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Abstract

Indirect reciprocity in evolutionary game theory is a prominent mechanism for explaining
the evolution of cooperation among unrelated individuals. In contrast to direct reciprocity,
which is based on individuals meeting repeatedly, and conditionally cooperating by using
their own experiences, indirect reciprocity is based on individuals’ reputations. If a player
helps another, this increases the helper’s public standing, benefitting them in the future.
This lets cooperation in the population emerge without individuals having to meet more
than once.

While the two modes of reciprocity are intertwined, they are difficult to compare. Thus,
they are usually studied in isolation. Direct reciprocity can maintain cooperation with
simple strategies, and is robust against noise even when players do not remember more
than their partner’s last action. Meanwhile, indirect reciprocity requires its successful
strategies, or social norms, to be more complex. Exhaustive search previously identified
eight such norms, called the “leading eight”, which excel at maintaining cooperation.

However, as the first result of this thesis, we show that the leading eight break down once
we remove the fundamental assumption that information is synchronized and public, such
that everyone agrees on reputations. Once we consider a more realistic scenario of imperfect
information, where reputations are private, and individuals occasionally misinterpret or
miss observations, the leading eight do not promote cooperation anymore. Instead, minor
initial disagreements can proliferate, fragmenting populations into subgroups.

In a next step, we consider ways to mitigate this issue. We first explore whether introducing
“generosity” can stabilize cooperation when players use the leading eight strategies in noisy
environments. This approach of modifying strategies to include probabilistic elements for
coping with errors is known to work well in direct reciprocity. However, as we show here,
it fails for the more complex norms of indirect reciprocity. Imperfect information still
prevents cooperation from evolving.

On the other hand, we succeeded to show in this thesis that modifying the leading eight to
use “quantitative assessment”, i.e. tracking reputation scores on a scale beyond good and
bad, and making overall judgments of others based on a threshold, is highly successful,
even when noise increases in the environment. Cooperation can flourish when reputations
are more nuanced, and players have a broader understanding what it means to be “good.”

Finally, we present a single theoretical framework that unites the two modes of reciprocity
despite their differences. Within this framework, we identify a novel simple and successful
strategy for indirect reciprocity, which can cope with noisy environments and has an
analogue in direct reciprocity. We can also analyze decision making when different sources
of information are available. Our results help highlight that for sustaining cooperation,
already the most simple rules of reciprocity can be sufficient.
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2.1 Under indirect reciprocity, individual actions are continually as-

sessed by all population members. (A) We consider a population of
different players. All players hold a private repository where they store which
of their co-players they deem as either good (g) or bad (b). Different players
may hold different views on the same co-player. In this example, player 2 is
considered to be good from the perspective of the first two players, but he
is considered to be bad by player 3. (B) In the action stage, two players are
randomly chosen, a donor (here, player 1) and a recipient (here, player 2).
The donor can then decide whether or not to cooperate with the recipient.
The donor’s decision may depend on the stored reputations in her own private
repository. (C) After the action stage, all players who observe the interaction
update the donor’s reputation. The newly assigned reputation may differ
across the population even if all players apply the same social norm. This can
occur (7) when individuals already disagreed on their initial assessments of the
involved players, (i7) when some subjects do not observe the interaction and
hence do not update the donor’s reputation accordingly, or (ii7) when there
are perception eIrors. . . . . . . . ... . e
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2.2

2.3

24

When individuals base their decisions on noisy private information,
their assessments may diverge. Models of private information need to keep
track of which player assigns which reputation to which co-player at any given
time. These pairwise assessments are represented by image matrices. Here,
we represent these image matrices graphically, assuming that the population
consists of equal parts of a leading-eight strategist, of unconditional cooperators
(ALLC) and unconditional defectors (ALLD). A colored dot means that the
corresponding row-player assigns a good reputation to the column-player.
Without loss of generality, we assume that ALLC players assign a good
reputation to everyone, whereas ALLD players deem everyone as bad. The
assessments of the leading-eight players depend on the co-player’s strategy and
on the frequency of perception errors. We observe that two of the leading-eight
strategies are particularly prone to errors: L6 (‘Stern Judging’) eventually
assigns a random reputation to any co-player, while L8 (‘Judging’) eventually
considers everyone as bad. Only the other six strategies separate between
conditionally cooperative strategies and unconditional defectors. Each box
shows the image matrix after 2 - 10° simulated interactions in a population of
size N =3-30=90. Perception errors occur at rate £=0.05, and interactions
are observed with high probability, ¢=09. . . . . . .. .. ... ... ...

The average images players have of each other converge over time.
While Fig. 2.2 provides a snapshot of the reputation dynamics at a particular
point in time, here we show how often players consider any other player as
good on average. While ALLC players deem everyone as good and ALLD
players deem everyone as bad, independent of the error rate, the leading-eight
strategies differ in their assessments. Typically, a leading-eight player is most
likely to consider ALLC players as good, followed by other leading-eight players
and by ALLD. Whether the leading-eight strategy can resist invasion by ALLC
or ALLD depends on the differences in the average image, and on the cost and
benefit of cooperation. This figure uses the same parameters as in Fig. 2.2.
The depicted numbers represent average values over the second half of 2 - 10°
rounds of the game. Results for all strategies but L7 are robust with respect
to starting from a different initial image matrix. . . . . . .. ... ... ..

The emergence of apparent misjudgments among leading-eight play-
ers. As the game proceeds, it may occur that an ALLD player is considered
as good by all leading-eight players (A), or that a leading-eight player is con-
sidered as bad by all other leading-eight players (B). Here we present stylized
situations in which these cases occur. (A) For half of the leading-eight strate-
gies (L3 — L6), an ALLD player can acquire a good reputation by defecting
against another ALLD player. (B) When information is private and noisy,
leading-eight strategies may disagree on the current reputation of a co-player.
Here we show a case in which initially, player 3 is the only leading-eight player
who deems player 5 as bad. If these two players are chosen for the next
interaction, with player 3 as the donor, player 3 defects and acquires a bad
reputation among her fellow leading-eight strategists. . . . . . . .. .. ..
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2.5

2.6

2.7

The leading-eight strategies differ in their ability to recover from
a single disagreements. (A) We consider a homogeneous population in
which everyone applies the same leading-eight strategy. Initially, all players
are assumed to have a good reputation; only player 1 considers player 2 as bad.
We derive analytical results for the reputation dynamics under the assumption
that no more perception errors occur. We say the population recovers from
a single disagreement, if it reaches the state where all players have a good
reputation again. This is an absorbing state for all leading-eight strategies.
We are interested in how likely the population recovers, and how long it takes
until recovery. We find that only for four of the eight strategies, recovery is
guaranteed (see Section 2.5.1). (B) With respect to the time until recovery,
there are three cases. For four of the leading-eight strategies, recovery occurs
quickly, and the recovery time is approximately linear. For all other strategies,
including L2, we show that recovery may take substantially more time, being
of order Nlog N. (C) Also with respect to the expected number of defections
until recovery, we observe three different qualitative behaviors. For four of the
leading-eight strategies, a single perception error typically triggers no further
defections, provided the population is sufficiently large. On the other extreme,
for L6 and L8 we observe that any initial disagreement triggers on average one
further defection. . . . . . . . . . . ...

Even rare perception errors render full cooperation impossible un-
der “Stern” (L6) or “Judging” (L8). We have simulated how often
individuals cooperate if everyone in the population applies the same leading-
eight strategy. The emerging cooperation rates depend on which leading-eight
strategy is chosen and how often perception errors occur. For L6 and L8
we find that even rare perception errors undermine cooperation. Among the
other six strategies, L2 and L5 are more susceptible to the noise introduced by
perception errors than the other four strategies. Simulations were run with a
population size of N =50, assuming complete observation, g=1. . . . . . .

Most of the leading-eight strategies are disfavored in the presence
of perception errors. We have simulated the evolutionary dynamics when
each of the leading-eight strategies competes with ALLC and ALLD. These
simulations assume that over time, players tend to imitate co-players with more
profitable strategies, and that they occasionally explore random strategies
(see Materials and Methods, Section 2.4). The numbers within the circles
represent the abundance of the respective strategy in the selection-mutation
equilibrium. The numbers close to the arrows represent the fixation probability
of a single mutant into the given resident strategy. We use solid lines for the
arrows to depict a fixation probability that exceeds the neutral probability
1/N, and we use dotted lines if the fixation probability is smaller than 1/N.
In four cases, we find that ALLD is predominant (C - F). In one case (H),
the leading-eight strategy coexists with ALLD but without any cooperation.
In the remaining cases (A, B, G), we find that L1 and L7 are played with
moderate frequencies, but only populations that have access to L2 (‘Consistent
Standing’) settle at the leading-eight strategy. Parameters: Population size
N =50, benefit b=5, cost c=1, strength of selection s=1, error rate e=0.05,
observation probability ¢=0.9, in the limit of rare mutations, p — 0.
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2.8

2.9

2.10

Noise can prevent the evolution of full cooperation even if leading-
eight strategies evolve. We have repeated the evolutionary simulations in
Fig. 2.7, but varying (A) the benefit of cooperation, (B) the error rate, and
(C) the observation probability. The graph shows the average cooperation rate
for each scenario in the selection-mutation equilibrium. This cooperation rate
depends on how abundant each strategy is in equilibrium, and on how much
cooperation each strategy yields against itself in the presence of noise. For
five of the eight scenarios, cooperation rates remain low across the considered
parameter range. Only the three other leading-eight strategies can persist in
the population, but even then cooperation rates typically remain below 70%.
We use the same baseline parameters as in Fig. 2.7. . . .. ... ... ..

Stability of each leading-eight strategy against invasion by ALLC
and ALLD. We consider a population of N —1 players adopting one of the
leading-eight strategies, and we explore whether either a single ALLD mutant
or an ALLC mutant gains at least the payoff of the residents. To this end,
we vary the benefit of cooperation (x-axis) and the probability of perception
errors (y-axis). Parameter regions in which ALLD can invade are depicted in
dark grey, whereas parameter regions in which ALLC can invade are shown
as light grey. Only in the colored region, the respective leading-eight strategy
is stable against invasion by either ALLC or ALLD. Except for L2 and L5,
we find that most leading-eight strategies are either unstable (F and H), or
they only resist invasion in a small subset of the parameter space (A,C,D,G).
Parameters: N=50,c=1,¢q=0.9. . . . . . ... ... ... ... ...,

Stability against ALLC and ALLD does not imply stability against
all mutant invasions. We consider a resident population that either applies
the leading-eight strategy L1 (A), L2 (B), or L7 (C). For each resident pop-
ulation, we consider 14 possible mutant strategies, including ALLD (black),
ALLC (dark grey) and the twelve strategies that differ from the resident in only
one bit (light grey). For different benefit values, we plot the payoff advantage
mym—7r of a single mutant among N —1 residents. If for a given b-value there
is a line in the upper half of the panel, the resident strategy can be invaded
by the respective mutant. We find that even in the parameter region where a
leading-eight strategy can resist invasion by ALLC and ALLD, other mutant
strategies may be able to invade. For example, L2 can resist invasion by ALLD
for b > 1.5, and invasion by ALLC if b < 5. In between, for 1.5 < b < 5 there
is a different mutant strategy that can invade. This mutant coincides with L2,
except that it assesses a good donor who defects against a bad recipient as
bad. Similar cases of successful mutants different from ALLC and ALLD also
exist for L1 and L7. Parameters: N=50, c=1, ¢=0.9,¢=0.05. . . . . ..
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2.11

2.12

2.13

2.14

2.15

2.16

2.17

When mutations are sufficiently frequent, three of the leading-eight
strategies can maintain cooperation in coexistence with ALLC. In the
main text we have presented evolutionary results in the limit of rare mutations.
In this limit, populations are homogeneous most of the time, rendering stable
coexistences of multiple strategies impossible. Here, we present results for
non-vanishing mutation rates when players can choose between a leading-
eight strategy, ALLC, and ALLD. The possible population compositions
are represented by a triangle. The corners of the triangle correspond to
homogeneous populations, whereas interior points yield the corresponding
mixed populations. The colors indicate how often the respective region of the
state space is visited by the evolutionary process. (A,B,G) For the considered
parameter values, we find that in three cases, a stable coexistence between a
leading-eight strategy and ALLC can maintain cooperation for a considerable
fraction of time. (C-F) In four cases, we find that populations typically find
themselves in the vicinity of ALLD. (H) In the presence of noise, there is
neutral drift between L8 and ALLD. Along that edge, no player cooperates.
Parameters are the same as in Fig. 2.7, but with a strictly positive mutation
rate p=0.01. . . . . ..

Cooperation is most likely to evolve for high benefit-to-cost ratios
and when mutations are sufficiently frequent. To explore the robustness
of our findings, we have systematically varied three key parameters of our
model, the benefit b, the selection strength s, and the mutation rate p. For
each combination of parameter values, we have simulated the evolutionary
process between ALLC, ALLD, and L;, for each of the leading-eight strategies
L;. The figure shows the resulting cooperation rates. We recover that for usual
b/c-ratios, sufficiently strong selection, and rare mutations, there are only three
leading-eight strategies that can maintain some cooperation. Surprisingly, the
maximum amount of cooperation is achieved for intermediate mutation rates,
0.01 < pu <0.1. Here we observe relatively stable coexistences between ALLC
and either L1 or LL7. Baseline parameters: b=>5, s=1 and ©=0.01; all other
parameters are the same as in Fig. 2.11. . . . . . .. ... ... ... ...

Evolutionary abundance of the leading-eight strategies across dif-
ferent parameter regimes. This figure considers the same scenario as
Fig. 2.12, but it depicts the abundance of each strategy in the selection-
mutation equilibrium. The abundance of ALLC is depicted in light grey,
ALLD is shown in dark grey, and for the leading-eight strategy we use the
respective color. In three cases (for L1, L2, L7) we observe that ALLC is
played with positive frequency even as the selection strength s increases. In
these cases, ALLC typically coexists with a majority of players who apply the
leading-eight strategy. . . . . . . . ... oo

One-dimensional random walk. A discrete-time Markov chain with n+1
states labelled sq...,s, arranged in a line and with transition probabilities
pﬁ: Sk = Spg1 and Dy TSk = Sk_1. . . e e

Markov chain M; = Mj. The transition probabilities are normalized by
N(N —1). Self-loops in non-absorbing states are not shown. . . . ... ..

Markov chain M;. The transition probabilities are normalized by N (N —1).
By coupling, 7{ > 7. . . . ..o

Markov chain M, = M;. The transition probabilities are normalized by
N(N —1). Self-loops in non-absorbing states are not shown. . . . . . . ..
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2.18

2.19

2.20

2.21

2.22

3.1

3.2

Markov chains M3 and M, . The transition probabilities are normalized by
N(N —1). By coupling, 7o > 7o > 75 . . . . . oo i it
Markov chain M, = M;. The transition probabilities are normalized by
N(N —1). Self-loops in non-absorbing states are not shown. . . . . . . ..
Markov chains M} and Mj. The transition probabilities are normalized by
N(N —1). By coupling, 74 < T4 . . . .« o oo i it i
Markov chain Mg = Mjg. The transition probabilities are normalized by
N(N —1). Self-loops in non-absorbing states are not shown. . . . . . . ..
Markov chain M{ that is equivalent to Mg = Mg. The transition probabilities
are normalized by N(N —1). We have pg =pgand 76 =74. . . . . . . . ..

The leading eight social norms with assessment and action generos-
ity. a, To sustain cooperation based on indirect reciprocity, Ohtsuki and
Iwasa|OI06] suggested a set of eight social norms. Each social norm consists
of an assessment rule and an action rule. The assessment rule determines with
which probability observers assign a good reputation to a given donor. This
assessment depends on the donor’s action (cooperation or defection) and on
the reputations of the donor and the recipient (good or bad). The action rule
determines with which probability a donor cooperates with a given recipient.
Again, this choice depends on the reputation of the donor and the recipient.
The original leading eight social norms are deterministic, such that all proba-
bilities are either zero or one. In our framework, we introduce stochasticity by
allowing individuals to be generous. We distinguish two kinds of generosity.
b,c, Assessment generosity means that every time individuals usually assign
a bad reputation, they instead assign a good reputation with probability g;.
d,e, Action generosity means that every time individuals usually defect, they
instead cooperate with probability ¢go. . . . . . . . . . ...

The effect of assessment generosity on the dynamics of reputations.
a, Image matrices are representations of how players assess each other at
any given time. To depict these image matrices graphically, a colored dot
means that the corresponding row player attributes a good image to the
corresponding column player. Here, we show snapshots of such image matrices
when players either use the leading-eight social norm Ly, ALLC, or ALLD
(in equal proportions). We consider four scenarios. These scenarios differ in
whether information is perfect or noisy, and in whether or not L; players are
generous. When information is perfect and there is no generosity, we observe
that the reputation assignments of different L, players are perfectly correlated.
If one L, player assigns a good reputation to some other group member, then
so does every other L; player. In contrast, the presence of either noise or
generosity introduces disagreements among L, players. b, Here, we show
the average image players have of one another. Generosity makes L, players
perceive each other less favorably, and it makes them perceive ALLD players
more favorably, irrespective of whether information is perfect or noisy. c,d,
We observe similar patterns for all other leading eight social norms. Here we
illustrate the competition between L;, ALLC, and ALLD. Parameters: We
use a population of size N =90, an error rate of either e=0 or e =0.05, and
a generosity probability of either g; =0 or g; =0.05. Simulations are run for
2 - 100 iterations, and the initial image matrix assumes a good reputation for
all players. . . . . . . L
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3.3

3.4

3.5

The mechanisms of assessment and action generosity differ. a, As-
sessment generosity g; works like an additional private error rate, and seeds
disagreements that can later proliferate in a population using any generous
leading eight strategy, even when information is not noisy or incomplete. We
show an example situation where such a disagreement arises in a population
of 3 generous players and one ALLD player. When a generous player deems
the ALLD player as good despite having observed or received a defection from
her, he is setting up ALLD for higher reward and the generous strategy for
in-fighting later on. b, Action generosity means more frequent cooperation
with players deemed bad. This does not change the reputation dynamics for
L1 or L7, as these two strategies either never judge any cooperative action
as bad or do not change their opinion about a cooperative player in the first
place. However, action generosity still ends up giving benefits to defectors,
who can then exploit the leading eight players’ generosity. Intuitively, action
generosity can be compared to a “public error” - this way it either actively
harms in strategies where cooperation with bad players is judged as bad, or
harms on the level of strategy evolution. . . . . . .. ... ... ... ...

The effect of action generosity on the reputation dynamics. We
consider the same basic setup as in Figure 3.2, except that leading eight
players now use action generosity instead of assessment generosity. a,b, When
the population consists of Ly, ALLC, and ALLD, action generosity results in
more appropriate judgments. In the presence of errors, generosity makes L
players more likely to perceive each other as good (89.1% instead of 88.4%).
Similarly, it makes them slightly less likely to perceive defectors as good (7.4%
instead of 7.5%). Importantly, however, L; players with action generosity
occasionally cooperate with ALLD opponents even if they regard them as bad.
c,d, We observe the same patterns for other leading eight norms. Here we
again depict the case of L;. Parameters are the same as in Figure 3.2. . .

Evolution of the leading eight under assessment and action generos-
ity. We simulate the evolutionary dynamics when players can choose among
three different norms, a leading eight norm, ALLC', and ALLD. Social norms
spread in the population according to a pairwise comparison process| TPNO7],
such hat norms of players with high payoffs are more likely to spread. Here
we depict results for the limit of rare mutations, such that populations are
homogeneous most of the time[FI06, WGWT12, McA15]. Numbers in circles
show how often each social norm is adopted on average. Arrows indicate how
likely other social norms can invade a given resident population. Solid arrows
indicate that the respective transition is more likely to occur than expected
under neutrality, whereas dotted arrows indicate that the respective transition
is comparably unlikely. We consider four scenarios, depending on whether
leading eight players exhibit no generosity, only assessment generosity, only
action generosity, or both variants of generosity. a—d, The norm L; is most
abundant without any generosity. e=h, The norm L, is most abundant with
action generosity. However, even in that case, it is played in less than 30% of
time. Parameters: N =50, e=0.05, b=5, c=1, ¢=0.9, using a strength of
selection of s=1. . . . . . . . ...
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3.6

3.7

3.8

A systematic analysis of the effect of generosity on cooperation. For
this figure, we repeat the evolutionary simulations shown in Figure 3.5 for all
leading eight strategies. To explore the impact of generosity, we systematically
vary how likely leading eight players exhibit assessment generosity (g, y-axis)
and how likely the exhibit action generosity (go, z-axis). The color indicates
the average cooperation rate of the population, according to the selection-
mutation equilibrium of the evolutionary process (see Methods, Section 3.4).
In particular, grey indicates the absence of cooperation. We find that the five
social norms L3 — Lg and Lg, which fail to evolve in the baseline deterministic
model (g1 =g2=0), do not evolve in any generous form either, no matter in
which combination. The strategies L; and Ly occasionally evolve, but they do
not benefit from either form of generosity. Here, the achieved cooperation rate
has its maximum in the origin. Only for L;, the cooperation rate becomes
maximal for a positive amount of action generosity, with g,~0.08. The inserts
show the cooperation rate as a function of gy for gy =0. Parameters are the
same as in Figure 3.5. . . . . . . . . ...

Generosity does not enhance the evolution of cooperation even when
we vary parameter values. We vary the noise on observations e, the
benefit-to-cost ratio b/c, with ¢ = 1, and observation probability ¢. All other
parameters remain constant at the values of Figure 3.2. In each scenario, we
plot the average cooperation rate of each individual leading eight strategy when
they compete against ALLD and ALLC. This again enables us to compare
the generous L; (b-d) in three variants with their baseline counterparts (a).
b, For assessment generosity only, we find that compared to the baseline, the
cooperation rate of the leading eight with generosity is reduced for all values
of £, b/c and q. The qualitative shape of the curves remains the same as in the
case of no generosity. c, In the case of action generosity only, the negative
effect on cooperation rates is not as large as with assessment generosity. Yet,
action generosity still fails to enhance cooperation, and is also detrimental
for some parameter ranges, especially higher values of € and b/c. d, For the
leading eight with both kinds of generosity, cooperation rates are lowest across
all parameter ranges and scenarios. Again, the shape of the curve is identical
to its deterministic baseline in a, but cooperation cannot evolve in the same
way as in the baseline, where it is already limited. . . . . . . . . . ... ..

Generosity in itself inhibits the evolution of cooperation. We consider
an error-free scenario (¢ = 0) with perfect observation (¢ = 1), hereon called a
“perfect information scenario”, and calculate the cooperation rate in equilibrium
as a function of generosity. a, In the case of assessment generosity only as
well as when both variants of generosity are at play (c), there is a quick decline
of cooperation for all generous leading eight as generosity increases. L1 does a
bit better than the rest, but suffers the same losses once generosity is past 1%.
b, When we consider only action generosity, the picture is slightly different:
L1 and L7 can keep up a higher level of cooperation with a rate of around
85% until a probability of forgiveness at around 0.25. L2 also fares better in
this setup than in the two other scenarios, but shows a decline in performance
earlier on, at around g, = 0.15. It thus stands to reason that generosity in itself
introduces disagreements and opportunities for ALLD to gain an advantage.
Parameters: N = 50,e =0,q=1. b=5,c =1, s = 1, in the limit of rare
mutations g — 0. . . ..o
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3.9

4.1

The self-cooperation rate in homogeneous populations of generous
leading eight players benefits from generosity. a-c, We consider homo-
geneous populations consisting of N = 50 players using generous leading eight
strategies in a noisy environment, and calculate their strategy’s cooperation
rate against itself. We find that as generosity increases, so does self-cooperation.
This is true for assessment generosity only (a), action generosity only (b),
as well as symmetric generosity (g1 = ¢2) (c). This result suggests that only
when strategy evolution is at play and the generous strategies have to compete
against other social norms, forgiveness is a hindrance. Single generous strate-
gies in isolation fare better in noisy environments than their deterministic
variants. This is in line with the intuition that forgiveness helps balance
out noise-related misinterpretations of cooperation as defection. Parameters:
N =50,e =0.05,g=0.9. . . . .. ...

The leading eight norms with quantitative assessment. a, We consider
the standard deterministic form of the leading eight norms [O104, OI06]. Each
norm consists of an assessment rule that determines how an observer updates
a donor’s reputation, and an action rule that governs players’ behavior when
they are chosen to be the donor. The assessment rule takes the context of
an observed action into account: how an observer judges a donor depends
on the donors’ and recipient’s reputation. Similarly, the action rule uses the
current donor’s and recipient’s reputation to decide whether the donor should
cooperate with the recipient. In contrast to the original baseline model, we
now interpret a positive assessment of an action as an increment of +1 to the
donor’s reputation score, and a negative assessment as a decrement of -1. b,
The observing Player Z assesses Player X’s action of cooperating with a bad
player as bad, such that he decrements X’s previous score by one. ¢, When it
is Player Z’s turn to be the donor, he translates his and Player X’s reputation
score into a binary label of “good” or “bad”. Since both his and Player X’s
score are above the threshold S, he judges both himself and Player X as good,
and cooperates. d,e In the baseline model using binary assessment, the same
starting scenario ends differently: Player Z changes his view of Player X from
good to bad after Player X cooperates with Player Y, and therefore defects
against Player X. . . . . . . .o
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4.2

4.3

Quantitative assessment and reputation dynamics. a, Image matrices
are representations of how players assess each other at any given time. We
assume that every player keeps track of each population member’s reputation
score, with scores in the interval [—5,45]. To depict these image matrices
graphically, we use colored dots, with the intensity of the color corresponding
to the score: for example, a white dot means means that the corresponding row
player attributes a score of r = 0 to the corresponding column player (left side).
On the other hand, players also make an overall judgment of others, in order
to be able to use their assessment and action rules. To do so, they compare
the scores to a threshold S = 0, resulting in a binary labeling of “good” and
“bad”. To visualize this second, less refined layer of the reputation dynamics,
we use a matrix with colored and grey dots (right side). b, We show image
matrices when players either use a leading-eight social norm L;, ALLC or
ALLD (in equal proportions). ¢ — j, We show the snapshots at 7' = 2 % 10° of
players’ reputation scores and binary labels they translate into for all leading
eight norms. We see that for L1 (c) and L7 (i), the reputation assignments of
different L; players are perfectly correlated. They assign only good reputations
to each other and ALLC, while they only assign bad reputations to ALLD. The
picture is very similar for L2 (d). For all other norms, there are disagreements
among the L; players, where they can also perceive ALLD players favorably.
We note that L8 does not perceive any ALLC player as good; however, this
is one of two very stable states in the reputation dynamics. The other stable
state sees L8 players have a favorable opinion of ALLC players. Parameters:
We use a population of size N =90, an error rate of £=0.05, and an observation
probability ¢=0.9. The frame of reference is R = 5, such that the interval
for reputation scores is r € [—5,5]. Threshold S = 0. Simulations are run for
2 - 10° iterations, and the initial image matrix assumes a good reputation for
all players. . . . . . . L

Quantitative assessment significantly improves the accuracy of rep-
utation assignments by leading-eight players. We show the average
overall judgments that players with frame of reference R make of each other
when comparing others’ reputation scores with the threshold (a—h). As basis
for comparison to the baseline model, we use the average images that players
have of each other when they use the standard binary assessment (i—p). We
observe that quantitative assessment and more nuanced reputations lead to a
significant improvement of the accuracy with which players assign each other
images. All leading eight norms achieve a perfectly correlated good self image,
as opposed to the baseline model, where only L1 (i) and L7 (o) achieve a self
image of more than 80% good. Players using quantitative assessment also
do much better in judging ALLD as bad, and with the exception of the (less
stable) L8 (h, p), also manage to assess ALLC as close to 100% good. This
hints at the power of a more refined reputation dynamics. Parameters are the
same as in Fig.2. . . . .. .00
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4.4

4.5

4.6

Evolution of the leading eight when assessment is more refined. We
show the results of simulating evolutionary dynamics when players can choose
among three different norms: a leading eight norm, ALLC, and ALLD. We
assume that the spread of social norms is described by a pairwise comparison
process[TPNO7], such that norms of players with high payoffs are more likely to
be successful. Here, we use the limit of rare mutations, such that populations
are homogeneous most of the time[FI06, WGWT12, McA15]. Numbers in
circles show how often each social norm is adopted on average. Arrows indicate
fixation probabilities, i.e. how likely it is for other social norms to invade a
given resident population. Solid arrows indicate that the respective transition
is more likely to occur than expected under neutrality, whereas dotted arrows
indicate that the respective transition is comparably unlikely. We see that
four of the eight considered norms, L1 (a), L2 (b), L7 (g), and L8 (h) achieve
significant abundance in equilibrium, with L1, L2 and L7 played over 80% of
the time. The remaining four norms do not evolve in significant proportions,
and the respective dynamics strongly favor ALLD. Parameters: R =5, S = 0,
N =50, £=0.05, b=5, c=1, ¢=0.9, using a strength of selection of s=1.

Four of the leading eight evolve in significant proportions for quanti-
tative assessment. We compare the abundance of the leading eight strategies
in selection-mutation equilibrium between the case of quantitative assessment
and the baseline model. We use the same evolutionary process and setup as in
Fig.3 and present the changes in how often each norm is played on average.
Colored bars represent the abundance in equilibrium under quantitative as-
sessment, while the light grey bars in the background of each panel represent
the results in the baseline model. We find that four of the eight strategies
now evolve much more readily (a,b,g,h) than in the baseline model, and are
played in significant proportions. The three remaining strategies, which do not
evolve at all in the baseline model, only do slightly better due to still being
outcompeted by ALLD. Parameters are the same as in Fig.3. . . . . . . ..

Quantitative assessment has a profound impact on cooperation rates.
We vary the noise on observations e, the benefit-to-cost ratio b/c, with ¢ = 1,
and observation probability ¢. All other parameters remain constant at the
values of Fig. 3. In each scenario, we plot the average cooperation rate of each
individual leading eight norm when they compete against ALLD and ALLC,
according to the selection-mutation equilibrium of the evolutionary process.
We can compare the results when players use refined assessment with R =5
(a — c¢) with the outcome of binary assessment in the baseline model[HST*18]
(d — f). a, Under quantitative assessment, cooperation rates of L1, L2, and
L7 remain at around 85% even when the error rate ¢ increases to 0.1. The
generally more unstable L8 is more affected by the increased noise, but still
remains above 50% even at € = 0.1. b, Increasing the benefit of cooperation
b leads to an increase in cooperation rate for all eight considered norms in
contrast to the baseline. ¢, When we increase the observation probability ¢,
the behavior of the leading eight norms’ cooperation rates is also markedly
different from the baseline. L1, L7 are barely affected while L2 and L8 exhibit
nonlinearity for intermediate valuesof ¢. . . . . . . .. ... ... ...
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4.7 Varying the frame of reference for quantitative assessment. For this

5.1

figure, we repeat the evolutionary simulations shown in Fig.3, and vary the
frame of reference R. That is, we explore the impact of the number of possible
reputation ranks on cooperation, including the case of binary assessment with
two reputation ranks. a, We show the cooperation rate in equilibrium for
the leading eight norms as the number of reputation ranks increases. We note
that for the four successful norms L1, L2, L7, L8, the largest frame of reference
does not correspond to the highest cooperation rate. An intermediate number
of ranks is the most beneficial. L2 also exhibits a drop in cooperation rate
from binary assessment to R =1 (i.e. 3 reputation ranks). The behavior of
the cooperation rates is mainly determined by the behavior of the equilibrium
abundance of the eight norms as the frame of reference varies (b). Meanwhile,
self-cooperation rates quickly increase to 1 as the frame of reference increases
(c), which implies that leading-eight players have a perfectly correlated image
of each other once assessment is more nuanced. Parameters are the same as in
Fig.3. . o e

A unifying framework for direct and indirect reciprocity. a, Under
direct reciprocity, an individual’s cooperation is returned directly by the
beneficiary. b, Under indirect reciprocity, cooperation is not returned by the
beneficiary, but by some observer. c, To model direct and indirect reciprocity
we consider individuals who assign one of two possible reputations to their

co-player, good (G) or bad (B). The current assignment is highlighted in green.

Individuals cooperate (C') with those co-players they consider as good, and
they defect (D) against those they deem as bad. d—g, Whether an individual
considers a co-player as good depends on her strategy (y, p,q, A). Here, y is the
initial probability to assign a good reputation to the co-player, without having
any information; p and ¢ are the probabilities to assign a good reputation after

the co-player has cooperated or defected in a direct interaction, respectively.

The receptivity A is the probability with which an individual takes third-party
interactions of the respective co-player into account. For A\=0, we obtain a

model of direct reciprocity. For A=1, we obtain a model of indirect reciprocity.

While the illustrations depict one-way interactions for simplicity, our model
considers two-way interactions. When two players are chosen to interact,
they both decide simultaneously whether to cooperate or defect. All other
population members observe their choices. . . . . . . ... ... ... ...
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5.2

9.3

Schematic representation of the model. a, We consider a population
of size n. To illustrate the basic workings of our model, we focus on three
arbitrary players that are fully interchangeable in all their abilities. b, Each
player has a separate finite-state automaton with two possible states G and
B for each co-player. The current state is marked in bold. In this example,
player 1 considers player 2 as good and player 3 as bad. ¢, In each round,
two players are chosen at random to interact in a prisoner’s dilemma. Players
cooperate if they consider their co-player to be good and they defect otherwise.
The other population members do not participate in the game, but they observe
its outcome at no cost to themselves. d, After the interaction, both active
players update their respective automata, depending on their strategy and on
the co-player’s action. In addition, each observer independently updates her
automata with respect to players 1 and 2 with probability A each. e~h, We
can mathematically describe how player +’s automaton with respect to player
j changes over time by distinguishing four possible events. First, player j is
not chosen to interact, such that player i’s automaton remains unaffected (e);
second, players ¢ and j interact with each other and update their respective
states accordingly (f); third, player j interacts with someone else, but player i
does not take this interaction into account (g); fourth, player j interacts with
someone else, and player i updates j’s state accordingly (h). . . . . . . ..

An equilibrium analysis reveals when direct or indirect reciprocity
can sustain cooperation. a,b, Within the reactive strategies, there is one
cooperative Nash equilibrium for direct reciprocity (GTFT), and one such
equilibrium for indirect reciprocity (GSCO). Both strategies have in common
that they always cooperate in the first round, or if the co-player has cooperated
in the last relevant interaction (y=p=1). They differ in how they react to a
co-player’s defection, as described by Egs. (5.26) and (5.2), and in whether
they take into account indirect information. ¢, Depending on the parameters
of the game, there are up to four scenarios: (7) When there are few rounds
and many perception errors, cooperation is infeasible; (i7) When there are
intermediately many rounds and few perception errors, cooperation can be
sustained by indirect but not by direct reciprocity; (#i) When there are many
rounds and many perception errors, cooperation can be sustained by direct but
not by indirect reciprocity; (iv) When there are many rounds and few errors,
both direct and indirect reciprocity support cooperation. d, In case direct
and indirect observations are subject to the same error rate, there is no region
in which direct reciprocity can sustain cooperation but indirect reciprocity
cannot. The figure shows the case of n=>50, b=1.8 and c¢=1. In c, the white
lines depict the continuation probabilities dy and d; given by Eq. (5.3). In d,
they are given by dy :c/((l—Zs)b> and §; = c/((n—l)(l—Zs)b—(n—?)c), where
€ is now the joint error probability for both direct and indirect observations.
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5.4

9.5

Evolutionary dynamics of direct and indirect reciprocity. We use
individual based simulations to explore the dynamics if either all players engage
in direct (blue) or indirect reciprocity (green). We consider two scenarios:
individuals either engage in only a few games (top) or in infinitely many games
(bottom). a,b, We find that over the course of evolution, populations cluster
in two regions of the strategy space. Populations are either in the vicinity of
ALLD (where y~paq=0), or in the vicinity of conditionally cooperative
strategies (where pa1). Percentages represent the fraction of time spent in
each of these two neighbourhoods. Dots represent the 500 most long-lived
resident strategies. As the impact of the first round is negligible for =1, the
state space degenerates to a square instead of a cube. c,d, We have recorded
how many mutants it takes to invade a population of defectors or conditional
cooperators. We find that a larger number of rounds undermines the stability
of ALLD, and enhances the stability of the cooperators. e,f, In addition, we
have recorded which mutant strategies invade these two resident strategies.
On average, defectors are invaded by conditionally cooperative strategies with
p>q. g,h, Under direct reciprocity, the payoff of a discriminating mutant
(TFT) in an ALLD population increases linearly in the number of mutants.
Under indirect reciprocity, the payoff of a discriminating mutant (SCO) is
nonlinear. As baseline parameters in our evolutionary simulations, we use
n=>50 and b/c=5. For the exact setup of these simulations, see Methods,
Section 3.4. . . . . .

Impact of mutations on either direct or indirect reciprocity. We have
run additional simulations to explore how larger mutation rates affect the
results in Fig. 5.4. We consider the same two scenarios with few games
and infinitely many games, and in addition a scenario where the number of
games is large but finite. a—c, We have first run simulations for a particular
positive mutation rate (coloured). We compare them with the results for the
limit of rare mutations (grey). The bar diagrams depict how often we are
to observe players to use strategies (y, p, ¢, A) either for direct or indirect
reciprocity. Similar to Fig. 5.4, we find that players are clustered in two
regions of the strategy space. Either they tend to defect (y~¢=0) or they
are conditionally cooperative (p~ 1, ¢ <1). We note that the scenario for
infinitely many games yields similar results as the scenario with many games.
However, now the initial propensity to cooperate y becomes irrelevant. d—f,
When we vary the mutation rate systematically, we find that while cooperation
is relatively stable for direct reciprocity, cooperation under indirect reciprocity
is reduced (upper panels). Interestingly, the number of different strategies that
are simultaneously present in the population only differs marginally between
direct and indirect reciprocity (lower panels). g—i, To explore what would
cause this reduction in cooperation for indirect reciprocity, we have checked the
stability of defectors and conditional cooperators for various mutation rates, as
in Fig. 5.4c,d. In the interval 0.01 <u < 0.1 where indirect reciprocity yields
the lowest cooperation rate, we find that the stability of defectors is enhanced,
whereas the stability of cooperators is reduced. For the exact setup of these
simulations, see Methods, Section 3.4. . . . . . .. ... .. ... ....
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0.6

5.7

Competition between conditional cooperators and defectors. We
compare the performance of conditional cooperators with strategy (1,1,1/3,\)
in a population of defectors, (0,0,0, ). We consider four scenarios, depending
on whether players use direct (a,c) or indirect (b,d) reciprocity and depending
on whether pairs interact only a few times (a,b) or often (c,d). Each panel
shows the payoff of cooperators and defectors depending on how many of the 50
population members are cooperators, for b=>5 and c=1. In all four cases we find
bistability (as indicated by the arrows on the z-axis). That is, defectors have
the higher payoff when there are few cooperators and the lower payoff when
there are many cooperators. However, the threshold number of cooperators
necessary to make cooperation beneficial differs. Indirect reciprocity has the
lower threshold when there are only few rounds, because cooperators are better
able to restrict the payoff of defectors (as indicated by the smaller slope of the
red line in b compared to a). Direct reciprocity has the lower threshold when
there are many rounds. Here, already a few cooperators suffice to invade the
defectors. In contrast, for indirect reciprocity cooperators need to establish a
critical mass because their payoffs increase nonlinearly. . . . . . . . .. ..

The coevolution of conditional cooperation and information use. To
explore when individuals themselves learn to use indirect information, we ran
simulations in which players can either use direct information only (A= 0)
or all information (A=1). a—c, We started with three particular scenarios
in the limit of rare mutations. The scenarios differ in how often subjects
interact on average and how noisy indirect information is. When there are
only a few interactions and considerable noise, cooperation does not evolve
at all (a). In the other two scenarios, cooperation either evolves due to
indirect (b) or to direct (c) reciprocity. d, In a next step, we systematically
varied the continuation probability d and the error rate . Again, indirect
reciprocity evolves for intermediate continuation probabilities. e—g, We obtain
qualitatively similar results for positive mutation rates (x=0.02). h, However,
the green region in which individuals take into account indirect information
is substantially diminished. For the exact setup of these simulations, see
Methods, Section 3.4. . . . . . . ...
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0.8

Impact of different model parameters on the co-evolution of di-
rect and indirect reciprocity. We show how our evolutionary results
in Fig. 5.7 are affected as we change different parameters of our model. In
each panel, we vary one parameter and leave all others constant. We consider
the same three scenarios as in Fig. 5.7a—c: few interactions and unreliable
information (blue), intermediate interactions and reliable information (orange),
and many interactions and unreliable information (green). We employ two
complementary simulation techniques. In the upper half, each data point
represents the average of a single simulation. This simulation was run for
sufficiently long such that the averages converge and are independent of the
initial condition. This typically happens after 107 mutant strategies have been
introduced into the population. In the lower panels, each data point represents
the average of 200 simulations with a random initial population. Here, each
simulation only introduces 10° mutant strategies. For the parameters, we con-
sider variation in the benefit-to-cost ratio (a,b), the population size (c,d), the
selection strength (e,f), and the mutation rate (g,h). Our simulations suggest
that each of these parameters can have a considerable impact on the evolving
cooperation rates and the player’s propensity to adopt indirect reciprocity.
For example, for the orange curve in panel e, we observe that the effect of
selection strength on cooperation can be non-monotonic. We further discuss
these dependencies in Fig. 5.9 and Section 5.5.5. In general, however, we
recover the following regularities from Fig. 5.7: (7) Substantial cooperation
only evolves in the second and third scenario (i.e., for the cooperation rates,
the blue curve is systematically below the other curves). (i7) If cooperation
evolves, players prefer indirect reciprocity when there are intermediately many
interactions and outside information is reliable. They prefer direct reciprocity
when there are many interactions and when outside information is noisy (i.e.,
for the proportion of indirect reciprocity, the orange curve is systematically
above the green curve). . . . . . ...
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9.9

5.10

Impact of selection strength on indirect reciprocity. As shown in the
upper panel of Fig. 5.8e, selection can sometimes have a non-monotonic
effect on cooperation. For intermediate interactions and reliable information
(6 = 0.9, = 0.001, depicted by the orange curve in Fig. 5.8e), we have
observed that the evolving cooperation rate is 53.4% for § = 1, increases
to 77.3% for B = 10, and reduces to 61.5% for § = 100. Here we present
additional simulations to shed further light on this non-monotonicity. a,b, We
considered initial resident populations that either adopt a defective strategy
or a conditionally cooperative strategy. We recorded how long it takes the
evolutionary process until the resident strategy is replaced, and what the
cooperation rate of the invading strategy is. Dots show the outcome of
individual simulations, and the curves represent averages. The results suggest
that the non-monotonicity of cooperation is not due to a reduced stability
of cooperative strategies. They remain highly robust even for large selection
strengths. Moreover, when selection is strong, they are typically invaded
only by other cooperative strategies. c—e In a next step, we recorded the
distribution of cooperation over time for three different selection strengths for
the process considered in Fig. 5.8e. We find that this distribution becomes
more extreme with increasing selection strength: individuals either become
highly cooperative or highly non-cooperative. However, the proportion of
non-cooperative populations grows faster than the proportion of cooperative
populations. . . . . . ...

Evolution of cooperation for players with intermediate degrees of
receptivity. In the main text figures Fig. 5.4-Fig. 5.7, we explore situations
in which individuals can choose strategies where they either only take direct
information into account (A=0), or where they take all information into account
(A=1). Here we repeat these simulations in a setup where intermediate values
of A\ are permitted. To this end, we define a quantity . This quantity is
the probability that a player’s decision is based on the co-player’s behavior
towards third parties, see Eq. (5.10) in Methods, Section 3.4. For 0<A<1
we obtain 0 <7y <pax := (n—2)/(n—1). a,b, We repeat the simulations in
Fig. 5.4a,b for various values of 7. We observe that cooperation is never most
likely to evolve for intermediate values of +. Either most cooperation evolves
for ¥ ="max (in panel a), or for y=0 (in panel b). c,d, Similarly, we repeat
the simulations in Fig. 5.5d,f for various values of v. Again, the average
cooperation rates for intermediate ~y are strictly in between the results for y=0
and v="max. €-h, Finally, we repeat the simulations shown in Fig. 5.7a—d,
allowing for mutant strategies (y,p, ¢, A) that lead to arbitrary values of ~y
between 0 and V.. Especially for larger error rates, we observe that the
evolving cooperation rates are now smaller. Nevertheless, the general patterns
of Fig. 5.7 remain: () When there are only few rounds and many observation
errors, cooperation does not evolve. (7) When there are intermediately many
rounds and few errors, cooperation evolves and players tend to put more weight
on indirect information (that is, 7 tends to be larger than 1/2). In particular,
strategies with v & Jax are most abundant. (éiz) When there are many rounds
and intermediately many errors, cooperation evolves and players tend to put
more weight on direct information. Here, players are most likely to adopt a
strategy with v=~0. See Section 5.5.5 for details. . . . . . . .. ... ...
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5.11

5.12

Effect of different types of errors and incomplete information on
cooperation. a, To explore how sensitive our results are to different kinds
of errors and incomplete information, we have repeated the rare mutation
simulations shown in Fig. 5.7d, reproduced here. b, While the baseline
model assumes that only indirect observations are subject to perception errors,
here we explore the effects when direct observations are equally prone to
errors. We find that cooperation is substantially reduced compared to the
baseline scenario. Moreover, direct reciprocity is only favoured for very large
continuation probabilities. ¢, We have also explored the effect of additional
implementation errors on cooperation. To this end, we assume here that

players mis-implement their intended action with fixed probability e =0.01.

Compared to the baseline model without such errors, we find that there is less
cooperation and less direct reciprocity. d, To mimic the dynamics that arises
when defectors strategically conceal their bad actions, we have also considered
a model in which defective actions are misperceived with probability e, whereas
cooperative actions are always observed faithfully. Because this assumption
reduces the total rate at which errors occur compared to the baseline scenario,
we observe more cooperation and players are more reliant on indirect reciprocity.
e, Here we assume that individuals observe third-party interactions only with
probability v =0.01. Due to the scarcity of information, players who take
any third-party information into account are almost indistinguishable from
those players who do not. As a result, cooperation is largely independent of
observation errors, and the region in which indirect reciprocity is favoured has
vanished. Unless noted otherwise, all parameters are the same as in Fig. 5.7d.

Direct and indirect reciprocity for finite-state automata with three
states. In an extension of our model, we allow players to assign more nuanced
reputations to their co-players. We illustrate this approach by considering
finite state automata with three states - good (G), neutral (N) and bad (B),
with G as the initial state. We assume n—1 residents employ the respective
finite-state automaton strategy, while the remaining player uses either ALLC
or ALLD. We simulate the players’ payoffs for various values of A€0,1]. We
consider three different automaton strategies employed by the residents. The
automata differ in how they deal with co-players that are assigned a neutral
reputation. a, Players with the first automaton Al are fully cooperative
when they encounter a co-player with neutral reputation. This strategy can
sustain cooperation among itself. However, a single ALLC player obtains
approximately the same payoff as the residents, and hence can invade by
(almost) neutral drift (d). b, According to the second automaton A2, players
cooperate against neutral opponents with 50% probability. This strategy can
be invaded by ALLC for all A >0 (e). ¢, According to A3, players defect
against co-players with a neutral reputation. This strategy is not stable against
ALLC for A>0 (f), and residents fail to cooperate with each other altogether.
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5.13

5.14

Evolutionary competition between finite state automata, ALLC,
and ALLD. We have explored the evolutionary dynamics when population
members can choose between ALLC, ALLD, and one of the three finite-state
automata introduced in Fig. 5.12. a—c, First, we have explored the limit
of rare mutations, using the same game payoffs as in Fig. 5.12, and a fixed
receptivity A=0.1. The numbers in each circle denote how often the respective
strategy is played on average. Arrows illustrate how likely a single mutant
fixes in the respective resident population. Solid arrows indicate that the
fixation probability is larger than the neutral 1/n, whereas for dotted arrows
this probability is smaller than neutral. We find that only the first automaton
Ay can outperform both ALLC and ALLD. d—f, In a next step, we have
explored the same scenario for a positive mutation rate ;1=0.01. The triangles
represent the possible population compositions. Each corner corresponds to a
homogeneous population, whereas the center corresponds to a perfectly mixed
population. The color code reflects how often we observe the respective popu-
lation composition over the course of evolution. We find that most of the time,
populations are either in the neighborhood of ALLD, or they represent some
mixture between the automaton strategy and ALLC. g—i, We have re-run the
simulations in panels d—f, but now varying either the benefit of cooperation,
the selection strength, or the mutation rate. In all cases, we observe that the
first automaton is most favorable to cooperation. Interestingly, we observe the
largest cooperation rate for intermediate mutation rates. This result, however,
may be due to the fact that players can only choose from an unbalanced
strategy space, as discussed in detail in Section 5.5.6. . . . . . .. .. ..

Performance of leading-eight strategies under direct and indirect
reciprocity. a, Previous research has suggested that there are eight stable
third-order strategies of indirect reciprocity that can sustain cooperation[OI104],
called the leading eight, L1-L8. They consist of two components, an assessment
rule and an action rule. The assessment rule determines how players evaluate
each other’s actions, depending on the previous reputations of the involved
players. The action rule determines how to interact in the game, depending on
one’s own reputation and on the reputation of the co-player. b—i, To explore
the stability of these strategies, we consider a population in which n—1 players
adopt one of the leading-eight strategies. The remaining player either adopts
ALLC or ALLD. Our results for A >0 reflect previous findings[HST*18]: in
the presence of perception errors, all leading-eight strategies are susceptible to
invasion by either ALLC or ALLD. Only for A=0 (when perception errors are
absent), the leading-eight strategies are stable against both mutant strategies.

XXX

102

103



5.15

5.16

5.17

Evolutionary dynamics of the leading-eight. Similar to Fig. 5.13 for
finite state automata, this figure explores how each of the leading-eight fares in
an evolutionary competition against ALLC and ALLD for a fixed receptivity
A=0.1. a—h, When mutations are rare, only ‘Judging’ (Lsg) is played in notable
proportions. However, in the presence of perception errors, this strategy tends
to assign a bad reputation to other players with the same strategy, such
that everyone defects eventually[HST'18]. i—p, When mutations are more
common, some of the leading-eight strategies can stably coexist with ALLC.
We observe such cooperative coexistences for Ly, Lo, and L;. q—s, These three
strategies also yield substantial cooperation rates when we vary the benefit
of cooperation, the selection strength, and the mutation rate. With respect
to mutation, we again observe that intermediate mutation rates are most
favorable to cooperation. However, this finding may not be robust, because
the strategy space is again unbalanced. For a more detailed discussion, see
Section 5.5.6. . . . . . ...

Simulations of the game dynamics confirm the results of the analyt-
ical payoff calculations. Here, we explore whether equation (5.19) gives
an accurate prediction of the resulting payoffs when all players adopt some
(reactive) strategy (y,p,q, A). To this end, we consider n—1 conditional coop-
erators with strategy (1,1,0.01, A). The remaining player is a defector. We
calculate payoffs in two different ways, by using the formula (5.19), and by
simulating the game dynamics explicitly. a, When errors are rare and the
continuation probability is comparably small, cooperators can only outperform
defectors when they take indirect information into account. b, In contrast,
when information is noisy and there are many pairwise interactions, cooper-
ators obtain a better payoff when they ignore indirect information. In both
cases, our analytical results agree with the simulations. . . . . . . . . . ..

