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Abstract

We investigate the Fröhlich polaron model on a three-dimensional torus, and
give a proof of the second-order quantum corrections to its ground-state energy
in the strong-coupling limit. Compared to previous work in the confined case, the
translational symmetry (and its breaking in the Pekar approximation) makes the
analysis substantially more challenging.

1. Introduction

The underlying physical systemwe are interested in studying is that of a charged
particle (e.g., an electron) interacting with the quantized optical modes of a polar
crystal (called phonons). In this situation, the electron excites the phonons by in-
ducing a polarization field, which, in turn, interacts with the electron. In the case
of a ‘large polaron’ (i.e., when the De Broglie wave-length of the electron is much
larger than the lattice spacing in the medium), this system is described by the
Fröhlich Hamiltonian [10], which represents a simple and well-studied model of
non-relativistic quantum field theory (see [1,8,11,20,27,28] for properties, results
and further references).

A key parameter that appears in the problem is the coupling constant, usually
denoted by α. We study the strong coupling regime of the model, i.e., its asymptotic
behavior as α → ∞. In this limit, the ground state energy of the Fröhlich Hamil-
tonian agrees to leading order with the prediction of the Pekar approximation [24],
which assumes a classical behavior for the phonon field. This was first proved in
[4], using a path integral approach (see also [21,22], for recent work on the Pekar
process [28]). Later, the result was improved in [18], by providing explicit bounds
on the leading order correction term.

The object of our study is, precisely, the main correction to the classical (Pekar)
approximation of the polaron model, i.e., the leading error term in the aforemen-
tioned asymptotics for the ground state energy. Such correction is expected to be
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of order O(α−2) smaller than the leading term, and arises from the quantum fluc-
tuations about the classical limit [2]. This claim was first verified rigorously in [9],
where both the electron and the phonon field are confined to a bounded domain
(of linear size adjusted to the natural length scale set by the Pekar ansatz) with
Dirichlet boundary conditions. Such restriction breaks translation invariance and
simplifies the structure of the Pekar problem in comparison with the unconfined
case, guaranteeing, at least in the case of the domain being a ball [6], uniqueness
up to phase of the Pekar minimizers and non-degeneracy of the Hessian of the
Pekar functional. We build upon the strategy developed in [9] to treat the ultravi-
olet singularity of the model, which in turn relies on multiple application of the
Lieb–Yamazaki commutator method [19] and a subsequent use of Nelson’s Gross
transformation [13,23].

The key novelty of the present work is to deal with a translation invariant
setting. We investigate the quantum correction to the Pekar approximation of the
polaron model on a torus, and prove the validity of the predictions in [2] also
in this setting. As a first step, we analyze the structure of the set of minimizers
of the corresponding Pekar functional, proving uniqueness of minimizers up to
symmetries, which was so far known to hold only in the unconfined case [15,16]
and on balls with Dirichlet boundary conditions [6]. The translation invariance
leads to a degeneracy of the Hessian of the Pekar functional and corresponding zero
modes, substantially complicating the analysis of the quantumfluctuations. In order
to ‘flatten’ the surface of minimizers, we introduce a convenient diffeomorphism
inspired by formal computations in [14], which effectively allows us to decouple
the zero modes.

2. Setting and Main Results

2.1. The Model

We consider a 3-dimensional flat torus of side length L > 0. We denote by
�L the Laplacian on T3

L and by (−�L)−1(x, y) the integral kernel of its ‘inverse’,
which we define by {

−�L
[
(−�L)−1( · , y)] = δy∫

T
3
L
(−�L)−1(x, y) dx = 0.

(2.1.1)

An explicit formula for (−�L)−1(x, y) is given by

(−�L)−1(x, y) =
∑

0 �=k∈ 2π
L Z3

1

|k|2
eik·(x−y)

L3 , (2.1.2)

which, for any x ∈ T
3
L , yields an L2 function of y, its Fourier coefficients being in

�2. Analogously we define (−�L)−s for any s > 0. In the following, we identify
T
3
L with the box [−L/2, L/2]3 ⊂ R

3, and the Laplacian with the corresponding
one on [−L/2, L/2]3 with periodic boundary conditions.
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Let

vL(y) := (−�L)−1/2(0, y) =
∑

0 �=k∈ 2π
L Z3

1

|k|
e−ik·y

L3 , (2.1.3)

and vxL(y) := vL(y − x). The Fröhlich Hamiltonian [10] for the polaron is given
by

