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ABSTRACT: Biological membranes have a central role in
mediating the organization of membrane-curving proteins, a
dynamic process that has proven to be challenging to probe
experimentally. Using atomic force microscopy, we capture the
hierarchically organized assemblies of Bin/amphiphysin/Rvs
(BAR) proteins on supported lipid membranes. Their
structure reveals distinct long linear aggregates of proteins,
regularly spaced by up to 300 nm. Employing accurate free-
energy calculations from large-scale coarse-grained computer
simulations, we found that the membrane mediates the
interaction among protein filaments as a combination of
short- and long-ranged interactions. The long-ranged component acts at strikingly long distances, giving rise to a variety of
micron-sized ordered patterns. This mechanism may contribute to the long-ranged spatiotemporal control of membrane
remodeling by proteins in the cell.

■ INTRODUCTION

Lipid bilayers have a remarkable range of material properties
that allow them to serve as an elastic interface between the cell
and its environment. In response to cues given by proteins,
membranes undergo shape changes affecting the architecture of
a cell from nanometer to micrometer scales.1 The reshaping of
the membrane facilitates trafficking, communication, cell
migration, infection, immune response, and other important
cellular processes. However, it has become apparent that
membranes can mediate the interactions among proteins,2−4

and in this way potentially initiate cellular pathways upstream
of protein cues. Theory predicts that membrane fluctuations or
local membrane curvature can generate effective interactions
between proteins, whose sign, strength, and maximum range of
interactions depends on the shape of the proteins and the way
they interact with the membrane.3,5−7 However, accounting for
all of the interactions is nearly impossible in analytical modeling
given the complexity of the components involved in cellular
phenomena. At the same time, the highly dynamic and
inherently multiscale nature of such events makes them very
challenging to capture experimentally. Thus, a key question in
membrane biology remains unresolved: how do proteins
assemble correctly and in the right place to initiate the
membrane-remodeling phenomena?
Proteins that contain one of many Bin/amphiphysin/Rvs

(BAR) domains are among the most notable membrane
remodelers in the cell. They have been found in a number of
cellular phenomena, such as endocytosis, intracellular traffick-
ing, cytokinesis, the formation of T-tubules, and the shaping of
the endoplasmic reticulum.8,9 Depending on their concen-
tration and the mechanical properties of the membrane, BAR

proteins couple with membrane curvature in different ways:
they can detect curvature, induce large-scale membrane
remodeling, and even induce membrane scission.10,11

When bound at a sufficiently high density on the membrane,
BAR proteins induce the formation of tubules whose sign and
magnitude of curvature varies among BAR proteins (e.g., refs
12−18). Tubules can emerge from the surface upon a
continuous increase in local protein concentration, as shown
by computer simulations19,20 or form by breaking the bilayer
topology upon a rapid high density binding of proteins,
demonstrated by simulations and electron microscopy.21

Furthermore, the way BAR proteins pack on the membrane
in this very high-density regime and the way their amphipathic
helices make lateral contacts greatly impacts the stability22,23

and the radius24 of tubules.
At the onset of endocytosis, however, the surface density of

BAR proteins is much lower than required to generate tubules.
According to our recent coarse-grained (CG) simulations, N-
BAR domains (BARs with N-terminal amphipathic helices)
undergo spontaneous linear aggregation on a flat membrane, a
large liposome, and even a membrane nanotube at 4−30%
protein surface densities, forming filamentous oligomers and
meshes.25−27 This behavior is similar to that predicted for
anisotropic inclusions or spherical particles,28,29 but the
crescent shape and the amphipathic helices of the N-BARs
can make linear aggregation more prominent. Moreover, owing
to their anisotropy, the strength of membrane-mediated
protein−protein attractions, the geometry of their assembly,
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and the onset of tubulation are modulated by lateral membrane
tension.13,26 Subsequent computational studies employing
different models have confirmed the formation of linear
aggregates and meshes by various anisotropic inclusions.19,30

Remarkably, recent electron microscopy revealed filaments or
“strings” of F-BAR proteins on membrane vesicles, a structure
that hypothetically forms at the interface of a dividing cell just
prior to cytokinesis.31,32