The coevolution of conditional cooperation and information use in
a model of “purified” indirect reciprocity. For the model discussed in
the main text, we assume that after a direct interaction, players always update
their co-player’s reputation. After a indirect interaction, they update their
co-player’s reputation with probability A. These assumptions imply that even
if A=1, players may occasionally react based on their direct experiences. This
happens, for example, if two players have two consecutive interactions. In that
case, the players’ behavior in the second round will depend on the outcome
of the first. While such an assumption seems realistic, it can be useful to
compare purified versions of both kinds of reciprocity. We explore such a
model in 5.5.6. There, the players’ strategies take the form (y,p,q, k). A
value of k=0 means players ignore all of a co-player’s third party interactions
(similar to the case A=0 discussed before). A value of k=1, however, now
means that players ignore all direct information they may have. In the limit
of large populations, the two strategy spaces (vy,p,q, A) and (y,p, ¢, k) yield
identical results. Here we repeat the simulations performed in Fig. 5.7a—d
for a finite population of n=50, using the alternative strategy space (v, p, ¢, k).
The results in a—d correspond to and are almost indistinguishable from the
results shown in Fig. 5.7a—d. . . . . . ... ... ... ...
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The leading-eight strategies of indirect reciprocity. There are eight
strategies, called the ‘leading-eight’, that have been shown to maintain co-
operation under public assessment [O104, OI06]. Each such strategy consists
of an assessment rule and of an action rule. The assessment rule determines
whether a donor is deemed good (g) or bad (b). This assessment depends
on the context of the interaction (on the reputations of the donor and the
recipient), and on the donor’s action (C or D). The action rule determines
whether to cooperate with a given recipient when in the role of the donor. A
donor’s action may depend on her own reputation, as well as on the reputation
of the recipient. All of the leading-eight strategies agree that cooperation
against a good player should be deemed as good, whereas defection against
a good player should be deemed bad. They disagree in how they evaluate
actions towards bad recipients. . . . . . .. ... oL L.

Parameters of the model. Our model involves a number of fixed parameters
that are the same for all players and kept constant over time. In addition, our
model considers four evolving traits. The values of the evolving traits may
differ between individuals. They are kept constant over the course of a game,
but they may change over an evolutionary timescale (see Section 5.5.5). .
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CHAPTER

Introduction

Game theory, originally introduced by von Neumann and Morgenstern [vNMb53], aims
to mathematically analyze strategic decision making in competitive situations and
interactions with multiple participants (players) who can influence each other’s out-
comes [FT98, NRTV07]. The classic framework usually makes some key assumptions
about the players’ rationality, their beliefs and cognitive abilities when reasoning about
strategies that maximize players’ benefits (payoffs) in a given situation, building on fun-
damental concepts such as Nash equilibria. In this general form, game theory has become
a very broad field with multiple applications, starting with its foundations in economics
and extending to a wide array of problems in computer science as well as political science
and biology. Game-theoretic approaches are used to describe and solve a diverse range of
problems, such as resource allocation, public goods provision, virus inoculation, voting,
network routing, bargaining, auction bidding, and market competition.

Applications of game theory in (evolutionary) biology gave rise to the field of evolutionary
game theory, starting with the work of John Maynard-Smith [MSP73]. As a generic
approach to evolutionary dynamics [MS82, HS98|, evolutionary game theory now is
not only a central area of mathematical biology, but has also developed to have many
applications even beyond life sciences, such as describing the evolution of language, or
sociological phenomena. In contrast to classic game theory, it considers populations
of players with bounded rationality who interact with other population members in a
game. Individuals’ behavior is governed by their strategies, which tell them how to act
in a given situation. The players’ payoffs from their interactions — which depend on the
actions of the co-players and therefore on the abundance of different strategies — are
assumed to be a proxy for their evolutionary fitness. Success in the underlying game is
thus translated into increased evolutionary fitness, such that good strategies spread faster,
whereas disadvantageous strategies rather go extinct.

In the following, we first embed the work presented in this thesis into the state of the art
in evolutionary game theory, and then give an overview of our contributions.

1.1 State of the field

One prominent question raised in evolutionary game theory is how cooperation among
unrelated individuals can be sustained. The emergence of cooperative behavior might
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seem puzzling from an evolutionary standpoint: after all, helping others at own cost
can easily lead to a personal disadvantage over time, even though altruism is beneficial
for the population as a whole. Selfishness seems like a better option in an evolutionary
competition, since natural selection is competitive, and altruistic behavior often is exploited
once free-riders, i.e. defectors, start appearing in a group. This conflict between personal
advantage and group advantage is usually modeled in the form of social dilemmas like the
Prisoner’s Dilemma [AH81] or a public goods game [SP16]. Players in these games prefer
to defect against their partners, while mutual cooperation would lead to higher overall
benefits. The literature on evolutionary game theory has highlighted various mechanisms
to describe how cooperation can however still evolve and be maintained. One of the
most prominent such mechanisms is reciprocity, which means that players conditionally
cooperate with each other, and preferentially help those who have been helpful in the
past. Most humans are conditional cooperators, and many daily life interactions are
based on reciprocity, be it repaying a favor or building up trust with someone over
time [Tri71, Sug86, Now06, Sigl0].

Evolutionary game theory distinguishes between two modes of reciprocity: direct and
indirect reciprocity. Direct reciprocity [AH81, NS92, HS97, PD12, HNS13, SP14a, SP14c,
Akil6, PHRZ15, HRZ15, MH16b, IM18, HCN18, GvV18, RHR 18] is based on repeated
interactions between players. Individuals use their own experience to decide whether
to cooperate or defect with an opponent. This requires that the same individuals
interact repeatedly, which enables them to respond to their interaction partner in future
transactions. This is modeled in the framework of repeated games, for example using
the iterated Prisoner’s Dilemma. While each player still prefers to defect if they only
interact once, cooperation becomes feasible when they interact over multiple rounds [MS06,
HvCN18, vWGRN12]. In such repeated games, players can take into account the game’s
previous history when deciding what to do next. Strategies are then rules that tell the
player whether to cooperate or not given the history of the game. In this context, the
concept of memory comes into play. Individuals are constrained in how many previous
interactions they remember, governed by their limited memory capacity. A very commonly
considered class of strategies are so-called memory-1 strategies, which have players take
into account only their own and their co-player’s last move. A special case of memory-1
strategies is the even simpler class of reactive strategies, where players only remember
the co-player’s last move [NS90]. Reactive strategies such as Tit-for-Tat [AH81] only
require minimal information, yet they are very successful in maintaining cooperation.
Even when players occasionally make mistakes or environments are noisy, cooperation
can evolve with simple strategies of direct reciprocity, e.g. with the help of Generous
Tit-for-Tat [NS92, Mol85]. Similarly successful strategies using a larger memory capacity
have also been identified [HS97, Lin97, HMVCN17].

Indirect reciprocity [NS98b, LHO1, OI04, SSP18, Sigl2, Kan92|, on the other hand, lets
players also consider others’ experiences and cooperate with those opponents that have a
good reputation. By helping somebody, people increase their own public standing, which
benefits them in future interactions if reputation is a sufficiently valuable commodity. In
contrast to direct reciprocity, indirect reciprocity does not require any two individuals to
interact with one another more than once. Population members instead continually assess
others’ actions and then act based on the resulting reputations. Indirect reciprocity thus
transfers the principles of direct reciprocity to the group level, and builds upon a group’s
collective memories. Since individuals need to develop a sense of which behaviors should
be regarded as good or bad, indirect reciprocity has become the subfield of evolutionary
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game theory that explores the evolution of moral behavior [Ale87]. The dynamics of
indirect reciprocity are again modeled with simple social dilemma situations, where a
donor is asked whether or not to pay a personal cost to provide help to a recipient, i.e.
whether to cooperate or defect. The donor’s action is observed by other population
members, who then decide how the donor’s reputation should be updated in light of the
observed behavior [BS05]. How exactly actions are assessed, and how these assessments
are translated into future actions, is governed by social norms in the community. These
social norms thus consist of two components: an assessment rule that specifies how a
player should judge an observed action, and an action rule that tells the donor whether
or not to help the recipient, potentially depending on some context like the recipient’s
current reputation. Many previous studies have dealt with the question of which norms
excel most at facilitating and sustaining cooperation, and how complex they need to be.
While there is important work that shows that first-order information, e.g. remembering
a co-player’s last two actions, can already suffice to sustain cooperation via indirect
reciprocity [Berll, BG16], most of the well-known social norms studied in the literature
are very complex. Influential previous work [OI04, OI06] identified eight highly successful
such norms of higher complexity: the “leading eight”. These norms’ complexity lies in the
fact that players take third-order information into account when making assessments; this
means that they contextualize an observed action with the reputation of the donor and
the reputation of the receiver. The eight highlighted norms can then differ, for example,
in how they judge the cooperation of a good player with a bad player.

Yet, previous research on the leading eight norms is based on rather stringent assumptions
on the players’ environment. The success of these norms so far had been demonstrated
in settings where information is public, all players share the same synchronized opinion
about everyone else, and where all players observe every single interaction without
misunderstandings. This is a very idealized scenario, which is rarely mirrored in real
life. The role of imperfect information in indirect reciprocity was less clear. How do
the leading eight in contrast fare in more realistic settings, where all these assumptions
are removed and players may have differing opinions about others spurred by occasional
misunderstandings and missed observations? How easily can indirect reciprocity thus
sustain cooperation in noisy environments with private and incomplete information? This
still remained a natural, but non-trivial question. The first part of this thesis addresses
this issue, and demonstrates the shortcomings of successful social norms and subsequent
breakdown of cooperation in noisy environments.

While the two modes of reciprocity are conceptually intertwined, the models previously
used to study them are strikingly different. The gap between those models seems wide, in
particular when it comes to strategic complexity. After all, in most studies, successful
strategies of direct reciprocity are very simple, while still being able to cope with errors
and noise. When players use the well-known reactive strategy Generous Tit-for-Tat, they
just need to remember one bit of information to be able to sustain cooperation, even
when players make occasional mistakes. Describing the resulting dynamics is then well
feasible. In contrast, successful strategies of indirect reciprocity usually take the form of
elaborate social norms like the leading eight. Deciding how to evaluate the reputation
of a given co-player or how to act towards a given co-player can depend on a significant
amount of context that players need to keep track of. In most models, these decisions
depend on the co-player’s previous actions, but at the same time on the reputation of the
co-player’s previous co-players (which in turn depends on those players’ last co-players).
This significantly complicates the analysis of indirect reciprocity, and makes simpler
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strategies for indirect reciprocity desirable - in particular simpler strategies that can
additionally cope with the effects of imperfect information.

As a result of the differences between models of direct and indirect reciprocity, the two
modes are usually studied in isolation. This now begs the question if there is a possibility
to unite the two kinds of reciprocity despite their fundamental contrasts. How should we,
for example, answer the question of whether to help someone who treated us well in the
past, but has a bad public reputation? Can one find a unified model of reciprocity that
assumes an imperfect information setting right from the start? And is there a possibility
then that successful strategies in indirect reciprocity can take forms more similar to the
simple strategies of direct reciprocity? This is what the second part of this thesis answers.

1.2 Owur contributions

Much of the previous work on the leading eight strategies of indirect reciprocity assumes
that a central authority tracks players’ behavior and in turn assigns updated reputations
after every interaction in the population. In Chapter 2, we first show the fundamental
result that once we remove this assumption of an idealized setting featuring synchronized
and fully public information, the leading eight strategies of indirect reciprocity do not
promote cooperation anymore.

For this, we consider a scenario where individuals privately keep track of others’ reputations
instead of perfectly agreeing on everyone’s standing. Every player is equipped with a
reputation repository representing a collection of the reputations he assigns to each
member of the population including himself. We also assume a noisy environment: players’
observations are subject to perception errors, i.e. misunderstandings. Furthermore,
information is incomplete: not every interaction is observed by everyone, such that not
every player updates their reputation repository after every single interaction.

In this setting, we show that minor initial disagreements about others’ reputations can
proliferate, eventually fully fragmenting communities into different subgroups that assign
a good reputation to every player inside the group, and a bad reputation to every outsider.
This creates a deadlock. Thus, in the presence of noise caused by perception errors, most
leading eight strategies are not stable anymore. Even if a leading eight norm evolves,
which only happens for three of the eight norms, the emergence of cooperative behavior
is effectively prevented. These modestly successful three norms then lead to positive
cooperation rates in the population, but in comparison to the public information scenario,
these rates are drastically reduced. We additionally prove the analytical result that while
the more robust leading eight strategies can recover from single intial disagreements in
a noisy environment, it may take them a long time to do so, which implies that they
cannot maintain full cooperation. This study sheds light on the interplay of moral norms,
reputation formation, and the evolution of cooperation aside from idealized settings.

This finding naturally calls for a way to mitigate the strong negative impact of noisy
environments on indirect reciprocity. In this context, we considered two approaches to
this problem.

In Chapter 3, we first demonstrate a negative result. Here, we introduce elements of
“generosity” into the leading eight. This implies that contrary to the baseline model in
Chapter 2, we assume that players’ strategies are not completely deterministic. Instead
individuals now are equipped with probabilities to cooperate when their norm would
usually prescribe to defect (“action generosity”), and/or to assign a good reputation to a
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player they would usually assign a bad reputation to (“assessment generosity”). We hence
distinguish between two kinds of generosity, and explore the effect that each of them
has on the capacity of the leading eight norms to sustain cooperation. This approach
is inspired by the related literature on direct reciprocity, where the role of generosity
has traditionally been highlighted. There, the strategy Generous Tit-for-Tat has been
shown to be successful when the classical Tit-for-Tat strategy is not. By occasionally
cooperating against defectors, Generous Tit-for-Tat is able to reestablish cooperation
even in the presence of noise. This makes generosity a powerful mechanism in the realm
of repeated games to cope with errors that would usually prove detrimental.

However, this does not hold for indirect reciprocity. In fact, we show that assessment
generosity acts as yet another seed of disagreement, as it leads to private reassessment of
others’ reputations. This further weakens the performance of the leading eight, letting
cooperation rates decrease further without exception. On the other hand, action generosity
only leads to a public show of cooperation, which does not have the same immediate
negative consequences, as it does not lead to the same mutual disagreements as assessment
generosity. However, while this mode of generosity can sometimes slightly enhance
cooperation, the leading eight norms still fail to evolve. These results further highlight the
importance of coordination and communication in societies with complex social norms. In
such societies, individual acts of generosity can be detrimental as they naturally introduce
disagreements between different population members.

On the other hand, in Chapter 4, we present a separate, successful method of making the
leading eight norms more robust against the effects of noise and private information. This
method requires us to drop a different standard assumption made about the leading eight,
namely, taking players’ reputations to be binary. In the baseline model of the leading eight
that is commonly studied in the literature, individuals only distinguish between the labels
“good” and “bad”. In contrast, in this chapter, we study the case where reputations are
more nuanced, i.e. on a scale between a minimal and a maximal value. Players privately
keep track of each others’ integer reputation scores instead of binary labels, adding to and
subtracting from these scores depending on their norms and the observations they make.
For an individual to then make an overall judgment of a peer in order to get the context
for assessment or decision whether to cooperate or not, they compare this co-player’s
score with a threshold. A larger range of values for the reputation scores therefore results
in a greater insensitivity of overall judgment to single assessments, i.e. greater tolerance
for single bad events. This more refined assessment system hence can act as a buffer for
misjudgments. The approach in this chapter draws inspiration from previous work on
the simple Image Scoring norm of indirect reciprocity, which has been shown to be less
vulnerable to errors when scores are not binary. Our results show that such a model of
“quantitative assessment” can indeed work for the leading eight norms, as it corrects and
to a certain degree prevents disagreements between players using the same norm. This
makes it more likely for four of the leading eight norms to evolve, giving high cooperation
rates for these four norms even in environments with significant noise levels. Our findings
let us eventually draw the conclusion that for a leading eight norm to be stable both
under public and private information, it cannot be “gullible” by making it too easy for
bad players to gain a good reputation.

We thus show the power of more nuanced opinions when a community uses complex social
norms. Too rash judgments can break down cooperation in noisy environments, whereas
a certain amount of tolerance can help sustain it.

Finally, in Chapter 5, we then considered the question of how to unify direct and indirect
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reciprocity despite their stark differences and the quite contrasting models for the two
modes. Here, we introduced a single theoretical framework that works for both, assuming a
setting where information can be private, noisy and imperfect. We assume that individuals
can choose between direct and indirect reciprocity: they can consider only actions directed
at them or also interactions between third parties. Our framework then contains many
previous models of direct and indirect reciprocity as special cases. We describe the
interaction between the two modes with the help of a central equation that lets us
explicitly calculate payoffs, and derive a number of results starting from this point. For
one, we analyze how to make decisions when different sources of information are available.
Here, we find that winning strategies take third-party interactions into account only when
the information is sufficiently reliable. Otherwise they ignore indirect information and
trust only their personal experience. Generally, the two modes need different environments
to emerge, both in terms of the length of the game as well as in terms of how noisy and
prone to mutations the evolutionary process itself is.

Second, we find a novel simple and powerful strategy of indirect reciprocity, which we
call “Generous Scoring”, and which has an immediate analogue (Generous Tit-for-Tat)
in direct reciprocity. Generous Scoring only requires a minimum amount of information,
namely only what the co-player did last. A player with this strategy then always assigns
a good reputation to those who have previously cooperated, but even someone who has
been observed to have defected can be forgiven with some probability. By extending
the mathematical theory of direct reciprocity to indirect reciprocity, we prove important
theoretical properties of Generous Scoring: it is a Nash equilibrium with respect to
arbitrary mutants, just like its direct reciprocity analogue Generous Tit-for-Tat. Hence, if
everyone adopts one of these strategies, no other norm can take over even if it is much
more sophisticated. More generally, we hereby show that direct and indirect reciprocity
can be explored with the same equations, give rise to similar strategies, and naturally
complement each other in sustaining cooperation. Our results suggest that already the
most simple rules of reciprocity can be sufficient for the evolution of cooperation. Our
framework however not only links direct and indirect reciprocity by what they have in
common, but also allows us to understand their differences in more depth.
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Indirect reciprocity with private,
noisy, and incomplete information

Indirect reciprocity is a mechanism for cooperation based on shared moral systems and
individual reputations. It assumes that members of a community routinely observe and
assess each other, and that they use this information to decide who is good or bad,
and who deserves cooperation. When information is transmitted publicly, such that all
community members agree on each other’s reputation, previous research has highlighted
eight crucial moral systems. These ‘leading-eight’ strategies can maintain cooperation
and resist invasion by defectors. However, in real populations individuals often hold
their own private views of others. Once two individuals disagree about their opinion of
some third party, they may also see its subsequent actions in a different light. Their
opinions may further diverge over time. Herein, we explore indirect reciprocity when
information transmission is private and noisy. We find that in the presence of perception
errors, most leading-eight strategies cease to be stable. Even if a leading-eight strategy
evolves, cooperation rates may drop considerably when errors are common. Our research
highlights the role of reliable information and synchronized reputations to maintain stable
moral systems.

2.1 Introduction

Humans treat their reputations as a form of social capital [Ale87, RN12, MS10]. They
strategically invest into their good reputation when their benevolent actions are widely
observed [EF09, JHTM11, OIN15], which in turn makes them more likely to receive
benefits in subsequent interactions [WMO00, MSBKO01, SS06, BKO05, vAS16, SMUE16,
CGVP16]. Reputations undergo constant changes in time. They are affected by rumors
and gossip [SKSMO07], which themselves can spread in a population and develop a life of
their own. Evolutionary game theory explores how good reputations are acquired, and
how they affect subsequent behaviors, using the framework of indirect reciprocity [NS05,
Now06, Sig10, Sig12]. This framework assumes that members of a population routinely
observe and assess each other’s social interactions. Whether a given action is perceived as
good depends on the action itself, the context, and on the social norm employed by the
population. Behaviors that yield a good reputation in one society may be condemned
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in others. A crucial question thus becomes which social norms are most conducive to
maintain cooperation in a population.

Different social norms can be ordered according to their complexity [SSP18], and according
to the information that is required to assess a given action [BS04, OI04]. According to
‘first-order norms’, the interpretation of an action only depends on the action itself.
When a donor interacts with a recipient in a social dilemma, the donor’s reputation
improves if she cooperates, whereas her reputation drops if she defects [NS98b, NS98a,
Oht04, BS05, Berll, BG16]. According to ‘second-order norms’, the interpretation of an
action additionally depends on the reputation of the recipient. The recipient’s reputation
provides the context of the interaction. It allows observers to distinguish between justified
and unjustified defections [LHO1, PB03, SA07]. For example, the standing strategy only
considers it as wrongful to defect against well-reputed recipients; donors who defect
against bad recipients do not suffer from an impaired reputation [Sug86]. According
to ‘third-order norms’, observers need to additionally take the donor’s reputation into
account. In this way, assessment rules of higher order are increasingly able to give a more
nuanced interpretation of a donor’s action, but they also require observers to store and
process more information.

When subjects are restricted to binary norms, such that reputations are either ‘good’
or ‘bad’, an exhaustive search shows there are eight third-order norms that maintain
cooperation [OI04, OI06]. These ‘leading-eight strategies’ are summarized in Tab. 1, and
we refer to them as L1-L8. None of them is exclusively based on first-order information,
whereas two of them (called ‘Simple Standing” and ‘Stern Judging’, [CSP06, SSP16])
require second-order information only. There are several universal characteristics that all
leading-eight strategies share. For example, against a recipient with a good reputation,
a donor who cooperates should always obtain a good reputation, whereas a donor who
defects should gain a bad reputation. The norms differ, however, in how they assess
actions towards bad recipients. Whereas some norms allow good donors to preserve their
good standing when they cooperate with a bad recipient, other norms disincentivise such
behaviors.

Ohtsuki and Iwasa have shown that if all members of a population adopt a leading-eight
strategy, stable cooperation can emerge [0104, OI06]. Their model, however, assumes that
the players’ images are synchronized; two population members would always agree on the
current reputation of some third population member. The assumption of publicly available
and synchronized information greatly facilitates a rigorous analysis of the reputation
dynamics. Yet in most real populations, different individuals may have access to different
kinds of information, and thus they might disagree on how they assess others. Their
opinions may well be correlated, but they will not be correlated perfectly. Once individuals
disagree in their initial evaluation of some person, their views may further diverge over time.
How such initial disagreements spread may itself depend on the social norm employed
by the population. While some norms can maintain cooperation even in the presence
of rare disagreements, other norms are more susceptible to deviations from the public
information assumption [Uch10, US13, OSN17, OSN18]. Here, we explore systematically
how the leading-eight strategies fare when information is private, noisy, and incomplete.
We show that under these conditions, most leading-eight strategies cease to be stable.
Even if a leading-eight strategy evolves, the resulting cooperation rate may be drastically
reduced.
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Assessment rule L1 L2 L3 L4 L5
Good cooperates with Good g g g g g g g g
Good cooperates with Bad g b g g b b g b
Bad cooperates with Good g g g g g g g g
Bad cooperates with Bad g g g b g b b b
Good defects against Good b b b b b b b b
Good defects against Bad g g g g g g g g
Bad defects against Good b b b b b b b b
Bad defects against Bad b b g g g g b b
Action rule L1 L2 L3 L4 L5
Good meets Good C C C C C C C C
Good meets Bad D DD D DD D D
Bad meets Good c ¢ C C C C C cC
Bad meets Bad C C bbb DDDD

Table 2.1: The leading-eight strategies of indirect reciprocity. There are eight
strategies, called the ‘leading-eight’; that have been shown to maintain cooperation under
public assessment 0104, OI06]. Each such strategy consists of an assessment rule and of
an action rule. The assessment rule determines whether a donor is deemed good (g) or
bad (b). This assessment depends on the context of the interaction (on the reputations
of the donor and the recipient), and on the donor’s action (C or D). The action rule
determines whether to cooperate with a given recipient when in the role of the donor. A
donor’s action may depend on her own reputation, as well as on the reputation of the
recipient. All of the leading-eight strategies agree that cooperation against a good player
should be deemed as good, whereas defection against a good player should be deemed
bad. They disagree in how they evaluate actions towards bad recipients.

2.2 Results

2.2.1 Model setup

We consider a well-mixed population of size N. The members of this population are
engaged in a series of cooperative interactions. In each round, two individuals are randomly
drawn, a donor and a recipient. The donor can then decide whether to transfer a benefit b
to the recipient at own cost ¢, with 0 <c<b. We refer to the donor’s two possible actions
as cooperation (transferring the benefit) and defection (not doing anything). Whereas the
donor and the recipient always learn the donor’s decision, each other population member
independently learns the donor’s decision with probability ¢ >0. Observations may be
subject to noise: we assume that all players who learn the donor’s action may misperceive
it with probability ¢ > 0, independently of the other players. In that case, a player
misinterprets the donor’s cooperation as defection, or conversely, the donor’s defection as
cooperation. After observing an interaction, population members independently update
their image of the donor according to the information they have (Fig. 2.1).

To do so, we assume that each individual is equipped with a strategy that consists of
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Figure 2.1: Under indirect reciprocity, individual actions are continually as-
sessed by all population members. (A) We consider a population of different players.
All players hold a private repository where they store which of their co-players they deem
as either good (g) or bad (b). Different players may hold different views on the same
co-player. In this example, player 2 is considered to be good from the perspective of the
first two players, but he is considered to be bad by player 3. (B) In the action stage, two
players are randomly chosen, a donor (here, player 1) and a recipient (here, player 2).
The donor can then decide whether or not to cooperate with the recipient. The donor’s
decision may depend on the stored reputations in her own private repository. (C) After
the action stage, all players who observe the interaction update the donor’s reputation.
The newly assigned reputation may differ across the population even if all players apply
the same social norm. This can occur (7) when individuals already disagreed on their
initial assessments of the involved players, (i7) when some subjects do not observe the
interaction and hence do not update the donor’s reputation accordingly, or (i) when
there are perception errors.

an assessment rule and of an action rule. The player’s assessment rule governs how
players update the reputation they assign to the the donor. Here we consider third-order
assessment rules. That is, when updating the donor’s reputation, a player takes the
donor’s action into account, as well as the donor’s and the recipient’s previous reputation.
Importantly, when two observers differ in their initial assessment of a given donor, they may
also disagree on the donor’s updated reputation, even if both apply the same assessment
rule and observe the same interaction (Fig. 2.1c). The second component of a player’s
strategy, the action rule, determines which action to take when chosen to be the donor.
This action may depend on the player’s own reputation, as well as on the reputation
of the recipient. A player’s payoff for this indirect reciprocity game is defined as the
expected benefit obtained as a recipient, reduced by the expected costs paid when acting
as a donor, averaged over many rounds (see Materials and Methods, Section 2.4 for
details).

2.2.2 Analysis of the reputation dynamics

We first explore how different social norms affect the dynamics of reputations, keeping the
strategies of all players fixed. To this end, we use the concept of image matrices [Uch10,

10
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US13, OSN17]. These matrices record, at any point in time, which reputations players
assign to each other. In Fig. 2.2, we show a snapshot of these image matrices for eight
different scenarios. In all scenarios, the population consists in equal proportions of a
leading-eight strategy, of ALLC (unconditional cooperators who regard everyone as good),
and of ALLD (unconditional defectors who regard everyone as bad). Depending on the
leading-eight strategy considered, the reputation dynamics in these scenarios can differ
considerably.

A L1 ALLC ALLD c L3 ALLC ALLD D L4 ALLC ALLD

.

H L8 ALLC ALLD

L8

ALLC

ALLD

Figure 2.2: When individuals base their decisions on noisy private information,
their assessments may diverge. Models of private information need to keep track
of which player assigns which reputation to which co-player at any given time. These
pairwise assessments are represented by image matrices. Here, we represent these image
matrices graphically, assuming that the population consists of equal parts of a leading-eight
strategist, of unconditional cooperators (ALLC) and unconditional defectors (ALLD). A
colored dot means that the corresponding row-player assigns a good reputation to the
column-player. Without loss of generality, we assume that ALLC players assign a good
reputation to everyone, whereas ALLD players deem everyone as bad. The assessments
of the leading-eight players depend on the co-player’s strategy and on the frequency of
perception errors. We observe that two of the leading-eight strategies are particularly
prone to errors: L6 (‘Stern Judging’) eventually assigns a random reputation to any
co-player, while L8 (‘Judging’) eventually considers everyone as bad. Only the other
six strategies separate between conditionally cooperative strategies and unconditional
defectors. Each box shows the image matrix after 2 - 10° simulated interactions in a
population of size N =3-30=90. Perception errors occur at rate £¢=0.05, and interactions
are observed with high probability, ¢=0.9.

First, for four out of the eight scenarios, a substantial proportion of leading-eight players
assigns a good reputation to ALLD players. The average proportion of ALLD players
considered as good by L3, L4, L5, L6 is given by 31%, 31%, 42%, and 50%, respectively
(Fig. 2.3).

In the eyes of these four leading-eight strategies, a bad player who defects against another
bad player deserves a good reputation (Tab. 1). In particular, ALLD players can easily
gain a good reputation whenever they encounter another ALLD player. Moreover, the
higher the proportion of ALLD players in a population, the more readily they obtain a

11
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A L1 ALLC ALLD B L2 ALLC ALLD C L3 ALLC ALLD D L4 ALLC ALLD

88.4% 96.7% [l 56.8% 63.0% KM 89.8% 96.4% [N 87.4% 95.1%

E L5 ALLC ALLD F L6 ALLC ALLD G L7 ALLC ALLD H L8 ALLC ALLD

L5 L6 L7 ' 5.0% L8 | 0.0% 0.0% 0.0%
ALLD ALLD ALLD ALLD

Figure 2.3: The average images players have of each other converge over time.
While Fig. 2.2 provides a snapshot of the reputation dynamics at a particular point
in time, here we show how often players consider any other player as good on average.
While ALLC players deem everyone as good and ALLD players deem everyone as bad,
independent of the error rate, the leading-eight strategies differ in their assessments.
Typically, a leading-eight player is most likely to consider ALLC players as good, followed
by other leading-eight players and by ALLD. Whether the leading-eight strategy can resist
invasion by ALLC or ALLD depends on the differences in the average image, and on the
cost and benefit of cooperation. This figure uses the same parameters as in Fig. 2.2. The
depicted numbers represent average values over the second half of 2 - 10° rounds of the
game. Results for all strategies but L7 are robust with respect to starting from a different
initial image matrix.

good reputation. This finding suggests that while L3 — L6 might be stable when these
strategies are common in the population [O104, MVC13|, they have problems to restrain
the payoff of ALLD when defectors are predominant.

Second, leading-eight players may sometimes collectively judge a player of their own kind
as bad. In Fig. 2.2, such cases are represented by white vertical lines in the upper left
square of an image matrix. In Fig. 2.4 we show that such apparent misjudgments are
typically introduced by perception errors. They occur, for example, when a leading-eight
donor defects against an ALLC recipient, who is mistakenly considered as bad by the
donor. Other leading-eight players who witness this interaction will then collectively
assign a bad reputation to the donor — in their eyes, a good recipient has not obtained
the help he deserves. This example highlights that under private information, an isolated
disagreement about the reputation of some population member can have considerable
consequences on the further reputation dynamics.

To gain a better understanding of such cases, we have analytically explored the conse-
quences of a single disagreement in a homogeneous population of leading-eight players
(see SI, Section 2.5, Section 2.5, for details). There we assume that initially, all players
consider each other as good, with the exception of one player who considers a random
co-player as bad. Assuming that no further errors occur, we study how likely the popula-
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Initial reputations Updated reputations
A L3 ALLC ALLD Next interaction occurs L3 ALLC ALLD
123456789 between players 8 and 9 123456789 An ALLD player
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o4 o4
15 defects —» 5 Can happen with
<6 — <6
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Jdg 48
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Figure 2.4: The emergence of apparent misjudgments among leading-eight play-
ers. As the game proceeds, it may occur that an ALLD player is considered as good by
all leading-eight players (A), or that a leading-eight player is considered as bad by all
other leading-eight players (B). Here we present stylized situations in which these cases
occur. (A) For half of the leading-eight strategies (L3 — L6), an ALLD player can acquire
a good reputation by defecting against another ALLD player. (B) When information is
private and noisy, leading-eight strategies may disagree on the current reputation of a
co-player. Here we show a case in which initially, player 3 is the only leading-eight player
who deems player 5 as bad. If these two players are chosen for the next interaction, with
player 3 as the donor, player 3 defects and acquires a bad reputation among her fellow
leading-eight strategists.

tion recovers from this single disagreement (i.e., how likely the population reverts to a
state where everyone is considered good), and how long it takes until recovery. While
some leading-eight strategies are guaranteed to recover from single disagreements, we find
that other strategies may reach an absorbing state where players mutually assign a bad
reputation to each other. Moreover, even if recovery occurs, for some strategies it may
take a considerable time (Fig. 2.5).

Two strategies fare particularly badly: L6 and L8 have the lowest probability to recover
from a single disagreement, and they have the longest recovery time. This finding is
also reflected in Fig. 2.2, which shows that these two strategies are unable to maintain
cooperation. L6 eventually assigns random reputations to all co-players, whereas L8
assigns a bad reputation to everyone (Fig. 2.6). While L6 (‘Stern’) has been found to
be particularly successful under public information [CSP06, SSP16, SSP18], our results
confirm that this strategy is too strict and unforgiving when information is private and
noisy [Uch10, US13, OSN17].

2.2.3 Evolutionary dynamics

Next we have explored how likely a leading-eight strategy would evolve when population
members can change their strategies over time. We first consider a minimalistic scenario,
where players can choose among three strategies only, a leading-eight strategy L;, ALLC,

13
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Figure 2.5: The leading-eight strategies differ in their ability to recover from a
single disagreements. (A) We consider a homogeneous population in which everyone
applies the same leading-eight strategy. Initially, all players are assumed to have a good
reputation; only player 1 considers player 2 as bad. We derive analytical results for the
reputation dynamics under the assumption that no more perception errors occur. We
say the population recovers from a single disagreement, if it reaches the state where all
players have a good reputation again. This is an absorbing state for all leading-eight
strategies. We are interested in how likely the population recovers, and how long it takes
until recovery. We find that only for four of the eight strategies, recovery is guaranteed
(see Section 2.5.1). (B) With respect to the time until recovery, there are three cases.
For four of the leading-eight strategies, recovery occurs quickly, and the recovery time
is approximately linear. For all other strategies, including L2, we show that recovery
may take substantially more time, being of order Nlog N. (C) Also with respect to
the expected number of defections until recovery, we observe three different qualitative
behaviors. For four of the leading-eight strategies, a single perception error typically
triggers no further defections, provided the population is sufficiently large. On the other
extreme, for L6 and L8 we observe that any initial disagreement triggers on average one
further defection.

and ALLD. To model how players adopt new strategies, we consider simple imitation
dynamics [TNP06, SP13, RHR"18, HvCN18]. In each time step of the evolutionary
process, one player is picked at random. With probability p (the mutation rate), this
player then adopts some random strategy, corresponding to the case of undirected learning.
With the remaining probability 1— u, the player randomly chooses a role model from the
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Figure 2.6: Even rare perception errors render full cooperation impossible
under “Stern” (L6) or “Judging” (L8). We have simulated how often individuals
cooperate if everyone in the population applies the same leading-eight strategy. The
emerging cooperation rates depend on which leading-eight strategy is chosen and how
often perception errors occur. For L6 and L8 we find that even rare perception errors
undermine cooperation. Among the other six strategies, L2 and L5 are more susceptible
to the noise introduced by perception errors than the other four strategies. Simulations
were run with a population size of N =50, assuming complete observation, g=1.

population. The higher the payoff of the role model, the more likely it is that the focal
player adopts the role model’s strategy. Overall, the two modes of updating, mutation
and imitation, give rise to an ergodic process on the space of all population compositions
(see Materials and Methods, Section 2.4). In the following, we present results for the
case when mutations are relatively rare [F106, WGWT12].

First we have calculated for a fixed benefit-to-cost ratio of b/c=>5 how often each strategy
is played over the course of evolution, for each of the eight possible scenarios (Fig. 2.7).
In four cases, the leading-eight strategy is played in less than 1% of the time. These
cases correspond to the four leading-eight strategies L3 — L6 that frequently assign a
good reputation to ALLD players. For these leading-eight strategies, once everyone
in a population has learned to be a defector, players have difficulties to reestablish a
cooperative regime (in Fig. 2.7c—f; once ALLD is reached, every other strategy has
a fixation probability smaller than 0.001). In contrast, the strategy L8 is played in
substantial proportions. But in the presence of noise, players with this strategy always
defect, because they deem everyone as bad (Fig. 2.2).

There are only three scenarios in Fig. 2.7 that allow for positive cooperation rates.
The corresponding leading-eight strategies are L1, L2 (‘Consistent Standing’), and L7
(‘Staying’, [SON17]). For L1 and L7, the evolutionary dynamics takes the form of a rock-
scissors-paper cycle [HS98, SS04, CT08, SMJ*14, SPP16]. The leading-eight strategy
can be invaded by ALLC, which gives rise to ALLD, which in turn leads back to the

15



2. INDIRECT RECIPROCITY WITH PRIVATE, NOISY, AND INCOMPLETE INFORMATION

Consistent Standing Simple Standing
L3

A L B c D L4
30.0% 89.1%
0.043 0.097 0.017 0.002 <0.001 0.098 <0.001 0.121
'<0.001 0.012 '<0.001 0.139 <0.001 0.012 ;O 001 0.009
» » X » »
65.8% ?5050; M 4.3% 10.6% (006060; | 0.3% 99.4% (UDE.;OB' b 0.1% 99.8% ZDEL):B‘ M 0.0%
>
ALLD ALLC ALLD ALLC ALLD ALLC ALLD ALLC
E o F G H
<0.001 <0.001 <0.001 <0.001 0.052 l 0.152 0. UZU// ,y <0.001
<0.001. 0.148 0.401 0.376 A‘ - 0\0% /,0 020/ \668 E
» Y Y » ! Vs ’ N
99.5% <0.001 ~ 0.0% 100.0%  <0.001 & 0.0% 70.1% <0.001 ~ 5.5% 50.0% <0.001 | 0.0%
o o o o
ALLD ALLG ALLD ALLC ALLD ALLC ALLD ALLC

Figure 2.7: Most of the leading-eight strategies are disfavored in the presence
of perception errors. We have simulated the evolutionary dynamics when each of the
leading-eight strategies competes with ALLC and ALLD. These simulations assume that
over time, players tend to imitate co-players with more profitable strategies, and that
they occasionally explore random strategies (see Materials and Methods, Section 2.4).
The numbers within the circles represent the abundance of the respective strategy in the
selection-mutation equilibrium. The numbers close to the arrows represent the fixation
probability of a single mutant into the given resident strategy. We use solid lines for the
arrows to depict a fixation probability that exceeds the neutral probability 1/N, and we
use dotted lines if the fixation probability is smaller than 1/N. In four cases, we find that
ALLD is predominant (C - F). In one case (H), the leading-eight strategy coexists with
ALLD but without any cooperation. In the remaining cases (A, B, G), we find that L1
and L7 are played with moderate frequencies, but only populations that have access to L2
(‘Consistent Standing’) settle at the leading-eight strategy. Parameters: Population size
N =50, benefit b=>5, cost ¢c=1, strength of selection s=1, error rate £ =0.05, observation
probability ¢=0.9, in the limit of rare mutations, u — 0.

leading-eight strategy. Because ALLD is most robust in this cycle, the leading-eight
strategies are played in less than a third of the time (Fig. 2.7a,g).

Only Consistent Standing, L2, is able to compete with ALLC and ALLD in a direct
comparison (Fig. 2.7b). Under Consistent Standing, there is a unique action in each
possible situation that allows a donor to obtain a good standing. For example, when a
good donor meets a bad recipient, the donor keeps her good standing by defecting, but
loses it by cooperating. Compared to Stern Judging, which has a similar property [SSP18],
Consistent Standing incentivizes cooperation more strongly. When two bad players
interact, the correct decision according to Consistent Standing is to cooperate, whereas a
stern player would defect (Tab. 1).

Nevertheless, we find that even when Consistent Standing is common, the average
cooperation rate in the population rarely exceeds 65%. To show this, we have repeated the
previous evolutionary simulations for the eight scenarios while varying the benefit-to-cost
ratio, the error rate, and the observation probability (Fig. 2.8).

These simulations confirm that five of the leading-eight strategies cannot maintain any
cooperation when competing with ALLC and ALLD. Only for L1, L2, L7, average
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Figure 2.8: Noise can prevent the evolution of full cooperation even if leading-
eight strategies evolve. We have repeated the evolutionary simulations in Fig. 2.7,
but varying (A) the benefit of cooperation, (B) the error rate, and (C) the observation
probability. The graph shows the average cooperation rate for each scenario in the
selection-mutation equilibrium. This cooperation rate depends on how abundant each
strategy is in equilibrium, and on how much cooperation each strategy yields against
itself in the presence of noise. For five of the eight scenarios, cooperation rates remain low
across the considered parameter range. Only the three other leading-eight strategies can
persist in the population, but even then cooperation rates typically remain below 70%.
We use the same baseline parameters as in Fig. 2.7.

cooperation rates are positive, reaching a maximum for intermediate benefit-to-cost ratios
(Fig. 2.8a). If the benefit-to-cost ratio is too low, we find that each of these leading-eight
strategies can be invaded by ALLD, whereas if the ratio is too high, ALLC can invade
(Fig. 2.9).

In between, Consistent Standing may outperform ALLC and ALLD, but in the presence
of noise it does not yield high cooperation rates against itself. Even if all interactions
are observed (¢=1), cooperation rates in a homogeneous L2 population drop below 70%
once the error rate exceeds 5% (Fig. 2.6). Our analytical results in Section 2.5.1 suggest
that while L2 populations always recover from single disagreements, it may take them a
substantial time to do so, during which further errors may accumulate (Fig. 2.5). As
a result, whereas L2 seems most robust when co-evolving with ALLC and ALLD, it is
unable to maintain full cooperation. Furthermore, additional simulation results suggest
that even if L2 is able to resist invasion by ALLC and ALLD, it may be invaded by
mutant strategies that differ in only one bit from L2 (Fig. 2.10).

So far, we have assumed that mutations are rare, such that populations are typically ho-
mogeneous. Experimental evidence, however, suggests that there is considerable variation
in the social norms employed by subjects [EF09, WM00, MSBKO01, SS06, BKOO05, vAS16,
SMUE16]. While some subjects are best classified as unconditional defectors, others act
as unconditional cooperators, or use more sophisticated higher-order strategies [SMUE16].
In agreement with these experimental studies, there is theoretical evidence that some
leading-eight strategies like L7 may form stable coexistences with ALLC [OSN17]. Thus,
we show further figures with evolutionary results for higher mutation rates, in which such
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Figure 2.9: Stability of each leading-eight strategy against invasion by ALLC
and ALLD. We consider a population of N —1 players adopting one of the leading-eight
strategies, and we explore whether either a single ALLD mutant or an ALLC mutant
gains at least the payoff of the residents. To this end, we vary the benefit of cooperation
(z-axis) and the probability of perception errors (y-axis). Parameter regions in which
ALLD can invade are depicted in dark grey, whereas parameter regions in which ALLC
can invade are shown as light grey. Only in the colored region, the respective leading-eight
strategy is stable against invasion by either ALLC or ALLD. Except for L2 and L5, we
find that most leading-eight strategies are either unstable (F and H), or they only resist
invasion in a small subset of the parameter space (A,C,D,G). Parameters: N =50, c=1,
q=0.9.

coexistences are possible (Fig. 2.11- Fig. 2.13). There we show that in the three cases
L1, L2, L7, populations may consist of a mixture of the leading-eight strategy and ALLC
for a considerable time. However, in agreement with our rare-mutation results, we find
for L1 and L7 that this mixture of leading-eight strategy and ALLC is susceptible to
stochastic invasion by ALLD.

2.3 Discussion

Indirect reciprocity explores how cooperation can be maintained when individuals assess
and act on each other’s reputations. Simple strategies of indirect reciprocity like Image
Scoring [NS98b, NS98a] have been suspected to be unstable, because players may abstain
from punishing defectors in order to maintain their own good score [LHO1]. In contrast,
the leading-eight strategies additionally take the context of an interaction into account.
They have been considered to be prime candidates for stable norms that maintain coopera-
tion [OI04, OI06]. Corresponding models, however, assume that each pairwise interaction
is only witnessed by one observer, who disseminates the outcome of the interaction to all
other population members. As a consequence, the resulting opinions within a population
will be perfectly synchronized. Even if donors are subject to implementation errors, or
if the observer misperceives an interaction, all players will have the same image of the
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Figure 2.10: Stability against ALLC and ALLD does not imply stability against
all mutant invasions. We consider a resident population that either applies the leading-
eight strategy L1 (A), L2 (B), or L.7 (C). For each resident population, we consider 14
possible mutant strategies, including ALLD (black), ALLC (dark grey) and the twelve
strategies that differ from the resident in only one bit (light grey). For different benefit
values, we plot the payoff advantage 7wy, —7g of a single mutant among N —1 residents. If
for a given b-value there is a line in the upper half of the panel, the resident strategy can
be invaded by the respective mutant. We find that even in the parameter region where a
leading-eight strategy can resist invasion by ALLC and ALLD, other mutant strategies
may be able to invade. For example, L2 can resist invasion by ALLD for b 2 1.5, and
invasion by ALLC if b < 5. In between, for 1.5 < b < 5 there is a different mutant strategy
that can invade. This mutant coincides with L2, except that it assesses a good donor who
defects against a bad recipient as bad. Similar cases of successful mutants different from
ALLC and ALLD also exist for L1 and L7. Parameters: N =50, c=1, ¢=0.9, ¢ = 0.05.

donor after the interaction has taken place.

While the assumption of perfectly synchronized reputations is a useful idealization, we
believe that it may be too strict in some applications. Subjects often differ in the
prior information they have, and even if everyone has access to the same information
(as is often the case in online platforms [RZSL06, RvdR12]), individuals differ in how
much weight they attribute to different pieces of evidence. As a result, individuals
might disagree on each other’s reputations. These disagreements can proliferate over
time. Herein, we have thus systematically compared the performance of the leading-eight
strategies when information is incomplete, private, and noisy. The leading-eight strategies
differ in how they are affected by the noise introduced by private perception errors.
Strategies like Stern Judging, that have been shown to be highly successful under public
information [CSP06, SSP16, SSP18], fail to distinguish between friend and foe when
information is private. While we have considered well-mixed populations in which all
players are connected, this effect might be even more pronounced when games take place
on a network [LHNO05, SF07]. If players are only able to observe interactions between
players in their immediate neighborhood, network-structured populations may amplify
the problem of incomplete information. Pairwise interactions that one player is able to
observe may be systematically hidden from his neighbor’s view. Thus the study of indirect
reciprocity on networks points to an interesting direction for future research.

The individuals in our model are completely independent when forming their beliefs.
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Figure 2.11: When mutations are sufficiently frequent, three of the leading-
eight strategies can maintain cooperation in coexistence with ALLC. In the
main text we have presented evolutionary results in the limit of rare mutations. In
this limit, populations are homogeneous most of the time, rendering stable coexistences
of multiple strategies impossible. Here, we present results for non-vanishing mutation
rates when players can choose between a leading-eight strategy, ALLC, and ALLD. The
possible population compositions are represented by a triangle. The corners of the triangle
correspond to homogeneous populations, whereas interior points yield the corresponding
mixed populations. The colors indicate how often the respective region of the state space
is visited by the evolutionary process. (A,B,G) For the considered parameter values,
we find that in three cases, a stable coexistence between a leading-eight strategy and
ALLC can maintain cooperation for a considerable fraction of time. (C-F) In four cases,
we find that populations typically find themselves in the vicinity of ALLD. (H) In the
presence of noise, there is neutral drift between L8 and ALLD. Along that edge, no player
cooperates. Parameters are the same as in Fig. 2.7, but with a strictly positive mutation
rate p=0.01.

In particular, they are not affected by the opinions of others, swayed by gossip and
rumors, or engaged in communication. Experimental evidence suggests that even when all
subjects witness the same social interaction, gossip can greatly modify beliefs, and align
the subjects’ subsequent behaviors [SKSMO07]. Seen from this angle, our study highlights
the importance of coordination and communication for the stability of indirect reciprocity.
Social norms that fail when information is noisy and private may sustain full cooperation
when information is mutually shared and discussed.
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Figure 2.12: Cooperation is most likely to evolve for high benefit-to-cost ratios
and when mutations are sufficiently frequent. To explore the robustness of our
findings, we have systematically varied three key parameters of our model, the benefit b,
the selection strength s, and the mutation rate . For each combination of parameter
values, we have simulated the evolutionary process between ALLC, ALLD, and L;, for
each of the leading-eight strategies L;. The figure shows the resulting cooperation rates.
We recover that for usual b/c-ratios, sufficiently strong selection, and rare mutations, there
are only three leading-eight strategies that can maintain some cooperation. Surprisingly,
the maximum amount of cooperation is achieved for intermediate mutation rates, 0.01 <
1 < 0.1. Here we observe relatively stable coexistences between ALLC and either L1 or
L7. Baseline parameters: b=5, s=1 and ©=0.01; all other parameters are the same as in
Fig. 2.11.
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Figure 2.13: Evolutionary abundance of the leading-eight strategies across dif-
ferent parameter regimes. This figure considers the same scenario as Fig. 2.12, but
it depicts the abundance of each strategy in the selection-mutation equilibrium. The
abundance of ALLC is depicted in light grey, ALLD is shown in dark grey, and for the
leading-eight strategy we use the respective color. In three cases (for L1, L2, L7) we
observe that ALLC is played with positive frequency even as the selection strength s
increases. In these cases, ALLC typically coexists with a majority of players who apply
the leading-eight strategy.
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2.4. Materials and Methods

2.4 Materials and Methods

2.4.1 Model setup

We consider N individuals in a well-mixed population. Each player’s strategy is given by
a pair (a, ). The first component,

= (agng Qgch, QpCg, QwCh, OgDg; (gDb, ObDg, Qppp) (2.1)

corresponds to the player’s assessment rule. An entry a4, is equal to one if the player
assigns a good reputation to a donor of reputation x who chooses action A against
a recipient with reputation y. Otherwise, if such a donor is considered as bad, the
corresponding entry is zero. The second component of the strategy,

ﬁ = (ﬁgga nga 5bg> ﬁbb)- (2'2)

gives the player’s action rule. An entry f,, is equal to one if the focal player with
reputation x cooperates with a recipient with reputation y; otherwise it is zero. The
assessment and action rules of the leading-eight strategies are shown in Tab. 1. We define
ALLC as the strategy with assessment rule a=(1,...,1) and action rule f=(1,...,1).
ALLD is the strategy with a=(0,...,0) and 5=(0,...,0).

2.4.2 Reputation dynamics

To simulate the reputation dynamics for players with fixed strategies, we consider the
image matrix [Uch10, US13, OSN17] M(t)= (mw(t)) of a population at time ¢. Its entries
satisfy m;;(t) =1 if player i deems player j as good at time ¢, and m;;(¢) =0 otherwise. We
assume that initially, all players have a good reputation, m;;(0)=1 for all ¢, j. However,
our results are unchanged if the players’ initial reputations are assigned randomly. We
only get slightly different results if all initial reputations are bad; in that case L7 players
are unable to acquire a good reputation over the course of the game (for details, see SI,
Section 2.5).

In each round ¢, two players ¢+ and j are drawn from the population at random, a donor
and a recipient. The donor then decides whether to cooperate. Her choice is uniquely
determined by her action rule § and by the reputations she assigns to herself and to
the recipient, m;;(t) and m;;(t). The donor and the recipient always observe the donor’s
decision; all other players independently observe it with probability g. With probability e,
a player who observes the donor’s action misperceives it, independent of the other players.
All players who observe the interaction update their assessment of the donor according to
their assessment rule. This yields the image matrix M (t+1).