HL := (−�L ) ⊗ 11 + 11 ⊗ N − a
(
vxL
)− a†

(
vxL
)

= (−�L ) ⊗ 11 + 11 ⊗
⎛
⎜⎝ ∑

k∈ 2π
L Z3

a†k ak

⎞
⎟⎠− 1

L3/2

∑
0 �=k∈ 2π

L Z3

1

|k|
(
ake

ik·x + a†k e
−ik·x) ,

(2.1.4)

acting on L2(T3
L)⊗F(L2(T3

L)), whereF(L2(T3
L)) denotes the bosonic Fock space

over L2(T3
L). The number operator, denoted by N, accounts for the field energy,

whereas−�L accounts for the electronkinetic energy.The creation and annihilation
operators for a plane wave of momentum k are denoted by a†k and ak , respectively,
and they are assumed to satisfy the rescaled canonical commutation relations[

ak, a
†
j

] = α−2δk, j . (2.1.5)

In light of (2.1.5), N has spectrum σ(N) = α−2{0, 1, 2, . . . }. We note that the
definition (2.1.4) is somewhat formal, sincevL �∈ L2(T3

L). It is nevertheless possible
to define HL via the associated quadratic form, and to find a suitable domain on
which it is self-adjoint andbounded frombelow (see [12], orRemark4.4 inSection 4
below).

We shall investigate the ground state energy of HL , for fixed L and α → ∞.

Remark 2.1. By rescaling all lengths byα,HL is unitarily equivalent to the operator
α−2

H̃L , where H̃L can be written compactly as

H̃L = (− �α−1L

)⊗ 11 − √
α
[
ã
(
vx
α−1L

)+ ã†
(
vx
α−1L

)]+ 11 ⊗ Ñ, (2.1.6)

with the creation and annihilation operators ã† and ã now satisfying the (un-scaled)
canonical commutation relations [ã( f ), ã†(g)] = 〈 f |g〉, and Ñ the corresponding
number operator. Large α hence corresponds to the strong-coupling limit of a po-
laron confined to a torus of side length Lα−1. We find it more convenient to work
in the variables defined in (2.1.4), however.

Remark 2.2. The Fröhlich polaron model is typically considered without confine-
ment, i.e., as a model on L2(R3) ⊗ F(L2(R3)) with electron–phonon coupling
function given by (−�R3)−1/2(x, y) = (2π2)−1|x − y|−2. In the confined case
studied in [9], R3 was replaced by a bounded domain �, and thus the electron–
phonon coupling function was given by (−��)−1/2(x, y), where �� denotes the
Dirichlet Laplacian on �. The latter setting, similarly to ours, has the advantage of
guaranteeing compactness for the corresponding inverse Laplacian, which is a key
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technical ingredient both for [9] and our main results. In addition, for generic do-
mains � the Pekar functional has a unique minimizer up to phase (which is proved
in [6] for � a ball, and enters the analysis in [9] for general � as an assumption).
Compared with [9], setting the problem on the torus (or onR3) introduces the extra
difficulty of having to deal with translation invariance and a whole continuum of
Pekar minimizers. Hence the present work can be seen as a first step in the direction
of generalizing the results of [9] to the case of R3.

2.2. Pekar Functional(s)

For ψ ∈ H1(T3
L), ‖ψ‖2 = 1, and ϕ ∈ L2

R
(T3

L), we introduce the classical
energy functional corresponding to (2.1.4) as

GL(ψ, ϕ) := 〈ψ |hϕ |ψ〉 + ‖ϕ‖22, (2.2.1)

where hϕ is the Schrödinger operator

hϕ := −�L + Vϕ, Vϕ := −2(−�L)−1/2ϕ. (2.2.2)

We define the Pekar energy as

eL := min
ψ,ϕ

GL(ψ, ϕ). (2.2.3)

In the case of R3, it was shown in [4,18] that the infimum of the spectrum of the
Fröhlich Hamiltonian converges to the minimum of the corresponding classical
energy functional as α → ∞. In [9], it was shown that the same holds for the
model confined to a bounded domain with Dirichlet boundary conditions and the
subleading correction in this asymptotics was computed. Our goal is to extend the
results of [9] to the case of T3

L .
We define the two functionals

EL(ψ) := min
ϕ

GL(ψ, ϕ), FL(ϕ) := min
ψ

GL(ψ, ϕ), (2.2.4)

and their respective sets of minimizers

ME
L :=

{
ψ ∈ H1(

T
3
L

) | ‖ψ‖2 = 1, EL(ψ) = eL
}

, (2.2.5)

MF
L := {ϕ ∈ L2

R

(
T
3
L

) | FL(ϕ) = eL}. (2.2.6)

Clearly, EL is invariant under translations and changes of phase andFL is invariant
under translations. It is thus useful to introduce the notation

�L(ψ) := {eiθψ y( · ) := eiθψ( · − y) | θ ∈ [0, 2π), y ∈ T
3
L

}
, (2.2.7)

�L(ϕ) = {ϕy | y ∈ T
3
L

}
, (2.2.8)

for ψ ∈ H1(T3
L) and ϕ ∈ L2

R
(T3

L), respectively.
Our first result, Theorem 2.3 (or, more precisely, Corollary 2.4) is a fundamental

ingredient to prove our main result, Theorem 2.5. It concerns the uniqueness of
minimizers of EL up to symmetries and shows the validity of a quadratic lower
bound for EL in terms of the H1-distance from the surface of minimizers. We shall
prove these properties for sufficiently large L .
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Theorem 2.3. (Uniqueness ofMinimizers and Coercivity for EL) There exist L1 >

0 and a positive constant κ1 independent of L, such that for L > L1 there exists
0 < ψL ∈ C∞(T3

L) such that

eL < 0, ME
L = �L(ψL). (2.2.9)

Moreoverψ
y
L �= ψL for any 0 �= y ∈ T

3
L and, for any L

2-normalized f ∈ H1(T3
L),

EL( f ) − eL � κ1 dist
2
H1

(
ME

L , f
)

. (2.2.10)

These properties of EL translate easily to analogous properties for the functional
FL , as stated in the following corollary:

Corollary 2.4. (Uniqueness of Minimizers and Coercivity for FL) For L > L1
(where L1 is the same as in Theorem 2.3) there exists ϕL ∈ C∞(T3

L) such that

MF
L = �L(ϕL). (2.2.11)

Moreover, with ψL as in Theorem 2.3, we have

ϕL = σψL := (−�L)−1/2|ψL |2, ψL = unique positive g.s. of hϕL . (2.2.12)

Finally, there exists κ ′ > 0 independent of L such that, for all ϕ ∈ L2(T3
L),

FL(ϕ) − eL � min
y∈T3

L

〈
ϕ − ϕ

y
L

∣∣11 − (11 + κ ′(−�L)1/2
)−1∣∣ϕ − ϕ

y
L

〉+
∣∣∣∣∣L−3/2

∫
T
3
L

ϕ

∣∣∣∣∣
2

,

(2.2.13)

and this implies

FL(ϕ) − eL � τL dist
2
L2

(
MF

L , ϕ
)

(2.2.14)

with τL := κ ′(2π/L)2

1+κ ′(2π/L)2
.

In the case of R3, similar results are known to hold. In particular, the analogue
of (2.2.9) was shown in [16] and the analogue of (2.2.10) follows from the results
in [15]. In the case of a bounded domain with Dirichlet boundary conditions, an
equivalent formulation of Theorem 2.3 was taken as working assumption in [9].
In the case of a ball in R

3 with Dirichlet boundary conditions, the analogue of
Theorem 2.3 was proved in [6]. In both the case of R3 and of balls, rotational
symmetry plays a key role in the proof of these results. Rotational symmetry is not
present in our setting, hence a different approach is required. Our method of proof
of Theorem 2.3 relies on a comparison of the models on T

3
L and R

3, for large L .
As a consequence, our analysis does not easily yield quantitative estimates on L1.

To state our main result, which also holds in the case L > L1, we need to intro-
duce the Hessian of the functional FL at its unique (up to translations) minimizer
ϕL ,

lim
ε→0

1

ε2
(FL(ϕL + εφ) − eL) =: 〈φ|HFL

ϕL
|φ〉 ∀φ ∈ L2

R

(
T
3
L

)
. (2.2.15)
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An explicit computation gives (see Proposition 3.15)

HFL
ϕL

= 11 − 4(−�L)−1/2ψL
QψL

hϕL − inf spec hϕL

ψL(−�L)−1/2, (2.2.16)

where hϕL is defined in (2.2.2), ψL is interpreted as a multiplication operator and

QψL := 11 − |ψL〉 〈ψL |. Clearly, by minimality of ϕL , H
FL
ϕL � 0, and it is also

easy to see that HFL
ϕL � 1. We shall show that HFL

ϕL has a three-dimensional kernel,
given by span{∂ jϕL}3j=1, corresponding to the invariance under translations of the

functional. Note that we could define the Hessian ofFL at any other minimizer ϕ
y
L ,

obtaining a unitarily equivalent operator HFL

ϕ
y
L
.

2.3. Main Result

Recall the definition (2.2.3) for the Pekar energy eL as well as (2.2.16) for the
Hessian of FL at its minimizers, for L > L1. Our main result is as follows:

Theorem 2.5. For any L > L1, as α → ∞

inf specHL = eL − 1

2α2 Tr

(
11 −

√
HFL

ϕL

)
+ o(α−2). (2.3.1)

More precisely, the bounds

−CLα−1/7 � α2 inf specHL − α2eL + 1

2
Tr

(
11 −

√
HFL

ϕL

)
� CLα−2/11

(2.3.2)

hold for some CL > 0 and α sufficiently large.

The trace appearing in (2.3.1) and (2.3.2) is over L2(T3
L). Note that, since

HFL
ϕL � 1, the coefficient of α−2 in (2.3.1) is negative.
In the case of bounded domainswithDirichlet boundary conditions, an analogue

of Theorem 2.5 was proven in [9] (where logarithmic corrections appear in the
bounds that correspond to (2.3.2) as a consequence of technical complications due
to the boundary). Showing the validity of an analogous result on R

3 still remains
an open problem, however. Indeed, the constant CL appearing in the lower bound
in (2.3.2) diverges as L → ∞. This is mainly due to the lack of compactness of
the resolvent of the full-space Laplacian (which leads, for instance, to a zero lower
bound in (2.2.14) and, in particular, a divergence of the effective number of modes
in (4.3.2)). On the other hand, our method of proof used in Section 4.1 to show the
upper bound in (2.3.2) does apply, with little modifications, to the full space case.
In any case, both the upper and lower bound are expected to hold in the case of R3

as well [2,9,14,27].
Compared to the results obtained in [9], Theorem 2.5 deals with the additional

complication of the invariance under translations of the problem, which implies
that the set of minimizers ofFL is a three-dimensional manifold. This substantially
complicates the proof of the lower bound in (2.3.2), as we shall see in Section 4.3.
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In particular, we need to perform a precise local study around the manifold of
minimizers �L(ϕL), which we carry out by introducing a suitable diffeomorphism
(inspired by Gross [14]).

Remark 2.6. (Small L Regime) As we show in Lemma 3.2, there exists L0 > 0
such that the analogue of Theorem 2.3 for L < L0 can be proven with a few-line-
argument. In this case, EL is simply non-negative and is therefore minimized by
the constant function. In particular, eL = 0 and ϕL = 0.

Also an analogue of Theorem 2.5 can be proven in the regime L < L0, i.e., it
is possible to show that for L < L0 there exists CL > 0 such that

−CLα−1/7 � α2 inf specHL + 1

2

∑
0 �=k∈ 2π

L Z3

(
1 −

√
1 − 4

L3|k|4
)

� CLα−2/11

(2.3.3)

for large α. In this case (unlike the regime L > L1 where the set of minimizersMF
L

is a three-dimensionalmanifold)MF
L only consists of the 0 function, and this allows

to follow essentially the same arguments of [9] (with only small modifications,
which are also needed in the regime L > L1 and hence are discussed in this paper).
We shall therefore not carry out the details of this analysis here.

Whether uniqueness of Pekar minimizers up to symmetries holds for all L > 0
(i.e., also in the regime L0 � L � L1) remains an open problem.