In light of continuously emerging information on the varied
roles of BAR proteins in the cell, it is key to better understand
the origins of the interactions that drive their complex assembly
on the membrane. Here, we studied the assembly of the N-BAR
domain of endophilin, a protein whose isoforms are involved in
synaptic and clathrin-mediated endocytosis, apoptosis, autoph-
agy, mitochondrial network dynamics, and, as recently
discovered, a protein that drives a fast endocytosis of some
signaling receptors and bacterial toxins.8,9,33,34 In our previous
computational work, we investigated the initial assembly of
individual N-BAR proteins and their effect on membrane
curvature. Here, we focus on the mesoscopic scale, explicitly
measuring the free energy profiles that lead to a hierarchical
assembly of multiple protein filaments on the membrane.
Moreover, we directly compare our simulations to high-
resolution imaging at similar scales. Namely, we have used
atomic force microscopy (AFM) to capture the hierarchical
structure of self-assembled proteins on a supported lipid
membrane, revealing regularly spaced patterns of protein
filaments, separated by a distance 10-fold the size of one
protein. By employing free energy calculations from coarse-
grained (CG) molecular dynamics (MD) simulations of N-BAR
proteins on near-micron sized bilayers, we have revealed large
length-scale interactions between protein filaments mediated by
the membrane. Distinct from previous theoretical work that is
largely focused on interactions between two membrane-bound
nanoobjects (e.g., ref 35), our calculations demonstrate the
long ranged interactions between structures containing multiple
proteins. Understanding such complex interactions is key to
understanding the intermediate structure of protein assemblies
formed prior to large-scale membrane remodeling.

■ RESULTS AND DISCUSSION
N-BAR Domains Form a Hierarchically Organized

Structure on Supported Lipid Membranes. We used
AFM imaging to capture the assembly of N-BAR proteins on
supported lipid bilayers. We tested two different membrane
compositions: DOPC/DOPS (7:3, molar ratio) and DOPC/
DOPS/PIP2 (85:10:5, molar ratio). Note that BAR proteins
require charged lipids to bind to the membrane.12 When
creating supported bilayers, we deposited an excess of small
vesicles to ensure a contiguous membrane on the surface. It
also ensures as little tension as possible, although presumably
still nonzero.
Prior to adding the protein, we confirmed that the bilayer is

contiguous and smooth. Namely, by scratching away a square
piece of the membrane, we measured a thickness of ∼4 nm, as
expected for dioleoyl lipid bilayers (Figure 1A). Next, we
injected the N-BAR domain of endophilin at a bulk
concentration of 75 nM (N-BAR dimer concentration) over
the supported bilayer. Several minutes later, we observed
roughly circular clusters 1−3 μm in diameter (Figure 1B).
Within the clusters, we reproducibly resolved self-assembled
filamentous protein aggregates that organized parallel to one
another (Figure 1C). Such formations occurred in all our

experiments: four experiments on a 30% DOPS bilayer and
three experiments on a 5% PIP2 bilayer. We did not see a
significant difference in the structure or size of protein filaments
between the two lipid compositions.
One must be aware that N-BARs form and coat membrane

tubules with a diameter of ∼20 nm when adhered at sufficient
densities on the membrane surface.12,14,22,27 However, based on
the maximum height in our micrographs (<10 nm) (Figure
1C), we conclude that the structures are not collapsed
membrane protrusions. Besides, the formation of tubules is
expected at much higher protein concentrations.14,27 Impor-
tantly, the crystal structures of the N-BAR domain of
endophilin show that the protein is ∼3 nm in height,8 which
is in excellent agreement with our imaging (Figure 1C).
We also considered that the structures could be a result of a

scanning artifact. Generally, imaging biological samples with
AFM is challenging due to the softness of such systems. When
using aggressive scanning parameters, the cantilever tip can
drag the material with it, typically manifested as structureless
streaks parallel to the direction of the scan. In our micrographs,
the observed filaments are sharp, and, as shown in Figure 1C,
they can be aligned perpendicular to the scan (in all images, the
AFM tip scanned in the left−right direction). When we imaged
at very high contact forces with the sample, the tip would
clearly perturb the surface, dragging the material in the
direction of the scan, as expected (data not shown). Therefore,
it is unlikely that the filamentous structures are a result of a

Figure 1. AFM micrographs of N-BAR domain assembly on the 30%
DOPS membrane. (A) Left: bilayer prior to adding the protein. Right:
surface profile of a scratched out rectangular region of the membrane
along the blue and red lines shown in the micrograph (inset),
compared to the flat region along the black line. (B) Clusters of N-
BAR proteins minutes after injection. (C) Left: Another example of an
aggregate, taken with at less aggressive scanning parameters than in B
and on a smaller imaging surface, clearly resolving linear aggregates;
right: surface profile along the dotted lines shown in the micrograph.
Note the small adjacent clusters in the micrograph could be part of a
larger cluster.
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scanning artifact. There is still a possibility, however, that AFM
imaging could affect the orientation of the clusters, due to the
softness and the fluidity of the system.
It is to be noted that a previous AFM study of endophilin on

supported bilayers revealed a disruption of the membrane
surface, a similar effect we also observed but only at a higher
protein bulk concentration (>500 nM per dimer, data not
shown).36 Curiously, the reported measurement of the bilayer
thickness in that work was half the expected value, indicating
potentially aggressive scanning parameters that precluded
capturing protein assemblies at high resolution in that study.
Next, we studied the quantitative aspects of filament

assembly. The surface profile of the micrograph in Figure 1C
shows that the distance between adjacent protein lines ranges
from 40 to 300 nm. The lower limit is in a good agreement with
the mesh size of an N-BAR network observed in previous
computational studies.25,26 However, the unusually high spatial
correlation between proteins seen here and a large separation
(>150 nm) between lines cannot be accounted for by the
previous predictions. We elucidate the nature of these
interactions next.
N-BARs Form Long Parallel Filaments Due to Very

Long-Ranged Membrane-Mediated Repulsions. To
elucidate the physical forces underlying the apparent long-
range interactions and large-scale ordering of the N-BARs, we
carried out CG MD simulations of two parallel lines of N-
BARs, each in an end-to-end formation (Figure 2A). For the

membrane, we used a three-site hybrid CG lipid model, where
the CG forces were derived from the underlying atomic
interactions and supplemented with analytical functions in
regions poorly sampled by atomic simulations.37 Such a hybrid
bottom-up analytical approach allows very efficient but
thermodynamically accurate simulations. We have previously
validated that the CG membrane reproduces the key molecular
and macroscopic features of lipid membrane behavior, such as

the structural parameters, thermal fluctuations, and bending
modulus.37 It is to be noted that at this high level of coarseness,
which is essential to access experimentally relevant length and
time scales, the chemical identity of lipids at the atomic level is
lost. Therefore, we do not test the effect of lipid composition in
our simulations. However, based on our experiments discussed
in the previous section, the phenomenon appears composition
independent, at least for the two tested setups and, of course, as
long as the protein binds strongly enough to the membrane.
The N-BAR domain was modeled as a 26-site elastic network
model, with CG interactions cast in the form of a Lennard-
Jones potential (see Methods). The protein−protein and
protein−membrane interactions were parametrized in our
previous work and include weak nonspecific attractions
between protein sites and strong attractions between proteins
and lipids.21,25,26 In the simulations, two N-BAR filaments of
varying size were placed parallel to each other on a very large
planar bilayer, 150−300 nm in length and width (Figure 2A).
The bilayer laterally interacted with its periodic images;
however, it was large enough to ensure that the protein
filaments are far enough from their periodic images. We used
umbrella sampling calculations38 to estimate the potential of
mean force (PMF, F) as a function of the separation distance
between the centers of mass of the two N-BAR filaments. In
this way, we calculate the free energy that arises from
interactions between large-scale protein assemblies.
At vanishing tension, it is seen that lines of proteins

experience a combination of attractions at a short-range (<5
nm) and strong repulsions at a longer range. The magnitude of
repulsion is stronger with the increased filament length (Figure
2B). This repulsion could likely be responsible for the observed
highly parallel ordering of N-BAR domains in AFM. Moreover,
it seems that two lines start interacting at strikingly long
distances, which also increases with the line length. In
particular, for two filaments each comprising six N-BARs, the
interaction range is ∼50 nm, about 2 orders of magnitude larger
than the Debye length. Considering that on supported bilayers
we often detect chains hundreds of nanometers in length
(Figure 1C), i.e., 10−20 N-BARs, the observed separations of
>100 nm in AFM images is hence in excellent agreement with
the calculations.
It is important to note that one potential caveat to our study

lies in comparing the assembly of proteins on a supported
bilayer in experiments with a freestanding bilayer in
simulations. The precise molecular details of how the
membrane interacts with the solid support, and how the
support affects the membrane’s out-of-plane behavior, are
unclear. It is known that the bilayer is separated from its
underlying support by a hydration layer,39−41 arguably helping
it exhibit a degree of softness. One way to test the influence of a
support is to simulate the membrane under nonzero lateral
stress, modeling the effective tension imposed by the support. It
is to be noted however that the effective surface tension of
supported bilayers is hard to predict, so we repeated the
measurements at relatively high membrane tension of 1.1 mN
m−1. Interestingly, under these conditions the free energy of
filament interactions from simulations showed a nearly identical
shape, with the free energy barrier decreasing by ∼5 kBT for a
chain of six N-BARs and negligibly decreasing for a chain of
four N-BARs. The interaction range, on the other hand,
decreased by 30 nm in the case of six N-BARs per line (Figure
2B). Clearly, even at very high tension, the long-range repulsive
interactions are still present, albeit acting at shorter ranges for

Figure 2. Free energy of interactions between N-BAR protein
filaments. (A) A representative CG MD configuration from which
the free energy was calculated. Shown are two parallel filaments, each
comprising four N-BARs, separated by a distance d (the lipid bilayer
underneath is not shown). (B) Potential of mean force (PMF), F, as a
function of d calculated from CG MD simulations on a planar bilayer
using umbrella sampling. The number of proteins indicated is the
number of N-BARs per filament. Membrane tension: vanishing (top
panel) and 1.1 mN m−1 (bottom panel). Maximum error per PMF
calculation (in kBT) for, respectively, 2 N-BARs, 4 N-BARs, and 6 N-
BARs is ±0.32, ±1.1, and ±2.6 in the top plot and ±0.47, ±0.75, and
±5.60 in the bottom plot. Here, kB is the Boltzmann constant and T is
the thermodynamic temperature.
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the same chain length. Interestingly, high tension reduces the
short-range attractions, indicating a dominant contribution of
the local curvature in determining these interactions.
Complex Interactions between Multiple N-BAR Fila-

ments Give Rise to a Striped Pattern. Previous efforts have
been made to formulate an analytical description of membrane-
mediated interactions between two lines or rods adsorbed on a
membrane.42−48 It has been found that two membrane-bending
cylinders adsorbing on the same side of a planar membrane
experience an effective repulsive interaction.43,44 Also, it has
been found that the membrane can mediate repulsions between
conical inclusions which induce deformations of the same
sign.49 Our PMF calculations for the case of the interaction
between two filaments agree well with these predictions of the
long-ranged repulsion driven by membrane bending effects,
acting over a distance of several cylinder diameters. However,
when considering the case of multiple proteins, and an even
more difficult case of multiple protein oligomers, such as those
that we observe with AFM, the situation is far more
complicated. The multibody effect can change the qualitative
behavior provided by the pair-picture, and an analytical
treatment of these interactions becomes challenging.35 More-
over, we cannot exclude the possibility that our AFM imaging
also contains N-BAR oligomers that interact side-by-side.26

Therefore, it is valuable to compute how the presence of
multiple lines affects the free energy of interfilament
interactions.
To obtain a quantitative understanding of how more

complicated geometries would affect the interfilament spacing,
we extended the PMF calculations presented in the previous
section to explore two scenarios of multiline interactions. In the
first, we simulated a filament moving between two parallel
filaments that were kept at a large fixed distance of 100 nm
(Figure 3, blue plot). At such a large distance, the two outer
filaments do not feel each other’s presence (as demonstrated in
Figure 2B). All three filaments contained six N-BAR domains
and were parallel to one another. The simulations were run at a
nonvanishing tension of 0.15 mN m−1 to prevent significant
membrane deformations due to multibody interactions, often
seen in configurations with three lines. Also, as argued, applying

tension more faithfully models a supported bilayer. Our
umbrella sampling calculations resulted in a free energy profile
that almost perfectly aligned with the control case of only two
interacting filaments at the same tension (Figure 3, compare
blue and black plots). It appears that bringing a third linear
aggregate at a large distance does not affect the interaction
strength and length scale of two noninteracting lines.
Therefore, each protein filament has a range of movement
between two surrounding filaments, allowing it to form an
ordered pattern albeit with a wider distribution of interfilament
distances, as observed in our AFM imaging (Figure 1C). This
range is expected to narrow down with decreased membrane
tension as the repulsion is experienced at longer distances
(Figure 2B).
Another scenario of multiple filaments comes from a

possibility that two lines may join side by side, due to the
favorable interaction at short distances, as also sometimes
observed in CG MD simulations.25,26 To test how such an
assembly may influence the interfilament separation range, we
created a configuration where adjoined filaments interacted
with a third (Figure 3, green). Again, we see the familiar short-
ranged attraction, followed by the repulsion at intermediate
distances, with the same minimum as the control albeit with a
higher energy barrier (Figure 3, compare green and black
plots). The increase in the free energy barrier can be attributed
to the larger membrane deformation imposed by two filaments
compared to a single one. More interestingly, a distinct
secondary minimum beyond 100 nm appears, which can further
support the appearance of the striped protein AFM pattern.
Obviously, the two deformations largely differ in their range
and amplitude in this case, yielding complex interactions even
in this simplest case of multiple filaments, where the reasoning
drawn from considering only two-body interactions7 cannot be
applied.

Mechanism of Forming Protein Filamentous Stripes
and Networks. As mentioned earlier, physical arguments that
consider the membrane deformation profile explain well the
observed interactions.43,44 At short distances, weak explicit
interprotein interactions likely contribute to the attractions, and
protein filaments share the same deformation. At intermediate
separation (i.e., 10−50 nm), on the other hand, for the case of
two filaments the two protein lines seem to considerably
deform the membrane. To gain a better quantitative under-
standing of this observation, we measured the global membrane
deformation for individual snapshots in a simulation of two six-
N-BAR-long filaments and compared them with the filament
separation. We calculated the membrane deformation as the z-
separation between two most distant CG lipids of a single layer
in a single snapshot, zmax−zmin. For a planar membrane, this
measure is a good indicator of global curvature. We indeed
found that zmax−zmin grows with decreasing interfilament
distance and is highest for filament separations that correspond
to the maximum in the free-energy profiles (Figure 4A). The
maximum deformation measure cannot however tell us where
the deformation in the membrane is located; therefore we show
top-views of two snapshots corresponding to filament
separations with high (Figure 4B, the case of d ≈ 25 nm)
and low (the case of d ≈ 45 nm) global deformation, color-
coded based on their height profiles. It is seen that a significant
deformation adjacent to the filaments is induced. As the
interline distance increases, the repulsion vanishes and the
global membrane deformation is decreased. In the case of three
lines, the deformation created by the two adjoining lines forms

Figure 3. Interactions among multiple N-BAR filaments. Left are
shown protein configurations from CG MD simulations used to
calculate the potential of mean force, F, as a function of distance
between two filaments of interest, d, as displayed in the plot on the
right. In the center and bottom configurations, the black line connects
two filaments whose distance was kept constant throughout the
simulation. The colors in the plot match the colors in the protein
configurations. The black plot serves as a control of only two filaments.
All filaments contain six N-BARs. CG MD simulations were carried
out at ∼0.15 mN m−1. Maximum error per PMF calculation (in kBT)
for, respectively, black, green, and blue plots is ±1.6, ± 1.1, and ±1.1.
The Boltzmann constant is kB, and T is the thermodynamic
temperature.
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a barrier for the third line (Figure 4C), which we speculate is a
plausible source of the secondary repulsion seen in the free-
energy profile in Figure 3. This observation implies that if
multiple proteins are found in the same region, they quickly
assemble into filaments; the filaments locally deform the
membrane and create a repulsive barrier in between them,
ultimately giving rise to the striped pattern.
Our free energy calculations, therefore, provide a quantitative

description of the complex multibody interactions that govern
hierarchical aggregation of membrane-bound proteins. We note
that although the thermal Casimir effect could also give rise to
attraction between filaments,4,7,50 according to the estimates
from the literature, this effect should be smaller than the
attractive potential in our calculations.
One might speculate that a solid support of a bilayer would

suppress membrane undulations and therefore the effective
protein−protein interactions. Clearly, however, in our experi-
ments protein filaments form large-scale assemblies despite the
presence of the substrate. Furthermore, as mentioned
previously, we observe the same qualitative effect even in CG
MD simulations where we applied moderate tension. In those
simulations, membrane deformations between two filaments

are on the order of ∼3−4 nm (Figure 4C), similar to the size of
the hydration layer underneath the bilayer.39 Therefore, we
assert that the interaction between two filaments is not
significantly altered by the presence of the substrate and that
even a relatively small deformation can cause significant
interfilament repulsions.
How will then filaments assemble on vesicles? To gain

insight into this question, we revisited data generated in our
previous study.25 There, we simulated CG N-BAR domains on
liposomes 200−300 nm in diameter at varying protein surface
densities. In a simulation at 20% surface coverage, proteins
spontaneously formed very long filaments in a clear parallel
arrangement with a ∼100 nm spacing (Figure 4D, left), which
is in good agreement with AFM micrographs and free energy
calculations. As the protein density increased, the spatial
confinement caused the filaments to form double lines and
cross-link into a mesh (Figure 4D, right), with a ∼70 nm
separation size, in striking similarity with the secondary
repulsion maximum from free-energy calculations (Figure 3).
Hence we conclude that protein meshing is a result of
membrane-mediated filament repulsion.

■ CONCLUSIONS
The findings reported here reveal a significant complexity in
membrane-mediated protein−protein interactions, which can
give rise to ordered striped patterns of membrane-curving
proteins in AFM imaging. Our results thus highlight the
importance of membranes in creating complex supramolecular
assemblies. Although pairwise interactions between rod-like
particles included or adsorbed on membranes have been
theoretically explored,42−46,49 their transferability to protein
systems, and in particular to membrane curving proteins, in
terms of their sign, magnitude, and range, is largely unknown.
These interactions further compete with other membrane-
mediated interactions, such as those due to the perturbation in
lipid bilayer structure, or membrane fluctuations, in a manner
that depends on their relative amplitudes and is tied to the
exact physical parameters of the system. Crucially, and as
shown in this paper, the multibody effects can clearly change
the pair-interaction picture, resulting in a rich and complex
behavior that may need to be addressed on a case-to-case basis.
The present work leads to a number of questions and new

directions from both the physicochemical and the biological
points of view. The crucial new direction is to investigate the
detailed origin of the effective membrane mediated forces
between protein assemblies, which must account for
interactions between deformations of different and variable
magnitudes, as they apparently give rise to more complex
interaction potentials (Figures 3 and 4). It would thus be of
great value to employ quantitative microscopy techniques to
directly measure the forces driving large-scale protein
assemblies. As our study focused on N-BAR proteins, which
by nature impart positive curvature, it would be interesting to
see how proteins that induce negative curvature, such as I-BAR
proteins, would affect the observed phenomenon.
In a recent study, a membrane associated protein from the

influenza C virus, the M1 protein, was found to form a
filamentous network on giant vesicles, forming a highly ordered
striped pattern, similar to our experimental observations, albeit
with larger filament separation at ∼1 μm (ref 51). This work
not only provides additional support for the mechanism we
describe here, but also shows the generality of long-ranged
membrane-mediated repulsions and their potential broad

Figure 4. N-BARs forming striped patterns and meshes. (A)
Maximum membrane deformation, zmax−zmin, vs the interfilament
distance, d, for the CG MD simulation of six N-BARs per filament at
vanishing tension. It was calculated for individual snapshot considering
only the top CG lipid site of the protein-bound layer, and it is
measured for the whole simulated membrane. (B) Top-view of
example snapshots at different filament separations, d, and color-coded
based on the height, z. Zero on the scale denotes the mean position of
the single layer. White dashed lines denote locations of N-BAR protein
filaments. Shown is a patch of the membrane near the proteins. (C)
Top view (top panel) and side views (bottom panel) of the membrane
deformation caused by approaching filaments for the case of a line
approaching two adjoined lines at nonvanishing tension. The example
of strongest repulsion observed is shown, demonstrating a deformation
in between filaments. The snapshot is taken from the CG MD
simulations presented in Figure 3. (D) Final snapshots of a CG MD
simulation of N-BARs on liposomes at 20% (left) and 30% (right)
protein surface coverage. Protein filaments have a strong propensity to
spontaneously form a parallel arrangement (left). As the protein
density increases, the filaments cross-link into meshes (right). The
configurations were rendered from data generated in our previous
work.25 In the depiction, the membrane is semitransparent, and the
fainter lines are N-BAR filaments on the opposite side of the vesicle.
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importance. It potentially represents a crucial mechanism of
modulating membrane remodeling and other functional
processes in the cell. We also hope our work will motivate
further efforts in quantitative characterization of the role of the
membranes in mediating the hierarchical organization of
proteins in vitro and in vivo.

■ METHODS

Reagents. All reagents to make buffers were purchased
from Sigma. 1,2-Dioleoyl-sn-glycero-3-phosphatidylcholine
(DOPC), 1,2-dioleoyl-sn-glycero-3-phosphatidylserine
(DOPS), and L-α-phosphatidylinositol-4,5-bisphosphate
(840046P) (PIP2) were purchased from Avanti Polar Lipids.
The purified N-BAR domain of endophilin A1 was a generous
gift of Carsten Mim and Vinzenz Unger (Northwestern
University).
Preparation of Supported Bilayers. First, a lipid mix (at

1 g L−1, see main text for compositions) was completely dried
under nitrogen gas in a glass vial by rapidly rotating the vial to
evenly spread the lipids on the bottom and the walls. The
mixture was dried in a vacuum overnight to remove all solvent
molecules. The total mass of dried lipids was ∼1 mg. The mix
was hydrated in 1 mL of 200 mM sucrose and then shaken for
an hour at 37 °C. The hydrated lipids (in a reinforced glass
vial) were subjected to five rounds of flash freezing in a cold
bath (dry ice in ethanol) and then rethawing. The thawed lipids
were extruded through a 100 nm polycarbonate filter 21 times.
This procedure creates large unilamellar vesicles that were kept
in the fridge (4 °C) for no more than a week. Small unilamellar
vesicles were prepared by ultrasonication of the above-prepared
solution of large vesicles until a clear solution was obtained.
Just prior to an AFM experiment, we cleaved a mica surface

(Hi-grade V2 mica, Ted Pella, Redding, CA) and placed it on
the piezoelectric actuator stage. Next, we mounted the chamber
holding the cantilever atop the mica surface, cushioned by a
silicon ring protecting the chamber from leaking. We filled the
chamber with a ∼1 g L−1 solution of the above-prepared small
vesicles, then incubated for 10 min, during which time the
vesicles burst on the mica surface forming a bilayer. Next, we
carefully rinsed the chamber with 10 mM MgCl2 and then again
with the filtered experimental buffer (100 mM NaCl, 10 mM
HEPES buffered at pH = 7.4). As mentioned in the main text, a
large concentration of vesicles ensured a contiguous coverage of
the surface.
AFM Imaging. We imaged the samples in contact mode at

ambient temperature using a Multimode Nanoscope IIIA
scanning probe microscope (Bruker, Santa Barbara, CA) with a
Type J scanner. We used a probe composed of the Si-nitride
lever (200 μm long, 0.05 N/m spring constant) with a
sharpened Si tip (HYDRA-All, AppNano), which gave the best
resolution for our sample. The tips were decontaminated by
ultraviolet-generated ozone before sampling (PSD-UV Surface
Decontamination System, Novascan, Ames, IA). An amplitude
set point of 0 V was used during imaging to minimize the
contact forces and hence film damage. Micrographs were
obtained at a scan rate of 1.0 Hz at a resolution of 512 pixels
per line.
To image the proteins, we displaced the content of the

chamber with the protein solution (dissolved in the
experimental buffer at 75 nM per N-BAR dimer). We started
imaging immediately thereafter and continued imaging for ∼30
min.

Computational Models. We used a previously developed
solvent-free three-site CG lipid model that has been validated
to reproduce the structural and mechanical behavior of
experimental membranes. The bending rigidity of our simulated
membrane is 6.6 × 10−20 J, comparing well to the
experimentally determined 5.5 × 10−20 J for a DLPC
membrane52 on which the modeling was based.37 To simulate
the protein, we used the 26-site CG model of the N-BAR
domain of endophilin A1, as described previously.21,25,26,53 The
intraprotein interactions were modeled as harmonic bonds by
using the elastic network model, whereas protein−protein and
protein−lipid interactions were modeled with a Lennard-Jones
potential.53 The same as in our recent applications, the
Lennard-Jones parameters were 1.8 kcal mol−1 well depth at
1.5 nm between sites representing amphipathic helices and lipid
head groups, 0.2 kcal mol−1 at 1.5 nm for other protein sites
and the lipid headgroup, and 0.24 kcal mol−1 at 2 nm for all
protein−protein interactions.21,25,26

Free Energy Simulations. We created a lipid bilayer patch
of dimensions 200 nm by 170 nm for simulations with two N-
BAR lines or 300 nm by 170 nm for simulations of three N-
BAR lines. Lipid bilayer interacted with its mirror images in the
x and y directions, while the very large size of the simulation
box ensured that the lines of N-BARs do not interact across
periodic boundaries.
Two or three lines of N-BAR proteinseach comprising 2−

8 N-BARswere manually placed parallel to one another on a
membrane surface. In simulations, a quadratic potential was
placed on the distance between the centers of mass of two lines
with a force constant of 1−2 kcal Å−2 mol−1, with umbrella
sampling38 windows spaced at 2 Å, each run 100 000 time
steps. The chains were kept linear (a) by applying a weak
constraint between adjacent N-BARs at 25 Å and an angle of
180°, (b) by constraining the y-positions of the two terminal N-
BARs (to prevent the chains from sliding), and (c) by keeping a
90° angle between three terminal CG sites of two lines, in all
cases using a force constant of 0.05 kcal Å−2 mol−1. Note, as
PMF is by virtue of the calculation a relative measure, and since
all the simulations were done under the same constraints, these
additional constraints are subtracted when constructing the
PMF. Each simulation was run in two replicas.
The simulations were carried out under constant NpxyT

ensemble, using Nose−́Hoover equations of motion within the
MD suite LAMMPS.54 The size of the box in x and y
dimensions was allowed to change by using a barostat with a
coupling constant of 600 τ (τ = 48.89 fs, being the time
constant), either applying no external pressure (for vanishing
tension simulations) or applying a negative pressure from zero
to −4 atm as previously described.26 Surface tension, σ, was
calculated as σ = ⟨lz × (pzz − 0.5(pxx + pyy))⟩, where lz is the
thickness of the bilayer, pxx and pyy are the tangential
components and pzz is the normal component of the pressure
tensor. The box in the z-direction remained constant. The
thermostat was set to T = 300 K, with a coupling constant of 6
τ. Initial simulation system for each configuration was
equilibrated by slowly increasing the time step and the
temperature in 1.2 million time steps. Production runs were
carried at a time step of 0.5 τ. We calculated the PMF using the
weighted histogram analysis method and the error in PMF
calculation by bootstrapping.55
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