We iterate the above elementary process over many rounds (our figures are based on 10°
rounds or more). Based on these simulations, we can now calculate how often player 4
considers j to be good on average, and how often player ¢ cooperates with j on average.
If the estimated pairwise cooperation rate of ¢ against j is given by ;;, we define player
1’s payoff as .

7%,' = Ni Z b.fﬁ'ﬂ — Cfi'ij, (23)

e

i.e. the benefits ¢ gained by receiving cooperation from j (bZ;;), reduced by the costs of
i’s cooperation towards j (cZ;;), and averaged over all N — 1 co-players j.
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2.4.3 Evolutionary dynamics

On a larger timescale, we assume that players can change their strategies («, ). To
model the strategy dynamics, we consider a pairwise comparison process [TNP06, SP13,
RHR*18]. In each time step of this process, one individual is randomly chosen from the
population. With probability p this individual then adopts a random strategy, with all
other available strategies having the same probability to be picked. With the remaining
probability 1—u the focal individual ¢ chooses a random role model j from the population.
If the players’ payoffs according to Eq. [2.3] are #; and 7;, player ¢ adopts j’s strategy
with probability P(7;,7;) = (1 + exp (—S(ﬁj—'ﬁ-i)))_l [ST98]. The parameter s >0 is
the ‘strength of selection’. It measures how strongly imitation events are biased in favor
of strategies with higher payoffs. For s =0 we obtain P(7;,7;) = 1/2, and imitation
occurs at random. As s increases, payoffs become increasingly relevant when ¢ considers
imitating j’s strategy.

In the main text, we assume players can only choose between a leading-eight strategy
L;, ALLC, and ALLD. As we show in Fig. 2.10, the stability of a leading-eight strategy
may be further undermined if additional mutant strategies are available. Moreover, in the
main text we only report results when mutations are comparably rare [F106, WGWT12].
In Fig. 2.11- Fig. 2.13 we show further results for substantial mutation rates. Given
the players’ payoffs for each possible population composition, the selection-mutation
equilibrium can be calculated explicitly. All details are provided in the SI, Section 2.5.

2.5 Supplementary Information

We are interested in the evolution of indirect reciprocity under incomplete and noisy
information. To this end, we describe the dynamics on two separate timescales. First,
we consider the game dynamics. Here, we take the players’ strategies as given, and we
compute how the players’ reputations change over time, how often they cooperate, and
which payoffs they obtain on average. Second, we describe the evolutionary dynamics.
Here, we allow players to change their strategies over time, assuming that strategies that
yield a comparably high payoff are more likely to be adopted. In the following, we describe
these two dynamics in more detail.

2.5.1 Game dynamics
Description of the indirect reciprocity game

We consider a well-mixed population of size N whose members engage in a series of
cooperative interactions. In each time step, two members of the population are randomly
drawn from the population, a donor and a recipient. The donor can then decide whether
or not to pay a cost ¢>0 to transfer a benefit b>c to the recipient. We interpret paying
the cost as cooperation (C') and refusing to do so as defection (D). The donor’s decision
is partially observable: the donor and the receiver always learn whether or not the donor
decided to cooperate, whereas the other population members independently observe it
with probability ¢g. Observations may be subject to noise: with probability ¢ the donor’s
action is misinterpreted such that a C is taken for a D, or vice versa. All players are
equally likely to misperceive an action, independent of whether or not they actively took
part in the respective interaction. We assume that there are infinitely many rounds
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in which players are asked to cooperate, and that the players’ payoffs for the indirect
reciprocity game are defined as their average payoffs over time (explicit definitions will be
provided in the next section).

To make their cooperation decisions, we assume that each player is equipped with a
strategy and a private reputation repository. The reputation repository is used to keep
track of the reputations of all population members (as illustrated in Fig. 2.1). In line with
a large body of the previous literature [NS05, Sigl0, Sigl2], we assume that reputations
are binary: players are either considered as ‘good’ or ‘bad’. We represent the state of
player ¢’s reputation repository at time ¢ by an N-dimensional vector

m;(t) — (mﬂ@), . ,miN(t)) (2.4)

The entries m;; of this vector are either 0 or 1, whereby m;;(t) =1 means that player ¢
assigns a good reputation to player j at time ¢, whereas m;;(tf) =0 means that ¢ views j
as bad. We assume that m;(0) = (1,...,1) for all players ¢. That is, initially all players
consider everyone as good.

A player’s strategy then needs to tell the player (7) how to update the entries in her
reputation repository after observing a donor’s action, and (%) whether to cooperate if
the focal player finds herself in the role of the donor. The first aspect is determined by
the player’s assessment rule. Assessment rules take the form of an 8-dimensional vector

a = (agog, Qgch, ey, bcb, CgDgs QgDby ObDg, CbDb)- (2.5)

The entries of o can again take either the value 0 or 1. An entry o4, =1 means that it is
regarded as good if a donor with reputation = chooses action A against a recipient with
reputation y. Analogously, a4, =0 means that the focal player assigns a bad reputation
to the corresponding donor. We note that after any interaction, players only update the
donor’s reputation; the reputation of the receiver remains unaffected. Assessment rules of
the form [5.64] are called third-order assessment rules, since they depend on the donor’s
action, on the reputation of the donor, and on the reputation of the recipient. If the
assessment is independent of the donor’s current reputation, the assessment rule is referred
to as second-order; and if the assessment is independent of both players’ reputations, the
assessment rule is referred to as first-order. The two unconditional cases a=1:=(1,...,1)
and a=0:=(0,...,0), according to which donors are always considered as good or bad,
respectively, are zeroth-order assessment rules.

If the focal player finds herself in the role of the donor, her decision is determined by her
action rule. Action rules are given by a 4-dimensional vector

ﬁ = (ﬁgga 5gba 5bg: ﬁbb)- (26)

An entry f,, = 1 indicates that a respective donor chooses to cooperate if her own
reputation is  and the recipient’s reputation is y. An entry f3,, =0 indicates that she
defects. A player’s strategy o = («; 3) is a combination of an assessment rule and an
action rule. Since there are 2% different assessment rules and 24 different action rules, the
space of third-order strategies contains 2'2 = 4,096 elements.

Herein, we have only considered the dynamics for a small subset of third-order strate-
gies (but the methods that we introduce in the following sections equally apply to all
other strategies). The subset we have considered consists of the so-called leading-eight
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strategies [OI06]. Under the assumption that all relevant information is shared publicly
and that all players agree on everyone’s reputation, past research has shown that if the
whole population adopts any of the leading-eight strategies, the population will be fully
cooperative and no other strategy can invade [OI104]. However, the assumption of publicly
shared information seems rather stringent; it implies that the reputation repositories of
all players agree at all times, m;(t) =m;(¢) for all 7,5 and ¢t. Instead, we explore the
robustness of the leading-eight strategies when information is incomplete, noisy, and
private. In that case, different players may hold different beliefs about their co-players,
such that for any pair of players ¢ and j there may be times for which m;(t) # m;(?).
To probe the robustness of the leading-eight strategies, we let each of these strategies
compete with the two unconditional strategies ALLC and ALLD. Herein, we define these
two strategies as ALLC= (1;1) and ALLD= (0;0). We note that alternative strategy
representations are possible: For example, we could define ALLC as the strategy that
deems everyone as bad but cooperates anyway. Using such an alternative definition would
not alter our qualitative results.

A formal description of the reputation dynamics

If the strategies (a'; 3%) are given for all players 1<i< N, we can describe the reputation
dynamics of the population as a Markov chain. As the state of the Markov chain at time
t, we collect all individual reputation repositories into an N x N matrix

M(t) = <mij(t)>. (2.7)

We call M (t) the image matrix of the population at time ¢. Given the players’ strategies
and the current image matrix M = M(t) we can in principle calculate the transition
probability hs s that describes how likely we are to find the population in state M’ at
time t+1. Because in every single time-step at most one column of the image matrix can
change (the column with respect to the player who was randomly chosen to be the donor),
we observe that hps =0 if M and M’ differ in more than one column. Otherwise, when
the image matrices M and M’ differ in at most one column, the exact value of hys
depends on the players’ strategies, on the observation probability ¢, and on the error
probability e.

We note here that depending on the players’ strategies, the Markov chain of the reputation
dynamics does not generally need to be ergodic: there are cases where the initial configu-
ration of the image matrix matters for the chain’s behavior over time, thus contradicting
the irreducibility condition for ergodicity. We find one such case in the leading eight,
the strategy L7. According to the assessment rule of L7 (Tab. 1), a bad donor can only
gain a good reputation by cooperating against a good recipient. However, in the case
where there are no good recipients to start with, it is impossible for donors to gain a
good standing in the eyes of an L7 observer. We deal with this degenerate case separately
further below.

For ergodic reputation dynamics, the average probability to observe a given image matrix
M approaches an invariant distribution v=(vys) of the Markov chain H = (hps ) over
time, such that vH =v and }_,, vpy = 1. The entries vy, give the expected frequency
with which we observe the image matrix M over the course of the indirect reciprocity
game. Given the invariant distribution v, we can calculate the average probability that
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player ¢ considers j as good as
ﬁlij = ZUM s My (28)
M

Moreover, we can calculate the average probability z;; with which player ¢ cooperates
with player j over the course of the game as

j:z'j = Z UMBZnii,mij . (29)
M
Using this average cooperation probability, we define player i’s expected payoff 7; as

1
N-15%

Unfortunately, we note that the above approach quickly becomes computationally infeasible
as the population becomes large. For a population of size N, the image matrix has N2
entries, implying that there are 2V° possible image matrices.

Instead of calculating numerically exact payoffs according to Eq. [2.10], we have thus
simulated the reputation dynamics to obtain estimates Z;; for the average probability that
player i cooperates with j. These estimates are then plugged into Eq. [2.10] to obtain
estimated payoffs
J#i

By the theory of Markov chains, the estimated payoffs according to [2.11] converge to
the true values [2.10] if the simulation is iterated for sufficiently many time steps. Unless
noted otherwise, we have simulated the Markov chain for 2 - 10° time steps, using a
population of size N =50. The respective simulations have been run with MATLAB; all
scripts are provided in the Appendix, Section 2.6.

In cases where the Markov chain is not ergodic, the players’ average payoffs according
to Eq. [2.11] may depend on their initial reputations. All our figures are based on the
assumption that all players begin with a good reputation. To explore the robustness of
our results, we have re-run the simulations in Fig. 2.2 for two alternative scenarios. First
we have run ten independent simulations in which the initial reputations are assigned
randomly. For each of these ten simulations, we have obtained the same result as reported
in the main text. Second, we have run a simulation assuming that all players start with
a bad reputation. Again, we obtain the same result as in Fig. 2.2 for seven out of the
eight cases. Only for L7 the result is different in this special case; since there are no good
recipients in the starting configuration, it is impossible for donors to gain a good standing
in the eyes of an L7 observer. Hence, all L7 players keep their initial bad assessment of
all co-players under such an initial assignment of reputations. We conclude that for this
degenerate case, L7 does not yield any cooperation at all.

Recovery analysis after single disagreements

While we use simulations to explore the general reputation dynamics under noisy private
information, we can derive analytical results in the limiting case that while players privately
keep track of each others’ reputations, their actions are perfectly observable (¢ = 1) and
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that perception errors are rare (¢ — 0). To this end, we consider a homogeneous population
of players who all apply the same leading-eight strategy (as given in Tab. 1). We assume
that initially, all players perceive everyone as good; only player 1 perceives player 2 as
bad, possibly because of an error (Fig. 2.5a). That is, the initial image matrix is given
by M(0) = M° with entries

0 0 ifi=1,57=2
Mij = { 1 otherwise. (2.12)
We assume that in subsequent rounds, no further errors occur and that all individuals
observe all co-players’ interactions. We say that the population recovers from a single
disagreement, if it returns to the state where all players have a good reputation starting
from the state M. In the following we are interested in the following two quantities,
depending on the applied leading-eight strategy L;:

1. The population’s recovery probability p;
2. The expected time until recovery 7; (conditioned on that the population actually
recovers)

The following Proposition simplifies the corresponding analysis.

Proposition 1. Consider the indirect reciprocity game for a population in which everyone
applies the same leading-eight strateqy L;. Moreover, assume that the initial image matrix
is M(0) = M° as defined in [2.12], and let M(t) denote the image matriz at some
subsequent time t >0 according to the process with perfect observation and no noise, ¢=1
and e =0. Then M(t) € M, where M is the set of all image matrices that satisfy the
following three conditions

(1) my; =1 foralli, (i) my=1 foralli,j>2, (i) my =mj foralli,j>2.
(2.13)

All proofs are provided in the Appendix, Section 2.6. The above Proposition guarantees
that in the process with private information, perfect observation, and no noise, (7) all
players think of themselves as good, (i) the players 2 <i,j < N consider each other as
good, and (74) all players 2 < i, j < N have the same opinion about player 1.

Proposition 1 is useful because it allows us to consider a simplified state space when we
study the private information setting instead of the public one. Instead of considering the
space of all image matrices M, in the following we consider the space of all tuples (r, k)
with r € {0,1} and k € {0,..., N — 1}. The value of r refers to the reputation of player 1
from the perspective of all other players (due to Proposition 1 (4ii) all other players agree
on player 1’s reputation). We use r=1 to indicate that player 1 is perceived as good, and
r =0 to indicate that she is perceived as bad. The value of k refers to the number of
co-players that player 1 considers as good (due to Proposition 1, we can treat all other
players as equivalent). In this reduced state space, the initial state thus corresponds to the
pair (1, N—2), and the full recovery state is (1, N—1), see Fig. 2.5a for an illustration.

Let fi(r,k; v, k') denote the transition probabilities for the reduced state space; the value
of fi(r,k; r' k') corresponds to the probability that a population of L; players moves
from state (r, k) to (v, k') in one round. We can deduce these probabilities as follows:
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Transition (1,k) — (1,k41). This case can only occur if a player i >1 is chosen to be

the donor who is perceived as bad by player 1. Given that the current state is (1, k),
it follows from Proposition 1 that the donor considers everyone as good, and hence
she cooperates. If player 1 considers the receiver to be good, this leads her to assign
a good reputation to the donor, independent of the applied leading-eight strategy
L;. Otherwise, if player 1 considers the receiver to be bad, the donor only obtains
a good reputation for Ly, Lo, L3, and Ls. Therefore, the corresponding transition
probability is

| Nok=lo e {1,2,3,5)
7 . _ N 1 ) Sy
f (Lka 17k+1) — { N—Nk—l N—l;ll if i¢ {476,7, 8} (2]‘4)

Transition (1,k) — (1,k—1). This case can only occur if a player ¢ > 1 is randomly

chosen to act as the donor who is perceived as good by player 1. Similar to before,
player ¢ will always cooperate, which is only considered as bad by player 1 if the
receiver is considered as bad by player 1 and if the applied strategy is either Ls, Ls,
Lg, or Lg. Therefore, the transition probability is

0 if §€{1,3,4,7}

Nkl i e {2,5,6,8).

k (2.15)
N N-—

fi(1, ks 1,k—1) :{

Transition (1,k) — (0,k). This case can only occur if player 1 is chosen to be the donor,

and if player 1 defects against the receiver (which in turn requires player 1 to
consider the receiver as bad). The corresponding transition probability is

~ I1N—-Fk—-1
“(1,k; 0,k) = —=—————. 2.1
f(7 707) N N_]_ ( 6)

Transition (0,k) — (0,k41). This case requires that a player i >1 is chosen to be the

donor who is considered as bad by player 1. This donor cooperates, unless the
randomly chosen receiver happens to be player 1 (who is bad from the perspective
of all other players). Thus, player 1 considers the donor as good after this round
unless the receiver is player 1, or the receiver is a group member that is considered
as bad by player 1 and the applied leading-eight strategy is L4, Lg, L7, or Lg. Hence,

we obtain Nkl N / \
: ' B ~  ~n i ie{l,2,3,5
f (O7k7 07k+1) - { N—]\E—l% if i¢ {4,6,7, 8} (217)

Transition (0,k) — (0,k—1). This case requires that a player i > 1 is chosen to be the

donor who player 1 considers as good. To become bad in player 1’s eyes, this donor
then either needs to defect against player 1, or he needs to cooperate against a
receiver who is considered as bad by player 1 (provided that the applied leading-eight
strategy is Lo, Ls, Lg, or Lg). The transition probability becomes
= if ie€{1,3,4,7}

N—
Nk oif e {2,5,6,8).

N-1

(2.18)

z|=z|=
T

F(0,k; 0,k—1) = {

Transition (0,k) — (1,k). This case requires player 1 to be the donor, and that player 1

cooperates with her co-player. The corresponding probability is

1k

10, k; 1,k) = NV T (2.19)
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All other transitions from (r, k) to (r’, k') have transition probability f*(r,k; ', k") = 0.
We note that for this reduced Markov chain, the recovery state (1, N—1) is absorbing.
Once this state is reached, it cannot be left anymore, because fi(1, N—1; 1, N—2) =0
and fi(1, N—1; 0,N—1) = 0 for all i. However, for populations that apply one of the
four leading-eight strategies Ly, Lg, L7, Lg, there exists another absorbing state, which is
(0,0). This state corresponds to a full segregation state: player 1 considers everyone else
as bad, whereas all other players consider player 1 to be bad (Fig. 2.5a). Whether the
population is able to recover from a single disagreement thus depends on how likely the
full segregation state is reached. We obtain the following three cases.

Proposition 2 (Recovery probabilities).
Suppose the population applies the leading-eight strategy L.

1. Fori e {1,2,3,5}, the recovery probability is p; = 1.
2. For i€ {4,7}, the recovery probability satisfies 1 —2/(N—1)! < p; < 1.
3. Fori € {6,8}, the recovery probability is p; =1 —1/N.

With respect to the time it takes the population to recover from a single disagreement,
we obtain a similar case distinction.

Proposition 3 (Expected time until recovery).
Suppose the population applies the leading-eight strategy L.

1. Fori € {1,3,4,7}, the expected time until recovery T; is of order ©(N).

2. Fori € {2,5}, the expected time until recovery 7; is of order ©(N log N).

3. Fori € {6,8}, the expected time until recovery is 7; = N-Hy—N, where Hy = >N, %
is the N-th harmonic number.

While some of the results in Proposition 3 only address the asymptotic behavior as the
population becomes large, we can numerically compute exact solutions for the expected
recovery time for all population sizes, based on the transition probabilities f*(r, k; ', k')
specified above. The respective solutions are shown in Fig. 2.5b. In the following, we
give some informal intuition for these results.

The above results suggest that with respect to recovery from single disagreements, there
are four groups of leading-eight strategies. The strategies L, and L3 are most robust: after
a single disagreement, they are guaranteed to recover, and the expected recovery time is
linear in the population size. These two strategies have in common that a cooperating
donor is always perceived as good (even if the donor or the receiver had a bad reputation
to start with). Due to this property, a single individual who is perceived as bad can
immediately regain a good reputation once it is chosen to act as a donor (which takes an
expected time of N rounds).

A similar observation holds for the two strategies Ly and L;: a single individual with
bad reputation can always regain a good reputation by cooperating, independent of the
identity of the receiver. Unlike the first two strategies, however, L, and L can end up
in the full segregation state. However, this requires a rather specific sequence of events:
before player 2 can regain his good reputation in the eyes of player 1, it needs to be the
case that player 1 is chosen to act as the donor with respect to player 2 as the recipient.
In such a scenario, player 1 would defect, yielding her a bad reputation from the viewpoint
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of all other players. To end up in the full segregation state, all other players would then
have to be chosen to act as a donor against player 1. As the population grows bigger, this
sequence of events becomes increasingly unlikely, and the recovery probability quickly
approaches 1.

Recovery is guaranteed for the two strategies Ly and Ls, but in contrast to the first four
strategies, recovery may take substantially longer. The longer recovery time is due to the
property of these strategies that cooperation against an individual perceived as bad is
itself perceived as bad. Thus, if player 2 is randomly chosen to be the recipient of the next
indirect reciprocity interaction, the donor is guaranteed to obtain a bad reputation in the
eyes of someone (either because the donor is an individual i > 2, who is then perceived
as bad by player 1; or because the donor is player 1, who is then perceived as bad by
everyone else).

The above recovery analysis confirms that Lg and Lg perform worst in the presence of
single disagreements. Recovery is not guaranteed, and even if it occurs, it may take a
substantial time until recovery. Both aspects are due to the relative ease with which
these two strategies assign a bad reputation to other population members: a donor who
cooperates against a receiver who is perceived as bad is guaranteed to end up with a
bad reputation (independent of whether the donor was perceived as good or bad before).
Under these conditions, bad reputations can proliferate comparably quickly.

2.5.2 Evolutionary dynamics
Description of the evolutionary process

While the previous section has assumed that the players’ strategies are fixed, we now
describe a simple process that allows us to explore which dynamics arises once players
may change their strategies over time. To allow for a transparent treatment, we assume
that strategy adaptation occurs on a time scale that is slow compared to the reputation
dynamics.

Specifically, we assume that the strategies in the population change according to a
simple imitation process [TNPO06]. For this process, we again consider a population of N
individuals where each individual 4 may have its own strategy (a’; °). In each time step
of the evolutionary process, one individual ¢ is chosen at random to update her strategy.
There are two ways to do so: with probability p (corresponding to the mutation rate),
she adopts a random strategy (with all remaining strategies having the same probability
to be picked). With the remaining probability 1—p, she seeks for a role model instead, by
randomly choosing another individual j from the population. Suppose player ¢’s payoft
is given by 7; and j’s payoff is 7;, where 7; and 7, are given by the estimated payoffs
according to Eq. [2.11]. We assume that the probability that i adopts j’s strategy is given
by the Fermi function [ST98],

1

P, i) = 1+exp<—3(ﬁj _ﬁ»).

(2.20)

The parameter s>0 is called the strength of selection. It determines how much players
value payoffs when adopting new strategies. For s =0 we obtain P(#;, 7;) =1/2, and
imitation occurs essentially at random. For s> 0, the imitation probability P(7;,7;) is
monotonically increasing in the payoft difference 71; — ;. That is, the more there is to
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gain for player ¢, the more likely she is to abandon her old strategy and to imitate player
7’s strategy instead.

This elementary updating process, involving mutation and imitation, is then iterated over
many time steps. As a result, we obtain an ergodic process on the space of all possible
population compositions. This process has again a unique invariant distribution, to which
we refer as the selection-mutation equilibrium. The abundance of each strategy in this
equilibrium, and the corresponding average cooperation rate, can always be obtained
by simulating the above process over a sufficiently long time span. However, in certain
special cases, the selection-mutation equilibrium can be computed more efficiently. These
more efficient algorithms either require a small or intermediate-sized population in which
only a few different strategies are available, or that mutations are rare. In the following
two sections we describe these algorithms in more detail.

Here, we have phrased the evolutionary process as an imitation dynamics. However,
similar results can be obtained if one assumes that strategies are genetically encoded and
inherited in a birth-death process [WBGT15], where the fitness of an individual is given
by an exponential function of its payoffs, exp(s7;).

Selection-mutation equilibrium in populations with few strategies

Throughout the main text, we have focused on a population of intermediate size N that
has access to at most k = 3 different strategies. The possible states of the population are
elements of the set

k
Ak = {n = (ng,...,ng) € N \ > n; = N}. (2.21)
=1

The entries n; of each vector represent how many players currently apply strategy 7. The
number of such population compositions is

ak] = <N2k> . (2.22)

The evolutionary process described in Section 2.5.2 defines a Markov chain with state
space A%;. For two population states n,n’ € A% the transition probability to move from
n to n’ in one step of the process is given by

< (ﬁ + (1—;1)%]3(7?]-,7?@-)) if nj=n;—1, nf=n;+1, ny=n, for [ ¢ {i,j}
Wnn =\ 15, w0 (45 + (1—p) - P(#, 7)) if n=n'
0 otherwise.
(2.23)

Provided that neither the population size N nor the number of strategies k is prohibitively
large, the transition matrix W = (wn ) can be computed explicitly. By computing the
normalized left eigenvector of W (with respect to eigenvalue 1), we obtain the selection-
mutation equilibrium over an evolutionary timescale. We have implemented this algorithm
using MATLAB; the corresponding code is provided in the Appendix, Section 2.6.

Selection-mutation equilibrium in the limit of rare mutations

Alternatively, in arbitrarily large populations with an arbitrary number of available
strategies, we can still calculate exact strategy abundances in the selection-mutation
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equilibrium if mutations are sufficiently rare [F106, IFN05, WGWT12]. In that case, the
population will find itself in a homogeneous state most of the time, in which all individuals
adopt the same strategy . Only occasionally, a mutant strategy j arises. This mutant
then either reaches fixation in the population, or it goes extinct. The mutant’s fixation

probability p;; can be calculated explicitly [NSTF04, TH09],

1
1+ SN I exp (= s(/5 (D) — (D))

Dij (2.24)

Here, 7;(1) and #;(1) refer to the payoffs of a mutant and a resident, provided that
the number of mutants in the population is [. Using Eq. [2.24], the selection-mutation
equilibrium of the evolutionary process can be computed by considering a reduced Markov
chain with k states (corresponding to the homogeneous populations in which every player
applies the same strategy). The probability to move from state i to state j is given by
pij/(k—1). The invariant distribution of this reduced Markov chain approximates the
invariant distribution of the evolutionary process as 1 becomes small [F106].

2.6 Appendix: Proof of the recovery analysis

Proof of Proposition 1. For the proof, we consider the Markov chain H = (hy /), as
defined in Section 2.5.1, for the limiting case e=0 and ¢=1. We show that the set M of
image matrices that satisfy the three properties in [2.13] is invariant. That is, let M € M
be arbitrary and suppose hp >0 for some image matrix M’. Then also M’ = (mj;)
satisfies the three characteristic properties [2.13].

(i) mf, =1 for all 7. Since M € M, initially all players consider themselves as good. All
leading-eight strategies have the property that the strategy’s action rule prescribes
an action that lets a good donor maintain her good reputation in her own eyes,
independent of which reputation she assigns to the recipient. Thus all players keep
considering themselves as good after one interaction; either they do not need to
make a decision (because they were not chosen to act as the donor), or they choose
an action they themselves evaluate as good.

U

i = 1Land mj; =m/, for all i,j>2. Since M € M, all players i,j > 2
initially agree on the reputations of all population members. Because they all apply
the same assessment rule and observation errors are excluded, they also agree on
how the donor’s action in the subsequent interaction needs to be assessed. This
shows mj;=m/, for all i, j>2 and all [. Moreover, since all players 4, j >2 consider
each other as good initially, and since their common action rule only lets them
choose actions that let them keep their good reputation, we conclude mj; =1 for
1,5 >2.

(#) and (4ii) m

]

Proof of Propositions 2 and 3. In the following, we provide the proofs of Propositions 2
and 3 by considering each of the four different cases {L1, L3}, {L2, L5}, {L4, L7}, {L6,
L8} individually. For a given leading-eight strategy L;, we consider the respective Markov
chain M; with 2N states s,j,. The value of r € {0,1} corresponds to the reputation
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pl pk: pk‘,+1 Py

Figure 2.14: One-dimensional random walk. A discrete-time Markov chain with n+1
states labelled sq ..., s, arranged in a line and with transition probabilities p,j DSk = Ska1
and py Sk — Sp—1.

of player 1 from the perspective of all other players. The value of k€{0,1,..., N—1}
corresponds to the number of co-players that player 1 considers as good. Then the recovery
probability p; is the probability that a random realization of the process (a random trace)
starting in a state s; y_o reaches the absorbing state s; y_1. The expected recovery time
7; is the expected number of steps until a random trace starting in a state sy y_o reaches
the state s; y_1, conditioned on it doing so. The main idea of the proof is to make
use of a coupling argument. That is, to each two-dimensional random walk defined by
the Markov chain M;, we associate a simpler, one-dimensional random walk. For the
one-dimensional random walk, the absorption probabilities and conditional absorption
times can be calculated explicitly, and they can serve as upper (or lower) bounds for the
respective quantities in the two-dimensional random walk. To this end, let us recall the
following result.

Proposition 4 (One-dimensional random walk, see Chapter 7.7, proof of Theorem 7.1

in [KT75]).

Let M be a discrete-time Markov chain with n+ 1 states s, ..., S, and transition proba-
bilities p; = s; — sit1 (i=0,...,n—1) and p; : 8; — s;_1 (i=1,...,n), as illustrated in
Fig. 2.14.

1. If both states sy and s, are absorbing (i.e. pg = p, = 0) then the probability p(k)
of reaching s, before reaching sy when starting at s is given by
1+7’1+T1T2+"’+T1...7’k_1
p(k) =
1+T1+T17‘2+"'+7’1...Tn_1

, (2.25)

where r; = p; /pi for eachi=1,...,n— 1.

2. If there is no absorbing state except, possibly, sg then the expected number of time
steps ty -1 to reach state sy_i from state si, is given by

1 + o 1 ok i pl
bopo1 = — 4+ —b— o PPty ST R (2.26)
Py Pr41Pg Dn - Dk Dk i=1 j=1 Pr+j

Moreover, the expected number of time steps ti; to reach state s; from state sy, with

<k, is
k

beg = trp—1 +lootp2+ Tl = Y tii1. (2.27)
=141

We use standard notation o(-) and ©(-) for strict asymptotic upper bound and for
asymptotically tight bound, ignoring the constant factors. Hence, for example, we have
1/n = o(1) and 2n+1 = O(n), because for large n we have 1/n < 1 whereas 2 tends
to a constant. See Section 1.3 of [Cor09] for a detailed treatment. For asymptotic results,
we assume N >4.
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O N-1 1 2(N —1) 3(N —1) (N —2)(N —1) (N —1)2

N -1 N 200N —2 2(N —2) "N —3 3(N —2) VN —4 (N —2)2 1 (N —1)(N'=2)

Figure 2.15: Markov chain M; = Mj;. The transition probabilities are normalized by
N(N—1). Self-loops in non-absorbing states are not shown.

O (N -1) /

—
L.&Hﬁ_.ﬁ_. R S

(N = 1)(N—2)

Figure 2.16: Markov chain Mj. The transition probabilities are normalized by N (N —1).
By coupling, 7{ > 7.

Recovery analysis for L; = Ls. The Markov chain M; = M3 is depicted in Fig. 2.15.

« Recovery probability: M, has a unique absorbing state sy y_;. Moreover, starting from
any other state, there is a positive probability to reach the state s; y_;. Hence, it follows
that P1 = 1.

o Recovery time: To get a lower bound on the recovery time, we note that reaching
$1,n—1 requires at least one non-self-looping transition. Starting from the state s; y_s, the
expected time until the first non-self-looping transition occurs is ]jvv(ivljrll) = N —1. Hence
1 Z N-—-1.

In the following, we show 7, < N+7, which establishes the desired 7 = ©(N). To this
end, consider the Markov chain M] obtained from M; by erasing states s;, for k < N—2,
and by replacing transitions sg, — s1x with self-loops (see Fig. 2.16).

First, we argue that 74 < 7/, where 7 is the expected number of steps to reach s; y_;
from s; y_2 in M{. To this end, consider an arbitrary trace 7" in M;. If T never takes
any transition sgj, — s14, for K < N—1, then we can associate the identical trace 1"
in M| to T. Otherwise, if there is a moment when 7" moves from sg to s; for some
k < N —1, the associated trace T" has a self-loop at sgj. Since for each k < N—1 the
transition sy, — s141 has higher probability than the transition sg; — S0 x+1, We can
then couple traces T and 7" such that, from that point on, T is not to the right of or
below 7" (formally, at any time after that moment, the k-coordinate of T is larger or equal
to the k-coordinate of 7", and the r-coordinate of T is larger or equal to the r-coordinate
of 7). In particular, if 77 has reached s; y_; then so did T, and the inequality 7 < 7|
follows.

It remains to prove that 71 < N+7. We use Proposition 4. Let = be the expected number
of steps to reach sy ny from sopno in M{. Then 7 = (N—1) + % -0+ % -x. By
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Eq. [2.27], x takes the form = = t5; + 1. The quantities 51 and t; ¢ are calculated using
Eq. [2.26]. For the first quantity, we get

- 1 N-2  (N—2)(N-3) (N —2)!
far = NN = 1) (zv-z*zx(zv—zy+ BN -—2p (N—l)!(N—Q)N—l)
N(N —1) 11 1 NN —1)
§N—2<1+2!+3!+”'+(N—1)!) <5 (e

where we have made use of the definition of Euler’s number, e := >>2°,1/il. For the
second quantity, we similarly obtain

tl,OIN(N—1)< ! Nl (V= DNV = 2) (N —2)! )

N_1  (N=D(N=2) T (N=12(N=22 T (NS )(N=D)I(N—2)N 1

LNV -1) SIS QNI S
S —— — — DY .6
- N-2 21 " 3l (N-1!) = N-=2

A

Hence z =t91 +t19 < NEVN:QI) - (2e—1) and, for N >4,

1 N -1 2e —1
T{:N—l—f—NlL‘SN—l‘I—m(26—1):N+2(€—1)+m<N+7,

as desired.

Recovery analysis for Ly = Ls. The Markov chain M; = Mj is depicted in Fig. 2.17.

e Recovery probability: As before, since there is a unique absorbing state that can be
reached from any initial state, py = 1.

» Recovery time: To show that the expected number of steps 7 is of the order O(N-log N),
we consider two simpler Markov chains M3~ (resp. M, ) with expected number of steps
73 (resp. 75 ). We then prove that 757 > 7 > 75 and that both 757 and 7, are of the

order ©(N -log N).

Intuitively, My is obtained by identifying states s; x and sq ;1 for each k<N —1 (that
is, we identify all states that have the same number of individuals that are universally
considered as good). For the transitions of My, we take the transition probabilities as
in Fig. 2.18(a). In doing so, we decrease the total probability to move either to the left
or upwards in each state, while leaving the total probability to move to the right or
downwards unchanged. As a consequence, any trace 77 in M, can be coupled with a
trace T in M, such that if 7" is in a state s,+ + at time ¢, and T is in a state s, , then
rT+ kT <r+k. Hence, if T" has reached s; y_; then so did T and the inequality 75" > 75
follows. For M, we proceed analogously: we use the same identification of states, but this
time the probability to move left in Fig. 2.18(b) is larger or equal to the corresponding
probability to move left or up in Fig. 2.17. As a consequence, 75 > 7, .

Finally, we compute 75, 75 . By Eq. [2.26], we obtain
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O 2(N —1) (N=3) 3(N—1). " 3(N—-4) (w 2)(N —1) (N (N —1)2

L;LHLHL_. e

2(N—-2) " 3(N-3 (N=1)-1 (N—1)(N=2)

Figure 2.17: Markov chain My = M;. The transition probabilities are normalized by
N(N —1). Self-loops in non-absorbing states are not shown.

Q (a) M

2(N-3) 2(N-2) 3(N-3) 3(N-3)  4N-3) 4N —4) (N-1)(N=3) (N—-1)-1 N(N-3)

N-1 N—-1 2(N-2) 2(N-1) 3(N-3) 3(N-1) 4(N-4) (N-2)(N-1) (N-1)-1 (N-1)

Figure 2.18: Markov chains M5~ and M, . The transition probabilities are normalized by
N(N —1). By coupling, 757 > 7o > 75 .

. 1 N-1 1.2-(N-1)(N-2) 1-2 (N=1)- (N=1)(N=2) ---
= NIV-1) (N—B N3 3I(N — 3)° e NI(N —3)
_NWN-D (1 N-1 1 (N-1)(N-2) 1 (N-1)
- N-3 N3 T3 T (N-3p N (N—S)N—1>
< N(N(;Vlz SZ_Q) (1+++ +;> — ©(Nlog N),
- 1 N-1 1.2-(N-1)(N-2) 1.2...(N )(N 1)(N=2)--
T2_N(N_1)<N—1+2!(N—1)2+ av—1p T (N — 1)V
1 N—1 1 (N-1)(N-2) 1 (N—l)
N<1+2 N-173 o1z T UTUN (N )
N(H;xj+;x:?+”'+\/lﬁNN_—2iv>EN’; H\ﬁ>4NlogN O(Nlog N),

where we only took the sum of the first v/N terms and used that 1 +2+--- + /N ~ 1
and that log v'N = 1log(N).

Recovery analysis for Ly = L;. The Markov chain M, = M5 is depicted in Fig. 2.19.
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Figure 2.19: Markov chain My = M;. The transition probabilities are normalized by

N(N —1). Self-loops in non-absorbing states are not shown.
(@) Mj

—

|
- —> - —> - —> L «——>

max{1l,N —1} 2(N —2) max{2, N — 2} 3(N —3) max{3,N — 3} 4(N —4) max{4, N —4} (N-1)-1 max{N —1,1} N

Figure 2.20: Markov chains M} and Mj. The transition probabilities are normalized by
N(N —1). By coupling, 74 < 7.

e Recovery probability: M, has two absorbing states, sy and s; y_1, and both states
can be reached with positive probability from any other state. Nevertheless, we show
in the following that p, quickly approaches 1 as the population size increases, because
ps>1—=2/(N—1)L

To obtain this lower bound for p,, we consider the Markov chain M that is obtained
from M, by erasing states s, for k < N—1, and replacing the corresponding transitions
of the form sg — s34 by self-loops. Formally, we define M to be as in Fig. 2.20(a). For
the coupling, note that any time a trace 7" in M, takes a transition of the form sg, — s1 4,
the corresponding trace T* in M} waits until (if ever) T" reaches state s,; with r = 0
again. At that point, T is to the left of 7™ or in the same state. Hence if T ever reaches
s1,n—1 then so did T" and we have p, > p.

Denoting by z the probability of reaching sg o from so x_o (before reaching s; y_1), we

have 1—p), = % -0+ ﬁ -z = /N and by Proposition 4 we compute

1+1 < 2
xr =
I+14+14+204314 -+ (N =2) = (N —=2)!

implying that py > pj =1—a/N >1—2/(N — 1)! as desired.

e Recovery time: since reaching s; y_; requires taking at least one non-self-looping

.. . . N(N—-1)
transition, we immediately get 74 > T 5

= N — 1. In the following, we focus on
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the upper bound. To that end, we define a simpler Markov chain Mj. Intuitively, M
is obtained by identifying states s;; and sgjy1 for each & < N —2. Since, for each
k=1,..., N—2, the Markov chain M, has the property that

Pls1p—1 = s16] = Plsor — s1.6] + Plsor = Sok+1),

the transition probabilities to the left are equal for each pair of identified states. To get
an upper bound for 74, for the transition probabilities to the right we take the larger of
P[s1x — sox] and P[sor — Sox—1]. Formally, we define M} as in Fig. 2.20(b). Note that
we have defined P[spo — so1] = N, such that M} has only one absorbing state.

Next let us show that 7, < 7;. By construction, this is clear for traces that don’t reach
state spo. For those that do, we need to show that the expected number s of steps to
reach sy y_1 from sgo in Mj satisfies s > 74. This follows from P[sgg — s01] in M is
equal to P[s1 y_2 — s1.y-1] +P[s1,y—2 = Son—2] in My: once the trace in M) transitioned
from sy, the coupled trace in M, that started at s; y_o either converged directly or
transitioned to so y_o which is to the left of s¢ .

Finally, we compute 7; using Eq. [2.26] again:

1 1 1 1
'~ N(N -1 Xy 4+ Xp+- 4+ X
e NNV -D Sty Tav ey T T i — vy T e e
XiSymy
N(N —1) 11 1 N 1
< (S N(N —1)- =
= TN2 <+21+31+ +(N/z)!)+ V=15 )

o(1)
<2AN=1)-(e—1)+o(1) = O(N).

where we used that each of the last N/2 terms in the first line is less than 1/(N/2)! and
32, 1/il = e.

Recovery analysis for Lg = Lg. The Markov chain Mg = My is depicted in Fig. 2.21.

» Recovery probability: Identifying the states s1; and sg 41 for £ < N—1, we obtain
an equivalent Markov chain M| depicted in Fig. 2.22. Proposition 4 applied to M
immediately implies

_q 1 B 1
S I R
Nx
« Recovery time: For M} we observe that p} = p, = J@((]]VV:]%. Thus, up to rescaling, the

Markov chain M{ is equivalent to the Moran process under neutral drift [see e.g. AT09,
Section 4]. Denoting by t* the expected time until the process in M{ reaches an absorbing
state, and by ® the conditional time given that it reaches the non-recovering state s,
equations [18] and [19] from [AT09] rescale to

t*=(N—-1)-Hy_; and t'=(N—-1)%
The probability of absorbing at s y_1 is ps = 1—%. Therefore, t* = (1—i) - Te + % -tb or

N
N-te -t

Te = N—l :N'HNfl—(N—l):N'HN—N,

as desired.
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Figure 2.21: Markov chain Mg = Mg. The transition probabilities are normalized by

N (N —1). Self-loops in non-absorbing states are not shown.

I—> -—0—> -—0—> -—0—> L -—0—> @

AN-2) B(N-3) B(N-3) 4N-4) 4N-4) (N-1-1  (N-1)-1

Figure 2.22: Markov chain M{ that is equivalent to Mg = Ms. The transition probabilities

are normalized by N(N — 1). We have pg = pj; and 76 = 7.
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CHAPTER

The evolution of indirect reciprocity
under action and assessment
generosity

Indirect reciprocity is a mechanism for the evolution of cooperation based on social
norms. This mechanism requires that individuals in a population observe and judge each
other’s behaviors. Individuals with a good reputation are more likely to receive help from
others. Previous work suggests that indirect reciprocity is only effective when all relevant
information is reliable and publicly available. Otherwise, individuals may disagree on
how to assess others, even if they all apply the same social norm. Such disagreements
can lead to a breakdown of cooperation. Here we explore whether the predominantly
studied ‘leading eight’ social norms of indirect reciprocity can be made more robust by
equipping them with an element of generosity. To this end, we distinguish between two
kinds of generosity. According to assessment generosity, individuals occasionally assign a
good reputation to group members who would usually be regarded as bad. According to
action generosity, individuals occasionally cooperate with group members with whom they
would usually defect. Using individual-based simulations, we show that the two kinds of
generosity have a very different effect on the resulting reputation dynamics. Assessment
generosity tends to add to the overall noise and allows defectors to invade. In contrast, a
limited amount of action generosity can be beneficial in a few cases. However, even when
action generosity is beneficial, the respective simulations do not result in full cooperation.
Our results suggest that while generosity can favor cooperation when individuals use the
most simple strategies of reciprocity, it is disadvantageous when individuals use more
complex social norms.

3.1 Introduction

People tend to put in time and effort to achieve and maintain a good standing with
those that surround them [Ale87, JHTM11, Feh04, BKOO5]. This human concern for
a good reputation can be an important motivation to engage in cooperative behavior:
Once somebody’s reputation is at stake, people have more of an incentive to engage in
costly acts of helping others [WB02, Sug86, SKM04, Kan92, MSK02, CGLF*15]. This
reputation-based mechanism for the evolution of cooperation is referred to as indirect
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GENEROSITY

reciprocity [NS05, Sigl0, Sigl2, Oka20]. In contrast to direct reciprocity [AH81, HCN18,
GvV18, GK21], which is based on repeated interactions between the same players, indirect
reciprocity does not require any two individuals to interact with one another more than
once. Instead it only requires population members to continually assess each others’
actions, and to act based on these reputations. Whereas direct reciprocity is based on
individual memories of interactions with a given group member, indirect reciprocity builds
upon a group’s collective memories.

In order to analyze the process by which reputations evolve, the literature on indirect
reciprocity considers certain social dilemma situations [NS05, Sigl0, Sigl2, Oka20]. In
the simplest case, each dilemma situation involves only two population members, who are
referred to as ‘donor’ and ‘recipient’, respectively. The donor is asked whether or not to
pay a personal cost to provide help to the recipient. The two possible actions of either
offering help or refusing help are interpreted as cooperation and defection, respectively.
While the recipient does not make any decisions, the donor’s action is observed by other
population members. These observers then decide how the donor’s reputation should be
updated in light of their behavior.

How observers update reputations, and how donors decide whom to help, depends on the
social norm applied in the population. These social norms consist of two components. First,
the social norm’s assessment rule specifies which behaviors of the donor should improve the
donor’s reputation, and which behaviors should be condemned. Second, the social norm’s
action rule tells the donor whether or not to help the recipient; this decision may in turn
depend on the recipient’s and the donor’s current reputation. A well-known example of a
social norm is ‘Image Scoring’ [NS98b, NS98a, Ber11]. According to the assessment rule of
image scoring, a donor’s reputation should improve every time the donor cooperates, and
it should deteriorate every time the donor defects. According to its action rule, a donor
should only cooperate with those recipients who are sufficiently well-reputed. Importantly,
the social norm of Image Scoring has the property that assessments only depend on
whether or not the donor cooperated. Social norms with this property are sometimes
referred to as ‘first-order’ norms. While this basic principle of first-order norms may appear
intuitive, Image Scoring has been shown to be unstable [PB03, BS04, LHO1|. The reason
for this instability is that individuals are required to defect against an ill-reputed group
member; yet by doing so, they harm their own reputation. To overcome this inconsistency;,
it has been argued that stable norms of indirect reciprocity need to be sufficiently complex
to differentiate between justified and unjustified acts of defection [PB03, BS04].

To identify such stable cooperative norms, the landmark papers by Ohtsuki and Iwasa [O104,
OI06] consider an even simpler decision situation. In their setup, reputations are required
to be binary, such that individuals can either be ‘good’ or ‘bad’. For this binary model
of reputations, they allow for up to all ‘third-order’ assessment rules. In addition to the
donor’s action, third-order assessments may also depend on the current reputation of the
donor and the recipient. For example, while helping a good recipient may be assessed
as good, the very same action towards a bad recipient may be assessed as bad. With an
exhaustive search on the space of all third-order norms, Ohtsuki and Iwasa identified eight
successful norms that can maintain cooperation, which they coined the “leading eight”.
All leading eight norms agree that a cooperative action towards a good recipient should
yield a good reputation, whereas a defecting action towards a good recipient should yield
a bad reputation. The norms differ, however, in how they evaluate interactions with a
bad recipient. While some norms find it acceptable if help is provided to a bad recipient,
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other norms like ‘Stern Judging’ [PSC06] condemn such behaviors completely.

The findings of Ohtsuki and Iwasa have been hugely influential for the further development
of the field [BS05, OIN09, PSC06, SON17, SSP18, XGH19], yet they are based on a number
of important assumptions. One of their key assumptions is that reputations are assigned
publicly. This means that after any interaction between a donor and recipient, it is a
central authority that assigns an updated reputation to the donor; this publicly assigned
reputation is then adopted by the entire population. As a consequence, the views of
different individuals are always perfectly correlated: if a given group member is considered
to be good by one individual, they are also considered to be good by anyone else. The
assumption of public information greatly facilitates the mathematical analysis of indirect
reciprocity. However, it cannot capture scenarios in which individuals make their own
judgments, based on their own private information. When individuals make their own
judgments, they may start to disagree about which reputation they assign to a given group
member. Such disagreements can arise, for example, when individuals differ in which
interactions they observe, or when they occasionally misinterpret a given interaction.
Once such disagreements arise, they can further proliferate, because individuals now
also perceive all future interactions of that group member differently [Uchl0, US13,
OSN17]. For private, scarce, and incomplete information, individual-based simulations
thus suggest that the leading-eight social norms no longer effectively promote the evolution
of cooperation[HST*18].

This finding naturally calls for mechanisms to mitigate the effect of noisy environments
and private information on indirect reciprocity [KH21, RSP19]. Here we explore the effect
of a particular mechanism, generosity. The value of generosity has previously been stressed
in the literature on direct reciprocity [Mol85, NS92, MVCS12, SP13, HWTN14]. For
example, by occasionally cooperating against defectors, the strategy ‘Generous Tit-for-Tat’
can stabilize full cooperation [Mol85, NS92|, even though the classical Tit-for-Tat strategy
cannot. Similarly, the analogous first-order social norm ‘Generous Scoring’ has been
shown to be stable in the context of indirect reciprocity [SCHN21], even though classical
Image Scoring is not. In both cases, there is the same intuition for why a certain degree
of generosity is favorable. By becoming more generous, populations of reciprocators are
more likely to sustain cooperation among themselves even in noisy environments. This
in turn makes them more robust against invasion by unconditional cooperators. At the
same time, however, reciprocators must not be too forgiving, for otherwise they can be
invaded by unconditional defectors. The optimal degree of generosity thus needs to strike
a balance between being sufficiently forgiving to correct errors, and being sufficiently
strict to avoid exploitation.

In the following, we propose a framework to incorporate an element of generosity into the
leading eight social norms. To this end, we distinguish between two kinds of generosity. The
first, assessment generosity, makes individuals more generous when assigning reputations to
other group members. In situations in which they would usually assign a bad reputation to
a given group member, they may occasionally assign a good reputation instead. The second,
action generosity, makes individuals more generous in their decisions whom to help as a
donor. In situations in which they would usually defect, they may occasionally cooperate
instead. Although these two kinds of generosity may seem similar, our results suggest that
their effect on the resulting reputation dynamics is very different. In particular, while
action generosity can sometimes enhance cooperation, assessment generosity is always
detrimental. Moreover, even under action generosity, we do not observe the evolution of
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high cooperation rates when environments are noisy. Our results suggest that complex
social norms of indirect reciprocity are not compatible with individual acts of generosity.
Unless generosity is the result of a coordinated effort among all population members,
generosity merely acts as another seed of disagreement.

3.2 Results

3.2.1 A theoretical framework of action and assessment
generosity

To incorporate generosity into higher-order social norms of indirect reciprocity, we consider
a well-mixed population of fixed size N. In every round, two players are randomly chosen
to engage in an interaction. One of the players is randomly assigned to be the donor,
whereas the other player is assigned to be the recipient. The donor chooses whether to
confer a benefit b to the recipient, at an own cost of ¢, with 0 <c<b. Other members of
the population independently observe the donor’s decision with probability ¢. We assume
that information is private: every observer keeps track of others’ reputations by updating
their personal reputation repository, and there is no shared judgment of observed actions
(see Methods, Section 3.4). Players thus individually update and keep track of their
opinion about others based on their observations. These observations are subject to noise:
observers can misperceive an action with a probability €, and mistakenly interpret e.g.
cooperation as defection.

How observers update others’ reputation based on what they observe, and how they
subsequently act towards others, is governed by their social norm. We broadly interpret
social norms as rules that tell individuals how they should behave in social interactions.
In our context, we consider norms that consist of two components: an assessment rule
and an action rule [Oka20]. The assessment rule prescribes how reputations are updated,
based on the observed actions and the possible context of an interaction. The action rule
governs a player’s behavior when it is their turn to decide whether to confer a benefit to
a co-player. Following Ohtsuki and Iwasa [O104, OI06], we assume that reputations are
binary (good or bad), and social norms are at most third order. To allow for generosity,
we consider modified versions of the deterministic leading eight social norms L1 — L8 (see
Figure 3.1a). Players with these modified versions always cooperate if the original
leading eight prescribe to do so. Similarly, they always assign a good reputation in
cases where the original version would. However, in cases where the original social norm
would assign a bad reputation, the modified version instead assigns a good reputation
with probability ¢; (Figure 3.1b,c). Analogously, in cases where the original leading
eight norm prescribes defection, the modified version instead cooperates with probability
g2 (Figure 3.1d,e). We refer to g; and go as the probabilities that players engage
in assessment generosity and action generosity, respectively. In the limiting case with
g1=9g2=0, we recover the original leading eight.

We note that our framework makes two assumptions about the stochasticity we introduce.
For one, players are only forgiving, but not spiteful: players never defect when the original
leading eight rule prescribes cooperation, and they never assign a bad reputation to a
player they are supposed to regard as good. This means that only when the original
norm prescribes a negative assessment or defection, there is a probability to positively
assess (g1) or cooperate (gy) instead. Another simplifying assumption is that players use
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Figure 3.1: The leading eight social norms with assessment and action generos-
ity. a, To sustain cooperation based on indirect reciprocity, Ohtsuki and Iwasa[OI06]
suggested a set of eight social norms. Each social norm consists of an assessment rule
and an action rule. The assessment rule determines with which probability observers
assign a good reputation to a given donor. This assessment depends on the donor’s action
(cooperation or defection) and on the reputations of the donor and the recipient (good or
bad). The action rule determines with which probability a donor cooperates with a given
recipient. Again, this choice depends on the reputation of the donor and the recipient.
The original leading eight social norms are deterministic, such that all probabilities are
either zero or one. In our framework, we introduce stochasticity by allowing individuals
to be generous. We distinguish two kinds of generosity. b,c, Assessment generosity means
that every time individuals usually assign a bad reputation, they instead assign a good
reputation with probability ¢;. d,e, Action generosity means that every time individuals
usually defect, they instead cooperate with probability g-.

the same probability ¢, for all instances in which assessment generosity can be applied
(similarly, they use the same probability g for all instances in which action generosity can
be applied). For example, an observer with social norm Stern Judging (or L6) makes no
distinction between a player who cooperates with a bad recipient and a player who defects
with a good recipient. In both cases, the observer generously assigns a good reputation
with probability g;.

3.2.2 Reputation dynamics under assessment generosity

In the following, we first explore each kind of generosity in isolation. We start by
considering the effects of assessment generosity. To this end, we first take the players’
norms as given. Different players may adopt different norms, but each player’s social
norm is fixed in time. We can then describe how the players’ reputations change over time
with a so-called image matrix [Uch10] M (t)= (mi]‘ (t)) This image matrix represents a
collection of the players’ reputation repositories. An entry m;;(t)=1 indicates that player
i assigns a good reputation to j at time ¢. Similarly, an entry m;;(¢) =0 indicates that ¢
regards j as bad. After every round of the game, M(t) is updated. The updated image
matrix depends on which players are chosen to be the donor and the recipient, on the

45



3.

THE EVOLUTION OF INDIRECT RECIPROCITY UNDER ACTION AND ASSESSMENT

GENEROSITY

donor’s action, on who observes the interaction, and on the social norms applied by the
observers. For example, if an individual j is regarded as good by all players, but j defects
against some other good individual, then some of the entries of the image matrix may
change from m;;(t)=1 to m;;(t+1)=0.

Let us illustrate the concept of image matrices with an example. To this end, we consider
a population that in equal proportions applies one of the social norms Ly, ALLC, ALLD.
Here, ALLC is the (trivial) social norm that assigns a good reputation to all behaviors, and
that prescribes to cooperate with everyone. Similarly, ALLD is the norm that uniformly
assigns bad reputations and that always prescribes to defect. We consider four scenarios,
depending on whether or not information is noisy, and depending on whether or not
L, displays some assessment generosity (Figure 3.2a). In the baseline case of no noise
and no generosity, we observe that L; perfectly distinguishes between different players.
Eventually, all L; players assign a good reputation to each other and to all unconditional
cooperators, whereas they assign a bad reputation to all defectors. Once we allow for
perception errors, however, there is no longer a perfect match between the players’ norms
and their reputations. For instance, there is now a 7.5% chance that L; players regard
an ALLD opponent as good despite their constant defection. Similarly, L; players now
consider each other as bad with an average probability of 11.6% (Figure 3.2b). Given
that the error rate is only 5%, this increase in bad assessments cannot be explained by the
direct effect of errors alone. Instead, the original disagreements caused by errors trigger
further disagreements over time[HST*18]. It is exactly this excess in bad assessments
that generosity might help to reduce.

Surprisingly, we find that assessment generosity rather has the opposite effect. It further
increases the mismatch between the players’ social norms and their reputations (Fig-
ure 3.2a, right panels). Even in the absence of errors, generosity increase the likelihood
that L; players regard each other as bad (from 0% to 4.1%). Similarly, it increases the
likelihood that L; players have a positive image of ALLD opponents (7.2% instead of
0%). This mismatch becomes even worse when errors and generosity act simultaneously
(Figure 3.2a,b, lower right panels). Now, 12.5% of L; players regard each other as bad,
while they assign a good reputation to defectors in 13.9% of the cases. In particular,
independent of whether or not there are errors, we observe that generosity undermines
the accuracy of L; to assign correct reputations: (7) With and without errors, generosity
reduces the likelihood that members of the L; subpopulation regard each other as good;
(7) With and without errors, generosity increases the likelihood that L; players assign a
good reputation to defectors. We observe the same negative trend for all other leading
eight norms (as another example, the case of L7 is depicted in Figure 3.2c,d).

To gain some intuition for these results, Figure 3.3a considers a stylized example with
three L, players and one ALLD player. Due to assessment generosity, some L; players
may assign a good reputation to the defector (Figure 3.3a, second panel). This can
have two negative consequences for the relative performance of Ly: (i) Generous players
provide help to the defector (Figure 3.3a, second and third panel); (7)) They assign
bad reputations to fellow L; players who do not show the same generosity (Figure 3.3a,
fourth panel). In this way, uncoordinated generosity can itself act as a seed of disagreement
between generally cooperative players. Both of these effects of assessment generosity seem
to undermine the robustness of the leading-eight norms in mixed populations, rather than
enhancing it.
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Figure 3.2: The effect of assessment generosity on the dynamics of reputations.
a, Image matrices are representations of how players assess each other at any given time.
To depict these image matrices graphically, a colored dot means that the corresponding
row player attributes a good image to the corresponding column player. Here, we show
snapshots of such image matrices when players either use the leading-eight social norm
Ly, ALLC, or ALLD (in equal proportions). We consider four scenarios. These scenarios
differ in whether information is perfect or noisy, and in whether or not L, players are
generous. When information is perfect and there is no generosity, we observe that the
reputation assignments of different L, players are perfectly correlated. If one L, player
assigns a good reputation to some other group member, then so does every other L; player.
In contrast, the presence of either noise or generosity introduces disagreements among
L, players. b, Here, we show the average image players have of one another. Generosity
makes L players perceive each other less favorably, and it makes them perceive ALLD
players more favorably, irrespective of whether information is perfect or noisy. ¢,d, We
observe similar patterns for all other leading eight social norms. Here we illustrate the
competition between Ly, ALLC, and ALLD. Parameters: We use a population of size
N =90, an error rate of either e =0 or ¢ =0.05, and a generosity probability of either
g1=0 or g; =0.05. Simulations are run for 2 - 10° iterations, and the initial image matrix
assumes a good reputation for all players.
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Figure 3.3: The mechanisms of assessment and action generosity differ. a, As-
sessment generosity g; works like an additional private error rate, and seeds disagreements
that can later proliferate in a population using any generous leading eight strategy, even
when information is not noisy or incomplete. We show an example situation where such a
disagreement arises in a population of 3 generous players and one ALLD player. When a
generous player deems the ALLD player as good despite having observed or received a
defection from her, he is setting up ALLD for higher reward and the generous strategy
for in-fighting later on. b, Action generosity means more frequent cooperation with
players deemed bad. This does not change the reputation dynamics for L1 or L7, as
these two strategies either never judge any cooperative action as bad or do not change
their opinion about a cooperative player in the first place. However, action generosity
still ends up giving benefits to defectors, who can then exploit the leading eight players’
generosity. Intuitively, action generosity can be compared to a “public error” - this way it
either actively harms in strategies where cooperation with bad players is judged as bad,
or harms on the level of strategy evolution.

3.2.3 Reputation dynamics under action generosity

In a similar way, we can also explore the isolated effects of action generosity. To this
end, we again consider populations that consist in equal proportions of L, ALLC, and
ALLD, and we compare the outcomes with and without errors, and with and without
action generosity (Figure 3.4a). In contrast to assessment generosity, we observe that
action generosity does not compromise the perceptions that L, players have of each other.
In the absence of errors, all L; players regard each other as good, with or without action
generosity (Figure 3.4b, upper two panels). Once there are perception errors, action
generosity can even improve L;’s self-perception. Instead of regarding each other as
bad with an average probability of 11.6% (in the case of errors but no generosity), L;
players assign each other a bad reputation in 10.9% of the cases (with action generosity).
Similarly, the chance to misperceive ALLD players as good is slightly diminished. L
players regard 7.5% of their ALLD opponents as good without generosity, compared to
7.4% with generosity (note, however, that under action generosity, an L; player may
cooperate with ALLD players even when they have a bad reputation).

To gain some intuition for the differences between assessment generosity and action
generosity, we revisit our previous stylized example with three L; players and one ALLD
player (Figure 3.3b). Similar to assessment generosity, we again observe that action
generosity may lead L; players to cooperate with defectors (Figure 3.3b, second and
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Figure 3.4: The effect of action generosity on the reputation dynamics. We
consider the same basic setup as in Figure 3.2, except that leading eight players now
use action generosity instead of assessment generosity. a,b, When the population consists
of L1, ALLC, and ALLD), action generosity results in more appropriate judgments. In
the presence of errors, generosity makes L, players more likely to perceive each other as
good (89.1% instead of 88.4%). Similarly, it makes them slightly less likely to perceive
defectors as good (7.4% instead of 7.5%). Importantly, however, L, players with action
generosity occasionally cooperate with ALLD opponents even if they regard them as bad.
c,d, We observe the same patterns for other leading eight norms. Here we again depict
the case of L;. Parameters are the same as in Figure 3.2.

third panel). However, action generosity no longer seeds additional disagreements among
the Ly players (Figure 3.3a, fourth panel). The main difference between assessment
and action generosity is that instances of action generosity become common knowledge.
Cooperating with a defector is a decision that others can see, whereas assigning a good
reputation to a defector is a private decision which can lead to future misunderstandings.

These results suggest that with respect to the robustness of L;, action generosity results
in a trade-off. On the one hand, action generosity makes it more likely that L, players
cooperate among each other when information is noisy. On the other hand, however,
action generosity also increases the chance that help is given to undeserving defectors.
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Similar trade-offs can also be observed for other leading-eight norms (Figure 3.4c,d
shows the example of L7). Whether the overall effect of this trade-off is favorable to the
robustness of indirect reciprocity depends on the overall composition of the population. In
populations in which leading eight players are abundant, the positive effects of increased
forgiveness may outweigh the negative effects of providing help to free riders. In an
evolutionary context, this composition of the population can change over time, depending
on the relative success of each social norm. How generosity affects this evolutionary
dynamics is what we explore in the following.

3.2.4 Evolutionary dynamics under assessment and action
generosity

While we have assumed in the previous sections that the population members use fixed
social norms, here we consider how the abundance of different social norms may change
over time. We assume that the evolution of social norms happens on a separate, much
larger timescale than the updating of reputations. As a result, we may assume that by
the time social norms change, the players’ reputations have reached a stationary state (as
depicted by the average image matrices in Figure 3.2b,d and Figure 3.4b,d). Given
these average images, we can compute the cooperation rate #;; with which a player i
provides help to player j. Using these cooperation rates, we compute player ¢’s average
payoff as m; = ﬁ 22 b2y — cZy;. It a social norm allows a player to have a relatively
high payoff, such a social norm is more likely to spread in a population on an evolutionary
timescale.

To describe how successful social norms spread in a population, we consider a simple
imitation dynamics based on pairwise comparison|TPN07, WBGT15]. In every time step
of the evolutionary process, some player ¢ is randomly selected from the population to
revise their social norm. With probability u, player ¢ picks a new norm uniformly at
random. With probability 1 — u, he instead chooses a role model j randomly from the
remaining population. In that case, player ¢ adopts j’s social norm with a probability
given by the Fermi function[Blu93, ST98, TNPO06|, P(m;, 7;) = (1+exp[—s(m;—m)]) .
Here, the parameter s >0 describes the strength of selection, which measures how relevant
payofts are for updating the norms. For s=0, updating happens at random. For increasing
s, social norms with higher payoffs are increasingly likely to be imitated. The resulting
stochastic process is ergodic, and gives rise to a stationary distribution, called selection-
mutation equilibrium. The average cooperation rate or payoff in the population can
be computed from there by weighting the payoffs of the individual norms with their
abundance in equilibrium. In the following, we assume mutations are sufficiently rare,
such that populations are homogenous most of the time[F106, WGWT12, McA15]. Only
occasionally, a mutant social norm arises. This mutant norm is then either adopted by the
entire population or it goes extinct before the next mutant appears. To furthermore keep
the system as simple as possible, we study the evolutionary competition between three
social norms only: players can choose between ALLC, ALLD, and one of the leading eight
social norms (similar to what we studied in the previous sections and again similar to
much of the previous work in the field[NS98a, PB03, BS04, BS06, Ber11, SSP16, RSP19)]).
For all details, see Methods, Section 3.4.

Figure 3.5a shows the resulting dynamics for the leading eight norm L, in the baseline
case without any generosity[HSTT18]. Overall, L; is only played in 30% of the cases,
as compared to 4.3% for ALLC, and 65.8% for ALLD. While L; is relatively robust
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against direct invasion by ALLD, it is vulnerable to indirect invasion by ALLC'. Overall,
the dynamics is similar to a rock-paper-scissors cycle: ALLC mutants are favored to
invade into Ly, ALLD is favored to invade into ALLC', and L; can invade ALLD in turn.
However, due to the relative robustness of ALLD, players only cooperate in a minority
of cases. Adding a moderate amount of either assessment generosity (Figure 3.5b) or
action generosity (Figure 3.5¢) leaves the qualitative dynamics unchanged. However,
both kinds of generosity make L; slightly more robust against invasion by ALLC, but less
likely to invade into ALLD, as one may expect. The overall effect is slightly negative in
the case of action generosity (the share of defectors increases from 65.8% to 67.0%), and
substantially negative in the case of assessment generosity (where the share of defectors
increases to 78.6%). For the given parameter values, we thus conclude that neither form
of generosity favors the evolution of the social norm L;.

No generosity Assessment generosity Action generosity Symmetric generosity
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Figure 3.5: Evolution of the leading eight under assessment and action generos-
ity. We simulate the evolutionary dynamics when players can choose among three different
norms, a leading eight norm, ALLC', and ALLD. Social norms spread in the population
according to a pairwise comparison process[TPNO07], such hat norms of players with high
payoffs are more likely to spread. Here we depict results for the limit of rare mutations,
such that populations are homogeneous most of the time[F106, WGWT12, McA15]. Num-
bers in circles show how often each social norm is adopted on average. Arrows indicate how
likely other social norms can invade a given resident population. Solid arrows indicate that
the respective transition is more likely to occur than expected under neutrality, whereas
dotted arrows indicate that the respective transition is comparably unlikely. We consider
four scenarios, depending on whether leading eight players exhibit no generosity, only
assessment generosity, only action generosity, or both variants of generosity. a—d, The
norm [ is most abundant without any generosity. e—h, The norm L; is most abundant
with action generosity. However, even in that case, it is played in less than 30% of time.
Parameters: N =50, e=0.05, b=5, c=1, ¢=0.9, using a strength of selection of s=1.

This conclusion, however, can change for other leading eight social norms. To illustrate
this point, Figure 3.5e—h shows the resulting dynamics when ALLC and ALLD compete
with the alternative norm L;. The overall dynamics is similar to the case of L;, with
evolution leading in a rock-paper-scissors cycle from L; to ALLC to ALLD and back to
L7. Also the impact of generosity is similar. On the one hand, it reduces the risk of L,
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with respect to indirect invasions by ALLC'; but on the other hand, it also reduces L;’s
ability to invade into ALLD. However, for L; we observe that the net result of these two
opposing effects can be positive. In the case of action generosity, the share of L, increases
to 27.4% (compared to 24.3% in the baseline scenario without any generosity). We note
however that even in this case, in which generosity is favorable, the population is still
most likely to settle at unconditional defection.

To explore how robust these patterns are, we have repeated these simulations for all other
leading eight social norms, and we have systematically varied how likely the leading eight
are to engage in either assessment or action generosity (Figure 3.6). These simulations
exhibit the following regularities: (i) In the presence of noise, almost all of the leading
eight norms have problems to evolve, irrespective of how generous they are. The only
social norm that is able to reach an abundance of more than 50% is Lo (called ‘consistent
standing’[HST*18]). However, this social norm is most successful without generosity,
when g1 =go= 0. (4) In those cases in which the leading eight norm is played by a sizable
fraction of the population (L, Lo, L7), assessment generosity has a systematically negative
effect on overall cooperation. In contrast, action generosity can promote cooperation, but
only in the case of Ly, for which the optimal degree of generosity is g, ~8%. However,
even in that case, cooperation rates remain comparably low. For all other leading eight
norms (Ls-Lg, Lg), cooperation fails to evolve altogether.

We observe similar results as we vary the error rate e, the benefit b of cooperation, and
the observation rate ¢ (Figure 3.7). In all cases, cooperation is unlikely to evolve.

Moreover, generosity seems to harm the evolution of cooperation rather than enhancing
it (Figure 3.8), despite its positive effect in homogeneous populations (Figure 3.9).
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Figure 3.6: A systematic analysis of the effect of generosity on cooperation. For
this figure, we repeat the evolutionary simulations shown in Figure 3.5 for all leading
eight strategies. To explore the impact of generosity, we systematically vary how likely
leading eight players exhibit assessment generosity (g;, y-axis) and how likely the exhibit
action generosity (g2, z-axis). The color indicates the average cooperation rate of the
population, according to the selection-mutation equilibrium of the evolutionary process
(see Methods, Section 3.4). In particular, grey indicates the absence of cooperation.
We find that the five social norms Ls — Lg and Lg, which fail to evolve in the baseline
deterministic model (g; =¢g2=0), do not evolve in any generous form either, no matter in
which combination. The strategies L; and Lo occasionally evolve, but they do not benefit
from either form of generosity. Here, the achieved cooperation rate has its maximum in
the origin. Only for L7, the cooperation rate becomes maximal for a positive amount of
action generosity, with go~0.08. The inserts show the cooperation rate as a function of
go for gy =0. Parameters are the same as in Figure 3.5.
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Figure 3.7: Generosity does not enhance the evolution of cooperation even
when we vary parameter values. We vary the noise on observations ¢, the benefit-to-
cost ratio b/c, with ¢ = 1, and observation probability ¢g. All other parameters remain
constant at the values of Figure 3.2. In each scenario, we plot the average cooperation
rate of each individual leading eight strategy when they compete against ALLD and
ALLC. This again enables us to compare the generous L; (b-d) in three variants with
their baseline counterparts (a). b, For assessment generosity only, we find that compared
to the baseline, the cooperation rate of the leading eight with generosity is reduced for
all values of €, b/c and ¢q. The qualitative shape of the curves remains the same as in
the case of no generosity. ¢, In the case of action generosity only, the negative effect on
cooperation rates is not as large as with assessment generosity. Yet, action generosity still
fails to enhance cooperation, and is also detrimental for some parameter ranges, especially
higher values of € and b/c. d, For the leading eight with both kinds of generosity,
cooperation rates are lowest across all parameter ranges and scenarios. Again, the shape
of the curve is identical to its deterministic baseline in a, but cooperation cannot evolve
in the same way as in the baseline, whete it is already limited.
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Figure 3.8: Generosity in itself inhibits the evolution of cooperation. We consider
an error-free scenario (¢ = 0) with perfect observation (¢ = 1), hereon called a “perfect
information scenario”, and calculate the cooperation rate in equilibrium as a function of
generosity. a, In the case of assessment generosity only as well as when both variants of
generosity are at play (c), there is a quick decline of cooperation for all generous leading
eight as generosity increases. L1 does a bit better than the rest, but suffers the same losses
once generosity is past 1%. b, When we consider only action generosity, the picture is
slightly different: L1 and L7 can keep up a higher level of cooperation with a rate of around
85% until a probability of forgiveness at around 0.25. L2 also fares better in this setup
than in the two other scenarios, but shows a decline in performance earlier on, at around
g2 = 0.15. It thus stands to reason that generosity in itself introduces disagreements and
opportunities for ALLD to gain an advantage. Parameters: N =50,e =0,¢g=1. b =15,
c=1, s =1, in the limit of rare mutations p — 0.
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Figure 3.9: The self-cooperation rate in homogeneous populations of generous
leading eight players benefits from generosity. a-c, We consider homogeneous
populations consisting of N = 50 players using generous leading eight strategies in a noisy
environment, and calculate their strategy’s cooperation rate against itself. We find that as
generosity increases, so does self-cooperation. This is true for assessment generosity only
(a), action generosity only (b), as well as symmetric generosity (g1 = ¢2) (c). This result
suggests that only when strategy evolution is at play and the generous strategies have to
compete against other social norms, forgiveness is a hindrance. Single generous strategies
in isolation fare better in noisy environments than their deterministic variants. This is in
line with the intuition that forgiveness helps balance out noise-related misinterpretations
of cooperation as defection. Parameters: N = 50, = 0.05,¢q = 0.9.
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3.3 Discussion

Indirect reciprocity is a mechanism for cooperation that translates the principle of direct
reciprocity to a population level [NS05, Sigl0, Sigl12, Oka20]. When individuals use direct
reciprocity, they ask how cooperative others have been in direct encounters. In contrast,
when individuals use indirect reciprocity, they ask how others have behaved in general, in
interactions with third parties. Once individuals take into account third party interactions,
they also need to develop a sense of which behaviors should be regarded as bad, and which
consequences bad reputations should have. In this way, indirect reciprocity has become the
subfield of evolutionary game theory that explores the evolution of moral behavior [Ale87].
To explore these questions, Ohtsuki and Iwasa [O104, OI06] have suggested eight social
norms that can maintain cooperation. Their work, however, rests on the assumption
that reputations are assigned publicly. In their framework it is a central authority
that takes note of everyone’s behavior, and that assigns a good or a bad reputation
in turn. In contrast, when population members make their own judgments and when
information is noisy, Ohtsuki and Iwasa’s leading eight become less effective in sustaining
cooperation [Uch10, US13, OSN17, HST*18]. Noise can introduce initial disagreements,
such that different individuals assign different reputations to a given group member. Such
disagreements can proliferate, because they also affect how future interactions of that
group member are interpreted. As a result, minor initial disagreements can sometimes
lead to a complete separation of the population. In such cases, the population fragments
into distinct subpopulations that assign good reputations within their community and
bad reputations to all outgroup members[OSI13].

Here, we have explored whether the leading eight social norms can be made more robust
if they are equipped with an element of generosity. We distinguish two ways of being
generous. When individuals engage in assessment generosity, they are more likely to assign
a good reputation to someone they would usually regard as bad. When individuals engage
in action generosity, they are more likely to cooperate with someone against whom they
would usually defect. Although these two manifestations of generosity may follow a similar
motive, our results suggest that they have different consequences. Assessment generosity
leads to a private reassessment of somebody’s reputation. Unless this reassessment is
mutually agreed upon, it can seed additional disagreements within a population. These
disagreements can further undermine the robustness of the leading eight norms. In
contrast, action generosity leads to a public display of cooperative behavior. While such
generous acts may be misguided towards undeserving free riders, they do not generate
the mutual disagreements that assessment generosity is susceptible to. As a result, we
find that the effect of assessment generosity on cooperation is always negative, whereas
action generosity can sometimes enhance cooperation. But even then, the leading eight
norms have problems to sustain full cooperation in noisy environments.

We note here that the case of fully private, individual observations and reputation tracking
constitutes an extreme case just as much as fully public information. We assume that for a
more realistic model, the truth lies somewhere in the middle [OYU20]. For example, gossip
and communication help offset and mediate disagreements. Still, for a full understanding
of the dynamics of indirect reciprocity, it should be useful to first explore the extreme
cases. If not for practical reasons, these cases are still relevant because of their theoretical
merit as boundary cases.

The failure of generosity to enhance cooperation may seem surprising. After all, previous
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work on direct reciprocity has shown that generosity is a powerful mechanism to reestablish
mutual cooperation in the presence of noise [Mol85, NS92, MVCS12, SP13, HWTN14].
Also among first-order social norms of indirect reciprocity, generosity can help to stabilize
cooperation[SCHN21]. Our study can shed light on why generosity is conducive to
cooperation in those cases, while it is detrimental in the case of the leading eight norms.
For the leading eight norms, generosity entails a two-fold cost. The first cost is the
immediate cost ¢ that comes with any cooperative act. The second cost is the risk of
losing one’s reputation by providing help to someone others regard as bad. In contrast,
Generous Tit-for-Tat and Generous Scoring do not suffer from such a two-fold cost.
Although the direct act of cooperating with someone is still costly, cooperators always
obtain a good reputation. The optimal level of generosity in this case can be calculated
by requiring that the positive reputation effect matches the negative immediate cost of
cooperation [SCHN21].

To model the impact of generosity, we make a number of simplifying assumptions. For
one, we have considered a well-mixed population. While the assumption of well-mixed
populations is common in the indirect reciprocity literature [NS05, Sigl2, NS98b, 0104,
0106, HST*18, Sigl0] interesting effects may arise once a population’s network structure
is taken into account. In the context of indirect reciprocity, this population structure may
not only determine with whom players interact with, but also whose interactions they are
able to observe. While population structure can enhance the evolution of cooperation in
general [LHN05, ON08, ON07, SF07], it remains to be shown how it affects the dynamics
of indirect reciprocity with and without generosity.

In addition, our analysis is based on computer simulations of the dynamics in finite
populations. Instead, recent work has shown that analytical results are feasible in infinite
populations if the players’ observations can be assumed to be independent [OSN18, RSP19].
While the dynamics in finite populations is perhaps more relevant for applications, an
analytical treatment of generosity is another potential venue for future research.

Furthermore, we have assumed an “aligned” version of forgiveness: players have a single
probability value each for generosity in assessments (g1) and actions (gz), respectively.
They do not differentiate between cases within one component of their social norm, i.e.
do not apply less stochasticity in scenarios they deem less "forgivable". Note that a
non aligned version of generosity with different probability of forgiveness for different
observations or actions would certainly be more realistic. For example, it might well be
that cooperation with a person deemed as bad should be subject to forgiveness more often
than defection against a good person. However, this also intuitively demands a higher
cognitive capacity from the players, who then need to prioritize some assessments and
actions over others, and need to decide what they think are unforgivable offenses. That
is, they need a more involved sense of morality. This points to a direction of interesting
future work, which can take into account the importance that players assign to different
scenarios they might encounter rather than applying an element of randomness uniformly
to their actions and assessments. Exploring such “non-aligned” generosity component-wise
would aid our understanding of which aspects of norms need to truly be set in stone,
and which aspects deserve more flexibility in assessment and action. Our study with its
negative result thus is only a first step towards understanding the effect of generosity for
social norms.

Finally, previous work has shown that in more complex social situations, apologies are
a necessary first step before forgiveness can occur. Without them, individuals lack
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discernment of what constitutes a justified or unjustified defection [HMPS11, MVHPL15].
This makes our results intuitive from a sociology perspective: without a person being
able to observe the intent behind an action, forgiveness does not help in re-establishing
cooperation. It thus would potentially be worthwhile to explore the use of apology
strategies in indirect reciprocity, similar to [MVHPL15], which analyzes direct reciprocity
dynamics involving apology and forgiveness. Our study thus further serves to highlight
the importance of shared information and coordination in a society when more complex
social norms are applied. Simply acting in good faith every once in a while cannot balance
out the intricate dynamics that result from disagreements in a population.

3.4 Methods

3.4.1 Reputation dynamics

We first describe how the reputations of players change over time. To this end, we assume
social norms to be fixed for each individual. We record the reputations that players
assign to one another in one image matrix M (t), which is updated in every step of the
dynamics. An entry m;; =1 (m;; = 0) means that player ¢ regards player j as good (bad),
respectively. In the following, we always start with all entries m;; = 1, i.e. in a state
where everyone assigns a good reputation to everyone else, no matter the social norm.
In every round, a donor and recipient are chosen at random, and the donor can choose
whether to confer a benefit b to the recipient at own cost c. Her action is dependent on
her norm as well as the reputation she assigns to herself and the recipient. This action is
observed by her co-players with individual probability ¢. This observation is subject to
misperception with probability . The players who observe the interaction then update
the donor’s reputation according to their assessment rules. These updates are recorded
in the matrix M (¢ + 1). We can iterate this process over many rounds and calculate
the average image players have of each other. Specifically, if players have interacted for
T rounds in total, the average image that player i’s assigns to player j is defined as
%Zle m;j(t). The resulting average cooperation frequency Z;; enables us to calculate
players’ payoffs for a fixed social norm as

1 . N
WZ:N_lgbxﬂ — CTyy. (31)

We illustrate our approach in Figure 3.2 and Figure 3.4. In both cases, the upper
panels (a,c) show snapshots of the image matrix at time 7" = 2 - 105. The lower panels
(b,d) show the respective average images. In Figure 3.9, we further present the results
of reputation dynamics in a homogeneous population of leading eight players, by showing
the average cooperation rate of each leading eight norm against itself.

We want to point out that in general, “good” and “bad” are merely labels with no
inherent meanings. In particular, for each of the leading eight strategies, one could also
define “mirror strategies”. According to these mirror strategies, acceptable behavior would
be rewarded with a “bad” reputation, and players would be more likely to cooperate
with “bad” individuals. If we are also to allow for such mirror strategies, it might be
less clear how “assessment generosity” should be defined. After all, for the mirrors,
assessment generosity should imply that forgiveness makes it more likely that players
now assign a “bad” reputation to the respective player. However, in this study, we are
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only concerned with the leading eight strategies as defined by Ohtsuki and Iwasa [OI04].
In their definition, the terms “good” and “bad” already have some intrinsic meaning.
Here, “good” is considered to mean the reputation label that, according to the leading
eight’s action rule, makes it more likely for the respective player to receive cooperation.
In our model, players thus unambiguously prefer to be labeled as “good”. In that case,
assessment generosity is straightforward to define. It means that players are more likely
to assign good reputation to their peers.

As one of our results, we show that action generosity may be more conducive to the
evolution of cooperation than assessment generosity. This may appear unsurprising,
because action generosity immediately affects cooperation. In case of action generosity,
each instance of generosity directly translates into an act of cooperation. In contrast, in
the case of assessment generosity, each instance of generosity only affects the respective
player’s reputation. Whether this improved reputation translates into more received
cooperation depends on the player’s further interactions. However, for many of the
presented results, we actually do not explore the impact of generosity on the eventual
cooperation rate. Rather, we explore how easily generosity can induce disagreements
between leading eight players (Figure 3.2 and Figure 3.4), or how it affects the evolution
of leading eight strategies (Figure 3.5). Already on this level, we observe that action
generosity is more favorable than assessment generosity. Furthermore, we show that even
if action generosity by itself increases cooperation, we find that in most cases it actually
has a negative effect on cooperation.

We also emphasize that our analysis technique is not limited to the restricted setup
where only three social norms compete. The approach can be naturally extended by
allowing population members to choose among additional norms. However, computational
complexity increases rapidly in the number of considered social norms. Also, our results
show that already when competing with only these two very simple other strategies, the
leading eight norms are unstable. Thus, adding further social norms is unlikely to increase
the stability of the leading eight norms and similarly unlikely to affect our conclusions.

3.4.2 Evolutionary dynamics

In a next step, we explore which social norms the individuals themselves choose to adopt
when their norms are no longer fixed. To describe this process formally, we assume players
change their norms over a separate, longer time scale. On this longer time scale, we assume
individuals adopt new social norms based on a pairwise comparison process [TPNO07].
According to this process, in every evolutionary time step, one player is randomly chosen
from the population. With probability p, with p the mutation rate, this player picks
a new social norm at random from the respective set of available norms. In this work,
players can choose from three social norms, a given leading eight norm, ALLC, and
ALLD. Meanwhile, with 1 — pu, the focal player randomly chooses a role model from the
population. If the focal player’s payoff according to Eq. (3.1) is given by 7; and the role
model’s payoff is 7}, then the focal player adopts the role model’s norm with probability
P(m;,m;) = (14exp[—s(m;—m)])~'. The parameter s is called the strength of selection.
When s is small, imitation occurs largely at random. For larger s, however, players are
most likely to imitate those role models with a higher payoff.

We note that in evolutionary game theory, imitation processes are often used as a standard
model to describe the spread of strategies in a population. For this model to be sensible,
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it is necessary to assume however that players are able to infer their co-players’ strategies
from their observed behaviors. This is straightforward for simple games, where strategies
correspond to the action that a player chooses. It is less straightforward in games of
indirect reciprocity. Here, individuals use more complex norms that are more difficult to
learn by imitation. However, it may still be argued that players may be able to learn each
other’s norms. For example, it is not unusual to assume that people discuss their world
views and moral guidelines with others. This is what we implicitly assume for this study.
Instead of imitation, one could also consider an alternative model by assuming that social
norms spread through a birth-death process, i.e. that parents pass on their own social
norms to their children. However, for the function we use to model imitation, the imitation
process is equivalent to a birth-death process with exponential fitness mapping [WBGT15].
Thus, the results would not change.

This evolutionary process based on mutations and imitation is ergodic. Hence, it gives rise
to a unique stationary distribution, which we refer to as the selection-mutation equilibrium.
This equilibrium reflects how often each of the available social norms is adopted over time.
In this work, we use the limit of rare mutations, which assumes that populations are
homogeneous most of the time. When a mutation arises, it either fixes in the population
or goes extinct before the next mutant appears. We can calculate this fixation probability
of a mutant with social norm M into a resident population with social norm R explicitly

as [THO9]
1

LT, e P —mak)

PMR (32)
Here, 7y (k) and wg(k) are the respective payoffs of mutants (M) and residents (R) when
k individuals in the population employ the mutant norm. This means that we can describe
the evolution of the social norms between three available norms in the rare mutation limit
as a Markov chain with three states. These three states correspond to the respective
homogeneous populations, i.e. all players using ALLC, all using ALLD or all players
using a leading eight norm. Given the pairwise fixation probabilities according to Eq. 5.31,
the respective transition matrix of this evolutionary Markov chain is given by

1 — (prc + prp) shLe 1oL
W= spcr 1 —3(pcL + pep) 5PCD : (3.3)
%pDL %pDC 1 - %(pDL + ppe)

The stationary distribution of this transition matrix is the selection-mutation equilibrium
of the process for rare mutations[F106]. Given this equilibrium, we can compute how often
players cooperate on average by taking the average cooperation rate of each homogeneous
population, and multiplying it by how often we are to observe the respective homogeneous
population in equilibrium.

We use this approach in Figure 3.5 — Figure 3.8, where we first simulated the reputation
dynamics for all possible population compositions, (ny,nc¢,np), with N = np+nec+np =
50 and 10° steps each. Here, ny stands for the number of players using a (generous)
leading eight norm, n¢ for the number of players using ALLC, and np for the number of
ALLD players. Payoffs are computed with Eq. 3.1, as explained in the subsection on the
reputation dynamics.

Specific methods employed for the figures. Figure 3.2 shows the results of rep-
utation dynamics in a population of N =90 players. The population composition is as
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follows: 1/3 uses ALLD, 1/3 uses ALLC, and 1/3 uses a leading eight norm. We consider
the cases of L; (a,b) and L7 (c,d). We additionally differentiate between four parameter
setups. For these setups we first distinguish whether information is perfect or noisy (i.e.,
whether ¢ = 0 and ¢ = 1, or ¢ = 0.05 and ¢ = 0.9). In addition, we distinguish whether
or not players engage in assessment generosity (i.e., whether g; = 0.05 or g; = 0, while
g2 = 0 throughout).

Figure 3.4 uses exactly the same method as Figure 3.2, but considers the case that
players use action generosity (g1 = 0, g2 = 0.05) instead of assessment generosity.

In Figure 3.5, we show the abundance of ALLC, ALLD and either L; or L; in the
selection-mutation equilibrium. We compare a scenario without generosity (g1 = g2 = 0)
to scenarios with assessment generosity only (¢ = 0.05,g2 = 0), action generosity
only (g1 = 0,92 = 0.05), and symmetric generosity (¢ = g2 = 0.05). Parameters are
b=5c=1,s=1,6=0.05¢=0.9.

In Figure 3.6, we systematically explore the effect of generosity on cooperation in the
selection-mutation equilibrium for all leading eight norms. We use the same baseline
parameters as in Figure 3.5, while varying both assessment (y-axis) and action (z-axis)
generosity in steps of 0.05 between 0 and 0.5. To visualize the impact of action generosity
on the three norms Ly, Lo, and L7 in more detail, we also ran more fine-grained simulations
where we varied g, in steps of 0.01, while g; = 0. These results are presented in the inset
panels a, b, g.

For Figure 3.7, we again employed the same method as in Figure 3.5 and Figure 3.6.
Here, we rerun the simulations for varying benefit b , noise € , and observation probability
q. We again compare a, the baseline without generosity (g1 = g2 = 0) to the three
scenarios of b, assessment generosity only (¢g; = 0.05,9o = 0), ¢, action generosity
only (g1 = 0,¢2 = 0.05), and d, both kinds of generosity (¢; = go = 0.05). The other
parameters remain the same as in the previous figures.

Figure 3.8 explores the effect of generosity in a perfect information scenario, for an
error rate of ¢ = 0 and an observation probability of ¢ = 1. We once more consider
three scenarios: assessment generosity only with g; = 0.05 (panel a), action generosity
only with g, = 0.05 (panel b), and symmetric generosity, with g; = go = 0.05 (panel c).
Methods employed are as in the previous evolutionary figures Figure 3.5-Figure 3.7.
All other parameters remain the same.

For Figure 3.9, we vary generosity levels in all three scenarios (assessment generosity
only, action generosity only, symmetric generosity) when considering reputation dynamics
in a homogeneous population of leading eight players with noisy environment (& = 0.05,
g = 0.9). We plot the average cooperation rate of each employed leading eight norm
against itself.
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CHAPTER

Quantitative assessment can stabilize
cooperation via indirect reciprocity
under imperfect information

Indirect reciprocity describes the role of reputation and social norms for the evolution
of cooperation. This mechanism assumes that when individuals interact with someone,
they are subject to observation and judgement by their peers. Helping someone at own
cost increases individuals’ reputation, which benefits helpers in future interactions and
therefore can sustain cooperative behavior. Previous literature has identified eight highly
successful social norms, the “leading eight”. However, to be effective, these norms require
all relevant information to be reliable and public. Otherwise, when information is private,
disagreements resulting from noise can proliferate and prevent cooperation from being
sustained. Studies on the performance of the leading eight usually assume that reputations
are binary: players can be thought to be either good or bad. In contrast, here we study
the case where reputations are more nuanced. With this “quantitative” assessment,
every individual privately keeps track of others’ integer reputation scores, incrementing
and decrementing these scores according to observations and norm-specific rules. To
make an overall judgement of a peer, an individual then compares the corresponding
score with a threshold. Our work suggests that such quantitative assessment can act as
a powerful stabilizer of cooperation for four of the leading eight strategies when they
compete with defectors and cooperators. Keeping track of reputations in a more nuanced
way has error-correcting properties, thus increasing the resilience against the effects of
noise by enabling recovery from disagreements. For cooperation to be reliably sustained
by complex social norms, such comparably more sophisticated assessment and a broader
definition of goodness thus seems to be necessary in order to overcome the challenge of
noisy environments with incomplete information.

4.1 Introduction

Reputation-based social dynamics are a fundamental feature of the human experi-
ence [Ale87, JHTM11, Feh04, BKO05, CGLF*15]. When reputation becomes a suffi-
ciently valuable commodity and actions of individuals can be observed and judged by
other members of their community, investing in a good reputation by engaging in costly
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acts of helping others pays off [WB02, Sug86, SKM04, Kan92, MSK02]. Those that help
are more likely to receive such help themselves, making it possible for cooperative behavior
to emerge. The framework of indirect reciprocity in evolutionary game theory describes
this mechanism for the evolution of cooperation, which is based on shared moral systems
in a population [NS05, Now06, Sigl0, Sigl2, Oka20]. Its success results from population
members assessing others” actions towards third parties and then acting according to the
resulting reputations. It does not require members to meet more than once. Cooperation
becomes the preferable option in interactions simply because it increases public standing,
and thus increases the likelihood of an individual receiving benefits from third-party
population members in the future.

Simple social dilemmas such as the donation game are a useful model for indirect
reciprocity[NS05, Sigl0, Sigl2, Oka20]. In this game, a donor chooses whether or not to
confer a benefit to a recipient at own cost, i.e. whether to cooperate or to defect. Other
population members can observe the donor’s action, and use this observation to update
their assessment of the donor’s reputation. This behavior in the population is governed
by social norms, assumed to consist of two components [OFP95]. One component is an
assessment rule prescribing how to update reputations based on observations. It specifies
which behaviors of the donor should improve the donor’s reputation, and which behaviors
should be condemned, and can depend on various contextual factors. The second part
of a social norm is an action rule that tells the donor whether to cooperate or defect
in a specific situation. The donor’s decision may also depend on his and the recipients’
reputation.

Much of the literature on indirect reciprocity has dealt with the question of which social
norms excel most at sustaining cooperation, and how complex they need to be [NS98a,
NS98b, SSP18, 0106, LHO1, NS05, PB03]. Early work mainly focused on simple norms
such as “Image Scoring” [NS98b, NS98a, BS05, WMO00]. When players use this norm,
donors’ reputations, i.e. their “score”, increase when they cooperate, and decrease when
they defect. The action rule then prescribes to cooperate with those that have a sufficiently
high reputation score. Such norms that only take into account the donor’s action when
making an assessment are referred to as “first-order norms”. Image Scoring, while intuitive,
however has been shown to be unstable under most circumstances [PB03, BS04, LHO1,
Oht04]. For one, it has been argued that in the long run a player will have no incentive in
the first place to care about his interaction partner’s score, since it has no bearing on their
own success: there is no adaptive motivation to use the norm. Another main reason for
the instability of Image Scoring is that punishing defectors by not cooperating with them
comes at a high cost to the punisher: their own reputation drops, thus harming them
in future interactions. The binary version of Image Scoring, which only considers “good”
and “bad” reputations, has additionally been suggested to be highly susceptible to errors.
Only variants of the norm that have some tolerance for single defections are considered
to be able to sustain cooperation [Berll, BG16]. More generally, the literature argues
that successful norms need to be able to differentiate between justified and unjustified
defections, and thus need to be more complex by at least taking into account the recipient’s
reputation (“second-order norms”) [PB03, BS04, Sug86], or taking into account both the
donor’s as well as the recipient’s reputation (“third-order norms”) [SSP18, OI04]. For
example, an ill-reputed donor helping another ill-reputed recipient may be judged as bad,
whereas a well-reputed donor helping another well-reputed recipient may be judged as
good.
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In order to systematically explore which norms of indirect reciprocity are stable, Ohtsuki
and Iwasa implemented an exhaustive search for social norms up to third order that
are evolutionarily stable and can maintain cooperation in a population. Their landmark
papers [0104, OI06] employ some crucial assumptions. For one, the focus lies on deter-
ministic assessment and action rules: given the donor’s and recipient’s current reputation,
there is no ambiguity in how an observer updates a donor’s reputation, or how a donor
acts towards a recipient. Furthermore, reputations are binary: individuals are assessed
either as “good” or “bad”. Finally, reputations are public and synchronized: all members
of the population update their assessment of donors in the same way, such that two
different players never disagree on the assessment of a third party’s action. This can
be interpreted as a central authority assigning updated reputations. Ohtsuki and Iwasa
identified eight particularly successful social norms of either second and third order,
termed the “leading eight”. These norms are able to maintain full cooperation and resist
the invasion of defectors if the entire population employs them. The assessment and
action rules of the leading eight norms share some commonalities, such that a donor with
a good reputation who cooperates with a receiver with a good reputation should always
obtain a good reputation (and thus should cooperate in this case), and that a defection
against a receiver with good reputation should result in a bad reputation. The norms
however employ different assessment of actions towards bad recipients. For example, while
some norms always reward cooperation no matter the recipient’s reputation, others like
“Stern Judging” disincentivize helping an ill-reputed recipient.

The leading eight norms have been an important subject of study in indirect reci-
procity [PSC06, SSP16, BS05, OIN09, SON17, SSP18, XGH19]. The premise that infor-
mation is public and synchronized naturally facilitates analysis of the dynamics in the
population. In more realistic scenarios, however, this assumption is somewhat unreal-
istic: individuals do not always agree on others’ reputations, nor do they always have
access to the same information. Previous work has shown that once players can make
their own judgements in private, the success of the leading eight is not a given any-
more [Uch10, US13, OSN17]. Rather, under private and noisy information, disagreements
arise both due to some individuals not observing a certain interaction, or occasionally
misinterpreting an action [HST18]. Some of the most successful leading eight strategies
under public information, like Stern Judging, then have the problem that such differences
in opinion can have a lasting negative effect [OYU20]. Proliferation of these disagreements
can lead to the emergence of separate communities within the population who consider
each other as bad, creating a deadlock. This suggests that the leading eight norms
therefore are not effective in letting cooperation emerge when information is private, noisy,
and scarce.

Given this finding, the question of how to boost the performance of the leading eight
in a noisy environment remains open. Previous approaches have ranged from finding
new, potentially simpler and less problematic strategies of indirect reciprocity [OYS™18,
SON17, CFW20, BG16, Berll, SCHN21] to adding elements of empathy or “pleasing”
behaviors to higher-order norms in order to overcome the negative effects of noise and
private information [RSP19, KH21|. On the other hand, attempts to stabilize higher
order assessment by introducing elements of “generosity” in analogy to direct reciprocity
have been show to fail [SSHC21]. While stochastic strategies have been shown to have
error-correcting properties that help stabilize cooperation in repeated games between the
same pair of individuals, this notion of stochasticity does not transfer to the leading eight.
Dropping the assumption of the leading eight being deterministic norms, and having their
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action and/or assessment rule include a probability of acting in a “forgiving” manner
does not improve cooperation rates. Rather, if players using the leading eight occasionally
cooperate instead of defect, and in particular if they occasionally assess actions as good
that they would usually assess as bad, cooperation can even be further reduced.

In contrast, we show in the present work that dropping a different original assumption on
the leading eight, namely the assumption of binary reputations, can mitigate the problems
that arise through private and noisy information. To do so, we introduce “quantitative
assessment” into higher order strategies, where reputations can take values beyond “good”
and “bad”. This is a natural premise in many real-life situations, and is in line with the
previous intuition that equipping players using the simpler Image Scoring norm with a
larger range of reputation scores and threshold strategies can aid in staving off the effects
of errors [BS04, NS98b, Oht04, LFS99]. More refined reputation scores can act as a buffer
for errors, increasing the tolerance for a small number of actions that are regarded as
bad by an observer [BG16, Berl1], without having negative consequences for the donor’s
reputation and immediate future. Furthermore, work that investigates the effect of taking
reputation and actions to be continuous variables on cooperation rates of the leading eight
norms under private, noisy and incomplete information shows positive results using a local
stability analysis [LMB21]. Replacing binary reputations and actions with probabilistic
mixtures enables conditions for which cooperation can evolve. These findings and the
promise they hold for more nuanced reputation systems are another indicator that the
leading eight can benefit from quantitative, if discrete-valued, assessment.

In the following, we present a framework that incorporates quantitative assessment into the
leading eight norms. In line with previous work, we consider players using deterministic
rules for both assessment and actions. However, individuals now keep track of their fellow
population members’ reputations in the form of integer scores, taking values from a fixed
range. For an observer, positively assessing a donor’s action then means to increment
the donor’s score, while a negative assessment translates into decrementing the score.
Individuals also need to make an overall judgement of their co-players. This means that
individuals must translate others’ integer reputation scores into a corresponding binary
label, giving the context for the assessment and action rule of the social norm. For
example, when it is a player’s turn to be the donor, he first needs to judge his co-player
and himself as either good or bad. To do so, this player computes the appropriate labels
by comparing their own and their co-player’s score to a threshold. A larger range of
reputation scores therefore implies a greater insensitivity of overall judgment to single
assessments. Our agent-based simulations suggest that this assessment model effectively
works to correct disagreements between players using the same norm. Hence, players
using a leading eight norm can more easily single out defectors while achieving a good
self-image. This makes it more likely for four of the leading eight norms to be favored in
evolution, and leads to high cooperation rates even at significant noise levels for these
four norms. Our results thus hint at the power of more nuanced opinions and tolerance
when interacting in a community using complex social norms. In a noisy environment
with scarce information, rash judgments can irrevocably harm cooperation; it is instead a
healthy dose of tolerance that can help protect reputations.
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4.2 Results

4.2.1 Game dynamics

Similar to previous work, we consider a well-mixed population of fixed size N. The
members of this population, who we refer to as players, are continuously engaged in
pairwise interactions. In every round of this series, two players, a donor and a recipient,
are drawn at random from this population for an interaction. The donor chooses whether
or not to confer a benefit b to the recipient at his own cost ¢ < b, i.e. chooses between
cooperation and defection. Meanwhile, the recipient does not respond with an action
of their own. The donor’s choice is independently observed by other members of the
population with probability g. They use these observations to privately update their
opinion of the donor, without publicly sharing their judgment. Every player individually
tracks the reputations of all other members of the population. We furthermore assume
that players’ observations are subject to noise: with probability €, an observer mistakes a
defection for cooperation, or a cooperative action for a defection. Given that information
is thus assumed to be private and noisy, it is important to note that when two observers
differ in their initial assessment of a given donor, they may also disagree on the donor’s
updated reputation, even if both observe the same interaction.

Every player is equipped with a social norm (corresponding to their “strategy”) that
governs their behavior, both in terms of judging actions as well as choosing an action
towards a recipient. Social norms thus consist of two rules, an assessment and an action
rule [Oka20]. The assessment rule prescribes how to update a donor’s reputation after
observing their action and taking this action’s context into account. The action rule
prescribes whether to cooperate or defect in a given situation.

In line with Ohtsuki and Iwasa’s original work [OI04, OI06], we consider norms of at
most third order. This means that the context that is taken into account for assessment
can be both the donor’s previous reputation and the recipient’s previous reputation. For
the action rule that decides whether to cooperate, the donor’s own reputation and the
recipient’s reputation make up the necessary context. In our framework, reputations are
not binary; instead players assign integer reputation scores r to each other that can take
a wider range of values on a scale from a lower limit V' to an upper limit A. That is, we
equip higher order norms with quantitative assessment (Fig. 4.1a). While this leaves the
considered leading eight norms L1 — L8 formally unchanged, the interpretation of the
rules making up the norm and therefore the resulting reputation dynamics differ from the
baseline model [HST*18].

We note that there are two components to our model of quantitative assessment. For
one, the integer reputation scores are used by the players to track changes in opinion
about others in a fine-grained manner. We assume that if an action is judged as good
based on an observer’s assessment rule, the donor’s score in the eyes of that observer is
increased by one, whereas if the action is judged as bad, the donor’s score is decreased by
one (Fig. 4.1b). On the other hand, players need to be able to translate these nuanced
scores into an overall judgment of a player in order to use the leading eight norms as
defined in previous work. This overall judgement must result in a binary label to become
the input bits for players’ assessment and in particular action rules (Fig. 4.1c). To make
the transformation unambiguous, we assume that players compare the reputation score
of a given player with a threshold S that separates scores into good and bad, similar to
previous work on non-binary Image Scoring norms. An individual with a score equal to
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Figure 4.1: The leading eight norms with quantitative assessment. a, We

consider the standard deterministic form of the leading eight norms [0104, OI06]. Each
norm consists of an assessment rule that determines how an observer updates a donor’s
reputation, and an action rule that governs players’ behavior when they are chosen to be
the donor. The assessment rule takes the context of an observed action into account: how
an observer judges a donor depends on the donors’ and recipient’s reputation. Similarly,
the action rule uses the current donor’s and recipient’s reputation to decide whether the
donor should cooperate with the recipient. In contrast to the original baseline model, we
now interpret a positive assessment of an action as an increment of +1 to the donor’s
reputation score, and a negative assessment as a decrement of -1. b, The observing
Player 7 assesses Player X’s action of cooperating with a bad player as bad, such that he
decrements X’s previous score by one. ¢, When it is Player Z’s turn to be the donor,
he translates his and Player X’s reputation score into a binary label of “good” or “bad”.
Since both his and Player X’s score are above the threshold S, he judges both himself and
Player X as good, and cooperates. d,e In the baseline model using binary assessment,
the same starting scenario ends differently: Player Z changes his view of Player X from
good to bad after Player X cooperates with Player Y, and therefore defects against Player
X.

or above the threshold is judged as “good” overall, whereas a score below the threshold
leads to an individual being judged as overall “bad”. This means that the more refined
the reputation scores, the less sensitive the overall label to single events, since this implies
more shades of “good” and “bad”. It is these overall reputation labels that are then used by
players in order to correctly assess an observed action and to decide whether to cooperate
with a specific recipient. We note that when we set V=0, A =1, S = 1, we recover the
original baseline model of the leading eight with binary assessment (Fig. 4.1d,e).

In the following, we will make some assumptions about our framework. For one, all
players use the same frame of reference for their assessment, such that everyone agrees
on the assessment scale, i.e. the range of reputation scores. Hence, each individual uses
the same fixed values for V', A, and S throughout. No player has a more nuanced view
of their environment than another, and no player judges others’ scores with a different
measure than another. Furthermore, we define the possible range of reputation scores
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to be symmetric, with A = R, V = —R, and a threshold of S = 0 in the middle. We
thus denote a particular setting of players’ frame of reference with R. This underlying
assumption naturally implies that there are slightly more possible ranks for a “good”
player than a “bad” one, as a player with r = S will be judged as “good”. However, to
test this bias, we have also run simulations where a player with » = .S will be judged as
“bad”, and have found no significant qualitative difference in results as long as players
start with a good reputation.

4.2.2 Analyzing reputation dynamics

We start testing our framework by first considering players’ norms as fixed, if possibly
different. Individuals play the donation game over many rounds and update others’
reputation scores after every interaction. We can describe this change in players’ reputation
scores with time-dependent image matrices [Uchl0] M (t) = r;;(t), with r € [-R, R],
representing the collection of players’ reputation score repositories. These matrices thus
record at any point in time which scores players assign to each other (Fig. 4.2a, left
side). In every round of the game, M (t) is updated according to the assessments of those
players that have observed the donor’s action, with their observation subject to noise ¢.
Noise in the environment implies that every observer has an independent probability ¢ to
misperceive the donor’s action. If player ¢ assesses his observation of player j’s action
as good, 7;(t + 1) = r;;(t) + 1, otherwise, r;;(t + 1) = r;;(t) — 1. In case the reputation
score is already at the maximum R (minimum —R), it simply keeps its value when the
action is assessed as good (bad). To make the overall judgment of player j’s and k’s
reputation, ¢ compares their reputation scores with the threshold S, and labels them
“good” when r;; > S and “bad” when 7;; < S. This acts like a second, less refined layer of
the reputation dynamics (Fig. 4.2a, right side). For example, if player i judges donor j
to be good and recipient k to be good, they will assess a defection of j against k as bad
and decrease j’s score by one.

We illustrate this concept with an example. We consider a population consisting in equal
proportions of players using one of three social norms, a leading eight norm L;, ALLD
and ALLC (Fig. 4.2b). ALLD is the norm that prescribes to assign a bad reputation
to everyone else and unconditionally defect, whereas ALLC prescribes to assign a good
reputation to everyone else and unconditionally cooperate. For this population, we explore
the reputation dynamics when information is noisy and scarce. In Fig. 4.2c—j , we
present two snapshots of image matrices at the same timestep for each of the norms
Ly — Lg, where players use an assessment scale from —5 to 5. The first snapshot visualizes
the integer reputation scores that players assign to each other at this particular time.
The other snapshot represents the overall judgment that emerges when players compare
others’ scores with the given threshold (S = 0). The resulting binary label is then an
indicator of how more refined assessment can help protect reputations from the negative
effects of disagreements. We visualize the difference between the impact of the baseline
binary assessment and quantitative assessment on reputation dynamics in Fig. 4.3. In
this figure, we present the average images the three norms L;, ALLC and ALLD have of
each other, for each of the L;.

We find that, compared to the baseline model, quantitative assessment helps all leading
eight norms assign significantly more accurate reputations to population members. It
clearly improves not only the self-image of each leading eight norm, but also enhances their
ability to distinguish between the two other strategies they compete with. In particular,
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Figure 4.2: Quantitative assessment and reputation dynamics. a, Image matrices
are representations of how players assess each other at any given time. We assume that
every player keeps track of each population member’s reputation score, with scores in
the interval [—5,+5]. To depict these image matrices graphically, we use colored dots,
with the intensity of the color corresponding to the score: for example, a white dot means
means that the corresponding row player attributes a score of r = 0 to the corresponding
column player (left side). On the other hand, players also make an overall judgment
of others, in order to be able to use their assessment and action rules. To do so, they
compare the scores to a threshold S = 0, resulting in a binary labeling of “good” and
“bad”. To visualize this second, less refined layer of the reputation dynamics, we use a
matrix with colored and grey dots (right side). b, We show image matrices when players
either use a leading-eight social norm L;, ALLC, or ALLD (in equal proportions). ¢ —
j» We show the snapshots at 7" = 2 * 10% of players’ reputation scores and binary labels
they translate into for all leading eight norms. We see that for L1 (c) and L7 (i), the
reputation assignments of different L; players are perfectly correlated. They assign only
good reputations to each other and ALLC, while they only assign bad reputations to
ALLD. The picture is very similar for L2 (d). For all other norms, there are disagreements
among the L; players, where they can also perceive ALLD players favorably. We note that
L8 does not perceive any ALLC player as good; however, this is one of two very stable
states in the reputation dynamics. The other stable state sees L8 players have a favorable
opinion of ALLC players. Parameters: We use a population of size N =90, an error rate
of e=0.05, and an observation probability ¢=0.9. The frame of reference is R = 5, such
that the interval for reputation scores is r € [—5, 5]. Threshold S = 0. Simulations are
run for 2 - 10° iterations, and the initial image matrix assumes a good reputation for all
players.

singling out defectors becomes much easier to do. We find that L1 (Fig. 4.3a) and L7
(Fig. 4.3g) excel most at correct reputation assignment despite the presence of noise. The
norm L2 (Fig. 4.3b) also does exceptionally well, even if it sometimes judges an ALLC
player as bad (which however also happens without noise). Even L3 — L6 (Fig. 4.3c—f),
which have particular trouble to accurately label defectors as bad in the baseline model,
now do much better in singling out ALLD players in comparison to the binary assessment
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Figure 4.3: Quantitative assessment significantly improves the accuracy of repu-
tation assignments by leading-eight players. We show the average overall judgments
that players with frame of reference R make of each other when comparing others’ repu-
tation scores with the threshold (a—h). As basis for comparison to the baseline model, we
use the average images that players have of each other when they use the standard binary
assessment (i—p). We observe that quantitative assessment and more nuanced reputations
lead to a significant improvement of the accuracy with which players assign each other
images. All leading eight norms achieve a perfectly correlated good self image, as opposed
to the baseline model, where only L1 (i) and L7 (o) achieve a self image of more than
80% good. Players using quantitative assessment also do much better in judging ALLD as
bad, and with the exception of the (less stable) L8 (h, p), also manage to assess ALLC
as close to 100% good. This hints at the power of a more refined reputation dynamics.
Parameters are the same as in Fig.2.

model. Finally, L8 (Fig. 4.3h), which eventually judges everyone as bad under binary
assessment, can judge its own kind as good much more easily when players use quantitative
assessment, and accurately singles out defectors. Unconditional cooperators however are
often assigned a bad reputation, due to L8 judging both good and bad players as bad
when they cooperate with another bad individual. We note here that the averages for L8
however might not be fully accurate, as the reputation dynamics do not easily stabilize
for this norm. In fact, the dynamics between L8, ALLD and ALLC have two very stable
configurations: one where the norm judges itself and ALLC' as good, and one where it
judges itself as around 70 — 80% good and ALLC' as bad. Given the averages we have
computed so far, the latter outcome is the significantly more predominant one and thus is
shown and discussed here. To verify this, we are also running a longer experiment for LS.
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From this, we can see that, compared with the binary assessment common in the literature,
our results so far suggest that quantitative assessment indeed can stabilize reputations
in a population with fixed composition. In fact, it can correct disagreements introduced
by noise, such that populations quickly recover from erroneous reputation assignments
and misjudgments. The outcomes thus come close to a setting with perfect information.
However, this finding does not yet let us make a conclusive statement about how well the
leading eight fare in evolution where population composition can change over time, and
whether cooperation effectively emerges.

4.2.3 Evolutionary dynamics

We now aim to understand the effect of quantitative assessment when players’ norms are
not fixed, such that their abundance can change over time. We explore how likely it is
for a leading eight strategy to evolve, and what cooperation rates are achieved in the
population. Similar to our previous setup and to what is common in the literature on
indirect reciprocity, we again consider a minimalistic scenario where players can choose
from only three norms: a leading eight norm L;, ALLD and ALLC. We assume that
the evolution of social norms happens on a longer timescale that is separate from the
reputation dynamics. This implies that the reputation dynamics have reached stationarity
by the time that social norms change. Iterating the elementary process of reputation
updating, we can not only calculate how often on average player ¢ considers player j to be
good, but also how often on average they cooperate with j. With the estimated pairwise
cooperation rate £;;, with which player ¢ helps player j, we can define the payoff of player
1 using a fixed strategy as m; = ﬁ 32 b1 — ¢y, To model how players adopt new
strategies, we then consider simple imitation dynamics [TPN0O7, WBGT15, SSHC21]. In
every timestep of the evolutionary process, a player i is picked uniformly at random to
revise their norm. With probability u they pick a random new norm. With probability
1—p, they randomly choose a role model j to imitate wth a probability P(m;, ;) depending
on the difference between the two players’ payoffs. This probability takes the form of the
Fermi function P(m;, 7;) = (14+exp[—s(m;—m;)])~'. The parameter s > 0 describes the
strength of selection, which measures how relevant payoffs are for updating strategies.
For s = 0, updating happens at random, and as the parameter increases, norms with
higher payoffs are more likely to be imitated. We note that for imitation processes to be
a reasonable model of strategies spreading, we implicitly assume that people discuss their
world views and moral guidelines with others.

The resulting process is ergodic due to the possibility of random mutations in every
timestep. Thus, it gives rise to a unique stationary distribution, called selection-mutation
equilibrium. This distribution represents the abundance of each strategy in the long run.
To calculate the average cooperation rate in the population, the payoffs of the individual
strategies are then weighted with this equilibrium abundance. In the following, we will
assume that mutations are rare [F106, WGWT12|, which implies that populations are
homogeneous most of the time: a new mutant only arises when the previous mutant
has either gone extinct or has fixed in the population. We can calculate the fixation
probability of a mutant into a resident population with social norm R explicitly [TH09],
cf. also Chapter 2.

Fig. 4.4 visualizes the evolutionary dynamics between each leading eight strategy, ALLC
and ALLD. We find that in four cases, for L3 — L6 (Fig. 4.4c —f), the leading eight norm
does not evolve. Once players have learned to use ALLD, there is very little chance of
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Figure 4.4: Evolution of the leading eight when assessment is more refined. We
show the results of simulating evolutionary dynamics when players can choose among
three different norms: a leading eight norm, ALLC', and ALLD. We assume that the
spread of social norms is described by a pairwise comparison process[TPNO7], such
that norms of players with high payoffs are more likely to be successful. Here, we
use the limit of rare mutations, such that populations are homogeneous most of the
time[FI06, WGWT12, McA15]. Numbers in circles show how often each social norm
is adopted on average. Arrows indicate fixation probabilities, i.e. how likely it is for
other social norms to invade a given resident population. Solid arrows indicate that the
respective transition is more likely to occur than expected under neutrality, whereas
dotted arrows indicate that the respective transition is comparably unlikely. We see
that four of the eight considered norms, L1 (a), L2 (b), L7 (g), and L8 (h) achieve
significant abundance in equilibrium, with L1, L2 and L7 played over 80% of the time.
The remaining four norms do not evolve in significant proportions, and the respective
dynamics strongly favor ALLD. Parameters: R =5, S =0, N=50, e=0.05, b=5, c=1,
q=0.9, using a strength of selection of s=1.

reestablishing cooperation. On the other hand, three of the leading eight, L1, L2, L7
(Fig. 4.4a,b,g) are more than 80% abundant in equilibrium, which means that their
evolution is strongly favored.

L8 is also played almost 70% over the course of evolution. This stands in stark contrast
to the baseline model, where only L2 achieves an equilibrium abundance of that magni-
tude (Fig. 4.5b), and where most leading eight strategies do not evolve in meaningful
proportions. We can see that this difference is mainly due to a significant probability of
L1,L2, L7, and L8 invading ALLD (Fig. 4.4a,b,c,g). ALLC and each leading eight norm
are approximately neutral with respect to each other (their fixation probability into one
another is &~ 1/N each), and ALLC is invaded by ALLD. Thus, the fixation probability
of the leading eight norm into ALLD becomes the deciding factor. This also suggests
that the power of quantitative assessment lies mainly in its ability to correct errors in the
norm’s self image by effectively reducing noise in the population, hence enabling a more
accurate judgment of defectors. We can see this in the behavior of L8 (Fig. 4.5h), which

73



4.

QUANTITATIVE ASSESSMENT CAN STABILIZE COOPERATION VIA INDIRECT RECIPROCITY

UNDER IMPERFECT INFORMATION

a L1

%

L1 ALLC  ALLD ALLC ALLD ALLC  ALLD ALLC  ALLD

o

Abundance of strategy
in equilibrium
o
S

L5 f

i ILLL

L5 ALLC  ALLD ALLC  ALLD ALLC  ALLD ALLC  ALLD

o
ES

Abundance of strategy
in equilibrium
o N
s 8

o

Figure 4.5: Four of the leading eight evolve in significant proportions for quan-
titative assessment. We compare the abundance of the leading eight strategies in
selection-mutation equilibrium between the case of quantitative assessment and the base-
line model. We use the same evolutionary process and setup as in Fig.3 and present
the changes in how often each norm is played on average. Colored bars represent the
abundance in equilibrium under quantitative assessment, while the light grey bars in the
background of each panel represent the results in the baseline model. We find that four of
the eight strategies now evolve much more readily (a,b,g,h) than in the baseline model,
and are played in significant proportions. The three remaining strategies, which do not
evolve at all in the baseline model, only do slightly better due to still being outcompeted
by ALLD. Parameters are the same as in Fig.3.

is less abundant compared to e.g. L7 due to the fact that it does not always judge itself
as good in the presence of ALLD.

Meanwhile, L3, L4, L5, L6 are unsuccessful in evolution, as they have difficulties labeling
defectors as bad already in a non noisy environment, and therefore do not profit as much
from the error-correcting quality of quantitative assessment. This strongly hints at the
conclusion that for a higher order norm to be stable under noisy and private information,
it must at least negatively assess a bad player defecting against another bad player.

Fig. 4.6 then visualizes how the eight norms’ abundance in equilibrium translates into
cooperation rates. We see that compared to the baseline model (Fig. 4.6d—f), seven
of eight norms lead to increased cooperation, with only L6 completely failing to evolve
cooperative behavior.

L1, L2, L7 give rates of almost 90%, whereas L8, which leads to no cooperation at all in
the baseline model, also is significantly boosted. These findings are highly robust when
we vary parameters (Fig. 4.6a—c), most remarkably even when we vary the error rate
(Fig. 4.6a). Even at a noise level of ¢ = 0.1, cooperation evolves and is maintained at
over 80% for L1, L2, L7, while it also does not fall below 60% for L8. This is due to
both the high abundance of these four leading eight norms when players use quantitative
assessment, and to an increased self-cooperation rate in homogeneous populations even
when errors are more frequent. Quantitative assessment thus changes the behavior of the
leading eight norms’ cooperation rates significantly.

Finally, we explore the effect of the size of the assessment scale, i.e. the range of the
reputation scores, on cooperation (Fig. 4.7). The case of two possible ranks (reputation

74



Results

4.2.
o L1 e L2 L3 ® L4 e L5 o L6 L7 L8
a 10 b ¢
g % 08 1 ';;::c:::::::::s:::::::;'V""'::":u : 7/?_;_,3:: Qe v e : [CHRE ::_ ________________ c )
iy 206 L |
T w0 ©
s @ 04 1 8 : 9.
= o] | . | -
g O 0.2 | |
=)
e} ! !
0.0 ! -9 |
d 4, e, Cf
< Qo ! '
23 £ 08 1 |
» O c . ‘
5 206 | |
g ° ‘ ‘
>‘g [0] | 1
58 g 04 | |
@ 8 | ‘
0.2 | S
0 { ZEE [TTTTVPOISY VSRS SRy : 0@ @@ : I USSP U RSP SR |
0.0 0.05 0.1 : 5 7 9 : 0.1 0.3 0.5 0.7 09
Error rate ! Benefit b Observation rate q

Figure 4.6: Quantitative assessment has a profound impact on cooperation
rates. We vary the noise on observations ¢, the benefit-to-cost ratio b/c, with ¢ = 1, and
observation probability ¢q. All other parameters remain constant at the values of Fig. 3.
In each scenario, we plot the average cooperation rate of each individual leading eight
norm when they compete against ALLD and ALLC, according to the selection-mutation
equilibrium of the evolutionary process. We can compare the results when players use
refined assessment with R = 5 (a — ¢) with the outcome of binary assessment in the
baseline model[HST*18] (d — f). a, Under quantitative assessment, cooperation rates
of L1, L2, and L7 remain at around 85% even when the error rate ¢ increases to 0.1.
The generally more unstable L8 is more affected by the increased noise, but still remains
above 50% even at € = 0.1. b, Increasing the benefit of cooperation b leads to an increase
in cooperation rate for all eight considered norms in contrast to the baseline. ¢, When we
increase the observation probability ¢, the behavior of the leading eight norms’ cooperation
rates is also markedly different from the baseline. L1, L7 are barely affected while L2 and
L8 exhibit nonlinearity for intermediate values of q.

values) corresponds to binary assessment. Notably, we find that for L1,L2, L7, L8,
cooperation rate non-monotonically increases with the number of possible reputation
scores (Fig. 4.7a). In fact, choosing an assessment scale smaller than taking R = 5, as
previously used, leads to even more cooperation, especially for the more unstable L8
with its strict assessment rule. Fig. 4.7b suggests that an intermediate number of levels
gives the four successful social norms a higher abundance, due to a higher probability of
invading ALLD.

The norm L2 is also a special case: here, going from binary assessment to quantitative
assessment with R = 1 harms the cooperation rate, as abundance drops down to only
46% from 89%. These observations suggest that there is a tradeoff between the size of
the assessment interval and the increased self-cooperation rate going towards 100% that
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Figure 4.7: Varying the frame of reference for quantitative assessment. For this
figure, we repeat the evolutionary simulations shown in Fig.3, and vary the frame of
reference R. That is, we explore the impact of the number of possible reputation ranks
on cooperation, including the case of binary assessment with two reputation ranks. a,
We show the cooperation rate in equilibrium for the leading eight norms as the number
of reputation ranks increases. We note that for the four successful norms L1, L2, L7, L8,
the largest frame of reference does not correspond to the highest cooperation rate. An
intermediate number of ranks is the most beneficial. L2 also exhibits a drop in cooperation
rate from binary assessment to R = 1 (i.e. 3 reputation ranks). The behavior of the
cooperation rates is mainly determined by the behavior of the equilibrium abundance
of the eight norms as the frame of reference varies (b). Meanwhile, self-cooperation
rates quickly increase to 1 as the frame of reference increases (c), which implies that
leading-eight players have a perfectly correlated image of each other once assessment is
more nuanced. Parameters are the same as in Fig.3.

comes with more fine grained reputation scores (Fig. 4.7c). Intuitively, an increased
range for reputation scores can act as a buffer that not only protects good reputations
from misjudgments, but can also make it harder to quickly and durably correct mistakes.
In turn, this can lead to sunk costs when players cooperate too often with defectors. This
becomes a particular issue for L2, as it is the only norm to actually evolve in a large
proportion in the baseline model, but also is sensitive due to its negative assessment of
good players’ cooperation with bad players. Therefore, the net effect is negative when
going from binary assessment to quantitative assessment with R = 1. The other norms
do not exhibit this drop in cooperation rates when moving to R = 1, as they profit far
more from the increased error correction, such that the negative effect of larger reputation
intervals only becomes apparent later on.

This shows that changing the inner workings of the reputation updating has a profound
effect on the overall dynamics by effectively minimizing the effect of noise.

4.3 Discussion

Indirect reciprocity explores how people form good reputations, and how social norms
evolve [JHTM11, Feh04, BKOO05, Now06]. It approaches fundamental moral questions,
for example, how a good person should act and how goodness should be defined in the
first place, from the viewpoint of evolutionary biology [Ale87]. A crucial question in
indirect reciprocity is how social norms can sustain cooperation when individuals observe
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others’ interactions with third parties and judge them according to their own moral
standard and idea of goodness [Sigl0, Sigl2, OI04]. Previous work has suggested that to
reliably maintain cooperative behavior, a social norm needs to be sufficiently complex:
simple rules like Image Scoring, which tie the idea of “good” and “bad” individuals
merely to their actions without considering the context of these actions, have been shown
to be unstable in a population [PB03, BS04, LHO1]. Ohtsuki and Iwasa proposed the
so-called “leading eight” social norms as the most successful ones to maintain stable
cooperation [0I04, OI06]; these norms contextualize actions with the binary reputations of
the interaction partners, and are therefore able to differentiate between justified defections
and unjustified defections. Yet, they also were discovered to be unstable in the presence
of noise when players do not share information between them and privately keep track of
others’ reputations [HSTT18]. Disagreements between individuals using the same norm
can arise in this case, fragmenting the population into subgroups and breaking down
cooperation.

Here, we have proposed a way to overcome this challenge by using a more refined
assessment system in the leading eight strategies, where individuals privately keep track
of others’ reputation in the form of integer scores that can take a range of values. Positive
assessment of an individual’s action by an observer then translates into a score increment,
whereas negative assessment decrements the acting individual’s score. This implies that
“goodness” is reinterpreted in a much broader way. Whereas with binary assessment,
there is only one “good” and one “bad” label coinciding with the assessment of an action,
individuals now use a threshold to evaluate a peer’s reputation score and thus judge
them. Similar ideas have also been proposed in research on the Image Scoring norm to
reduce its vulnerability to errors [Berll, BG16, NS98b]. Our results now suggest that
this error correcting capability works very strongly in favor of the leading eight strategies.
Disagreements between individuals using the same strategy no longer are the same threat
to cooperation. Rather, quantitative assessment acts as a buffer for misjudgments due
to noise and lapses in observation. This protects reputations and enables norms to have
both a stable good self image as well as a stable negative image of defectors. Overall,
this leads to significant improvements in cooperation rates for four of the leading eight
norms, even when noise in information increases. In contrast to a quantitative version of
image scoring [NS98b], a quantitative version of the leading eight cannot tempt players to
simply try and maintain their own score just at the threshold regardless of their partners’
reputations: given that observers’ assessments take their private image of the interaction
partners into account, players cannot calculate a minimum effort to only just remain
“good” in the eyes of others.

Ohtsuki and Iwasa’s landmark papers identified certain properties of a higher order norm
that need to be fulfilled for a norm to be successful in evolution. Cooperation must be
maintained by assessing cooperation of good players with other good players as good.
Furthermore, defectors must be recognized, meaning that defection against a good player
must be assessed as bad. There must also be a way to punish defectors, by assessing
a defection of a good player against a bad player as good. Finally, forgiveness must
be possible: the cooperation of a bad player with a good player should restore their
reputation. All other bits of the norms are left flexible. Our results meanwhile suggest one
more criterion that should be added for the case of private and noisy information: norms
cannot be “gullible” for cooperation to be maintained. This means that they should never
assess a bad player defecting against another bad player as good (making them easily
deceived by false shows of solidarity), which fixes another bit of the assessment rule. In
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fact, we have seen that those four of the leading eight that are gullible do not evolve even
in the simple setting we have explored.

It might come as little surprise that nuanced reputations and tolerance for a few negative
experiences with others help to resolve disagreements and maintain cooperation, whereas
a setting where individuals have binary opinions about each other and are very sensitive
to single events ends up favoring defectors. This result is intuitive from a psychology
perspective: So-called dichotomous thinking[Osh09] - thinking in simple terms of binary
opposition instead of seeing shades of grey - is assumed to be beneficial for quick decision
making and taking control of situations, but at the same time has been found to be a
cognitive distortion correlated with personality disorders [NM07, BDF15, YD05, Osh12].
This bias is particularly prevalent in Cluster B and C disorders such as borderline per-
sonality disorder and narcissistic personality disorder, which are known for destructive
tendencies in interpersonal relationships and/or difficulties maintaining bonds with oth-
ers [LZS104, VA0O, SATJ82]. Dichotomous thinking also has been studied as a hallmark
bias of traits of antisocial behavior [JOST18]. Particularly simplistic world views with no
tolerance for single missteps (“You are either with us or against us”) have further shown
themselves to be harmful on a larger scale, which can be seen e.g.in extreme political
partisanship [LJS12] and the legislatory deadlocks and social fractures it can evoke.

We should however note here that the positive results that we have presented here have
been observed in a restricted setup. They naturally cannot be automatically generalized
to more complex scenarios where mutation rates are higher, or where the leading eight
norms have to compete with mutants besides just ALLD and ALLC. For example,
higher mutation rates might affect the performance of L8, which we have observed to
be less stable in its reputation dynamics when both ALLC and ALLD are present in
the population. This issue is the subject of ongoing work. Also, one can assume that
population structure [LHN05, ONO8| can play a significant role in the question of how
well quantitative assessment can diminish the effect of errors. For very sparse topologies,
it is not trivial to answer this question as too much buffer for negative experiences can
become a hindrance when a player cannot observe certain actions at all. These limitations
notwithstanding, our present findings still clearly show that the main problem that
previous work has pointed out, i.e. the fact that the leading eight strategies overall cannot
maintain cooperation against defectors when information is private, noisy and imperfect,
can in fact be overcome with more fine-grained assessment.

Overall, our study thus serves to highlight how broader definitions of goodness and
nuanced thinking can benefit a community using more complex social norms, and play an
important role in maintaining positive social relations.

Indirect reciprocity describes the role of reputation and social norms for the evolution of
cooperation. This mechanism assumes that when individuals interact with someone, they
are subject to observation and judgement by their peers. Helping someone at own cost
increases individuals’ reputation, which benefits helpers in future interactions and therefore
can sustain cooperative behavior. Previous literature has identified eight highly successful
social norms, the “leading eight”. However, these norms require all relevant information
to be reliable and public to be effective. Otherwise, the resulting disagreements can
proliferate and prevent cooperation from being sustained. Studies on the performance of
the leading eight usually assume that reputations are binary: players can be thought to
be either good or bad. In contrast, here we study the case where reputations are more
nuanced. With this “quantitative” assessment, every individual privately keeps track of
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others’ integer reputation scores, incrementing and decrementing these scores according
to observations and norm-specific rules. To make an overall judgement of a peer, an
individual then compares the corresponding score with a threshold. Our work suggests
that such quantitative assessment can act as a powerful stabilizer of cooperation for four
of the leading eight strategies when they compete with defectors and cooperators. Keeping
track of reputations in a more nuanced way has error-correcting properties, thus increasing
the resilience against the effects of noise by enabling recovery from disagreements. For
cooperation to be reliably sustained by complex social norms, such comparably more
sophisticated assessment and a broader definition of goodness thus seems to be necessary
in order to overcome the challenge of noisy environments with incomplete information.
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CHAPTER

A unified framework of direct and
indirect reciprocity

Direct and indirect reciprocity are key mechanisms for evolution of cooperation. Direct
reciprocity means individuals use their own experience to decide whether to cooperate with
another person. Indirect reciprocity means they also consider the experiences of others.
Although the two mechanisms are intertwined, they are typically studied in isolation. Here,
we introduce a mathematical framework that allows us to explore both kinds of reciprocity
simultaneously. We show that the well-known strategy ‘Generous Tit-for-Tat’ of direct
reciprocity has a natural analogue in indirect reciprocity, which we call ‘Generous Scoring’.
With an equilibrium analysis, we characterize under which conditions either of the two
strategies can maintain cooperation. With simulations, we additionally explore which
kind of reciprocity evolves when members of a population engage in social learning to
adapt to their environment. Our results draw unexpected connections between direct and
indirect reciprocity, while highlighting important differences regarding their evolvability.

5.1 Introduction

Reciprocity is a principle that guides many aspects of our social life [Tri71, Sug86,
Now06, Sigl0]. Whenever people repay a favor, write a positive evaluation of an online
seller, or build up trust over multiple interactions, they engage in reciprocal behavior.
Previous work distinguishes two kinds of reciprocity. Direct reciprocity [AH81, NS92,
HS97, PD12, HNS13, SP14a, SP14c, Akil6, PHRZ15, HRZ15, MH16b, IM18, HCN1S,
GvV18, RHR 18] means that my behavior towards you depends on what you have done
to me. Indirect reciprocity [NS98b, LHO01, O104, SSP18, Sigl2, NPSH15] means that my
behavior towards you also depends on what you have done to others. Direct reciprocity
requires that the same individuals interact repeatedly, which enables them to respond
to their interaction partner in future transactions (Fig. 5.1a). Indirect reciprocity does
not require individuals to have a joint history of previous interactions, nor does it require
them to ever meet again. It is solely based on the premise that by helping someone, you
can increase your public standing. This reputational gain is valuable in future interactions
with others (Fig. 5.1b). Experiments suggest that human behavior is shaped by both
direct [FGF01, GGLM*14] and indirect reciprocity [WMO00, OYS*18, MvdBE13].
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Figure 5.1: A unifying framework for direct and indirect reciprocity. a, Under
direct reciprocity, an individual’s cooperation is returned directly by the beneficiary. b,
Under indirect reciprocity, cooperation is not returned by the beneficiary, but by some
observer. ¢, To model direct and indirect reciprocity we consider individuals who assign
one of two possible reputations to their co-player, good (G) or bad (B). The current
assignment is highlighted in green. Individuals cooperate (C') with those co-players they
consider as good, and they defect (D) against those they deem as bad. d—g, Whether an
individual considers a co-player as good depends on her strategy (v, p,q, A). Here, y is
the initial probability to assign a good reputation to the co-player, without having any
information; p and q are the probabilities to assign a good reputation after the co-player
has cooperated or defected in a direct interaction, respectively. The receptivity A is
the probability with which an individual takes third-party interactions of the respective
co-player into account. For A=0, we obtain a model of direct reciprocity. For A\=1, we
obtain a model of indirect reciprocity. While the illustrations depict one-way interactions
for simplicity, our model considers two-way interactions. When two players are chosen
to interact, they both decide simultaneously whether to cooperate or defect. All other
population members observe their choices.

While direct and indirect reciprocity are related, the respective models are strikingly
different. Studies of direct reciprocity [AH81, NS92, HS97, PD12, HNS13, SP14a, SP14c,
Akil6, PHRZ15, HRZ15, MH16b, IM18, HCN18, GvV18, RHR*18] report substantial
cooperation rates even if subjects only remember a minimum of information. Successful
strategies like Tit-for-Tat [AH81] (TFT) and Generous Tit-for-Tat [NS92] (GTFT) only
keep track of the very last interaction. In contrast, studies of indirect reciprocity stress
that cooperation can only be maintained when strategies are sufficiently complex [LHO1,
0104, SSP18|. To describe how complex strategies need to be, this literature distinguishes
different classes of strategies. The most elementary class are the first-order strategies,
where a player’s reputation only depends on her previous actions. A well-known example
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is image scoring [NS98b]. Here, reputations are represented by an integer score. A
player’s score increases when she cooperates, and it drops when she defects. Individuals
only cooperate with those who have a sufficiently high score. Classic image scoring,
however, is unstable [LHO1]. After all, individuals have no incentive to retaliate against
defectors, because this would impede their own score. This instability suggests considering
second-order strategies. Here, reputations do not only depend on what an individual did,
but also to whom. For example, when an individual defects against a co-player with a
bad reputation, this defection may be considered as justified. The hierarchy of strategies
can be further extended to third order. Here, players additionally take into account the
focal individual’s reputation.

In a landmark study, Ohtsuki & Iwasa explored which strategies of up to third order
sustain cooperation [OI04]. In their study, reputations are required to be binary (good or
bad), strategies are deterministic (the same behaviour always yields the same reputation),
and all information is public and mutually agreed upon. Within this setup, they show
there are no stable first-order strategies that give rise to cooperation. However, there are
two second-order strategies and six third-order strategies. These so-called leading eight
strategies can sustain cooperation because they allow for more sensible judgments than
image scoring. At the same time, they require more information than most well-known
strategies of direct reciprocity.

The two kinds of reciprocity also differ in how susceptible they are to misunderstandings
and other types of errors. Whereas GTFT and similar strategies of direct reciprocity are
robust with respect to noise [Sigl0, HMVCN17], the leading eight strategies of indirect
reciprocity are not[US13, HST*18].

Due to such differences, it has been difficult to analyse the two modes of reciprocity
within a single theoretical framework. Previous work has taken two approaches. The
first approach is to suggest particular strategies that combine elements of direct and
indirect reciprocity, and to analyse their stability [RW90, PD92]. The second approach
uses computer simulations to let different strategies compete [Rob07, NK04, SN16]. Two
noteworthy studies of the latter kind are by Nakamaru & Kawata [NK04] and Seki &
Nakamaru [SN16]. They explore the evolution of reciprocity when players can fake their
own reputation, or misrepresent the reputation of others. The two studies observe that
when outside information becomes unreliable, players tend to ignore it. Computational
studies, however, make it difficult to compare the different kinds of reciprocity directly.
They often involve comparisons between strategies of different complexity. Moreover,
the relative advantage of each type of reciprocity can only be inferred by comparing
simulations for specific parameter choices.

Instead, here we propose a framework that can be analysed explicitly. For our study,
we extend the theory of zero-determinant strategies from direct [PD12, HNS13, SP14a,
SP14c, Akil6, PHRZ15, HRZ15, MH16b, IM18] to indirect reciprocity. This approach
allows us to draw analytic conclusions when comparing the two mechanisms.

5.2 Results

5.2.1 A unified framework of reciprocity

To introduce a model that entails both kinds of reciprocity, we consider a population of n
players. Players engage in the following sequence of interactions. In the beginning, two

83



5.

A UNIFIED FRAMEWORK OF DIRECT AND INDIRECT RECIPROCITY

players are randomly drawn from the population to interact in one round of the prisoner’s
dilemma. In this game, each player independently decides whether to cooperate (C') or
defect (D). Cooperation means to pay a cost ¢ >0 to provide a benefit b > ¢ for the
co-player. After each such interaction, with probability d again two players are randomly
drawn from the population to engage in another round of the game. Otherwise, with
probability 1—d, no further interaction occurs. Once there are no more interactions, we
calculate the payoffs of each player by averaging over all pairwise games in which the
respective player participated.

To make their decisions, players represent each co-player by a separate finite-state au-
tomaton. Each automaton has two possible states, labeled as Good (G) and Bad (B),
see Fig. 5.1c. Players cooperate with those co-players they currently deem as good, and
they defect against those they consider as bad. They update the current state of each
co-player according to their strategy (v, p, ¢, A). The parameter y is the initial probability
that a co-player is considered as good, in the absence of any information (Fig. 5.1d). The
parameters p (and ¢), determine the probability to assign a good reputation to a co-player
who has just cooperated (defected) in a direct interaction (Fig. 5.1e,f). The parameter A
is a player’s receptivity to indirect information. If a co-player interacts with a third party,
then with probability A the focal player updates that co-player’s state accordingly. In that
case, again the co-player obtains a good reputation with probability p or ¢, depending on
whether she cooperated or defected (Fig. 5.1g, Fig. 5.2). For simplicity, we assume in
the main text that all population members observe everybody else’s interactions. However,
they may misinterpret the outcome of games between others with probability €. When
such an observation error occurs, a third-party observer mistakenly interprets a player’s
cooperation as defection, and vice versa.

If A=0 for all individuals, players base their decisions entirely on their own experiences.
In that case our framework reduces to the standard model of direct reciprocity with
reactive strategies[NS92]. On the other hand, if A=1 for all individuals, then players
take all interactions of their opponents equally into account, no matter whether they are
directly involved. In that case our framework yields a model of indirect reciprocity among
players with stochastic first-order strategies[Oht04]. It is important to note that even
players with A=1 do not ignore any directly obtained information they may have. For
example, if the same two individuals are chosen to interact for two consecutive rounds,
their second-round behavior will naturally depend on the outcome of the first round.
However, in large populations in which such consecutive encounters are unlikely, the role
of direct information on players with A =1 becomes negligible. In Section 5.5.6, we
compare this baseline model with an alternative setup, where we consider a ‘purified’
version of indirect reciprocity. In that alternative setup, players can choose to ignore all
direct experiences they have, such that they solely rely on third-party information. The
results of that alternative model are similar to the results presented herein.

Our strategy space contains several well-known strategies of direct and indirect reciprocity.
Examples include TFT=(1,1,0,0), GTFT=(1,1,¢,0), and an elementary image scoring
rule[NS98a] referred to as Simple Scoring[Berl1], SCO=(1,1,0,1). However, our model
is more general than these previous studies on either direct or indirect reciprocity in two
ways. First, it allows for populations in which some players use direct reciprocity (A=0),
whereas others use indirect reciprocity (A =1). Second, it allows players to combine
the two modes of reciprocity, by choosing 0 <A < 1. In that case, players always take
direct experiences into account, but they would occasionally also consider a co-player’s
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Figure 5.2: Schematic representation of the model. a, We consider a population
of size n. To illustrate the basic workings of our model, we focus on three arbitrary
players that are fully interchangeable in all their abilities. b, Each player has a separate
finite-state automaton with two possible states G and B for each co-player. The current
state is marked in bold. In this example, player 1 considers player 2 as good and player 3
as bad. c, In each round, two players are chosen at random to interact in a prisoner’s
dilemma. Players cooperate if they consider their co-player to be good and they defect
otherwise. The other population members do not participate in the game, but they
observe its outcome at no cost to themselves. d, After the interaction, both active players
update their respective automata, depending on their strategy and on the co-player’s
action. In addition, each observer independently updates her automata with respect
to players 1 and 2 with probability A each. e—h, We can mathematically describe how
player i’s automaton with respect to player j changes over time by distinguishing four
possible events. First, player j is not chosen to interact, such that player i’s automaton
remains unaffected (e); second, players i and j interact with each other and update their
respective states accordingly (f); third, player j interacts with someone else, but player i
does not take this interaction into account (g); fourth, player j interacts with someone
else, and player i updates j’s state accordingly (h).

interactions with others.

Models of indirect reciprocity often assume ‘public information’|O104, SSP18]. This does
not only mean that all individuals learn all relevant information. Instead, respective models
also assume that everyone agrees on each co-player’s reputation. Such an assumption can
be problematic when individuals receive information from independent sources, or when
information transmission is noisy[HST*18]. Moreover, even if individuals agree on all past
events, they may still disagree on which reputation a co-player should have if they apply
different social norms. Such different assessments can easily arise, for example, when some
players base their decisions on direct reciprocity, whereas others use indirect reciprocity.
Because we are exactly interested in such scenarios, our model is necessarily one of ‘private
information’, as in Nakamaru & Kawata[NKO04] and Seki & Nakamaru[SN16]. As a result,
different players may hold different views on any given population member.
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Throughout the main text, we will use the above baseline framework to explore the
dynamics of direct and indirect reciprocity. However, in Section 5.5.6, we explore the
effect of several model extensions. In particular, we discuss how our results change
when we allow for alternative kinds of errors[BS04, Uch10, MVC13] and for incomplete
information[NM11]. Moreover, we describe how our framework can be adapted to capture
more complex strategies, including finite-state automata with more than two states| TSM13,

GvV18] or the leading eight[O104].

5.2.2 Equilibrium conditions for reciprocal cooperation

Because the strategies of the baseline model only require first-order information, we
can compute the players’ payoffs explicitly. The respective formula, derived in detail in
Section 5.5.3, is valid for any population size, arbitrary population compositions, and all
parameter values. Based on this explicit representation of payoffs, we first characterised
all Nash equilibria among the strategies (y,p, ¢, A). In a Nash equilibrium, no player
can improve her payoff by unilaterally deviating (not even by using a more complex
strategy that uses arbitrary amounts of past information). By extending the theory of
zero-determinant strategies|PD12, HNS13, SP14a, SP14c, Akil6], we find that for every
A € [0,1], there can be exactly one generic Nash equilibrium strategy (y,p,q, A) that
yields full cooperation. These strategies are explicitly derived in Section 5.5.4. In the
following, we summarise the corresponding results.

For direct reciprocity (A=0) the unique strategy that yields stable cooperation is given
by the classical GTFT strategy (Fig. 5.3a), with y=p=1 and

o=1——. (5.1)

Here, 0 is the probability that two interacting players interact again some time in the
future. This pairwise continuation probability can be derived from the population-wide
continuation probability d (Section 5.5.4). For indirect reciprocity (A=1), the Nash
equilibrium has y=p=1 and

1+ (n—2)4§ c

O ) (=29 b (5:2)

In analogy to GTFT, we call this strategy Generous Scoring (GSCO, Fig. 5.3b). Both
strategies have in common that they always assign a good reputation to cooperators,
and that they occasionally assign a good reputation to defectors. However, they differ in
which information they take into account when making these assessments. While GTFT
only considers direct interactions, GSCO takes all interactions of a co-player into account.

The above descriptions of GTFT and GSCO only give rise to a sensible strategy if their ¢
is non-negative. By requiring ¢ >0, equations (5.26) and (5.2) thus characterise when
cooperation can be sustained at all. We find that the game’s continuation probability
needs to be sufficiently large, § > 5. The respective threshold values for direct (A=0)
and indirect (A=1) reciprocity are

c

b+ (n—2)((1-2e)b—c)

50 :g and (51 (53)

The threshold &y for direct reciprocity is simply given by the cost-to-benefit ratio of
cooperationNow06]. The threshold ¢§; for indirect reciprocity can be greater or lower,
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Figure 5.3: An equilibrium analysis reveals when direct or indirect reciprocity
can sustain cooperation. a,b, Within the reactive strategies, there is one cooperative
Nash equilibrium for direct reciprocity (GTFT), and one such equilibrium for indirect
reciprocity (GSCO). Both strategies have in common that they always cooperate in the
first round, or if the co-player has cooperated in the last relevant interaction (y=p=1).
They differ in how they react to a co-player’s defection, as described by Egs. (5.26)
and (5.2), and in whether they take into account indirect information. ¢, Depending on
the parameters of the game, there are up to four scenarios: (7) When there are few rounds
and many perception errors, cooperation is infeasible; (#) When there are intermediately
many rounds and few perception errors, cooperation can be sustained by indirect but
not by direct reciprocity; (74) When there are many rounds and many perception errors,
cooperation can be sustained by direct but not by indirect reciprocity; (iv) When there
are many rounds and few errors, both direct and indirect reciprocity support cooperation.
d, In case direct and indirect observations are subject to the same error rate, there is
no region in which direct reciprocity can sustain cooperation but indirect reciprocity
cannot. The figure shows the case of n =150, b=1.8 and ¢=1. In c, the white lines
depict the continuation probabilities g and &; given by Eq. (5.3). In d, they are given by
5020/((1—25)6) and 0, = c/((n—l)(1—25)b—(n—2)c), where ¢ is now the joint error
probability for both direct and indirect observations.

depending on whether or not outside information is sufficiently reliable (i.e., depending on
whether the probability e of an observation error is greater or lower than (1—c¢/b)/2). The
two thresholds in (5.3) give rise to four possible cases (Fig. 5.3c). Either (i) cooperation
is not feasible at all, () it is only feasible through indirect reciprocity, (i) it is only
feasible through direct reciprocity, or (iv) it is feasible through both kinds of reciprocity.
We have derived analogous thresholds for ¢ under the alternative assumption that both
direct and indirect observations are subject to the same error rate (Section 5.5.6). In
that case, the third region vanishes: if cooperation is feasible at all, it is always feasible
through indirect reciprocity (Fig. 5.3d).

In addition to the extremal cases of direct reciprocity (A=0) and indirect reciprocity
(A =1), we have also explored whether the equilibrium conditions for a cooperative
equilibrium can be met more easily if players use intermediate values of \. Interestingly,
the answer is negative. Specifically, we prove that if there is a cooperative Nash equilibrium
for some 0 < A < 1, then either GTFT or GSCO is already an equilibrium. From an
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equilibrium perspective, intermediate degrees of receptivity thus do not further extend
the possibilities for cooperation. Moreover, in the limit of rare errors we find that the
conditions (5.3) are strict even as we allow for arbitrarily complex strategies: if neither
GTFT nor GSCO can sustain cooperation for the given parameters of the game, no other
Nash equilibrium can.

5.2.3 Comparing the dynamics of direct and indirect
reciprocity

The previous equilibrium results highlight different strategies that can maintain cooper-
ation if adopted by sufficiently many in the population. However, the above results do
not imply that such strategies would automatically evolve. After all, ALLD =(0,0,0,\)
is also an equilibrium for all parameter values (Section 5.5.4). In a next step, we have
thus explored under which conditions cooperation can emerge when players engage in
social learning.

To this end, we no longer assume that players use equilibrium strategies. Rather they
may start out with some arbitrary strategy (y,p,q, A). Over time players adopt new
strategies based on a pairwise comparison process[ST98, TPNOQ7]. This process assumes
that in each time step, one individual is randomly drawn from the population. This
player then has the opportunity to revise her strategy. She can do so by either adopting
a randomly chosen strategy (akin to a mutation in biological models), or by imitat-
ing the strategy of another group member (akin to selection). Imitation events are
biased such that strategies with a high payoff have a better chance to be imitated
(see Methods, Section 3.4). This elementary strategy updating step is then iterated
over many time periods. We use simulations to record which strategies the players
adopt over time and how often they cooperate. To this end, we sometimes assume
that mutations are rare. The limit of rare mutations is mathematically well under-
stood [F106, FNTI06, IN10, WGWT12, McA15] and it has been prominently employed in
previous studies of reciprocity [IFN05, GT12b, vSPLS12, SP13, SP15, SSP16, HHCN19]
and beyond [HTB*07, SDSTH10, GT12a, HI12, LIDS19]. When mutations are rare, the
population consists of at most two strategies, residents and mutants. The mutant strategy
goes extinct or fixes before the next mutation arises. The assumption of rare mutations
allows simulations to be run more efficiently. This in turn makes it easier to systematically
explore the entire strategy space (see Section 5.5.5 for details). We complement the
respective results with simulations with frequent mutations.

We first explore the two limiting cases of reciprocity separately, by fixing either A=0 or
A=1. We consider two different scenarios (Fig. 5.4). In the first scenario, individuals
interact only for a few rounds. In the other scenario, we consider the limiting case that
they interact for infinitely many rounds. This limit has been employed in many previous
studies [NS92, HS97, PD12, HNS13, SP14a, SP14c, Akil6] as it naturally reduces the
dimension of the strategy space (see Fig. 5.4a,b). Similar results can be obtained if the
number of rounds is large but finite (Fig. 5.5).

In all scenarios we observe that for rare mutations, players either tend to adopt a
strategy close to always defect, ALLD =(0,0,0, \), or a conditionally cooperative strategy
(1,1,¢,A). As expected from our equilibrium analysis, indirect reciprocity is overall more
favourable to cooperation when individuals interact only for a few rounds. Interestingly,
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Figure 5.4: Evolutionary dynamics of direct and indirect reciprocity. We use
individual based simulations to explore the dynamics if either all players engage in direct
(blue) or indirect reciprocity (green). We consider two scenarios: individuals either engage
in only a few games (top) or in infinitely many games (bottom). a,b, We find that

over the course of evolution, populations cluster in two regions of the strategy space.

Populations are either in the vicinity of ALLD (where y~p=2q~0), or in the vicinity of
conditionally cooperative strategies (where pa1). Percentages represent the fraction of
time spent in each of these two neighbourhoods. Dots represent the 500 most long-lived
resident strategies. As the impact of the first round is negligible for § =1, the state space
degenerates to a square instead of a cube. c,d, We have recorded how many mutants
it takes to invade a population of defectors or conditional cooperators. We find that a
larger number of rounds undermines the stability of ALLD, and enhances the stability of
the cooperators. e,f, In addition, we have recorded which mutant strategies invade these
two resident strategies. On average, defectors are invaded by conditionally cooperative
strategies with p>>q. g,h, Under direct reciprocity, the payoff of a discriminating mutant
(TFT) in an ALLD population increases linearly in the number of mutants. Under
indirect reciprocity, the payoff of a discriminating mutant (SCO) is nonlinear. As baseline
parameters in our evolutionary simulations, we use n =50 and b/c=>5. For the exact
setup of these simulations, see Methods, Section 3.4.
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however, direct reciprocity is more effective in maintaining cooperation when many rounds
are played, even in the absence of any observation errors.

To gain some analytical understanding for why direct reciprocity becomes superior, we
consider an initial population that either employs ALLD or a conditionally cooperative
strategy. For both resident strategies, we record how long it takes until a different strategy
can invade (Fig. 5.4c,d) and which strategies are most likely to do so (Fig. 5.4e,f).
When many games are being played, conditional cooperators have a similar invasion time
for both direct and indirect reciprocity (Fig. 5.4d). However, ALLD can be invaded
more easily when players use direct reciprocity. To explore this differential robustness of
defectors, we analysed the competition between ALLD and a conditionally cooperative
strategy (1,1,q,A). When only these two strategies are present, the respective payoffs mp
and m¢ can be calculated explicitly (see Section 5.5.5). In the limit of large populations
and rare errors, the payoffs under direct reciprocity (A=0) become

’/T% = (b—c)-z— (1—=0+0q)c-(1—=2) (5.4)

= (1-0+4dq)b-=.

Here, z is the fraction of conditional cooperators in the population. Eq. (5.4) yields two
insights. First, provided that g<1—c¢/(6b), the dynamics is bistable. If cooperators are
common (z = 1), they have the higher payoff. In contrast, when cooperators are rare
(2=0), defectors are favoured. Second, the payoff of the two strategies increases linearly
in the fraction of cooperators. When we perform the same analysis for indirect reciprocity
(A=1), we obtain

_q+q(1-¢)(1—-2)

1—(1-9q)z
Tp =qb-z.

s 2(b—c¢) —q(1—2)c

= Q-

(5.5)

Again, for ¢ sufficiently small these payoffs result in a bistable competition. However,
while the defectors’ payoffs continue to increase linearly in the fraction of cooperators,
the cooperators’ payoffs are now nonlinear (Fig. 5.4g,h).

This analysis highlights two crucial effects that distinguish indirect from direct reciprocity.
On the one hand, indirect reciprocity leads to a faster spread of information throughout
a population. As a consequence, indirect reciprocity is more effective in restricting the
payoff of a defector (i.e., 7}, <7 for all z>0). On the other hand, successful cooperation
in indirect reciprocity is based on non-linear synergy effects. Cooperators only obtain
high payoffs when they are sufficiently common. Which of the two effects is dominant
depends on the population size, the error rate, and on how often players interact on
average (Fig. 5.6). Once players interact for many rounds, indirect reciprocity ceases to
have any advantage (because 75 =79 for §—1). In that case, defectors are always more
readily invaded under direct reciprocity.

Due to their nonlinear returns, cooperative strategies of indirect reciprocity are most
effective when they are common. This observation suggests that indirect reciprocity may
be less likely to evolve when the evolutionary process itself prevents cooperative strategies
to form a large majority. Such a case can occur, for example, when mutations are abundant,
such that many different strategies are routinely present in the population. To explore this
issue in more detail, we have systematically varied the mutation rate of the evolutionary
process (Fig. 5.5). Indeed, while mutations only have a minor effect on direct reciprocity,
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Figure 5.5: Impact of mutations on either direct or indirect reciprocity. We
have run additional simulations to explore how larger mutation rates affect the results
in Fig. 5.4. We consider the same two scenarios with few games and infinitely many
games, and in addition a scenario where the number of games is large but finite. a—c,
We have first run simulations for a particular positive mutation rate (coloured). We
compare them with the results for the limit of rare mutations (grey). The bar diagrams
depict how often we are to observe players to use strategies (y, p, g, A) either for direct or
indirect reciprocity. Similar to Fig. 5.4, we find that players are clustered in two regions
of the strategy space. Either they tend to defect (y~ g=0) or they are conditionally
cooperative (p~1, ¢<1). We note that the scenario for infinitely many games yields
similar results as the scenario with many games. However, now the initial propensity to
cooperate y becomes irrelevant. d—f, When we vary the mutation rate systematically,
we find that while cooperation is relatively stable for direct reciprocity, cooperation
under indirect reciprocity is reduced (upper panels). Interestingly, the number of different
strategies that are simultaneously present in the population only differs marginally between
direct and indirect reciprocity (lower panels). g—i, To explore what would cause this
reduction in cooperation for indirect reciprocity, we have checked the stability of defectors
and conditional cooperators for various mutation rates, as in Fig. 5.4c,d. In the interval
0.01 <4< 0.1 where indirect reciprocity yields the lowest cooperation rate, we find that
the stability of defectors is enhanced, whereas the stability of cooperators is reduced. For
the exact setup of these simulations, see Methods, Section 3.4.

the impact on indirect reciprocity can be substantial as mutation rates become large. In
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Figure 5.6: Competition between conditional cooperators and defectors. We
compare the performance of conditional cooperators with strategy (1,1,1/3,)) in a
population of defectors, (0,0,0,)). We consider four scenarios, depending on whether
players use direct (a,c) or indirect (b,d) reciprocity and depending on whether pairs
interact only a few times (a,b) or often (c,d). Each panel shows the payoff of cooperators
and defectors depending on how many of the 50 population members are cooperators,
for b=5 and c=1. In all four cases we find bistability (as indicated by the arrows on
the x-axis). That is, defectors have the higher payoff when there are few cooperators
and the lower payoff when there are many cooperators. However, the threshold number
of cooperators necessary to make cooperation beneficial differs. Indirect reciprocity has
the lower threshold when there are only few rounds, because cooperators are better able
to restrict the payoff of defectors (as indicated by the smaller slope of the red line in b
compared to a). Direct reciprocity has the lower threshold when there are many rounds.
Here, already a few cooperators suffice to invade the defectors. In contrast, for indirect
reciprocity cooperators need to establish a critical mass because their payoffs increase
nonlinearly.

particular, around pn =1 (i.e., once there is more than one mutation per generation),
cooperation rates decline quickly. Further simulations suggest that this downfall of
cooperation is due to both a reduced stability of conditionally cooperative strategies and
an enhanced stability of populations with a majority of defectors (Fig. 5.5g-i). These
results highlight an important difference between direct and indirect reciprocity. While
reactive strategies of direct reciprocity are largely robust to mutations, the corresponding
strategies of indirect reciprocity are more sensitive. Strategies like Generous Scoring are
most powerful in environments with little noise. To spread, they do not only need outside
information to be faithful (small €) but also the evolutionary process (small p).
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5.2.4 The co-evolution of direct and indirect reciprocity

The above findings raise the question whether the players themselves are able to learn
when to use indirect information. To explore this issue, we have first considered a
simplified setup in which players can freely choose between all strategies (v, p, g, A) where
either A =0 and A = 1. That is, players can choose whether they only take direct
interactions into account, or whether they take all of a co-player’s interactions equally
into account. We study three different scenarios in the limit of rare mutations: one
with noisy information and few interactions (Fig. 5.7a), one with reliable information
and intermediately many interactions (Fig. 5.7b), and one with noisy information and
many interactions (Fig. 5.7¢). The results confirm our previous analytical findings.
While defectors are predominant in the first scenario, individuals adopt conditionally
cooperative strategies in the second and third scenario, showing a bias towards indirect
and direct reciprocity, respectively. In a next step, we have systematically varied how often
individuals interact with each other, and how noisy third-party information is (Fig. 5.7d).
Again, we find that indirect reciprocity is most abundant when there are intermediately
many rounds, such that cooperation cannot evolve through direct reciprocity alone.

We have repeated all simulations for an evolutionary process with more frequent muta-
tions (Fig. 5.7e—h). While the qualitative results are similar, we recover our previous
observation that larger mutations rates disfavour indirect reciprocity. Even in those
parameter regions in which individuals learn to incorporate third-party information,
evolving cooperation rates tend to be lower than in the scenario with rare mutations
(Fig. 5.7f). The effect of other game parameters on the evolution of cooperation is
discussed in Section 5.5.5, and visualised in Fig. 5.8 and Fig. 5.9.

Finally, we have also explored which strategies evolve when players can adopt intermediate
values of A (Fig. 5.10). To allow for a fair comparison between direct and indirect
reciprocity, mutant strategies are drawn such that an average mutant would resort to
their direct experience in approximately half of the cases (for details, see Section 5.5.5).
Overall, we observe a similar trend as before: When information is noisy and there are
very few rounds, individuals learn not to cooperate (Fig. 5.10e); when there is little
noise and intermediately many interactions, individuals learn to cooperate predominantly
based on indirect information (Fig. 5.10f); and when there is an intermediate amount of
noise and many interactions, individuals tend to cooperate based on direct information

(Fig. 5.10g).

5.3 Discussion

When deciding whether to cooperate, humans often resort to the co-player’s reputation
arising from third party interactions [WMO00, OYS*18], sometimes even if the two players
have a joint history of direct interactions [MvdBE13]. Most theoretical studies, however, do
not investigate how subjects choose between these two sources of information. They either
study direct reciprocity using repeated games [AH81, NS92, HS97, PD12, HNS13, SP14a,
SP14c, Akil6, PHRZ15, HRZ15, MH16b, IM18, HCN18, GvV18] or indirect reciprocity
using donor-recipient games [NS98b, LHO1, OI04, SSP18]. Here, we have proposed a
general framework that unifies direct and indirect reciprocity.

To make such a comparison between different kinds of reciprocity most transparent,
throughout the main text we have focussed on a comparably simple setup. For example,
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Figure 5.7: The coevolution of conditional cooperation and information use. To
explore when individuals themselves learn to use indirect information, we ran simulations
in which players can either use direct information only (A=0) or all information (A=1). a—
c, We started with three particular scenarios in the limit of rare mutations. The scenarios
differ in how often subjects interact on average and how noisy indirect information
is. When there are only a few interactions and considerable noise, cooperation does
not evolve at all (a). In the other two scenarios, cooperation either evolves due to
indirect (b) or to direct (c) reciprocity. d, In a next step, we systematically varied the
continuation probability ¢ and the error rate . Again, indirect reciprocity evolves for
intermediate continuation probabilities. e—g, We obtain qualitatively similar results for
positive mutation rates (£ =0.02). h, However, the green region in which individuals take
into account indirect information is substantially diminished. For the exact setup of these
simulations, see Methods, Section 3.4.

we have not modelled explicitly how information from third party interactions spreads
throughout a population. We have assumed that individuals observe each others’ interac-
tions directly. Instead, one may equally assume that individuals use rumours and gossip to
exchange information about their past experiences with other population members. Such
communication can add another layer of complexity to the model because players may
have an incentive to strategically misrepresent their reputation. For example, defectors
are naturally incentivised to prevent others from faithfully learning about their past
behaviours. As demonstrated in previous work [NK04, SN16], such miscommunication
does not render cooperation impossible. However, it imposes additional bounds on when
indirect reciprocity can evolve. While our model does not consider the effects of false
gossip explicitly, we may capture some of its workings by assuming that observation errors
may be biased. For example, acts of defection may be more likely to be misperceived than
acts of cooperation. In Section 5.5.6, we show that all our analytical results naturally
carry over to this more realistic setting.
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Similarly, while we have explored the effect of observation errors in detail, we have
neglected other types of errors. As an example, implementation errors have received
considerable attention in the previous literature [BS06]. Such errors lead players to
mis-execute their intended actions. These players may fail to cooperate although they
planned to do so, perhaps because of a ‘trembling hand’ [Sel75]. The consequences of
implementation errors can be rather different from observation errors, because only the
former become publicly known. Nevertheless, we can show in Section 5.5.6 that such
implementation errors can be naturally included into our framework (see also Fig. 5.11).

Finally, in the main text we have restricted ourselves to the simplest class of strategies,
which only depend on a player’s previous action. Within this class, we have identified
a remarkable strategy of indirect reciprocity. This strategy, called Generous Scoring
(GSCO), is the analogue of Generous Tit-for-Tat (GTFT) [NS92]. It routinely cooperates
with other cooperators, but it is also willing to forgive a defector occasionally. Unlike
GTFT, however, GSCO does not require repeated interactions between two players; it
can sustain cooperation even if individuals are likely to never meet again. When previous
research on indirect reciprocity identified stable cooperative strategies, the strategies are
only shown to be stable within a given strategy class [O104, SSP18]. This kind of analysis
does not rule out that the respective equilibria turn out to be unstable once more complex
mutant strategies are permitted. In contrast, Generous Scoring is a Nash equilibrium
with respect to all possible mutant strategies, independent of whether mutants themselves
use direct or indirect reciprocity, or how much information they are able to process.

This stability of Generous Scoring may be surprising. After all, first-order strategies
have been suspected to be incapable of sustaining cooperation [LHO1, OI04, SSP18|.
For example, Image Scoring is unstable because players have no incentive to retaliate
against defectors in the first place [LHO1]|. By defecting, they would only harm their own
reputation, which puts them at risk to receive less cooperation in the future. Generous
Scoring circumvents this risk by punishing defectors stochastically, with a well-defined
probability. This probability is chosen such that the expected long-term loss in reputation
exactly matches the short run gains from saving the cooperation costs. We note that
this does not require the players to know all relevant game parameters in advance, or
to explicitly calculate the respective probabilities. Instead, our simulations suggest that
individuals may well be able to learn such strategies through elementary exploration and
imitation processes.

Our results also suggest that direct and indirect reciprocity require different environments
to emerge. Generous Tit-for-Tat requires players to interact sufficiently often, whereas
Generous Scoring can also sustain cooperation when players only interact occasionally.
However, for Generous Scoring to evolve, mutation rates need to be smaller than under
direct reciprocity, and outside information needs to be sufficiently reliable (Fig. 5.4 —
Fig. 5.7). While our results in the main text focus on simple first-order strategies, our
general framework is equally applicable to more elaborate norms of indirect reciprocity.
In particular, in Section 5.5.6 we explore how our framework can be adapted to study
strategies represented by finite-state automata with more than two states|GvV18] or the
leading eight [O104], see also Fig. 5.12-Fig. 5.15.

We have explored how to make decisions when different sources of information are available.
When individuals interact regularly, we find that they rely on direct information. They
trust their own experiences more than indirect information which may be subject to noise.
In contrast, when relationships are short-lived or superficial, cooperation can only be
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sustained when people act upon public reputations. Previous work suggests that indirect
reciprocity requires social norms that are sufficiently complex [LHO01, OI04, SSP18]. These
norms make use of an unlimited regress; when assigning a new reputation to a person,
observers need to take into account the reputation of the person’s co-player, which in turn
depends on the reputation of the co-player’s previous interaction partner. Our model
proposes a different view. To sustain cooperation, simple probabilistic rules based on a
minimum of information can suffice.
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Figure 5.8: Impact of different model parameters on the co-evolution of direct
and indirect reciprocity. We show how our evolutionary results in Fig. 5.7 are affected
as we change different parameters of our model. In each panel, we vary one parameter
and leave all others constant. We consider the same three scenarios as in Fig. 5.7a—c
few interactions and unreliable information (blue), intermediate interactions and reliable
information (orange), and many interactions and unreliable information (green). We
employ two complementary simulation techniques. In the upper half, each data point
represents the average of a single simulation. This simulation was run for sufficiently
long such that the averages converge and are independent of the initial condition. This
typically happens after 107 mutant strategies have been introduced into the population. In
the lower panels, each data point represents the average of 200 simulations with a random
initial population. Here, each simulation only introduces 10° mutant strategies. For the
parameters, we consider variation in the benefit-to-cost ratio (a,b), the population size
(c,d), the selection strength (e,f), and the mutation rate (g,h). Our simulations suggest
that each of these parameters can have a considerable impact on the evolving cooperation
rates and the player’s propensity to adopt indirect reciprocity. For example, for the orange
curve in panel e, we observe that the effect of selection strength on cooperation can be
non-monotonic. We further discuss these dependencies in Fig. 5.9 and Section 5.5.5.
In general, however, we recover the following regularities from Fig. 5.7: (i) Substantial
cooperation only evolves in the second and third scenario (i.e., for the cooperation rates,
the blue curve is systematically below the other curves). (i7) If cooperation evolves, players
prefer indirect reciprocity when there are intermediately many interactions and outside
information is reliable. They prefer direct reciprocity when there are many interactions
and when outside information is noisy (i.e., for the proportion of indirect reciprocity, the
orange curve is systematically above the green curve).
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Figure 5.9: Impact of selection strength on indirect reciprocity. As shown in
the upper panel of Fig. 5.8e, selection can sometimes have a non-monotonic effect on
cooperation. For intermediate interactions and reliable information (§ =0.9,e =0.001,
depicted by the orange curve in Fig. 5.8e), we have observed that the evolving cooperation
rate is 53.4% for =1, increases to 77.3% for =10, and reduces to 61.5% for 3= 100.
Here we present additional simulations to shed further light on this non-monotonicity.
a,b, We considered initial resident populations that either adopt a defective strategy or
a conditionally cooperative strategy. We recorded how long it takes the evolutionary
process until the resident strategy is replaced, and what the cooperation rate of the
invading strategy is. Dots show the outcome of individual simulations, and the curves
represent averages. The results suggest that the non-monotonicity of cooperation is not
due to a reduced stability of cooperative strategies. They remain highly robust even for
large selection strengths. Moreover, when selection is strong, they are typically invaded
only by other cooperative strategies. c—e In a next step, we recorded the distribution of
cooperation over time for three different selection strengths for the process considered
in Fig. 5.8e. We find that this distribution becomes more extreme with increasing
selection strength: individuals either become highly cooperative or highly non-cooperative.
However, the proportion of non-cooperative populations grows faster than the proportion
of cooperative populations.
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Figure 5.10: Evolution of cooperation for players with intermediate degrees of
receptivity. In the main text figures Fig. 5.4-Fig. 5.7, we explore situations in which
individuals can choose strategies where they either only take direct information into
account (A=0), or where they take all information into account (A=1). Here we repeat
these simulations in a setup where intermediate values of A are permitted. To this end,
we define a quantity . This quantity is the probability that a player’s decision is based
on the co-player’s behavior towards third parties, see Eq. (5.10) in Methods, Section 3.4.
For 0 <A <1 we obtain 0 <7y <vpax := (n—2)/(n—1). a,b, We repeat the simulations in
Fig. 5.4a,b for various values of 7. We observe that cooperation is never most likely to
evolve for intermediate values of . Either most cooperation evolves for v=".x (in panel
a), or for y=0 (in panel b). c,d, Similarly, we repeat the simulations in Fig. 5.5d,f for
various values of 7. Again, the average cooperation rates for intermediate ~y are strictly in
between the results for y=0 and v=7.x. €-h, Finally, we repeat the simulations shown
in Fig. 5.7a—d, allowing for mutant strategies (y,p, g, \) that lead to arbitrary values
of v between 0 and v,.c. Especially for larger error rates, we observe that the evolving
cooperation rates are now smaller. Nevertheless, the general patterns of Fig. 5.7 remain:
(7)) When there are only few rounds and many observation errors, cooperation does not
evolve. (7)) When there are intermediately many rounds and few errors, cooperation
evolves and players tend to put more weight on indirect information (that is, 7 tends
to be larger than 1/2). In particular, strategies with v & ~y.x are most abundant. (7i)
When there are many rounds and intermediately many errors, cooperation evolves and
players tend to put more weight on direct information. Here, players are most likely to
adopt a strategy with y~0. See Section 5.5.5 for details.
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Figure 5.11: Effect of different types of errors and incomplete information on
cooperation. a, To explore how sensitive our results are to different kinds of errors
and incomplete information, we have repeated the rare mutation simulations shown in
Fig. 5.7d, reproduced here. b, While the baseline model assumes that only indirect
observations are subject to perception errors, here we explore the effects when direct
observations are equally prone to errors. We find that cooperation is substantially reduced
compared to the baseline scenario. Moreover, direct reciprocity is only favoured for
very large continuation probabilities. ¢, We have also explored the effect of additional
implementation errors on cooperation. To this end, we assume here that players mis-
implement their intended action with fixed probability e=0.01. Compared to the baseline
model without such errors, we find that there is less cooperation and less direct reciprocity.
d, To mimic the dynamics that arises when defectors strategically conceal their bad
actions, we have also considered a model in which defective actions are misperceived
with probability e, whereas cooperative actions are always observed faithfully. Because
this assumption reduces the total rate at which errors occur compared to the baseline
scenario, we observe more cooperation and players are more reliant on indirect reciprocity.
e, Here we assume that individuals observe third-party interactions only with probability
v=0.01. Due to the scarcity of information, players who take any third-party information
into account are almost indistinguishable from those players who do not. As a result,
cooperation is largely independent of observation errors, and the region in which indirect
reciprocity is favoured has vanished. Unless noted otherwise, all parameters are the same
as in Fig. 5.7d.
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Figure 5.12: Direct and indirect reciprocity for finite-state automata with three
states. In an extension of our model, we allow players to assign more nuanced reputations
to their co-players. We illustrate this approach by considering finite state automata with
three states - good (G), neutral (N) and bad (B), with G as the initial state. We assume
n—1 residents employ the respective finite-state automaton strategy, while the remaining
player uses either ALLC or ALLD. We simulate the players’ payoffs for various values of
A€0,1]. We consider three different automaton strategies employed by the residents. The
automata differ in how they deal with co-players that are assigned a neutral reputation.
a, Players with the first automaton Al are fully cooperative when they encounter a
co-player with neutral reputation. This strategy can sustain cooperation among itself.
However, a single ALLC' player obtains approximately the same payoff as the residents,
and hence can invade by (almost) neutral drift (d). b, According to the second automaton
A2, players cooperate against neutral opponents with 50% probability. This strategy
can be invaded by ALLC for all A>0 (e). ¢, According to A3, players defect against
co-players with a neutral reputation. This strategy is not stable against ALLC for A >0
(f), and residents fail to cooperate with each other altogether.
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Figure 5.13: Evolutionary competition between finite state automata, ALLC,
and ALLD. We have explored the evolutionary dynamics when population members can
choose between ALLC, ALLD, and one of the three finite-state automata introduced in
Fig. 5.12. a—c, First, we have explored the limit of rare mutations, using the same game
payoffs as in Fig. 5.12, and a fixed receptivity A=0.1. The numbers in each circle denote
how often the respective strategy is played on average. Arrows illustrate how likely a single
mutant fixes in the respective resident population. Solid arrows indicate that the fixation
probability is larger than the neutral 1/n, whereas for dotted arrows this probability is
smaller than neutral. We find that only the first automaton A; can outperform both
ALLC and ALLD. d—f, In a next step, we have explored the same scenario for a positive
mutation rate =0.01. The triangles represent the possible population compositions.
Each corner corresponds to a homogeneous population, whereas the center corresponds to
a perfectly mixed population. The color code reflects how often we observe the respective
population composition over the course of evolution. We find that most of the time,
populations are either in the neighborhood of ALLD, or they represent some mixture
between the automaton strategy and ALLC. g—i, We have re-run the simulations in
panels d—f, but now varying either the benefit of cooperation, the selection strength, or
the mutation rate. In all cases, we observe that the first automaton is most favorable
to cooperation. Interestingly, we obsegyg the largest cooperation rate for intermediate
mutation rates. This result, however, may be due to the fact that players can only choose
from an unbalanced strategy space, as discussed in detail in Section 5.5.6.
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Figure 5.14: Performance of leading-eight strategies under direct and indirect
reciprocity. a, Previous research has suggested that there are eight stable third-order
strategies of indirect reciprocity that can sustain cooperation[OI04], called the leading
eight, L1-L8. They consist of two components, an assessment rule and an action rule. The
assessment rule determines how players evaluate each other’s actions, depending on the
previous reputations of the involved players. The action rule determines how to interact
in the game, depending on one’s own reputation and on the reputation of the co-player.
b—i, To explore the stability of these strategies, we consider a population in which n—1
players adopt one of the leading-eight strategies. The remaining player either adopts
ALLC or ALLD. Our results for A\> 0 reflect previous findings|HST*18]: in the presence
of perception errors, all leading-eight strategies are susceptible to invasion by either ALLC
or ALLD. Only for A=0 (when perception errors are absent), the leading-eight strategies
are stable against both mutant strategies.
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Figure 5.15: Evolutionary dynamics of the leading-eight. Similar to Fig. 5.13 for
finite state automata, this figure explores how each of the leading-eight fares in an
evolutionary competition against ALLC and ALLD for a fixed receptivity A=0.1. a—h,
When mutations are rare, only ‘Judging’ (Lg) is played in notable proportions. However,
in the presence of perception errors, this strategy tends to assign a bad reputation to
other players with the same strategy, such that everyone defects eventually[HST*18].
i—p, When mutations are more common, some of the leading-eight strategies can stably
coexist with ALLC. We observe such cooperative coexistences for Ly, Ly, and L;. q—s,
These three strategies also yield substantial cooperation rates when we vary the benefit
of cooperation, the selection strength, and the mutation rate. With respect to mutation,
we again observe that intermediate mutation rates are most favorable to cooperation.
However, this finding may not be robust, because the strategy space is again unbalanced.
For a more detailed discussion, see Section 5.5.6.
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5.4 Methods

In the following, we provide a more technical summary of our framework. We explain how
it can be used to (7) derive the players’ payoffs, (i) characterise all Nash equilibria among
reactive strategies, and (77) study the co-evolution of direct and indirect reciprocity. For
all details and proofs, we refer to Section 5.5.2 — Section 5.5.5.

5.4.1 General framework

For the baseline model considered throughout the main text, we consider a game in a
well-mixed population with n individuals. In each round, two individuals are randomly
drawn to interact in one round of a prisoner’s dilemma. They can either cooperate (C')
or defect (D). Cooperation means to pay a cost ¢>0 to provide a benefit b> ¢ to the
co-player. Defection means to pay no cost, and for the co-player to gain no benefit. Both
players decide independently. Their actions are observed by all population members.
However, we assume indirect information is subject to perception errors: those members
who only indirectly witness the interaction may misinterpret each player’s action with
probability . That is, with probability e, outside observers take a C' for a D, or vice
versa. After the two interacting individuals have made their decisions, with probability d
there is another round. In that case, again two individuals are chosen at random from
the population to interact in a prisoner’s dilemma. Otherwise, with probability 1—d, the
game is over. The players’ payoffs for the population game are defined as their average
payoff over all rounds in which they participated in.

Each individual represents every other population member by a separate finite-state
automaton. Each automaton can be in one of two possible states, ‘good’ (G) or ‘bad’
(B). The current state of the automaton depends on the individual’s strategy, on the
co-player’s past actions, and on whether or not an error has occurred. In the main text,
strategies are 4-tuples (y,p, ¢, A)€ [0, 1]. The first entry y is the initial probability for the
automaton to be in the good state. The second entry p and the third entry ¢ are the
conditional probabilities that the automaton is in the good state, given that the respective
co-player just cooperated (defected) in a direct interaction, respectively. Finally, the value
of X\ is the probability that a player’s indirect interactions with third parties are taken
into account to update the automaton accordingly. For A=0, third-party interactions are
completely ignored, and the automaton’s state only depends on direct interactions. For
A=1, every interaction of the respective co-player is equally taken into account, no matter
whether or not the focal individual is directly involved. Individuals cooperate with those
co-players they consider as good, and defect against those co-players they consider as bad.

We refer to the case of A=0 as direct reciprocity, and to A=1 as indirect reciprocity.
We note that in exceptional cases, even a player with A=1 may base her decisions on
direct experiences. This happens, for example, when the same two players are chosen
to interact for two consecutive rounds. In that case, the players’ second-round behavior
will depend on their direct experience in the first round. In Section 5.5.6, we contrast
this model with an alternative specification. In that alternative model, players who use
indirect reciprocity ignore all direct information entirely. With minor modifications, all
results presented herein carry over (see also Fig. 5.17).
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5.4.2 Derivation of a unified payoff equation

For our baseline framework, the players’ payoffs can be calculated explicitly, without
having to simulate the game. To derive the respective payoff equation, let each player ¢
adopt some arbitrary but fixed strategy (v;, pi, ¢i, Ai). Let w=2/n denote the probability
that a particular player is chosen to interact in the next round of the prisoner’s dilemma.
Similarly, w=2/ (n(n—l)) is the probability that a particular pair of players is chosen.
Finally, we denote by x;;(¢) the probability that player i considers player j to be good
after ¢ games have been played in the population. Given the value of x;;(t), we can
recursively compute z;;(t+1) as

zij(t+1) = (1—w) z4(t)

(5.6)

The summands on the right hand side reflect the following four possible events (illustrated
in Fig. 5.2e-h):

(7) The first line on the right hand side corresponds to the case that player j does not
interact at time ¢. This happens with probability 1 — w. In this case i’s automaton
with respect to j does not change.

(77) The second line corresponds to the case that i directly interacts with j at time t.
This happens with probability w. In this case, we assume players always get a
chance to update the co-player’s reputation. The updated reputation state depends
on the values of p; and ¢;, and on j’s actions. Player j’s action is C' with probability
xj;(t) and D with probability 1—z;(t).

(777) The third line corresponds to the case that j interacts with some third party, which
happens with cumulative probability (w—w), but player i decides not to react to
this indirect information, with probability (1—2X;). In this case i’s automaton with
respect to j does not change.

(7v) The last line represents the case that j interacts with some third party [, which has
probability w each, and ¢ updates her automaton with respect to 5 accordingly. In
this case, player ¢’s updated state depends on whether or not j cooperates, whether
or not there is a perception error, and on the values of p; and ¢;. We sum up over
all possible interactions of player j with third parties.

Given this recursion, we can calculate the value of x;;(¢) for all future times ¢ based
on the initial condition z;;(0) =y;. This allows us to compute the weighted average
ziji=(1—d) X2, d"x;;(t). This average corresponds to the probability to find player i’s
automaton in the good state in a randomly picked round. Its value can be computed
explicitly, by representing Eq. (5.6) in matrix notation (Section 5.5.3). Based on the
values of z;;, player i’s expected payoff becomes
1
T =——Y (xjb—x;c). (5.7)

n—1%3
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This equation allows the explicit calculation of payoffs for arbitrary population composi-
tions. Its results are in agreement with the payoffs that one obtains when simulating the
game dynamics explicitly (Fig. 5.16).

— Analytical results = Simulation results
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Figure 5.16: Simulations of the game dynamics confirm the results of the ana-
lytical payoff calculations. Here, we explore whether equation (5.19) gives an accurate
prediction of the resulting payoffs when all players adopt some (reactive) strategy (v, p, g, \).
To this end, we consider n—1 conditional cooperators with strategy (1,1,0.01, A). The
remaining player is a defector. We calculate payoffs in two different ways, by using
the formula (5.19), and by simulating the game dynamics explicitly. a, When errors
are rare and the continuation probability is comparably small, cooperators can only
outperform defectors when they take indirect information into account. b, In contrast,
when information is noisy and there are many pairwise interactions, cooperators obtain a
better payoff when they ignore indirect information. In both cases, our analytical results
agree with the simulations.

5.4.3 Equilibrium analysis

Based on the payoff formula (5.19), we can explicitly characterise the generic Nash
equilibria of our model (i.e., those Nash equilibria that are robust with respect to small
parameter changes). To this end, it is useful to introduce the variable §, which is the
pairwise continuation probability (the probability that two players interact again, given
that they just had an interaction). This probability can be calculated explicitly. It
depends on the population-wide continuation probability d and on the population size n,
and it is given by 5:2d/<2d+(n—1)n(1—d)>. For a derivation, see Section 5.5.4.

By extending the theory of zero-determinant strategies|PD12, HNS13, SP14a, SP14c,
Akil6, PHRZ15, HRZ15, MH16b, IM18], we prove that a reactive strategy (y,p,q, A) is a
generic Nash equilibrium for 0< ¢ <1 if it is either ALLD=(0,0,0,\), or if p—g=r} with

. 14 (n—2)0A c
DT I = 2)I—29)) 6 (5:8)

In Fig. 5.4a,b, the set of all strategies that satisfy p—q=r} is depicted by a coloured
face and a coloured dashed line, respectively. If the entire population adopts one of these
Nash equilibrium strategies, no single player can gain a higher payoff by deviating.
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We call a generic Nash equilibrium cooperative, if it has the additional property that all
players are fully cooperative in the limit of rare errors. Due to this latter property, the
strategy needs to satisfy

y=p=1. (5.9)

That is, the strategy always needs to assign a good reputation to unknown players,
and to players who have cooperated in the latest relevant interaction. Combining Eqs.
(5.8) and (5.9) shows that within the space of reactive strategies, there is exactly one
cooperative Nash equilibrium of direct reciprocity (A=0). This strategy is GTFT, as
defined in Eq. (5.26). Similarly, there is exactly one cooperative Nash equilibrium of
indirect reciprocity (A=1), the strategy GSCO, defined by Eq. (5.2). In addition to these
distinguished boundary cases, we can use Egs. (5.8) and (5.9) to construct infinitely
many cooperative Nash equilibria, one for every value of A€ [0, 1]. We refer to the class of
all these strategies as Generous Reciprocators. For all respective details, see Section 5.5.4.

5.4.4 Evolutionary analysis

We model the evolutionary spread of strategies in the population by a pairwise comparison
process [ST98, TPNO7|. Initially, players adopt an arbitrary strategy (y,p,q,A). Then
one player is randomly chosen from the population to update her strategy. There are two
distinct mechanisms how this updating can occur.

(7) With probability pu, there is a mutation event. In that case, the focal player abandons
her old strategy and instead switches to a new strategy (v/,p',¢’,\'). The first
three entries, 3/, p’, ¢/, are uniformly and independently drawn from the unit interval
[0,1]. For simplicity, we assume in most figures that the last entry X is either
predetermined (for those simulations in which players are restricted to either direct
or indirect reciprocity), or that it is randomly taken from the set {0, 1}.

In addition, in Fig. 5.10, we explore how evolution operates when players can also
adopt strategies with intermediate A. For these simulations, we first compute how
likely it is for a given strategy (y,p,q,A) that a player’s state with respect to a
given co-player is updated between two consecutive games of the two players. The
respective probability v can be calculated as (Section 5.5.5)

(n—2)A

T T+ (n—2)X (5.10)

As one may expect, A =0 implies that v =0. That is, a player who ignores all
third-party information only updates the co-player’s state in a direct encounter
and never in between. Similarly, A =1 implies that v = (n—2)/(n—1). That is,
a player who takes all information into account has an (n—2)/(n—1) chance to
update the co-player’s state before the two players interact again (the only exception
occurs when the co-player engages in no third-party interaction in between, which
happens with a 1/(n—1) probability). For the simulations shown in Fig. 5.10, we
randomly draw mutant strategies (y/,p’, ¢’, ') such that the respective 4" according
to Eq. (5.10) is evenly distributed in [0, (n—2)/(n—1)]. In this way, we ensure that
a randomly drawn mutant is approximately equally likely to base her decisions on
direct and on third-party information, respectively.
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We note that alternatively, one could also consider a mutation scheme where A itself
is uniformly drawn from the unit interval [0, 1]. We do not employ this alternative
mutation scheme here because the resulting mutant strategies would rarely engage
in direct reciprocity. Intuitively, players in large populations have many more
third-party interactions than they have direct interactions. As a result, even for a
comparably small value of A, the resulting v according to Eq. (5.10) is typically
close to one (especially if the population size n is large). For uniform A, players
would thus rarely act based on their direct experience with the respective co-player.
For further details, see Section 5.5.5.

(#) With probability 1—pu, there is an imitation event. In that case, the focal player
randomly chooses another player from the population as a potential role model. If
the focal player’s payoff according to Eq. (5.19) is given by mp and the role model’s
payoff is g, the focal player adopts the role model’s strategy with probability

1
P= 1+exp[—ﬂ(7rR—7rF)}'

(5.11)

The parameter >0 measures the strength of selection. For small values of 3, the
imitation probability is roughly 1/2, independent of the strategies of the involved
players. As the value of 5 increases, the more likely it becomes that the focal player
only adopts those strategies that yield a higher payoff.

For positive values of p and finite values of 3, the two mechanisms of mutation and imita-
tion give rise to an ergodic stochastic process on the space of all population compositions.
To explore the evolutionary dynamics, we have simulated this process for a large number
of updating events. We record which strategies the players adopt over time, and how
often they cooperate. Because the process is ergodic, the time averages of these quantities
converge, and they are independent of the initial population[KT75].

Specific methods employed for the figures. Fig. 5.4a,b depicts simulation results
of the evolutionary process when all players are either required to use direct (A = 0)
or indirect reciprocity (A=1). We simulated the process for 2-10” mutant strategies.
For panels c—f, we have looked at simulations where the initial population either em-
ploys noisy variant of ALLD, (0.01,0.01,0.01,\), or a conditionally cooperative strategy,
CC=(0.99,0.99,0.5, ). We then recorded how long it takes on average until a mutant
strategy reaches fixation, and which mutant strategy succeeds. Each bar depicts an
average over 10% simulations. Panels g,h depict the players’ payoffs when the population
consists of a mixture of defectors and noisy discriminators (7T in the case of direct reci-
procity, SCO in the case with indirect reciprocity, with p=0.99, ¢=0.01). As parameters
for this figure, we use n=>50, b=>5, c=1, e=0, =10, and the limit of rare mutations y— 0.

Fig. 5.5 explores how different mutation rates affect the results of Fig. 5.4. As in
Fig. 5.4, all players are either restricted to use direct (A =0) or indirect reciprocity
(A=1). For the panels a—f, we have then simulated the evolutionary process for different
continuation probabilities. Panels a—c depict which strategies the players use over time,
for either the limit © — 0 (grey bars) or a mutation rate of © = 0.01 (coloured bars).
The upper panels of d—e depict how much players cooperate on average, for different
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values of u. The lower panels show how many different strategies are simultaneously
present in a population on average. This number ranges from 1 in the limit of rare
mutations to n=>50 when mutations are abundant. Panels g—i consider populations that
are initialised either with the same noisy variant of ALLD considered in Fig. 5.4, or
with the same conditionally cooperative strategy. Again, we record how long it takes
on average until the respective strategy has been removed from the population by the
evolutionary process. Each data point represents an average of 50 independent sim-
ulations. Time is scaled such that units correspond to number of introduced mutant
strategies. For u— 0 these extinction times converge to the values in Fig. 5.4c,d. For
1— 1, extinction times converge to a value that is the same for both strategies and all
continuation probabilities. Unless noted otherwise, parameters are the same as in Fig. 5.4.

Fig. 5.7 shows evolutionary results for the case that in addition to the y, p, ¢ values,
players are also free to choose A € {0,1}. We consider two sets of simulations, either
for the case of rare mutations (u— 0), or for a positive mutation rate (u=0.02). The
panels a—c and e—g depict average trajectories for three specific scenarios. The scenarios
differ in the game’s continuation probability and the error rate. The specific parameters
we use are 6 =0.3, e=0.1 (Fig. 5.7a,e), 0=0.9, £=0.001 (Fig. 5.7b,f), and 6 =0.999,
£=0.01 (Fig. 5.7c,g). The time trajectories represent an average over 1,000 simulations.
In the initial population, all players employ ALLD =(0,0,0,\) with randomly chosen
A€{0,1}. Time is scaled such that units correspond to the number of introduced mutant
strategies since the beginning of the simulation. In Fig. 5.7d,h, we systematically vary
the continuation probability and the error rate of the game. Each data point corresponds
to the time average of a single simulation with 107 time steps. Unless noted otherwise,
parameters are the same as in Fig. 5.4.

Fig. 5.8 explores how the results for the three scenarios considered in Fig. 5.7 change
as we vary four model parameters. The upper half of the figure considers the same basic
setup as in Fig. 5.7: the population is initialised such that every player uses ALLD. Then
we simulate the process for a sufficient time (at least until 107 mutant strategies have been
introduced). This time is chosen such that the average cooperation rate and the average
proportion of indirect reciprocity equilibrates, and that these quantities are independent
of the chosen initial population. In the lower half we consider an alternative simulation
scheme. Here, we take the average over 200 simulations with randomly chosen initial
populations. Each simulation is only run for 105 time steps (mutant strategies introduced).
The evolutionary parameters that we vary are the benefit-to-cost ratio b/c (between 1
and 12), population size n (between 2 and 1,024), selection strength 5 (between 0.01 and
100) and mutation rate u (between 0.0001 and 1). As the baseline parameters, we use the
same values as in Fig. 5.7a—c.

Fig. 5.9 investigates in more detail the non-monotonicity of evolving cooperation rates
in Fig. 5.8e. To this end, we again consider the scenario with intermediately many inter-
actions and reliable information (0 =0.9, e=0.001, orange curve in Fig. 5.8e). Panels a,b,
explore how many mutant strategies it takes on average to invade two different resident
strategies. Because the non-monotonicity arises in a scenario that favours the evolution
of indirect reciprocity, we consider two residents with A =1. The defector resident is
given by (0.001, 0.001, 0.001, 1), whereas the cooperative resident adopts the strategy
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(0.999, 0.999, 0.650, 1). We have run 1,000 simulations for different values of the selection
strength parameter (1072 </3<10?). Dots represent outcomes of individual simulations,
whereas the red and blue curve represent average values. For panels c—e, we have run
the same evolutionary process as in Fig. 5.8e for the scenario with intermediately many
interactions and reliable information. For three different intensities of selection, we have
recorded the distribution of cooperation rates over a simulation with 2 - 107 time steps.
Time steps are measured in number of mutant strategies introduced by the process.

In Fig. 5.10, we repeat the simulations in Fig. 5.4, Fig. 5.5, and Fig. 5.7, but now
allowing for intermediate values of A\. In Fig. 5.10a-d, we consider the case of a fixed A
value. To this end, we use five different values of A, which according to Eq. (5.10) map
to the values of v € {0,1/4,1/2,3/4, Ymax }, With ymax = (n—2)/(n—1). For the panels
a, b, we consider the same setup as in Fig. 5.4a,b, and use the same parameter values.
For the panels c,d, we use the same setup and the same parameters as in Fig. 5.5d,f.
Finally, for the panels e—h, we use the same parameters and the same general setup as in
Fig. 5.7a—d. However, while in Fig. 5.7a—d, players are restricted to strategies with
either A=0 or A=1, here they can adopt arbitrary strategies with 0 <A< 1. The bottom
panels of Fig. 5.10e—g show how often residents adopt different values of v by the end of
each simulation (for 1,000 simulations in total). For details on how the respective mutant
strategies are generated, see Methods, Section 3.4 and Section 5.5.5.

For Fig. 5.11, we have re-run the simulations in Fig. 5.7d for different noise scenarios.
Except for the changes explicitly mentioned (by changing the error scenario, or the informa-
tion available to the players), the simulations have been performed exactly as for Fig. 5.7d.

Fig. 5.12 explores the stability of three different finite-state automata against a single
ALLD or ALLC mutant. Because there is no efficient payoff formula that computes the
payoffs of arbitrary automata in the context of indirect reciprocity with noisy observations,
we computed the payoffs by simulations. To this end, we assumed all automata are
initialized in the good state. Then players engage in 2 - 10° pairwise interactions. To
compute the players’ average payoffs, we take the mean over all their payoffs in the second
half of the simulation, as in previous work[HST*18]. Taking the average over all rounds
would not alter our conclusions. As game parameters, we use n=>50, b=>5, c=1, and
£=0.05.

For Fig. 5.13, we have first simulated the players’ payoffs for all possible population
compositions (ka, k¢, kp). Here, k4 is the number of players who adopt the respective
automaton strategy, k¢ is the number of unconditional cooperators, and kp is the number
of defectors. For these payoff calculations, we have employed the same process as in
Fig. 5.12. For pre-computed payoffs, the fixation probability of a given mutant strategy
into any other resident strategy can be computed explicitly[NSTF04]. Based on all
pairwise fixation probabilities, one can then compute how often each strategy is played on
average[F106]. This yields the panels a—c. For positive mutation rates, the abundance of
each strategy can still be computed explicitly, by formulating the evolutionary process as
a Markov chain. The states of this Markov chain are all possible population compositions
(ka,kc,kp). When n = 50, there are 1,326 such states. Thus, the dynamics can be
described by an 1,326 x 1,326 transition matrix. The entries of this transition matrix
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describe with which probability the population moves from state (ka, k¢, kp) to state
(K'y, k¢, k) after one evolutionary updating event (see for example SI Section 6.2 in Ref.
HST*18). The invariant distribution of this Markov chain can be computed directly. It
describes how often each state is visited by the evolutionary process, as illustrated in
panels d—f. Based on this invariant distribution, we can also calculate how often players
cooperate on average, as shown in panels g—i.

Fig. 5.14 and Fig. 5.15 use exactly the same method as Fig. 5.12 and Fig. 5.13,
respectively. As the only difference, the finite-state automata are replaced by leading-eight
strategies.

Fig. 5.16 considers a population consisting of 49 conditional cooperators and a single
defector. The cooperators employ the strategy (1,1,0.01,\), whereas the remaining
defector applies the strategy (0,0,0,A). We use two independent approaches to compute
the players’ payoffs, the payoff equation (5.19), and explicit simulations of the game
dynamics (we averaged over 10° iterations per parameter combination). The parameters
are a, €=0.001, 0=0.9 and b, £=0.45, §=0.999. The respective Python scripts used to
run the simulations and for solving Eq. (5.19) are provided online, see Code availability.

Finally, for Fig. 5.17, we repeat the simulations done in Fig. 5.7a—d, but now using the
alternative strategy set (y,p, q, k) described in Section 5.5.6. Here, players who employ
indirect reciprocity ignore all direct information they may have. Game parameters are
the same as in Fig. 5.7a—d.
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5.5 SI

In this work, we introduce a model that combines direct and indirect reciprocity within a
unified framework. Players do not only react to the games they are involved in. They also
observe how their co-players act in interactions with third parties. We use this model to
explore how individuals make use of different sources of information, and to compare how
direct and indirect reciprocity facilitate the spread of cooperation throughout a population.

In the following, we describe the framework and the employed methods in detail. In
Section 5.5.1, we begin by summarizing the previous literature on direct and indirect
reciprocity. Section 5.5.2 introduces our baseline model, for which we assume that
players use simple reactive (first-order) strategies. In Section 5.5.3, we derive explicit
formulas for the players’ payoffs for any given population composition. Section 5.5.4
offers an equilibrium analysis. We show under which conditions reactive strategies suffice
to sustain a fully cooperative equilibrium. We prove that the respective conditions
are stringent: if reactive strategies cannot sustain cooperation, more complex strategy
classes cannot sustain it either. In Section 5.5.5 we study the co-evolution of direct
and indirect reciprocity among reactive players. We show that indirect reciprocity is
most likely to evolve when there are only a few interactions, information is reliable, and
mutations are not too abundant. In addition, we provide a framework for the evolution of
strategies when individuals are able to use a mixture of direct and indirect reciprocity.
Section 5.5.6 discusses several model extensions. We explore how our model can capture
different kinds of errors and incomplete information. We also discuss an alternative
implementation of indirect reciprocity, according to which players can choose to ignore
any direct information they may have. Finally, we incorporate higher-order strategies.
The Appendix (Section 5.5.7) contains the proofs of our analytical results.

5.5.1 Related literature
Previous literature on direct reciprocity.

There is by now an extensive literature on direct reciprocity, that is, the evolution of
cooperation in repeated games. This literature has suggested various strategies that
succeed in evolutionary simulations and tournaments [AH81, Mol85, NS92, KK89, IFN07,
vSPLS12, FFG'13, PVSP14, RSC15, LHF15, DLTZ15], and it has discussed under which
conditions cooperation can be evolutionarily stable [BL87, FW89, Boy89, FM90, BS95,
vVGRN12, GvV16]. Moreover, it has explored how the evolution of cooperation depends
on model parameters, such as the players’” memory [HS97, BJHN16, SP16, HMVCN17]
or which strategies players have access to [GT12b, CZN12, SP15]. A general summary of
this literature can be found in recent reviews [GvV18, HCN18].

In the context of our paper, the literature most relevant is the recent work on zero-
determinant (ZD) strategies for repeated games [PD12, SP12, HNS13, SP13, HNT13,
SP14c, SP14b, HWTN14, HRZ15, LLXH15, Akil6, MH16b, MH16a, XRW*17, IM18].
For the repeated prisoner’s dilemma, Press and Dyson [PD12] have shown that a player
can use such strategies to unilaterally enforce a linear relationship between the players’
payoffs. A special case of these zero-determinant strategies are equalizers [BNS97], with
which a player can enforce that any co-player will get some fixed payoff, independent of
the co-player’s strategy. In our work, we use such equalizer strategies to construct Nash
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equilibria for both direct and indirect reciprocity.

Our work is also related to a previous study on crosstalk in repeated games [RHR'18].
Under crosstalk, players pay forward somebody’s cooperation: if Alice helps Bob, this may
increase the chance that Bob helps some third unrelated player Charlie, even though Bob
has no prior positive experiences with that player. This form of generalized reciprocity is
maladaptive: crosstalk undermines cooperation, and is disfavored to evolve in the first
place. Herein, we adapt some of the mathematical techniques used in that paper [RHR 18]
to derive a general payoff formula for direct and indirect reciprocity.

Our study adds to the previous literature on direct reciprocity in the following way:

(7)) We fundamentally generalize the theory of ZD strategies, by extending it to settings
in which players are unlikely to ever meet again, and in which direct reciprocity
fails to maintain cooperation.

(i7) We explore in which scenarios players engage in direct reciprocity in the first place.
To this end, we analyze for which parameters players learn to ignore any indirect
information they might have about their present co-player.

Previous literature on indirect reciprocity.

Indirect reciprocity is an alternative mechanism for cooperation [Now06]. It can sustain
cooperation even when players only interact once with each other, such that direct
reciprocity is infeasible [Ale87, Kan92, OFP95]. Much of the work has focused on the
question how complex strategies need to be in order to establish stable cooperation [NS98b,
LHO1, PB03, BS04, 0104, 0106, PSC06, US09, MVC13, UYOS18, SSP18]. This work
has been summarized recently [NS05, Sigl12, Oka20].

Since the influential work of Ohtsuki and Iwasa [O104, OI06], it is a widely shared belief
that successful strategies of indirect reciprocity need to be sufficiently complex. The
complexity of strategies is typically evaluated in terms of how much information is needed
to assess the reputation of a co-player. When players use first-order strategies, they assess
a player purely based on the players’ actions. For example, simple scoring assigns a
good reputation to players who cooperated in their last interaction, and it assigns a bad
reputation to players who defected [NS98a|. Second-order strategies additionally depend
on the reputation of the recipient. For example, according to the ‘Stern’ strategy [PSCO6],
a player who defects against a good co-player deserves a bad reputation, whereas a player
who defects against a bad co-player deserves a good reputation. In addition, third-order
strategies take the actors’ original reputation into account. For example, when players
adopt the Staying strategy [SON17], a good player should keep his good reputation no
matter how he treats a co-player who is deemed bad. By systematically exploring all
deterministic third-order strategies, Ohtsuki and Iwasa have shown that there are only
eight strategies that yield stable cooperation, called the ‘leading eight’ [O104, OI06]. None
of these eight strategies is first-order.

Most relevant to our study, Ohtsuki [Oht04] has explored the adaptive dynamics of
stochastic first-order strategies. He shows that the dynamics admits a fixed point in
which everyone cooperates. However, since ALLD is the only locally stable fixed point, he
concludes that no first-order strategy can sustain cooperation. Some subsequent studies
have suggested that first-order strategies may suffice when they record more than a
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player’s last action [Berll, BG16, CFW19]. For example, in the recent paper by Clark et
al [CFW19] players count how often each other population member has defected so far.
To sustain at least partial cooperation in the population, the paper suggests an innovative
strategy called GrimK. Players with that strategy cooperate provided that both players’
defection record is below K. For games in which there is a coordination-motive to coopera-
tion, they show that one can always find a K such that GrimK is a strict Nash equilibrium.

Our study adds to this literature on indirect reciprocity in the following way:

(7) We prove that cooperation can be sustained in a Nash equilibrium when players use
Generous Scoring. GSCO has an intuitive interpretation, it only depends on the
co-player’s very last action, and it is robust with respect to various kinds of errors
(see Section 5.5.6).

(7) Our results continue to hold when players differ in the information they have about
each co-player, which has been a major obstacle for cooperation in some previous
models of indirect reciprocity[HST*18].

(47) We show through simulations that the strategy dynamics in finite populations exhibits
cycles. ALLD is typically invaded through conditionally cooperative strategies, which
in turn are invaded by even more cooperative strategies.

Literature that combines elements of direct and indirect reciprocity.

There is only a handful of studies that explore how direct and indirect reciprocity interact.
In an early study on the subject, Raub and Weesie explore the effectiveness of reciprocity
when players are placed on a lattice [RW90]. They explore the stability of cooperation for
three scenarios, differing in whether players do or do not receive information about their
co-players’ interactions with third parties. To this end, they analyze whether Grim/Trigger
is an equilibrium, assuming there are no implementation or perception errors. In addition
they explore the case that third-party information is received with some time lag. The
study finds that immediate information about third-party interactions is most favorable
to cooperation.

Pollock and Dugatkin propose a strategy for the repeated prisoner’s dilemma called
‘Observer Tit For Tat’ (OTFT) [PD92]. Against a co-player with a joint previous history
of play, OTFT behaves the same way as a TFT player. However, against an unknown
co-player, OTF'T takes into account third-party information. The paper explores the
static competition between three strategies, OTFT, TFT, and ALLD. It is shown that
OTFT can be stable against these three strategies even if the continuation probability
approaches zero. However, for larger continuation probabilities, TFT is shown to be
superior.

Roberts presents simulations for a meta-population setup when players can choose among
a finite set of strategies [Rob07]. The strategy set represents a selection from the direct
and indirect reciprocity literature, and it includes first-order strategies (scoring) as well
as second-order strategies (standing). When there are only few interactions between
each pair of players, Roberts observes that most players adopt strategies of indirect
reciprocity. This trend towards indirect reciprocity is even stronger when players have
access to standing strategies. Importantly, however, the study assumes that there is public
information about each player’s reputation (i.e., it requires that all players agree on a
given co-player’s reputation at any point in time). For noisy and private information,
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most previously considered higher-order strategies of indirect reciprocity fail to maintain
cooperation [HSTT18].

Finally, our work is related to two previous studies in which players are able to misrepresent
their own reputation|NK04, SN16].

The first study is by Nakamaru and Kawata [NKO04]. They consider a setup where
players engage in two kinds of interactions. First, players interact in a series of prisoner’s
dilemma games. As in our study, players can decide whether to cooperate or defect,
depending on the reputation of the opponent. Second, players are matched in pairs to
communicate which reputation they assign to every population member. In particular,
the model considers the case of private information — different individuals may assign
different reputations to the same co-player. Compared to our study, strategies are more
complex. Players do not only need to determine what they do in the prisoner’s dilemma.
They also need to specify to which extent they participate in rumour exchange, and
whether or not they initiate wrong rumours about themselves. To this end, the study
considers typical archetypes of strategies. For example, ‘liars’ defect in the prisoner’s
dilemma, and they misrepresent themselves as cooperative. In contrast, ‘Advisors’ are
conditionally cooperative in the prisoner’s dilemma. In the rumour exchanges, they spread
true rumour about those co-players who defected against them. Finally, TFT-like players
ignore rumours and just implement the traditional tit-for-tat strategy. The strategy
dynamics is explored through computer simulations with up to 39 different strategies.
Defectors win if players interact on average for one round or less. When there are slightly
more interactions, rumour-based strategies like Advisor can succeed. Finally, with many
pairwise interactions, TFT-like strategies persist.

The second study by Seki and Nakamaru [SN16] considers a similar setup as the first.
However, this time strategies are represented differently. Each player’s strategy is encoded
as a list of numbers. One number represents how the player acts in the prisoner’s
dilemma. Two further numbers represent under which circumstances the player would
spread positive or negative rumour, respectively. Another number represents under which
condition the player would take third-party rumour into account into his own assessment
of a player. This decision may depend on the reputation of the person who communicates
the respective rumour. With four further numbers, the player represents to which extent
direct information (positive or negative) or indirect information (positive or negative)
affect the respective co-player’s reputation. This reputation is measured by a number
between -5 and 5. In addition to the liars whose aim is to self-advertise themselves, this
study now also involves players who aim to destabilise the reputation system altogether.
For example, such players may spread good rumours about everyone, which adds further
noise to the system. The relative weight that players attribute to indirect information
does not evolve. However, through extensive computer simulations, the paper shows that
the more noise defectors introduce, the more difficult it becomes for cooperation to evolve
through indirect reciprocity. Strategies that put more weight on direct reciprocity are
more effective under these conditions.

Our study adds to this literature in the following way:

(i) We provide a general framework to explore the interaction of direct and indirect
reciprocity. This framework allows us to systematically explore the evolution
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of reciprocity when players can choose among all possible first-order strategies,
including stochastic strategies. It can easily be extended to include more complex
strategies (see Section 5.5.6).

(#7) By focusing on comparably simple strategies in the main text, we allow for a more
transparent comparison between direct and indirect reciprocity. In particular, we
are able to derive analytical conditions when each kind of reciprocity is stable.

(7i7) Simulation results necessarily depend on which strategies have competed. Adding
further strategies can sometimes change the respective conclusions. In contrast,
our analytical results are robust. When we find a cooperative strategy to be
an equilibrium, it is stable against any possible deviation, even if more complex
strategies become available.

5.5.2 Model description

We consider a well-mixed population of n players. Interactions take place in discrete time.
In each time step, two players are chosen from the population at random to engage in one
round of the prisoner’s dilemma. The two chosen players independently decide whether
to cooperate (C) or to defect (D). A cooperator pays a cost ¢>0 which yields a benefit
b> c to the co-player. Hence, the possible payoffs are b—c if both players cooperate, —c if
only the focal player cooperates, b if only the co-player cooperates, and 0 if both defect.
After each game, the process iterates with probability d. That is, with probability d,
again two players are chosen at random to interact in a prisoner’s dilemma. Otherwise,
with probability 1—d, the game terminates. Upon termination, the players’ payoffs are
calculated by averaging over all interactions in which they participated in.

To model how a player forms and updates her opinions about other group members, we
consider players who use separate finite state automata to represent each other group
member’s reputation. In the baseline model, we assume each automaton only has two
states, which we denote by G (the player considers the respective group member to be
‘good’) and B (the respective group member is considered ‘bad’). Players cooperate with
those group members they consider as good, and they defect against the bad ones. Such
a binary representation of the co-player’s current social standing has become standard in
the literature on indirect reciprocity [O104, NS05, Sigl2]. However, in Section 5.5.6 we
illustrate how our framework can be extended to allow for more nuanced representations
of the co-player. With this extended framework, we can capture previous models in which
players have a third ‘neutral’ [TSM13] or 'unknown’ [NM11] state, or models in which the
co-player’s score is measured in integer values [NS98b, LH01]. The extended framework
also allows us to capture situations in which a player’s assessment of a co-player depends
on more than the co-player’s last observed action [HS97, Berl1].

While a player can be in different states with respect to different group members, each
player uses a uniform rule to update all his automata. We interpret this rule as the
player’s strategy. In the baseline model, players use simple reactive strategies. The
strategy of player 4 is represented by a vector (y;, pi, ¢;, Ai) € [0, 1]*. The first entry y; is the
probability that player ¢ initially assigns a good reputation to a given co-player (without
having observed any interaction of that co-player before, see Fig. 5.1d). We assume that
all of the player’s n—1 automata are initialized independently. In particular, for 0 <y; <1,
the player may assign different initial states to different co-players. However, all our
qualitative results remain unchanged if a player’s initial assignments are fully correlated,
such that the player assigns the same initial reputation to all other group members. The
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values of p; and ¢; determine how the player updates a co-player’s state after a direct
interaction (Fig. 5.1e,f). A cooperative co-player is assigned a good reputation with
probability p;, whereas a defecting co-player is assigned a good reputation with probability
¢;- As an example, the strategy ALLD sets y=p=q=0, whereas ALLC uses y=p=qg=1.

Finally, the last parameter A encodes to which extent players take indirect information
into account when assigning reputations to others (Fig. 5.1g). To model the impact of
indirect information, we assume that all players can observe the interactions of all other
population members (for the case of incomplete information, see Section 5.5.6). After
player ¢ witnesses an interaction between player j and some third party, ¢ updates player
7’s reputation with probability A;. If player j’s reputation is updated, the new reputation
is good with probability p; if player 7 has cooperated with the third party, and it is good
with probability ¢; if player 7 has defected. We refer to A as the player’s receptivity, as it
controls to which extent the player is receptive to indirect information.

In the special case that all players set A=0, they completely ignore third party interactions.
We refer to this case as ‘direct reciprocity’. In the other limit A =1, a player equally
takes into account all actions of the other group members, no matter whether the player
is directly involved. We refer to this case as ‘indirect reciprocity’. We note that even a
player with A=1 may occasionally cooperate based on her direct experience with the
given co-player. Such an instance occurs for example if the same two players are randomly
chosen to interact twice in a row. In that case, a player’s behavior in the second round
will depend on what happened in the first. This seems natural: in most applications, even
a player who routinely takes into account third-party information would not ignore any
piece of information merely because it stems from a direct encounter. Nevertheless, it
can be useful from a conceptual perspective to consider an alternative model of indirect
reciprocity, where all decisions are solely based on third-party information. We consider
such a model in Section 5.5.6.

The archetypal strategy of direct reciprocity, Tit-for-Tat, corresponds to the vector
TFT=(1,1,0,0). The analogous strategy in the indirect reciprocity literature, simple
scoring[NS98al, is given by SCO=(1,1,0,1). In Fig. 5.2a—d, we provide a graphical
illustration of our model and the resulting reputation dynamics. Table S1 gives a
summary of the parameters of our model.

Previous work has shown that the evolution of reciprocity is sensitive to the presence
of noise [BS06, Uch10, HST*18]. We thus assume that observations may be subject to
perception errors. In this way, we allow indirect information to be less reliable than
direct information. Specifically, we assume that when observing an indirect interaction,
player ¢ misinterprets somebody’s cooperation as defection with probability ¢ < 1/2.
Similarly, a player’s defection may be taken as cooperation with the same probability. For
simplicity direct interactions are not subject to perception errors in the baseline model.
However, in Section 5.5.6, we analyze a model extension that includes perception and
implementation errors for both modes of reciprocity.

We note that the strategies in this baseline model only make use of first-order informa-
tion [BS04, OI06]. A player’s reputation only depends on the player’s action. It does
not depend on the standing of the recipient, or on the player’s previous reputation. The
assumption of first-order strategies greatly facilitates the calculation of the players’ payoffs
in Section 5.5.3. However, in Section 5.5.6 we revisit higher-order strategies, and we
discuss how they can be captured by our framework.
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Parameter | Interpretation

> "o

Probability to use indirect information

n Population size
b,c Benefit and cost of cooperation
£ Error rate for indirect information
Fixed Probability of another interaction in the entire population
Parameters . _ ] ) )
) Probability of another interaction between a given pair of players,
introduced in Section 5.5.4
1 Mutation rate, introduced in Section 5.5.5
153 Selection strength, introduced in Section 5.5.5
Probability to assign a good reputation to unknown players
Evolving Probability to assign a good reputation to co-players who cooperate
traits

Probability to assign a good reputation to co-players who defect

Table 5.1: Parameters of the model. Our model involves a number of fixed parameters
that are the same for all players and kept constant over time. In addition, our model
considers four evolving traits. The values of the evolving traits may differ between
individuals. They are kept constant over the course of a game, but they may change over
an evolutionary timescale (see Section 5.5.5).

Finally, we note that starting with the influential work of Ohtsuki and Iwasa [0104, OI06]
much of the literature on indirect reciprocity considers the case of public informa-
tion [PSC06, SSP16, SON17, UYOS18]. In such models, players do not observe each
others’ interactions with third parties directly. Rather there is a central observer who
monitors all interactions in a population, assigns new reputations, and disseminates the
updated reputations to all population members. Models of public information have the
useful mathematical property that all players agree on the reputation of any other popula-
tion member (because everyone receives the same information from the same source). In
contrast, herein we are interested in the formation of reputations when some players base
their decisions on direct interactions, whereas others may also take indirect information
into account. In such a situation, players may no longer agree on the reputation they
assign to some given co-player. Our model is thus — necessarily — a model of private
information[Uch10, HST*18, NK04, SN16].

5.5.3 A unified payoff equation for direct and indirect
reciprocity

In this section we derive an explicit expression of the payoffs when all players use reactive

strategies (y,p,q,A). To this end, let x;;(¢), be the probability that player ¢ assigns a
good reputation to co-player j at time ¢. As shown in the Methods, Section 3.4 section
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of the main text, this quantity satisfies the recursion,

x”(t+1) (1—w) @(¢)
( () pi+ (1— Iﬂ( ))%)
+ (w—w) (1- Az)xw()

+w; lZ( 1 € xﬂ +8<1 :r;jl(t)))pi + ((1—5) (1—$jz(t)> +€l‘jz(t)) Qi
" (5.12)

with

z:;(0) =y;. (5.13)
The parameter w=2/n is the probability that a particular player is chosen to interact in
the next round, and w=2/ (n(n—l)) is the probability that a particular pair of players is

chosen. To obtain an expression for the payoffs, we take Eq. (5.12), collect all terms with
xp(t), and define r;:=p; —¢q;, which yields

2y (t41) = 1—w—)\i(u?—w)>xij(t) b owra(t) + wxiu—zg)n% () -
+ wa—i—)\l(w—w)(emjtql))

Eq. (5.14) indicates that the value of z;;(t+1) is a linear function of the respective
probabilities xy,(t) in the previous round.

For further manipulation, it is useful to rewrite Eq. (5.14) using matrix notation. To this
end, we collect the players’ probabilities to assign a good reputation to their co-players in
an n(n—1)-dimensional column vector,

x(t) = (212(t), .., w1 (8); 2 (t), o 220 (8); 5 @b, o)1) (5.15)

Similarly, we collect the factors in the first line of Eq. (5.14) in an n(n—1)xn(n—1) matrix
M = (mij ), with entries

l—w—\(w—w) ifi=k and j=I

wr; ifi=[0 and j=k
w;(1—2¢)r; if i£l, j#l, and j=k
0 otherwise.

(5.16)

Mijkl =

Finally, we collect the constant term in the second line of Eq. (5.14) in an n(n—1)-
dimensional column vector v = (v;;) with entries

vy = wq + Ni(w—w)(er; +¢;) for all 5. (5.17)

Using this notation, we can write Eq. (5.14) as x(t+1) =Mx(t)+v. Based on this equation,
we calculate the weighted average

= (1—d) Zdt (1—d-M)" ((1=d)xo + dv). (5.18)

Here, 1 denotes the identity matrix, and xo is the shorthand notation for x(0) with entries
as defined by Eq. (5.13). The n(n—1) entries x;; of this vector x can be interpreted as the
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probability to find player i’s automaton with respect to j in the good state in a randomly
picked round. We use Eq. (5.18) to compute the expected payoff m; of player i as

n—1<

JFi
In Fig. 5.16, we compare this analytically derived payoff with the payoff obtained from
simulations of the game dynamics. For these simulations, we consider a population where
n—1 players use the conditionally cooperative strategy oc = (1,1,¢,\), whereas the
remaining player is a defector, op=(0,0,0, ). We compute and simulate the payoffs for
different values of A for two different scenarios (with different continuation probabilities
and error rates). In all cases, we observe that the analytically derived payoffs fully match

the simulation results.

When using the above equations to calculate payoffs, the computationally most expensive
step is to find the inverse of the n(n—1)xn(n—1) matrix (1—dM) in Eq. (5.18). This
computation can be made more efficient when several players in a population adopt the
same strategy (which will often be the case in evolutionary simulations). In that case,
one can exploit the symmetries of a well-mixed population: all players who adopt the
same strategy are expected to receive the same payoff. For the computation of payoffs
it is thus not necessary to distinguish between all n players. It suffices to distinguish
between all strategies that are present in the population — a usually far smaller number.
In the Section 5.5.7, we show how payoffs can be computed more efficiently when these
symmetries are taken into account.

5.5.4 Equilibrium analysis
Characterization of all reactive Nash equilibria

In the following, we wish to characterize which reactive strategies o; = (v, ps, ¢i, \i) are
Nash equilibria (in the next subsection we will then focus on those Nash equilibria that
yield full cooperation). A strategy is a Nash equilibrium if no player has an incentive to
unilaterally deviate from it. To simplify the notation, and to make our results comparable
to the previous literature on direct and indirect reciprocity, it is useful to introduce an
additional parameter §, which is the continuation probability for a pair of players.

Lemma 1. Consider a population of size n, and let d be the probability that another
random pair is drawn from the population after the current round. Let & be the probability
that a given pair of players interacts again after it has just participated in an interaction.

Then
2d

0= St (=) (5:20)

All proofs are provided in the Section 5.5.7. While d is the global continuation probability
(the probability that another game will be played in the entire population), the parameter
0 is the continuation probability for each pair of players. We note that the above formula

implies that =1 if and only if d=1, and that §=0 if and only if d=0, as one may expect.

Using the pairwise continuation probability d, we can formulate the following result that
will help us to characterize the set of all Nash equilibria.
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Lemma 2. Consider a homogeneous population with strategy o = (y,p,q, ), and let
r:=p—q. Then on average, players assign a good reputation to each other with probability

(1—5)y + (5((] + )\(n—2)(9+7“5)>
(1—5) + 5(1—7“ +)\(n—2)(1—7“—|—27‘5)>

— (5.21)

In particular, for a generic game with n>2, e>0, and 0<d<1 we have:

1. The population is fully cooperative (all players’ automata are in the G state for the
entire game) if and only if y=p=1 and either A=0 or g=1.

2. The population is fully defecting (all players’ automata are in the B state for the
entire game) if and only if y=q=0 and either A\=0 or p=0.

Finally, the following lemma describes which payoff a single player can get from deviating
from the resident strategy (the strategy everyone else in the population applies). For
brevity, we will sometimes refer to the deviating player as the mutant.

Lemma 3. Consider a population where all but one player apply the resident strategy
o=(y,p,q,\). Let r :=p—q. Then the mutant’s payoff @’ takes the form

= A+ Ay(r —r})a. (5.22)
Here, x' is the mutant’s average cooperation rate against the residents, A, Ay >0 are
constants that only depend on the resident strateqy, and

. 1+ (n—=2)A c
DT E m—2)(1—20)N Sb (523)

According to Lemma 3, the payoff of the mutant is a linear function of the mutant’s
cooperation rate. Due to the properties of linear functions, it follows that the mutant’s
payoff is either maximized by choosing ' =1 (if »>r}), or by choosing z'=0 (if r <73}).
That is, for a resident strategy o with r >3, ALLC is a best response. In analogy to
the case of reactive strategies for the repeated prisoner’s dilemma[HS98|, we call the
set of all such strategies o €[0,1]* the cooperation rewarding zone. Conversely, for any
strategy o with r<r3y, ALLD is a best response, yielding the defection rewarding zone.
In between these two zones, for r =r}, any mutant strategy obtains the same payoff
n'=A;. Strategies for which r=r} are called equalizers. Equalizer strategies have been
previously described in models of direct reciprocity[BNS97, PD12, HTS15]. Lemma 3
guarantees that analogous strategies also exist when players take arbitrary amounts of
indirect information into account.

It is important to note that Lemma 3 makes no restrictions on the mutant strategy.
For the lemma to hold, we do not require the mutant to choose a strategy of the form
o = (,p,q¢,N). Instead the mutant may take arbitrarily many past actions of the
co-player into account, and she may combine direct and indirect information in non-trivial
ways. According to Lemma 3, the mutant’s eventual payoff is solely determined by her
resultant average cooperation rate.

Based on the above lemmas, we can now characterize all Nash equilibria among the
reactive strategies.
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Theorem 1 (Characterization of Nash equilibria).
Consider 0<d <1, and a strategy o= (y,p, q, \).

1. In a game with n>2 and € >0, a strategy o with A\>0 is a Nash equilibrium if and
only if it is either ALLD or an equalizer strateqy,

y=p=q=0, or p—q=r;. (5.24)
We refer to strategies of the form (5.24) as generic Nash equilibria.

2. If A\=0, n=2 or €¢=0, the strategy o is a Nash equilibrium if and only if it is either
generic, or if one of the following two cases applies,

y=q=0, p<ry or y=p=1, g<l-r}. (5.25)

Remark 1. We emphasize that while Theorem 1 characterizes the Nash equilibria among
the reactive strategies, it does not restrict the strategies deviating players may employ. The
Nash equilibria described in Theorem 1 are robust against any possible mutant strategy,
including mutant strategies that take higher order information into account, or mutant
strategies that depend on the whole history of previous play.

Cooperative Nash equilibria

In the following, we are interested in those strategies that can sustain high levels of
cooperation in a population. To this end, we call a strategy o a cooperative Nash
equilibrium if

(7) it constitutes a generic Nash equilibrium, and
(#7) the cooperation rate in a homogeneous o-population approaches one as the error rate
€ goes to zero.

From Egs. (5.21) and (5.24), it follows that cooperative Nash equilibria need to be
equalizers of the form o=(1,1, ¢}, \) with ¢}:=1—73 and r} defined by Eq. (5.23). In the
case of direct reciprocity (A=0), the corresponding cooperative Nash equilibrium thus

takes the form c

y=1 p=1, qé;:l—%. (5.26)

This strategy has been described earlier and is known as Generous Tit-for-Tat (GTFT)[Mol85,

NS92]. Surprisingly the analogous strategy for indirect reciprocity (A=1) has not been
described before, given by
1+ (n—2)¢ c

=1 =1 f=1— — 2
y=H P=5 o h 1+ (n—2)(1—2¢) b (5:27)

In analogy to the previous case, we call this strategy Generous Scoring (GSCO). These
two Nash equilibria do not need to exist for all parameter values because the respective
value of ¢* may become negative. Theorem 2 summarizes the necessary and sufficient
conditions for cooperative Nash equilibria to exist.

Theorem 2 (Existence of cooperative Nash equilibria).
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1. There is a cooperative Nash equilibrium o=(1,1,¢g,0) in which players exclusively use
direct information if and only if 6 >y with

5o = g . (5.28)

2. There is a cooperative Nash equilibrium o= (1,1, ¢}, 1) in which players use indirect
information if and only if 2e <1—c¢/b+1/(n—2), and § >, with

T + (n—2)<(1—26)b—c) '

8 (5.29)

3. For 0 <A< 1, there is a cooperative Nash equilibrium o= (1,1,q%, \) if and only if
there is a cooperative Nash equilibrium for A=0 or A=1.

Theorem 2 gives three major insights:

First, for sustaining cooperation in a Nash equilibrium there is no advantage of using
both direct and indirect information simultaneously (i.e., to choose 0 <A<1). From the
third part of Theorem 2 it follows that if some cooperative Nash equilibrium in reactive
strategies exists at all, there is always a cooperative Nash equilibrium for either A=0 or
A=1.

Second, the first two parts of Theorem 2 suggest that for dg, o1 € [0, 1] we can partition
the parameter space of the game into four distinct regions:
(1) When § < min{dy, 01 }, there is no cooperative Nash equilibrium;

(79) When dp < d <y, full cooperation can be sustained with direct but not with indirect
reciprocity;

(79) When §; < <y, cooperation can be sustained with indirect but not with direct
reciprocity;

(7v) When § > max{dy, 6;} both direct and indirect reciprocity allow for stable coopera-
tion.

We provide a graphical illustration of these parameter regions as Fig. 5.3c in the main text.

Third, parameter changes affect the feasibility of cooperation as follows.

Corollary 1. If a cooperative Nash equilibrium exists for given values n, 9§, and €, then
there also exists a cooperative Nash equilibrium for any n’>n, & >0, and &' < ¢.

In a nutshell, the above corollary states that the stability of cooperation is monotonic in
the population size, the pairwise continuation probability, and the error rate. All other
parameters kept equal, the conditions for a cooperative Nash equilibrium are easier to
meet if the population size is larger, if there are more rounds to be played in expectation,
or if there is less noise on indirect information.

Several remarks are in order.
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1. While the above results for A=0 fully recover previous results on direct reciprocity
among reactive players[Mol85, NS92|, the results on indirect reciprocity (A=1) may
come as a surprise. Previous work on indirect reciprocity suggests that reactive
(‘first-order’) strategies are unable to sustain cooperation[LHO1, PB03, O104]. The
intuition for this pessimistic result is that in a resident population of perfect
discriminators (with y=p=1, ¢=0), a resident may have no incentive to discriminate
against a rare ALLD mutant. By punishing a defector, discriminators harm their
own reputation, which puts them at risk to receive less cooperation in future.
Our model circumvents this problem by allowing for stochastic strategies. By
increasing their ¢g-value from zero, discriminators are able to reduce the effective
cost of punishment. Once they reach ¢=g3, the expected long-term loss in reduced
reputation after defecting against an ALLD mutant exactly matches the short-term
gain in saved cooperation costs. In the Nash equilibrium, discriminators no longer
bear an effective cost of punishing defectors.

2. The strategies Generous Tit-for-Tat and Generous Scoring are Nash equilibria, but
they are not evolutionarily stable. That is, if the entire population adopts one of
these strategies, no mutant is favored to invade, but mutants are not opposed to
invade either. Evolutionary stability is generally difficult to achieve in repeated
interactions. For the repeated prisoner’s dilemma, it has been shown that no strategy
is evolutionary stable in the absence of errors[BL87, FW89]. Any resident strategy
can be invaded by ‘stepping-stone’ mutations, which in turn may facilitate the
invasion of further mutant strategies|GvV16]. Simulations suggest that cooperation
comes and goes in cycles; the frequencies of cooperative and defecting strategies
oscillate over time[GvV18]. However, how often cooperative strategies are played
over an evolutionary timescale critically depends on whether or not cooperative
Nash equilibria exist[vVGRN12]. We will revisit this issue in the next section.

For indirect reciprocity it has been suggested that evolutionary stability is feasible
if more complex strategies are permitted[O104, OI06]. The respective ‘leading-eight’
strategies require that the reputation of a player does not only depend on a player’s
action, but additionally on the reputation of the opponent (and sometimes also on
the player’s own previous reputation). While these results of Ohtsuki and Iwasa
have been tremendously important for understanding which properties stable norms
ought to have, their framework is based on some rather restrictive assumptions.
Most importantly, information transmission is assumed to be public. In particular,
all population members agree on the reputation they assign to a given co-player.
In contrast, we allow some players to use a co-player’s public record to assign
reputations, whereas others may make their judgments solely based on their direct
experiences. As a consequence, different players may assign a different reputation
to the same co-player. For such a private information scenario, it has been recently
shown that not even the leading-eight strategies are able to sustain high cooperation
rates in the presence of perception errors|HST*18|.

3. Previous results on the stability of cooperation with indirect reciprocity only show
stability within the given strategy set considered [0104, MVC13, BG16, SON17].
This leaves it open whether more complex strategies could invade, either due to
neutral drift or because of a selective advantage. In contrast, the equilibrium results
presented in this section do not restrict which strategies mutants are permitted to
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take. The Nash equilibria that we describe are equilibria with respect to all possible
mutant strategies (see Remark 1).

4. In the limit of rare errors, the conditions that we obtain for the feasibility of
cooperation with direct and indirect reciprocity are strict, as the following result
shows.

Theorem 3 (Optimality of equilibrium conditions).

Consider a population of size n interacting in a population game as introduced in Sec-
tion 5.5.2, and suppose e —0. Then there exists a Nash equilibrium (not necessarily in
reactive strategies) that yields full cooperation if and only if there is a cooperative Nash
equilibrium in reactive strategies.

That is, our focus on simple reactive strategies does not restrict the player’s ability to
sustain cooperation. Theorem 3 says that if full cooperation is feasible at all in the limit
of rare errors, it is already feasible with reactive strategies.

With the above equilibrium analysis we explore which strategies can maintain cooperation
if the respective strategy is already adopted by a large majority of the population.
Importantly, however, ALLD is also an equilibrium for all considered parameter values
(Theorem 1). Therefore, even if cooperative equilibria exist, our results do not imply that
evolving populations would settle at these equilibria. Before we discuss the corresponding
evolutionary questions in the next section, we highlight a few reasons why we deem
equilibrium analyses, like the one provided above, valuable: (7) The existence of cooperative
equilibria can be considered a minimum requirement for cooperation to evolve. (i) Our
analytical equilibrium conditions in Theorem 2 allow predictions on how certain parameter
changes affect the feasibility of cooperation (see Corollary 1). (ii7) Even if we are to find
that cooperative Nash equilibria have problems to evolve, this may have important policy
implications. For example, such a finding could suggest that temporarily, additional
incentives for cooperation are necessary.

5.5.5 Evolutionary analysis
Description of the evolutionary process

In the previous section, we have considered a static setup. We have explored which
reactive strategies can sustain an equilibrium with full cooperation. In the following, we
no longer assume that players settle at an equilibrium automatically. Instead players may
choose arbitrary reactive strategies. Over time, they adapt their behaviors through social
learning.

To model this adaptation dynamics, we consider a pairwise comparison process|TNP06] in
a well-mixed population of constant size n. Initially, all players are assumed to use some
arbitrary strategy (yo, Po, go, Ao). Then in every time step of the evolutionary process, two
possible events can happen.

Exploration event. With probability p (the mutation rate), one of the players is chosen
at random. All players have the same probability to be chosen. This player then
adopts a randomly chosen new strategy (v',p’, ¢, \'). The new values for ¢/, p/, ¢
are drawn from a uniform distribution on the unit interval. For X we first focus on
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the case that players either use direct or indirect reciprocity, such that X' € {0, 1}.
We discuss the case of intermediate values of A" in Section 5.5.5.

Imitation event. With probability 1—u, two players are randomly drawn from the
population, a learner and a role model. Given the composition of the population,
their expected payoffs 7, and 7 are calculated using Eq. (5.19). We assume the
learner adopts the role model’s strategy with probability

1

&= 1+ e Blrr—mL)

(5.30)

The parameter >0 reflects the strength of selection. It determines to which extent
the learner’s decision depends on the role model’s relative success. In the special
case that S=0, the imitation probability simplifies to £=1/2, such that imitation
occurs purely at random. As [ becomes larger, the learner is increasingly biased to
only imitate role models with a higher payoff.

The above two elementary events, exploration and imitation, give rise to an ergodic process
on the space of all population compositions. We explore this process with computer
simulations. For each simulation, we use a fixed set of parameter values. Simulations
are run for sufficiently long, such that the population’s average cooperation rate has
converged and is independent of the initial population. In addition to this cooperation
rate, we record which strategies the players use over time.

Such simulations are computationally expensive. Even when using optimized algorithms
(see Section 5.5.7), they need to keep track of all s strategies in the population and to
invert s2x s? matrices at each selection event. To make these computations more efficient,
we have employed the method of Imhof and Nowak[IN10] for some of our results. This
method assumes that mutations are rare, u — 0. In that case, once a mutant enters the
population, this mutant can be expected to reach fixation or to go extinct before the next
mutation arises [FI06, WGWT12]. As a result, at any given time at most two different
strategies are present in the population. The mutant’s fixation probability in a resident
population with strategy o can be calculated explicitly, using the formula [TH09]

1
1+ Y T, e P (o) —mr(®)”

plon, o) = (5.31)

Here, 7y (k) and wr(k) are the respective payoffs when k individuals in the population
employ the mutant strategy. Once the mutant has gone extinct, or taken over the
population, the next mutation occurs. This rare-mutation limit allows for more efficient
computation of the resulting dynamics. The saved computation time can then be used,
for example, to run the process for a larger number of generations. In this way we can
ensure that sufficiently many mutant strategies are drawn over the course of a simulation
to obtain a representative sample of the entire strategy space.

Overall, the process generates a sequence of strategies (0¢, 071, ...) that the residents use
after each introduced mutant strategy. Based on this sequence, we can again calculate
the average cooperation rate and the average strategy traits that evolve for different
parameter values.
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Impact of parameters on the evolutionary results

As summarized in Table S1, our model includes a number of different parameters.
Throughout most of the main text, we have focussed on two of them, (7) the game’s
continuation probability d, and (77) the probability ¢ that indirect observations are subject
to perception errors. In addition, our model depends on the benefit-to-cost ratio b/c of
cooperation; the population size n; the strength of selection ; and the mutation rate pu.
In the following, we describe the effect of each of these parameters on the co-evolution of
cooperation and reciprocity. In particular, we focus on two aspects. (1) How do changes
in the respective parameter affect the evolution of cooperation? (2) How do changes in
the respective parameter affect the proportion of players who use indirect reciprocity? In
each case, we first use our static equilibrium results and the previous literature to form
expectations on the impact of the respective parameter. After that, we compare these
expectations with the actual behavior observed in simulations.

(i) Continuation probability 0.

Because the expected number of rounds between two given players is given by 1/(1—
9), the parameter 0 determines how often two players interact on average. Based
on our static equilibrium analysis (Corollary 1 in Section 5.5.4), larger values of
0 should facilitate the evolution of cooperation. With respect to the abundance of
indirect reciprocity, our equilibrium analysis suggests that indirect reciprocity should be
particularly favoured for intermediate values of §, where direct reciprocity has difficulties
to evolve. For sufficiently large continuation probabilities, our static equilibrium analysis
does not allow us to make a clear prediction, because both GTFT and GSCO are
equilibria for § — 1.

We have performed two sets of simulations in which we have varied the continuation
probability systematically, one for the limit of rare mutations (Fig. 5.7d) and one for
a positive mutation rate (Fig. 5.7h). In both cases, our simulation results are in line
with the above predictions. For any error rate €, cooperation becomes more likely as
we increase 9. Moreover, indirect reciprocity is most abundant when ¢ is intermediate.
For 6 — 1, we find that direct reciprocity is more likely to emerge. We provide some
analytical insight into this last effect in Section 5.5.5.

(it) Error rate € on indirect observations.

Based on our equilibrium analysis, we would expect that an increase in € tends to
reduce cooperation (Corollary 1 in Section 5.5.4). This reduction may be less severe for
large continuation probabilities, where players may switch to direct reciprocity instead.
With respect to the abundance of indirect reciprocity, we expect errors to either have
no effect (e.g., when no cooperation evolves and information is irrelevant), or to have a
negative effect.

Again, there are two sets of evolutionary simulations in which we vary the error rate &
systematically, see Fig. 5.7d,h. In general, these simulations are in agreement with
the above expectations. In case the error rate has an effect on cooperation at all (i.e.,
for intermediate §), this effect is negative. Similarly, in those cases in which the error
rate affects the player’s propensity to use indirect reciprocity (i.e., for intermediate to
large values of ¢), this effect is again negative.
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The next four parameters are not specific to models of reciprocity. They feature an
important role in any evolutionary model of cooperation. Some of these parameters are
known to have non-trivial effects on simulation outcomes. For example, it has been shown
that strategy abundances may change non-monotonically in population size and selection
strength [NSTF04, WGHT13, WD19]. Similarly, an increase in the system’s mutation
rate can change the evolutionary dynamics altogether [THDST09]. Analytical predictions
for these effects are usually only possible in simple systems with a few strategies. In the
following, we therefore only provide some basic intuition.

(iii) Benefit-to-cost ratio b/c.

According to Theorem 2, a larger benefit-to-cost ratio is favorable to both, a GTFT equi-
librium and a GSCO equilibrium. We would thus expect that an increase in b/c enhances
cooperation. With respect to the abundance of indirect reciprocity, our equilibrium
analysis does not make any predictions.

We explore the effect of the benefit-to-cost ratio on evolution in Fig. 5.8a,b. There,
we distinguish between three scenarios, depending on how many interactions occur on
average and on how noisy third-party information is. In all scenarios, we find that
cooperation is an increasing function in b/c. The effect of b/c on the abundance of
indirect reciprocity is more irregular. However, for all benefit-to-cost ratios, we observe
that an environment with intermediately many interactions and reliable information is
more favorable to indirect reciprocity than an environment with many interactions and
unreliable information.

(iv) Population size n .

The effect of n is more difficult to predict because population size affects the dynamics
on multiple levels. First, according to Eq. (5.29), it affects the stability of conditional co-
operation under indirect reciprocity. The intuition here is that the larger the population,
the more likely players already have some third-party information when they encounter
a given co-player for the first time. Increases in population size would therefore increase
cooperation, because players can more easily avoid helping an unconditional defector.
However, this effect should become weaker once the population is already sufficiently
large. Second, the size of a population affects the evolutionary process. On the one
hand, small populations tend to select for spiteful behaviors [NSTF04, Hill1l]. The
intuition here is that the smaller a population, the easier it becomes for players to show
an above-average performance by simply diminishing the payoff of all their co-players.
On the other hand, the dynamics in small populations is more stochastic. Even if a
strategy is slightly disfavored, it still has a reasonable chance to reach fixation due to
stochastic effects if the population is sufficiently small.

Based on these mechanisms, we can expect the following behavior. For the smallest
meaningful population size, n=2, cooperation is disfavored by the evolutionary process
(i.e., the cooperation rate is smaller than 1/2), because of the effects of spite. Moreover,
since direct and indirect reciprocity are indistinguishable for n=2, both should have
equal frequency. While these predictions for n=2 hold for all scenarios, the predictions
for n > 2 will depend on the other model parameters. However, here again one may
predict that scenarios with sufficiently many interactions tend to favor cooperation.
Scenarios with intermediately many interactions and reliable information tend to favor
indirect reciprocity.
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Our simulations for varying population sizes indeed follow this general pattern (Fig. 5.8c,d).
We note that in comparably large populations (n > 500), cooperation rates are non-
monotonic when simulations are run for a short time-span (green and orange curves

in Fig. 5.8d). In large populations, it takes on average more time until any given
population is invaded. Therefore, the outcome of short simulations is more dependent

on the initial population. Because the defection rewarding zone of our strategy space is
larger than the cooperation rewarding zone (Section 5.5.4), non-cooperative populations

are initially favored. This may explain the decline of cooperation for larger population
sizes when simulations are run for a short time span.

(v) Selection strength 3 .

Selection strength only affects the evolutionary process. Therefore we cannot directly
infer its effects based on our static equilibrium predictions. Still we can form some
intuition in the following way. In the most simple case of =0, payoffs are irrelevant for
the spread of a strategy. For such a neutral process, we expect the average cooperation
rate and the average abundance of indirect reciprocity to approach 50%. For small but
positive selection strengths, we would expect cooperation to be slightly disfavored in all
scenarios. The intuition for this is as follows: Because selection is weak, all strategies
are played with almost equal abundance. Because the best response to a majority of
strategies is ALLD (Section 5.5.4), this effect is expected to give a slight advantage to
non-cooperative strategies. For intermediate to strong selection, we expect the outcome
to depend again on the scenario. In scenarios with sufficiently many interactions,
cooperation can evolve. In addition, provided that cooperation evolves, we expect more
indirect reciprocity when there are intermediately many interactions and information
is reliable.

We systematically vary selection strength in the simulations shown in Fig. 5.8e,f.
Again, the results seem to generally agree with the intuition provided above. As with
population size, we find that the effect of selection strength on cooperation can be
non-monotonic. However, this time, we observe this non-monotonicity even in the
case that simulations are run for a long time (orange curve in Fig. 5.8e; for the
respective simulations, we have consecutively introduced 5-107 mutant strategies into
the population. We have checked with additional simulations that 10® mutant strategies
yield the same output).

In Fig. 5.9, we explore this non-monotonicity in more detail. Contrary to what
one may expect, we do not observe that this non-monotonicity is due to a reduced
robustness of cooperators (Fig. 5.9a). Moreover, mutants that succeed in invading a
conditionally cooperative resident are highly cooperative themselves (Fig. 5.9d). As a
result, highly cooperative populations actually become more abundant as we increase
selection strength. At the same time, however, we find that highly non-cooperative
strategies also increase, and at a faster rate than the highly-cooperative strategies
(Fig. 5.9c—e). Combined, these effects result in overall smaller cooperation rates under
strong selection.

(vi) Mutation rate .

In several of our figures we consider the limit of rare mutations [F106, WGWT12, IN10]
(e.g, Fig. 5.4, Fig. 5.7a—d). That is, we assume the mutation rate is vanishingly small,
such that at any given point in time, the population employs at most two different
strategies. This assumption comes with several mathematical and computational
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advantages[F106] and it has been employed in many studies of reciprocity [SSP16,
SP13, GT12b, HST*18] and beyond [HTB*07, SDSTH10, HT12]. At the same time,
such an assumption entails the risk that important mixed equilibria are overlooked,
because they cannot be reached by the evolutionary process. To explore the robustness
of our rare mutation results, we have thus performed additional simulations for positive
mutation rates (e.g., Fig. 5.5, Fig. 5.7e—h). There we have observed that our rare-
mutation results do not require mutation rates to be exponentially small (as assumed
by the respective theory [WGWT12]). Instead, we observe a reasonable agreement
between the rare-mutation limit and our simulations for positive mutation rates once
w is of the order 1/n or smaller.

In Fig. 5.8g,h, we further explore the effect of mutation rates. To gain some intuition
for the effect of mutation rates, consider first the limit x4 — 1. In this limit, strategy
abundances are again independent of the strategies’ payoffs. Every strategy is therefore
played with equal likelihood. Both, the average cooperation rate as well as the average
abundance of indirect reciprocity simplify to 1/2. If p is sufficiently close to one but
smaller than one, we would again expect that cooperation is slightly disfavored (because
ALLD is a best response to a uniformly random population). While these predictions
apply for all scenarios, the behavior of the system for small mutation rates depends
on the exact game parameters. As mutations become sufficiently rare, we expect to
recover our main text results based on the method by Imhof and Nowak[IN10] for the
limit 41— 0 (as depicted in Fig. 5.7a—d).

Our simulations in Fig. 5.8g,h largely follow this intuition. Interestingly, however,
we again observe that cooperation based on direct reciprocity is more robust than
cooperation based on indirect reciprocity when mutations occur at an intermediate
rate (Fig. 5.5, Fig. 5.7). As noted in the main text, this can occur because in indirect
reciprocity, the payoffs of conditional cooperators increase nonlinearly in the number
of other conditional cooperators. We explore this non-linearity in more detail in the
next section.

An analysis of the competition between defectors and cooperators

According to the simulations, we observe a certain bias in favor of direct reciprocity when
interactions are common (i.e., when § —1). Surprisingly, this bias exists even if indirect
information is completely reliable (i.e., when € —0). A static equilibrium perspective
cannot explain this effect. After all, Theorem 2 suggests that whenever cooperation can
be sustained with direct reciprocity, it can also be sustained with indirect reciprocity if
the error rate is sufficiently small. In the following, we aim to provide an evolutionary
argument for this phenomenon. This argument also sheds some light on why cooperative
strategies of indirect reciprocity may have problems to evolve for larger mutation rates.

To this end, let us assume that players can only choose between two strategies, a cooperative
strategy (1,1,¢,\) and ALLD=(0,0,0,A). We explore the competition between these
two strategies for both A=0 and A=1 in the limit of no errors, ¢ — 0.

1. Direct reciprocity (A=0).
In a population with k cooperators and n—k defectors, we can use Eq. (5.19) to
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explicitly calculate the players’ payoffs as

0 — 7’2]; (b—e) - 222 <(1—5)+(5q> ¢ .
"= ((1—5)+5q> b,

Importantly, both players’ payoffs are linearly increasing in the number of coopera-
tors k (see Fig. 5.6a,c for an illustration of 72 and 7%, for two different values of
). We can simplify these payoff expressions further if we define z:=k/n to be the
fraction of conditional cooperators in the population, and let n— oc. In that case,
payoffs become
e = (b—c)-z — (1—=0+6q)c-(1—2)
7 = (1—640q)b- 2.

For z — 0, cooperators always obtain a lower payoff than defectors. In the other
limit, z— 1, cooperators outperform defectors if ¢ <1—c/(5b). Under that condition,
the dynamics is bistable: each strategy is favored if it is adopted by sufficiently
many players. The minimum fraction of cooperators to make cooperation beneficial
can be calculated as

(5.33)

0 1—5+5q' c_

(1—q)0  b—c

This critical threshold becomes arbitrarily small as the number of repetitions in-
creases (0— 1), and as the cooperative strategy approaches TFT (¢—0). That is, if

only there are sufficiently many repetitions, already a small minority of TFT players
can easily invade into an ALLD population.

(5.34)

2. Indirect reciprocity (A=1).
Again, we consider k conditional cooperators with strategy (1,1,¢,1) and n—k
defectors with strategy (0,0,0, A). According to Eq. (5.68), their respective payoffs
are now

k-1 1+((n=1)g—1)s 1+(n—2+(n—k)(1—q))6'(b_ )_n_k; 1+((n—1)q—1)6.
n—1 1+(n—2)8 1+(n—2—(k5—1)(1—q))6 A 1+(n—2)8

ko 1+((n—1)g—1)6
n—1 1+(n-2)8

1
To

)
b)—l
I

(5.35)
The defectors’ payoffs still depend linearly on the cooperators’ generosity parameter
g and on the number of cooperators k. However, the cooperators’ payoffs are
nonlinear (see Fig. 5.6b,d). If we again define z := k/n, and let n— oo, the above
payoffs simplify to
_ q+ Q(l_Q)(l_Z) Z(b o C) . q(l—z)c

1-(1-¢)z

= q-zb

T

(5.36)

1
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We note that dnf,/02>0 and §?r}, /022 >0 for ¢>0. That is, the payoff of coopera-

tors increases disproportionally in the number of other cooperators. When z—0,
cooperators are again outperformed by the defectors. Conversely, when z — 1,
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cooperators succeed if g <1—c/b. In that case, there is again a bistable competition
between cooperators and defectors. The critical threshold for cooperators to be

favored is now
c

1

z g (5.37)
In contrast to the case of direct reciprocity, we note that this critical threshold is
independent of the continuation probability. In particular, even when the game is
infinitely repeated, indirect reciprocity always requires a critical mass of conditional
cooperators present in the population for cooperation to succeed. The critical mass
required is at least ¢/b.

The above results highlight that direct and indirect reciprocity differ in their relative
strengths.

On the one hand, indirect reciprocity leads to a faster spread of information. As a

consequence, conditional cooperators are better able to restrict the payoff of defectors.

In fact, we find 7}, <% for all parameter values. This faster spread of information is
particularly important if players only interact for a few number of rounds. For § — 1, this

comparative advantage of indirect reciprocity disappears, and 75 =7Y.

On the other hand, successful cooperation in indirect reciprocity is based on synergy

effects. Cooperators only obtain a high payoff if they are present in sufficient numbers.

That is, 74 <% for sufficiently large 6. Overall, a comparison of the thresholds for direct
and indirect reciprocity yields

b
0 <2t 5> : :
<y & e R (5.38)

That is, once the continuation probability is sufficiently high, direct reciprocity requires
fewer cooperative mutants to undermine an ALLD population.

Evolutionary dynamics for probabilistic information usage

In our previous analysis of the evolutionary dynamics, players incorporate any third-party
information according to a deterministic rule. They either never take such information
into account (A =0) or they always do so (A =1). In the following, we consider an
evolutionary process where individuals can interpolate between these two extremes.

To this end, we need to adapt the evolutionary process as described in Section 5.5.5 to
allow for mutant strategies with intermediate values of A. One rather immediate way to
incorporate values of A is to assume that new mutant strategies (v, p’, ¢’, \’) are uniformly
drawn from the four-dimensional unit cube [0,1]*. Such a mutation scheme, however,
would predominantly result in mutant strategies that rarely engage in direct reciprocity.
To see why, we note that in a population of size n, two players have on average n—2
third-party interactions each before they have a direct encounter again. As a result, even
players with comparably small values of A have quite a high probability to update a
co-player’s reputation state between two direct encounters.

In the following, we formalize the above intuition. To this end, consider a player with
strategy (y,p,q, A) who just had a direct interaction with some given co-player. Let 7
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denote the probability that the player does not update the co-player’s reputation until the
next direct interaction of the two players. This probability can be computed as follows:

72%(2:?) 7111(1 -V = 1+(;—2)/\' (5:39)

In sum on the right hand side, ((n—2) / (n—l))k /(n—1) is the probability that the co-player
engages in k third party interactions until the next direct interaction happens. The
remaining factor (1—\)* is the probability that the focal player decides not to update the
co-player’s reputation after each of these third-party interactions. The resulting quantity
~ reflects how likely the player’s decision in the next game with the co-player is based on
their last game with each other. We thus refer to 7 as the effective probability that a
player engages in direct reciprocity. Similarly, we refer to

(n—2)A

1+ (n—2)A (5.40)

yi=1-7=
as the player’s effective probability to engage in indirect reciprocity. In particular, for a
player with A=0 who ignores any third-party information, we obtain v=0 as one may
expect. On the other hand, if A=1, then Ypay:=(n—2)/(n—1); in this case, the only time
the player’s reaction is based on direct experience is when the co-player happens not to

have any third-party interactions between two direct encounters (we revisit this case in
Section 5.5.6).

Importantly, the effective probability to engage in indirect reciprocity according to
Eq. (5.40) is nonlinear in A. For example, even if a player is rather unlikely to take into
account any particular piece of third-party information (e.g., A=10%) may have a consid-
erable effective probability to engage in indirect reciprocity (v~ 82.8% for a moderate
population of size n=>50). In particular, for simulations in which A is chosen uniformly
between [0,1], most mutant strategies would predominantly engage in indirect reciprocity.
For our simulations in Fig. 5.10, we thus do not employ such a mutation scheme. In-
stead, we generate mutant strategies (y,p, ¢, A) such that the resulting v according to
Eq. (5.40) is distributed uniformly in [0, Yyayx]. In this way, we ensure that a randomly gen-
erated mutant is approximately equally likely to engage in direct and in indirect reciprocity.

For the simulations, we first consider the case that the player’s value of « is fixed. We then
let v vary between v=0 and ¥ ="y.x. For Fig. 5.10a, we have re-run the simulations
shown in Fig. 5.4a for the case that players are comparably unlikely to interact again,
9 =1/2. Here we observe that players are most likely to adopt cooperative strategies
when ~ is large (i.e., when players have a large effective probability to engage in indirect
reciprocity). Conversely, for Fig. 5.10b, we consider the limit of infinitely many pairwise
interactions, 6 — 1. As already suggested by Fig. 5.4b, our results here indicate that
direct reciprocity is more effective in generating high cooperation rates. While these
two results are obtained in the limit of rare mutations, we obtain similar qualitative
results for more abundant mutations (Fig. 5.10c,d). When 6 = 1/2, strategies with
higher v generate more cooperation, irrespective of the considered mutation rate. On the
other hand, when § =1, strategies with smaller ~ are more conducive to the evolution of
cooperation (which reflects our earlier results in Fig. 5.5). We note that these simulations
make a similar prediction as the theoretical results in our Theorem 2. The results suggest
that in general, intermediate values of A are not more favorable to cooperation. Instead,
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the highest cooperation rates are achieved either for A=0 (i.e., y=0) or for A=1 (i.e.,
VZ'Ymax)-

In a second step, we then allow the value of v to co-evolve along with the other strategy
parameters y, p, and q. Repeating the simulations done for Fig. 5.7a—c, we consider three
different scenarios. (i) If errors are abundant and players only interact for a few rounds,
we observe that no cooperation evolves and that selection among the player’s v values
is neutral (Fig. 5.10e). (1) If errors are rare and players interact for an intermediate
number of rounds, cooperation can evolve (Fig. 5.10f). In that case, we also observe
that players tend to have a higher effective probability to engage in indirect reciprocity.

In particular, among all possible values of v, players most abundantly choose v~ yyax.

(79) If errors occur at an intermediate rate and players interact often, players show a bias
towards sustaining cooperation based on direct reciprocity (Fig. 5.10g). Now the most
abundant strategies adopt v~0.

In a last step, we have systematically varied the considered error rate and the continuation
probability (Fig. 5.10h). Compared to the baseline case in Fig. 5.7d, we observe some
notable differences. On the one hand, when errors are abundant, players seem to have
more difficulties to establish cooperation. On the other hand, also the average value of y
seems to be closer to 1/2 (note that the color legend in Fig. 5.10h is rescaled to allow
for a better contrast between the different regions). Nevertheless, the general patterns
outlined in Fig. 5.7d are conserved. Cooperation is most likely to evolve when the
continuation probability is large and when errors are rare. At the same time, players
show a bias towards indirect reciprocity if they only interact for intermediately many
rounds, whereas they prefer direct reciprocity when there are many rounds and many errors.

We note that we can gain insight regarding the range of viable A that can evolve to
sustain cooperation independent of the mutation scheme, simply by taking another look
at Eqgs. (5.21-5.24). To this end, let 0 < A < 1 be arbitrary, and consider general form of
the equalizer strategy o=(1,1, ¢}, A) with ¢} :=1—r} and r3, as defined by Eq. (5.23). By
requiring that ¢* > 0, we get the following condition on ¢ for the respective cooperative
Nash equilibrium to exist:

Cc

"=y A(n—2)((1-2)bp—c)

(5.41)

We can however also express this as two different conditions on A. For one, when
e < (l—c¢/b)/2 and 0 > &, we get

c/d—b
e AMn—2)((1-2¢)b—c) (5:42)
For ¢ > (1—¢/b)/2 and § > dy, this is
¢/0=b (5.43)

= b+ An—2)((1-2e)b—c)

Equation 5.42 tells us that if cooperation is to evolve in a scenario with few errors, the
evolving values of A\ need to be above a certain threshold (i.e. there is a lower bound on
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how likely players are to engage in indirect reciprocity). Conversely, if errors are abundant,
the evolving values of A need to be sufficiently small. (i.e. there is a lower bound for how
likely the players’ actions are based on direct reciprocity). This gives additional intuition
for the behavior of our model beyond the restriction to the extremal values A = 0 and
A=1.

5.5.6 Model extensions
The impact of errors and incomplete information

Our baseline model introduced in Section 5.5.2 is based on a number of simplifying
assumptions. In particular, we assumed that only third-party interactions are subject
to perception errors, that player always implement the correct action, that both actions
(C and D) are equally likely to be misperceived, and that all players can observe all
interactions in a population. In the following, we discuss the impact of each of these
assumptions separately.

Direct reciprocity with perception errors. We first discuss how our results need to be adapted
when players misperceive the actions of a direct interaction partner with probability
€0 >0. For better clarity, we now refer the probability that players misperceive third-party
interactions as 1. The baseline model corresponds to the case eg=0 and £, =¢. In general,
it is reasonable to assume that indirect observations are more prone to misinterpretation
than direct observations, in which case ¢y <e;. When direct reciprocity is subject to
perception errors, the main equation (5.12) becomes

zij(t+1) = (1—w) z45(t)
+w(((1=e0)wsi(t)+e0(1=53(1))) pi + ((1—20) (1 —25:(1)) + 025:(t)) 41
+ (W—w) (1= Ay 245(t)

+xw Y [(A=en)zu(t) +er(T—z(t) pi + (1—e1)(I—a50(t)) + e15u(t)) qi).
14,
(5.44)

We note that the new parameter ¢y only affects the second line of this recursion, which
captures the direct interaction between ¢ and j (Fig. 5.2f). As in Section 5.5.2; we can
use this equation to calculate the players’ average cooperation rates and payoffs. Again,
we are interested in which strategies are able to sustain cooperation. To this end, we
need to slightly modify our definition of cooperative Nash equilibria. We say a strategy
o=(y,p,q, \) is a cooperative Nash equilibrium if

(i) o is a Nash equilibrium, and
(7i) the cooperation rate in a homogeneous o-population approaches one as both g —0
and g1 —0.

Based on recursion (5.44), the equilibrium results of Section 5.5.4 can be adapted as
follows.

Theorem 4 (Cooperative Nash equilibria when direct interactions are subject to percep-
tion errors).
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1. A strategy o= (y,p,q, \) is a cooperative Nash equilibrium if and only if

o 1+ (n—2)0A o
AT (1-2¢0) + (n—2)(1—2e1)\ b

y=1, p=1, gq=1-r}, with (5.45)

2. In particular, cooperation can be sustained through direct reciprocity (A=0) if and
only if 6 >dg with
1 c
= - - 5.46
1—280 b ( )
It can be sustained through indirect reciprocity (A\=1) if and only if 6 >, € [0, 1]
where

do

c

= (1—2¢0) b+ (n—2)((1—2€1) b— c) '

(5.47)

In Fig. 5.3d, we illustrate the equilibrium conditions (5.46) and (5.47) for the special
case €g=¢€1. As one may expect, it is more difficult to sustain cooperation when also direct
interactions are subject to perception errors. This increased difficulty is reflected in the
additional (1—2¢p)-terms in the denominator of equations (5.46) and (5.47). However, the
impact of g9 on the threshold value ; for indirect reciprocity vanishes as the population
size n becomes large. Again, this is intuitive: if a players’ reputation is based on his entire
behavior, errors that only affect direct encounters become negligible in large populations.

To explore how perception errors in direct interactions affect the evolutionary dynamics of

strategies, we have re-run the simulations in Fig. 5.7d, but now assuming that ¢y =¢; =¢.

As shown in Fig. 5.11b, there are two effects. First, players are now less likely to
cooperate, especially for high error rates. Second, players become more likely to take
indirect information account (as it is now just as reliable as direct information).

Implementation errors. In addition to perception errors, models of direct and indirect
reciprocity often consider an alternative source of noise in the form of implementation
errors or trembling hand errors[NSES95, Pos99]. To account for these kinds of errors, we
assume that when a player intends to cooperate (defect), he mistakenly defects (cooperates)
with probability e. Under this assumption, Eq. (5.12) for player i’s probability to be in
the good state with respect to co-player j becomes

zij(t+1) = (1-w) 25 (t)
+ (1= e)aji(t) +e(l—a;i(1)) pi + (1—e)(1—j5(t) +ex5i(t)) a1
+ (W—w) (1= N;) z5(t)

+Ahw Y [((1—6)(1—6)%1(75)4—(1—e)a(l—le(t))—i—e(l—a)(l—:cjl(t))—i—eaxﬂ(t)) Di
I£i.

+ (e(=e)au(®)+ee(1-zu(t) +(1—e)(1—e) (1=2u(t)) + (1—)ezju(t) ) ]

(5.48)

Here, the second and fourth line have changed in comparison to Eq. (5.12). For example,
the second line reflects that in direct interactions, we need to distinguish four cases,
depending on whether or not the co-player intended to cooperate, and whether or not
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there was an implementation error. Also the payoff formula (5.19) needs to be adapted
accordingly,

M = nil > ((1=e)zjite(l—5)) b= (1—e)a; + e(1—xy)) . (5.49)

Again, we are interested in those Nash equilibria in which everyone is fully cooperative as
errors become rare (that is, when e -0 and e—0).
Theorem 5 (Cooperative Nash equilibria under implementation errors).

1. A strategqy o= (y,p,q,\) is a cooperative Nash equilibrium if and only if

1+ (n—2)0A c
(1-2¢)(1+(n—2)(1-2¢)A) b (5:50)

y=1, p=1, q=1-ry, with )

2. In particular, cooperation can be sustained through direct reciprocity if and only if

1 c

T 12 b
It can be sustained through indirect reciprocity if and only if § >, €0, 1] where

90 (5.51)

(1-2¢)b+ (n—2)((1-2¢)(1-22) b —c)’

Interestingly, when we compare Theorem 5 with the respective conditions in Section 5.5.4,
we note that the effect of implementation errors is equivalent to a rescaling of the benefit
parameter from b to (1—2e)b. That is, with respect to the static equilibrium predictions,
increasing the rate of implementation errors by 10% has the same effect as reducing
the benefit of the game by 20%. To explore the effect of implementation errors on the
evolution of cooperation, we have re-run the simulations in Fig. 5.7d, but now for e=0.01
instead of e=0 (Fig. 5.11c). As one may expect, the addition of implementation errors
renders the evolution of cooperation more difficult. In the new scenario, players need to
interact for a larger number of rounds to establish substantial cooperation rates.

Asymmetric errors. One way how misperceptions can occur is when the acting player
herself has an incentive to misrepresent her action. This is particularly relevant for
defectors, who may wish to conceal the true nature of their actions. Excellent models
of strategic miscommunication in indirect reciprocity can be found in the papers by
Nakamaru and Kawata and by Seki and Nakamaru [NKO04, SN16]. In the context of our
model we can approximate the workings of strategic miscommunication by assuming that
the two possible actions C and D have different probabilities to be misperceived, - and
€p. A scenario where defectors are more likely to misrepresent their actions can then
be represented by assuming €p > ec. For asymmetric errors, we obtain the following
recursion for the pairwise probability to assign a good reputation to a co-player,

zij(t+1) = (1—w) z45(t)
+w (25(t) pi + (1—25(t)) @)
+ (w—w) (1= N;) z45(t)
+ i Y w[((T—eo)au(t) + ep(I—zu(t)) pi + (1—ep)(1—zu(t) + ecw(t)) ¢i] -

1#i,j
(5.53)
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The players’ payoffs are again defined by Eq. (5.19). In the case of asymmetric errors, we
speak of a strategy as a cooperative Nash equilibrium if it is stable and if the cooperation
rate against itself approaches one if both ¢ — 0 and ep — 0. We obtain the following
characterization:

Theorem 6 (Cooperative Nash equilibria under asymmetric errors).
1. A strategqy o= (y,p,q,\) is a cooperative Nash equilibrium if and only if

(1+ (n—2)0N) c
1+ (n—2) (1—ep—ec)Adb’

2. In particular, cooperation can be sustained through direct reciprocity if and only if

52(50 with c
b= 7. (5.55)

It can be sustained through indirect reciprocity if and only if § >, € [0, 1] where

61 - b—|— (n—2)((1—€p—€c)b—c> (556)

In case e¢c = ep, these conditions recover the respective results of the baseline model,
which is reassuring. In Fig. 5.11d, we show simulation results for the asymmetric case
where e =0 and ep=¢>0. For the parameter range considered previously, 0<d <1 and
0.001 <e£<0.1, we observe more cooperation compared to our baseline model. This occurs
because the effective rate at which errors happen is now reduced, because only some of
the players’ actions are subject to noise.

However, we note that in contrast to the previous scenarios, it is not unreasonable to
assume that error probabilities may exceed 10% when they are the result of strategic
miscommunication. Larger values of £p can impede cooperation considerably. In fact,
even if ec =0, it follows from Eq. (5.56) that indirect reciprocity is no longer able to
sustain cooperation if ep > (1—¢/b)(n—1)/(n—2). That is, for cooperation to evolve
through indirect reciprocity, there need to be limits on how well defectors can deceive
others.

Incomplete information. In our baseline model we assume that each player is informed
about everyone else’s interactions. This assumption of complete information though
standard is unrealistic, especially if the population is large. In the following, we thus
introduce an additional parameter v € [0, 1]. This parameter reflects which fraction of
third-party interactions players observe on average. With incomplete information, the
main equation (5.12) now becomes

zij(t+1) = (1—w) zy;(t)
+w (fcji(t) pi + (1= (1)) Qi)
+ (w—w) (1=vAi) z4(t)
+ wr; Z((l 5)9ch —|—€<1—a:jl(t))> i + ((1—5) (1—xﬂ(t)> + Sa:jl(t)> qi-
7 (5.57)
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Here, the third and fourth line have changed in comparison to Eq. (5.12). That is, a
player’s probability A; to take into account indirect information is now scaled by a factor
of v, the probability that this information is learned in the first place. A player with \;=1
no longer takes every action of the other group members into account when assigning
reputations, but every action he is aware of. The condition for cooperation to be feasible
is now given as follows.

Theorem 7 (Cooperative Nash equilibria under incomplete information).
1. A strategy o= (y,p,q,\) is a cooperative Nash equilibrium if and only if

1+ (n=2)dvA ¢
1+(n—2)(1—2e)vA &b

y=1, p=1, q=1-ry, with r} (5.58)
2. The condition for cooperation under direct reciprocity is unchanged, § > 6y = c/b.
For indirect reciprocity there exists a cooperative Nash equilibrium if and only if
d>6,€10,1] where
c

= (n-2)((1-2¢)b— c)

(5.59)

In the limiting case that players obtain no third-party information at all, such that
v =0, the two threshold values coincide, dy=4;, as expected. In Fig. 5.11d, we present
evolutionary simulation results when there is almost no third-party information (¥=0.01,
such that only every 100th interaction is observed on average). In that case, players who
take indirect information into account are almost indistinguishable from those players who
do not. Indeed, we find that cooperation only evolves once it can be sustained through
direct reciprocity, and that indirect reciprocity is generally disfavored.

A model of pure indirect reciprocity

Our baseline model makes two assumptions on how individuals assign reputations to each
other: (7) Individuals always update a co-player’s reputation after a direct interaction,
and (77) if the respective co-player interacts with a third party, the co-player’s reputation
is updated with probability A. These assumptions imply that a player with A=0 acts
based on direct experiences only, whereas a player with A\=1 equally takes into account
all of a co-player’s interactions, no matter whether the focal player was directly involved.
Since interactions occur randomly, however, it may happen that the same two players are
chosen to interact for two consecutive rounds. In such a case, the players’ decisions in
the second round are necessarily based on their respective direct experience made in the
first round — even if players generally base their decisions on indirect reciprocity (that is,
even if A=1). On a conceptual level, this effect may make it more difficult to compare
the two modes of reciprocity. It can thus be useful to study a model where individuals
use pure versions of each behavior (such that individuals who opt for indirect reciprocity
neglect any additional direct information they may have). In the following we present
such a model, and we show that it leads to qualitatively similar conclusions.

For this model, we assume the players’ strategies are given by a 4-tuple (y,p, q, k). The
interpretation of the first three entries is the same as in the baseline model. For the last
entry, we assume that if a focal player directly directly interacts with a given co-player,
the co-player’s reputation is updated with probability 1—k. In contrast, if the co-player
interacts with a third-party, the co-player’s reputation is updated with probability «. This
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model implies that for k=0 only direct interactions lead to a reputation update, whereas
for k=1 reputations are only updated after third-party interactions. Similar to Eq. (5.12)
for the baseline model, we can derive a recursion for the probability z;;(¢) that player ¢
considers j to be good at time t. This recursion now takes the form

zij(t+1) = (1—w) z4(t)
+ w(l—r;) (%’i(t) pi + (L—(t)) Qi>
+ wk; - x;5(t)
+ (0—w) (1 =) 245(t)

+ wkK; Z((1—5)3:]-1(15)—l—e(l—le(t))) i + ((1—5) (1—le(t)) + ele(t)) qi-
o (5.60)

This recursion only differs from Eq. (5.12) in the second and third line. These two lines
both refer to direct interactions of players ¢ and j, which happen with probability w. For
the model considered here, direct interactions lead to a reputation update with probability
1—k;. In that case, the new reputation depends on co-player j’s action, as encoded by
x;;(t), and on the values of p; and ¢;. Otherwise, with probability x;, player j’s reputation
remains unaffected.

Based on this recursion (5.60) can now derive the corresponding versions of all results of
the baseline model. We summarize the respective findings in the following.

Theorem 8 (Cooperative Nash equilibria for the model with pure indirect reciprocity).
Consider a group of size n>3.

1. A strategy o= (y,p,q, k) is a cooperative Nash equilibrium if and only if

_ 1+ (n—3)0k c
r = —. .61
with 1 — i+ (n—2)(1—22)r 0b (5.61)

y:17 pzla qzl—T:,
2. In particular, if players only use direct reciprocity (k =0), we obtain the same
condition for the existence of a cooperative Nash equilibrium as in the baseline model,
d >09=c/b. For indirect reciprocity (k=1) there is a cooperative Nash equilibrium
if and only if 6 >461 €0, 1] where
c
b(n—2)(1—2¢) — e(n—3)

For any x>0, we note that the equilibrium value of ¢ according to Eq. (5.61) approaches
q=1—c/(1-2¢)/b in the limit of large populations. This limit coincides with the respective
limit of the baseline model according to Eq. (5.27). This is unsurprising: when populations
are sufficiently large, the probability that two particular players interact with each other
twice in a row becomes negligible. In that case, already our baseline model yields a model
of pure indirect reciprocity. But even for finite population sizes, the two models typically
yield similar predictions. For example, for the parameters in Fig. 5.4 (b/c=5, n=>50,
£=0) the baseline model suggests that full cooperation is feasible for §o=0.2 (when A=0)
and 6;=0.0051 (when A=1). For the alternative model considered here, the respective
values become 6y =0.2 (when k=0) and §; =0.0052 (when x=1), respectively. As a result,
we also observe a similar dynamics in evolutionary simulations (see Fig. 5.17).
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Figure 5.17: The coevolution of conditional cooperation and information use
in a model of “purified” indirect reciprocity. For the model discussed in the main
text, we assume that after a direct interaction, players always update their co-player’s
reputation. After a indirect interaction, they update their co-player’s reputation with
probability A. These assumptions imply that even if A=1, players may occasionally react
based on their direct experiences. This happens, for example, if two players have two
consecutive interactions. In that case, the players’ behavior in the second round will
depend on the outcome of the first. While such an assumption seems realistic, it can
be useful to compare purified versions of both kinds of reciprocity. We explore such a
model in 5.5.6. There, the players’ strategies take the form (y,p,q, ). A value of k=0
means players ignore all of a co-player’s third party interactions (similar to the case A=0
discussed before). A value of k=1, however, now means that players ignore all direct
information they may have. In the limit of large populations, the two strategy spaces
(y,p,q,A) and (y, p, q, k) yield identical results. Here we repeat the simulations performed
in Fig. 5.7a—d for a finite population of n =50, using the alternative strategy space
(y,p,q, k). The results in a—d correspond to and are almost indistinguishable from the
results shown in Fig. 5.7a—d.

Finite-state automata with multiple states

So far we have studied the evolution of direct and indirect reciprocity in the most sim-
ple strategy space possible. Players can only assign two possible reputations to their
co-players, and a player’s updated reputation only depends on the last action taken into
account. In the following two subsections, we sketch how our framework can be extended
to scenarios that do not meet these two assumptions.

Strategies represented by finite-state automata with multiple states. We begin by allowing
players to assign more nuanced reputations to their co-players. To this end, we consider
players who use finite state automata with more than two states. In addition to the
dichotomous characterization of a player being either ‘good’ or ‘bad’, this allows us to
capture models in which players can have a third, ‘unknown’ or ‘neutral’ reputation. Such
third states have been important in models in which players can forget [NM11]. Similarly,
these automata also allow us to capture scenarios in which it takes multiple defections in
memory to yield a bad reputation [Berll, BG16].

For this model extension, we assume that each player’s strategy takes the form (€2, ~, 79, 7, A).
Here, the first component Q= {wy,...,wy,} is the number of (reputational) states the
player does distinguish. The second component v :  — {C, D} determines for each
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assigned reputational state whether or not to cooperate with a co-player who has the
respective reputation. The third component 7, € A® determines the initial reputational
state of the co-players. Here, A®={x € [0,1]™ | 21+ ...+z, =1} is the set of probability
distributions over the set of states. The fourth component 7: Q x {C, D} — A® is the
transition function. It determines how likely the updated reputation of a given co-player
is w’ € ), depending on the previously assigned reputation w €2 and on the co-player’s
action a € {C, D}. As before, we assume that the co-player’s reputation is always updated
after a direct interaction. Whether or not the co-player’s reputation is also updated if
the co-player interacts with a third party depends on the player’s receptivity A. Third
party interactions are ignored when A =0, whereas they are fully included when A =1.
In the first case, we again obtain a model with direct reciprocity only. In that case, our
framework captures previous studies on repeated games among players with finite state
automata[vVGRN12, GvV16, GvV18]. If A=1, we obtain a model of indirect reciprocity.
In that case, we can capture previous models in which players can have more than two
possible reputations[TSM13, NM11, NS98b].

The reactive strategies considered in the previous sections represent a special case of these
finite state automaton strategies. For a reactive strategy o= (y,p, ¢, A) we have

0G5 A={5 1925 mmamn. ea={P1TH E00

(5.63)
From this representation, the two important simplifications of reactive strategies become
immediately apparent: (7) reputations are binary, and (i) when a co-player’s reputation
is updated, the new reputation only depends on the co-player’s action but not on her
previous reputation. This latter assumption has been crucial for the explicit calculation
of the players’ payoffs in Section 5.5.3. Due to this assumption, the pairwise reputation
variable x;;(t41) can be written as a linear function of the respective quantities xy;(t) in
the previous round. This no longer needs to hold for more general finite state automata,
where transitions depend on both the current state and the respective co-player’s action.
Instead of calculating the payoffs explicitly, we instead use numerical simulations of the
game dynamics to obtain the players’ payoffs in the following.

Three examples of finite-state automata with multiple states. We illustrate this approach
with three examples (Fig. 5.12). In each case, we assume the respective finite state au-
tomaton has three states, ‘good’ (G), ‘neutral’ (N), and ‘bad’ (B). Initially, players assign
a good reputation to everyone. Each time the co-player defects, the co-player’s reputation
deteriorates (from good to neutral, or from neutral to bad, respectively). Similarly, each
time the co-player cooperates, his reputation improves. Players are assumed to cooperate
against good opponents and to defect against bad opponents. The three automata differ
in how they deal with opponents with a neutral reputation: we consider the case that
players may either cooperate (Al, Fig. 5.12a), cooperate with 50% probability (A2,
Fig. 5.12b), or defect (A3, Fig. 5.12c). The automata Al and A3 have been referred
to as ‘generous discriminator’ and ‘rigorous discriminator’, respectively[TSM13].

Stability of the three-state automata against ALLD and ALLC. In a next step we considered
a scenario in which n—1 residents employ the respective automaton strategy. The remaining
player either employs ALLD or ALLC. Keeping the population composition fixed, we
simulate the players’ payoffs for various values of A€ [0, 1] (Fig. 5.12d—f). We used the
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fixed game parameters b=>5, c=1, n=>50, and £=0.05. To compute the payoffs, we use
the same simulation scheme as in a previous study[HST'18]. That is, initially, all players
are assumed to assign a good reputation to each other. Then we simulate a game with
2-10% rounds. To compute the players’ payoffs , we average over the second half of these
rounds; in this way, we avoid any transient effect during the early rounds arising from
our assumption on the initial reputation assignments. We checked that averaging over all
rounds would not alter our conclusions.

For direct reciprocity only (A=0), we observe that all of the three automaton strategies
are stable with respect to invasion by ALLD, and neutrally stable with respect to invasion
by ALLC. However, once indirect information is considered (A>0), A2 and A3 can both
be invaded by ALLC. Moreover, if residents adopt A3, they fail to cooperate with each
other altogether. Only the first automaton Al is stable against ALLC and ALLD for
all considered A values. Automaton Al can be considered as a threshold strategy in
the sense of Berger and Griine[BG16]: players are certain to defect only if the co-player
defected twice in a row. For appropriate parameter values, such threshold strategies can
sustain cooperation although they only rely on first-order information[Berll, BG16]. Our
results in Fig. 5.12d suggest that the same is true when players blend direct and indirect
reciprocity (i.e., for 0<A<1).

Fvolutionary competition between the three-state automata, ALLD, and ALLC. In a final
step, we sketch how our framework can be used to explore the evolutionary performance
of finite-state automata which depend on both, direct and indirect information. In the
following, we assume players use a fixed receptivity A=0.1 (but it should become clear
how our methods extend to more general settings). Players can choose between three
different strategies: ALLD, ALLC, and one of the three automata discussed above.

In contrast to reactive strategies, there is no known efficient payoff formula for arbitrary
finite-state automata in the context of indirect reciprocity with private information. We
therefore determined the players’ payoffs by simulation. To this end, we considered all
possible population compositions (ka, k¢, kp). Here, k4 is the number of players who
use the respective finite-state automaton strategy, ko is the number of unconditional
cooperators, and kp is the number of defectors. The possible population compositions
are those for which ks+kc+kp=n. Based on these payoffs, we again employ the process
described in Section 5.5.5.

First, we considered the dynamics for =1 in the limit of rare mutations, ;1 — 0, for each
of the three finite-state automata. For the given parameter values, we find that only the
first automaton A; is played with substantial frequency (Fig. 5.13a—c). We observe that
rare defectors are disfavored to invade into an A; population. However, cooperators can
invade through (almost) neutral drift, because they get a payoff only slightly lower than
the residents’. Because unconditional cooperators are in turn easily invaded by ALLD,
there is a cyclic dynamics. Most of the time, the population either adopts A; (65.4%)
or ALLD (32.8%). As a result, the average cooperation rate over time is below 70%.
The other two finite-state automata generate even lower cooperation rates; A, is quickly
invaded by ALLC, whereas Az can be invaded by both, ALLC and ALLD.

Next we have explored the dynamics for a mutation rate of ;4=0.01, such that different
strategies may coexist in a population. For all three automata we find that most of the
time, the population either is in the vicinity of ALLD, or in the vicinity of the edge
between the the finite-state automaton and ALLC (Fig. 5.13d—f). How often these two
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neighborhoods are visited depends on the considered automaton strategy. For A; and A,,
we observe substantial cooperation, whereas for Az players adopt ALLD most of the time.

In a final step we have re-run these calculations for different parameter values. We have
varied the benefit of cooperation, the selection strength, and the mutation rate. As
baseline parameters we took the values used in (Fig. 5.13d—f). For all parameter values,
we find that A; is most likely to induce cooperation (Fig. 5.13g—i). However, also the
second automaton can yield substantial cooperation rates.

Most strikingly, while the mutation rate had a negative impact on cooperation for reactive
strategies (Fig. 5.5), here we find that an intermediate mutation rate is most favorable
to cooperation. However, in our view the two sets of simulations need to be compared
with caution. In Fig. 5.5, we have considered the entire space of all strategies of a
given complexity. In particular, the space is balanced: for every conditional strategy that
becomes more cooperative if the co-player cooperates, there is an analogous strategy that
reduces its cooperation rate. Only under this assumption, an increase of mutation rates
does not per se change the resulting cooperation rate. In contrast, the simulations in this
section are based on only a small sample of possible strategies, and the strategy space is
not balanced. This shortcoming is not specific to our Fig. 5.13, but it is rather common
in the indirect reciprocity literature[NS98b, LHO1, PB03, BS04, PSC06, US09, MVC13,
UYOS18, HST*18]. One reason for this prevalence of unbalanced models is the difficulty
of deriving the players’ payoffs. In the absence of a general payoff equation that applies
to all strategies of a given complexity, researchers have to focus on strategies that seem
most relevant. Such an approach does not naturally induce balanced strategy sets. In this
sense, we consider the simulations performed for our baseline model as more transparent.
They allow for all strategies of some given complexity, without any preselection on the
part of the researcher.

Higher-order strategies

Another class of strategies that has received considerable attention in the literature on
indirect reciprocity (but less so in direct reciprocity) is the class of higher-order social
norms [OI04, NS05, Sigl2]. The first-order social norms correspond to the reactive
strategies considered in the baseline model. When two players interact, then the updated
reputation of each player only depends on whether or not that player has cooperated.
Second-order norms additionally take the reputation of the respective opponent into
account. An example of such a second-order norm is stern judging [PSC06, SSP16, SSP18].
This norm suggests that to maintain a good reputation, one should cooperate with good
opponents and defect against bad opponents. Finally, in third-order norms the updated
reputation of some player additionally depends on the player’s previous reputation. In
that way, higher-order social norms take an increasing number of information into account
when assigning a reputation to another group member.

Using an exhaustive method, Ohtsuki and Iwasa have shown that under public informa-
tion, there are exactly eight deterministic third-order social norms that can maintain
cooperation [OI04, OI06]. These norms are called the leading-eight. They consist of two
components, an assessment-rule and an action rule (see Fig. 5.14a). The assessment rule
determines how to update the reputation of other group members, depending on their
actions, their previous reputation, and the reputation of the opponent. The action rule
determines whether to cooperate; this decision may depend on one own’s reputation, as
well as on the reputation of the opponent. Crucially, Ohtsuki and Iwasa assume public
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information. In the following, we explore the performance of the leading-eight rules when
reputations are based on both direct interactions and indirect observations, and when
information is private.

Representation of third-order strategies. To this end, we now assume the players’ strategies
have the form ;= («;, 5;, A;). The first component is player i’s assessment rule,

a = (agoa, acoB, OBca, OBCB, AGDG, AGDB, OBDG, OBpB)E{G, B} (5.64)

For example, an entry of agop=_G means that ¢ deems it as good if a good population
member j cooperates with a bad population member k. Importantly, whether or not j
and k had a good and bad reputation to start with, depends on the individual perspective
of player ¢ (that is, it depends on z;;(t) and z;(t) at time ¢). The second component of
player ¢’s strategy corresponds to his action rule,

B = (Bee, Bess Bra, Brr)€{C, D} (5.65)

For example, if player ¢ considers himself to be in a good standing but his co-player
to be bad, then an action rule with g = D would prescribe to defect. Again, these
assessments need to be taken from ¢’s individual perspective. To this end, we assume that
each player ¢ now also has one additional automaton that captures ¢’s own reputation.
For this automaton, we set x;;(t) = 0 if player i considers himself to be bad at time
t (which depends on i’s assessment rule and his previous interactions). Otherwise, if
x;;(t)=1, player i deems himself as good. We assume the automaton that captures player
1’s self-perception is updated every time player i interacts with a co-player. With regard
to the reputation of others, we assume that ¢ updates a co-player j’s reputation after a
direct interaction with probability 1, and after an indirect observation with probability
A, as before.

Stability of the leading-eight strategies against ALLD and ALLC. To explore the stability
of third-order social norms in the presence of both direct and indirect reciprocity, we
proceed along the same lines as in the previous section on finite-state automata. Again,
we first consider a population in which n—1 players adopt some leading-eight strategy L;.
The remaining player either adopts ALLC or ALLD. To compute the player’s payoffs for
various values of A\, again we simulate the game dynamics for fixed game parameters b=>5,
c=1, n=>50, and € =0.05. Our results for A >0 resemble previous findings on indirect
reciprocity [HST18]: in the presence of perception errors, all leading-eight strategies are
susceptible to invasion. Either a single ALLC player or a single ALLD player obtains a
higher payoff than the residents (Fig. 5.14b-i). Only for A=0 (when perception errors
are absent), the leading-eight strategies are stable against both mutant strategies.

FEvolutionary competition between the leading-eight, ALLD, and ALLC. In a next step,
we have again explored how the leading-eight perform in an evolutionary context, when
competing with the two unconditional strategies. We use exactly the same setup as
in our previous analysis on finite-state automata. That is, we fixed a receptivity value
A=0.1 for all population members. Then we pre-computed the payoffs with simulations
for all possible population compositions (kr, ko, kp) where kp+kc+kp =n (using the
above payoff parameters). Based on these payoffs, we first considered the rare-mutation
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dynamics. As in a previous analysis for indirect reciprocity only[HSTT18], we find that all

of the leading-eight strategies have problems to persist in the population (Fig. 5.15a—h).

The only strategy that achieves notable frequencies in the population is Lg. However, Lg
is sensitive to noise, and thus tends to defect in the presence of errors.

In a next step, we have considered the evolutionary process for a positive mutation rate,
1=0.01. As we observed for the finite-state automaton strategies, populations tend to be

clustered in one of two regions of the space of all population compositions (Fig. 5.15i—p).

Either most players adopt ALLD, or the population consists of a mixture of leading-eight
players and unconditional cooperators. Cooperative strategies are most abundant for
three of the eight cases, for Ly, Lo, and L7, as observed previously in the case of indirect
reciprocity only [HST*18].

Finally, we have again explored how often players cooperate on average as we change three
key parameters, the benefit of cooperation, the strength of selection, and the mutation
rate. Across all parameters considered, we find that only the three previously identified
strategies Ly, Lo, and L; can result in a population that predominantly cooperates
(Fig. 5.15q—s). For these strategies we find more cooperation when the mutation rate is
intermediate, for 0.01 <p <0.1. This again disagrees with the findings of our baseline

model, according to which such mutation rates are detrimental to indirect reciprocity.

However, as explained before, the two scenarios should not be compared directly. The
simulations for our baseline model consider a complete and balanced strategy space. In
contrast, the simulations Fig. 5.15 only allow for three particular strategies, none of
which being anti-reciprocal (i.e., none of which reducing its cooperation rate in response
to a cooperative co-player). When a strategy space is not balanced, larger mutation rates
may yield more cooperation even in the absence of selection.

To address such problems, it would be desirable to have simulations in which all third-order
strategies (or strategies with different values of \) compete. However, because there is
no general payoff formula for third-order strategies under private information, such an
approach is computationally out of reach. For our baseline model, we have thus analyzed
a more elementary strategy space, the set of all (stochastic) first-order strategies. We
find that even in this simpler strategy space, there is an unexpected strategy of indirect
reciprocity that can maintain cooperation under appropriate conditions. This strategy
is GSCO (Generous Scoring). GSCO does not require higher order information. All it
requires is that players sometimes forgive when they witness a defection.

5.5.7 Appendix
Efficient computation of payoffs

Here we show how the payoffs according to Eq. (5.19) can be computed more efficiently by
taking into account that players with the same strategy receive the same expected payoff.

To this end, suppose the population contains players with s different strategies in total.

Let k; denote the number of players using strategy 4, such that > 7 ;k; =n. Slightly
abusing our previous notation, we now refer to z;;(¢) as the probability that a player with
strategy i deems a player with strategy j as good at time t. When rewriting recursion
(5.14) for this special case, we get two types of equations, depending on whether a player
with strategy ¢ meets a co-player with the same strategy or with a different one,
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ris(t4+1) = (1—w— (@ —w) + wn(1+)\,~(1—25)(k,-—2))> 2is(l)

+ wAiri(1=2¢) > k- zy(t) + (w ¢ + Ni(w—w)(er; + qi)),

IE2)
? (5.66)

(t41) = <1—w— )\Z-(u‘f—w)) () + wri<1~|—)\i(1—25)(l£i—1)> a(t)

P (1-22) 3= L) - au®) + (wa + M@ -w)(ers + @)
I#i

In the above equation, the symbol 1j; is an indicator function; its value is one if j =1
and zero otherwise. Similar to the previous section, we can rewrite the above equation as
x(t4+1)=M x(t)+v, where M is now an s*x s matrix, and x(¢) and v are s*-dimensional
vectors. From this recursion, we can again compute the expected probability z;; to find
an i-player’s automaton with respect to a j-player in a good state, using Eq. (5.18). The
payoff m; of a player with strategy ¢ then becomes

S ki— 1y
oon- 1
Especially when there are only a few different strategies in a large population, this algo-

rithm can be expected to run considerably faster compared to the algorithm derived in
Section 5.5.3.

For the limit of rare mutations and for the characterization of Nash equilibria it is useful
to have explicit formulas for the special case that only s=2 strategies are present in the
population (a resident and a deviating mutant). Suppose there are k players with strategy
o1=(v1,p1,q1, \1) and n—k players with strategy oo = (y2, p2, g2, A2). Then the matrix M
takes the following form,

wr(LEn (1 3o i) whn(1-22) ) 0 0
0 l—w—M(w—w)  wri(1+A(1=2¢)(k—1))wAiri (1—2¢)(n—k-1)
M=
whare(1—2¢)(k=1) wro(1+X2(1—2e)(n—k—1)) 1—w— Ae(w—w) 0
0 0 whors(1-2¢)k wrgl (Iqiu)\g_(/l\zg?)ZnugﬁtQ))

The vectors v and xg are given by

V= (wa+)\1(w)(57‘1+%)a wq A (w—w) (eritqr), wae+a(w—w)(eratga), wQ2+)\2(?IHU)(57‘2+Q2))T,

X0 = <y17y17y27y2)T'

The weighted average probability that an i-player considers a j-player as good again can
be written as

X = (1'11,1'12,[1721,1‘22) = (1—dM)_1 ((1—d)XO —|— dV)
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The equations for the two payoffs then become
(k-1 Lok n— k; b k—1 Lok n—Fk
T = n—1 T11 — 1 n—1 T11 n—1 L12 | G
k—

k n— 1 k n—k—1
Ty =|—=Tio+——"— 222 |b— | —— 221 + “Too | C.
n—1 n—1 n—1 n—1

5.5.8 Proofs of the equilibrium results

Proof of Lemma 1. Let us calculate the converse probability 1—¢ that a given focal pair
does not interact again after it has interacted in the current round. This case occurs
if either the entire population game ends immediately after the current round; or the
population game continues for one more round but the focal pair does not interact in
that game; or the population game continues for two more rounds without the focal pair
interacting, etc. That is, we obtain

1—-d

1-6=(1—d) +d(1—-d)(1—w) + d*(1—d)(1—-w)* + ... = T diw)

(5.69)

Solving this equation for ¢ and using w = 2/ (n(n—l)) yields Eq. (5.20). O

Proof of Lemma 2. As introduced in Section 5.5.3, let x;;(t) denote the probability that
player ¢ considers player j to be good at time ¢ (or equivalently, that player i would
cooperate with j in round t). Assume for the moment that players apply arbitrary
strategies (v, ps, ¢i, Ai). We consider the following quantity,

fis(T) = ( ZOdT(d 21y (T+1) = 35(7)). (5.70)

In this formula, we can express z;;(7+1) in terms of z;;(7) using Equation (5.12). This
yields

[i;(T)=(1-— d)idf{— (1—d+dw+d)\i(@—w)> w5 (7) + dwry - w4i(T)

+d>\ 1— 28 Z ’LU(L’JZ <qu+)\z(w—w)(6n—|—qz))]
l#1,j
(5.71)
Taking the limit as 7" becomes large, Eq. (5.71) becomes
lim f;;(T) = —(1—d+dw+d>\i(w—w)> -2 + dwr; - T

T—o00
N2+ 3w+ d(wg b A (@ - w)erita) ),
l#1,5

(5.72)

where x;;=(1—d) 22, d"z;;(7) is again the weighted average probability that player i
deems player j as good, as defined in Eq. (5.18).
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On the other hand, f;;(T") takes the form of a telescopic sum. So we obtain an alternative
representation of the limit by calculating

Jim fiy(7) = Jim (1=d) (") (T) = 25(0) ) = ~(1~d)ys. (5.73)
Because the two right hand sides of Eq. (5.72) and Eq. (5.73) need to agree, we obtain

(1—d+dw+d)\i(1b—w)) 'l’ij—d’LU’I“i'l'ji—d)\i(l—2€)Ti' Z wl’jl—d(qu'+>\l'(7f)—w)(87‘i—|-qi)> = (1—d)yz
l#1,5
(5.74)

Now, due to the assumptions of the lemma we are considering a homogeneous population
such that all players employ the same strategy, (v;, pi, ¢, \i) = (y,p, g, A) for all i. Due to
symmetry, it follows that z;;=x; =z, =:2 for all 7, j,{. In that case, Eq. (5.74) simplifies
to

(1—d—|—dw—|—d>\(w—w))x—dwr:r;—d/\(l—%)r(u?—w)x—d(wq—l—/\(ﬁ)—w)(57’—1—(])) = (1d)y. (5.75)
Solving this equation for x yields

B (1—d)y+d(wq+A(w—w)(5r+q))
a (1—-d) + d(w(l—r) + )\(u_)—w)(ZeH—l—r))'

(5.76)

Plugging in the definitions w=2/(n(n—1)) and w=2/n, and using the expression for ¢
derived in Lemma 1, Eq. (5.76) simplifies to Eq. (5.21). The second part of the lemma
follows by solving Eq. (5.21) for x=1 and =0, respectively. O

Proof of Lemma 3. Suppose without loss of generality that the first n—1 individuals apply
the resident strategy (v, p,q, \), whereas player n applies some arbitrary strategy (not
necessarily reactive). Then each resident enforces a relationship of the form (5.74), with
ie{l, . ,n—l} and j=n,

(1—d+dw—|—d)\(u_)—w)>xm—dwmm —dA1=2e)rw Y @y = (1—d)y+d<wq+)\(w—w)(5r—|—q)).
l#i,n
(5.77)

Multiplying both sides of the equation with 1/(n—1) and summing over allie{1,...,n—1}
yields

(1-dsdwtdA(@-w)) nzl T >

i—l i=1

n—1

(5.78)
By rearranging the terms in Eq. (5.78), we can calculate how often the first n—1 players
cooperate on average against the mutant player,

= T (1—-d)y+ d(wq+)\(u_)—w)(€7’+q)) dr(w + A(1—2¢)(w — w)) n-l g
; n—1 (1—d+dw+dA\(w—w)) i (1—d-+dw+dA(w—w)) 2 n—1
(5.79)
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Note that according to Eq. (5.79), there is a linear relationship between how often residents
cooperate on average against the mutant, and how often the mutant cooperates on average
against each resident.

According to the payoff formula (5.19), the mutant’s payoff is given by
n—1 n—1

= iy 3 (5.80)

-l mn-l

We can then plug Eq. (5.79) into Eq. (5.80). Using the definitions w = 2/(n(n—1))
and w =2/n, and using the formula for § derived in Lemma 1, we obtain after some
rearranging,

n—1 )
T = A1 + Ag(r —13) Z SUml’ (5.81)
=1
where
(1=0)y + 0(g+(n—2)(g+7e))
141:: 'b7
14+ (n—2)0A

1+(n—2)6A

1+(n—2)6A c

™= 1+(n—2)(1—2e)A db’ =

Proof of Theorem 1. Depending on r=p—gq, we distinguish three cases:

(a) r=r3. In this case, Lemma 3 implies that any strategy yields the same payoff 7’ = A;
against n—1 co-players with strategy o. In particular, there is no profitable deviation
from o. Hence o is a Nash equilibrium.

(b) r<r}. It follows from Lemma 3 that a strategy is a best response to o if and only if
it defects in every interaction. In particular, o is a best response to itself if and only
if a population of o players is fully defecting. By Lemma 2, the population is fully
defecting if and only if y=p=¢=0, or if y=¢=0 and either A=0, n=2, or e=0.

(c) r>r}. For a strategy with r>r}, Lemma 3 implies that o is a best response to itself

if and only if a population of ¢ players is fully cooperative. While y=p=¢g=1 is

a fully cooperative strategy according to Lemma 2, this strategy does not satisfy

r=p—q>ry. Hence, this case only permits a Nash equilibrium if y=p=1, g<1-7},
and either A=0, n=2, or e=0.

O

Proof of Theorem 2. The first two cases follow directly from Eqs. (5.26) and (5.27) by
solving for ¢ >0. For the third case, consider a cooperative Nash equilibrium o= (1, 1, ¢}, \)
with 0 <A <1. We calculate the partial derivative of g5 =1—r3 with respect to A,

g —2)(1—-0-2
A (1+(m-2)(1-22)n)"
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We can distinguish three cases:

(i) 6 =1—2¢. In this case, we obtain dq;/0OA=0 for all values of A\. In particular, if ¢} >0
for some given A€ (0, 1), then also ¢j>0 and ¢; >0.

(i) 0 <1—2¢. In this case we have dg}/0A>0 for all A. In particular, if ¢5 >0 for some
given A€ (0, 1), then ¢; >0.

(i) >1—2e. We conclude that dqi/0A<0 for all \; if ¢ >0 for A€ (0, 1), then ¢ ZO.D

Proof of Corollary 1. Suppose o=(1,1, ¢}, \) is a cooperative Nash equilibrium for given
values of n, 0 and . We distinguish two cases:

(i) §>1—2¢. It follows from the proof of Theorem 2 that also GTFT=(1,1,¢;,0) is a
Nash equilibrium for the given parameter values. Moreover, because the threshold
value 0y in Eq. (5.28) is independent of n and ¢, it follows that GTFT is also a
cooperative Nash equilibrium for all n’>n, §>¢, and &’ < e.

(i) 0 <1—2¢. In this case it follows that GSCO=(1,1,¢;,1) is also a Nash equilibrium
for the given parameter values. Because the threshold ¢; is monotonically increasing
in ¢ and monotonically decreasing in n (for § <1—2¢), GSCO is also a cooperative

Nash equilibrium for all n’>n, 6’>6, and &’ < e.
]

Proof of Theorem 3. In the limit ¢ —0, it follows from Theorem 2 that there is a cooper-
ative Nash equilibrium in reactive strategies if and only if

§>6,= ‘

2N b= (=2 (5:84)

Now suppose to the contrary there is some arbitrary other strategy o that is a cooperative
Nash equilibrium for some § < d;. In particular, players must not have an incentive to
deviate by playing ALLD. Because players in a cooperative equilibrium need to cooperate
against unknown co-players, a player who deviates to ALLD obtains at least the payoff of
b in the first interaction he participates in. Thus, ALLD’s expected deviation payoff from
o satisfies

(1—d)b

Sl Pt (5.85)

tz(udw.044Lﬂmd+u—wff+a“>

For o to be a Nash equilibrium it thus needs to be the case that mp <b—c, which implies

c

dziﬁiﬁiﬁﬁ' (5.86)

Using the identities w=2/n and d=n(n—1)d/ (2 + (n—2)(n—|—1)§), this inequality simplifies
to § > 01, with ¢; as defined in Eq. (5.84). O
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5.5. SI

Proof of Theorem 4. The first part of the proof of Theorem 4 is analogous to the proof
of Lemma 3 and Theorem 1, and is therefore omitted here. The second part follows from
the requirement that the conditional cooperation probability ¢ needs to satisfy ¢ >0 for
A=0 and A=1, respectively. O

Proof of Theorem 5. If implementation errors occur with a probability e, a player with

A~

strategy o= (y,p, q, \) effectively employs the strategy 6 = (7, p, §, A) where
g=(-e)yt+e(l-y), p=(—-e)pte(l-p), §=(1-e)gte(l—q), A=A (5.87)
For the strategy o to be a generic Nash equilibrium, it now needs to be the case that
7i=p—q=r;, (5.88)

where r} is as defined in the model without implementation errors, Eq. (5.23). In addition,
for a homogeneous o-population to be fully cooperative in the absence of errors, we require

y=1 and p=1. (5.89)
Jointly solving Eqs. (5.87)—(5.89) for ¢ yields

14+ (n—2)0A c
(1—2€)(1+(n—2)(1-2)A) db°

g=1- (5.90)

This proves the first part. The second part again follows from ¢>0 for both A=0 and
A=1. ]

Proof of Theorem 6. Again, the first part of the proof of Theorem 6 is analogous to the
proof of Lemma 3 and Theorem 1; the second part follows from requiring ¢ >0 for A=0
and A=1, respectively. O

Proof of Theorem 7. The first part follows immediately from Lemma 3, by replacing A
by the effective probability Av to take indirect information into account. The second part
again is a consequence of the requirement that ¢>0 for both A=0 and A=1. O

Proof of Theorem 8. As with the previous results, the first part of the proof of Theorem 8
is analogous to the proof of Lemma 3. For example, Eq. (5.77) needs to be replaced by

(l—d-HUd(l—H)—i-d(’u_)—’w)H) Tin—dw(1—k)ren; —dwr(1-2e)k Z Tl = (1—d)y—|—d(w(l—n)q—i—n(@—w)(qﬁr)).

l#in
(5.91)
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As a result, the analogous quantities to A;, A, and r} in Lemma 3 are given by

(1= 6)y+ 5((1 — K)q+ (n—2)k(q + 7“5))

A = - b
! 1+ (n—3)dk
1— —2)(1 -2
Ay = LR r(n —2)(1-2) o (5.92)
1+ (n—3)k
. 1+ (n—3)0k c
ol —k+k(n—2)(1—2e)0b
The second part of the Theorem then follows from requiring g:=1—7} > 0. O]
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CHAPTER

Conclusions and future perspectives

The contributions to the field of indirect reciprocity presented in this thesis are quite
comprehensive. First, we have demonstrated a fundamental shortcoming of the well-
known leading eight social norms: while they are highly successful under fully public
information, we have shown that they break down under private and imperfect informa-
tion. Disagreements introduced by small amounts of noise can proliferate and prevent
cooperation from emerging when players do not synchronize their opinions about others.
This result has given way to two further new findings: on one hand, complex norms of
indirect reciprocity such as the leading eight cannot be made more robust against noise by
introducing stochastic “generosity”, unlike simple strategies of direct reciprocity such as
Tit-for-Tat. On the other hand, we have shown that it is possible to sustain cooperation
in imperfect information settings with higher order norms by letting players have more
nuanced opinions of each other. When reputations can take values beyond “good” and
“bad”, the effects of noise and incomplete observations is reduced, effectively slowing down
or even preventing the proliferation of disagreements.

Finally, we have presented a unified mathematical framework of direct and indirect
reciprocity, where we find a new, simple and successful strategy for indirect reciprocity
with a natural analogue in direct reciprocity. We have analyzed the equilibria of this
model and have characterized the environments in which either of the two modes of
reciprocity can sustain cooperation. Additionally, we have explored the evolvability of
the two modes when individuals engage in social learning to adapt to their environment.
Our study has indicated that in order to sustain cooperation via indirect reciprocity, also
under imperfect information, complex social norms are not always required and simple
rules can already suffice in contrast.

The results presented in this thesis still naturally open up various avenues for future work.
Here, we discuss two open sets of questions which can serve as starting points for further
exciting research into indirect reciprocity.

6.1 Indirect reciprocity on networks

A main assumption usually made in previous literature on indirect reciprocity is modeling
the population of individuals as well mixed. This means that the underlying topology is
a complete graph: everyone is connected to everyone else, and thereby has the potential
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to observe everyone else as well as interact with everyone else. This is a highly idealized
setting, and in a more realistic model, we would need to assume instead that individuals are
connected via a less dense underlying topology. Constant-fitness evolutionary dynamics on
graphs have already been a topic of interest [LHNO5]. Also, direct reciprocity has already
been studied in this setting, by modeling players as nodes on networks where only neighbors
can interact in social dilemmas (for example public good games) [AN14, SF07, ONO7].
Future research on indirect reciprocity with underlying network structure thus faces a
rich set of problems that are very relevant for our understanding of human society and
cooperation.

First, the most fundamental questions should be answered. How does the success of
indirect reciprocity as we know it depend on the underlying topology of the network? Can
a topology other than the complete graph sometimes enhance cooperation via indirect
reciprocity (especially in noisy settings), or is more structure in a population always
detrimental? Can we identify common features that make a topology very suitable or very
unsuitable for the evolution of cooperation via indirect reciprocity? The work presented
in this thesis already found that incomplete observation can hinder the evolution of
cooperation in well-mixed populations - does additional structure mitigate this problem,
or worsen it? Answering these questions can ultimately give insight into how sophisticated
strategies fare in the realistic interplay between population structure and imperfect
information.

On the other hand, there is the possibility to take a different approach by using the
unified framework of direct and indirect reciprocity (Chapter 5). Importantly, the main
equation to calculate payoffs that we use in this work is a very general one, and can easily
be used to transfer and extend this framework to a more complicated topology given by
an adjacency matrix. Preliminary work has shown that with this master equation, we
can explicitly calculate payoffs of players on an arbitrary network in this model. This
implies that we can further use it to explore the stability of simple indirect reciprocity
strategies in a more sophisticated setting, consider how the two modes of reciprocity
interact and evolve in a structured population, and thus find out how cooperation can
spread on networks.

Future research can also take on more extensive questions related to the interplay between
network structure and social behavior. One crucial aspect of social networks is the role
that communication plays. Some preliminary results have shown that in well-mixed
populations, gossip can have a mediating function that enables individuals to deal
with unreliable observations, effectively reducing error rates and boosting cooperation.
Analyzing gossip in structured populations, and investigating the effect of e.g. liars, who
misrepresent information, can be a first step in understanding how communication can
help or hinder indirect reciprocity. Another interesting aspect is the effect of inherent
network properties that influence the propagation of information itself. That is, one can
assume that not only are observations and interactions restricted by a topology, but that
the information flow is subject to certain constraints too. Thus, even in a model where
all players are faithfully informed about an interaction, propagation delays can lead to
different reputation dynamics and disagreement, and remove the (somewhat unnatural)
synchronicity assumption made in earlier models. Finding properties of topologies that
can cope well with such noise can be an interesting question to explore in this context.
Finally, in the most complex version of a model of indirect reciprocity on networks,
one could analyze what happens when these networks are dynamic, and links between
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6.2. Zero-determinant strategies for indirect reciprocity

individuals are not static anymore. This is a very powerful model, and has already been
of interest in other areas. In this setting, players can make and break links over time,
based on their assessment of others, leading to a co-evolution of behavior and topology.
This analysis would give an exciting insight into how social ties in communities evolve.

6.2 Zero-determinant strategies for indirect
reciprocity

Players using zero-determinant strategies of direct reciprocity [PD12, HCN18, HRZ15] can
enforce a linear relationship between their own and their opponent’s payoff in a repeated
game by choice of only their own strategy parameters. Thus, zero-determinant players
are able to unilaterally set the opponent’s expected payoff in an iterated game. This class
of strategies includes the so-called “extortionate” strategies, which can set the payoff of
the player using them to always be larger than the payoff of their co-player, while forcing
their opponent to cooperate in every round. An extortioner can in fact teach their co-
player to cooperate if the co-player occasionally changes their strategy in response to the
extortioner’s fixed behavior. When the co-player tries to increase their own payoff, this also
automatically increases the extortioner’s payoff. As a result, the co-player becomes more
cooperative over time, and the extortioner’s payoff increases by more. These strategies
have been investigated in various studies [HNS13, SP14a, SP14¢c, MH16b]. Another special
case of zero-determinant strategies are the so-called equalizer strategies [BNS97, HT'S15],
which give the opponent the exact same payoff, no matter which strategy of arbitrary
complexity they use. These equalizer strategies are of particular interest in the context
of this thesis, as they are a fundamental part of our theoretical results on a unified
framework of direct and indirect reciprocity in Chapter 5. In fact, by extending the
theory of zero-determinant strategies, we show that cooperative Nash equilibria of this
unified framework take the form of such equalizer strategies. They are equilibria against
all possible mutants, no matter the complexity of their strategy. This finding serves
to show the relevance of the class of zero-determinant strategies for indirect reciprocity
additionally to direct reciprocity. From this, the natural question then follows if we can
in fact not only find equalizers, but the entire class of zero-determinant strategies in
the realm of indirect reciprocity, and which form they take. Do extortioners in indirect
reciprocity exist, and how do they relate to their direct reciprocity equivalents?
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