Throughout the paper, we use the word universal to describe any constant
(which is generally denoted by C) or property that is independent of all the pa-
rameters involved and in particular independent of L , for L � L0 (for some fixed
L0 > 0). Also, we write a � b whenever a � Cb for some universal and positive
C . We write CL whenever a constant depends on L but is otherwise universal with
respect to all other parameters. Finally, we write a �L b whenever a � CLb for
some positive CL .

2.4. Proof Strategy and Structure of the Paper

In Section 3 we study the properties of the Pekar functionals EL andFL defined
in (2.2.4).We start by recalling the relevant properties of the Pekar functionals onR3

in Section 3.1. In the long Section 3.2we give the proof of Theorem2.3. Ourmethod
of proof relies on showing the convergence, as L → ∞, of EL to its full-space
counterpart E . Proposition 3.5 in Section 3.2.1 formalizes the precise meaning of
this convergence. Then, in Section 3.2.2, we prove a stronger notion of convergence,
namely that the Hessian of EL at any minimizer converges to the Hessian of E at
a corresponding minimizer (in the sense of Proposition 3.7); in particular, it is
strictly positive above its trivial zero modes for large L . By combining the results
obtained in Sections 3.2.1 and 3.2.2, we conclude the proof of Theorem 2.3 in
Section 3.2.3. Section 3.3 is dedicated to the investigation of the properties of
FL . First, in Section 3.3.1, we show the validity of Corollary 2.4. Subsequently we
compute theHessian ofFL (in Proposition 3.15 inSection 3.3.2) and characterize its
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kernel (in Proposition 3.18 in Section 3.3.3). Finally, in Section 3.3.3 we introduce
a family of weighted norms (see (3.3.46)) which is of key importance in Section 4
and we show, in Lemma 3.17, that the surface of minimizers of FL locally admits
a unique projection w.r.t. any of these norms.

In Section 4we proveTheorem2.5. First of all, in Section 4.1we construct a trial
state and use it to obtain an upper bound to the ground state energy of HL . This is
carried out using the Q-space representation of the bosonic Fock spaceF(L2(T3

L))

(see [25]) and follows ideas contained in [9], with only small modifications. The
remaining sections are devoted to the lower bound. In Section 4.2, we show that it
is possible to apply an ultraviolet cutoff on momenta of size larger than some � to
HL at an expense of order �−5/2 (see Proposition 4.5). This is proven following
closely the approach used in [9]: as a first step we apply a triple Lieb–Yamazaki
bound [19] (in Section 4.2.1) and then make use of a Gross transformation [13,23]
(in Section 4.2.2). In Section 4.3 we show the validity of the lower bound in (2.3.2),
thus completing the proof of Theorem 2.5. With Proposition 4.5 at hand, we have
good estimates on the cost of applying an ultraviolet cutoff to HL and this allows
to reduce the problem to a finite dimensional one (with dimension N diverging as
α → ∞). We adopt a similar strategy to [9], using IMS localization to split the
space into an inner region close to the surface of minimizers of FL and an outer
region far away from it. The goal is to extract the relevant quantum correction to the
ground state energy from the inner region and to show, using the bound (2.2.14), that
the outer region contributes only as an error term. Compared to [9], the translation
invariance substantially complicates the analysis. In contrast to the case considered
in [9], the set of minimizers of FL is a three-dimensional manifold and does not
only consist of a single function. Hence, in order to treat the inner region and
decouple the zero-modes of the Hessian of FL , we have to introduce a suitable
diffeomorphism (see Definition 4.7 in Section 4.3.1) that ‘flattens’ the manifold of
minimizers and the region close to it. It is here where we make use Lemma 3.17,
which allows us to understand the local structure of the tubular neighborhood of the
surface of minimizers of FL . Another technical complication relates to the metric
used to distinguish between the inner andouter region, as simply considering the L2-
norm is not sufficient for our purposes, and we need the weighted norms defined in
(3.3.46) (in particular we apply the IMS localization with respect to a metric which
depends with α).

3. Properties of the Pekar Functionals

In this section we derive important properties of the functionals EL and FL ,
introduced in Section 2.2 and defined in (2.2.4). In Section 3.2, we show the validity
of Theorem 2.3, relying on the comparison of the models on T

3
L and R

3 for large
L . In Section 3.3, we study the functionalFL . In particular, we prove Corollary 2.4
and compute the Hessian of FL at its minimizers.
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Given a function f ∈ L2(T3
L) and k ