, O(poly(k) dmax

wmin
) is the waste or overhead caused by the relaxation, since

the exact version processes each node exactly once.

The argument can be used to roughly count the running time of the parallel version. Assume
that k = O(poly(log n)), dmax

wmin
= O(poly(log n)) and the largest degree is O(poly(log n)) as

well, then the running time of sequential Dijkstra’s algorithm is O(n poly(log n)) while the
total work performed by the parallel version when using the relaxed scheduler is O(n log2 n) +
O(poly(log n)) (O(n log2 n) is the actual work and O(poly(log n)) is the wasted work).
If the algorithm uses log n threads and assuming (optimistically) that the actual work is
distributed evenly among the threads, we get that the running time of the parallel algorithm
is O(n log n) + O(poly(log n)), giving us log n factor speedup compared to the sequential
version. We experimentally show that the SSSP algorithm which uses MultiQueues [RSD15]
is indeed scalable. Additionally, experimental results suggest that for the graphs with low
diameter and low variance of the edge weights the overhead from relaxation is even less than
what the upper bound provided by the theoretical results implies. Finally, in Chapter 3 we
derive upper and lower bounds on the extra work caused by the relaxation for the incremental
algorithms such as Delaunay Triangulation and Comparison Sorting.

1.2 Distributed Optimization
Consider the following optimization problem. We wish to minimize function f : X → R, where
X is a compact subset of Rd. For the simplicity we will assume that X is actually Rd and f
is non-convex, even though we will show how to deal with the convex case in Chapter 4. In
the context of supervised learning, we are given m data samples {S1, S2, ..., Sm} and

f(x) =
m∑
j=1

`j(x)
m

,

3

1. Introduction

where `j is a loss function at data sample Sj. The classical stochastic gradient descent is an
iterative method which starts at some initial point x0 ∈ Rd and the iteration is given by

xt+1 = xt − ηG̃(xt).
Here, G̃(xt) is a stochastic gradient which is gradient of the loss function at a randomly
chosen data sample (G̃(xt) is a gradient of `j at xt, where 1 ≤ j ≤ m is chosen uniformly
at random) and 0 < η < 1 is a learning rate used to control the convergence of SGD.
Given that function f is L-smooth and the data samples have variance σ2 (for any x ∈ Rd,
E ‖G̃(x)−∇f(x)‖2 ≤ σ2), it is very well known (e.g [GL13]) that after T iterations of SGD:

T−1∑
t=0

∇f(xt)
T

= O
(
f(x0)− f(x∗)

ηT
+ σ2η

)
.

In the above, O hides parameters such as L and f(x∗) is a lower bound on a function f .
By setting η = 1√

T
we get the convergence rate of O

(
f(x0)−f(x∗)√

T
+ σ2
√
T

)
. For the parallel

version we consider two types of systems: message-passing which is covered in Chapter 4 and
shared-memory which we cover in Chapters 4 and 5.

1.2.1 Message Passing
Given n processors which communicate with each other using message passing, one round
(step) of the parallel version of SGD can be written as

xt+1 = xt −
n∑
i=1

η

n
G̃i(xt).

where each node i computes stochastic gradient G̃i(xt) independently (we assume that each
node has access to the entire data) and then sends the result to all other nodes, in order to
maintain the value of xt consistent. Since

∑n
i=1

G̃i(xt)
n

is also stochastic gradient, but with the
reduced variance σ2

n
, after T rounds (steps) we have that

T−1∑
t=0

∇f(xt)
T

= O
(
f(x0)− f(x∗)

ηT
+ σ2η

n

)
.

Which allows us to set η =
√
n√
T
, to get the convergence rate of O

(
f(x0)−f(x∗)√

nT
+ σ2
√
nT

)
. Even

though this implies that the parallel version is theoretically scalable (with a speedup factor
of Ω(

√
n)), the algorithm itself is not robust since it needs all to all communication and

synchronization, which are required to make sure that all processors receive all the stochastic
gradients computed by the other processors. For the algorithm to scale in practice, we need
to take care of the following issues:

• For very large d, processors need to compress the stochastic gradients, in order to reduce
the communication costs.

• Some processors can be slow at computing stochastic gradients, sent stochastic gradients
can be delayed because of the network issues, or processors can just crash before sending
their stochastic gradient to all the other processors. Thus, synchonization becomes
costly or even impossible, and we need to reduce synchronization overhead or make the
algorithm entirely asynchronous.

This means that processors are not able to keep xt consistent. We relax the consistency
condition by assuming that each processor i has a local view of xt, which we denote by vit.

4

1.2. Distributed Optimization

In Chapter 4 we prove that the relaxed version has asymptotically the same convergence rate
(Hence, it is scalable) as the exact one as long as the elastic consistency criterion is satisfied.
That is, there exists a constant B, such that for each processor i and step t:

E ‖vit − xt‖2 ≤ η2B2.

More precisely, the convergence is affected by the fact that stochastic gradients are computed
over local views (models) and not over xt. But, using Cauchy-Schwarz inequality, L-smoothness,
variance bound and elastic consistency we can show that for any processor i and time step t

E ‖G̃i(vit)− G̃i(xt)‖2 ≤ 3L2η2B2 + 6σ2.

This allows us to prove that in this case convergence rate is O
(
f(x0)−f(x∗)√

nT
+ σ2
√
nT

+ B2L2n
T

)
.

Note that for large enough T , the third term is dominated by the first two terms, hence if we
run the relaxed SGD for long enough we are able to asymptotically match the converge rate
of the exact version.

The crucial point is that our analysis encapsulates all the settings which caused us to relax
consistency. That is, it can be cleanly split into two parts: First part proves that elastic
consistency condition is satisfied for the concrete setting we consider, and the second part
provides unified convergence analysis for all the settings.

1.2.2 Shared Memory
The scalability in message passing systems was achieved through the variance reduction. This
in turn was accomplished by grouping local SGD iterations together to create one parallel
round (In chapter 4 we show that this can be done even when the algorithm is asynchronous).
Next, we consider shared memory setting, which is mainly used for asynchronous algorithms.
That is, processors access shared memory asynchronously and we do not have a notion of
parallel rounds.

We start by describing the algorithm studied in [ADSK18]. The shared parameter vector
x ∈ Rd is stored in a shared memory, so that processors can atomically read each of its
coordinates and are able to atomically add value to coordinates as well. Note that by limiting
atomic addition to the coordinates only, we are able to avoid the bottleneck which would
be caused by multiple processors trying to update the shared model. This can be seen as
the analogue of multiple threads attempting to remove the highest priority element from the
concurrent data structure. In the case of concurrent data structures, we reduced contention
by allowing removal of the elements which are no longer required to have the highest priority.
Here, since the dimension of the shared parameter is usually large, we reduce contention by
distributing update operations among the coordinates. Subsequently, the views of the shared
parameter read by processors are inconsistent (This would be the case even if they were able
to read the entire parameter atomically). First we define the notion of time step: one time
step corresponds to one atomic update of the first coordinate of the shared parameter. Let i
be a processor which performs t+ 1-th atomic update of the first coordinate. One round of
SGD can be written as:

xt+1 = xt − ηG̃(vit).
In the above, vit is the inconsistent view read by processor i, which it used to compute
stochastic gradient. We assume that processors have access to the entire data, thus we do
not use notation for the local stochastic gradients (G̃i for the processor i). In Chapter 4 we
show that elastic consistency condition is satisfied in this case as well. That is, for each step t
and processor i which performs SGD iteration at step t + 1, there exists parameter B > 0

5

1. Introduction

such that:
E ‖xt − vit‖2 ≤ η2B2.

Here, B depends on d (the dimension of the shared parameter), interval contention (maximum
number of concurrent operations observed by the algorithm) and the second moment bound.
The second moment boundM is a parameter such that for any vector x ∈ Rd, E ‖G̃(x)‖ ≤M2.
Also, in Chapter 4 we show that the convergence analysis from the message passing systems
can also be used in this case, to obtain the convergence rate O

(
f(x0)−f(x∗)√

T
+ σ2
√
T

+ B2L2

T

)
.

Note that we no longer have speedup, since we have only one SGD iteration per round (step).
Instead, we can argue that the speedup comes from the observation that even though we
consider single SGD iteration per round, in practice the linear number of iterations can happen
concurrently. Hence, Tn sequential rounds which contain single SGD iteration, can be seen as
O(T) parallel rounds which contain the linear number of SGD iterations. Thus, if T is the
number of parallel rounds, then the convergence rate becomes O

(
f(x0)−f(x∗)√

nT
+ σ2
√
nT

+ B2L2

nT

)
.

This means that we again achieve Ω(
√
n) speedup, given that B is negligible and T is large

enough.

In Chapter 5 we relax the consistency even further. We consider scenario where processors are
nodes of a graph, each node is only able to communicate with the neighbouring nodes and
the data is split among the nodes.

We devise an GD algorithm which is fully asynchronous and uses compressed communication.
Each node maintains its own local model, which is stored in the corresponding local register.
Nodes communicate by updating local registers of each other. Recall that in the previous
case nodes shared one global model, and contention was reduced by having per coordinate
atomic update operations. Here, we require the entire model to be updated atomically, but
we would like to point out that contention is reduced by using one local model per node
and limiting interaction partners of nodes to a randomly chosen neighbours. At node i, our
algorithm can roughly be described as follows (for the simplicity we omit the full description).
Node i computes the random number of local stochastic gradients using the data samples
available to it, then it communicates with the random neighbour and retrieves its approximate
local model by reading from the local register (approximation is caused by asynchrony and
quantized communication). Next, it averages the approximate local model of the neighbour
with its own local model to get the vector vavg. Then it writes quantized value of vavg in the
local register of the neighbour. Finally, it updates vavg using the local stochastic gradients
it computed beforehand and writes the quantized version of the updated vector in its own
local register. The time steps in this model correspond to the communication among the
nodes: at each time step some node finishes computation of the local stochastic gradients
and interacts with a random neighbour. In the theory of gossip type algorithms it is common
to assume that nodes communicate with neighbouring nodes once a Poisson clock with rate 1
ticks. We make the same assumption and it implies that, at each step, a node which contacts
its neighbour is chosen uniformly at random [GNW16]. Next, we provide the intuition behind
the scalability of our algorithm.

Unlike the settings in Chapter 4, the elastic consistency condition does not hold, since nodes
use the local models of adjacent nodes in order to update theirs. Instead, we exploit graph
topology and load balancing tools to show that for any step t there exists a parameter B such
that:

n∑
i=1

E ‖vit − µt‖2 ≤ nη2B2,

6

1.2. Distributed Optimization

where vit is a local model of node i after t steps and µt =
∑n

i=1 v
i
t

n
. This can be seen as the

elastic consistency condition which holds for the node which is chosen uniformly at random.
But, since we have shown that at each step the node which performs SGD iteration is chosen
uniformly at random as well, we can follow the convergence proof used in Chapter 4 for
asynchronous shared memory setting, and also bound the error caused by additional relaxations
to prove that our SGD algorithm achieves Ω(

√
n) speedup.

7

CHAPTER 2
Distributionally Linearizable Data

Structures

2.1 Introduction
Consider a system of n threads, which share a set of n distinct atomic counters. We wish to
implement a scalable approximate (relaxed) counter, which we will call a MultiCounter, by
distributing the contention among these n distinct instances: to increment the global counter,
a thread selects two atomic counters i and j uniformly at random, reads their values, and
(atomically) increments by 1 the value of the one which has lower value according to the
values it read. To read the global counter, the thread returns the value of a randomly chosen
counter i, multiplied by n. 1 Notice that the read operation is not guaranteed to return
the correct value of the global counter, which is equal to the total number of increments.
Throughout this chapter, we will refer to the absolute value of the difference between the
returned value and the correct value as the skew (of the relaxed counter).
The astute reader will have noticed that this process is similar to the classic two-choice load
balancing process [ABKU99], in which a sequence of balls are placed into n initially empty bins,
and, in each step, a new ball is placed into the less loaded of two randomly chosen bins. Here,
the individual atomic counters are the bins, and each increment corresponds to a new ball
being added. This sequential load balancing process is extremely well studied [RMS01, Mit96]:
a series of deep technical results established that the difference between the most loaded
bin and the average is O(log log n) both in expectation and with high probability [ABKU99,
Mit96], and that this difference remains stable as the process executes for increasingly many
steps [BCSV00, PTW15]. In [PTW15], it is shown that the similar result holds for the
difference between the average and least loaded bin, albeit in this case, the difference is upper
bounded by O(log n). Subsequently, in the absence of concurrency, the skew of the relaxed
counter can be bounded by O(log n). We would therefore expect the above relaxed concurrent
counter to have relatively low and stable skew, and to scale well, as contention is distributed
among the n counters.
However, there are several technical issues when attempting to analyze this natural process in
a concurrent setting.

1This multiplication serves to maintain the same magnitude as the total number of updates to the
distributed counter up to a point in time.

9

2. Distributionally Linearizable Data Structures

• First, concurrency interacts with classic two-choice load balancing process in non-trivial
ways. The key property of the two-choice process which ensures good load balancing
is that trials are biased towards less loaded bins—equivalently, operations are biased
towards incrementing counters of lesser value. However, this property may break due to
concurrency: at the time of the update, a thread may end up updating the counter of
higher value among its two choices if the counter of smaller value is updated concurrently
since it was read by the thread, thus surpassing the other counter.

• Second, perhaps suprisingly, it is currently unclear how to even specify such a concurrent
data structure. Despite a significant amount of work on specifying deterministic relaxed
data structures [HKP+13, AKY10, HHH+16] , none of the existing frameworks cover
relaxed randomized data structures.

• Finally, assuming such a data structure can be analyzed and specified, it is not clear
whether it would be in any way useful : many existing applications are built around data
structures with deterministic guarantees, and it is not obvious how scalable, relaxed data
structures can be leveraged in standard concurrent settings.

One may find it surprising that analysing such a relatively simple concurrent process is
so challenging. Beyond this specific instance, these difficulties reflect wider issues in this
area: although these constructs are reasonably popular in practice due to their good scal-
ability, e.g. [BFK+11, NLP13, WGTT15, RSD15], their properties are non-trivial to pin
down [AKLN17], and it is as of yet unclear how they interact with the higher-order algorithmic
applications they are part of [LNP15].
Contribution. In this chapter, we take a step towards addressing these challenges. Specifically:

• We provide the first analysis of a two-choice load balancing process in an asynchronous
setting, where operations may be interleaved, and the interleaving is decided by an
adversary. We show that the resulting process is robust to concurrency, and continues
to provide strong balancing guarantees in potentially infinite executions, as long as the
ratio between the number of bins and the number of threads is above a large constant
threshold.

• We introduce a new correctness condition for randomized relaxed data structures, called
distributional linearizability. Intuitively, a concurrent data structure D is distributionally
linearizable to a sequential random process R, defined in terms of a sequential specifica-
tion S, a cost function cost measuring the deviation from the sequential specification,
and a distribution P on the values of the cost function, if every execution of D can be
mapped onto an execution of the relaxed sequential process R, respecting the outputs
and the costs incurred, as well as the order of non-overlapping operations.

• We prove that the randomized MultiCounter data structure introduced above is distri-
butionally linearizable to a (sequential) variant of the classic two-choice load balancing
process. This allows us to formally define the properties of MultiCounters. Moreover, we
show that this analytic framework also covers variants of MultiQueues [RSD15], a popu-
lar family of concurrent data structures implementing relaxed concurrent priority queues.
This yields the first analytical guarantees for MultiQueues in concurrent executions.

• We implement the MultiCounters, and show that they can provide a highly scalable
approximate timestamping mechanism, with relatively low skew. We build on this, and

10

2.2. System Model

show that MultiCounters can be successfully applied to timestamp-based concurrency
control mechanisms such as the TL2 software transactional memory protocol [DSS06].
This usage scenario presents an unexpected trade-off: assuming low contention, the
resulting TM protocol scales almost linearly, but may break correctness with very low
probability. In particular, we show that there exist workloads and parameter settings for
which this relaxed TM protocol scales almost linearly, improving the performance of the
TL2 baseline by more than 3×, without breaking correctness.

Techniques. Our main technical contribution is the concurrent analysis of the classic
two-choice load balancing process, in an asynchronous setting, where the interleaving of
low-level steps is decided by an oblivious adversary. The core of our analysis builds on the
elegant potential method of Peres, Talwar and Wieder [PTW15], which we render robust to
asynchronous updates based on potentially stale information. To achieve this, we overcome
two key technical challenges. The first is that, given an operation op, as more and more other
operations execute between the point where it reads and the point where it updates, the
more stale its information becomes, and so the probability that op makes the “right" choice
at the time of update, inserting into the less loaded of its two random choices, decreases.
Moreover, operations updating with stale information will “stampede" towards lower-weight
bins, effectively skewing the distribution. The second technical issue we overcome is that
long-running operations, which experience a lot of concurrency, may in fact be adversarially
biased towards the wrong choice, inserting into the more loaded of its two choices with
non-trivial probability. We discuss these issues in detail in Section 2.5.1.
In brief, our analysis circumvents these issues by upper bounding the expected number of
concurrent operations which increment the counter with the lesser load, thus bounding the
error caused by making the wrong choice. Note that the adversary can control the expected
number of such operations through increased concurrency. The critical property which we
leverage in our analysis is that, while individual operations can be arbitrarily contended (and
therefore biased), there is a bound of n on the average contention per operation, which in turn
bounds an average error adversary can induce over a period of time. Our argument formalizes
this intuition, and phrases it in terms of the evolution of the potential function.
We show that this result has implications beyond “parallelizing" the classic two-choice process,
as we can leverage it to obtain probabilistic bounds on the skew of the MultiCounter. Using
the framework of [AKLN17], which connected two-choice load balancing with MultiQueue
data structures in the sequential case, we can obtain guarantees for this popular data structure
pattern in concurrent executions.

2.2 System Model
Asynchronous Shared Memory. We consider a standard asynchronous shared-memory
model, e.g. [AW04], in which n threads (or processes) P1, . . . , Pn, communicate through shared
memory, on which they perform atomic operations such as read, write, compare−and−swap
and fetch− and− increment. The fetch-and-increment operation takes no arguments, and
returns the value of the register before the increment was performed, incrementing its value
by 1.
The Oblivious Adversarial Scheduler. Threads follow an algorithm, composed of shared-
memory steps and local computation, including random coin flips. The order of process steps
is controlled by an adversarial entity we call the scheduler. Time t is measured in terms of the

11

2. Distributionally Linearizable Data Structures

number of shared-memory steps scheduled by the adversary. The adversary may choose to
crash a set of at most n− 1 processes by not scheduling them for the rest of the execution. A
process that is not crashed at a certain step is correct, and if it never crashes then it takes an
infinite number of steps in the execution. In the following, we assume a standard oblivious
adversarial scheduler, which decides on the interleaving of thread steps independently of the
coin flips they produce during the execution.

Shared Objects. The algorithms we consider are implementations of shared objects. A
shared object O is an abstraction providing a set of methods, each given by a sequential
specification. In particular, an implementation of a method n for an object O is a set of n
algorithms, one for each executing process. When thread Pi invokes method n of object O,
it follows the corresponding algorithm until it receives a response from the algorithm. Upon
receiving the response, the process is immediately assigned another method invocation. In
the following, we do not distinguish between a method n and its implementation. A method
invocation is pending at some point in the execution if has been initiated but has not yet
received a response. A pending method invocation is active if it is made by a correct process
(note that the process may still crash in the future). For example, a concurrent counter could
implement read and increment methods, with the same semantics as those of the sequential
data structure.

Linearizability. The standard correctness condition for concurrent implementations is lin-
earizability [HW90]: roughly, a linearizable implementation ensures that each concurrent
operation can be seen as executing at a single instant in time, called its linearization point.
The mapping from method calls to linearization points induces a global order on the method
calls, which is guaranteed to be consistent to a sequential execution in terms of the method
outputs; moreover, each linearization point must occur between the start and end time of the
corresponding method.

Recent work, e.g. [HKP+13], considers deterministic relaxed variants of linearizability, in which
operations are allowed to deviate from the sequential specification by a relaxation factor.
Such relaxations appear to be necessary in the case of data structures such as exact counters
or priority queues in order to circumvent strong linear lower bounds on their concurrent
complexity [AACH+14]. While specifying such data structures in the concurrent case is
well-studied [HKP+13, AKY10, HHH+16], less is known about how to specify structured
randomized relaxations.

With High Probability. We say that an event occurs with high probability in a parameter,
e.g. n, if it occurs with probability at least 1− 1/nc, for some constant c > 0.

2.3 The MultiCounter Algorithm
Description. The algorithm implements an approximate counter by distributing updates
among n distinct counters, each of which supports atomic read and increment operations.
Please see Algorithm 1 for pseudocode. To read the counter value, a thread simply picks one
of the n counters uniformly at random, and returns its value multiplied by n. To increment
the counter value, the thread picks two counter indices i and j uniformly at random, and
reads their current values sequentially. It then proceeds to update (increment) the value of
the counter which appeared to have a lower value given its two reads. (In case of a tie, or
when the two choices are identical, the tie is broken arbitrarily.)

12

2.4. Distributional Linearizability

Algorithm 1 Pseudocode for the MultiCounter Algorithm.
Shared: Counters[n] // Array of integers representing set of n distinct counters
function Read()

i← random(1, n)
return n · Counters[i].read()

end function

function Increment()
i← random(1, n)
j ← random(1, n)
xi ← Counters[i].read()
xj ← Counters[j].read()
Counters[arg min(xi, xj)].increment()

end function

Relation to Load Balancing. A sequential version of the above process, in which the
counter is read or incremented atomically, is identical to the classic two-choice balanced
allocation process [ABKU99], where each counter corresponds to a bin, and each increment
corresponds to a new ball being inserted into the less loaded of two randomly chosen bins.

In a concurrent setting, the critical departure from the sequential model is that the values
read can be inconsistent with respect to a sequential execution: there may be no single point
in time when the two counters had the values xi and xj observed by the thread; moreover,
these values may change between the point where they are read, and the point where the
update is performed.

More technically, the sequential variant of the two-choice process has the crucial property that,
at each increment step, it is “biased" towards incrementing the counter of lower value. This
does not necessarily hold for the concurrent approximate counter: for an operation where a
large number of updates occur between the read and the update points, the read information
is stale, and therefore the thread’s increment choice may be no better than a perfectly random
one; in fact, as we shall see in the analysis, it is actually possible for an adversary to engineer
cases where the algorithm’s choice is biased towards incrementing the counter of higher value.

2.4 Distributional Linearizability
We generalize the classic linearizability correctness condition to cover randomized relaxed
concurrent data structures, such as the MultiCounter. Intuitively, we will say that a concurrent
data structure D is distributionally linearizable to a corresponding relaxed sequential process R,
defined in terms of a sequential specification S, a cost function cost measuring the deviation
from the sequential specification, and a distribution P on the cost function values, such that
every execution of D can be mapped onto an execution of the relaxed sequential process
R, respecting the outputs and the incurred costs, as well as the order of non-overlapping
operations. To formalize this definition, we introduce the following machinery, part of which is
adopted from [HKP+13].

Data Structures and Labeled Transition Systems. Let Σ be a set of methods including
input and output values. A sequential history s is a sequence over Σ, i.e. an element in Σ∗.
A (sequential) data structure is a sequential specification S which is a prefix-closed set of

13

2. Distributionally Linearizable Data Structures

sequential histories. For example, the sequential specification of a stack consists of all valid
sequences for a stack, i.e. in which every push places elements on top of the stack, and every
pop removes elements from the top of the stack.
Given a sequential specification S, two sequential histories s, t ∈ S are equivalent, written
s ' t, if they correspond to the same “state:" formally, for any sequence u ∈ Σ∗, su ∈ S iff
tu ∈ S. Let [s]S be the equivalence class of s ∈ S.
Subsequently, as shown in [HKP+13], we have that

Lemma 2.4.1 If t ∈ [s]S, then for any sequence u ∈ Σ∗, if su ∈ S, then tu ∈ [su]S.

Next, using the above notations we define a labelled transition sequence of a data structure.

Definition 2.4.1 Let S be a sequential specification. Its corresponding labeled transition
sequence (LTS) is an object LTS(S) = (Q,Σ,→, q0), with states Q = {[s]S|s ∈ S}, set of
labels Σ, transition relation →⊆ Q× Σ×Q given by [s]S →m [sm]S iff sm ∈ S, and initial
state q0 = [ε]S (ε is an empty state).

Randomized Quantitative Relaxations. Let S ∈ Σ∗ be a data structure with LTS(S) =
(Q,Σ,→, q0). To obtain a randomized quantitative relaxation of S, we apply the following
four steps. The first two steps are identical to deterministic quantitative relaxations [HKP+13],
whereas the third defines the probability distribution on costs:

1. Completion: We start from LTS(S), and construct a completed labeled transition
system, with transitions from any state to any other state by any method:

LTSc(S) = (Q,Σ, Q× Σ×Q, q0).

2. Cost function: We add a non-negative cost function cost : Q× Σ×Q→ R≥0 to the
LTS. The transition cost will satisfy

cost(q,m, q′) = 0 if and only if q →m q′ in LTS(S).
We call the sequence τ = (m1, k1), . . . , (mn, kn) of transitions and costs the quantitative
trace of κ, denoted by qtr(κ).

3. Probability distribution: Given an arbitrary state [s] in LTS(S), we define a probability
space (Ω,F ,P) on the set of possible transitions and their corresponding costs from
this state, where the sample space Ω is the set of all transitions in Q × Σ × Q, the
σ-algebra F is defined in the straightforward way based on the set of elementary events
Ω, and P is a probability measure P : F → [0, 1]. Crucial point is that probabilities
depend only on the state [s]. Hence, a randomized quantitative relaxetion induces a
Markov chain, whose state at each step is given by the state of the corresponding LTS,
and whose transitions are LTS transitions with costs and probabilities as above.

Distributional Linearizability. With this in place, we now define distributionally linearizable
data structures:

Definition 2.4.2 LetD be a randomized concurrent data structure, and let R be a randomized
quantitative relaxation R of a sequential specification S with respect to a cost function cost,
and a probability distribution P on costs. We say that D is distributionally linearizable to R

14

2.5. Analysis of the MultiCounter

iff for every concurrent schedule σ, there exists a mapping of completed operations in D under
σ to transitions in the quantitative path of R, preserving outputs, and respecting the order
of non-overlapping operations. This mapping can be used to associate any schedule σ to a
distribution of costs for D under the schedule σ.

We now make a few important remarks on this definition.

1. The main difficulty when formally defining the “costs" incurred by D in a concurrent
execution is in dealing with the execution history, and with the impact of pending
operations on these costs. The above definition allows us to define costs, given a
schedule, only in terms of the sequential process R, and bounds the incurred costs
in terms of the probability distribution defined in R. This definition ensures that the
probability distribution on costs incurred at each step only depends on the current state
of the sequential process.

2. The second key question is how to use this definition. One subtle aspect of this definition
is that the mapping to the sequential randomized quantitative relaxation is done per
schedule: intuitively, this is because an adversary might change the schedule, and cause
the distribution of costs of the data structure to change. Thus, it is often difficult
to specify a precise cost distribution, which covers all possible schedules. However,
for the data structures we analyze, we will be able to provide tail bounds on the cost
distributions induced by all possible schedules.

The natural next question, which we answer in the following section, is whether non-trivial
such data structures exist and can be analyzed.

2.5 Analysis of the MultiCounter
We will focus on proving the following result.

Theorem 2.5.1 Given an oblivious adversary, n distributed counters and n threads, for any
fixed schedule, the MultiCounter algorithm is distributionally linearizable to a randomized
relaxed sequential counter process, which, at any step t, returns a value that is at most
O(n log2 n) away from the number of increments applied up to t, both in expectation and
with high probability in n.

We emphasize that the relaxation guarantees are independent of the time t at which the
guarantee is examined, and that they would thus hold in infinite executions.

2.5.1 Modeling the Concurrent Process
In the following, we will focus on analyzing executions formed exclusively of increment
operations, whose lower-level steps may be interleaved. (Adding read operations at any point
during the execution will be immediate.) We model the process as follows. First, we assume a
schedule that is fixed by the adversary. For each thread Pj, and non-negative integers j, we
consider a sequence of increment operations (op(j)

i), each of which is defined by its starting
time s(j)

i , corresponding to the time when its first read step was scheduled, and completion

15

2. Distributionally Linearizable Data Structures

time f (j)
i , corresponding to the time when its update time is scheduled, such that s(j)

i+1 > f
(j)
i

for all i, j. (Recall that the scheduler defines a global order on individual steps.) At most
n operations may be active at a given time, corresponding to the fact that we only have n
parallel threads.
Next, we map the concurrent execution to the sequential one according to the linearization
points of the operations. Linearization point of each operation is a point at which it increments
a counter. First, we sort the operations based on the time their increments are scheduled
by adversary (ties can be broken arbitrarily). Let opi be the operation which performs i-
th increment according to the sorted order and let si and fi be its start and end times
correspondingly. For each operation opi, we record its contention `i as the number of distinct
increment operations scheduled between its start and end time. (Alternatively, we could define
this quantity as the number of operations which complete in the time interval (si, fi).) Note
that at most n− 1 distinct operations can be concurrent with opi at any given time, but the
contention for a specific operation is potentially unbounded.
We can rephrase the original process as follows. For each operation opi, the adversary sets the
time when it performs the first and its second read of counter values / bin weights, as well
as its contention `i, by scheduling other operations concurrently. The only constraint on the
adversary is that not more than n operations can be active at the same time.
Since the adversary is oblivious, we notice that the update process is equivalent to the following:
at the time when the update (increment) is scheduled, the thread executing the operation
generates two uniform random indices i and j, and is given values xi and xj for the two
corresponding counters / bin weights, read at previous (possibly different) points in time. We
will stick to the bin weight formulation from now on, with the understanding that the two are
equivalent.
The thread will then increase the weight of the bin with the smaller value read (among xi
and xj) by 1. Alternatively, we will say that the ball with weight one is thrown into the bin
with the smaller weight. This formulation has the slight advantage that it makes the update
process sequential, by moving the random choices to the time when the update is made, using
the principle of deferred decisions. Critically, the bin weights on which the update decision
is based are potentially stale. We will focus on this simplified variant of the process in the
following.
Discussion. The key difference between the above process and the classic power-of-two-
choices process is the fact that the choice of bin / counter which the thread updates is based
on stale, potentially invalid information. Recall that key to the strong balancing properties
of the classic process is the fact that it is biased towards inserting in less loaded bins; the
process which inserts into randomly chosen bins is called one-choice process and is known
to diverge [PTW15]. In particular, notice it is possible that, by the time when the thread
performs the update, the order of the bins’ load may have changed, i.e. the thread in fact
inserts into the more loaded bin among its two choices at the time of the update.
Since the oblivious adversary decides its schedule independently of the threads’ random choices,
it cannot deterministically cause a specific update to insert into the more loaded bin. However,
it can significantly bias an update towards inserting into the more loaded bin:
Assume for example an execution suffix where all n threads read concurrently at some time
tR

2 and then proceed to perform updates, one after another. Pick an operation op for which
2Technically, since we count time in terms of shared-memory operations, these reads occur at consecutive

16

2.5. Analysis of the MultiCounter

the gap between the two values read xi and xj (at the time of the read) is 1, say xi = xj + 1.
So op will increment xj. At the same time, notice that all the other operations which read
concurrently with op are biased towards inserting in xj rather than xi, since its rank (in
increasing order of weight) is lower than that of bin i. Hence, as the adversary schedules more
and more updates between tR at op’s update time, it is increasingly likely to invert the relation
between i and j by the time of op’s update, causing it to insert into the “wrong" bin.

The previous example suggests that the adversary is able to bias some subset of the operations
towards picking the wrong bin at the time of the update. Another issue is that operations
which experience high contention, for which there are many updates between the read point
and the update point, the read values xi and xj become meaningless: for example, if the
weights of bin i and j become equal at some time t0 between tR and op’s update, then from
this point in time these two bins appear completely symmetrical to the algorithm, and op’s
choice given the information that xi > xj at tR may be no better than uniform random.

One issue which further complicates this last example is that, at t0, there may be a non-zero
number of other operations which already made their reads (for instance, at tR), but have not
updated yet. Since these operations read at a point where xi > xj, they are in fact biased
towards inserting in xj. So, looking at the event that op updates the less loaded of its two
random choices at update time, we notice that its probability in this example is strictly worse
than uniform random choice.

We summarize this somewhat lengthy discussion with two points, which will be useful in our
analysis:

1. As they experience concurrent updates, operations may accrue bias towards inserting
into the more loaded of their two random choices.

2. Long-running operations may in fact have a higher probability of inserting into the more
loaded bin than into the less loaded one, i.e. may become biased towards making the
“wrong" choice at the time of the update.

2.5.2 Proof Strategy
We now briefly go over how our approach circumvents the issues described above. Our goal is
to show that the expected gap between the loads of the most loaded bin and the least loaded
bin is at most O(log2 n). Consider the following version of the sequential two-choice process,
which we call g-bounded two-choice process, for g ≥ 1. At each step, we select two bins i and
j, uniformly at random. Without loss of generality, we assume that xi ≥ xj are their loads
respectively. Then, in the g-bounded process, we throw the ball into the bin j, if xi − xj > g
and we throw it into the bin i otherwise. In the analysis, we implicitly prove that the gap
between the loads of the most loaded bin and the least loaded bin is at most O(g log (ng)), in
expectation. The proof generalizes the analysis provided in [PTW15]. We define the potential
Γ and show that it is bounded by O(ng) in expectation (which by definition results in the
O(g log (ng)) upper bound on the expected gap). This is accomplished by showing that Γ
has supermartingale-like behaviour: it decreases in expectation, once it exceeds the threshold
with value O(ng). In order to see the intuition behind the upper bound, consider the example
when n = 2. In this case, the difference between the loads of two bins is a biased random
times after tR. However, all their read values are identical to the read value at tR, and hence we choose to
simplify notation in this way.

17

2. Distributionally Linearizable Data Structures

walk on a line, which starts at 0. Let d be the current difference between the loads. Notice
that if 0 ≤ d ≤ g then the walk is biased towards moving to g + 1, and when d > g the walk
is biased towards moving to d − 1. (For d = 0 the process is unbiased or bias depends on
the tie-breaking rule, and we assume that it is biased towards moving to 1, without loss of
generality). We can observe the similar type of bias when d is negative. Thus, by properties
of the biased random walks, the expected distance to 0 is in at most O(g). Subsequently, the
expected gap between the loads is O(g) as well. With this in place, we are ready to consider
the concurrent two-choice process.
As the simple setting, for every operation, assume that the number of operations concurrent
with it is upper bounded by Cn, where C is large enough positive integer. We will say that such
operations are good. Consider operation op. Without loss of generality, let xi ≥ xj be the
loads of the chosen bins, at the time when op performs update. Notice that if xi − xj > Cn,
we are guaranteed that the load of bin i was larger than the load of bin j regardless of
when op read their values. Hence, the concurrent two-choice process can be mapped to the
Cn-bounded sequential two-choice process. Subsequently, assuming that C is constant, the
expected gap is at most O(n log n). Next, we show how the improve the upper on the gap.
Fix an operation op. Notice that since the number of operations which are concurrent with
op is at at most Cn and they choose bins uniformly at random, using Chernoff’s inequality,
we can show that for every bin i, the number of balls thrown into i between the start and
end of operation op is at most O(log n) with high probability. Hence, with high probability,
op behaves as an operation of the O(log n)-bounded two-choice process, which gives us the
intuition that the upper bound can be reduced to O(log2 n). Indeed, we are able to show that
even in this case, the potential Γ retains the supermartingale-like behaviour, allowing us to
prove the upper bound of O(n log n) on the expected value of Γ. Finally, we sketch how to
deal with bad operations, which are concurrent with more than Cn operations. The first step
is to show that out of Cn consecutive operations at most n are bad. Then, notice that even
though the bad operation op might be biased toward making the wrong choice, for each bin i,
the probability that op throws the ball into the bin i is at most 2

n
. This allows us to bound

the increase in Γ which is caused by bad operations. The crucial point is that if we consider
the impact of Cn consecutive operations on Γ, we can prove that if C is large enough, then
the increase due to (at most) n bad operations is mitigated by (C − 1)n good operations,
which results in the O(log2 n) upper bound on the expected gap.

2.5.3 Notation and Background
For any bin i and time step t, let xi(t) be the weight of bin i at step t (after t balls are thrown in
total) and let x(t) = (x1(t), x2(t), ..., xn(t)) be a vector of weights. Let µ(t) = ∑m

i=1 xi(t)/n
be the average weight of the bins at step t. Let α < 1 be a parameter to be fixed later. At
each step t+ 1, instead of increasing the weight of some bin by one, we allow the increase
w(t) to be a positive random variable. Even though initially we concentrate on the case with
counters (w(t) = 1), it is useful to prove several general Lemmas with random weights in
mind, since we will need to use them later. That is, we allow the weight of the thrown ball to
be a random variable.
Define

Φseq(t) =
n∑
i=1

eα(xi(t)−µ(t)), andΨseq(t) =
n∑
i=1

e−α(xi(t)−µ(t)).

Finally, define the potential function
Γseq(t) = Φseq(t) + Ψseq(t).

18

2.5. Analysis of the MultiCounter

We use superscript seq to denote potential functions given by sequential process, which always
throws the ball into the bin with the smaller weight. That is, at time step t+ 1, sequential
process picks two bins i and j uniformly at random, compares their weights xi(t) and xj(t)
and increases the weight of the bin with smaller value by the random variable w(t). In contrast,
the concurrent process picks two bins i and j uniformly at random, but to make decision, it
can only compare the values of xi(t1) and xj(t2), for t1 ≤ t2 ≤ t, since adversary has control
over the schedule of read operations.
In order to bound Γseq, w(t) should have the following properties :

E[w(t)] = 1 (2.1)
and there exist constants S ≥ 1 and λ > 0, such that for any |x| ≤ λ/2:

E[(exw(t)))′′] = E[M ′′(x)] < 2S. (2.2)

In the case of counters (w(t) = 1), we can use λ = 1 and S = 1 since e 1
2 ≤ 2.

The main technical result of [PTW15] can be phrased as:

Theorem 2.5.2 Let ε = 1
16 and let α ≤ min

(
ε

6S ,
λ
2

)
be a parameter as given above.

Then there exists a constant C(ε) = poly(1
ε
) such that, for any time t ≥ 0, we have

E[Γseq(t)] ≤ 4C(ε)n
αε

.

We would like to point out that the upper bound on α and the value of ε are chosen according
to the conditions required in [PTW15] and we will assume that they hold throughout this
chapter (Later on, in Lemma 2.5.11, we will assume even smaller upper bound on α).
Our goal will be to prove similar theorem in the concurrent case.
Note that this implies that the maximum gap between the most loaded and the least loaded
bin at a step is 2 logn

α
+O

(
log 1

α

α

)
in expectation and with high probability in n (as shown in

[PTW15]).
The proof of the above theorem uses the following Lemma, which we also are going to rely on:

Lemma 2.5.3 Let α and ε and C(ε) be the parameters defined in Theorem 2.5.2. Then for
any step t:

E[Γseq(t+ 1)|x(t)] ≤
(

1− αε

4n

)
Γseq(t) + C(ε).

2.5.4 Naive Upper and Lower Bounds
Let Γcon(t),Φcon(t) and Ψcon(t) be the potential functions in the concurrent case.
In this section we derive upper and lower bounds on Γcon per step. These bounds just use the
fact that for any bin i and operation opt+1 the probability of opt increasing the weight of i is
at most 2

n
, and this is true both for sequential and concurrent processes.

We assume that at step t+ 1, the weight of the ball w(t) satisfies conditions from Section
2.5.3. We start with the upper bound:

Lemma 2.5.4 For any operation opt+1

E[Γcon(t+ 1)|x(t)] ≤
1 + 4α

n

Γcon(t). (2.3)

19

2. Distributionally Linearizable Data Structures

Proof. First we consider what is expected change in Φcon. Let yi = xi(t) − µ(t) and let
Φcon
i (t) = eαyi . Also, let ∆Φcon = Φcon(t+ 1)− Φcon(t) and ∆Ψcon = Ψcon(t+ 1)−Ψcon(t)

We have two cases to consider. If ball is thrown into the bin i, then the change is:
E[∆Φcon

i |x(t)] = E[Φcon
i (t+ 1)|x(t)]− Φcon

i (t)

= E

 exp
α(xi(t)− µ(t) + (w(t)− w(t)

n
)
)∣∣∣∣∣∣x(t)

− eαyi
= eαyi

E
[

exp
(
w(t)α(1− 1

n
)
)]
− 1


= eαyi

E
[
M
(
α(1− 1

n
)
)]
− 1


(∗)= eαyi

E
[
M(0) +M ′(0)α(1− 1

n
) +M ′′(ξ)α2(1− 1

n
)2
/

2
]
− 1


= eαyi

E
[
1 + w(t)α(1− 1

n
) +M ′′(ξ)α2(1− 1

n
)2
/

2
]
− 1


(2.1),(2.2)
≤ eαyi

α(1− 1
n

) + Sα2(1− 1
n

)2


Where in (∗) we used the Taylor expansion of M(x) around 0 and in the last step we used
that 0 ≤ ξ ≤ α(1− 1

n
) ≤ λ

2 .

Using similar arguments we can prove that when the ball is not thrown into bin i:

∆Φcon
i ≤ eαyi

− α

n
+ S

α2

n2

 ≤ 0.

Let pi ≤ 2/n be the probability of the ball being thrown into the bin i. We get that:

E
[
∆Φcon

i |x(t)
]
≤ pie

αyi

α(1− 1
n

) + Sα2(1− 1
n

)2


≤ pi(α + Sα2) ≤ 4α

n
eαyi .

Hence:
E[∆Φcon|x(t)] =

n∑
i=1

E[∆Φcon
i |x(t)] ≤ 4α

n
Φcon(t). (2.4)

In a similar way, we can prove that:

E[∆Ψcon|x(t)] ≤
n∑
i=1

(1− pi)(
α

n
+ Sα2

n2)e−αyi

≤
n∑
i=1

(α
n

+ Sα2

n2)e−αyi ≤ 4α
n

Ψcon(t)

Combining this with inequality (2.4), and using the definitions of ∆Φcon and ∆Ψcon gives us
proof of the Lemma. �

We proceed by showing the lower bound:

20

2.5. Analysis of the MultiCounter

Lemma 2.5.5 For any operation opt+1

E[Γcon(t+ 1)|x(t)] ≥
1− 2α

n

Γcon(t). (2.5)

Proof. First we consider what is expected change in Φcon. Let yi = xi(t) − µ(t) and let
Φcon
i (t) = eαyi . We have two cases here. If the ball is thrown into bin i, then as in the previous

lemma the change is:
E[∆Φcon

i |x(t)] = E[Φcon
i (t+ 1)|x(t)]− Φcon

i (t)

= eαyi

E
[
1 + w(t)α(1− 1

n
) +M ′′(ξ)α2(1− 1

n
)2
/

2
]
− 1


≥ eαyiα(1− 1

n
) ≥ α

2 e
αyi ≥ 0.

Where in the last step we used that n ≥ 2 and the fact that exponential function is non-negative.

Using similar arguments we can prove that, when the ball is not throw into bin i:

∆Φcon
i ≥ −α

n
eαyi .

Let pi ≤ 2/n be the probability that the ball is thrown into the bin i. We get that:
E
[
∆Φcon

i |x(t)
]
≥ −(1− pi)

α

n
eαyi ≥ −α

n
eαyi .

Hence:
E[∆Φcon|x(t)] =

n∑
i=1

E[∆Φcon
i |x(t)] ≥ −α

n
Φcon(t). (2.6)

In a similar way, we can prove that:

E[∆Ψcon|x(t)] ≥ −
n∑
i=1

piα(1− 1
n

) ≥ −2α
n

Ψcon(t)

Combining this with inequality (2.6), and using the definitions of ∆Φcon
i and ∆Ψcon

i gives us
proof of the Lemma. �

2.5.5 Main Argument
Let C ≥ 1 be a constant which we will fix later. Recall that `t is the number of operations
which run concurrently with operation opt. We call operation opt good if `t ≤ Cn, otherwise
we call it bad. We start by considering Cn consecutive operations and proving that at most
n of them can be bad:

Lemma 2.5.6 For any t, we have that |t′ : t ≤ t′ ≤ t+ Cn− 1, `t′ > Cn| < n.

Proof. We argue by contradiction. Let us assume that the number of bad operations is at least
n. By the pigeonhole principle, there exist bad operations opi and opj , t ≤ i < j ≤ t+Cn−1,
which are performed by the same thread. This means that since these operations are not
concurrent, we have that sj > fi. Thus, we get a contradiction:

Cn ≤ `j = |t′ : sj ≤ ft′ < fj| ≤ |t′ : fi ≤ ft′ < fj| ≤ j − i < Cn

. �

21

2. Distributionally Linearizable Data Structures

Upper Bound on a Potential for Counters. In the following we concentrate on the case
when w(t) = 1, for any t (the case with counters). We start by defining random variables
which help us to upper bound Γcon.

Definition 2.5.1 For each bin i, and step t ≥ Cn, let Hi(t) be the number of times i was
chosen by operations opt−Cn+1, opt−Cn+1, ..., opt. In this case, if some operation chooses
bins i and j, we count both as chosen and we also say that i was chosen twice if i = j.
Observe that if opt+1 is good, then Hi(t) is the upper bound on the number of increments bin
i receives during the entire run of operation opt+1 (excluding the increment which might be
performed by opt+1). Also, let Hmax(t) = max{H1(t), H2(t), ..., Hn(t)}.

With this in place we are ready to bound the potential.

Lemma 2.5.7 For any good operation opt+1, such that t ≥ Cn:
E[Γcon(t+ 1)|x(t), Hmax(t)] ≤

(
1− αε

4n

)
Γcon(t) + C(ε)

+ 4αΓcon(t)
n

(eαHmax(t) − 1).

Proof. Since we condition on x(t), we can assume that potentials at step t are the same both
for sequential and concurrent processes (This is not true for the next step since processes can
increment weights of different bins). We have that:

E[Γcon(t+ 1)|x(t), Hmax(t)]
= E[Γseq(t+ 1)|x(t), Hmax(t)] + E[Γcon(t+ 1)− Γseq(t+ 1)|x(t), Hmax(t)]
Lemma 2.5.3
≤

(
1− αε

4n

)
Γseq(t) + C(ε)

+ E[Γseq(t+ 1)− Γcon(t+ 1)|x(t), Hmax(t)].
Hence our goal is to upper bound E[Γseq(t + 1) − Γcon(t + 1)|x(t), Hmax(t)]. w.l.o.g we
assume that x1(t) ≤ x2(t)... ≤ xn(t). We couple sequential and concurrent processes so that
the bin choices i and j are the same in both cases. Let i ≤ j, then sequential process always
increments the weight of bin i, but for the concurrent process it depends on when its reads
occurred, for example it can be that during reads the weight of bin j was smaller than the
weight of bin i but then the increments done by concurrent processes reversed the order. The
crucial thing is that in this case xj(t) − xi(t) ≤ Hmax(t). Hence, assuming the worst case
(concurrent process increments the weight of bin j) we have that

Φcon(t+ 1)− Φseq(t+ 1) = eα(xj(t)−µ(t)+1− 1
n

) + eα(xi(t)−µ(t)− 1
n

)

− eα(xi(t)−µ(t)+1− 1
n

) − eα(xj(t)−µ(t)− 1
n

)

= eα(xi(t)−µ(t))e−
α
n (eα − 1)(eα(xj(t)−xi(t)) − 1)

≤ 2αeα(xi(t)−µ(t))(eαHmax(t) − 1).
Where in the last step we used that eα ≤ 1 + 2α, since α ≤ 1

2 . Also,
Ψcon(t+ 1)−Ψseq(t+ 1) = e−α(xj(t)−µ(t)+1− 1

n
) + e−α(xi(t)−µ(t)− 1

n
)

− e−α(xi(t)−µ(t)+1− 1
n

) − e−α(xj(t)−µ(t)− 1
n

)

= e−α(xi(t)−µ(t))e
α
n (e−α − 1)(e−α(xj(t)−xi(t)) − 1)

= e−α(xi(t)−µ(t))e
α
n (1− e−α)(1− e−α(xj(t)−xi(t)))

≤ 2αe−α(xi(t)−µ(t))(1− e−αHmax(t)).

22

2.5. Analysis of the MultiCounter

Where in the last step we used that eαn ≤ 2, since α ≤ 1
2 , and e−α ≥ 1 − α. The above

bounds no longer depend on j and for any bin i the probability of being one out of two random
choices of opt+1 is at most 2

n
, hence:

E[Γseq(t+ 1)− Γcon(t+ 1)|x(t)]

≤
n∑
i=1

4α
n
eα(xi(t)−µ(t))(eαHmax(t) − 1) +

n∑
i=1

4α
n
e−α(xi(t)−µ(t))(1− e−αHmax(t))

= 4αΦcon(t)
n

(eαHmax(t) − 1) + 4αΨcon(t)
n

(1− e−αHmax(t))

≤ 4αΓcon(t)
n

(eαHmax(t) − 1).

Where in the last step we used that eαHmax(t) + e−αHmax(t) ≥ 2. �

Let N = b 2Cn
2e3C lognc and for 0 ≤ K ≤ N , let AK(t) be the event that 2e3CK log n ≤

Hmax(t) < 2e3C(K + 1) log n. We proceed by proving the following lemma:

Lemma 2.5.8 For any good operation opt+1, such that t ≥ Cn:
E[Γcon(t+ 1)] ≤

(
1− αε

4n

)
E[Γcon(t)] + C(ε)

+
N∑
K=0

4αE[Γcon(t)|AK(t)]Pr[AK(t)]
n

(e2αe3C(K+1) logn − 1).

Proof. First, we remove conditioning from the inequality proved in Lemma 2.5.7).
E[Γcon(t+ 1)] = Ex(t),Hmax(t)[E[Γcon(t+ 1)|x(t), Hmax(t)]]

≤ Ex(t),Hmax(t)

(1− αε

4n

)
E[Γcon(t)|x(t), Hmax(t)] + C(ε)

+ 4αE[Γcon(t)(eαHmax(t) − 1)|x(t), Hmax(t)]
n


≤
(

1− αε

4n

)
E[Γcon(t)] + C(ε) + 4αE[Γcon(t)(eαHmax(t) − 1)]

n
.

Next, to finish the proof of the Lemma, we use the upper bound on Hmax(t), which is implied
by conditioning on the event AK(t):

E[Γcon(t)(eαHmax(t) − 1)] =
N−1∑
K=0

E[Γcon(t)(eαHmax(t) − 1)|AK(t)]Pr[AK(t)]

≤
N−1∑
K=0

E[Γcon(t)(e2αe3C(K+1) logn − 1)|AK(t)]Pr[AK(t)].

�

Our next goal is to upper bound Pr[AK(t)] and E[Γcon(t)|AK(t)]. We start with deriving the
concentration bounds for Hmax(t).

Lemma 2.5.9 For any t > Cn and constant K ≥ 1:
Pr[AK(t)] ≤ Pr[Hmax(t) ≥ 2Ke3C log n] ≤ 1

(eK log n)2KCe3 logn .

23

2. Distributionally Linearizable Data Structures

Proof. Note that Hmax(t) is a maximum number of balls some bin receives if we throw 2Cn
balls into n initially empty bins (Recall that all the random choices which operations make are
independent). For a fixed bin i, let Hi(t) be the number of balls it receives. We know that
E[Hi(t)] = 2C. Hence, using Chernoff’s inequality we get that

Pr[Hi(t) ≥ 2Ke3C log n] ≤
 eKe

3 logn−1

(Ke3 log n)Ke3 logn

2C

≤ 1
n

1
(eK log n)2KCe3 logn .

we get the proof of the Lemma by union bounding over n bins. �

We proceed by upper bounding E[Γcon(t)|AK(t)].

Lemma 2.5.10 For any t ≥ Cn:
E[Γcon(t)|AK(t)] ≤ E[Γcon(t)]e3αe3C(K+1) logn.

Proof.
E[Φcon(t)|AK(t), x(t− Cn)]− Φcon(t− Cn)

=
n∑
i=1

eα(xi(t−Cn)−µ(t−Cn))

eα
(
xi(t)−µ(t)−xi(t−Cn)+µ(t−Cn)

)
− 1

.
Since we condition on Ak(t), for every i we have that

xi(t)− xi(t− Cn) ≤ Hmax(t) ≤ 2e3C(K + 1) log n.
Also, µ(t) > µ(t− Cn). Thus

E[Φcon(t)|AK(t), x(t− Cn)]− Φcon(t− Cn)

≤
n∑
i=1

eα(xi(t−Cn)−µ(t−Cn))

e2αe3C(K+1) logn − 1


= Φcon(t− Cn)
e2αe3C(K+1) logn − 1

.
Similarly

E[Ψcon(t)|AK(t), x(t− Cn)]−Ψcon(t− Cn)

=
n∑
i=1

e−α(xi(t−Cn)−µ(t−Cn))

e−α
(
xi(t)−µ(t)−xi(t−Cn)+µ(t−Cn)

)
− 1

.
We have that xi(t) ≥ xi(t− Cn) and

µ(t)− µ(t− Cn) ≤ Hmax(t) ≤ 2e3C(K + 1) log n
Thus

E[Φcon(t)|AK(t), x(t− Cn)]− Φcon(t− Cn)

≤
n∑
i=1

e−α(xi(t−Cn)−µ(t−Cn))

e2αe3C(K+1) logn − 1


= Ψcon(t− Cn)
e2αe3C(K+1) logn − 1

.
24

2.5. Analysis of the MultiCounter

Hence
E[Γcon(t)|AK(t), x(t− Cn)]− Γcon(t− Cn)]

≤ Γcon(t− Cn)
e2αe3C(K+1) logn − 1


Notice that AK(t) is independent of x(t − Cn), since in the definition of Hmax(t) we just
consider random choices made by opt−Cn+1, ..., opt. This allows us to remove conditioning on
x(t− Cn) and after regrouping the terms in the above inequality we get

E[Γcon(t)|AK(t)] ≤ E[Γcon(t− Cn)]e2αe3C(K+1) logn (2.7)
By applying Lemma 2.5.5 Cn times we get that

E[Γcon(t)|x(t− Cn)] ≥ Γcon(t− Cn)
1− 2α

n

Cn ≥ Γcon(t− Cn)e−4Cα.

After removing conditioning we get that
E[Γcon(t)] ≥ E[Γcon(t− Cn)]e−4Cα.

By combining the above inequality with (2.7) we get that:
E[Γcon(t)|AK(t)] ≤ E[Γcon(t)]e2αe3C(K+1) logne4αC

≤ E[Γcon(t)]e3αe3C(K+1) logn.

�

Finally

Lemma 2.5.11 For any good operation opt+1, such that t ≥ Cn, we have that if C ≥ 2 and
α ≤ 1

4096Ce3 logn then

E[Γcon(t+ 1)] ≤
(

1− αε

8n

)
E[Γcon(t)] + C(ε).

Proof. Since α ≤ 1
4096Ce3 logn and C ≥ 2:

N∑
K=1

E[Γcon(t)|AK(t)]Pr[AK(t)](e2αe3C(K+1) logn − 1)

Lemmas 2.5.9 and 2.5.10
≤

N∑
K=1

E[Γcon(t)]e5αe3C(K+1) logn

(eK log n)2KCe3 logn

≤
N∑
K=1

E[Γcon(t)]ee3CK logn

e2KCe3 logn ≤
N∑
K=1

E[Γcon(t)]
e2Ke3 logn ≤

∞∑
K=1

E[Γcon(t)]
n16K

≤ 2E[Γcon(t)]
n16 ≤ E[Γcon(t)]

2048 . (2.8)
Also, for K = 0

E[Γcon(t)|A0(t)]Pr[A0(t)](e2αe3C logn − 1)
Lemma 2.5.10
≤ E[Γcon(t)]e3αe3C logn(e2αe3C logn − 1)

≤ E[Γcon(t)]e 3
4096 (e 1

2048 − 1)

≤ 2E[Γcon(t)] 1
1024 = E[Γcon(t)]

512 .

25

2. Distributionally Linearizable Data Structures

Hence, we get that
N∑
K=0

E[Γcon(t)|AK(t)]Pr[AK(t)](e2αe3C(K+1) logn − 1)

≤ E[Γcon(t)]
2048 + E[Γcon(t)]

512 = 5E[Γcon(t)]
2048 .

By plugging the above inequality in Lemma 2.5.8 we get that

E[Γcon(t+ 1)] ≤
(

1− αε

4n

)
E[Γcon(t)] + C(ε) + 20αE[Γcon(t)]

2048n .

Recall that ε = 1
12 , thus

20
2048 ≤

ε
8 and this finishes the proof of the lemma. �

Endgame. With all this machinery in place, we proceed by proving the following Lemma.

Lemma 2.5.12 If α ≤ 1
4096Ce3 logn and C ≥ 433, then at any time step t

E[Γcon(t)] ≤ 146C(ε)n
αε

.

Proof. The proof is by induction on t. We will first prove that, if E[Γcon(t)] ≤ 146C(ε)n
αε

for
t ≥ Cn, then E[Γcon(t+ Cn)] ≤ 146C(ε)n

αε
.

We have two cases. The first is if there exists a time τ ∈ [t, t+ Cn] such that E[Γcon(τ)] ≤
72C(ε)n
αε

. Let us now focus on bounding the maximum expected value of Γcon(t+ Cn) in this
case. First, notice that the maximum expected increase of Γcon because of a good step is
an additive C(ε) factor. By Lemma 2.5.4, the expected value of Γcon after a bad operation
is upper bounded a multiplicative (1 + 4α

n
) factor. Hence, by Lemma 2.5.6 and expected

maximum value of Γcon at t+ Cn is at most(
72C(ε)n
αε

+ C(ε)(C − 1)n
)(

1 + 4α
n

)n
≤
(

72C(ε)n
αε

+ C(ε)n
4096αe3 log n

)
e4α

≤ 146C(ε)
αε

.

The second case is if there exists no such time in [t, t + Cn], meaning that E[Γcon(τ)] >
72C(ε)n
αε

, ∀τ ∈ [t, t+ Cn]. Then, by Lemma 2.5.11, we have that, at each good step,

E[Γcon(t+ 1)] ≤ E[Γcon(t)]
(

1− αε

9n

)
. (2.9)

Hence, we can expand the recursion to upper bound the change in Γcon between t and t+Cn
as

E[Γcon(t+ Cn)] ≤ E[Γcon(t)]
(

1− αε

9n

)(C−1)n (
1 + 4α

n

)n
≤ E[Γcon(t)]e−

αε(C−1)
9 +4α ≤ E[Γcon(t)].

Where in the last step we used that C ≥ 1 + 36/ε = 433.
To establish the base of induction, note that by Lemma 2.5.4, for each 0 ≤ t ≤ 2Cn:

E[Γcon(t)] ≤ Γcon(0)(1 + 4α
n

)2Cn = 2n(1 + 4α
n

)2Cn

≤ 2ne8αC ≤ 4n ≤ 146C(ε)n
αε

.

This concludes the proof of the Lemma. �

The following Lemma completes the proof of Theorem 2.5.1.

26

2.6. Distributional Linearizability for Concurrent Relaxed Queues

Lemma 2.5.13 Given an oblivious adversary, n distributed counters and n threads, for any
time t in the execution of the approximate counter algorithm the counter returns a value that
is at most O(n log2 n) away from the number of increment operations which completed up to
time t, in expectation. Moreover, for any t and all R sufficiently large, we have

Pr
[
∃i : |n · xi(t)− n · µi(t)| > Rn log2 n

]
≤ n−Ω(R) .

Proof. The proof is similar to [PTW15] (the main difficulty was to upper bound the potential).
We aim to bound Gap(t), the maximum gap between the weight of two bins at a step.

By choosing C = 433 and α = 1
4096Ce3 logn = Θ(1

logn) and applying Lemma 2.5.12 we get
that E[Φcon(t)] = O(n log n) and E[Ψcon(t)] = O(n log n) for all t. Let xmax(t) denote the
maximum weight of any bin at time t, and let xmin(t) be the minimum weight of any bin.
Then, we have

αE[xmax(t)− µ(t)] = log(exp (E[α(xmax(t)− µ(t))]))
(a)
≤ logE[exp(α(xmax(t)− µ(t)))]
(b)
≤ logE[Φcon(t)] ≤ O(log n+ log log n) = O(log n) ,

where (a) follows from Jensen’s inequality, and (b) follows from the definition of Φcon. Similarly,
we have E[µ(t)−xmin(t)] ≤ O(log2 n). Since the true value of the counter at time t is n ·µ(t),
these two statements imply that for all i, we have E[|n · xi(t)− n · µ(t)|] ≤ O(n log2 n), as
desired.

We now prove the high probability bound. Observe that if xmax(t)− µ(t) > R log2 n, then we
have Γcon(t) ≥ Φcon(t) ≥ eαR log2 n. Hence, for large enough R:

Pr[xmax(t)− µ(t) > R log2 n] ≤ Pr[Φcon(t) ≥ eαR log2 n]
Markov
≤ O(n log n)

eαR log2 n

≤ n−Ω(R) .

Similarly, Pr[µ(t)− xmin(t) > R log2 n] ≤ n−Ω(R).

Combining these two guarantees with a union bound immediately yields the desired guarantee.
�

2.6 Distributional Linearizability for Concurrent
Relaxed Queues

We now extend the analysis in the previous section to imply distributional linearizability guaran-
tees in concurrent executions for a variant of the MultiQueue process analyzed by [AKLN17].
This process is presented in Algorithm 2. We note that this process applies specifically to
implement general concurrent queues, and will also apply to priority queues assuming that a
sufficiently large buffer of elements always exists in the queues such that no insertion is ever
performed on an element of higher priority than an element which has already been removed.

2.6.1 Application to Concurrent Relaxed Queues
Description. We wish to implement a concurrent data structure with queue like semantics,
so that we have guarantees on the rank of dequeued elements. We assume we are given a set

27

2. Distributionally Linearizable Data Structures

of n linearizable priority queues such that each supports Add(e, p), DeleteMin, ReadMin,
where p is the priority of the element, and ReadMin returns the element with smallest priority
in the priority queue, but does not remove it. We also assume that each processor i has
access to a clock Clocki which gives an absolute time, and which are consistent amongst
all the processors, that is, if processor i reads Clocki in the linearization before processor j
reads Clockj , then processor i’s value is smaller. Such an assumption is realistic; recent Intel
processors support the RDTSC hardware operation, which provides this functionality for cores
on the same socket.
The procedure, given formally in Algorithm 2, is similar to our approximate counter. To
enqueue, a thread reads the wall clock, chooses a random priority queue, and adds the element
to that priority queue with priority given by the time. To dequeue, we choose two random
priority queues, find the one having a higher priority element on top, and delete from that
priority queue. In case two processes enqueue to the same priority queue concurrently, their
clock values will ensure a consistent ordering, handled by the internal implementation of the
priority queues.

Algorithm 2 Pseudocode for Relaxed Queue Algorithm.
Shared: PQs[n] // Set of n distinct priority queues
individual: Clocki // A wall clock for processor i, for each i
function Enqueue(e)

p← Clocki.Read()
i← random(1, n)
PQs[i].Add(e, p)

end function
function Dequeue()

i← random(1, n)
j ← random(1, n)
(ei, pi)← PQs[i].ReadMin()
(ej, pj)← PQs[j].ReadMin()
if (pi > pj): i = j
return PQs[i].DeleteMin()

end function

Analysis. The Analysis mostly follows the steps in [AKLN17]. We define the rank of element
with timestamp p as the number of elements which are currently in the system and have
timestamp with value at most p (Including itself, and assuming that no two operations have
the same timestamp).
First we assume that Dequeues operations never see an empty queue. Given this assumption
we can also assume:

• Enqueue operations happen sequentially, sorted by linearization order.

• Dequeue operations are invoked after all Enqueue operations are finished.

Since the timestamps are increasing in linearization order, the two assumptions above do not
change the outcome (the rank of returned element) of Dequeue operations and are needed
solely for the purpose of analysis.

28

2.6. Distributional Linearizability for Concurrent Relaxed Queues

We proceed by defining the auxiliary exponential label process. We are given n, initially empty
queues in which we insert infinitely many labels as follows: for each queue i, if the last inserted
label in i is vi (0 if the queue is empty), then we insert label vi + Exp(1

n
) in it. We define

the rank of label v as the number of labels which are currently in the queues and have value
at most v (Since exponential distribution is continuous we assume that no labels have the
same value). We will call these queues label queues to distinguish them from queues we use
in Algorithm 2.
Theorem 2 in [AKLN17] says that for any rank r and label queue i, probability of label with
rank r being in queue i is 1

n
, and this is independent of the location of all the other labels. The

proof uses the memorylessness of exponential distribution. Since for each queue the probability
of element e with initial (before Dequeue() operations occur) rank r being enqueued in it is
1
n
(regardless of where the other elements are located), via coupling we can assume that e is

enqueued in the queue i, if the label queue i contains the label with rank r. Then, we remove
all the extra labels from label queues, that is, if the element with rank r does not exist in the
queues, then we remove the label with rank r from the label queues as well. Next, for each
Dequeue() operation which chooses queues i and j uniformly at random and proceeds to
dequeue from the queue which has the element with the smaller rank (timestamp) on top,
we also check the labels on top of label queues i and j and remove the smaller one. Notice
that this way, at any point in time, if the element with current rank r is in queue i, then the
the label with current rank r is in label queue i as well, and vice versa. This can be formally
proved by induction on Dequeue() operations. Here, we switch gears and concentrate on
proving rank bounds on the process with labels. The process can be formulated as follows. Let
v1(t), v2(t), ..., vn(t) be the labels on top of the label queues after t dequeues have occurred.
Initially, we have that vi(t) = 0, for each 1 ≤ i ≤ n. Then at each step t+ 1, we pick two
label queues i and j uniformly at random and if w.l.o.g queue i has the smaller label on top,
then vi(t+ 1) = vi(t) + Exp(1/n) (for every k 6= i, we have that vk(t+ 1) = vk(t)). Notice
the similarity between this process and Algorithm 1. Let xi(t) = vi(t)

n
be the weight of bin i at

step t. Our initial aim is to upper bound Γcon(t) in this case.

Lemma 2.6.1 Given that w(t) = Exp(1
n

)
n

at every step t, if α ≤ 1
4096Ce3 logn and C ≥ 433,

then at any time step t
E[Γcon(t)] ≤ 146C(ε)n

αε
.

Proof. Our goal is to apply Lemma 2.5.12 when w(t) = Exp(1
n

)
n

at every step t. For this we
will just need to show that Lemma 2.5.11 still holds. The key steps towards accomplishing
this are generalizing Lemma 2.5.9 for random weights of mean 1, as opposed to weights of
value 1, since we are no longer able to apply Chernoff’s inequality and making sure that (2.8)
still holds.
First we establish the bounds in (2.1) and (2.2), in order to be able to apply lemmas 2.5.5
and 2.5.4. We know that for each t, w(t) = Exp(1/n)

n
. Clearly E[w(t)] = E[Exp(1/n)]

n
= 1. In

this case the moment generating function is M(x) = E[exw(t)] = E[e xnExp(1
n

)] =
1
n

1
n
− x
n

= 1
1−x ,

for x < 1. This gives us that M ′′(x) = 2
(1−x)3 . Hence, if λ = 1 and S = 8, we have that for

every x < λ/2, M ′′(x) < 2S. This means that to apply Lemma 2.5.3 we will need α ≤ 1
576

(which is feasible, since in order to prove Lemma 2.5.12 we need an upper bound on α to be
even smaller).

29

2. Distributionally Linearizable Data Structures

Recall that in Definition 2.5.1 we had that Hmax(t) = max{H1(t), H2(t), ..., Hi(t)}, where
Hi(t) was the number of times bin i was a random choice made by operations
opt−Cn+1, opt−Cn+2, ..., opt and then we knew that if opt+1 was a good operation, the total
number of balls thrown into the bin i by the operations which were concurrent with opt+1 was
at most Hi(t). In order to have the same property in this case, we redefine Hi(t) as follows.

For 0 ≤ u ≤ Cn, let z(u) = (z1(u), z2(u), ..., zn(u)) be the n dimensional vector. We assume
that zi(0) = 0 for each 1 ≤ i ≤ n. For 0 ≤ u < n, consider operation opt−Cn+u+1. Let
i and j be the random bins it chooses, we know that it increases the weight of the bin,
which has the smaller value at the time of performed reads, by w(t− Cn+ u+ 1). We set
zi(u+ 1) = zi(u) +w(t−Cn+u+ 1), if i 6= j, we set zj(u+ 1) = zj(u) +w(t−Cn+u+ 1)
and for k 6= i, j we set zk(u+ 1) = zk(u).

Notice that zi(Cn) is the upper bound on the total weight of the balls thrown into the bin i
by operations opt−Cn+1, opt−Cn+2, ..., opt. And thus we can set Hi(t) = zi(Cn). Hence, our
goal is to upper bound max{z1(Cn), z2(Cn), ..., zn(Cn)}

We use argument similar to Lemma 2.5.4. Let Υi(u) = e
zi(u)

8 and Υ(u) = ∑n
i=1 Υi(u) (Thus,

Υ(0) = n). If i and j are chosen by operation opt−Cn+u+1, then

E[Υ(u+ 1)|z(t)]−Υ(u)
≤ E[Υi(u+ 1)|z(t)]−Υi(u)] + E[Υj(u+ 1)|z(t)]−Υj(u)]

=
(
e
zi(u)

8 + e
zj(u)

8

)E
[
M
(1

8)
)]
− 1


=
(
e
zi(u)

8 + e
zj(u)

8

)E
[
M(0) + M ′(0)

8 + M ′′(ξ)
2 · 82

]
− 1


=
(
e
zi(u)

8 + e
zj(u)

8

)E
[
1 + w(t− Cn+ u+ 1)

8 + M ′′(ξ)
2 · 82

]
− 1


≤ 1

4

(
e
zi
8 + e

zj
8

)
Where in the the last step we used 0 ≤ ξ ≤ 1

8 , and as we established above M ′′(x) ≤ 2S = 16,
for each x ≤ 1

2 . Also, recall that the weight is one in expectation at every step. Hence,

E[Υ(u+ 1)|z(t)]−Υ(u) ≤ 1
n2

∑
1≤i≤n,1≤j≤n

1
4

(
e
zi
8 + e

zj
8

)

= 2
n

n∑
i=1

1
4e

zi
8 = Υ(u)

2n .

After removing conditioning we get that

E[Υ(u+ 1)] ≤ (1 + 1
2n)E[Υ(u+ 1)].

After applying the above inequality Cn times we also get that

E[Υ(Cn)] ≤ n(1 + 1
2n)Cn ≤ neC/2.

30

2.6. Distributional Linearizability for Concurrent Relaxed Queues

Finally we proceed as in the proof of Lemma 2.5.13
Pr[Hmax(t) > 2KCe3 log n] ≤ Pr[∃i : zi(Cn) > 2KCe3 log n]

≤ Pr[Υ(Cn) > e
KCe3 logn

4]

≤ neC/2

e
KCe3 logn

4

.

The last step is to verify that (2.8) is still true. Notice that even though the (2.8) uses
α ≤ 1

4096Ce3 logn and C ≥ 2, the Lemma 2.5.12 requires that C ≥ 433, and we will take
advantage of this upper bound:

∞∑
K=1

E[Γcon(t)|AK(t)]Pr[AK(t)](e2αe3C(K+1) logn − 1)

Lemma 2.5.10
≤

∞∑
K=1

E[Γcon(t)]e5αe3C(K+1) logn+logn+C
2

e
KCe3 logn

4

≤
∞∑
K=1

E[Γcon(t)]eK+logn+C
2

e2KC logn .

We have that K ≥ 1, log n ≥ 1
2 (assuming n ≥ 2), and C ≥ 433, thus we have that

C
2 ≤ KC log n, K ≤ KC logn

4 and log n ≤ KC logn
4 . Hence

E[Γcon(t)|AK(t)]Pr[AK(t)](e2αe3C(K+1) logn − 1) ≤
∞∑
K=1

E[Γcon(t)]
e
KC logn

2

≤
∞∑
K=1

E[Γcon(t)]
eKn16 ≤ E[Γcon(t)]

2048 .

With this in place, we know that 2.5.11 holds if even if w(t) = Exp(1
n

)
n

at every step t and
then we can just use Lemma 2.5.12 to finish the proof. �

Now we are ready to upper bound the ranks of dequeued elements.

Theorem 2.6.2 Assuming an oblivious adversary, the MultiQueue algorithm with parameter
n (Algorithm 2) is distributionally linearizable to a sequential randomized relaxed queue QR,
which ensures that at each step t, the maximum expected rank of dequeued element is
O(n log2 n), and average expected rank is O(n log n log log n).

Proof. First, we bound the expected maximum rank of the elements on top. Recall that xmax(t)
and xmin(t) are the largest and smallest weights of bins after t steps and let vmax(t) = nxmax(t)
and vmax(t) = nxmax(t) be the largest and smallest labels on top of label queues after t
dequeue operations. We start by showing that for any 1 ≤ i ≤ n,

E[rank(vi(t))] ≤
∑

1≤j≤n,j 6=i
(1 +

E
[
|vi(t)− vj(t)|

]
n

=
∑

1≤j≤n,j 6=i
(1 + E

[
|xi(t)− xj(t)|

]
). (2.10)

The proof is similar to the proof of Lemma 11 in [AKLN17]. We fix (condition on)
v1(t), v2(t), ..., vn(t). For each vj(t) > vi(t) we know that the label queue j does not
contain labels which are smaller than vi(t), hence the labels in j do not influence the rank of
vi(t). In the case when vj(t) < vi(t), we know that the number of labels in j which are smaller
than vi(t) is one plus the number of labels in j which belong to the interval (vj(t), vi(t)).

31

2. Distributionally Linearizable Data Structures

We know that the difference between consecutive labels in each label queue is Exp(1
n
) hence

the expected number of labels in j which belong to interval (vj(t), vi(t)) is upper bounded
by E[Poi(vi(t)−vj(t)

n
)] = vi(t)−vj(t)

n
(this simply follows from the properties of Exponential and

Poisson distributions). Thus, obviously E[rank(vi(t))] ≤
∑

1≤j≤n,j 6=i(1 + |vi(t)−vj(t)|
n

) and
(2.10) follows after removing conditioning on v1(t), v2(t), ..., vn(t). With this in place, we
have that for any 1 ≤ i ≤ n

E[rank(vi(t))] ≤
∑

1≤j≤n,j 6=i
(1 + E

[
|xi(t)− xj(t)|

]
)

≤ (n− 1) + (n− 1)E[xmax(t)− xmin(t)])
= O(n log2 n).

Where the last step follows from the proof of Lemma 2.5.13, which says that both E[xmax(t)−
µ(t)] and E[µ(t)− xmin(t)] are O(log2 n).

Next we aim to upper bound ∑n
i=1

E[rank(vi(t))]
n

. This is exactly average expected rank of
removed label since during removal we choose both label queues uniformly at random. We
have that

n∑
i=1

E[rank(vi(t))]
n

≤ 1
n

n∑
i=1

∑
1≤j≤n,j 6=i

(1 + E
[
|xi(t)− xj(t)|

]
)

≤ n+ 1
n

n∑
i=1

n∑
j=1

E
[
|xi(t)− xj(t)|

]

≤ n+ 1
n

n∑
i=1

n∑
j=1

E
[
|xi(t)− µ(t)|+ |xj(t)− µ(t)|

]

= n+ 2
n∑
i=1

E
[
|xi(t)− µ(t)|

]
. (2.11)

Using Jensen’s inequality we get that∑n
i=1 α|xi(t)− µ(t)|

n
= log

e∑n

i=1 α|xi(t)−µ(t)|
n


≤ log

∑n
i=1 e

α|xi(t)−µ(t)|

n

 ≤ log
Γcon(t)

n

.
Hence

E
[∑n

i=1 α|xi(t)− µ(t)|
n

]
≤ E

[
log

Γcon(t)
n

] Jensen≤ log
E[Γcon(t)]

n


Lemma 2.6.1
≤ log

146C(ε)
αε

 = O(log log n).

Where in the last step we used α = Θ(1
logn) and for the same reason we get that ∑n

i=1 |xi(t)−
µ(t)| = O(n log n log log n). Finally, (2.11) gives us that

n∑
i=1

E[rank(vi(t))]
n

≤ n+ 2O(n log n log log n) = O(n log n log log n).

�

We can also also show the high probability bound on the maximum rank:

Corollary 2.6.3 At any step t and large enough R, probability of rank of returned element
being larger than 2Rn log2 n is at most 2n−Ω(R).

32

2.7. Experimental Results

Proof. Note that Lemma 2.5.13 shows that for large enough R, Pr[xmax(t) − xmin(t) ≥
R log2 n] ≤ nΩ(−R). This holds in the case of queues as well. Also, notice that if xmax(t)−
xmin(t) ≤ R log2 n, then the maximum rank is at most ∑n

i=1 Poi(Rnlog
2n

n
) = Poi(Rn log2 n)

(Recall that the sum of n independent Poisson random variables is also Poisson). Hence by the
tail bounds of Poisson distribution probability of maximum rank being larger than 2Rn log2 n
is also at most nΩ(−R). Thus, by the law of total probability the probability of maximum rank
being larger than Rn log2 n is at most 2RnΩ(−R). �

2.7 Experimental Results
Setup. Our experiments were run on an Intel E7-4830 v3 with 12 cores per socket and 2
hyperthreads (HTs) per core, for a total of 24 threads, and 128GB of RAM. In all of our
experiments, we pinned threads to avoid unnecessary context switches. Hyperthreading is only
used with more than 12 threads. The machine runs Ubuntu 14.04 LTS. All code was compiled
with the GNU C++ compiler (G++) 6.3.0 with compilation options -std=c++11 -mcx16
-O3.

Synthetic Benchmarks. We implemented and benchmarked the MultiCounter algorithm on
a multicore machine. To test the behavior under contention, threads continually increment the
counter value using the two-choice process. We use no synchronization other than the atomic
fetch and increment instruction for the update. Figure 2.1a shows the scalability results, while
Figure 2.1b shows the “quality" guarantees of the implementation in terms of values returned
by the counter over time, as well as maximum gap between bins over time. Quality is measured
in a single-threaded execution, for 64 counters. (Recording quality accurately in a concurrent
execution appears complicated, as it is not clear how to order the concurrent read steps.)

(a) Scalability of the concurrent counter
for different values of the ratio C be-
tween counters and # threads.

(b) Quality results for the concurrent
counter in a single-threaded execution.
The x axis is # increments.

(c) TL2 benchmark, 1M ob-
jects.

(d) TL2 benchmark, 100K ob-
jects.

(e) QTL2 benchmark, 10K ob-
jects.

Figure 2.1: Experimental Results for the Concurrent Counter.

33

2. Distributionally Linearizable Data Structures

TL2 Benchmark. Transactional Locking II (TL2) is a software implementation of transactional
memory introduced by [DSS06]. TL2 guarantees opacity by using fine-grained locking and
a global clock G. TL2 associates a version lock with each memory location. A version lock
behaves like a traditional lock, except it additionally stores a version number that represents
the value of G when the memory location protected by the lock was last modified. At a high
level, a transaction starts by reading G, and uses the clock value it reads to determine whether
it ever observes the effects of an uncommitted transaction. If so, the transaction will abort.
Otherwise, after performing all of its reads, it locks the addresses in its write set (validating
these locations to ensure that they have not been written recently), rereads G to obtain a
new version v′, performs its writes, then releases its locks, updating their versions to v′.
TL2 with Relaxed Global Clocks. In the standard implementation of TL2, G is incremented
using fetch-and-add (FAA). This quickly becomes a concurrency bottleneck as the number
of threads increases, so the the authors developed several improved implementations of G.
However, they too experience scaling problems at large thread counts. We replace this global
clock counter G with a MultiCounter implementation, and compare against a highly-optimized
baseline implementation.
Due to the fact that the counter is relaxed, reasoning about the correctness of the resulting
algorithm is no longer straightforward. In particular, a key property we need to enforce is that
the timestamp which a thread writes to a set of objects as part of its transaction (generated
when the thread is holding locks to commit and written to all objects in its write set) cannot
be held by any other threads at the same time, since such threads might read those concurrent
updates concurrently, and believe that they occurred in the past. For this reason, we modify
the TL2 algorithm so that threads write “in the future," by adding a quantity ∆, which exceeds
the maximum clock skew we expect to encounter in the MultiCounter over an execution, to
the maximum timestamp tmax they have encountered during their execution so far. Thus,
each new write always increments an object’s timestamp by ≥ ∆. We stress that that the
(approximate) global clock is implemented by the MultiCounter algorithm, and that it is
disjoint from the object timestamps.
This protocol induces the following trade-offs. First, the resulting transactional algorithm
only ensures safety with high probability, since the ∆ bound might be broken at some point
during the execution, and lead to a non-serializable transaction, with extremely low probability.
Second, we note that, once an object is written with a timestamp that occurs in the future,
transactions which immediately read this object may abort, since they see a timestamp that
is larger than theirs. Hence, once an object is written, at least ∆ operations should occur
without accessing this object, so that the system clock is incremented past the read point
without causing readers to abort. Intuitively, this upper bounds the frequency at which objects
should be written to for this approximate timestamping mechanism to be efficient. On the
positive side, this mechanism allows us to break the scalability bottleneck caused by the global
clock.
We verify this intuition through implementation. See Figures 2.1c—2.1e. We are given an array
of n transactional objects, with n between 10K and 1M. Transactions pick 2 array locations
uniformly at random, then start a transaction, increment both locations, and then commit the
transaction. We record the average throughput out of ten one-second experiments. We verify
correctness by checking that the array contents are consistent with the number of executed
operations at the end of the run; none of these experiments have resulted in erroneous outputs.
We record the rate at which transactions commit, as a function of the number of threads. We
note that, for 1M and 100K objects, the average frequency at which each location is written is

34

2.8. Related Work

below the heavy abort threshold, and we obtain almost linear scaling with MultiCounters. At
10K objects we surpass this threshold, and see a considerable drop in performance, because of
a large number of aborts.

2.8 Related Work
Randomized Load Balancing. The classic two-choice balanced allocation process was
introduced in [ABKU99], where the authors show that, under two-choice insertion, the most
loaded among n bins is at most O(log log n) above the average, both in expectation and with
high probability. The literature studying analyses and extensions of this process is extremely
vast, hence we direct the reader to [RMS01, Mit96] for in-depth surveys of these techniques.
Considerable effort has been dedicated to understanding guarantees in the “heavily-loaded" case,
where the number of insertion steps is unbounded [BCSV00, PTW15], and in the “weighted"
case, in which ball weights come from a probability distribution [TW07, BFHM08]. A tour-
de-force by Peres, Talwar, and Wieder [PTW15] gave a potential argument characterizing
a general form of the heavily-loaded, weighted process on graphs. Our analysis starts from
their framework, and modifies it to analyze a concurrent, adversarial process. One significant
change from their analysis is that, due to the adversary, changes in the potential are only
partly stochastic: most steps might be slightly biased away from the better of the two choices,
while a subset of choices might be almost deterministically biased towards the wrong choice.
Further, the adversary can decide the order in which these different steps, with different biases,
occur. Recently, [LS21] studied heavily-loaded, sequential two-choice process with incomplete
information. In their model, at each step, two bins are chosen uniformly at random, but it is
not possible to directly compare their loads. Instead, the choice has to be made by estimating
the loads of the bins using Θ(log log n) binary queries, of type “Is the load at least the load
of the second most loaded bin?” or “Is the load at least 128?” The authors show that, even
in this case, the gap between the most loaded bin and the average is at most O(log log n),
with high probability. Even though their analysis deals with the wrong choices made due to
incomplete information, the approach is different from ours, since we consider an asynchronous
setting.

Lenzen and Wattenhofer [LW16] analyzed parallel balls-into-bins processes, in which n balls
need to be distributed among n bins, under a communication model between the balls
and the bins, showing that almost-perfect allocation can be achieved in O(log∗ n) rounds
of communication. This setting is quite different from the one we consider here. Similar
delayed information models, where outdated information is given to the insertion process
were considered by Mitzenmacher [Mit00] and by Berenbrink, Czumaj, Englert, Fridetzky,
and Nagel [BCE+12]. The former reference proposes a bulletin board model with periodic
updates, in which information about the load of the model is updated only periodically (every
T seconds), and various allocation mechanisms. The author provides an analysis of this process
in the asymptotic case (as n→∞), supported by simulations. The latter reference [BCE+12]
considers a similar model where balls arrive in batches, and must perform allocations collectively
based solely on the information available at the beginning of the batch, without additional
communication. The authors prove that the greedy multiple-choice process preserves its strong
load balancing properties in this setting: in particular, the gap between min and max remains
O(log n). The key difference between these models and the one we consider is that our
model is completely asynchronous, and in fact the interleavings are chosen adversarially. The
technique we employ is fundamentally different from those of [Mit00, BCE+12]. In particular,

35

2. Distributionally Linearizable Data Structures

our techniques can be applied to the setting considered in [BCE+12], albeit the resulting upper
bound on the gap bound will be O(log2 n).
In [AKLN17], authors analyzed the following producer-consumer process: a set of balls labelled
1, 2, . . . , b are inserted sequentially at random into n bins; in parallel, balls are removed from
the bins by always picking the lower labelled (higher priority) of two uniform random choices.3
This process sequentially models a series of popular implementations of concurrent priority
queue data structures, e.g. [RSD15, HLH+13]. This process provides the following guarantees:
in each step t, the expected rank of the label removed among labels still present in the system
is O(n), and O(n log n) with high probability in n. That is, this sequential process provides a
structured probabilistic relaxation of a standard priority queue.
Relaxed Data Structures. The process considered in [AKLN17] is sequential, whereas
the data structures implemented are concurrent. Thus, there was a significant gap between
the theoretical guarantees and the practical implementation. Our current work extends to
concurrent data structures, closing this gap. Under the oblivious adversary assumption and
given our parametrization, we show for the first time that practical data structures such
as [RSD15, HLH+13, AKLN17] provide guarantees in real executions.
Designing efficient concurrent/parallel data structures with relaxed semantics was initiated
by Karp and Zhang [KZ93], with other significant early work by Deo and Prasad [DP92] and
Sanders [San98]. It has recently become an extremely active research area, see e.g. [SL00,
BFK+11, WGTT15, AKLS15, HLH+13, NLP13, RSD15, AKLN17, RAT] for recent examples.
To the best of our knowledge, ours is the first analysis of randomized relaxed concurrent
data structures which works under arbitrary oblivious schedulers: previous analyses such
as [AKLS15, RSD15, AKLN17] required strong assumptions on the set of allowable interleavings.
Dice et al. [DLM13] considered randomized data structures for scalable exact and approximate
counting. They consider the efficient parallelization of sequential approximate counting
methods, and therefore have a significantly different focus than our work.

3Balls in each bin are sorted in increasing order of label, i.e. each bin corresponds to a sequential priority
queue.

36

CHAPTER 3
Applications of Relaxed Scheduler

3.1 Introduction
Several classic problems in graph processing and computational geometry can be solved
incrementally : algorithms are structured as a series of tasks, each of which examines a subset
of the algorithm state, performs some computation, and then updates the state. For instance,
in Dijkstra’s classic graph single-source shortest paths (SSSP) algorithm [Dij59], the state
consists of the current distance estimates for each node in the graph, and each task corresponds
to a node “relaxation," which may update the distance estimates of the node’s neighbors. In
the case of the classic sequential variant, the order in which tasks get executed is dictated
by the sequence of node distances. At the same time, many other incremental algorithms,
such as Delaunay mesh triangulation, assume arbitrary (or random) orders on the tasks to be
executed, and can even provide efficiency guarantees under such orderings [BGSS16].

A significant amount of attention has been given to parallelizing such incremental iterative
algorithms, e.g. [GLG+12, NLP13, BGSS16, DBS17, DBS21]. One approach has been to study
the dependence structure of such algorithms, proving that, in many cases, the dependency
chains are shallow. This can be intuitively interpreted as proving that such algorithms
should have significant levels of parallelism. One way to exploit this fine-grained parallelism,
e.g. [BFS12, SBFG13] has been to carefully split the execution into task prefixes of limited
length, and to parallelize the execution of each prefix efficiently. While this approach can be
efficient, it does require an understanding of the workload and task structure, and may not be
immediately applicable to algorithms where the task ordering is dependent on the input.

An alternative approach has been to employ scalable data structures which only ensure relaxed
priority order to schedule task-based programs. The idea can be traced back to Karp and
Zhang [KZ93], who studied parallel backtracking in the PRAM model, and noticed that, in
some cases, the scheduler can relax the strict order induced by the sequential algorithm, allowing
tasks to be processed speculatively ahead of their dependencies, without loss of correctness.
For instance, when parallelizing SSSP, e.g. [AKLS15, SW16, NLP13], the scheduler may
retrieve vertices in arbitrary order without breaking correctness, as the distance at each vertex
is guaranteed to eventually converge to the minimum. However, there is intuitively a trade-off
between the performance gains arising from using scalable relaxed schedulers, and the loss of
determinism and the possible wasted work due to having to re-execute speculative tasks.

37

3. Applications of Relaxed Scheduler

This approach is quite popular in practice, as several efficient relaxed schedulers have been
proposed [SL00, BFK+11, WGTT15, AKLS15, HLH+13, NLP13, RSD15, AKLN17, SW17],
which can attain state-of-the-art results for graph processing and machine learning [NLP13,
GLG+12], and even have hardware implementations [JSY+16]. At the same time, despite
showing good empirical performance, this approach does not come with analytical bounds: in
particular, for most known algorithms, it is not clear how the relaxation factor in the scheduler
affects the total work performed by the parallel algorithm.

We address this question in this chapter. Roughly, we show under analytic assumptions that, for
a set of fundamental algorithms including parallel Dijkstra’s and Delaunay mesh triangulation,
the extra work engendered by scheduler relaxation can be negligible with respect to the total
number of tasks executed by the sequential algorithm. On the negative side, we show that
relaxation does not come for free: we can construct worst-case instances where the cost of
relaxation is asymptotically non-negligible, even for relatively benign relaxed schedulers.

We model the relaxed execution of incremental algorithms as follows. The algorithm is specified
as an ordered sequence of tasks, which may or may not have precedence constraints. The
algorithm’s execution is modeled as an interaction between a processor, which can execute
tasks, modify state, and possibly create new tasks, and a scheduler, which stores the tasks in a
priority order specified by the algorithm. At each step, the processor requests a new task from
the scheduler, examines whether the task can be processed (i.e., that all precedence constraints
are satisfied), and then executes the task, possibly modifying the state and inserting new tasks
as a consequence.

An exact scheduler would return tasks following priority order. Since ensuring such strict
order semantics is known to lead to contention and poor performance [AACH+14], practical
scalable schedulers often relax the priority order in which tasks are returned, up to some
constraints. For generality, in this chapter, we assume when proving performance upper bounds
that the scheduler may in fact be adversarial—actively trying to get the algorithm to waste
steps, up to some natural rank inversion and fairness constraints. Specifically, the two natural
constraints we enforce on the scheduler are on 1) the maximum rank inversion between the
highest priority task present and the rank of the task returned, and on 2) fairness, in terms
of the maximum number of schedule steps for which the task of highest priority may remain
unscheduled. For convenience, we upper bound both these quantities by a parameter k, which
we call the relaxation factor of the scheduler. Simply put, a k-relaxed scheduler must 1)
return one of the k highest-priority elements in every step; and 2) return a task at the latest
k steps after it has become the highest-priority task available to the scheduler. We note
that real schedulers enforce such constraints either deterministically [WGTT15] or with high
probability [AKLN17, ABK+18, ABKN18].

A significant limitation of the above model is that it is sequential, as it assumes a single
processor which may execute tasks, but we believe that it provides good intuition about why
relaxed schedulers are effective.

It is natural to ask whether incremental algorithms can still provide any guarantess on total
work performed under k−relaxed schedulers. Additional work may arise due to relaxation for
two reasons. A first cause for wasted work is if a task may need to be re-executed once the
state is updated, this is the case when running parallel SSSP: due to relaxation, a node may
be speculatively relaxed at a distance that is higher than its optimal distance from the source,
leading it to be relaxed several times. The second is if the parallel execution enforces ordering
constraints between data-dependent tasks: for instance, when executing a graph algorithm,

38

3.2. Relaxed Schedulers: The Sequential Model

the task corresponding to a node u may need to be processed before the task corresponding
to any neighbor which has higher priority in the initial node ordering.
We note that neither phenomenon may occur when the priority order is strict—since the top
priority task cannot have preceding constraints nor need to be re-executed—but are inherent
in parallel executions.
A trivial upper bound on wasted work for an algorithm with total work W under a k-relaxed
scheduler would be O(kW)—intuitively, in the worst case the scheduler may return k tasks
before the top priority one, which can always be executed without violating constraints. The
key observation we make in this work is that, in the case of SSSP the extra work depends on
the graph structure. Additionally, because of their local dependency structure, some popular
incremental algorithms will incur significantly less overhead due to out-of-order execution.
For SSSP, which does not have a dependency structure but may have to re-execute tasks, we
use an approach, based on ∆-stepping, [MS03]. We bound the total overhead of relaxation
to O(poly(k) dmax/wmin), where dmax is the maximum shortest distance from the source
to some other node, and wmin is the minimum edge weight. While this overhead may in
theory be arbitrarily large, depending on the input, we note that for many graph models, this
overhead is small. (For example, for Erdös-Renyi graphs with constant weights, the overhead
is O(poly k log n).)
For incremental algorithms, such as Delaunay mesh triangulation and sorting by insertion, we
show that the expected overhead of execution via a k-relaxed scheduler is
O(poly k log n), where n is the number of tasks the sequential variant of the algorithm
executes. We exploit the following properties of incremental algorithms, shown in [BGSS16]:
The probability that the task at position j is dependent on the task at position i < j depends
only on the tasks at positions 1, 2, ..., i and j, and assuming a random order of tasks, this
probability is upper bounded by O(1/i). While the technical details are not immediate, the
argument boils down to bounding, for each top-priority task, the number of dependent tasks
which may be returned by the scheduler while the task is still in the scheduler queue.
It is interesting to interpret these overheads in the context of practical concurrent schedulers
such as MultiQueues [RSD15, GLG+12], where the relaxation factor k is proportional to the
number of concurrent processors p, up to logarithmic factors. Since in most instances the
size of the number of tasks n is significantly larger than the number of available processors
p, the overhead of relaxation can be seen to be comparatively small. This observation has
been already made empirically for specific instances, e.g. [LNP15]; our analysis formalizes this
observation in our model.
On the negative side, we also show that the overhead of relaxation is non-negligible in some
instances. Specifically, we exhibit instances of incremental algorithms where the overhead of
relaxed execution is Ω(log n). Interestingly, this lower bound does not require the scheduler to
be adversarial: we show that it holds even in the case of the relatively benign MultiQueue
scheduler [RSD15, AKLN17].

3.2 Relaxed Schedulers: The Sequential Model
We begin by formally introducing our sequential model of relaxed priority schedulers. We
represent a priority scheduler as a relaxed ordered set data structure Qk, where the integer
parameter k is the relaxation factor. A relaxed priority scheduler contains < task, priority >
pairs and supports the following operations:

39

3. Applications of Relaxed Scheduler

1. Qk.Empty(), returns true if Qk is empty, and false otherwise.

2. ApproxGetMin(), returns a < task, priority > pair if one is available, without deleting
it.

3. DeleteTask(task), removes specified task from the scheduler. This is used to remove
a task returned by ApproxGetMin(), if applicable.

4. Insert(< task, priority >), inserts a new task-priority pair in Qk.

We denote the rank (in Qk) of the task returned by the t-th ApproxGetMin() operation by
rank(t), and call it the rank of a task returned on step t. For a task u, let inv(u) be the
number of inversions experienced by task u between the step when u becomes the highest
priority task in Qk and the step when task u is returned by the scheduler. That is, inv(u) + 1
is the number of ApproxGetMin() operations needed for the highest priority task u to be
scheduled.

Rank and Fairness Properties. The relaxed priority schedulers Qk we consider will enforce
the following properties:

1. RankBound: at any time step t, rank(t) ≤ k.

2. Fairness: for any task u, inv(u) ≤ k − 1.

Priority schedulers such as k-LSM [WGTT15] enforce these properties deterministically, where
k is a tunable parameter. In the case of MultiQueues [RSD15] with q queues, Corollary 2.6.3
shows that for large enough constant R, rank bound holds for k = 2Rq log q with probability
at least 1− 2q−Ω(R). On the other hand, MultiQueue returns the task with the highest priority
with probability at least 1

q
, hence with probability at least 1− q−2R, inv(u) ≤ 2Rq log q, for

any fixed task u.

The above probabilities are calculated for a fixed task and fixed step. Let s be the total
number of times DeleteTask() operation removes the task with the highest priority during
the entire time the scheduler is operating. Note that for the algorithms we consider in this
chapter, s ≤ n (n is the total number of tasks used by the algorithm, and hence available to
the scheduler), since each task becomes the task with the highest priority at most once during
the entire run of the algorithm. Using union bound we can show that with probability at least
1− nq−2R, the Fairness holds during the entire operation of the scheduler. Conditioned on
this event, we have that the total number of times DeleteTask() task operation is invoked is
at most 2Rnq log q , hence by again using union bound we get that with probability at least
1− 4Rnq−Ω(R)q log q, the RankBound holds during the entire operation of the scheduler as
well. Finally, by using the law of total probability and setting R = q = Θ(log n) we get that
with probability at least 1 − 4Rnq−2R+1 log q − nq−2R = 1 − O(nΩ(−R)), the RankBound
and FairNess hold for k = 2Rq log q = O(R log n log log n) = O(poly (log n)) during the
entire time the scheduler is operating.

We proceed by showing how the usage of relaxed scheduler affects the SSSP algorithm.

40

3.3. Analyzing SSSP under Relaxed Scheduling

3.3 Analyzing SSSP under Relaxed Scheduling
Preliminaries. Since the algorithm is different from the ones we considered thus far, we
re-introduce some notation. We assume we are given a directed graph G = (V,E) with positive
edge weights w(e) for each edge e ∈ E, and a source vertex s. For each vertex v ∈ V , let d(v)
be the weight of a shortest path from s to v. Additionally, let dmax = max{d(v) : v ∈ V }
and wmin = min{w(e) : e ∈ E}.

We consider the sequential pseudocode from Algorithm3, which uses a relaxed priority queue
Qk to find shortest paths from s via a procedure similar to the ∆-stepping algorithm [MS03].

In this algorithm Qk.push(v, dist) inserts a vertex v with distance dist in Qk, Qk.pop()
removes and returns a vertex, distance pair (v, dist), such that v is among the k smallest
distance vertices in Qk. We also assume that Qk supports a Qk.DecreaseKey(v, dist)
operation, which atomically decreases the distance of vertex v in Qk to dist.

Algorithm 3 SSSP algorithm based on a relaxed priority queue.
Data: Graph G = (V,E), source vertex s.

Initially empty relaxed priority queue Qk.
Array dist[n] for tentative distances.

for each vertex v ∈ V do
dist[v]← +∞

end for
dist[s]← 0
Qk.push(s, 0)
while !Qk.empty() do

(v, curDist)← Qk.pop()
for u : (v, u) ∈ E do

e← (v, u)
if dist[u] > curDist+ w(e) then

dist[u]← curDist+ w(e)
% We assume that we can check whether u is in Qk.
% The check can be implemented via
% maintaining the corresponding flag for each vertex.
if u ∈ Qk then

Qk.DecreaseKey(u, dist[u])
else

Qk.Add(u, dist[u])
end if

end if
end for

end while

Analysis. We will prove the following statement, which upper bounds the extra work incurred
by the relaxed scheduler:

Theorem 3.3.1 The number of Qk.pop() operations performed by Algorithm 3 is
O(k2dmax/wmin) + n. (3.1)

41

3. Applications of Relaxed Scheduler

Proof. Our analysis will follow the general pattern of ∆-stepping analysis. We will partition
the vertex set V into buckets, based on distance: vertex v belongs to bucket Bi iff d(v) ∈
[iwmin, (i+1)wmin). Let t = dmax/wmin be the total number of buckets we need (for simplicity
we assume that dmax/wmin is an integer).
Observe that because of the way we defined buckets, we have the following property, which
we will call the bucket property : for any vertex v ∈ V , no shortest path from s to v contains
vertices which belong to the same bucket.
We say that Algorithm 3 processes vertex v at the correct distance if Qk.pop() returns (v, d(v)),
this means that dist[v] = d(v) at this point and we relax outgoing edges of v. (See Algorithm 3
for clarification.)
We fix i < t and look at what happens when Algorithm 3 processes all vertices in the
buckets B0, B1, ..., Bi at the correct distance. Because of the bucket property, we get that
d(u) = dist[u] for every u ∈ Bi+1, and the vertices from bucket Bi+1 are either ready to
be processed at the correct distance, or are already processed at the correct distance. To
avoid the second case, we also assume that if Qk.pop() returns (u, d(u)), where u ∈ Bi+1
and not all vertices in the buckets B0, B1, ..., Bi are processed at the correct distance, then
this Qk.pop() operation still counts towards the total number of Qk.pop() operations, but
it does not actually remove the task and does not perform edge relaxations, even though u
is ready to be processed at the correct distance. This assumption only increases the total
number of Qk.pop() operations, so to prove the claim it suffices to derive an upper bound for
this pessimistic case.
Once the algorithm processes the vertices in buckets B0, B1, ..., Bi at the correct distances, we
know that the only vertices with tentative distance less than (i+ 2)wmin are the vertices in the
bucket Bi+1. (Note that this statement would not hold if we didn’t have the DecreaseKey
operation: if we insert multiple copies of vertices in Qk with different distances, as in some
versions of Dijkstra, there might exist outdated copies of vertex u ∈ Bj, j < i, even though u
was already processed at the correct distance.) This means that, at this point, the top |Bi+1|
vertices (vertices with the smallest distance estimates) belong to Bi+1.
Next, we bound how many Qk.pop() operations are needed to process the vertices in Bi+1,
after all vertices in the buckets B0, B1, ..., Bi are processed. If |Bi+1| > k, using the rank
property, we have that the first (|Bi+1| − k) Q.pop() operations process vertices in Bi+1. If
|Bi+1| ≤ k, we know that it will take at most k2 Qk.pop() operations to process all vertices
in Bi+1, since, because by the fairness bound, the number of Qk.pop() operations to return
the top vertex (the one with the smallest tentative distance) is at most k, and we showed
that the top vertex belongs to Bi+1 until all vertices in Bi+1 are processed. By combining
these two cases, we get that the number of Qk.pop() operations to process vertices in Bi+1
at the correct distance is at most |Bi+1|+ k2.
Thus the number of Qk.pop() operations performed by Algorithm 3 in total is at most:

t∑
i=0

(k2 + |Bi|) = n+O(k2dmax/wmin), (3.2)

as claimed.
�

Lower Bound. Note that for some graphs, the above result is tight up to a k factor, in the
worst case. For example, consider a clique graph with a vertex set {1, 2..., n}. Let the weight

42

3.4. Experiments

Figure 3.1: Overheads (left) and speedups (right) for parallel SSSP Dijkstra’s algorithm
executed via a MultiQueue relaxed scheduler on random, road network, and social network
graphs. The overhead is measured as the ratio between the number of tasks executed via a
relaxed scheduler versus an exact one.

of the edge from vertex i to vertex j be 1, if j − i = 1 and n otherwise. Let vertex 1 be the
source vertex. We have that wmin = 1 and dmax = n− 1, and it is easy to see that in the
worst case the number of Qk.pop() performed by Algorithm 3 is Ω(nk) = Ω(kdmax/wmin).

Discussion. A clear limitation is that the bound depends on the maximum distance dmax,
and on the minimum weight wmin. Hence, this bound would be relevant only for low-diameter
graphs with bounded edge weights. We note however this case is relatively common: for
instance, [DBS17] considers weighted graph models of low diameter, where weights are chosen
in the interval [1, log n). These assumptions appear to hold in for many publicly available
weighted graphs [LK14]. Further, our argument assumes a relaxed scheduler supporting
DecreaseKey operations. This operation can be supported by schedulers such as the
SprayList [AKLS15] or MultiQueues [RSD15, AKLN17] where elements are hashed consistently
into the priority queues.

3.4 Experiments
We implemented the parallel SSSP Dijkstra’s algorithm described in Section 3.3 using an
instance of the MultiQueue relaxed priority scheduler [RSD15, AKLN17]. In the classic
sequential algorithm nodes are processed sequentially, while in this parallel version a node can
be processed several times due to out-of-order execution. In our experiments, we are interested
in the total number of tasks processed by the concurrent variant, in order to examine the
overhead of relaxation in concurrent executions. In addition, we also measure execution times
for increasing number of threads. Overhead is measured as the average number of tasks

43

3. Applications of Relaxed Scheduler

Figure 3.2: Relaxation overheads versus relaxation factor/queue multiplier for parallel SSSP
Dijkstra’s algorithm. The number of queues is the multiplier (x axis) times the number of
threads, and is proportional to the average relaxation factor of the queue [AKLN17].

executed in a concurrent execution divided by the number of tasks executed in a sequential
execution using an exact scheduler.

Sample graphs. We use the following list of graphs in our experiments:

• Random undirected graph with 1 million nodes and 10 million edges, with uniform
random weights between 0 and 100 (random);

• USA road network graph with physical distances as edge lengths; ∼ 24 million nodes
and ∼ 58 million edges (road) [DGJ09];

• LiveJournal social network friendship graph; ∼ 5 million nodes and ∼ 69 million edges,
with uniform random weights between 0 and 100 (social) [LK14].

Platforms. We evaluated the experiment on a server with 4 Intel Xeon Gold 6150 (Skylake)
sockets. Each socket has 18 2.70 GHz cores, each of which multiplexes 2 hardware threads,
for a total of 144 hardware threads. In addition, we ran the experiment on a Google Cloud
Platform VM supporting to 96 hardware threads.

Experimental results. The experimental results are summarized in Figure 3.1. On the left
column, notice that, on both machines, the overheads of relaxation are almost negligible: for
the random graph and the social network, the overheads are almost 1% at all thread counts,
what practically means the absence of extra work. (Recall that the number of queues is always
2× the number of threads, so the relaxation factor increases with the thread count.)

The road network incurs higher overheads (5% at 144 threads / 288 queues). This can be
explained by the higher diameter of the graph (6261, versus 16 for the LiveJournal and 6
for the random graphs), and by the higher variance in edge costs for the road network. In
terms of speedup (right), our implementation scales well for 1-2 sockets on our local server,
after which NUMA effects become prevalent. NUMA effects are less prevalent on the Google
Cloud machine, but the maximum speedup is also more limited (< 7× instead of 10×).

44

3.5. Incremental Algorithms

In Figure 3.2, we examine the relaxation overhead (in terms of the amount of extra tasks
executed) versus the relaxation factor. While we cannot control the relaxation factor exactly,
we know that the average value of this factor is proportional to the number of queues allocated,
which is the number of threads (fixed for each sub-plot) times the multiplier for the number of
queues (the x axis) [AKLN17]. We notice that these overheads are only non-negligible for the
road network graph. On the one hand, this suggests that our worst-case analysis is not tight,
but can also be interpreted as showing that the overheads of relaxation do become apparent
on dense, high-diameter graphs such as road networks.

Next, we describe how incremental algorithms can be implemented using the relaxed scheduler.

3.5 Incremental Algorithms

3.5.1 General Definitions
We assume a model of incremental algorithms which execute a set of tasks iteratively, one
by one, and where each task incrementally updates the algorithm’s state. For example, in
incremental graph algorithms, the shared state corresponds to a data structure storing the
graph nodes, edges, and meta-data corresponding to nodes. Tasks usually correspond to
vertex operations, and are usually inserted and executed in some order, given by the input.
If this task order is random, we say that the incremental algorithm is randomized. We will
consider both randomized incremental algorithms, where each task has a priority based on
the random order, and deterministic ones, where the order is fixed. Using an exact scheduler
corresponds to executing tasks in the same order as the sequential algorithm, while using a
relaxed scheduler allows out-of-order execution of tasks.

Definition. More formally, randomized incremental algorithms such as Delaunay triangulation
and comparison sorting with via BST insertion can be modelled as follows:

We are given n tasks, which must be executed iteratively in some (possibly random) order.
Initially, each task u is assigned a unique label `(u). For instance, this label can be based on a
random permutation of n given tasks, π. That is, for task u, `(u) = i, iff π(i) = u. A lower
label can be equated with higher priority. Each task performs some computation and updates
the algorithm state. In the case of Delaunay triangulation, tasks update the triangle mesh,
while in the case of Comparison Sorting tasks modify the BST accordingly. Generic sequential
pseudocode is given in Algorithm 4. We note that a similar generic algorithm was presented
in [ABKN18] for parallelizing greedy iterative algorithms.

When using a relaxed priority Qk instead of an exact priority queue Q, one issue is the presence
of inter-task dependencies. These dependencies are specified by the algorithm, and are affected
by the permutation of the tasks.

If task v depends on task u and `(u) < `(v), then task v can not be processed before task u.
We call task u an ancestor of task v in this case. We assume that the task returned by the
relaxed scheduler can be processed only if all of its ancestors are already processed.

Pseudocode is given in Algorithm 5.

Observe that the For loop runs for exactly n steps in the exact case, but it may require extra
steps in the relaxed case. We are interested in upper bounding the number of extra steps,

45

3. Applications of Relaxed Scheduler

Algorithm 4 General Framework for incremental algorithms.
Data: Sequence of tasks V = (v1, v2, ..., vn), in decreasing priority order.
% Q is an exact priority queue.
Q← tasks of V with priorities
for each step t do

% remove the task with highest priority
vt ← Q.DeleteMin()
Process(vt)
% stop if Q is empty.
if Q.empty() then

break
end if

end for

Algorithm 5 General Framework for executing incremental algorithms using relaxed priority
schedulers.
Data: Sequence of tasks V = (v1, v2, ..., vn), in decreasing priority order.
% Qk is a relaxed priority queue.
Qk ← tasks of V with priorities
for each step t do

% get the task with highest priority from Qk.
vt ← Qk.GetMin()
% check if vt has no dependencies.
if CheckDependencies(vt) then

Qk.Delete(vt)
Process(vt)

end if
% stop if Qk is empty.
if Qk.empty() then

break
end if

end for

since this is a measure of the additional work incurred when executing via the relaxed priority
queue. In order to do this, we need to specify some properties for the dependencies of the
incremental algorithms we consider.
Denote by pij be probability that task with label j depends on task with label i. We require
the incremental algorithms to have the following property:

• for each pair of task indices i < j, pij ≤ C/i (probability is calculated over the
randomness of permutation), where C is large enough constant which depends on the
incremental algorithm.

The property of incremental algorithms such as Delaunay triangulation and Comparison sorting
is established in [BGSS16], but we will briefly go over them to give some intuition.
Comparison Sorting. We consider at comparison sorting of n elements (tasks), which is
implemented by inserting them in the Binary Search Tree in increasing label order. Recall

46

3.5. Incremental Algorithms

that labels are assigned according to the random permutation, this makes sure that the binary
search tree is well balanced. Each element (task) depends on all its ancestors in the binary
search tree, since our goal is to preserve binary search tree build by execution with the exact
scheduler. Alternative way to define dependencies is: for element with label j to depend on
element with label i < j, element with label j must be a child of element with label i in the
binary search tree which given by insertion of elements with labels 1, 2, .., i− 1, i, j (precisely
in this order). Also, note that element with label j is a leaf node in the binary search tree
(with i + 1 elements), since it is the last element to be inserted. Hence, by the properties
of binary search tree element with label j can depend on element with label i, only if they
are placed consecutively when elements with labels 1, 2, ..., i, j are sorted according to their
values. If we fix of elements with labels 1, 2, .., i− 1, i, j, but not the order of elements with
labels 1, 2, ..., i, we will get that there are only two elements among the elements with labels
1, 2, .., i on which the element with label j depends on. Hence, since the permutation which
assigns labels is random, the probability of the element with label i being one of these two
elements is at most 2

i
.

Delaunay Triangulation. We are given n point in 2D plane, our aim is to find triangulation
such that no point encroaches on any triangle. Point encroaches on a triangle if it is inside
its circumcircle. We assume non-degenerate case where no four points lie on the same circle
and no there are on the same line. We again assign labels to points (tasks) according to the
random permutation and incrementally add them to the triangulation. Every time point is
added, we detect the area which consists of all triangles it encroaches on. Then, we remove all
the edges inside the area and retriangulate by connecting the newly added point to the points
of area. The purpose of dependencies in this case is to make sure that algorithm performs
the same steps when adding the point. More precisely, the area it encroaches on should be
the same both in exact and relaxed executions, also, the triangles which share edges with the
area should also be the same since they also get tested for encroachment. Hence, the point
with label j depends on the point with label i < j if in the Delaunay triangulation of points
with labels 1, 2, .., j − 1, j, none of the triangles i belongs to, shares an edge with a triangle j
belongs to. If we fix the points with labels 1, 2, ..., j − 1, j, but not their order, the expected
number of neighbours the point with label j has in the triangulation is at most 6 (We use
Euler’s theorem and the fact that labels are assigned according to the random permutation).
Then once the point with label j is fixed and it has dj neighbours, we know that in order for
the point with label j to depend on the point with label i, either j must be neighbour of i or
there must exist vertices u and v, such that i, u, v and j, u, v form a triangle. Hence, since
there are 2dj such points and the permutation is random, probability that the point with label
j depends on the point with label i is at most 2dj

j−1 ≤
2dj
i
. Hence, after taking the randomness

of dj into the account, the probability that the point with label j depends on the point with
label i is at most

i∑
k=1

Pr[dj = k]2k
i

= 2E[dj]
i
≤ 12

i
.

3.5.2 Analysis
In this section, we prove an upper bound on the number of extra steps required by our generic
relaxed framework for executing incremental algorithms. As a first step, we will derive some
additional properties of the relaxed scheduler.

Let Aij be the event that task with label at least j is returned by the scheduler before task
with label i is processed by the incremental algorithm. Observe that if the scheduler returns

47

3. Applications of Relaxed Scheduler

the highest priority task, then this task can always be processed by the incremental algorithm,
since this task is guaranteed to have no ancestors.

Lemma 3.5.1 If j − i ≥ 2k2, Pr[Aij] = 0.

Proof. For labels j− i ≥ 2k2, let u be the task with label i and let v be some task with label at
least j. Also, let t be the earliest step at which rank of u is at most k. This means that at time
step t−1, rank(u) > k and by rank property no tasks with labels larger than i were scheduled
at time steps 1, 2, ..., t − 1. Thus, we have that at time step t, rank(v) > j − i ≥ 2k2.
Because of the fairness property it takes k steps to remove the task with highest priority(lowest
label), so task u will be returned by the scheduler and subsequently will be processed by the
algorithm no later than at time step t+ k2. Rank of v can decrease by at most 1 after each
step, thus at time step t + k2, rank(v) > 2k2 − k2 ≥ k. Hence, v can be returned by the
scheduler only after time step t+ k2 and this gives us that Pr[Aij] = 0. �

For any label i, let Ri be the number of times scheduler returns task with label greater than
i (some task can be counted multiple times), before task with label i is processed by the
algorithm. The following holds:

Lemma 3.5.2 For any i, Ri ≤ k2.

Proof. Let u be the task with label i. Also, let t be the earliest step at which rank of u is at
most k.

This means that at time step t− 1, rank(u) > k and by rank property no task with label at
least i can be returned by the scheduler at time steps 1, 2, ..., t− 1. Because of the fairness
property it takes k steps to remove the task with highest priority(lowest label), so task u will
be returned by the scheduler and subsequently will be processed by the algorithm no later
than at time step t + k2. Trivially, the total number of times some task with label at least
i(or in fact any label) can be returned by the scheduler before the time step t+ k2 is k2. �

With the above lemmas in place we can proceed to prove an upper bound for the extra number
of steps.

Theorem 3.5.3 The expected number of extra steps is upper bounded by O(poly(k) log n).

Proof. Let Dij be the event that task with label j depends on task with label i < j. From
the properties of incremental algorithms we consider, we get that Pr[Dij] = pij ≤ C/i.

Recall that for i < j, Aij is the event that task with label at least j is returned by relaxed
scheduler before task with label i is processed by the algorithm.

Note that pair of labels (i, j) can be charged only if Dij and Aij. Let Lij be the event that
(i, j) is charged at least once. That is, Lij will happen if and only if Dij and Aij happen. Thus,
if j−i ≥ 2k2, using Lemma 3.5.1 we have that Pr[Lij] ≤ Pr[Aij] = 0. When j−i < 2k2, the
property of incremental algorithms allows us show that, Pr[Lij] ≤ Pr[Dij] ≤ C

i
. Additionally,

it is easy to see that the total number of times (i, j) can be charged is upper bounded by

48

3.6. Lower Bound on Wasted Work

Ri(Recall 3.5.2). By combining the arguments above, we get that:

E[#extrasteps] ≤
n−1∑
i=1

n∑
j=i+1

Pr[Lij]Ri

Lemma 3.5.2
≤

n−1∑
i=1

n∑
j=i+1

Pr[Lij]k2

Lemma 3.5.1
≤

n−1∑
i=1

i+2k2∑
j=i+1

Pr[Lij]k2

≤
n−1∑
i=1

i+2k2∑
j=i+1

Pr[Dij]k2

≤
n−1∑
i=1

i+2k2∑
j=i+1

C

i
k2 ≤

n−1∑
i=1

C

i
2k4 ≤ O(k4 log n). (3.3)

�

3.6 Lower Bound on Wasted Work

In this section, we prove the lower bound on the cost of relaxation in terms of additional work.
We emphasize the fact that this argument does not require the scheduler to be adversarial: in
fact, we will prove that a fairly benign relaxed priority scheduler, the MultiQueue [RSD15],
can cause incremental algorithms to incur Ω(log n) wasted work.

More precisely, let invi,i+1 be event that the relaxed scheduler returns the task with label i+ 1
before task with label i. First, we will prove the following claim for MultiQueue being used
as a relaxed scheduler:

Claim 1 For every i > 1, Pr[invi,i+1] ≥ 1/8.

Proof. First we describe how incremental algorithms work using MultiQueues. The
MultiQueue maintains k sequential priority queues, where k can be assumed to be a fixed
parameter. As before, each task is assigned a label according to the random permutation of
input tasks (lower label means higher priority). Initially, all tasks are inserted in MultiQueue
as follows: for each task, we select one priority queue uniformly at random out, and insert
the task into it. To retrieve a task, the processor selects two priority queues uniformly at
random and returns the task with highest priority (lowest label), among the tasks on the top
of selected priority queues.

Let `(u) = i and `(v) = i+ 1. Additionally, let qu and qv be the queues where u and v are
inserted in initially. Also, let Tu,v be event that u and v are the top tasks of queues at some

49

3. Applications of Relaxed Scheduler

point during the run of our algorithm. We have that:

Pr[invi,i+1] = Pr[qu 6= qv]
Pr[Tu,v]Pr[invi,i+1|Tu,v, qu 6= qv]

+ Pr[¬Tu,v]Pr[invi,i+1|¬Tu,v, qu 6= qv]


≥ (1− 1
k

)Min

Pr[invi,i+1|Tu,v, qu 6= qv],

P r[invi,i+1|¬Tu,v, qu 6= qv]
.

Observe that if ¬Tu,v and qu 6= qv, this means that tasks u and v are never compared against
each other. Consider two runs of our algorithm until it returns either u or v, first with initially
chosen qu and qv and second with qu and qv swapped (these cases have equal probability of
occurring). Since vertices u and v have consecutive labels and are never compared by the
MultiQueue, this means that all the comparison results are the same in both cases, hence the
scheduler has equal probability of returning u or v. (It is worth mentioning here is that Tu,v
only depends on values qu and qv and does not depend on their ordering.)

This means that :
Pr[invi,i+1|¬Tu,v, qu 6= qv] ≥ 1/2.

Now we look at the case where u and v are top tasks of queues at some step t. Let Xu be
event that u is returned by MultiQueue and similarly, let Xv be event that v is returned. We
need to lower bound the probability that Xv happens before Xu . We can safely ignore all
the other tasks returned by scheduler and processed by algorithm since it is independent of
whether u or v is returned first. Let r be the number of top tasks in queues which have labels
larger than i + 1. At step t, Pr[Xu] = 3/k2 + 2r/k2 and Pr[Xv] = 1/k2 + 2r/k2, So we
have that

Pr[Xu] ≤ 3Pr[Xv].
Observe that during the run of algorithm r will start to increase but we will always have
invariant that Pr[Xu] ≤ 3Pr[Xv]. This means that probability that Xv happens before Xu is
at least:

Pr[Xv]
Pr[Xu] + Pr[Xv]

≥ 1/4.
This gives us that:

Pr[invi,i+1|Tu,v, qu 6= qv] ≥ 1/4.
and consequently, since 1− 1/k ≥ 1/2 we get that:

Pr[invi,i+1] ≥ (1− 1/k)/4 ≥ 1/8.
�

Theorem 3.6.1 For Delaunay triangulation and comparison sorting, the expected number of
extra steps is lower bounded by Ω(log n).

Proof. To establish the lower bound, we can assume that if the scheduler returns vertex v,
which depends on some other unprocessed vertex, we check if vertex u with label `(v)− 1 is
not processed and we charge edge e = (u, v), if v depends on u. This way, we get that pi,i+1
and Pr[invi,i+1] are not correlated, since if we run algorithm to the point where vertex with
label i or i+ 1 is returned, it will never check the dependency between them.

50

3.7. Related Work

We will employ the following property of Delaunay triangulation and BST -based comparison
sorting: for any i > 0, pi,i+1 ≥ 1/i. This property is easy to verify: in Delaunay triangulation
there is at least 1/i probability that vertices with labels i and i + 1 are neighbours in the
Delaunay triangulation of vertices with labels 1, 2, ..., i, i+1, in BST based comparison sorting
there is at least 1/i probability that tasks with labels i and i+ 1 have consecutive keys among
keys of tasks with labels 1, 2, ..., i, i+ 1 and in both cases the task with label i+ 1 will depend
on the task with label i (see [BGSS16]).

This, in combination with Claim 1 will give us the lower bound on the number of extra steps,
since if task with label i + 1 depends on the task with label i and it is returned first by
scheduler, this will trigger at least one extra step, caused by not being able to process task:

E[#extrasteps] ≥
n−1∑
i=1

pi,i+1Pr[invi,i+1] ≥ 1/8 log n.

�

3.7 Related Work
Parallel scheduling of iterative algorithms is a vast area, so a complete survey is beyond
our scope. We begin by noting that our results are not relevant to standard work-stealing
schedulers [BL99, BJK+96] since such schedulers do not provide any guarantees in terms of
the rank of elements removed. We are aware of only one previous attempt to add priorities
to work-stealing schedulers [IS15], using a multi-level global queue of tasks, partitioned by
priority. This technique is different, and provides no work guarantees.

An early instance a relaxed scheduler is in the work of Karp and Zhang [KZ93], for parallelizing
backtracking in the PRAM model. This area has recently become very active, and several
relaxed scheduler designs have been proposed, trading off relaxation and scalability, e.g. [SL00,
BFK+11, WGTT15, AKLS15, HLH+13, NLP13, RSD15, AKLN17, SW17]. In particular,
software packages for graph processing [NLP13] and machine learning [GLG+12] implement
such relaxed schedulers.

Our work is related to the line of research by Blelloch et al. [Ble17, BFS12, BFGS12, SGB+14,
BGSS16], as well as [CRT87, CF90, FN18], which examines the dependency structure of a
broad set of iterative/incremental algorithms and exploit their inherent parallelism for fast
implementations. We benefit significantly from the analytic techniques introduced in this work.

We note however some important differences between these results and our work. The first
difference concerns the scheduling model: references such as [BFS12, SGB+14, BGSS16]
assume a synchronous PRAM execution model, and focus on analyzing the maximum depen-
dency length of algorithms under random task ordering, validating the results via concurrent
implementations. By contrast, we employ a relaxed scheduling model, that models data
processing systems based on relaxed priority schedulers, such as [NLP13], and provide work
bounds for such executions. Although superficially similar, our analysis techniques are different
from those of e.g. [BFS12, BGSS16] since our focus is not on the maximum dependency depth
of the algorithms, but rather on the number of local dependencies which may be exploited
by the adversarial scheduler to cause wasted work. We emphasize that the fact that the
algorithms we consider may have low dependency depth does not necessarily help, since a
sequential algorithm could have low dependency depth and be inefficiently executable by a
relaxed scheduler: a standard example is when the dependency depth is low (logarithmic), but

51

3. Applications of Relaxed Scheduler

each “level" in a breadth-first traversal of the dependency graph has high fanout. This has
low depth, but would lead to high speculative overheads. (In practice, greedy graph coloring
on a dense graph would lead to such an example.)
A second difference concerns the interaction between the scheduler and the algorithm. The
scheduling mechanisms proposed in e.g. [BFS12] assume knowledge about the algorithm
structure, and in particular adapt the length of the prefix of tasks which can be scheduled at
any given time to the structure of the algorithm. In contrast, we assume a basic scheduling
model, which may even be adversarial (up to constraints), and show that such schedulers,
which relax priority order for increased scalability, inherently provide bounded overheads in
terms of wasted work due to relaxation.
Finally, we note that references such as [BFS12, BGSS16] focus on algorithms which are
efficient under random orderings of the tasks. In the case of SSSP, we show that relaxed
schedulers can efficiently execute algorithms which have a fixed optimal ordering.
Another related reference is [ABKN18], in which we introduced the scheduling model used in
this paper, related it to MultiQueue schedulers [RSD15], and analyzed the work complexity
of some simple iterative greedy algorithms such as maximal independent set or greedy graph
coloring. We note the technique introduced in this paper only covered a relatively limited set
of iterative algorithms, where the set of tasks are defined and fixed in advance, and focused
on the complexity of greedy maximal independent set (MIS) under relaxed scheduling. In
contrast, here we consider more complex incremental algorithms, in which tasks can be added
and modified dynamically. Moreover, as stated, here we also cover algorithms such as SSSP,
in which computation should follow a fixed sequential task ordering, as opposed to a random
ordering which was the case for greedy MIS.

52

CHAPTER 4
Elastic Consistency: A Practical
Semantics Model for Distributed

Stochastic Gradient Descent

4.1 Introduction
Machine learning models can match or surpass humans on specialized tasks such as image
classification [KSH12, HZRS16], speech recognition [SFJY14], or complex games [SHM+16].
One key tool behind this progress is the stochastic gradient descent (SGD) family of meth-
ods [RM51], which are by and large the method of choice for training large-scale machine
learning models. Essentially, SGD can serve to minimize a d-dimensional function f : Rd → R,
assumed to be differentiable. We commonly assume that we are given access to (possibly
noisy) gradients of this function, denoted by G̃. Sequential SGD will start at a randomly
chosen point ~x0, say 0d, and converge towards a minimum of the function by iterating the
following procedure:

~xt+1 = ~xt − ηG̃(~xt) (4.1)
where ~xt is the current estimate of the optimum, also called the parameter and η is the
learning rate. If the function is convex, this procedure is known to converge to the minimum
of the function [B+15], whereas in the non-convex case, it will converge towards a point of
zero gradient [GL13]. In supervised learning, f is usually the total error of a given parameter ~x
on a given dataset D. For each sample s in D, the classification error is encoded via the loss
`(s, ~x). Training minimizes the function f(~x) = 1

m

∑
s∈D `(s, ~x), where m is the size of the

dataset, and the gradient at a randomly chosen datapoint G̃ is an unbiased estimator of ∇f .

Due to the size of datasets, it is common to distribute the optimization process across multiple
processors. A standard way of parallelizing SGD is to process a batch of samples in parallel,
dividing the computation of gradient updates among processors. Assume for simplicity that
each processor is allotted one sample, whose corresponding gradient it computes with respect
to the current parameter ~xt. Processors then sum their stochastic gradients, and update their
local parameters by the resulting sum, leading to the following global iteration:

~xt+1 = ~xt −
η

n

n∑
i=1

G̃i(~xt), (4.2)

53

4. Elastic Consistency: A Practical Semantics Model for Distributed
Stochastic Gradient Descent

where G̃i is the stochastic gradient obtained at the processor i at the given step, and n is the
batch size, equal to the number of processors. Since this sum is the same at every processor,
this procedure yields the same, perfectly consistent, parameter at each processor at the end of
every parallel iteration. The average (1/n)∑n

i=1 G̃
i(~xt) is still a stochastic gradient, but with

lower variance than gradients at single samples, which can lead to better convergence [B+15].
Since samples are now processed in parallel, the number of samples processed per second
should in theory be multiplied by n.
However, in practice, maintaining perfect consistency of the parameter ~xt can negate the
benefits of parallelization. Keeping the parameters perfectly consistent has a communication
cost: since the size of gradient updates is linear in the size of the parameter, the resulting
communication may easily become a system bottleneck for models with millions of parame-
ters [KSH12, AGL+17]. Consistency also induces a synchronization cost, since processors need
to synchronize in a barrier-like fashion upon each iteration update, which can occur every few
milliseconds. For this reason, there have been several proposals for relaxing the consistency
requirements of SGD-like iterations, under various system constraints. These proposals can be
broadly categorized as follows:

• Asynchronous Methods: Such implementations [RRWN11, LHLL15] allow processors
to forgo the barrier-like synchronization step performed at each iteration, or even across
parameter components, and move forward with computation without waiting for potentially
slow straggler processors.

• Communication Compression: These methods aim to reduce the bandwidth cost of
exchanging the gradients. This usually entails performing (possibly lossy) compression of
the gradients before transmission, followed by efficient encoding and reduction/summation,
and decoding on the receiver end. This can be either via bit-width reduction (quantization),
e.g. [SFJY14, AGL+17], or via structured sparsification of the updates [LHM+18, AH17,
AHJ+18, KRSJ19].

Additional approaches exist, for instance to reduce the frequency of communication via
large-batch methods or local steps, e.g. [GDG+17, LSPJ18, Sti19]. Another axis controls
parameter maintenance: centralized methods such as the parameter server [Li14] maintain
the parameter at a single entity, whereas decentralized methods [LZZ+17, LDS21] have each
processor maintain their own version of the model.
The question of providing convergence bounds for distributed optimization goes back to
the foundational work of Bertsekas and Tsitsiklis [BT89], and has recently risen to promi-
nence [DCM+12, HCC+13, CSAK14, RRWN11, HCC+13, SZOR15, LHLL15, CDR15, LPLJ16].
However, many of these proofs are often specialized to the algorithm and models, and do not
generalize to different settings. It is therefore natural to ask: are there generic conditions
covering all natural consistency relaxations for SGD, under which one can prove convergence?
Contribution. In this chapter, we introduce a convergence criterion for SGD-based opti-
mization called elastic consistency, which is independent of the system model, but can be
specialized to cover various model consistency relaxations.
In a nutshell, elastic consistency says that, for SGD to converge, it is sufficient that the
distance between the view of the parameter perceived by a processor, with respect to which
the gradient is taken, and the “true” view of the system, corresponding to all the updates
to the parameter generated up to that point by all processors, be uniformly bounded across
iterations, and decreasing proportionally to the learning rate. Intuitively, in this case, the
perturbed iterates do not stray “too far” from eachother, and can still globally converge.

54

4.2. Elastic Consistency

To our knowledge, elastic consistency is satisfied in most settings where asynchronous or
communication-reduced methods have been analyzed so far, although proving this property
for some systems is not always immediate.
Elastic consistency provides a unified analysis framework for all the method types discussed
above. Consequently, we are able to re-prove or improve convergence bounds for several
methods, and to tackle new models and consistency relaxations. Our contributions are as
follows:

1. Under standard smoothness assumptions on the loss, elastic consistency is sufficient to
guarantee convergence rates for inconsistent SGD iterations for both convex and non-convex
objectives. This condition is also necessary for SGD convergence: we provide simple worst-
case instances where SGD convergence is linear in the elastic consistency parameter, showing
that the iterations will diverge if elastic consistency is regularly broken.

2. We show that elastic consistency is satisfied by both asynchronous message-passing
and shared-memory models, centralized or decentralized, with or without faults, and by
communication-reduced methods. This implies new convergence bounds for SGD in the
classic asynchronous and semi-synchronous message-passing models [AW04] and extends
previous analyses for the shared-memory model [SZOR15, ADSK18].

4.2 Elastic Consistency
Distributed Model and Adversarial Scheduling. We consider distributed systems con-
sisting of n processors: {1, 2, . . . , n}, some of which may be faulty, where communication
happens either by message-passing, or via shared-memory. For simplicity, we will specify the
system and fault models in the corresponding sections. We assume that the scheduling of steps
(e.g. reads/writes in shared-memory, or message delivery in message-passing) is controlled by
an oblivious adversarial entity. This means that scheduling decisions may be adversarial, but
are independent of the randomness in the algorithm, and in particular of the data sampling.
Practically, this implies that the conditioning on any random event involving previous SGD
iterations s < t does not impact choices made at iteration t.
Distributed Optimization. We assume that each of the n processors is given access to
random samples coming from an unknown d-dimensional data distribution D, and collaborates
to jointly minimize f : X → R over the distribution D, where Rd is a compact subset of
Rd. In practice, nodes optimize over a finite set of samples S = {S1, S2, . . . , Sm}, and the
function f is defined as

f(~x) = 1
m

m∑
i=1

`(Si, ~x) (4.3)

where ` is the loss function at a sample s. The goal is to find ~x∗ ∈ Rd, which minimizes the
expected loss over samples, defined as: ~x∗ = argmin~xf(~x) = argmin~x Es∼D[`(s, ~x)].

Properties of Stochastic Gradients. Let G̃ be a stochastic gradient. We make the following
standard assumptions [SZOR15]:

1. Unbiasedness. The i.i.d. stochastic gradients are unbiased estimators of the true gradient
of the function f :

∀~x ∈ Rd, E
[
G̃(~x)

]
= ∇f(~x). (4.4)

55

4. Elastic Consistency: A Practical Semantics Model for Distributed
Stochastic Gradient Descent

2. Bounded Variance. The stochastic gradients have bounded variance:
∀~x ∈ Rd, E

[
‖G̃ (~x)−∇f(~x)‖2

]
≤ σ2. (4.5)

3. Bounded Second Moment. It is sometimes assumed that the second moment of the
stochastic gradients over the sample space is bounded:

∀~x ∈ Rd, E
[
‖G̃ (~x) ‖2

]
≤M2. (4.6)

Elastic consistency does not require the second moment bound to ensure convergence—the
variance bound is sufficient. However, in e.g. asynchronous shared-memory [SZOR15],
this stronger assumption is common, and we will use it to bound the elastic consistency
constant.

Properties of the Objective Function. We will make use of the following standard
definitions regarding the objective function f : ∀ ~x, ~y ∈ Rd,

1. Smoothness. The function f : Rd → R is smooth iff:
‖∇f (~x)−∇f (~y) ‖ ≤ L‖~x− ~y‖ for L > 0. (4.7)

2. Strong convexity. Problems such as linear regression have a strongly convex objective:
(~x− ~y)T (∇f(~x)−∇f(~y)) ≥ c ‖x− y‖2 for c > 0. (4.8)

For such functions, the bound over second moment of stochastic gradients does not hold
∀ ~x ∈ Rd [NNvD+18]. Therefore, we restrict f : X → R for a convex set X ⊂ Rd, such
that ∀x ∈ X , (4.6) is satisfied. For simplicity, we omit the projection step onto X , in the
case when ~xt does not belong to X for some iteration t.

3. Lower bound for non-strongly-convex functions. In many settings, such as training
of neural networks, the objective function is not necessarily strongly-convex. In such
“non-strongly-convex” settings, it is necessary to assume that f is bounded from below:

∃f ∗ finite s.t. ∀ ~x ∈ Rd, f(~x) ≥ f ∗. (4.9)

4.2.1 Elastic Consistency Definition
An Abstract Consistency Model. We assume that we have n processors, which share a
parameter oracle O. In each iteration t + 1 (alternatively, at step t + 1), each processor i
invokes this oracle, and receives a local view at of the parameter at step t (after t iterations),
which we denote ~vit. The processor then uses this view of the parameter to generate a new
update (stochastic gradient) G̃(~vit), which it applies to the shared model.

The key question is how to express the consistency of the local views across processors. For
this, we introduce an auxiliary variable ~xt, which we call the global parameter. Initially we
have that ~x0 = ~v1

0 = ... = ~vn0 .

We consider two cases, depending on how data-parallel SGD is implemented. The first is the
single steps case, where the gradient generated locally by each processor is directly applied to
the model. This is done in asynchronous shared-memory [SZOR15] or some message-passing
implementations [LHLL15], and is modelled as:

~xt+1 = ~xt − ηG̃(~vit). (4.10)

The second is the parallel steps case, where processors’ gradients are aggregated before they
are applied to the shared model, for instance via averaging. This is common in synchronous

56

4.3. Elastic Consistency and SGD Convergence

message-passing settings, e.g. [Li14]. Formally, we are given a set It ⊆ {1, 2..., n}, of gradients
to be averaged, such that n

2 ≤ |It| ≤ n. Each processor i ∈ It calculates a stochastic gradient
based on its local view at step t, and the global model is updated by aggregating all the
gradients in It:

~xt+1 = ~xt −
η

n

∑
i∈It

G̃(~vit). (4.11)

Then, elastic consistency says the following:

Definition 4.2.1 (Elastic Consistency) A distributed system provides elastic consistency
for the SGD iteration defined in (4.10) or (4.11), if there exists a constant B > 0, which, for
every step t, bounds the expected norm difference between the true parameter ~xit , and the
view ~vit returned by the oracle at processor i at step t. Importantly, B should be independent
of the iteration count t, but possibly dependent on the system definition. Formally,

E
[
‖~xt − ~vit‖2

]
≤ η2B2, (4.12)

where B > 0, η is the learning rate, and the expectation is taken over the randomness in the
algorithm. We call B the elastic consistency constant.

Discussion. First, please note that, in the above, time t counts each time step at which
a stochastic gradient is generated at a node, in sequential order. Intuitively, in the single
steps case, the auxiliary parameter ~xt is defined as the sum of generated gradients up to and
excluding step t, multiplied by the corresponding learning rate. In the analysis, we need to
define ~xt precisely for each application; please see Table 4.1 for example bounds, which we
will prove in Section 4.4.
Generally, the process for deriving the elastic consistency bound B for a given system is as
follows. We assume a fixed, constant LR sequence, which ensures convergence w.r.t. the
sequential iteration (1). We then examine the distributed system specification to bound
‖~xt − ~vt‖2. (Please see Section 4.6 for step-by-step examples.) Crucially, for all the systems
and consistency relaxations we analyze, this bound separates cleanly into the LR part (η2),
and a constant part (B2) which is independent of time or LR. This holds for all t. Finally, the
learning rate sequence used by the algorithm may need to be adjusted (e.g. normalized) to
satisfy certain convergence constraints.
In Section 4.4, we show that virtually all known models and consistency relaxations satisfy
this condition (see Table 4.1). Elastic consistency gives wide latitude to the parameter oracle
about which exact values to return to the processor: the returned view can contain random or
even adversarial noise, or updates may be delayed or missing, as long as their relative weight
is bounded and independent of time.

4.3 Elastic Consistency and SGD Convergence
We now show that this notion of consistency implies non-trivial convergence guarantees for
SGD for different types of objective functions, and that this notion is in some sense necessary
for convergence.

4.3.1 Elastic Consistency is Sufficient for Convergence
The Non-Convex Case. We begin with the more general case where the objective function is
not necessarily convex. In this case, since convergence to a global minimum is not guaranteed

57

4. Elastic Consistency: A Practical Semantics Model for Distributed
Stochastic Gradient Descent

for SGD, we will only require convergence to a point of vanishing gradients, as is standard,
e.g. [WWLZ18]. Specifically, assuming elastic consistency, we prove the following theorems:

Theorem 4.3.1 Consider SGD iterations defined in (4.10) and satisfying elastic consistency
bound (4.12). For a smooth non-convex objective function f , whose minimum x∗ we are trying
to find and the constant learning rate η = 1√

T
, where T ≥ 64L2 is the number of iterations:

min
t∈[T−1]

E‖∇f(~xt)‖2 ≤ 8(f(~x0)− f(x∗))√
T

+ 4B2L2

T

+8Lσ2
√
T

+ 16L3B2

T
√
T

.

This result can be specialized to parallel iterations (4.11), yielding the following theorem,
which ensures √n parallel speedup in the number of nodes n:

Theorem 4.3.2 Consider SGD iterations defined in (4.11) and satisfying elastic consistency
bound (4.12). For a smooth non-convex objective function f , whose minimum x∗ we are
trying to find and the constant learning rate η =

√
n√
T
, where T ≥ 64L2n is the number of

iterations:

min
t∈[T−1]

E‖∇f(~xt)‖2 ≤ 8(f(~x0)− f(x∗))√
Tn

+ 4B2L2n

T
+ 8Lσ2
√
Tn

+ 16L3B2n
√
n

T
√
T

.

The Strongly Convex Case. We can provide improved guarantees under strong convexity:

Theorem 4.3.3 Consider SGD iterations defined in (4.10) and satisfying elastic consistency
bound (4.12). For a smooth, strongly convex function f , whose minimum x∗ we are trying to
find and the constant learning rate η = 2 log T

cT
, where T ≥ 256L2

c2 is a number of iterations:

E ‖~xT − x∗‖2 ≤ ‖~x0 − x∗‖2

T
+ 16 log2 TL2B2

c4T 2 +

12σ2 log T
T

+ 48 log3 TB2L2

c4T 3 .

This convex result also directly generalizes to the parallel case (4.11), where we obtain linear
speed-up in n:

Theorem 4.3.4 Consider SGD iterations defined in (4.11) and satisfying elastic consistency
bound (4.12). For a smooth, strongly convex function f , whose minimum x∗ we are trying
to find and the constant learning rate η = 2(log T+logn)

cT
, where T ≥ 256L2p

c2 is a number of
iterations:

E ‖~xT − x∗‖2 ≤ ‖~x0 − x∗‖2

Tn
+ 16(log T + log n)2L2B2

c4T 2 + 12σ2(log T + log n)
Tn

+ 48(log T + log n)3B2L2

c4T 3 .

58

4.4. Distributed System Models and their Elastic Consistency Bounds

Discussion. The parameter B abstracts the distributed-system specific parameters to provide
a clean derivation of the convergence theory. In turn, depending on the system setting, B
might depend on the second-moment bound M2 or variance bound σ2, but also on system
parameters such as the maximum delay τ , on the number of failures f , or on the characteristics
of the compression scheme. Specifically, assuming that the parameters are constant, the
convergence of the non-convex objectives is at a rate of O(1/

√
T) for SGD iterations defined

in (4.10) and O(1/
√
Tn) for SGD iterations defined in (4.11). For a strongly-convex objective,

we achieve rates of Õ(1/T) and Õ(1/(Tn))) for SGD iterations defined in (4.10) and (4.11)
correspondingly (Here, Õ notation hides log T and log n factors).

4.3.2 Elastic Consistency is Necessary for Convergence
We can also show that elastic consistency can be directly linked to convergence; in particular,
in the worst case, an adversarial parameter oracle can slow down convergence linearly in B2.
The intuition is that once the algorithm is close to the minimum, an adversarial oracle can
force it to evaluate gradient at point which is B away and this will cause the algorithm to
overshoot the minimum. The argument is similar to that of [ADSK18].

Lemma 4.3.5 (Convergence Lower Bound) There exists a convex (quadratic) function
f and an adversarial oracle O s.t. the algorithm with elastic consistency bound converges B
times slower than the exact algorithm (B=0).

4.4 Distributed System Models and their Elastic
Consistency Bounds

4.4.1 Fault-Tolerant Message-Passing Systems
We consider a message-passing (MP) system of n nodes P = {1, 2, . . . , n} executing SGD
iterations, which are connected to each other by point-to-point links. To simplify the description,
we will focus on the case where the system is decentralized : in this case, each node i acts
both as a worker (generating gradients) and as a parameter server (PS) (maintaining a local
parameter copy). (The only difference is that, in the centralized PS case, a single designated
node would maintain a global parameter copy.) Without loss of generality, all nodes start
with the same parameter ~vi0 = ~0. The system proceeds in global iterations, indexed by t. In
each iteration, workers generate a stochastic gradient based on its current model copy ~vit, and
broadcasts it to all other nodes.
Consistency Relaxations: Consider node i, and recall that it acts as a parameter server, in
addition to being a worker itself. Let Lit ⊆ {1, . . . , n} denote the set of nodes from which
i receives stochastic gradients at iteration t. By convention, i ∈ Lit. In the synchronous
failure-free case, all nodes would receive exactly the same set of messages, and the execution
would be equivalent to a sequential batch-SGD execution. In a real system, not all nodes may
have the same view of each round, due to failures or asynchrony. Specifically, we consider the
following distinct consistency relaxations:

(a) Crash faults. A node i ∈ P may crash during computation or while sending messages.
In this case, the node will remain inactive for the rest of the execution. Importantly,
node i’s crash during broadcasting may cause other nodes to have different views at the

59

4. Elastic Consistency: A Practical Semantics Model for Distributed
Stochastic Gradient Descent

iteration, as some of them may receive i’s message while others may not, resulting in
inconsistent updates of parameter ~x across the nodes. We will assume that f ≤ n/2
nodes may crash in the message-passing system.

(b) Message-omission failures. In practical systems, each node could implement iteration
t by waiting until an interval Υt

max in terms of clock time has elapsed: if the message
from peer j is not received in time, node i moves on, updating its local parameter ~xit
only w.r.t. received messages. However, node i will include j’s message into its view if
received in a later iteration, although some messages may be permanently delayed. We
assume a parameter f which upper bounds the number of messages omitted at any point
during the execution. We note that this model is stronger than the Crash-fault model
considered above, as we can simulate a node’s failure by discarding all its messages after
the crash.

(c) Asynchrony. The two above models assume that nodes proceed synchronously, in
lock-step, although they may have inconsistent views due to node or message failures.
An alternative relaxation [LHLL15] is if nodes proceed asynchronously, i.e. may be in
different iterations at the same point in time. Specifically, in this case, we assume that
there exists a maximum delay τmax such that each message/gradient can be delayed by
at most τmax iterations from the iteration when it was generated.

(d) Communication-Compression. Another way of reducing the distribution cost of SGD
has been to compress the stochastic gradients communicated at each round. In this
context, sparsification with memory [Str15, SFJY14, AH17, AHJ+18, KRSJ19] has proven
to be particularly effective. This process can be modelled as follows. We assume that
each node maintains a local version of the parameter ~vit, and an error/memory vector
~εit, initially ~0. In each iteration, each node computes a new gradient G̃ (~vit) based on
its local parameter. It then adds the current error vector ~εit to the gradient, to obtain
its full proposed update ~∇i

t. However, before transmitting this update, it compresses
it by using a (lossy) compression function Q. The compressed update Q(~∇i

t) is then
transmitted, and the error vector is updated to ~εit+1 ← ~∇i

t −Q(~∇i
t). Our analysis will

only require that Q satisfies ‖Q(~∇) − ~∇‖2 ≤ γ‖~∇‖2, ∀~∇ ∈ Rd, for some 1 > γ ≥ 0.
All memory-based techniques satisfy this, for various definitions of Q and γ. (We provide
examples in Section 4.6.6.)

We note that the above discussion considered these methods independently. However, we do
note that our method does allow for these relaxations to be combined—for instance, one can
analyze an asynchronous, fault-tolerant method with communication compression.

4.4.2 Asynchronous Shared-Memory Systems
We consider a system with n processors (or threads) P = {1, 2, . . . , n}, which can communicate
through shared memory. Specifically, we assume that the parameter vector ~w ∈ Rd is shared by
the processors, and is split into d components, one per dimension. Processors can atomically
read a component via a read operation, and update it via the atomic fetch&add (faa)
operation, which reads the current value of the component and updates it in place, in a single
atomic step. In each iteration t, each processor first obtains a local view ~vit of the parameter
by scanning through the shared parameter ~w component-wise. It then generates a stochastic

60

4.4. Distributed System Models and their Elastic Consistency Bounds

gradient G̃ (~vit) based on this view, and proceeds to update ~x via faa on each component, in
order. (We refer the reader to Section 4.6.5 for a full description, including pseudocode.)

Consistency Relaxation. Ideally, threads would proceed in lock step, first obtaining perfect,
identical snapshots of ~w, calculating gradients in terms of this identical parameter, and
then summing the gradients before proceeding to the next iteration. However, in practice,
threads are asynchronous, and proceed at arbitrary speeds. This causes their snapshots to
be inconsistent, as they might contain some partial concurrent updates, but not others. The
challenge is to prove SGD convergence in this case. It is common [RRWN11, SZOR15] to
assume a bound τmax on the maximum delay between the time (iteration) when an individual
update was generated, and the iteration when it has been applied, and becomes visible to all
processors. In this case, the auxiliary variable ~xt used by elastic consistency will correspond to
the sum of first t stochastic gradients, ordered by the time when the atomic faa over the
first index of ~w was performed.

4.4.3 Elastic Consistency Bounds for Specific Systems
Given these definitions, we can now state the elastic consistency bounds for the different types
of distributed systems and consistency relaxations. Please see Table 4.1, and the Appendix for
detailed derivations.

System Consistency Relaxation Bound B Novelty
Shared-Memory τmax-Bounded Asynchrony

√
dτmaxM Extends [SZOR15, ADSK18]

Message-Passing τmax-Bounded Asynchrony (n−1)τmaxM
n Reproves [LHLL15]

Message-Passing τmax-Bounded Asynchrony O((n−1)τmaxσ
n) New

Message-Passing Distributed Communication-Compression
with Error Feedback

√
(2−γ)γ
(1−γ)3 M Improves [AHJ+18, SCJ18,

KRSJ19]
Message-Passing Synchronous, f Crash or Message-drop

Faults
Mf/n New

Message-Passing Synchronous, f Crash or Message-drop
Faults

O(σf/n) New

Table 4.1: Summary of elastic consistency bounds.

Implications. Plugging the asynchronous shared-memory bound into Theorems 4.3.1 and 4.3.3
implies convergence bounds in the smooth non-convex case, extending [SZOR15, ADSK18],
which focus on the convex case, whereas the asynchronous message-passing bound implies
similar bounds to the best known in the non-convex case for this model [LHLL15]. For
synchronous message-passing with communication-compression, our framework implies the
first general bounds for the parallel, multi-node case: references [SCJ18, KRSJ19] derive tight
rates for such methods, but in the sequential case, where there is a single node which applies
the compressed gradient onto its model, whereas [AHJ+18] considers the multi-node case, but
requires an additional analytic assumption. Please see Section 4.7 for additional discussion on
related work. In the crash-prone case, elastic consistency implies new convergence bounds
for crash or message-omission faults. Note that, although the elastic bound is the same for
both f crash and message-omissions (Mf/n), the derivations in the Appendix are slightly
different. The framework also allows us to combine consistency relaxations, i.e. consider
communication-compression with crashes.

61

4. Elastic Consistency: A Practical Semantics Model for Distributed
Stochastic Gradient Descent

One relative weakness of the above results is that the bounds depend on the gradient second-
moment bound. This is not due to elastic consistency itself, but due to the fact that we needed
a bound on M to bound the elastic consistency constant for these systems, which is consistent
with previous work, e.g. [SZOR15, ADSK18, LHLL15]. Next, we show that this limitation,
which is common in the literature, can be removed by slightly altering the algorithms.

4.5 Detailed Convergence Analysis

4.5.1 Complete Proof of Convergence in the Non-Convex Case
In order to unify analysis for iterations (4.10) and (4.11) and we consider the following
iterations:

~xt+1 = ~xt −
η

k

∑
i∈It

G̃(~vit). (4.13)

where we require that ‖It‖
k
≥ 1

2 . (4.10) is (4.13) with k = 1 and It = {i}, and (4.11) is (4.13)
with k = n. Note that since in (4.11) |It| ≥ n

2 , the requirement for (4.13) is satisfied.

Lemma 4.5.1 Consider SGD iterations defined in (4.13) and satisfying elastic consistency
bound (4.12). For a smooth non-convex objective function f and the constant learning rate
η ≤ 1

8L . We have that:

E[f(~xt+1)] ≤ E[f(~xt)]−
η

8 E ‖∇f(~xt)‖2 + η3B2L2

2 + Lη2σ2

k
+ 2L3η4B2. (4.14)

Proof. We condition on ~xt and {~vit|i ∈ It} and calculate expectation with respect to the
randomness of stochastic gradient(We call this Es). By descent lemma we get that :

Es[f(~xt+1)] ≤ f(~xt)−
∑
i∈It

η

k
Es〈G̃(~vit),∇f(~xt)〉+ L2η2

2k2 Es ‖
∑
i∈It

G̃(~vit)‖2

(4.4)= f(~xt)−
η|It|
k
‖∇f(~xt)‖2 + η

k

∑
i∈It
〈∇f(~xt)−∇f(~vit),∇f(~xt)〉

+ Lη2

2k2 Es

∥∥∥∥∥∥
∑
i∈It

(
G̃(vit)−∇f(~vit) +∇f(~vit)−∇f(~xt) +∇f(~xt)

)∥∥∥∥∥∥
2

Cauchy−Schwarz
≤ f(~xt)−

η|It|
k
‖∇f(~xt)‖2 + η

k

∑
i∈It
〈∇f(~xt)−∇f(~vit),∇f(~xt)〉

+ Lη2

k2 Es

∥∥∥∥∥∥
∑
i∈It

(
G̃(vit)−∇f(~vit)

)∥∥∥∥∥∥
2

+ Lη2

k2 Es

∥∥∥∥∥∥
∑
i∈It

(
∇f(~vit)−∇f(~xt) +∇f(~xt)

)∥∥∥∥∥∥
2

Observe that Es

∥∥∥∥∥∥∑i∈It

(
G̃(vit) − ∇f(~vit)

)∥∥∥∥∥∥
2

is the same as a variance of random variable∑
i∈It G̃(vit). Recall that we are conditioning on ~xt and {~vit|i ∈ It}, hence G̃(vit) are independent

random variables (because agents in It compute stochastic gradients independently). This

62

4.5. Detailed Convergence Analysis

means that because of the variance bound (4.5):

Es

∥∥∥∥∥∥
∑
i∈It

(
G̃(vit)−∇f(~vit)

)∥∥∥∥∥∥
2

≤ |It|σ2.

By combining the two inequalities above we get:

Es[f(~xt+1)]
Cauchy−Schwarz

≤ f(~xt)−
η|It|
k
‖∇f(~xt)‖2 + η

k

∑
i∈It
〈∇f(~xt)−∇f(~vit),∇f(~xt)〉

+ 2Lη2|It|
k2

∑
i∈It

(
‖∇f(~vit)−∇f(~xt)‖2 + ‖∇f(~xt)‖2

)
+ Lη2|It|σ2

k2

Y oung

≤ f(~xt)−
η|It|
k
‖∇f(~xt)‖2 +

∑
i∈It

η

2k‖∇f(~xt)−∇f(~vit)‖2 + η|It|
2k ‖∇f(~xt)‖2

+ 2Lη2|It|
k2

∑
i∈It

(
‖∇f(~vit)−∇f(~xt)‖2 + ‖∇f(~xt)‖2

)
+ Lη2|It|σ2

k2

(4.7)
≤ f(~xt)−

η|It|
2k ‖∇f(~xt)‖2 + ηL2

2k
∑
i∈It
‖~xt − ~vit‖2

+ 2Lη2|It|
k2

∑
i∈It

(
L‖~vit − ~xt)‖2 + ‖∇f(~xt)‖2

)
+ Lη2|It|σ2

k2 .

Next, we use elastic consistency bound in the above inequality:
E[f(~xt+1)] = E[E[f(~xt+1)|~xt, {~vit|i ∈ It}]]

≤ E[f(~xt)]−
η|It|
2k E ‖∇f(~xt)‖2 + ηL2

2k
∑
i∈It

E ‖~xt − ~vit‖2

+ 2Lη2|It|
k2

∑
i∈It

(
‖∇f(~vit)−∇f(~xt)‖2 + ‖∇f(~xt)‖2

)
+ Lη2|It|σ2

k2

≤ E[f(~xt)]−
η|It|
2k E ‖∇f(~xt)‖2 + η3B2L2|It|

2k + Lη2σ2|It|
k2 + 2L3η4B2|It|2

k2

+ 2Lη2 E ‖∇f(~xt)‖2|It|2

k2 .

To finish the proof recall that k/2 ≤ |It| ≤ k and η ≤ 1
8L , which if used in the inequality

above gives us:

E[f(~xt+1)] ≤ E[f(~xt)]−
η|It|
2k E ‖∇f(~xt)‖2 + η3B2L2

2 + Lη2σ2

k
+ 2L3η4B2

+ η E ‖∇f(~xt)‖2|It|
4k

≤ E[f(~xt)]−
η|It|
4k E ‖∇f(~xt)‖2 + η3B2L2

2 + Lη2σ2

k
+ 2L3η4B2

≤ E[f(~xt)]−
η

8 E ‖∇f(~xt)‖2 + η3B2L2

2 + Lη2σ2

k
+ 2L3η4B2.

�

Theorem 4.5.2 Consider SGD iterations defined in (4.13) and satisfying elastic consistency
bound (4.12). For a smooth non-convex objective function f , whose minimum x∗ we are
trying to find and the constant learning rate η =

√
k√
T
, where T ≥ 64L2k is the number of

iterations:

63

4. Elastic Consistency: A Practical Semantics Model for Distributed
Stochastic Gradient Descent

min
t∈[T−1]

E‖∇f(~xt)‖2 ≤ 8(f(~x0)− f(x∗))√
Tk

+ 4B2L2k

T
+ 8Lσ2
√
Tk

+ 16L3B2k
√
k

T
√
T

.

Proof. Observe that since η =
√
k/
√
T ≤ 1/8L, by Lemma 4.5.1 we have that :

E[f(~xt+1)] ≤ E[f(~xt)]−
η

8 E ‖∇f(~xt)‖2 + η3B2L2

2 + Lη2σ2

k
+ 2L3η4B2.

By summing the above inequality for t = 0, 1, .., T − 1 we get that:
T−1∑
t=0

E[f(~xt+1)] ≤
T−1∑
t=0

(
E[f(~xt)]−

η

8 E ‖∇f(~xt)‖2 + η3B2L2

2 + Lη2σ2

k
+ 2L3η4B2

)
.

Which can be rewritten as:
T−1∑
t=0

η

8 E ‖∇f(~xt)‖2 ≤ f(~x0)− E[f(~xT)] + η3B2L2T

2 + Lη2σ2T

k
+ 2L3η4B2T.

Next, we divide by ηT
8 and use the fact that E[f(~xT)] ≥ f(x∗):

T−1∑
t=0

1
T
E ‖∇f(~xt)‖2 ≤ 8(f(~x0)− f(x∗))

ηT
+ 4η2B2L2 + 8Lησ2

k
+ 16L3η3B2.

By plugging in the value of η we get:

min
t∈[T−1]

E‖∇f(~xt)‖2 ≤
T−1∑
t=0

1
T
E ‖∇f(~xt)‖2 ≤ 8(f(~x0)− f(x∗))

ηT
+ 4η2B2L2 + 8Lησ2

k
+ 16L3η3B2

≤ 8(f(~x0)− f(x∗))√
Tk

+ 4B2L2k

T
+ 8Lσ2
√
Tk

+ 16L3B2k
√
k

T
√
T

.

�

Theorem 4.3.1 follows by setting k = 1 and Theorem 4.3.2 follows by setting k = n.

4.5.2 Complete Proof of Convergence in the Strongly Convex Case
First, we show the proof of the Lemma which is known to be useful for the analysis of
convergence of SGD in the strongly convex case.

Lemma 4.5.3 Let f be a L-smooth, c-strongly convex function, whose minimum x∗ we are
trying to find. For any vector ~x, we have:

〈∇f(~x), ~x− x∗〉 ≥ 1
2L‖∇f(~x)‖2 + c

2‖~x− x
∗‖2. (4.15)

Proof.
0 ≤ f(~x− 1

L
∇f(~x))− f(x∗) = f(~x− 1

L
∇f(~x))− f(~x) + f(~x)− f(x∗)

(4.7)
≤ 〈∇f(~x),− 1

L
∇f(~x)〉+ 1

2L‖∇f(~x)‖2 + f(~x)− f(x∗)
(4.8)
≤ − 1

2L‖∇f(~x)‖2 + 〈∇f(~x), ~x− x∗〉 − c

2‖~x− x
∗‖2.

The proof of the lemma follows after rearranging the terms in the above inequality. �

64

4.5. Detailed Convergence Analysis

Lemma 4.5.4 Consider SGD iterations defined in (4.13) and satisfying elastic consistency
bound (4.12). For a smooth, strongly convex objective function f and the constant learning
rate η ≤ 1

4L . We have that:

E ‖~xt+1 − x∗‖2 ≤ (1− ηc

4)E ‖~xt − x∗‖2 + 2η3L2B2

c
+ 2η2σ2

k
+ 4L2η4B2. (4.16)

Proof. We condition on ~xt and {~vit|i ∈ It} and calculate expectation with respect to the
randomness of stochastic gradient(We call this Es). By descent lemma we get that :

Es ‖~xt+1 − x∗‖2 = Es ‖~xt −
η

k

∑
i∈It

G̃(~vit)− x∗‖2

= ‖~xt − x∗‖2 − 2η
k

∑
i∈It

Es〈G̃(~vit), ~xt − x∗〉+ η2

k2 Es ‖
∑
i∈It

G̃(~vit)‖2

(4.4)= ‖~xt − x∗‖2 − 2η|It|
k
〈∇f(~xt), ~xt − x∗〉+ 2η

k

∑
i∈It
〈∇f(~xt)−∇f(~vit), ~xt − x∗〉

+ η2

k2 Es ‖
∑
i∈It

(
G̃(vit)−∇f(~vit) +∇f(~vit)−∇f(~xt) +∇f(~xt)

)
‖2

Cauchy−Schwarz
≤ ‖~xt − x∗‖2 − 2η|It|

k
〈∇f(~xt), ~xt − x∗〉

+ 2η2

k2 Es ‖
∑
i∈It

(
G̃(vit)−∇f(~vit)

)
‖2

+ 2η2

k2 Es ‖
∑
i∈It

(
∇f(~vit)−∇f(~xt) +∇f(~xt)

)
‖2.

Observe that Es

∥∥∥∥∥∥∑i∈It

(
G̃(vit) − ∇f(~vit)

)∥∥∥∥∥∥
2

is the same as a variance of random variable∑
i∈It G̃(vit). Recall that we are conditioning on ~xt and {~vit|i ∈ It}, hence G̃(vit) are independent

random variables (because agents in It compute stochastic gradients independently). This
means that because of the variance bound (4.5):

Es

∥∥∥∥∥∥
∑
i∈It

(
G̃(vit)−∇f(~vit)

)∥∥∥∥∥∥
2

≤ |It|σ2.

Also by Cauchy-Schwarz inequality we get that

Es ‖
∑
i∈It

(
∇f(~vit)−∇f(~xt) +∇f(~xt)

)
‖2 = ‖

∑
i∈It

(
∇f(~vit)−∇f(~xt) +∇f(~xt)

)
‖2

≤ 2|It|
∑
i∈It

(
‖∇f(~vit)−∇f(~xt)‖2 + ‖∇f(~xt)‖2

)
.

By combining the above three inequalities above we get:

65

4. Elastic Consistency: A Practical Semantics Model for Distributed
Stochastic Gradient Descent

Es ‖~xt+1 − x∗‖2 Lemma 4.5.3
≤ ‖~xt − x∗‖2 − η|It|

Lk
‖∇f(~xt)‖2 − ηc|It|

k

+ 2η
k

∑
i∈It
〈∇f(~xt)−∇f(~vit), ~xt − x∗〉

+ 4η2|It|
k2

∑
i∈It

(
‖∇f(~vit)−∇f(~xt)‖2 + ‖∇f(~xt)‖2

)
+ 2η2σ2|It|

k2

Y oung

≤ ‖~xt − x∗‖2 − η|It|
Lk
‖∇f(~xt)‖2 − ηc|It|

k

+ 2η
ck

∑
i∈|It

‖∇f(~xt)−∇f(~vit)‖2 + cη|It|
2k ‖~xt − x

∗‖2

+ 4η2|It|
k2

∑
i∈It

(
‖∇f(~vit)−∇f(~xt)‖2 + ‖∇f(~xt)‖2

)
+ 2η2σ2|It|

k2

(4.7)
≤ (1− ηc|It|

2k)‖~xt − x∗‖2 − η|It|
Lk
‖∇f(~xt)‖2 + 2ηL2

ck

∑
i∈It
‖~xt − ~vit‖2

+ 4η2|It|
k2

∑
i∈It

(
L2‖~vit − ~xt‖2 + ‖∇f(~xt)‖2

)
+ 2η2σ2|It|

k2

≤ (1− ηc|It|
2k)‖~xt − x∗‖2 + 2ηL2

ck

∑
i∈It
‖~xt − ~vit‖2 + 4η2|It|

k2

∑
i∈It

(
L2‖~vit − ~xt‖2

)

+ 2η2σ2

k
.

Where, in the last inequality, we used η ≤ 1
4L and |It| ≤ k. Next, we use elastic consistency

bound and k/2 ≤ |It| ≤ k:
E ‖~xt+1 − x∗‖2 = E[E[‖~xt+1 − x∗‖2|~xt, {~vit|i ∈ It}]]

≤ (1− ηc|It|
2k)E ‖~xt − x∗‖2 + 2ηL2

ck

∑
i∈It

E ‖~xt − ~vit‖2 + 4η2|It|L2

k2

∑
i∈It

E ‖~vit − ~xt‖2 + 2η2σ2

k

≤ (1− ηc

4)E ‖~xt − x∗‖2 + 2η3L2B2

c
+ 2η2σ2

k
+ 4L2η4B2.

�

Theorem 4.5.5 Consider SGD iterations defined in (4.13) and satisfying elastic consistency
bound (4.12). For a smooth, strongly convex function f , whose minimum x∗ we are trying
to find and the constant learning rate η = 2(log T+log k)

cT
, where T ≥ 256L2k

c2 is a number of
iterations:

E ‖~xT − x∗‖2 ≤ ‖~x0 − x∗‖2

Tk
+ 16(log T + log k)2L2B2

c4T 2 + 12σ2(log T + log k)
Tk

+ 48(log T + log k)3B2L2

c4T 3 .

Proof. Observe that since η = 2 log (Tk)
Tc

≤ 4
√
k√
Tc
≤ 1/4L, By Lemma 4.5.4, we have that:

E ‖~xt+1 − x∗‖2 ≤ (1− ηc

4)E ‖~xt − x∗‖2 + 2η3L2B2

c
+ 2η2σ2

k
+ 4L2η4B2.

66

4.6. Elastic Consistency Bounds

By using induction, it is easy to show that:

E‖~xT − x∗‖2 ≤ (1− ηc

4)T‖~x0 − x∗‖2 +
T−1∑
t=0

(1− ηc

4)t
(2η3L2B2

c
+ 2η2σ2

k
+ 4L2η4B2

)

≤ (1− ηc

2)T‖~x0 − x∗‖2 +
∞∑
t=0

(1− ηc

4)t
(2η3L2B2

c
+ 2η2σ2

k
+ 4L2η4B2

)

≤ e−
ηcT

2 ‖~x0 − x∗‖2 + 8η2L2B2

c2 + 8ησ2

kc
+ 16L2η3B2

c

= ‖~x0 − x∗‖2

Tk
+ 16(log T + log k)2L2B2

c4T 2 + 12σ2(log T + log k)
Tk

+ 48(log T + log k)3B2L2

c4T 3 .

�

Theorem 4.3.1 follows by setting k = 1 and Theorem 4.3.2 follows by setting k = n.

4.6 Elastic Consistency Bounds
4.6.1 Synchronous message passing with crash faults and variance

bound
Consider the algorithm 6 for node i at iteration t. Recall that Lit is a set of nodes which send
their computed gradients to node i at iteration t (for the convenience assume that Li−1 = P).
We assume that i ∈ Lit. In the model with crash faults we have that if some node j /∈ Lit,
then this means that node j has crashed. Further, if j ∈ Lit−1\Lit, this means that j crashed
during iteration t. More specifically this means that j generated it’s stochastic gradient and
crashed before sending it to i. In this case i uses it’s own stochastic gradient G̃(~vit) as a
substitute. We define the auxiliary variable ~xt as sum of all stochastic gradients which were

Algorithm 6 Iteration t+ 1 at node i ∈ P , for Crash faults model with variance
Compute G̃ (~vit) % Compute SG using the local view.
Broadcast G̃ (~vit) % Broadcast SG to all the nodes.
G̃← 0 % Prepare to collect stochastic gradients from the nodes.
for j ∈ Lit do

G̃← G̃+ G̃
(
~vjt
)

end for
for j ∈ Lit−1\Lit do

G̃← G̃+ G̃ (~vit) % if j crashed during iteration t, substitute it’s SG.
end for
~vit+1 ← ~vit − η

n
G̃ % Update parameter vector.

generated up to and excluding iteration t and sent to at least one node multiplied by − η
n
.

This means that we use the update rule (4.11) with It = {j|∃i, j ∈ Lit}. Notice that since at
most n/2 nodes can crash we have that n/2 ≤ |It| ≤ n. Let ft ≤ f be the total number of
crashed nodes up to and including iteration t. We proceed by proving the elastic consistency
bound with B = 3fσ

n
:

Lemma 4.6.1 In a synchronous message-passing system consisting of n nodes with failure
bound f ≤ n/2, For any iteration t and node i which has not crashed yet (it computes

67

4. Elastic Consistency: A Practical Semantics Model for Distributed
Stochastic Gradient Descent

stochastic gradient at iteration t), if η ≤ 1
6L(Notice that this is consistent with the upper

bound used in the convergence proofs) we have:

E ‖~vit − ~xt‖2 ≤ 9η2f 2
t σ

2

n2 . (4.17)

Proof. We prove the claim by using induction on the number of iterations. Base case holds
trivially. For the induction step assume that the lemma holds for iteration t: Let h = |Lit\Lit+1|
be the number of nodes which crashed during iteration t+ 1 (we assume the worst case, which
means that every node which crashed during iteration t+ 1 failed to send stochastic gradient
to the node i). Assume that h > 0, since otherwise the proof is trivial. Notice that

~xt+1 − ~vit+1 = ~xt − ~vit +
∑

j∈Lit\Lit+1

η

n
(G̃(~vit)− G̃(~vjt)) (4.18)

Hence we get that

E ‖~xt+1 − ~vit+1‖2 = E
∥∥∥∥~xt − ~vit +

∑
j∈Lit\Lit+1

η

n
(G̃(~vit)− G̃(~vjt))

∥∥∥∥2

Y oung

≤ (1 + h

ft
)E ‖~xt − ~vit‖2 + (1 + ft

h
)E

∥∥∥∥ ∑
j∈Lit\Lit+1

η

n
(G̃(~vit)− G̃(~vjt))

∥∥∥∥2

Cauchy−Schwarz
≤ (1 + h

ft
)E ‖~xt − ~vit‖2 + (1 + ft

h
)hη

2

n2

∑
j∈Lit\Lit+1

E ‖G̃(~vit)− G̃(~vjt)‖2

= (1 + h

ft
)E ‖~xt − ~vit‖2

+ (1 + ft
h

)hη
2

n2

∑
j∈Lit\Lit+1

E ‖G̃(~vit)−∇f(~vit) +∇f(~vit)−∇f(~vjt) +∇f(~vjt)− G̃(~vjt)‖2

Cauchy−Schwarz
≤ (1 + h

ft
)E ‖~xt − ~vit‖2

+ (1 + ft
h

)hη
2

n2

∑
j∈Lit\Lit+1

(
3E ‖G̃(~vit)−∇f(~vit)‖2+

3E ‖∇f(~vit)−∇f(~vjt)‖2 + 3E ‖∇f(~vjt)− G̃(~vjt)‖2
)

(4.5)
≤ (1 + h

ft
)E ‖~xt − ~vit‖2 + (1 + ft

h
)hη

2

n2

∑
j∈Lit\Lit+1

(
3E ‖∇f(~vit)−∇f(~vjt)‖2 + 6σ2

)
(4.7)
≤ (1 + h

ft
)E ‖~xt − ~vit‖2 + (1 + ft

h
)hη

2

n2

∑
j∈Lit\Lit+1

(
3L2 E ‖~vit − ~xt + ~xt − ~vjt‖2 + 6σ2

)
Cauchy−Schwarz

≤ (1 + h

ft
)E ‖~xt − ~vit‖2

+ (1 + ft
h

)hη
2

n2

∑
j∈Lit\Lit+1

(
6L2(E ‖~vit − ~xt‖+ E ‖~xt − ~vjt‖2) + 6σ2

)

68

4.6. Elastic Consistency Bounds

Next, we use the assumption that lemma holds for nodes at iteration t. We get that:

E ‖~xt+1 − ~vit+1‖2 ≤ (1 + h

ft
)9η2σ2f 2

t

n2

+ (1 + ft
h

)h9η2

n2

∑
j∈Lit\Lit+1

(
12L2η

2σ2f 2
t

n2 + 6σ2
)

= (1 + h

ft
)9η2σ2f 2

t

n2 + (1 + ft
h

)h2 η
2

n2

(
12L2 9η2σ2f 2

t

n2 + 6σ2
)

Finally, we use ft ≤ f ≤ n and η ≤ 1
6L , to get:

E ‖~xt+1 − ~vit+1‖2 ≤ (1 + h

ft
)9η2σ2f 2

t

n2 + (1 + ft
h

)h2 η
2

n2

(
3σ2 + 6σ2

)

= 9η2σ2

n2 (ft + h)2 = 9η2f 2
t+1σ

2

n2 .

�

4.6.2 Crash faults with second moment bound
Consider the algorithm 7 for node i at iteration t. Recall that Lit is a set of nodes which send
their computed gradients to node i at iteration t. We assume that i ∈ Lit. In the model with
crash faults we have that if some node j /∈ Lit, then this means that node j has crashed.

Algorithm 7 Iteration t+ 1 at node i ∈ P , for Crash faults model
Compute G̃ (~vit) % Compute SG using the local view.
Broadcast G̃ (~vit) % Broadcast SG to all the nodes.
G̃← 0 % Prepare to collect stochastic gradients from the nodes.
for j ∈ Lit do

G̃← G̃+ G̃
(
~vjt
)

end for
~vit+1 ← ~vit − η

n
G̃ % Update parameter vector.

We define the auxiliary variable ~xt as sum of all stochastic gradients which were generated up
to and excluding iteration t and sent to at least one node multiplied by − η

n
. This means that

we use the update rule (4.11) with It = {j|∃i, j ∈ Lit}. Notice that since at most n/2 nodes
can crash we have that n/2 ≤ |It| ≤ n. We proceed by proving the elastic consistency bound
with B = fM

n
:

Lemma 4.6.2 In a synchronous message-passing system consisting of n nodes with failure
bound f ≤ p/2, For any iteration t and node i which has not crashed yet (it computes
stochastic gradient at iteration t) we have:

E ‖~vit − ~xt‖2 ≤ η2f 2M2

n2 (4.19)

Proof. Notice that ~vit − ~xt = ∑t−1
s=0

∑
j∈Is\Lis

η
n
G̃(~vjs), where j ∈ Is\Lis means that node j

crashed at iteration s, before sending it’s stochastic gradient to node i. Since each node can

69

4. Elastic Consistency: A Practical Semantics Model for Distributed
Stochastic Gradient Descent

crash at most once, we have that ∑t−1
s=0 |Is\Lis| ≤ f . We get that:

E ‖~vit − ~xt‖2 = E ‖
t−1∑
s=0

∑
j∈Is\Lis

η

n
G̃(~vjs)‖2 Cauchy−Schwarz

≤ f
t−1∑
s=0

∑
j∈Is\Lis

η2

n2 E ‖G̃(~vjs)‖2

(4.6)
≤ f

t−1∑
s=0

∑
j∈Is\Lis

η2

n2M
2 ≤ η2f 2M2

n2 .

�

4.6.3 Synchronous message passing with message-omission failures

Algorithm 8 Iteration t+ 1 at node i ∈ P , for message delays
Compute G̃ (~vit) % Compute SG using the local view.
Broadcast G̃ (~vit) % Broadcast SG to all the nodes.
G̃← 0 % Prepare to collect stochastic gradients from the nodes.
for (s, j) ∈ Lit do

G̃← G̃+ G̃ (~vjs)
end for
~vit+1 ← ~vit − η

n
G̃ % Update parameter vector.

Consider algorithm 8. Here, we have that the set Lit might contain delayed messages (which
were generated before the iteration t). Hence, we assume that Lit is a set of pairs (s, j) such
that the stochastic gradient generated by the node j at iteration s ≤ t was delivered to the
node i at iteration t. The important thing is that, at any iteration, the number of delayed
messages (which might or might not be delivered in the future) is at most f . We assume that
nodes always "send" stochastic gradients to themselves without any delay, that is, for any
node i, (t, i) ∈ Lit. Further, let Kit = ⋃

t′≤t Lit′ . Notice that, ~vit = −∑(s,j)∈Kit−1

η
n
G̃ (~vjs). The

auxiliary variable ~xt = −∑t−1
s=0

∑
j∈P

η
n
G̃ (~vjs). This means that we use the update rule (4.11)

with It = P . We following lemma proves the elastic consistency bound with B = fM
n
:

Lemma 4.6.3 In a synchronous message-passing system consisting of n nodes where message-
omission failures can be upper bounded by f , we have that for any iteration t and node
i:

E ‖~vit − ~xt‖2 ≤ η2f 2M2

n2 (4.20)

Proof. For any iteration t, let Ct = {0, 1, ..., t} × P , so that ~xt = −∑(s,j)∈Ct−1
η
n
G̃ (~vjs).

Notice that ~vit − ~xt = ∑
(s,j)∈Ct−1\Kit−1

η
n
G̃(~vjs). If (s, j) ∈ Ct−1\Kit−1, then we have that the

stochastic gradient generated by node j at iteration s, is still not delivered to node i before
iteration t starts. Since this can happen to at most f messages, we have that |Ct−1\Kit−1| ≤ f .
Hence, we get that:

E ‖~vit − ~xt‖2 = E

∥∥∥∥∥∥
∑

(s,j)∈Ct−1\Kt−1

η

n
G̃(~vjs)

∥∥∥∥∥∥
2
Cauchy−Schwarz

≤ f
∑

(s,j)∈Ct−1\Kt−1

η2

n2 E ‖G̃(~vjs)‖2

(4.6)
≤ f

∑
(s,j)∈Ct−1\Kt−1

η2

n2M
2 ≤ η2f 2M2

n2 .

�

70

4.6. Elastic Consistency Bounds

Removing the second moment bound. We can use the similar approach as in the case of
crash faults and replace M in the elastic consistency bound with O(σ). More precisely, for
node i at iteration t, if stochastic gradient G̃(vjt) from node j is delayed node i uses it’s own
stochastic gradient G̃(vit) and later corrects the error once it receives the actual gradient. In
this case, error correction will ensure that

E ‖~vit − ~xt‖2 = E

∥∥∥∥∥∥
∑

(s,j)∈Ct−1\Kt−1

η

n
(G̃(~vis)− G̃(~vjs))

∥∥∥∥∥∥
2

.

and then we can use the similar approach as in the proof of Lemma 4.6.1 to show that if
E ‖~vis − ~xs‖2 ≤ 8η2f2σ2

n2 for any 0 ≤ s < t and η ≤ n
5fL , then E ‖~vit − ~xt‖2 ≤ 8η2f2σ2

n2 .

4.6.4 Asynchronous message passing
This case is very similar to the case with message-ommision failures. Consider algorithm 8
again. As before, Lit is a set of pairs (s, j) such that the stochastic gradient generated by
the node j at iteration t − τmax ≤ s ≤ t was delivered to the node i at iteration t(Recall
that messages can be delayed by at most τmax iterations). We assume that nodes always
"send" stochastic gradients to themselves without any delay, that is, for any node i, (t, i) ∈ Lit.
Further, let Kit = ⋃

t′≤t Lit′ . Notice that, ~vit = −∑(s,j)∈Kit−1

η
n
G̃ (~vjs). The auxiliary variable

~xt = −∑t−1
s=0

∑
j∈P

η
n
G̃ (~vjs). This means that we use the update rule (4.11) with It = P . We

proceed by proving the elastic consistency bound with B = τmax(n−1)M
n

:

Lemma 4.6.4 In a asynchronous message-passing system consisting of n nodes and with
delay bound τmax,we have that for any iteration t and node i:

E ‖~vit − ~xt‖2 ≤ η2(n− 1)2τ 2
maxM

2

n2 (4.21)

Proof. For any iteration t, let Ct = {0, 1, ..., t} × P , so that ~xt = −∑(s,j)∈Ct−1
η
n
G̃ (~vjs).

Notice that ~vit − ~xt = ∑
(s,j)∈Ct−1\Kit−1

η
n
G̃(~vjs). If (s, j) ∈ Ct−1\Kit−1, then we have that the

stochastic gradient generated by node j at iteration s, is still not delivered to node i before
iteration t starts. Since each message can be delayed by τmax iterations at most, we have that
for any 0 ≤ s ≤ t − 1 − τmax and node j ∈ P , (s, j) ∈ Kit−1. Also, we have that for any
iteration t − τmax ≤ s ≤ t − 1, (s, i) ∈ Kit−1. This means that |Ct−1\Kit−1| ≤ (n − 1)τmax.
We can finish the proof by using f = (n− 1)τmax and following exactly the same steps as in
the proof of Lemma 4.6.3. �

Removing the second moment bound. Notice that for each agent the number of messages
it has not received can be upper bounded by τmax(n− 1) at any step. Hence as in the case
of message-omission failures we can prove that if η ≤ n

5(n−1)τmaxL , then at any step t,
E ‖~vit − ~xt‖2 ≤ 8η2(n−1)2τ2

maxσ
2

n2 .

4.6.5 Shared-Memory Systems
We consider a shared-memory system with n processors P = {1, 2, . . . , n} that supports
atomic read and fetch&add (faa). The parameter vector ~x ∈ Rd is shared by the
processes for concurrent lock-free read and write or update. The read/update at each of
the indices ~x[i], 1 ≤ i ≤ d, of parameter, are atomic. By design, each process reads as
well as writes over an inconsistent snapshot of ~x, see [ADSK18]. We order the iterations of
SGD by the atomic faa over the first index of ~x. Note that, iterations by the processes are

71

4. Elastic Consistency: A Practical Semantics Model for Distributed
Stochastic Gradient Descent

collectively ordered. Let q be the process, which computes stochastic gradient at iteration t,
the inconsistent view (due to asynchrony) which is read by q at iteration t is denoted by ~vqt .
See Algorithm 9 for the formal description. In this case, the auxiliary variable ~xt corresponds to

Algorithm 9 Iteration t+ 1, processor q.
for 1 ≤ i ≤ d do

% Lock-free read
~vqt [i]← read(~x[i])

end for
Compute G̃ (vqt)
for 1 ≤ i ≤ d do

% Lock-free Update
faa(~x[i], ηG̃ (~vqt) [i])

end for

the sum of first t stochastic gradients (according to the ordering described above) multiplied
by −η. Hence, we use the update rule (4.10): ~xt+1 = ~xt − ηG̃(~vqt).
At iteration t, let τ it be the delay in the stochastic gradient update at an arbitrary index
1 ≤ i ≤ d, which essentially means that ~vqt [i] = ~xt−τ it [i]. Let τt = max{τ 1

t , τ
2
t , ..., τ

d
t }. It

is standard to assume that for any t ≥ 0, τt is upper bounded by τmax [RRWN11, LHLL15,
SZOR15, ADSK18]. Drawing from the literature of shared-memory distributed computing,
considering an iteration as an operation, τmax is essentially the maximum number of concurrent
operations during the lifetime of any operation in the system, which is defined as interval
contention [AAF+99]. With these specifications in place, Lemma 4.6.5 shows that the
shared-memory asynchronous SGD scheme satisfies elastic consistency with B =

√
dτmaxM .

Lemma 4.6.5 Given an asynchronous shared-memory system with maximum delay bound
τmax, we have that for processor q which generates stochastic gradient at iteration t + 1.
E‖~xt − ~vqt ‖2 ≤ dτ 2

maxη
2M2

Proof. The 1-norm of the difference between the inconsistent snapshots ~xt and ~vt is bounded
as follows:

‖~xt − ~vqt ‖1 ≤
τmax∑
j=1
‖~xt−j+1 − ~xt−j‖1

≤
√
d
τmax∑
j=1
‖~xt−j+1 − ~xt−j‖ (as ‖~x‖1 ≤

√
d ‖~x‖ , for ~x ∈ Rd).

Then,
‖~xt − ~vqt ‖2 ≤ ‖~xt − ~vt‖2

1 (using ‖~x‖ ≤ ‖~x‖1 , for ~x ∈ Rd)

≤
(√

d
τmax∑
j=1
‖~xt−j+1 − ~xt−j‖

)2

Cauchy−Schwarz
≤ dτmax

τmax∑
j=1
‖~xt−j+1 − ~xt−j‖2.

Fix t and 1 ≤ j ≤ τmax. Recall that ~xt−j+1− ~xt−j = −ηG̃(~vrt−j), for some processor r, which
computed stochastic gradient at iteration t− j. Hence,

E ‖~xt−j+1 − ~xt−j‖2 = η2 E ‖G̃(~vrt−j)‖2
(4.6)
≤ η2M2. (4.22)

72

4.6. Elastic Consistency Bounds

Thus, by combining the above two inequalities we get that:

E ‖~xt − ~vqt ‖2 ≤ dτmax
τmax∑
j=1

E ‖~xt−j+1 − ~xt−j‖2 ≤ dτ 2
maxη

2M2.

�

4.6.6 Communication-Efficient Methods
In this section, we consider a synchronous message-passing system of n nodes P = {1, 2, . . . , n}
executing SGD iterations. For simplicity, we assume that the system is synchronous and
fault-free, In each iteration nodes broadcast a compressed version of the stochastic gradient,
they computed, in order to reduce communication costs. Communication-efficiency can be
achieved in two ways: for a computed stochastic gradient, (a) quantization: broadcast a
quantized vector that requires fewer bits [SFJY14, AGL+17], or, (b) sparsification: broadcast
a sparse vector [AHJ+18, SCJ18].
Clearly, this strategy leads to losses in the parameter updates at each iteration. A popular
approach to control this error is using error-feedback : the accumulated residual error from the
previous broadcasts is added to the stochastic gradient at the current iteration before applying
quantization or sparsification. We will show that the residual error can be modelled in the
context of elastic consistency, and that it stays bounded in the case of popular communication-
efficient techniques, which implies their convergence.
In the description below, we will be using the term lossy compression collectively for both
quantization and sparsification. A vector ~x which undergoes a lossy compression will be called
a compressed vector, it’s compressed value will be denoted by Q(~x).

Algorithm 10 Iteration t+ 1 at a node i ∈ P .
1: Compute G̃ (~vit) % Compute SG using local view
2: Compute ~wit ← ~εit + ηG̃(~vit) % Add the accumulated error to the computed SG.
3: Compute and Broadcast Q(~wit) % Apply lossy compression and broadcast.
4: Compute ~εit+1 ← ~wit −Q(~wit) % Update the accumulated error.
5: G̃← 0
6: for each j ∈ P (including i) do
7: Receive Q(~wjt); G̃← G̃+Q(~wjt)
8: end for
9: ~vit+1 ← ~vit − G̃

n
Update parameter vector.

A typical iteration at a node i is shown in Algorithm 10. The algorithm works as follows.
Each node i maintains a local model ~vit, and a local error accumulation εit, starting from
~vit = ~0d = ~εit.
At each iteration, a node i computes a stochastic gradient with respect to its local view ~vit,
adds to it the accumulated error from the previous iterations, applies a lossy compression
function Q to the result, and broadcasts to the parameter servers. The error accumulation is
updated to reflect the lossy compression, see Line 4. The compression Q provably satisfies the
following:

‖Q(~w)− w‖2 ≤ γ‖~w‖2, ∀~w ∈ Rd, and 0 ≤ γ < 1. (4.23)
In the above inequality parameter γ, depends on the compression scheme that we use.

73

4. Elastic Consistency: A Practical Semantics Model for Distributed
Stochastic Gradient Descent

The error-feedback strategy particularly helps in asymptotically compensating for the biased
stochastic gradient updates. However, if the compression scheme is unbiased, e.g. QSGD
[AGL+17], the convergence theory works even without the error-feedback. For such a method,
line 2 in Algorithm 10 changes to ~wit ← ηG̃(~vit); all other steps remain unchanged. Our
discussion in this sub-section focuses on methods with error-feedback.
The local view of parameter ~vit is inconsistent in the sense that it is updated with compressed
stochastic gradients. To model this in the context of elastic consistency, we define the auxiliary
parameter ~xt, as sum of all stochastic gradients generated by the algorithm up to and excluding
iteration t, multiplied by − η

n
. Hence, we use the update rule (4.11) with It = {1, 2, ..., n} = P :

~xt+1 = ~xt −
η

n

∑
i∈P

G̃(~vit). (4.24)

The local view of each node q ∈ n is updated as:
~vqt+1 = ~vqt −

1
n

∑
i∈P

Q(ηG̃(~vit) + εit). (4.25)

Using induction on the number of iterations, it is easy to show that for any t ≥ 0 and node q:
~vqt − ~xt = 1

n

∑
i∈P

εit. (4.26)

Thus, using the above equation we can derive the elastic consistency bounds.

Lemma 4.6.6 For any node q and iteration t ≥ 0. We have that

E ‖~xt − ~vqt ‖2 ≤ (2− γ)γM2η2

(1− γ)3 . (4.27)

Proof.
we start with∑

i∈P
‖εit+1‖2 = ‖Q(ηG̃(~vit) + εit)− (ηG̃(~vit) + εit)‖2

(4.23)
≤ γ

∑
i∈P
‖ηG̃(~vit) + εit‖2

Y oung

≤ (1 + 1− γ)γ
∑
i∈P
‖εit‖2 + (1 + 1

1− γ)η2γ
∑
i∈P
‖G̃(~vit)‖2

�

Next, using induction on the number of iterations, we upper bound∑i∈P E ‖εit‖2 by (2−γ)γM2η2n
(1−γ)3 .

The base case holds trivially. For the induction step we assume that the statement holds for t.
We get that:∑

i∈P
E ‖εit+1‖2≤(1 + 1− γ)γ

∑
i∈P

E ‖εit‖2 + (1 + 1
1− γ)η2γ

∑
i∈P

E ‖G̃(~vit)‖2

(4.6)
≤ (1 + 1− γ)γ

∑
i∈P

E ‖εit‖2 + (1 + 1
1− γ)η2γM2n

≤ γη2M2n

(2− γ)2γ

(1− γ)3 + 1 + 1
1− γ

 = (2− γ)γM2η2n

(1− γ)3 .

This gives us that

E ‖~xt − ~vqt ‖2 (4.26)= E ‖ 1
n

∑
i∈P

εit‖2 Cauchy−Schwarz
≤ 1

n

∑
i∈P

E ‖εit‖2 ≤ (2− γ)γM2η2

(1− γ)3 .

In the following, we show that TopK and One-Bit quantization schemes satisfy elastic consis-
tency bounds.

74

4.7. Related Work

TopK quantization The TopK algorithm [Str15] presents a sparsification scheme for the
stochastic gradients. Essentially, we select the top K of the indices of ~w sorted by their
absolute value. Because d−K indices of a vector, which are not the top ones by their absolute
value, are discarded in this method, it clearly satisfies inequality (4.23) for γ = d−K

d
. Hence,

TopK quantization satisfies elastic consistency bound with constant B =
√

(1−K/d)(1+K/d)
(K/d)3 M =√

d
K

(d2

K2 − 1)M .
One-Bit quantization The one-bit SGD quantization was first described in [SFJY14]. We
use the notation [~x]i to denote the i’th component of ~x. Consider the vector ~w and let
S+(~w) be its index of positive components and S−(~w) that of its negative components, i.e.,
S+(~w) = {i : [~w]i ≥ 0} and S−(~w) = {i : [~w]i < 0}. Then let w+ = 1

|S+(~w)|
∑
i∈S+(~w)[~w]i

and w− = 1
|S−(~w)|

∑
i∈S−(~w)[~w]i. Now define the one-bit quantization operation Q(·) as,

[Q(~w)]i =
{
w+ for i ∈ S+(~w).
w− for i ∈ S−(~w).

(4.28)

It easy to verify that one-bit quantization satisfies inequality (4.23) for γ = 1 − 1
d
. Hence,

One-bit quantization satisfies elastic consistency bounds with B =
√
d(d2 − 1)M .

4.7 Related Work
Distributed machine learning has recently gained significant practical adoption, e.g. [DCM+12,
HCC+13, CSAK14, ZCL15, XHD+15, JWG+19, PZC+19]. Consequently, there has been sig-
nificant work on introducing and analyzing distributed relaxations of SGD [MPP+15, RRWN11,
HCC+13, SZOR15, LHLL15, CDR15, LPLJ16, ADSK18, WJ21, WWS+18, KRSJ19, KRSJ19,
LNDS20]. Due to space constraints, we cover in detail only work that is technically close to
ours.
Specifically, De Sa et al. [SZOR15] were the first to consider a unified analysis framework
for asynchonous and communication-compressed iterations. Relative to it, our framework
improves in three respects: (i) it does not require stringent gradient sparsity assumptions;
(ii) it is also able to analyze the case where the updates are not unbiased estimators of the
gradient, which allows extensions to error-feedback communication-reduction; and (3) it also
tackles convergence for general non-convex objectives. Reference [LHLL15] presented the first
general analysis of asynchronous non-convex SGD , without communication-reduction. Qiao
et al. [QAZX19] model asynchrony and communication reduction as perturbations of the SGD
iteration, and introduce a metric called “rework cost,” which can be subsumed into the elastic
consistency bound.
Karimireddy et al. [KRSJ19] analyze communication-compression with error feedback, and
present a general notion of δ-compressor to model communication-reduced consistency relax-
ations; later, the framework was extended to include asynchronous iterations [KRSJ19]. Every
method satisfying the δ-compressor property is elastically-consistent, although the converse is
not true. Relative to this work, our framework generalizes in one important practical aspect, as
it allows the analysis in distributed settings: [KRSJ19, KRSJ19] assume that the iterations are
performed at a single processor, which may compress gradients or view inconsistent information
only with respect to its own earlier iterations. This extension is non-trivial; tackling this
more realistic setting previously required additional analytic assumptions [AHJ+18]. Sparsified
methods would not be competitive with our elastic scheduler, since they only impose sparsity
to reduce communication, which would not necessarily improve scheduling.

75

4. Elastic Consistency: A Practical Semantics Model for Distributed
Stochastic Gradient Descent

We have proposed a new and fairly general framework for analyzing inconsistent SGD iterations.
Its main advantages are generality and simplicity. Inspired by this technical condition, we
introduce two new, efficient scheduling mechanisms. More generally, we believe that elastic
consistency could inspire new distributed algorithms, and be used to derive convergence in a
streamlined manner. One key line of extension which we plan to pursue is to study whether
elastic consistency can be extended to other first-order distributed optimization methods, or
zeroth- or second-order methods.

76

CHAPTER 5
Asynchronous Decentralized SGD with

Quantized and Local Updates

5.1 Introduction
Decentralized optimization has recently emerged as a promising approach for scaling the
distributed training of machine learning models, in particular via stochastic gradient descent
(SGD) [LZZ+17, TZG+18, KLSJ20]. Its key advantage is that it removes the need for a
central coordinator node in distributed training, and therefore it can allow for extremely high
scaling.

The general decentralized optimization setting is the following: we are given n nodes, each
with a subset of data from some distribution, which can communicate over some underlying
graph topology. In each global round, each node samples some local data, performs a local
gradient step, and it is paired with a neighbor, which may be chosen randomly. The nodes
exchange model information pairwise, and then update their models, often via direct model
averaging. Variants of this setting have been analyzed since pioneering work by [Tsi84], for
various estimation and optimization algorithms [XB04, NO09, JRJ09, SS14] and have seen
renewed interest given its applicability to training deep neural networks (DNNs) at scale,
e.g. [LZZ+17, LZZL18, ALBR18].

Recently, there has been significant focus on reducing the synchronization overheads for
decentralized training, usually employing three approaches: 1) implementing faster non-
blocking communication between communication partners at a round [LZZL18, ALBR18],
which may cause them to see stale versions of their models, 2) allowing nodes to take local
steps in between their communication rounds [WJ21, KLB+20], and 3) applying quantization
to the communication [LDS20, TZG+18, KLSJ20], .

The above impressive line of work contributes a rich set of algorithmic and analytic ideas;
however, one common limitation is that the algorithms are usually set in the synchronous
gossip model, which requires all nodes to perform their communication in lock-step rounds,
and share a common notion of time, thus reducing their practicality. To mitigate this fact,
some references, e.g. [LZZL18, ALBR18, LDS20] partially relax this requirement, although
they do so at the cost of additional assumptions, or reduced guarantees, as we discuss in
related work. Another relative limitation is that the analyses are usually customized to the

77

5. Asynchronous Decentralized SGD with Quantized and Local Updates

bespoke communication-reduced methods being applied, and therefore are hard to generalize
to other methods.

Our Contribution. In this chapter, we consider decentralized SGD-based optimization in the
simpler, but harder to analyze, asynchronous gossip model [XB04], in which communication
occurs in discrete, randomly chosen pairings among nodes, and thus does not require a common
notion of time. We prove that a new variant of SGD we call SwarmSGD still converges in this
setting, even though it supports all three communication-reduction approaches mentioned above
in conjunction. Specifically, supporting both non-blocking communication and quantization
requires new insights. In addition, our analysis generalizes to heterogeneous data distributions
and communication topologies.

At a high level, SwarmSGD works as follows. Each node i maintains a local model estimate Xi

based on which gradients are generated, and a shared buffer where quantized models are stored
for communication with other nodes. In each step, node i first computes a sequence of H local
gradient steps, which it does not yet apply. Next, the node chooses communication partner j,
uniformly at random among its neighbors. Then, node i reads from its own communication
buffer and from the communication buffer of j, obtaining quantized models Qi and Qj (a
subtlety here is that Qi is not necessarily the quantized version of the model Xi, since other
nodes can write concurrently to i’s buffer). The node i then averages Qi with Qj , and updates
the neighbor’s remote buffer to the quantized average. Finally, it applies its local gradient
steps to the resulting average, adopts this as its next model Xi, and a writes quantized
version of it in its own shared buffer. This procedure can be implemented in a deadlock-free,
non-blocking manner, by using either shared-memory or the remote direct-memory access
(RDMA) calls supported by MPI [WSB+06]. Importantly, the communication partner j does
not need to block its computation during communication, and may be contacted by more than
one interaction partner during a single local step, although we do assume that individual reads
and writes are performed atomically.

A key component of this procedure is the quantization scheme: directly using an unbiased
quantizer, e.g. [AGL+17] would destroy convergence guarantees, as the quantization error
would be proportional to the model norm, which may not be bounded. Instead, we use a
customized variant of the lattice-based quantization scheme of [DGM+21], which has the
property that its error depends on the distance between the point being quantized (the model),
and an arbitrary reference point, which is provided as a parameter to the quantization. One
of our key technical insights is that each node can reliably use its own model as a reference
point to quantize and de-quantize messages placed in its buffer by other nodes. In turn, this
requires non-trivial care when analyzing the quantization.

Specifically, the key result behind our analysis is exactly in showing that the nodes’ local
models stay well-enough concentrated around their mean throughout optimization to allow
for correct decoding of quantized models, which in turn implies joint convergence by the
nodes towards a point of vanishing gradient. This concentration follows via a non-trivial super-
martingale argument. If nodes take a constant number of local SGD steps on average between
communication steps, then SwarmSGD has Θ(

√
n) speedup to convergence for non-convex

objectives. This matches results from previous work which considered decentralized dynamics
but with global synchronization [LZZ+17]. Our analysis also extends to heterogenenous graph
topologies, and data distributions.

78

5.2. Preliminaries

5.2 Preliminaries
The Distributed System Model. We consider a model which consists of n ≥ 2 nodes, each
of which is able to perform local computation. We assume that communication network of
nodes is a graph G with spectral gap λ2, which denotes the second smallest eigenvalue of the
Laplacian of G. Let ρmax, ρmin be the maximum and minimum degrees in G, respectively. We
will focus on densely-connected topologies, which model supercomputing and cloud networks:
for instance, the standard Dragonfly topology [KDSA08, BH14] is regular, densely connected
and low-diameter, mimicking regular expanders.

The execution is modelled as occurring in discrete steps, where in each step a new node (the
“initiator”) is sampled, and can then contact one of its neighbors (the “responder”) uniformly
at random. (At the algorithm level, the initiator is “sampled” once it completes its current
computational step, and seeks to interact with a neighbor.) We denote the number of steps for
which we run by T . Globally, the communication steps can be seen as a sequence of sampled
directed communication edges. Thus, the basic unit of time is a single pairwise interaction
between two nodes. Notice however that in a real system Θ(n) of these interactions could
occur in parallel. Thus, the standard global time measure is parallel time, defined as the total
number of interactions divided by n, the number of nodes. Parallel time intuitively corresponds
to the average number of interactions per node until convergence. This model is identical to
the asynchronous gossip model [XB04], and to the population protocol model [AAD+06].

Stochastic Optimization. We assume that the agents wish to jointly minimize a d-
dimensional, differentiable function f : Rd → R. Specifically, we will assume the empir-
ical risk minimization setting, in which agents are given access to a set of m data samples
S = {s1, . . . , sm} coming from some underlying distribution D, and to functions `i : Rd → R
which encode the loss of the argument at the sample si. The goal of the agents is to
converge on a model x∗ which minimizes the empirical loss over the m samples, that is
x∗ = argminxf(x) = argminx(1/m)∑m

i=1 `i(x). We assume that each agent i has a local
function fi associated to its fraction of the data, i.e ∀x ∈ Rd: f(x) = ∑n

i=1 fi(x)/n.

Agents employ these samples to run a decentralized variant of SGD, described in detail in the
next section. For this, we will assume that each agent i has access to unbiased stochastic
gradients g̃i of the function fi, which are functions such that E[g̃i(x)] = ∇fi(x). Stochastic
gradients can be computed by each agent by sampling i.i.d. the distribution D, and computing
the gradient of f at θ with respect to that sample. Our analysis also extends to the case where
each agent is sampling from its own partition of data. We assume the following conditions
about the objective function, although not all our results require the second moment bound:

1. Smooth Gradients: The gradient ∇fi(x) is L-Lipschitz continuous for some L > 0, i.e.
for all x, y ∈ Rd and agent i:

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖. (5.1)
2. Bounded Variance: The variance of the stochastic gradients is bounded by some σ2 > 0,

i.e. for all x ∈ Rd and agent i:

E
∥∥∥∥g̃i (x)−∇fi (x)

∥∥∥∥2
≤ σ2. (5.2)

3. Bounded Local Function Variance: There exists ς2 > 0, such that for all x ∈ Rd:

n∑
i=1

∥∥∥∥∇f (x)−∇fi (x)
∥∥∥∥2

n
≤ ς2. (5.3)

79

5. Asynchronous Decentralized SGD with Quantized and Local Updates

4. Bounded Second Moment: The second moment of the stochastic gradients is bounded
by some M2 > 0, i.e. for all x ∈ Rd and agent i:

E
∥∥∥∥g̃i (x)

∥∥∥∥2
≤M2. (5.4)

Note that throughout this chapter for any random variable X, by E ‖X‖2 we mean E[‖X‖2].
Each node has a communication buffer, which, for simplicity, we assume can be read and
written atomically by each node; Importantly, buffers can only hold quantized vectors.
Quantization Procedure. We use a quantization function which follows from Lemma 23 in
(the full version of) [DGM+21].

Corollary 5.2.1 (Quantization for Communication Buffers) Fix parameters R and ε > 0.
There exists a quantization procedure defined by an encoding function EncR,ε : Rd → {0, 1}∗
and a decoding function DecR,ε = Rd×{0, 1}∗ → Rd such that, for any vector x ∈ Rd which
we are trying to quantize, and any vector y which is used by decoding, which we call the
decoding key, if ‖x− y‖ ≤ RRdε then with probability at least 1− log log(‖x−y‖

ε
)O(R−d), the

function QR,ε(x) = DecR,ε(y, EncR,ε(x)) has the following properties:

1. (Unbiased decoding) E[QR,ε(x)] = E[DecR,ε(y, EncR,ε(x))] = x;

2. (Error bound) ‖QR,ε(x)− x‖ ≤ (R2 + 7)ε;

3. (Communication bound) To compute DecR,ε(y, EncR,ε(x)), only the first B bits of
EncR,ε(x) are needed, where B = O

(
d log(R

ε
‖x− y‖

)
).

Proof. Lemma 23 of the full version of [DGM+21] provides similar guarantees as the ones
we want to prove, but they assume interactive message-passing communication between an
encoding node u and a decoding node v. However, in their setting, the messages sent by u are
non-adaptive: u simply sends quantizations using an increasing number of bits, until v replies
confirming that it has decoded successfully. The number of bits sent during communication is
upper bounded by O

(
d log(R

ε
‖x− y‖

)
), where x is a vector node u is sending and y is vector

node v is using for decoding. In our setting, we use communication buffers which, so node u
can simply append all of its potential messages together as QR,ε(x).
Critically, notice that node u should append enough bits so that the decoding is possible (Since
in our setting there is no way for v to acknowledge that it received enough number of bits).
This can be done in two ways. If u knows the distance between x and y. then u can simply
write O

(
d log(R

ε
‖x− y‖

)
bits in the register.

In the second case, u does not know the distance. Let T be the total number of times nodes
communicate throughout our algorithm. We will show that with high probability all distances
between encoded and decoding vectors will be at most εT 17

R
(dependence on T stems from the

fact that we wish to show an upper bound with high probability, please see Lemma 5.5.19),
and therefore at most O(d log T) bits for quantization will suffice in the worst case. Thus, the
node writes O(d log T) bits in the register , but when v tries to decode, it does not need all
those bits: it reads and uses only the first O

(
log(R

ε
‖x− y‖

)
bits.

Counting Communication Cost. We emphasize that, when we calculate the number of
bits needed by quantization we actually aim to measure the number of bits exchanged between
u and v. In the setting we consider, which has local registers/communication buffers, this

80

5.3. The SwarmSGD Algorithm

is the number of bits spent to read from (or to write to) the non-local register. Since the
second case above involves writing a relatively large number of bits, we will use it only when u
is writing a quantized value to its own register/buffer, and so does not need to communicate
the bits. Then, only the O

(
log(R

ε
‖x− y‖

)
bits read by v need to be communicated.

To summarize, in our algorithm we will always ensure that whenever some node u writes a
quantized value, it either knows the key which will be used for decoding it, or is writing to its
local register. In the second case, we have to guarantee that O(d log T) bits suffice in the
worst case. That is, we will have to show that ‖x− y‖ = ε·poly(t)

R
. In the first case, there are

no restrictions.

�

5.3 The SwarmSGD Algorithm
We now describe a decentralized variant of SGD, designed to be executed by a population of
n nodes, interacting over the edges of communication graph G. We assume that the largest
degree of a vertex in G is ρmax and the smallest one is ρmin, additionally we assume that the
second smallest eigenvalue of the Laplacian matrix of G, is λ2. As noted above, the algorithm
proceeds in individual communication steps, where in each step a node which has completed
its local computation, seeks a random neighbor to communicate with. We will alternatively
say that node gets activated (once it finished computation) and then becomes initiator of the
interaction. We start by describing the model in more detail.

The Communication Registers. The communication buffer of each node i consists of two
registers: one containing an encoded version of its own (possibly outdated) model, which
will only be written to by node i itself, and one for holding an encoded version of its current
model, which will only be written to by other nodes. (This second register can be seen as a
“communication queue” for the nodes wishing to communicate with i.) Initially all registers
contain zero vectors.

Parallel Execution. For the simplicity we will skip the details of quantization, and assume
that nodes write and read quantized models directly, without encoding and decoding step. As
mentioned above, both current and outdated models are zero vectors initially. Each node i,
computes random number of local gradients using outdated mode and other nodes update its
current model while i is in compute. Note that even though we call the model other nodes
update-current, node i does not have access to it while in compute. Hence, only after node i
is done with computing local gradients does it read its current model. Let X̂i be the value of
the outdated model and let Xi be the value of current model. Node i computes average of
quantized models Q(Xi)+Q(Xj)

2 and writes it in a register which contains current model of node
j. Next, it computes Q(Xi)+Q(Xj)

2 − ηh̃(X̂i) (where η is a learning rate and h̃(X̂i) is a sum
of local gradients), and writes it in both of its local registers (one containing current model
and one containing) outdated model. Once the write is finished, it proceeds by once again
computing local gradients, using model Q(Xi)+Q(Xj)

2 − ηh̃(X̂ i
t).

Sequential model. We proceed by describing the algorithm sequentially, that is, we map
parallel interactions to the sorted sequence of sequential ones. Thus, time tracks the interactions
between agents, and each interaction consists of random number of local steps steps which
activated node performs, plus one averaging step where activated node (or initiator node)
contacts its random neighbour.

81

5. Asynchronous Decentralized SGD with Quantized and Local Updates

The theory assumes that nodes get activated randomly, by independent Poisson clocks, which
leads to a uniform global sampling distribution. We approximate this in practice by having
the number of local gradient steps executed by each node be a geometric random variable of
mean H.1 Due to the memoryless property, this leads to nodes being sampled uniformly at
random in the sequential model.

We start by from the point of view of a single node i which was activated at step t+ 1. The
pseudocode can be seen in Algorithm 11.

For t ≥ 0, let Enc(X̂ i
t) and Enc(X i

t) be the values written in the registers containing outdated
and current model of agent i after t steps. That is, X i

t is the current model of agent i and
X̂ i
t is the outdated model.

The Communication Procedure. Since i was activated at step t+ 1 we will assume that it
has already computed Hi local gradients using the outdated model X̂ i

t , where Hi is a geometric
random variable with mean H, as follows. Let h̃0

i (X̂ i
t) = 0d; for indices 1 ≤ q ≤ Hi, let

h̃qi (X̂ i
t) = g̃i(X̂ i

t −
∑q−1
s=0 ηh̃

s
i (X̂ i

t)) be the q-th local gradient. Then, let h̃i(X̂ i
t) = ∑Hi

q=1 h̃
q
i (X̂ i

t)
be the sum of all computed local gradients. Or alternatively, since we are in a sequential
setting, we can assume that i does computation at step t+ 1.

First, i retrieves Q(X i
t) (the quantized version of its current model), by decoding Enc(X i

t)
using key Q(X̂ i

t). We would like to note that i can obtain Q(X̂ i
t) simply by decoding Enc(X̂ i

t),
using key X̂ i

t (which it knows, to full precision, since it calculated the value itself), and this
step does not cost any communication bits since all of the terms involved are local to i’s
registers.

Then, it contacts its interaction partner j. Node i calculates Q(X̂j
t) by decoding Enc(X̂j

t),
again using X̂ i

t as a key, and then it retrieves Q(Xj
t) by decoding Enc(Xj

t) with key Q(X̂j
t).

Then, i calculates

X i
t+1 = Q(X i

t)
2 + Q(Xj

t)
2 − ηh̃i(X̂ i

t),

Xj
t+1 = Q(Xj

t)
2 + Q(X i

t)
2 .

Next, node i calculates Enc(X i
t+1) and writes to its own register for its outdated models.

Here, we use the first case for quantization using Corollary 5.2.1: i is not aware of the key
that other nodes will use for decoding, but since it is writing to its own local register, it can
afford to use the worst-case O(d log T) bits. Additionally, it writes Enc(X i

t+1) to its own
register containing current model, so that there are enough bits in order for Q(X̂ i

t+1) (Note
that X̂ i

t+1 = X i
t+1) to be used as decoding key.

Finally, it calculates Enc(Xj
t+1) and writes it in the register which contains the current model

of j, using enough bits that it can be decoded using Q(X̂j
t+1) (we have that X̂j

t+1 = X̂j
t) .

Notice that, the way our algorithm is specified, every node which tries to decode Enc(Xj
t+1)

will use Q(X̂j
t+1) as a key (which i knows), hence Corollary 5.2.1 holds in this case as well.

We emphasize the fact that all this communication is one-way, as it does not require j’s
intervention.

By Corollary 5.2.1 the total number of bits used is :
1Experimentally, results are practically identical if the number of local steps is a small constant H.

82

5.4. The Convergence of SwarmSGD

O
(
d log(R

ε
‖X̂ i

t − X̂
j
t ‖)

)
+O

(
d log(R

ε
‖Q(X̂j

t)−Xj
t ‖)

)
+O

(
d log(R

ε
‖Q(X̂j

t)−Xj
t+1‖)

)
. (5.5)

(Recall that we count only reading and writing to other registers, and do not count operations
i performs on its own registers.)

We will show that we can make the probability of any instance of quantization failing less
than T−c, for some sufficiently large constant c (by setting the constant factor in number of
bits sufficiently high). Then, we can take a union bound over all instances of quantization
throughout the algorithm, to show that none fail with high probability in T . Henceforth, we
will then be able to prove the convergence of our algorithm conditioned on this event.

Algorithm 11 Sequential SwarmSGD pseudocode for each interaction between nodes i and j.
1: % Let G be a communication graph.
2: % Initial models X1

0 = X2
0 = ... = Xn

0
3: for t = 0 to T − 1 do
4: Sample the initiator node i uniformly at random.
5: Node i samples a node j, adjacent to it in G, uniformly at random.
6: Let t− τ it be the last step at which node i was chosen as initiator.
7: Let X̂ i

t = X i
t−τ it

be its model from that step.
8: Q(X i

t)← Dec(Q(X̂ i
t), Enc(X i

t))
9: Q(X̂j

t)← Dec(X̂ i
t , Enc(X̂

j
t))

10: Q(Xj
t)← Dec(Q(X̂j

t), Enc(Xj
t))

11: X i
t+1 ← Q(X i

t)/2 +Q(Xj
t)/2− ηh̃i(X̂ i

t−1)
12: Xj

t+1 ← Q(X i
t)/2 +Q(Xj

t)/2
13: Write Enc(X i

t+1) to the registers containing current and outdated models of node i
14: Write Enc(Xj

t+1) to the register containing current model of node j
15: For k 6= i, j, Xk

t+1 = Xk
t .

16: end for

Avoiding race condition in parallel case. An interesting question is what happens when
multiple nodes contact j concurrently. For conciseness, our pseudocode assumes that the
sequence in lines 8–14 happens atomically, but this sequence can cause a data race. To
mitigate this, we can use a bounded non-blocking queue [MS96] at each node instead of a
single buffer. Thus, instead of overwriting the buffer value, each node simply appends the
corresponding quantized model mean to j’s communication queue. In practice, this queue is
extremely unlikely to be contended, since communication collisions are rare. Critically, all the
above operations are non-blocking, and so the algorithm is deadlock-free.

5.4 The Convergence of SwarmSGD
Let µt = ∑n

i=1 X
i
t/n be the mean over node models at time t (after t steps). Our main result

is the following:

83

5. Asynchronous Decentralized SGD with Quantized and Local Updates

Theorem 5.4.1 For the total number of steps T ≥ 10n, learning rate η = n/
√
T , and

quantization parameters R = 2 + T
3
d and ε = ηHM

(R2+7) , with probability at least 1−O(1
T

) we
have that Algorithm 11 converges at rate
1
T

T−1∑
t=0

E ‖∇f(µt)‖2 ≤ 2(f(µ0)− f(x∗))
H
√
T

+ 6(σ2 + 6Hς2)√
T

+ 12HM2
√
T

+ C
n2ρ3

maxH
2L2M2

Tρminλ2
2

,

for constant C, and uses O
(
d log

(
ρ2
max

ρminλ2

)
+ log T

)
expected communication bits per step.

Discussion. First, this notion of convergence is standard in the non-convex case [LHLL15,
LZZ+17, LZZL18], and each of the upper bound terms has an intuitive interpretation: the first
represents the reduction in loss relative to the initialization, and gets divided by the number of
local steps H, since progress is made in this term in every local step; the second represents
the noise due to stochasticity, and is naturally linear in H, as H steps are taken in expectation
between two interactions. (Recall that in our model T is the number of interactions, and TH
is the expected number of gradient steps.) The fourth term encodes overheads caused by local
steps, quantization, and graph structure; however, it is usually seen as negligible [LDS20], due
to division by T . We will therefore also ignore this term.
The third term is the critical one, as it implies a dependence on the second-moment bound.
Intuitively, this term appears because our algorithm combines both non-blocking communication,
and quantization: first, unlike prior work, we do not assume an explicit delay upper bound τ
on communication; in conjunction with quantization, the unbounded delay this implies that
our estimate on the model average µt may become dependent on M for large delays, which
causes this dependency. While this limitation appears inherent, we are able to remove it if we
eliminate quantization: in this case, we get a negligible dependency on M . We formalize this
in Corollary 5.4.2.
Second, if we focus on the total number of steps to reach some error bound, we notice an
interesting trade-off between the linear reduction in H in the first term, due to local steps,
and the linear increase in H in the other terms. Notice that, for dense and low-diameter
graphs, such as the regular expanders popular in cluster networks, our convergence bound
has no dependence in the graph parameters, and communication is linear in d. However, one
limitation is that we could have a log n dependency in the communication for highly irregular
and poorly-connected graphs.
Finally, note that time T here counts total interactions. However, Θ(n) pairwise interactions
occur independently in parallel, and so we can replace T by nT in the above formula, to
obtain optimal Θ(

√
n) speedup in terms of wall-clock time. Yet, this speedup is dampened by

the variance due to noisy local gradient steps, a fact which we will revisit in the experimental
section.
Proof Overview. At a high level, the argument rests on two technical ideas. The first is
that, in spite of noise and local steps, the nodes’ parameters remain concentrated around
the mean µt. The second is to leverage this, and bound the impact of stochastic noise and
model staleness on convergence. In particular, the main technical difficulty in the proof is
to correctly “encode” the fact that parameters are well concentrated around the mean. A
natural approach is to bound the model variance Γt after t interactions. Formally, we define
Γt = ∑n

i=1 ‖X i
t − µt‖2, where µt = ∑n

i=1 X
i
t/n, as before.

We bound the expected evolution of Γt over time, depending on the learning rate, number
of local steps, quantization parameter and the bound provided by the assumption on the

84

5.5. The Complete Analysis

stochastic gradients (the bound M2). The critical point is that the upper bound on the
expectation of Γt does not depend on the number of interactions t. More precisely, if all the
above hyper-parameters are constant, we get that E[Γ(t)] = O(n). Our approach brings over
tools from classic load-balancing [BFH09], to the multi-dimensional case.

Three key elements of novelty in our case are that (1) for us the load balancing process is
dynamic, in the sense that new loads, i.e. gradients, get continually added; (2) the load-
balancing process we consider is multi-dimensional, whereas usually the literature considers
simple scalar weights; (3) the models can be outdated and quantized, which leads to a complex,
noisy load-balancing process. We resolve the this third and most challenging issue by using
carefully-defined auxiliary potentials.

Removing the Second-Moment Bound. Upon reflection, we notice that can render the
dependency on M2 negligible if we do not use quantization, but otherwise keep the algorithm
the same:

Corollary 5.4.2 Given the previous assumptions and learning rate η = n/
√
T , for some

constant C, we have that the Algorithm 11 where quantization is the identity converges at
rate

1
T

T−1∑
t=0

E ‖∇f(µt)‖2 ≤ 2(f(µ0)− f(x∗))
H
√
T

+ 6(σ2 + 6Hς2)√
T

+ Cn2ρ3
maxH

2L2M2

Tρminλ2
2

.

Notice that in this case all the term containing the second moment bound M2 is dampened
by a factor of 1

T
, hence we can assume that Algorithm 11 converges at close-to optimal rate

O
(

2(f(µ0)−f(x∗))
H
√
T

+ 6H(σ2+6ς2)√
T

)
. This result still improves upon previous analyses [LZZL18,

ALBR18, LDS20] in the sense that communication is completely non-blocking (there is no τ),
and we allow for local steps.

5.5 The Complete Analysis

5.5.1 Technical Lemmas on Load Balancing and Graph Properties
In this section provide the useful lemmas which will help as in the later sections.

We are given a simple undirected graph G, with n nodes (for convenience we number them
from 1 to n) and edge set E(G). Let ρi be a degree of vertex i and let ρi be a set of
neighbours of i (|ρi| = ρi). Also, we assume that the largest degree among nodes is ρmax and
the smallest degree is ρmin.

Each node i of graph G keeps a local vector model X i
t ∈ Rd (t is the number of interactions

or steps); let Xt = (X1
t , X

2
t , ..., X

n
t) be the vector of local models at step t.

Let µt = ∑n
i=1 X

i
t/n be the average of models at step t and let Γt = ∑n

i=1 ‖X i
t − µt‖2 be a

potential at time step t.

Let L be the Laplacian matrix of G and let let λ2 be a second smallest eigenvalue of L. For
example, if G is a complete graph λ2 = n. In general we have that

λ2 ≤ 2ρmax. (5.6)

First we restate the following lemma from [GM96]:

85

5. Asynchronous Decentralized SGD with Quantized and Local Updates

Lemma 5.5.1
λ2 = min

v=(v1,v2,...,vn)

{
vTLv
vTv

|
n∑
i=1

vi = 0
}
.

Now, we show that Lemma 5.5.1 can be used to lower bound ∑(i,j)∈E(G) ‖X i
t −X

j
t ‖2:

Lemma 5.5.2 ∑
(i,j)∈E(G)

‖X i
t −X

j
t ‖2 ≥ λ2

n∑
i=1
‖X i

t − µt‖2 = λ2Γt.

Proof. Observe that∑
(i,j)∈E(G)

‖X i
t −X

j
t ‖2 =

∑
(i,j)∈E(G)

‖(X i
t − µt)− (Xj

t − µt)‖2. (5.7)

Also, notice that Lemma 5.5.1 means that for every vector v = (v1, v2, ..., vn) such that∑n
i=1 vi = 0, we have: ∑

(i,j)∈E(G)
(vi − vj)2 ≥ λ2

n∑
i=1

v2
i .

Since ∑n
i=1(X i

t − µt) is a 0 vector, we can apply the above inequality to the each of d
components of the vectors X1

t − µt, X
2
t − µt, ..., X

n
t − µt separately, and by elementary

properties of 2-norm we prove the lemma.

Let ρi be a degree of vertex i; we denote largest degree among nodes by ρmax and the smallest
degree by ρmin.

�

5.5.2 Notation and Auxiliary Potential Functions
Recall that t − τ it is the last time i was chosen as initiator up to and including step t. We
would like to emphasize that τ it is a random variable and we do not make any additional
assumptions about it. Initially, τ i0 = 0 for every i. Then, if node i is chosen as initiator at step
t+ 1 we have that

τ it+1 = 0 (5.8)
and for each

τ jt+1 = τ jt + 1. (5.9)
Next, we provide the formal definition of the local steps performed by our algorithms. Recall
that X i

t is a local model of node i at step t. Let H i
t be the number of local steps node i

performs in the case when it is chosen for interaction at step t+ 1. A natural case is for H i
t

to be fixed throughout the whole algorithm, that is: for each time step t and node i, H i
t = H

(or alternatively we might to try that H i
t can be a geometric r.v with mean H).
h̃0
i (X i

t) = 0.
and for 1 ≤ q ≤ H i

t let:

h̃qi (X i
t) = g̃i(X i

t −
q−1∑
s=0

ηh̃si (X i
t)),

Note that stochastic gradient is recomputed at each step, but we omit the superscript for
local step and global step for simplicity (Whenever we write g̃i, we mean that gradient

86

5.5. The Complete Analysis

is computed freshly by choosing sample u.a.r from the data available to node i). that is:
h̃q,ti (X i

t) = g̃q,ti (X i
t −

∑q−1
s=0 ηh̃

s,t
i (X i

t)). Further , for 1 ≤ q ≤ H i
t , let

hqi (X i
t) = E[g̃i(X i

t −
q−1∑
s=0

ηh̃si (X i
t))] = ∇f(X i

t −
q−1∑
s=0

ηh̃si (X i
t))

be the expected value of h̃qi (X i
t) taken over the randomness of the stochastic gradient g̃i. Let

h̃i(X i
t) be the sum of H i

t local stochastic gradients we computed:

h̃i(X i
t) =

Hi
t∑

q=1
h̃qi (X i

t).

In summary, omitting local step number q means that we compute the sum of all generated
gradients (this is the entire update during compute). and omitting tilde sign, means that we
compute expectation over the randomness of the samples.
Similarly, for simplicity we avoid using index t in the left side of the above definition, since it
is clear that if the local steps are applied to model X i

t we compute them in the case when
node i is chosen as initiator at step t+ 1.
In the case of outdated models this means that

h̃i(X̂ i
t) = h̃

t−τti
i (Xt−τti)

Potential Functions. In order to deal with asynchrony we define the potential function:
Γ̂t = ∑n

i=1 ‖X̂ i
t − µt‖2. This potential helps us to measure how far are the outdated models

from the current average. In order to bound Γ̂t in expectation, we will need additional auxiliary
potential functions:

At =
n∑
i=1
‖Xt−τti − µt−τti‖

2

Bt =
n∑
i=1
‖µt − µt−τti‖

2

Notice that by definition of X̂ i
t and Couchy-Schwarz inequality we get that

Γ̂t ≤ 2At + 2Bt. (5.10)

5.5.3 Properties of Local Steps

Lemma 5.5.3 For any agent i and step t
E ‖h̃i(X i

t)‖2 ≤ 2H2M2.

Proof.

E ‖h̃i(X i
t)‖2 =

∞∑
K=1

Pr[H i
t = K]E ‖

K∑
q=1

h̃qi (X i
t)‖2

Cauchy−Schwarz
≤

∞∑
K=1

Pr[H i
t = K]K

K∑
q=1

E ‖h̃qi (X i
t)‖2

(5.4)
≤

∞∑
K=1

Pr[H i
t = K]K2M2 ≤ 2H2M2.

Where in the last step we used
∞∑
K=1

Pr[H i
t = K]K2 = E[(H i

t)2] = 2H2 −H ≤ 2H2.

�

87

5. Asynchronous Decentralized SGD with Quantized and Local Updates

Lemma 5.5.4 For any agent 1 ≤ i ≤ n, number of local steps 1 ≤ K and step t, we have
that

E ‖
K∑
q=1

h̃qi (X̂ i
t)‖2 ≤ Kσ2 + 6L2K E ‖X̂ i

t − µt‖2 + η2L2K2(K + 1)(2K + 1)M2

+ 3K2 E ‖∇fi(µt)−∇f(µt)‖2 + 3K2 E ‖∇f(µt)‖2.

Proof.

E ‖
K∑
q=1

h̃qi (X̂ i
t)‖2

(5.2)
≤ (Kσ2 + E ‖

K∑
q=1

hqi (X̂ i
t)‖2) = Kσ2 + E

∥∥∥∥ K∑
q=1
∇fi(X̂ i

t −
q−1∑
s=0

ηh̃si (X̂ i
t))
∥∥∥∥2

Cauchy−Schwarz
≤ Kσ2 +

K∑
q=1

K E

∥∥∥∥∥∥
(
∇fi(X̂ i

t −
q−1∑
s=0

ηh̃si (X̂ i
t))−∇fi(µt)

)

+∇fi(µt)−∇f(µt) +∇f(µt)

∥∥∥∥∥∥
2

Cauchy−Schwarz
≤ Kσ2 + 3K

K∑
q=1

E

∥∥∥∥∥∥∇fi(X̂ i
t −

q−1∑
s=0

ηh̃si (X̂ i
t))−∇fi(µt)

∥∥∥∥∥∥
2

+ 3K2 E ‖∇fi(µt)−∇f(µt)‖2 + 3K2 E ‖∇f(µt)‖2

Cauchy−Schwarz,(5.1)
≤ Kσ2 + 3L2K

K∑
q=1

E

∥∥∥∥∥∥X̂ i
t −

q−1∑
s=0

ηh̃si (X̂ i
t)− µt

∥∥∥∥∥∥
2

+ 3K2 E ‖∇fi(µt)−∇f(µt)‖2 + 3K2 E ‖∇f(µt)‖2

Cauchy−Schwarz
≤ Kσ2 + 6L2K E ‖X̂ i

t − µt‖2 + 6η2L2K
K∑
q=1

E

∥∥∥∥∥∥
q−1∑
s=0

h̃si (X̂ i
t))

∥∥∥∥∥∥
2

+ 3K2 E ‖∇fi(µt)−∇f(µt)‖2 + 3K2 E ‖∇f(µt)‖2

To finish the proof, we need to upper bound ∑K
q=1 E

∥∥∥∥∥∥∑q−1
s=0 h̃

s
i (X̂ i

t))

∥∥∥∥∥∥
2

:

K∑
q=1

E

∥∥∥∥∥∥
q−1∑
s=0

h̃si (X̂ i
t))

∥∥∥∥∥∥
2
Cauchy−Schwarz

≤
K∑
q=1

q

 q−1∑
s=0

E
∥∥∥∥h̃si (X̂ i

t))
∥∥∥∥2


(5.4)
≤

K∑
q=1

q2M2 = K(K + 1)(2K + 1)M2/6.

�

Next, we sum up the upper bound given by the above lemma and take the randomness of the
number local steps into the account:

Lemma 5.5.5 For any step t, we have that
n∑
i=1

E ‖h̃i(X̂ i
t)‖2 ≤ nHσ2 + 6L2H E[Γ̂t] + 144nη2L2H4M2 + 6nH2ς2 + 6nH2 E ‖∇f(µt)‖2.

88

5.5. The Complete Analysis

Proof. Using lemma 5.5.4
n∑
i=1

E ‖h̃i(X̂ i
t)‖2 =

n∑
i=1

∞∑
K=1

Pr[H i
t−τ it

= K]E ‖
K∑
q=1

h̃qi (X̂ i
t)‖2

≤
n∑
i=1

∞∑
K=1

Pr[H i
t−τ it

= K]
Kσ2 + 6L2K E ‖X̂ i

t − µt‖2

+ η2L2K2(K + 1)(2K + 1)M2

+ 3K2 E ‖∇fi(µt)−∇f(µt)‖2

+ 3K2 E ‖∇f(µt)‖2


Notice that ∑∞K=1 Pr[H i

t−τ it
= K]K = H, by the definition of expectation. Also,

∞∑
K=1

Pr[H i
t−τ it

= K]K2 = E[(H i
t)2] ≤ 2H2

and
∞∑
K=1

Pr[H i
t−τ it

= K]K2(K + 1)(2K + 1) ≤ 6
∞∑
K=1

Pr[H i
t−τ it

= K]K4

= 6E[(H i
t)4] ≤ 144H4.

Thus we get that:
n∑
i=1

E ‖h̃i(X̂ i
t)‖2 ≤

n∑
i=1

Hσ2 + 6L2K E ‖X̂ i
t − µt‖2 + 36η2L2H3M2

+ 6H2 E ‖∇fi(µt)−∇f(µt)‖2

+ 6H2 E ‖∇f(µt)‖2


≤ nHσ2 + 6L2H E[Γ̂t] + 144nη2L2H4M2 + 6nH2ς2 + 6nH2 E ‖∇f(µt)‖2.

Where in the last step we used the definition of Γ̂t and (5.3). �

Lemma 5.5.6 For any local step 1 ≤ q, and agent 1 ≤ i ≤ n and step t:
E ‖∇fi(µt)− hqi (X̂ i

t)‖2 ≤ 2L2 E ‖X̂ i
t − µt‖2 + 2L2η2q2M2.

Proof.

E ‖∇fi(µt)− hqi (X̂ i
t)‖2 = E ‖∇fi(µt)−∇fi(X̂ i

t −
q−1∑
s=0

ηh̃si (X̂ i
t))‖2

(5.1)
≤ L2 E ‖µt −X i

t +
q−1∑
s=0

ηh̃si (X̂ i
t))‖2

Cauchy−Schwarz
≤ 2L2 E ‖X̂ i

t − µt‖2 + 2L2η2 E ‖
q−1∑
s=0

h̃si (X̂ i
t)‖2.

Cauchy−Schwarz
≤ 2L2 E ‖X̂ i

t − µt‖2 + 2L2η2q
q−1∑
s=0

E ‖h̃si (X̂ i
t)‖2

Cauchy−Schwarz
≤ 2L2 E ‖X̂ i

t − µt‖2 + 2L2η2q2M2.

�

89

5. Asynchronous Decentralized SGD with Quantized and Local Updates

Lemma 5.5.7 For any time step t.
n∑
i=1

E〈∇f(µt),−hi(X̂ i
t)〉 ≤ 2HL2 E[Γ̂t]−

3Hn
4 E ‖∇f(µt)‖2 + 12H3nL2M2η2.

Proof.
n∑
i=1

E〈∇f(µt),−hi(X̂ i
t)〉 =

n∑
i=1

∞∑
K=1

Pr[H i
t−τ it

= K]E〈∇f(µt),−
K∑
q=1

hqi (X̂ i
t)〉

=
n∑
i=1

∞∑
K=1

Pr[H i
t−τ it

= K]
K∑
q=1

(
E〈∇f(µt),∇fi(µt)− hqi (X̂ i

t)〉 − E〈∇f(µt),∇fi(µt)〉

Using Young’s inequality we can upper bound E〈∇f(µt),∇fi(µt)− hqi (X̂ i
t)〉 by

E ‖∇f(µt)‖2

4 + E
∥∥∥∥∇fi(µt)− hqi (X̂ i

t)
∥∥∥∥2
.

Plugging this in the above inequality we get:

n∑
i=1

E〈∇f(µt),−hi(X̂ i
t)〉

≤
n∑
i=1

∞∑
K=1

Pr[H i
t−τ it

= K]
K∑
q=1

(
E ‖∇f(µt)− hqi (X̂ i

t)‖2

+ E ‖∇f(µt)‖2

4 − E〈∇f(µt),∇fi(µt)〉
)

Lemma 5.5.6
≤

n∑
i=1

∞∑
K=1

Pr[H i
t−τ it

= K]
K∑
q=1

(
2L2 E ‖X̂ i

t − µt‖2 + 2L2η2q2M2

+ E ‖∇f(µt)‖2

4 − E〈∇f(µt),∇fi(µt)〉
)

=
n∑
i=1

∞∑
K=1

Pr[H i
t−τ it

= K]K
(

2L2 E ‖µt − X̂ i
t‖2 + E ‖∇f(µt)‖2

4 − E〈∇f(µt),∇fi(µt)〉
)

+
n∑
i=1

∞∑
K=1

Pr[H i
t−τ it

= K]K(K + 1)(2K + 1)L2M2η2/3

To finish the proof we upper bound the above two terms on the right hand side. Note that:
n∑
i=1

∞∑
K=1

Pr[H i
t−τt = K]K

(
2L2 E ‖µt − X̂ i

t‖2 + E ‖∇f(µt)‖2

4 − E〈∇f(µt),∇fi(µt)〉
)

=
n∑
i=1

H
(

2L2 E ‖µt − X̂ i
t‖2 + E ‖∇f(µt)‖2

4 − E〈∇f(µt),∇fi(µt)〉
)

= H
(

2L2 E[Γ̂t]−
3nE ‖∇f(µt)‖2

4

)
Where in the last step we used that ∑n

i=1
fi(x)
n

= f(x), for any vector x. Also:
n∑
i=1

∞∑
K=1

Pr[H i
t−τ it

= K]K(K + 1)(2K + 1)L2M2η2/3

≤
n∑
i=1

∞∑
u=1

Pr[H i
t−τt = K]2K3L2M2η2

≤ 12H3nL2M2η2.

90

5.5. The Complete Analysis

Where in the last step we used (Recall that H i
t−τi is a geometric random variable with mean

H):
∞∑
K=1

Pr[H i
t−τi = K]K3 = E[(H i

t−τi)
3] ≤ 6H3.

�

5.5.4 Upper Bounding Potential Functions

We proceed by proving the following lemma which upper bounds the expected change in
potential:

Lemma 5.5.8 For any time step t we have:

E[Γt+1] ≤
(

1− λ2

2nρmax

)
E[Γt] + 20ρ2

max

ρminλ2
(R2 + 7)2ε2 +

∑
i

24ρ2
maxη

2

ρminλ2n
E ‖h̃i(X̂ i

t)‖2.

Proof. First we bound change in potential ∆t = Γt+1 − Γt for some fixed time step t > 0.

For this, let ∆i,j
t be the change in potential when agent i wakes up (is chosen as initiator)

and chooses neighbouring agent j for interaction. Let Sit = −ηh̃i(X̂ i
t) + Q(Xi

t)−Xi
t

2 + Q(Xj
t)−Xj

t

2

and Sjt = Q(Xi
t)−Xi

t

2 + Q(Xj
t)−Xj

t

2 . We have that:

X i
t+1 = X i

t +Xj
t

2 + Sit .

Xj
t+1 = X i

t +Xj
t

2 + Sjt .

µt+1 = µt + Sit + Sjt
n

.

This gives us that:

X i
t+1 − µt+1 = X i

t +Xj
t

2 + n− 1
n

Sit −
1
n
Sjt − µt.

X i
t+1 − µt+1 = X i

t +Xj
t

2 + n− 1
n

Sjt −
1
n
Sit − µt.

For k 6= i, j we get that

Xk
t+1 − µt+1 = Xk

t −
1
n

(Sit + Sjt)− µt.

91

5. Asynchronous Decentralized SGD with Quantized and Local Updates

Hence:

∆i,j
t =

∥∥∥∥X i
t +Xj

t

2 + n− 1
n

Sit −
1
n
Sjt − µt

∥∥∥∥2
−
∥∥∥∥X i

t − µt
∥∥∥∥2

+
∥∥∥∥X i

t +Xj
t

2 + n− 1
n

Sjt −
1
n
Sit − µt

∥∥∥∥2
−
∥∥∥∥Xj

t − µt
∥∥∥∥2

+
∑
k 6=i,j

(∥∥∥∥Xk
t −

1
n

(Sit + Sjt)− µt‖2 −
∥∥∥∥Xk

t − µt
∥∥∥∥2)

= 2
∥∥∥∥X i

t − µt
2 + Xj

t − µt
2

∥∥∥∥2
−
∥∥∥∥X i

t − µt
∥∥∥∥2
−
∥∥∥∥Xj

t − µt
∥∥∥∥2

+
〈
X i
t − µt +Xj

t − µt,
n− 2
n

Sit + n− 2
n

Sjt

〉
+
∥∥∥∥n− 1

n
Sit −

1
n
Sjt

∥∥∥∥2
+
∥∥∥∥n− 1

n
Sjt −

1
n
Sit

∥∥∥∥2

+
∑
k 6=i,j

2
〈
Xk
t − µt,−

1
n

(Sit + Sjt)
〉

+
∑
k 6=i,j

(1
n

)2‖Sit + Sjt ‖2.

Observe that:
n∑
k=1

〈
Xk
t − µt,−

1
n

(Sit + Sjt)
〉

= 0.

After combining the above two equations, we get that:

∆i,j
t = −‖X

i
t −X

j
t ‖2

2 +
〈
X i
t − µt +Xj

t − µt, Sit + Sjt

〉
+ n− 2

n2

∥∥∥∥Sit + Sjt

∥∥∥∥2
+
∥∥∥∥n− 1

n
Sit −

1
n
Sjt

∥∥∥∥2
+
∥∥∥∥n− 1

n
Sjt −

1
n
Sit

∥∥∥∥2

Cauchy-Schwarz
≤ −‖X

i
t −X

j
t ‖2

2 +
〈
X i
t − µt +Xj

t − µt, Sit + Sjt

〉
+ 2

(
n− 2
n2 + 1

n2 + (n− 1)2

n2

)(
‖Sit‖2 + ‖Sjt ‖2

)

≤ −‖X
i
t −X

j
t ‖2

2 +
〈
X i
t − µt +Xj

t − µt, Sit + Sjt

〉
+ 2

(
‖Sit‖2 + ‖Sjt ‖2

)
.

Let α be a parameter we will fix later:

〈
X i
t − µt +Xj

t − µt, Sit + Sjt

〉 Young
≤ α

∥∥∥∥X i
t − µt +Xj

t − µt‖2 +

∥∥∥∥Sit + Sjt

∥∥∥∥2

4α

Cauchy-Schwarz
≤ 2α

∥∥∥∥X i
t − µt

∥∥∥∥2
+ 2α

∥∥∥∥Xj
t − µt

∥∥∥∥2
+

∥∥∥∥Sit∥∥∥∥2
+
∥∥∥∥Sjt ∥∥∥∥2

2α

≤ 2α
∥∥∥∥X i

t − µt
∥∥∥∥2

+ 2α
∥∥∥∥Xj

t − µt
∥∥∥∥2

+ ‖S
i
t‖2 + ‖Sjt ‖2

2α .

92

5.5. The Complete Analysis

Finally, by combining the above two inequalities we get that

∆i,j
t ≤ −

‖X i
t −X

j
t ‖2

2 +
〈
X i
t − µt +Xj

t − µt, Sit + Sjt

〉
+ 2

(
n− 2
n2 + 1

n2 + (n− 1)2

n2

)(
‖Sit‖2 + ‖Sjt ‖2

)

≤ −‖X
i
t −X

j
t ‖2

2 + 2α
∥∥∥∥X i

t − µt
∥∥∥∥2

+ 2α
∥∥∥∥Xj

t − µt
∥∥∥∥2

+ (2 + 1
2α)

(
‖Sit‖2 + ‖Sjt ‖2

)
.

Using definitions of Sit and Sjt , Cauchy-Schwarz inequality and properties of quantization we
get that

‖Sit‖2 ≤ 3η2‖h̃i(X̂ i
t)‖2 + 3‖Q(X i

t)−X i
t‖2

4 + 3‖Q(Xj
t)−Xj

t ‖2

4

≤ 3η2‖h̃i(X̂ i
t)‖2 + 3(R2 + 7)ε2

2 .

‖Sjt ‖2 ≤ ‖Q(X i
t)−X i

t‖2

2 + ‖Q(Xj
t)−Xj

t ‖2

2 ≤ (R2 + 7)ε2.

Next, we plug this in the previous inequality:

∆i,j
t ≤ −

‖X i
t −X

j
t ‖2

2 + 2α
∥∥∥∥X i

t − µt
∥∥∥∥2

+ 2α
∥∥∥∥Xj

t − µt
∥∥∥∥2

+ (2 + 1
2α)

(5(R2 + 7)ε2
2 + 3η2‖h̃i(X̂ i

t)‖2
)
.

Next, we calculate probability of choosing edges from graph and upper bound ∆t in expectation,
for this we define Et as expectation conditioned on the entire history up to and including step
t

Et[∆t] =
∑
i

∑
j∈ρi

1
nρi

Et[∆i,j
t]

≤
∑
i

∑
j∈ρi

1
nρi

− ‖X i
t −X

j
t ‖2

2 + 2α
∥∥∥∥X i

t − µt
∥∥∥∥2

+ 2α
∥∥∥∥Xj

t − µt
∥∥∥∥2

+ (2 + 1
2α)

(5(R2 + 7)ε2
2 + 3η2 Et ‖h̃i(X̂ i

t)‖2
)

= −
∑
i

∑
j∈ρi

‖X i
t −X

j
t ‖2

2nρi

+
∑
i

1
n

(1 +
∑
j∈ρi

1
ρj

)2α
∥∥∥∥X i

t − µt
∥∥∥∥2

+ (5 + 5
4α)(R2 + 7)ε2

+
∑
i

∑
j∈ρi

1
nρi

(6 + 3
2α)η2 Et ‖h̃i(X̂ i

t)‖2

93

5. Asynchronous Decentralized SGD with Quantized and Local Updates

Now, we use the upper and lower bounds on the degree of vertices

Et[∆t] ≤ −
∑
i

∑
j∈ρi

‖X i
t −X

j
t ‖2

2nρmax

+
∑
i

1
n

(1 +
∑
j∈ρi

1
ρmin

)2α
∥∥∥∥X i

t − µt
∥∥∥∥2

+ (5 + 5
4α)(R2 + 7)ε2

+
∑
i

∑
j∈ρi

1
nρi

(6 + 3
2α)η2 Et ‖h̃i(X̂ i

t)‖2

≤ −
∑

(i,j)∈E(G)

‖X i
t −X

j
t ‖2

nρmax

+
∑
j

ρmax
ρminn

4α
∥∥∥∥Xj

t − µt
∥∥∥∥2

+ (5 + 5
4α)(R2 + 7)ε2

+
∑
i

1
n

(6 + 3
2α)η2 Et ‖h̃i(X̂ i

t)‖2

Now, we use lemma 5.5.2:
Et[∆t] ≤ −

∑
(i,j)∈E(G)

λ2Γt
nρmax

+ 4αΓtρmax
ρminn

+ (5 + 5
4α)(R2 + 7)ε2 +

∑
i

1
n

(6 + 3
2α)η2 Et ‖h̃i(X̂ i

t)‖2.

By setting α = λ2
8ρ2
max

, we get that:

Et[∆t] ≤ −
λ2Γt

2nρmax

+ (5 + 10 ρ2
max

ρminλ2
)Sit +

n∑
i=1

(6 + 12 ρ2
max

ρminλ2
)η2 Et ‖h̃i(X̂ i

t)‖2.

Next we remove the conditioning , and use the definitions of ∆i and Sit (for Sit we also use
upper bound which come from the properties of quantization).

E[Et[Γt+1]] = E[∆t + Γt]

≤
(

1− λ2

2nρmax

)
E[Γt] + (5 + 10 ρ2

max

ρminλ2
)(R2 + 7)2ε2

+
n∑
i=1

(6 + 12 ρ2
max

ρminλ2
)η2 E ‖h̃i(X̂ i

t)‖2.

Finally, we get the proof of the lemma after using ρ2
max

ρminλ2
≥ 1

2 (See (5.6)) and regrouping
terms. �

This allows us to upper bound the potential in expectation for any step t.

Lemma 5.5.9
E[Γt] ≤

40nρ3
max

ρminλ2
2

(R2 + 7)2ε2 + 96nρ3
max

ρminλ2
2
H2M2η2.

Proof. We prove by using induction. Base case t = 0 trivially holds. For an induction step
step we assume that E[Γt] ≤ 40nρ3

max

ρminλ2
2

(R2 + 7)2ε2 + 96nρ3
max

ρminλ2
2
H2M2η2. We get that :

94

5.5. The Complete Analysis

E[Γt+1] ≤
(

1− λ2

2nρmax

)
E[Γt] + 20ρ2

max

ρminλ2
(R2 + 7)2ε2 +

∑
i

24ρ2
max

ρminλ2n
E ‖h̃i(X̂ i

t)‖2

Lemma 5.5.3
≤

(
1− λ2

2nρmax

)
E[Γt] + 20ρ2

max

ρminλ2
(R2 + 7)2ε2 + 48ρ2

maxη
2

ρminλ2
H2M2

≤
(

1− λ2

2nρmax

)(40ρ3
max

ρminλ2
2

(R2 + 7)2ε2 + 96ρ3
max

ρminλ2
2
H2M2η2

)

+ 20ρ2
max

ρminλ2
(R2 + 7)2ε2 + 48ρ2

maxη
2

ρminλ2
H2M2

= 40nρ3
max

ρminλ2
2

(R2 + 7)2ε2 + 96nρ3
max

ρminλ2
2
H2M2η2.

�

Lemma 5.5.10 For any time step t:
E[At+1] ≤ (1− 1

n
)E[At] + 1

n
E[Γt+1].

Proof. Recall that if node i is chosen as initiator at step t, then for each j 6= i,
X̂j

t+1−τ jt+1
− µt+1−τ jt+1

= X̂j

t−τ jt
− µj−τ jt ,

since τ jt+1 = τ jt + 1 and
X̂ i
t+1−τ it+1

− µt+1−τ it+1
= X i

t+1 − µt+1,

since τ it+1 = 0 (see equations (5.8) and (5.9)). Thus, if Et is expectation conditioned on the
entire history up to and including step t then

Et[At+1 − At] =
n∑
i=1

1
n

Et ‖X i
t+1 − µt+1‖2 − ‖X̂ i

i−τ it
− µi−τ it‖


= 1
n
Et[Γt+1]− 1

n
At.

After removing conditioning and regrouping terms we get the proof of the lemma. �

Next, we upper bound At in expectation

Lemma 5.5.11 For any time step t:

E[At] ≤
40nρ3

max

ρminλ2
2

(R2 + 7)2ε2 + 96nρ3
max

ρminλ2
2
H2M2η2.

Proof. By combining Lemmas 5.5.9 and 5.5.10 we get that:

E[At+1] ≤ (1− 1
n

)At + 40ρ3
max

ρminλ2
2

(R2 + 7)2ε2 + 96ρ3
max

ρminλ2
2
H2M2η2

and the proof follows by using the same type of induction as in the proof of Lemma 5.5.9

�

Next we provide two different versions of upper bounding E ‖µt+1 − µt‖2, the first one will be
useful for upper bounding E[Bt] and the second one will be used in the proof of convergence
for SwarmSGD.

95

5. Asynchronous Decentralized SGD with Quantized and Local Updates

Lemma 5.5.12 For any time step t:

E ‖µt+1 − µt‖2 ≤ 6(R2 + 7)2ε2 + 6η2H2M2

n2 .

Proof. Let i be the agent which is chosen as initiator at step t+ 1 and let j be the neighbour
it selected for interaction, also let Et be expectation which is condition on the entire history
up to and including step t We have that

Et‖µt+1 − µt‖2 = 1
n2 Et

∥∥∥∥Q(X i
t)−X i

t +Q(Xj
t −Xj

t − ηh̃i(X̂ i
t)
∥∥∥∥2

Cauchy−Schwarz
≤ 3

n2 Et
∥∥∥∥Q(X i

t)−X i
t‖+ 3

n2Et

∥∥∥∥Q(Xj
t)−Xj

t

∥∥∥∥2
+ 3η2

n2 Et
∥∥∥∥h̃i(X̂ i

t)
∥∥∥∥2

≤ 6(R2 + 7)2ε2 + 6η2H2M2

n2 .

Where in the last step we used property of quantization and Lemma 5.5.3. Since this upper
bound holds for any agents i and j, after removing the conditioning, we get the proof of the
lemma. �

Lemma 5.5.13 For any step t

E ‖µt+1 − µt‖2 ≤ 6(R2 + 7)2ε2

n2 + 3η2Hσ2

n2 + 18η2L2H E[Γ̂t]
n3 + 432η4L2H4M2

n2

+ 18η2H2ς2

n2 + 18η2H2 E ‖∇f(µt)‖2

n2 .

Proof. Following the same steps as the proof of Lemma 5.5.12 and taking the randomness of
agents i (the initiator) and j interacting at step t+ 1 in to the account we get that

E ‖µt+1 − µt‖2 ≤
n∑
i=1

∑
j∈ρi

1
n3ρi

3E
∥∥∥∥Q(X i

t)−X i
t

∥∥∥∥+ 3E
∥∥∥∥Q(Xj

t)−Xj
t

∥∥∥∥2

+ 3η2 E
∥∥∥∥h̃i(X̂ i

t)
∥∥∥∥2


≤ 6(R2 + 7)2ε2

n2 + 3η2

n3

n∑
i=1

E ‖h̃i(X̂ i
t)‖2

Lemma 5.5.5
≤ 6(R2 + 7)2ε2

n2 + 3η2

n3

(
nHσ2 + 6L2H E[Γ̂t] + 144nη2L2H4M2

+ 6nH2ς2 + 6nH2 E ‖∇f(µt)‖2
)

= 6(R2 + 7)2ε2

n2 + 3η2Hσ2

n2 + 18η2L2H E[Γ̂t]
n3 + 432η4L2H4M2

n2

+ 18η2H2ς2

n2 + 18η2H2 E ‖∇f(µt)‖2

n2 .

�

Our next goal is to upper bound E[Bt], for which we will need the following lemma:

Lemma 5.5.14 For any time step t and agent i:

E ‖µt − µt−τ it‖
2 ≤

E[(τ it)2]
(

6(R2 + 7)2ε2 + 6η2H2M2
)

n2 .

96

5.5. The Complete Analysis

Proof. Let Eτ it be an expectation which is conditioned on τ it

Eτi ‖µt − µt−τ it‖
2 = Eτ it

∥∥∥∥ t−1∑
s=t−τ it

(
µs+1 − µs

)∥∥∥∥2 Cauchy−Schwarz
≤ τ it

t−1∑
s=t−τ it

Eτ it ‖µs+1 − µs‖2.

Note that for any t−τ it ≤ s ≤ t−1 we can use Lemma 5.5.12 to upper bound Eτ it ‖µs+1−µs‖2,
since it uses quantization property and Lemma 5.5.3 (which in turn uses (5.4) and the
randomness of the number of local steps) which do not depend on τ it . In fact, as proof of
Lemma 5.5.12 suggests, for any t− τ it ≤ s ≤ t− 1, we could condition E ‖µs+1 − µs‖2 on
the entire history up to and including step s (this history includes τ it as well) and the upper
bound would still hold. Thus, we get that

Eτ it ‖µt − µt−τ it‖
2 ≤

(τ it)2
(

6(R2 + 7)2ε2 + 6η2H2M2
)

n2 .

Finally we remove the conditioning :

E ‖µt − µt−τ it‖
2 = E[Eτ it ‖µt − µt−τ it‖

2] ≤
E[(τ it)2]

(
6(R2 + 7)2ε2 + 6η2H2M2

)
n2 .

Next, we proceed to prove the following lemma: �

Lemma 5.5.15 For any step t
n∑
i=1

E[(τ it)2] ≤ 5n3. (5.11)

Proof. For a fixed step s, let Es be an expectation conditioned on the entire history up to and
including step s. If agent i is chosen as initiator at step s+ 1 then τ is+1 = 0 and otherwise
τ is+1 = τ is + 1. Since i is chosen with probability 1

n
, we have that

n∑
i=1

Es[(τ is+1)2] =
n∑
i=1

(1− 1
n

)
(

(τ is)2 + 2τ is + 1
)
≤ (1− 1

n
)

n∑
i=1

(τ is)2 + 2
n∑
i=1

τ is + n2

2 .

Where in the last step we used that n ≥ 2.

Also, by using Cauchy-Schwarz inequality we get that(n∑
i=1

τ is

)2
≤ n

(n∑
i=1

(τ is)2
)
↔

n∑
i=1

τ is ≤

√√√√n n∑
i=1

(τ is)2.

Thus,
n∑
i=1

Es[(τ is+1)2] ≤ (1− 1
n

)
n∑
i=1

(τ is)2 + 2
√√√√n n∑

i=1
(τ is)2 + n2

2 .

Next, we remove the conditioning:
n∑
i=1

E[(τ is+1)2] =
n∑
i=1

E[Es[(τ is+1)2]] ≤ (1− 1
n

)
n∑
i=1

E[(τ is)2] + 2E
√√√√n n∑

i=1
(τ is)2 + n2

2

≤ (1− 1
n

)
n∑
i=1

E[(τ is)2] + 2
√√√√n n∑

i=1
E[(τ is)2] + n2

2 .

Where in the last step with use Jensen’s inequality and concavity of square root function.
Finally, we finish the proof of the lemma using induction. Base case holds trivially, for induction

97

5. Asynchronous Decentralized SGD with Quantized and Local Updates

step we assume that ∑n
i=1 E[(τ is+1)2] ≤ 5n3. We have that

n∑
i=1

E[(τ is+1)2] ≤ (1− 1
n

)
n∑
i=1

E[(τ is)2] + 2
√√√√n n∑

i=1
E[(τ is)2] + n2

2

≤ (1− 1
n

)(5n3) + 2
√

5n4 + n2

2 = 5n3 + n2(−5 + 2
√

5 + 1
2) ≤ 5n3.

This finishes the proof of the Lemma. �

Finally, we are ready to upper bound Bt

Lemma 5.5.16 For any step t:
E[Bt] ≤ 5n

(
6(R2 + 7)2ε2 + 6η2H2M2

)
.

Proof. Lemma 5.5.14 gives us that

E[Bt] =
n∑
i=1

E ‖µt − µt−τ it‖
2 ≤

n∑
i=1

E[(τ it)2]
(

6(R2 + 7)2ε2 + 6η2H2M2
)

n2

After applying Lemma 5.5.15 we get the proof of the Lemma. �

The last lemma in this section upper bounds E[Γ̂t]:

Lemma 5.5.17 For any step t, we have that

E[Γ̂t] ≤
200nρ3

max

ρminλ2
2

(R2 + 7)2ε2 + 312nρ3
max

ρminλ2
2
H2M2η2

Proof. From (5.10), and Lemmas 5.5.11 and 5.5.16 we get that

E[Γ̂t] ≤ 2E[At] + 2E[Bt] ≤
80nρ3

max

ρminλ2
2

(R2 + 7)2ε2 + 192nρ3
max

ρminλ2
2
H2M2η2

+ 5n
(

6(R2 + 7)2ε2 + 6η2H2M2
)

≤ 200nρ3
max

ρminλ2
2

(R2 + 7)2ε2 + 312nρ3
max

ρminλ2
2
H2M2η2

Where in the last step we used ρ2
max

ρminλ2
≥ 1

2 (See (5.6)). �

5.5.5 The Convergence of SwarmSGD

Theorem 5.5.18 For learning rate η = n/
√
T , Algorithm 11 converges at rate:

1
T

T−1∑
t=0

E ‖∇f(µt)‖2 ≤ 2(f(µ0)− f(x∗))
H
√
T

+ 6(σ2 + 6Hς2)√
T

+ 1600ρ3
max(R2 + 7)2ε2L2

ρminλ2
2

+ 2496n2ρ3
maxH

2L2M2

Tρminλ2
2

+ 78H2L2M2n2

T
+ 12(R2 + 7)2ε2

√
T

Hn2 .

Proof. Let Et denote expectation conditioned on the entire history up to and including step t.
By L-smoothness we have that

Et[f(µt+1)] ≤ f(µt) + Et〈∇f(µt), µt+1 − µt〉+ L

2 Et ‖µt+1 − µt‖2. (5.12)

98

5.5. The Complete Analysis

First we look at Et〈∇f(µt), µt+1 − µt〉 = 〈∇f(µt),Et[µt+1 − µt]〉. If agent i is chosen as
initiator at step t+ 1 and it picks its neighbour j to interact, We have that

µt+1 − µt = −η
n
h̃i(X̂ i

t)− (X i
t −Q(X i

t))− (Xj
t −Q(Xj

t).

Thus, in this case:
Et[µt+1 − µt] = −η

n
hi(X̂ i

t).

Where we used unbiasedness of quantization and stochastic gradients. We would like to note
that even though we do condition on the entire history up to and including step t and this
includes conditioning on X̂ i

t , the algorithm has not yet used h̃i(X̂ i
t) (it does not count towards

computation of µt), thus we can safely use all properties of stochastic gradients. Hence, we
can proceed by taking into the account that each agent i is chosen as initiator with probability
1
n
:

Et[µt+1 − µt] = −
n∑
i=1

η

n2hi(X̂
i
t).

and subsequently

Et〈∇f(µt), µt+1 − µt〉 =
n∑
i=1

η

n2 Et〈∇f(µt),−hi(X̂ i
t)〉.

Hence, we can rewrite (5.12) as:

Et[f(µt+1)] ≤ f(µt) +
n∑
i=1

η

n2 Et〈∇f(µt),−hi(X̂ i
t)〉+ L

2 Et ‖µt+1 − µt‖2.

Next, we remove the conditioning

E[(µt+1)] = E[Et[f(µt+1)]] ≤ E[f(µt)] +
n∑
i=1

η

n2 E〈∇f(µt),−hi(X̂ i
t)〉+ L

2 E ‖µt+1 − µt‖2.

This allows us to use Lemmas 5.5.13 and 5.5.7:

E[f(µt+1)]− E[f(µt)] ≤
2ηHL2 E[Γ̂t]

n2 − 3Hη
4n E ‖∇f(µt)‖2 + 12H3L2M2η3

n

+ 6(R2 + 7)2ε2

n2 + 3η2Hσ2

n2

+ 18η2L2H E[Γ̂t]
n3 + 432η4L2H4M2

n2

+ 18η2H2ς2

n2 + 18η2H2 E ‖∇f(µt)‖2

n2 .

To simplify the above inequality we assume that η ≤ 1
8H and also use the fact that n ≥ 2.

We get:

E[f(µt+1)]− E[f(µt)] ≤
4ηHL2 E[Γ̂t]

n2 − Hη

2n E ‖∇f(µt)‖2 + 39H3L2M2η3

n

+ 6(R2 + 7)2ε2

n2 + 3η2H(σ2 + 6Hς2)
n2 .

Here, important thing is that we used 18η2H2 E ‖∇f(µt)‖2

n2 − Hη E ‖∇f(µt)‖2

4n ≤ 0.

Further, we use Lemma 5.5.17:

99

5. Asynchronous Decentralized SGD with Quantized and Local Updates

E[f(µt+1)]− E[f(µt)] ≤
4ηHL2

200nρ3
max

ρminλ2
2

(R2 + 7)2ε2 + 312nρ3
max

ρminλ2
2
H2M2η2


n2

− Hη

2n E ‖∇f(µt)‖2 + 39H3L2M2η3

n

+ 6(R2 + 7)2ε2HL2

n2 + 3η2H(σ2 + 6Hς2)
n2

= 800ηρ3
max(R2 + 7)2ε2HL2

nρminλ2
2

+ 1248η3ρ3
maxH

3L2M2

nρminλ2
2

− Hη

2n E ‖∇f(µt)‖2 + 39H3L2M2η3

n

+ 6(R2 + 7)2ε2

n2 + 3η2H(σ2 + 6Hς2)
n2 .

by summing the above inequality for t = 0 to t = T − 1, we get that

E[f(µT)]− f(µ0) ≤ −
T−1∑
t=0

ηH

2n E ‖∇f(µt)‖2 + 3η2H(σ2 + 6Hς2)T
n2

+ 800ηρ3
max(R2 + 7)2ε2HL2T

nρminλ2
2

+ 1248η3ρ3
maxH

3L2M2T

nρminλ2
2

+ 39H3L2M2η3T

n
+ 6(R2 + 7)2ε2T

n2

Next, we regroup terms, multiply both sides by 2n
ηHT

and use the fact that f(µT) ≥ f(x∗):
1
T

T−1∑
t=0

E ‖∇f(µt)‖2 ≤ 2n(f(µ0)− f(x∗))
HηT

+ 6η(σ2 + 6Hς2)
n

+ 1600ρ3
max(R2 + 7)2ε2L2

ρminλ2
2

+ 2496η2ρ3
maxH

2L2M2

ρminλ2
2

+ 78H2L2M2η2 + 12(R2 + 7)2ε2

nηH

Finally, we set η = n√
T
:

1
T

T−1∑
t=0

E ‖∇f(µt)‖2 ≤ 2(f(µ0)− f(x∗))
H
√
T

+ 6(σ2 + 6Hς2)√
T

+ 1600ρ3
max(R2 + 7)2ε2L2

ρminλ2
2

+ 2496n2ρ3
maxH

2L2M2

Tρminλ2
2

+ 78H2L2M2n2

T
+ 12(R2 + 7)2ε2

√
T

Hn2 . (5.13)
�

Proof of Corollary 5.4.2. We get the proof by simply omitting quantization parameters R
and ε from the convergence bound given by the above theorem.

Our next goal is to show how quantization affects the convergence.

First we prove that the probability of quantization failing during the entire run of the algorithm
is negligible.

100

5.5. The Complete Analysis

Lemma 5.5.19 Let T ≥ 10n, then for quantization parameters R = 2 + T
3
d and ε = ηHM

(R2+7)
we have that the probability of quantization never failing during the entire run of the Algorithm
11 is at least 1−O

(
1
T

)
.

Proof. Let Lt be the event that quantization does not fail during step t. Our goal is to show that
Pr[∪Tt=1Lt] ≥ 1−O

(
1
T

)
. In order to do this, we first prove that Pr[¬Lt+1|L1,L2, ...,Lt] ≤

O
(

1
T 2

)
(O is with respect to T here).

Recall that up to this point we always assumed that quantization never fails, and we omitted
conditioning on this event. Next, we rewrite our potential bounds but with the conditioning:
Lemma 5.5.9 gives us that for any step t

E[Γt|L1,L2, ...,Lt] ≤
136nρ3

max

ρminλ2
2

(R2 + 7)2ε2. (5.14)

and Lemma 5.5.17 gives us that

E[Γ̂t|L1,L2, ...,Lt] ≤
512nρ3

max

ρminλ2
2

(R2 + 7)2ε2 (5.15)

Where we also used that (R2 + 7)ε2 = H2η2M2. Recall that quantization can fail because the
distance between the vectors is larger than RRd (In this case we can not even use quantization
algorithm), if the distance is larger than εT 17

R
(In this case a node will not be able to write

enough bits in its own communication buffer), or if quantization algorithm fails itself. First,
we will concentrate on lower bounding probability that the distance between the models is
large. That is, we need need to lower bound probability that :

‖Q(X̂ i
t)−X i

t‖2 ≤ (RRdε)2 (5.16)
‖X̂ i

t − X̂
j
t ‖2 ≤ (RRdε)2 (5.17)

‖X̂ i
t − X̂

j
t ‖2 ≤ ε2T 34

R2 (5.18)

‖Q(X̂j
t)−Xj

t ‖2 ≤ (RRdε)2. (5.19)
We would like to point out that these conditions are necessary for decoding to succeed, we
ignore encoding since it will be counted when someone will try to decode it.

Notice that by using Cauchy-Schwarz we get that
‖Q(X̂ i

t)−X i
t‖2 + ‖X̂ i

t − X̂
j
t ‖2 + ‖Q(X̂j

t)− X̂j
t ‖2

≤ 3‖Q(X̂ i
t)− X̂ i

t‖2 + 3‖X̂ i
t − µt‖2 + 3‖µt −X i

t‖2

+ 2‖X̂ i
t − µt‖2 + 2‖µt − X̂j

t ‖2

+ 3‖Q(X̂j
t)− X̂j

t ‖2 + 3‖X̂j
t − µt‖2 + 3‖µt −Xj

t ‖2

≤ 10Γ̂t + 6Γt + 6(R2 + 7)2ε2.

Since, R = 2 + T
3
d this means that (RRd)2 ≥ 22T 3 ≥ T 34. Hence, to lower bound probability

that (5.16), (5.17), (5.18), (5.19) are be satisfied it is suffices to upper bound the probability
that 10Γ̂t + 6Γt + 6(R2 + 7)2ε2 ≥ T 34ε2

R2 :

101

5. Asynchronous Decentralized SGD with Quantized and Local Updates

For this, we use Markov’s inequality:

Pr
[
(10Γ̂t + 6Γt + 6(R2 + 7)2ε2) ≥ T 34ε2|L1,L2, ...,Lt

]

≤ E[10Γ̂t + 6Γt + 6(R2 + 7)2ε2|L1,L2, ...,Lt]R2

T 34ε2

(5.14),(5.15)
≤

5936nρ3
max

ρminλ2
2

(R2 + 7)2R2ε2 + 6(R2 + 7)2R2ε2

T 34ε2

≤ 1
T 2 .

In the last step we used that T ≥ 10n ≥ 10, R2 +7 ≤ 3R2 ≤ 6T 6 and λ2 ≥ 1
n2 for a connected

graph. Thus, the failure probability due to the models not being close enough for quantization
to be applied is at most O

(
1
T 2

)
. Conditioned on the event that ‖Q(X̂ i

t)−X i
t‖, ‖X̂ i

t − X̂
j
t ‖

and ‖Q(X̂j
t)−Xj

t ‖ are upper bounded by T 17ε (This is what we actually lower bounded the
probability for using Markov), we get that the probability of quantization algorithm failing is
at most

log log(1
ε
‖Q(X̂ i

t)−X i
t‖) ·O(R−d)

+ log log(1
ε
‖X̂ i

t − X̂j
t ‖) ·O(R−d)

+ log log(1
ε
‖Q(X̂j

t)−Xj
t ‖) ·O(R−d) ≤ O

(
log log T
T 3

)
≤ O

(1
T 2

)
.

Note that we do not need to union bound over all choices of i and j, since we have just one
interaction and the above upper bound holds for any i and j. By the law of total probability
(to remove conditioning) and the union bound we get that the total probability of failure,
either due to not being able to apply quantization or by failure of quantization algorithm itself
is at most O

(
1
T 2

)
. Finally we use chain rule to get that

Pr[∪Tt=1Lt] =
T∏
t=1

Pr[Lt| ∪t−1
s=0 Ls] =

T∏
t=1

(
1− Pr[¬Lt| ∪t−1

s=0 Ls]
)

≥ 1−
T∑
t=1

Pr[¬Lt| ∪t−1
s=0 Ls] ≥ 1−O

(1
T

)
.

In the end we would like to emphasize that we could get even better lower bound by scaling
parameter R by constant factor. �

Lemma 5.5.20 Let T ≥ 10n, then for quantization parameters R = 2 + T
3
d and ε = ηHM

(R2+7)
we have that the expected number of bits used by Algorithm 11 per step is

O

(
d log

(
ρ2
max

ρminλ2

))
+O (log T) .

Proof. If the initiator agent i and its neighbour j interact at step t+ 1, Corollary 5.2.1 (Please
see (5.5)) gives us that the total number of bits used is at most

O
(
d log(R

ε
‖X̂ i

t − X̂
j
t ‖)

)
+O

(
d log(R

ε
‖Q(X̂j

t)−Xj
t ‖)

)
+O

(
d log(R

ε
‖Q(X̂j

t)−Xj
t+1‖)

)
.

102

5.5. The Complete Analysis

By taking the randomness of agent interaction at step t+ 1 into the account, we get that the
expected number of bits used is at most:

n∑
i=1

∑
j∈ρi

1
nρi

O(d log(R
ε
‖X̂ i

t − X̂
j
t ‖)

)
+O

(
d log(R

ε
‖Q(X̂j

t)−Xj
t ‖)

)

+O
(
d log(R

ε
‖Q(X̂j

t)−Xj
t+1‖)

). (5.20)

We proceed by upper bounding the first term:
n∑
i=1

∑
j∈ρi

1
nρi

O(d log(R
ε
‖X̂ i

t − X̂
j
t ‖)

) ≤ n∑
i=1

∑
j∈ρi

1
nρi

O(d log(R
2

ε2
‖X̂ i

t − X̂
j
t ‖2)

)
Cauchy−Schwarz

≤
n∑
i=1

∑
j∈ρi

1
nρi

O(d log
(
R2

ε2
(‖X̂ i

t − µt‖2 + ‖X̂j
t − µt‖2)

))
Jensen
≤ O

d log
(
R2

ε2

n∑
i=1

∑
j∈ρi

1
nρi

(‖X̂ i
t − µt‖2 + ‖X̂j

t − µt‖2)
) .

We have that
n∑
i=1

∑
j∈ρi

1
nρi

(‖X̂ i
t − µt‖2 + ‖X̂j

t − µt‖2) =
n∑
i=1

1
n
‖X̂ i

t − µt‖2 +
n∑
i=1

1
n

(
∑
j∈ρi

1
ρj

)‖X̂j
t − µt‖2

≤
n∑
i=1

1
n
‖X̂ i

t − µt‖2 +
n∑
j=1

ρmax
ρminn

‖X̂j
t − µt‖2

≤ 2Γ̂tρmax
ρminn

.

By combining this with the previous inequality we get that
n∑
i=1

∑
j∈ρi

1
nρi

O(d log(R
ε
‖X̂ i

t − X̂
j
t ‖)

) ≤ O

d log
(
R2ρmax
ε2ρmin

(Γ̂t
n

)
)

Next, notice that

O
(
d log(R

ε
‖Q(X̂j

t)−Xj
t+1‖)

)
≤ O

(
d log(R

2

ε2
‖Q(X̂j

t)−Xj
t+1‖2)

)
Cauchy−Schwarz

≤ O

d log
(
R2

ε2
(‖Q(X̂j

t)− X̂j
t ‖2 + ‖X̂j

t − µt‖2

+ ‖µt − µt+1‖2 + ‖Xj
t+1 − µt+1‖2)

)
≤ O

d log
(
R2

ε2
((R2 + 7)2ε2 + ‖X̂j

t − µt‖2

+ ‖µt − µt+1‖2 + ‖Xj
t+1 − µt+1‖2)

)
Where in the last step we used Corollary 5.2.1. By following similar argument as above we

103

5. Asynchronous Decentralized SGD with Quantized and Local Updates

can upper bound the third term in (5.20):
n∑
i=1

∑
j∈ρi

1
nρi

O(d log(R
ε
‖Q(X̂j

t)−Xj
t+1‖)

)
≤ O

d log
(
R2ρmax
ε2ρmin

((R2 + 7)2ε2 + ‖µt − µt+1‖2 + Γt+1

n
+ Γ̂t
n

)
)

Analogously, by using Q(X̂j
t)−Xj

t = (Q(X̂j
t)− X̂j

t) + (X̂j
t − µt) + (µt −Xj

t) we can upper
bound the second term in (5.20):

n∑
i=1

∑
j∈ρi

1
nρi

O(d log(R
ε
‖Q(X̂j

t)−Xj
t ‖)

)
≤ O

d log
(
R2ρmax
ε2ρmin

((R2 + 7)2ε2 + Γt
n

+ Γ̂t
n

)
)

Hence, the expected number of bits used is at most

O

d log
(
R2ρmax
ε2ρmin

((R2 + 7)2ε2 + ‖µt − µt+1‖2 + Γt+1

n
+ Γt
n

+ Γ̂t
n

)
),

since the above term is an upper bound for all the three terms in (5.20).

Next, we take the expectations of Γt, Γt+1, Γ̂t and ‖µt − µt+1‖2 into the account. We get
that the expected number of bits used is at most,

O

dE [log
(
R2ρmax
ε2ρmin

((R2 + 7)2ε2 + ‖µt − µt+1‖2 + Γt+1

n
+ Γt
n

+ Γ̂t
n

)
)

Jensen
≤ O

d log
(
R2ρmax
ε2ρmin

((R2 + 7)2ε2 + E ‖µt − µt+1‖2 + E[Γt+1]
n

+ E[Γt]
n

+ E[Γ̂t]
n

)
).

Notice that since (R2 + 7)2ε2 = η2H2M2, Lemma 5.5.9 gives us that both E[Γt] and E[Γt+1]
are O(ρ3

max

ρminλ2
2
(R2 + 7)2ε2), Lemma 5.5.17 gives us that E[Γ̂t] = O(ρ3

max

ρminλ2
2
(R2 + 7)2ε2) as well

and finally Lemma 5.5.12 gives us that E ‖µt − µt+1‖2 = O((R2+7)ε2
n2). Thus, by plugging

these upper bounds in the above inequality we get that the expected number of bits used is at
most

O

(
d log

(
R2ρmax
ε2ρmin

((1 + 1
n2)(R2 + 7)2ε2 + 3ρ3

max(R2 + 7)2ε2

ρminλ2
2

)
))

= O

(
d log

(
ρ4
max(R2 + 7)2R2

ρ2
minλ

2
2

))

= O

(
d log

(
ρ2
max

ρminλ2

))
+O (d logR)

= O

(
d log

(
ρ2
max

ρminλ2

))
+O

(
d log(T 3/d)

)
= O

(
d log

(
ρ2
max

ρminλ2

))
+O (log T) .

�

The proof of Theorem 5.4.1 simply follows from using Lemmas 5.5.19 and 5.5.20, and plugging
the value of (R2 + 7)ε = ηHM in Theorem 5.5.18.

104

5.6. Related Work

5.6 Related Work
Decentralized optimization has a long history [Tsi84], and is related to the study of gossip
algorithms, e.g. [KDG03, XB04, BGPS06]. Gossip is usually studied in one of two mod-
els [BGPS06]: synchronous, structured in global rounds, where each node interacts with a
randomly chosen neighbor, forming a matching, and asynchronous, where each node wakes
up at random times, e.g. given by a Poisson clock, and picks a random neighbor to interact
with. Several classic optimization algorithms have been analyzed in the asynchronous gossip
model [NO09, JRJ09, SS14]. In this chapter, we focus on analyzing decentralized SGD in this
model.

As mentioned, the growing line of work on decentralized optimization for machine learning
has mostly focused on variants of the synchronous gossip model. Specifically, [LZZ+17]
considered this setting in the context of DNN training, while and [TZG+18] and [KLSJ20]
also analyzed decentralized optimization with quantization in the synchronous model. [WJ21]
and [KLB+20] provided analysis frameworks for synchronous decentralized SGD with local
updates, and possibly changing topologies.

[LZZL18] and [ALBR18] focused specifically on reducing synchronization costs in this setting,
and proposed algorithms with partially non-blocking communication, in which nodes may
read a stale version of the interaction partner’s information, modelling e.g. a communication
buffer. However, the maximum staleness must be bounded by a global variable τ , which
must be enforced throughout the execution. Enforcing this bound can cause blocking in the
system [ALBR18], and therefore the authors of these works propose to implement a relaxed
round-based model, in which nodes interact once per round in perfect matchings. Their
algorithms provide O(1/

√
Tn) convergence rates, under analytical assumptions.

Upon careful examination, we find that their analysis approach can be extended to the
asynchronous gossip model we consider, by defining the “contact matrices” to correspond to
pairwise interactions. However, this introduces two significant limitations. First, the analysis
will not support local gradient updates to models nor quantized communication. If we remove
these practical relaxations, our technique yields better bounds, as our potential analysis is
specifically-tailored to this dynamic interaction model. Second, as we detail in Section 5.7,
some of their technical conditions imply existence of global synchronization. For [ALBR18], as
we detail in Section 5.7, their analysis would not guarantee any non-trivial speedup due to
parallelization in the asynchronous gossip model.

[LDS20] provided a novel approach to analyze decentralized SGD with quantization and limited
asynchrony : specifically, their algorithm requires blocking communication, i.e. nodes have
to synchronize explicitly during interactions, but may see old versions of eachothers’ models.
More precisely, during each interaction, both parties are responsible for updating their local
models, meaning that once node is woken up (we call it initiator node) and chooses interaction
partner it has to block until the partner is woken up as well. In our case, initiator can update
both its local model and the local model of its partner and proceed to the next step without
blocking. [KLSJ20] use a similar update rule in the synchronous model. [ZY21] recently
proposed a decentralized algorithm which is fully-asynchronous as long as node activation
rates and message delays are bounded. As noted earlier, bounding activation rates does imply
blocking; however, tolerating (bounded) message delays does improve over our approach of
updating models using atomic writes. The setting further differs in that they assume that
nodes compute full (non-stochastic) gradients, as well as that the loss function satisfies the
PL condition.

105

5. Asynchronous Decentralized SGD with Quantized and Local Updates

In sum, we are the first to explicitly consider the asynchronous gossip model, and the impact
of local updates, asynchrony, and quantization used in conjunction together with decentralized
SGD. Our technique is new, and relies on a fine-grained analysis of individual interactions, and
can yield improved bounds even in the case where H = 1. Further, our algorithm is the first
to allow for both communication-compression and non-blocking communication.

5.7 Detailed Analytical Comparison
We compare our assumptions and the resulting bounds in more detail relative to [LZZL18],
[ALBR18] and [LDS20]. We focus on these works since they are the only other papers
which do not require explicit global synchronization in the form of rounds. (By contrast,
e.g. [WJ21, KLB+20] require that nodes synchronize in rounds, so that at every point in time
every node has taken the same number of steps.)

5.7.1 Comparison with SGP
In [ALBR18], all nodes perform gradient steps at each iteration, in synchronous rounds,
but averaging steps can be delayed by τ iterations. Unfortunately, the mixing time of their
algorithm depends on the dimension d (more precisely, it contains a

√
d factor). Moreover, it

depends on the delay bound τ , and on ∆, defined as the number of iterations over which the
interaction graph is well connected. Additionally, their analysis will not extend to the random
interaction patterns required by the asynchronous gossip models. Practically, their analysis
works for deterministic global interactions, but where nodes may see inconsistent versions of
eachothers’ models. As noted in [ALBR18], enforcing the τ bound inherently implies that the
algorithm may have to block in case a slow node may cause this bound to be violated.

5.7.2 Comparison with AD-PSGD
[LZZL18] consider random interaction matrices and do not require the agents to perform the
same number of gradient steps. Unlike our model, in their case more than two nodes can
interact during the averaging step. Due to asynchronous model, like ours, [LZZL18] allow
agents to have outdated views during the averaging step. We would like to emphasize that in
their case outdated models are assumed to come from the same step.

More precisely, at every step t, there exists τ ≤ τmax such that for every agent i, X̂ i
t = X i

t−τ .
As also noted by [ALBR18], enforcing this will require the usage of global barrier (or some
alternate method of blocking while waiting for the nodes whose models are outdated by more
than τmax steps) once in every τmax steps. Their implementation section suggests to explicitly
implement synchronous pairings at every step.

In our case, at each step t and agent i, the delay τ it is a random variable , such that t− τi
is the last step node i was chosen as initiator. This implies naturally that X̂ i

t = X i
t−τ , since

t− τi is the last step node i updated its own model.

5.7.3 Comparison with Moniqua
[LDS20] consider a virtually identical model to AD-PSGD, but they also add quantization.
The first difference between their work and ours is that we are using a random mixing matrix,
thus we have to take the probability of models diverging (models diverge if the distance

106

5.7. Detailed Analytical Comparison

between them is larger then required by quantization algorithm) into account. Subsequently,
this justifies our usage of [DGM+21], since in this quantization method allows us to tolerate
the larger distances between the models. This technical difference justifies the fact that our
main bound has a non-trivial dependency on the second-moment bound M . As we showed,
this dependency can be removed if we remove quantization. The second difference is that
our interactions are one sided, that is, if i and j interact and i is initiator, i does not have to
block while j is in compute.

5.7.4 Discussion
In summary, our algorithm is the first to explicitly consider the classic asynchronous gossip
model [XB04], and show convergence bounds in its context. While AD-PSGD could be re-
stated in this model, the corresponding bounds would be weaker than the ones we provide. To
our knowledge we are the first to propose a fully non-blocking algorithm (assuming the access
to atomic operations), which does not rely on an upper bound (probabilistic or deterministic)
of τmax steps on the maximum delay between the nodes, and therefore remove the need for
implementing global barrier-like communication to enforce τmax. We would like to emphasize
that we do not need to explicitly enforce an upper bound on the maximum delay, since it is
inherently implied by our node activation model.
The price we pay for this added generality is that the rate given in Theorem 5.4.1 has a
dependency on the second-moment bound. As we showed in Corollary 5.4.2, this requirement
can be removed if communication is not quantized.

107

Bibliography

[AACH+14] Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Rachid
Guerraoui. Tight bounds for asynchronous renaming. J. ACM, 61(3):18:1–18:51,
June 2014.

[AAD+06] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J Fischer, and René Peralta.
Computation in networks of passively mobile finite-state sensors. Distributed
computing, 18(4):235–253, 2006.

[AAF+99] Yehuda Afek, Hagit Attiya, Arie Fouren, Gideon Stupp, and Dan Touitou. Long-
lived renaming made adaptive. In PODC, pages 91–103, 1999.

[ABK+18] Dan Alistarh, Trevor Brown, Justin Kopinsky, Jerry Z. Li, and Giorgi Nadiradze.
Distributionally linearizable data structures. In Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures, SPAA ’18, pages
133–142, New York, NY, USA, 2018. ACM.

[ABKN18] Dan Alistarh, Trevor Brown, Justin Kopinsky, and Giorgi Nadiradze. Relaxed
schedulers can efficiently parallelize iterative algorithms. In Proceedings of the
2018 ACM Symposium on Principles of Distributed Computing, PODC ’18, pages
377–386, New York, NY, USA, 2018. ACM.

[ABKU99] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Upfal. Balanced allocations.
SIAM journal on computing, 29(1):180–200, 1999.

[ADSK18] Dan Alistarh, Christopher De Sa, and Nikola Konstantinov. The convergence of
stochastic gradient descent in asynchronous shared memory. In PODC, pages
169–178, 2018.

[AGL+17] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic.
QSGD: Communication-efficient sgd via gradient quantization and encoding. In
NIPS, pages 1709–1720, 2017.

[AH17] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed
gradient descent. arXiv preprint arXiv:1704.05021, 2017.

[AHJ+18] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit
Khirirat, and Cédric Renggli. The convergence of sparsified gradient methods. In
NIPS, pages 5977–5987, 2018.

[AKLN17] Dan Alistarh, Justin Kopinsky, Jerry Li, and Giorgi Nadiradze. The power of
choice in priority scheduling. In Proceedings of the ACM Symposium on Principles
of Distributed Computing, pages 283–292. ACM, 2017.

109

[AKLS15] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. The spraylist: A scalable
relaxed priority queue. In 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2015, San Francisco, CA, USA, 2015.
ACM.

[AKY10] Yehuda Afek, Guy Korland, and Eitan Yanovsky. Quasi-linearizability: Relaxed
consistency for improved concurrency. In International Conference on Principles
of Distributed Systems, pages 395–410. Springer, 2010.

[ALBR18] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Michael Rabbat. Stochastic
gradient push for distributed deep learning. arXiv preprint arXiv:1811.10792, 2018.

[ANK19] Dan Alistarh, Giorgi Nadiradze, and Nikita Koval. Efficiency guarantees for
parallel incremental algorithms under relaxed schedulers. In Christian Scheideler
and Petra Berenbrink, editors, The 31st ACM on Symposium on Parallelism in
Algorithms and Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019,
pages 145–154. ACM, 2019.

[AW04] Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simula-
tions, and advanced topics, volume 19. J. W. & Sons, 2004.

[B+15] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foun-
dations and Trends® in Machine Learning, 8(3-4):231–357, 2015.

[BCE+12] Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and Lars
Nagel. Multiple-choice balanced allocation in (almost) parallel. In APPROX-
RANDOM, pages 411–422. Springer, 2012.

[BCSV00] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Balanced
allocations: The heavily loaded case. In Proceedings of the Thirty-second Annual
ACM Symposium on Theory of Computing, STOC ’00, pages 745–754, New
York, NY, USA, 2000. ACM.

[BFGS12] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun.
Internally deterministic parallel algorithms can be fast. In J. Ramanujam and
P. Sadayappan, editors, Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP 2012, New Orleans,
LA, USA, February 25-29, 2012, pages 181–192. ACM, 2012.

[BFH09] Petra Berenbrink, Tom Friedetzky, and Zengjian Hu. A new analytical method for
parallel, diffusion-type load balancing. J. Parallel Distrib. Comput., 69(1):54–61,
January 2009.

[BFHM08] Petra Berenbrink, Tom Friedetzky, Zengjian Hu, and Russell Martin. On weighted
balls-into-bins games. Theor. Comput. Sci., 409(3):511–520, December 2008.

[BFK+11] Dmitry Basin, Rui Fan, Idit Keidar, Ofer Kiselov, and Dmitri Perelman. CafÉ:
Scalable task pools with adjustable fairness and contention. In Proceedings of
the 25th International Conference on Distributed Computing, DISC’11, pages
475–488, Berlin, Heidelberg, 2011. Springer-Verlag.

110

[BFS12] Guy E Blelloch, Jeremy T Fineman, and Julian Shun. Greedy sequential maximal
independent set and matching are parallel on average. In Proceedings of the twenty-
fourth annual ACM symposium on Parallelism in algorithms and architectures,
pages 308–317. ACM, 2012.

[BGPS06] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized
gossip algorithms. IEEE/ACM Trans. Netw., 14(SI):2508–2530, June 2006.

[BGSS16] Guy E Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallelism in randomized
incremental algorithms. In Proceedings of the 28th ACM Symposium on Parallelism
in Algorithms and Architectures, pages 467–478. ACM, 2016.

[BH14] Maciej Besta and Torsten Hoefler. Slim fly: A cost effective low-diameter
network topology. In SC’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 348–359.
IEEE, 2014.

[BJK+96] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson,
Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
Journal of parallel and distributed computing, 37(1):55–69, 1996.

[BL99] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computa-
tions by work stealing. Journal of the ACM (JACM), 46(5):720–748, 1999.

[Ble17] Guy E Blelloch. Some sequential algorithms are almost always parallel. In
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA, pages 24–26, 2017.

[BT89] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation:
numerical methods, volume 23. Prentice hall Englewood Cliffs, NJ, 1989.

[CDR15] Sorathan Chaturapruek, John C Duchi, and Christopher Ré. Asynchronous
stochastic convex optimization: the noise is in the noise and sgd don’t care. In
Advances in Neural Information Processing Systems, pages 1531–1539, 2015.

[CF90] Neil Calkin and Alan Frieze. Probabilistic analysis of a parallel algorithm for
finding maximal independent sets. Random Structures & Algorithms, 1(1):39–50,
1990.

[CRT87] Don Coppersmith, Prabhakar Raghavan, and Martin Tompa. Parallel graph
algorithms that are efficient on average. In Foundations of Computer Science,
1987., 28th Annual Symposium on, pages 260–269. IEEE, 1987.

[CSAK14] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
Project adam: Building an efficient and scalable deep learning training system.
In OSDI, volume 14, pages 571–582, 2014.

[DBS17] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A framework for
parallel graph algorithms using work-efficient bucketing. In Proceedings of the
29th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’17,
pages 293–304, New York, NY, USA, 2017. ACM.

111

[DBS21] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoretically efficient
parallel graph algorithms can be fast and scalable. ACM Trans. Parallel Comput.,
8(1), apr 2021.

[DCM+12] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed
deep networks. In Advances in neural information processing systems, pages
1223–1231, 2012.

[DGJ09] Camil Demetrescu, Andrew V Goldberg, and David S Johnson. The Shortest
Path Problem: Ninth DIMACS Implementation Challenge, volume 74. American
Mathematical Soc., 2009.

[DGM+21] Peter Davies, Vijaykrishna Gurunathan, Niusha Moshrefi, Saleh Ashkboos Ashk-
boos, and Dan Alistarh. Distributed variance reduction with optimal communica-
tion. In Proceedings of the International Conference on Learning Representations,
ICLR 2021. Full version available at arXiv:2002.09268, 2021.

[Dij59] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[DLM13] Dave Dice, Yossi Lev, and Mark Moir. Scalable statistics counters. In 25th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’13, Montreal,
QC, Canada, pages 43–52, 2013.

[DP92] N. Deo and S. Prasad. Parallel heap: An optimal parallel priority queue. The
Journal of Supercomputing, 6(1):87–98, March 1992.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In International
Symposium on Distributed Computing, pages 194–208. Springer, 2006.

[EHS12] Faith Ellen, Danny Hendler, and Nir Shavit. On the inherent sequentiality of
concurrent objects. SIAM J. Comput., 41(3):519–536, 2012.

[FN18] Manuela Fischer and Andreas Noever. Tight analysis of parallel randomized
greedy mis. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2152–2160. SIAM, 2018.

[GDG+17] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677,
2017.

[GL13] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for
nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341–
2368, 2013.

[GLG+12] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. In Chandu
Thekkath and Amin Vahdat, editors, 10th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA, October
8-10, 2012, pages 17–30. USENIX Association, 2012.

112

[GM96] Bhaskar Ghosh and S. Muthukrishnan. Dynamic load balancing by random
matchings. J. Comput. Syst. Sci., 53(3):357–370, December 1996.

[GNW16] George Giakkoupis, Yasamin Nazari, and Philipp Woelfel. How asynchrony affects
rumor spreading time. In 35th ACM Symposium on Principles of Distributed
Computing (PODC 2016), Chicago, United States, July 2016.

[HCC+13] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B
Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. More effective distributed
ml via a stale synchronous parallel parameter server. In NIPS, pages 1223–1231,
2013.

[HHH+16] Andreas Haas, Thomas A. Henzinger, Andreas Holzer, Christoph M. Kirsch,
Michael Lippautz, Hannes Payer, A. Sezgin, Ana Sokolova, and Helmut Veith.
Local linearizability for concurrent container-type data structures. In CONCUR,
2016.

[HKP+13] Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin, and Ana
Sokolova. Quantitative relaxation of concurrent data structures. SIGPLAN Not.,
48(1):317–328, January 2013.

[HLH+13] Andreas Haas, Michael Lippautz, Thomas A. Henzinger, Hannes Payer, Ana
Sokolova, Christoph M. Kirsch, and Ali Sezgin. Distributed queues in shared
memory: multicore performance and scalability through quantitative relaxation.
In Hubertus Franke, Alexander Heinecke, Krishna V. Palem, and Eli Upfal, editors,
Computing Frontiers Conference, CF’13, Ischia, Italy, May 14 - 16, 2013, pages
17:1–17:9. ACM, 2013.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July
1990.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[IS15] Shams Imam and Vivek Sarkar. Load balancing prioritized tasks via work-stealing.
In European Conference on Parallel Processing, pages 222–234. Springer, 2015.

[JRJ09] Björn Johansson, Maben Rabi, and Mikael Johansson. A randomized incremental
subgradient method for distributed optimization in networked systems. SIAM
Journal on Optimization, 20(3):1157–1170, 2009.

[JSY+16] Mark C Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez.
Unlocking ordered parallelism with the swarm architecture. IEEE Micro, 36(3):105–
117, 2016.

[JWG+19] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova, and Gennady
Pekhimenko. Priority-based parameter propagation for distributed dnn training.
In A. Talwalkar, V. Smith, and M. Zaharia, editors, Proceedings of Machine
Learning and Systems, volume 1, pages 132–145, 2019.

113

[KDG03] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation
of aggregate information. In 44th Annual IEEE Symposium on Foundations of
Computer Science, 2003. Proceedings., pages 482–491. IEEE, 2003.

[KDSA08] John Kim, Wiliam J Dally, Steve Scott, and Dennis Abts. Technology-driven,
highly-scalable dragonfly topology. In 2008 International Symposium on Computer
Architecture, pages 77–88. IEEE, 2008.

[KLB+20] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U.
Stich. A unified theory of decentralized sgd with changing topology and local
updates. In ICML, pages 5381–5393, 2020.

[KLSJ20] Anastasia Koloskova, Tao Lin, Sebastian U Stich, and Martin Jaggi. Decentral-
ized deep learning with arbitrary communication compression. In International
Conference on Learning Representations, 2020.

[KRSJ19] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi.
Error feedback fixes SignSGD and other gradient compression schemes. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 3252–3261. PMLR, 09–15 Jun 2019.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[KZ93] R. M. Karp and Y. Zhang. Parallel algorithms for backtrack search and branch-
and-bound. Journal of the ACM, 40(3):765–789, 1993.

[LDS20] Yucheng Lu and Christopher De Sa. Moniqua: Modulo quantized communication
in decentralized SGD. In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 6415–6425. PMLR, 13–18 Jul 2020.

[LDS21] Yucheng Lu and Christopher De Sa. Optimal complexity in decentralized training.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 7111–7123. PMLR, 18–24 Jul 2021.

[LHLL15] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel
stochastic gradient for nonconvex optimization. In Advances in Neural Information
Processing Systems, pages 2737–2745, 2015.

[LHM+18] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient
compression: Reducing the communication bandwidth for distributed training. In
ICLR, Poster, 2018.

[Li14] Mu Li. Scaling distributed machine learning with the parameter server. In
Proceedings of the 2014 International Conference on Big Data Science and
Computing, BigDataScience ’14, New York, NY, USA, 2014. Association for
Computing Machinery.

114

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[LNDS20] Yucheng Lu, Jack Nash, and Christopher De Sa. Mixml: A unified analysis of
weakly consistent parallel learning. arXiv preprint arXiv:2005.06706, 2020.

[LNP15] Andrew Lenharth, Donald Nguyen, and Keshav Pingali. Priority queues are
not good concurrent priority schedulers. In European Conference on Parallel
Processing, pages 209–221. Springer, 2015.

[LPLJ16] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Asaga: asynchronous
parallel saga. arXiv preprint arXiv:1606.04809, 2016.

[LS21] Dimitrios Los and Thomas Sauerwald. Balanced allocations with incomplete
information: The power of two queries. CoRR, abs/2107.03916, 2021.

[LSPJ18] Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use
large mini-batches, use local sgd. arXiv preprint arXiv:1808.07217, 2018.

[LW16] Christoph Lenzen and Roger Wattenhofer. Tight bounds for parallel randomized
load balancing. Distrib. Comput., 29(2):127–142, April 2016.

[LZZ+17] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.
Can decentralized algorithms outperform centralized algorithms? a case study for
decentralized parallel stochastic gradient descent. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

[LZZL18] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized
parallel stochastic gradient descent. In International Conference on Machine
Learning, pages 3043–3052. PMLR, 2018.

[Mit96] Michael David Mitzenmacher. The Power of Two Random Choices in Randomized
Load Balancing. PhD thesis, PhD thesis, Graduate Division of the University of
California at Berkley, 1996.

[Mit00] Michael Mitzenmacher. How useful is old information? IEEE Transactions on
Parallel and Distributed Systems, 11(1):6–20, 2000.

[MPP+15] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan
Ramchandran, and Michael Jordan. Perturbed iterate analysis for asynchronous
stochastic optimization. 07 2015.

[MS96] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Proceedings of the 15th Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages 267–275,
1996.

[MS03] Ulrich Meyer and Peter Sanders. δ-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms, 49(1):114–152, 2003.

115

http://snap.stanford.edu/data

[NLP13] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastruc-
ture for graph analytics. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pages 456–471, New York, NY, USA,
2013. ACM.

[NMC+21] Giorgi Nadiradze, Ilia Markov, Bapi Chatterjee, Vyacheslav Kungurtsev, and
Dan Alistarh. Elastic consistency: A practical consistency model for distributed
stochastic gradient descent. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(10):9037–9045, May 2021.

[NNvD+18] Lam M. Nguyen, Phuong Ha Nguyen, Marten van Dijk, Peter Richtárik, Katya
Scheinberg, and Martin Takác. SGD and hogwild! convergence without the
bounded gradients assumption. In ICML, pages 3747–3755, 2018.

[NO09] Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-
agent optimization. IEEE Transactions on Automatic Control, 54(1):48, 2009.

[NSD+21] Giorgi Nadiradze, Amirmojtaba Sabour, Peter Davies, Shigang Li, and Dan
Alistarh. Asynchronous decentralized SGD with quantized and local updates. In
Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

[PTW15] Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical balanced allocations
and the 1 + beta-choice process. Random Struct. Algorithms, 47(4):760–775,
December 2015.

[PZC+19] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan
Wu, and Chuanxiong Guo. A generic communication scheduler for distributed dnn
training acceleration. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 16–29, 2019.

[QAZX19] Aurick Qiao, Bryon Aragam, Bingjing Zhang, and Eric P. Xing. Fault tolerance
in iterative-convergent machine learning. In ICML, pages 5220–5230, 2019.

[RAT] Adones Rukundo, Aras Atalar, and Philippas Tsigas. 2d-stack: A scalable lock-free
stack design that continuously relaxes.

[RM51] Herbert Robbins and Sutton Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400–407, 1951.

[RMS01] Andrea W Richa, M Mitzenmacher, and R Sitaraman. The power of two random
choices: A survey of techniques and results. Combinatorial Optimization, 9:255–
304, 2001.

[RRWN11] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient descent. In NIPS, pages
693–701, 2011.

[RSD15] Hamza Rihani, Peter Sanders, and Roman Dementiev. Brief announcement:
Multiqueues: Simple relaxed concurrent priority queues. In Proceedings of the
27th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’15,
pages 80–82, New York, NY, USA, 2015. ACM.

116

[San98] P. Sanders. Randomized priority queues for fast parallel access. Journal Parallel and
Distributed Computing, Special Issue on Parallel and Distributed Data Structures,
49:86–97, 1998.

[SBFG13] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons.
Reducing contention through priority updates. In Proceedings of the Twenty-fifth
Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
’13, pages 152–163, New York, NY, USA, 2013. ACM.

[SCJ18] Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD
with memory. In NIPS, pages 4452–4463, 2018.

[SFJY14] F. Seide, H. Fu, L. G. Jasha, and D. Yu. 1-bit stochastic gradient descent and
application to data-parallel distributed training of speech dnns. Interspeech, 2014.

[SGB+14] Julian Shun, Yan Gu, Guy E Blelloch, Jeremy T Fineman, and Phillip B Gibbons.
Sequential random permutation, list contraction and tree contraction are highly
parallel. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on
Discrete algorithms, pages 431–448. SIAM, 2014.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016.

[SL00] Nir Shavit and Itay Lotan. Skiplist-based concurrent priority queues. In Parallel
and Distributed Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th
International, pages 263–268. IEEE, 2000.

[SS14] Ohad Shamir and Nathan Srebro. Distributed stochastic optimization and learning.
In 2014 52nd Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 850–857. IEEE, 2014.

[Sti19] Sebastian U. Stich. Local SGD converges fast and communicates little. In
International Conference on Learning Representations, 2019.

[Str15] Nikko Strom. Scalable distributed dnn training using commodity gpu cloud
computing. In Sixteenth Annual Conference of the International Speech Commu-
nication Association, 2015.

[SW16] Konstantinos Sagonas and Kjell Winblad. The contention avoiding concurrent
priority queue. In International Workshop on Languages and Compilers for Parallel
Computing, pages 314–330. Springer, 2016.

[SW17] Konstantinos Sagonas and Kjell Winblad. A contention adapting approach to
concurrent ordered sets. Journal of Parallel and Distributed Computing, 2017.

[SZOR15] C. M. De Sa, C. Zhang, K. Olukotun, and C. Re. Taming the wild: A unified
analysis of hogwild-style algorihms. In Advances in Neural Information Processing
Systems, 2015.

[Tsi84] John Nikolas Tsitsiklis. Problems in decentralized decision making and computa-
tion. Technical report, Massachusetts Inst of Tech Cambridge Lab for Information
and Decision Systems, 1984.

117

[TW07] Kunal Talwar and Udi Wieder. Balanced allocations: The weighted case. In
Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing,
STOC ’07, pages 256–265, New York, NY, USA, 2007. ACM.

[TZG+18] Hanlin Tang, Ce Zhang, Shaoduo Gan, Tong Zhang, and Ji Liu. Decentralization
meets quantization. arXiv preprint arXiv:1803.06443, 2018.

[WGTT15] Martin Wimmer, Jakob Gruber, Jesper Träff, and Philippas Tsigas. The lock-free
k-lsm relaxed priority queue. Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP, 2015, 03 2015.

[WJ21] Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the
design and analysis of local-update sgd algorithms. Journal of Machine Learning
Research, 22(213):1–50, 2021.

[WSB+06] Tim S Woodall, Galen M Shipman, George Bosilca, Richard L Graham, and
Arthur B Maccabe. High performance rdma protocols in hpc. In European
Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, pages
76–85. Springer, 2006.

[WWLZ18] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification
for communication-efficient distributed optimization. In Advances in Neural
Information Processing Systems, pages 1306–1316, 2018.

[WWS+18] Blake E Woodworth, Jialei Wang, Adam Smith, Brendan McMahan, and Nati
Srebro. Graph oracle models, lower bounds, and gaps for parallel stochastic
optimization. In Advances in neural information processing systems, pages 8496–
8506, 2018.

[XB04] Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging.
Systems & Control Letters, 53(1):65–78, 2004.

[XHD+15] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee,
Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum: A new
platform for distributed machine learning on big data. IEEE Transactions on Big
Data, 1(2):49–67, 2015.

[ZCL15] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic
averaging sgd. In Advances in neural information processing systems, pages
685–693, 2015.

[ZY21] Jiaqi Zhang and Keyou You. Fully asynchronous distributed optimization with
linear convergence in directed networks, 2021.

118

	Abstract
	Acknowledgements
	About the Author
	List of Collaborators and Publications
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Concurrent Data Structures
	Distributed Optimization

	Distributionally Linearizable Data Structures
	Introduction
	System Model
	The MultiCounter Algorithm
	Distributional Linearizability
	Analysis of the MultiCounter
	Distributional Linearizability for Concurrent Relaxed Queues
	Experimental Results
	Related Work

	Applications of Relaxed Scheduler
	Introduction
	Relaxed Schedulers: The Sequential Model
	Analyzing SSSP under Relaxed Scheduling
	Experiments
	Incremental Algorithms
	Lower Bound on Wasted Work
	Related Work

	Elastic Consistency: A Practical Semantics Model for Distributed Stochastic Gradient Descent
	Introduction
	Elastic Consistency
	Elastic Consistency and SGD Convergence
	Distributed System Models and their Elastic Consistency Bounds
	Detailed Convergence Analysis
	Elastic Consistency Bounds
	Related Work

	Asynchronous Decentralized SGD with Quantized and Local Updates
	Introduction
	Preliminaries
	The SwarmSGD Algorithm
	The Convergence of SwarmSGD
	The Complete Analysis
	Related Work
	Detailed Analytical Comparison

	Bibliography

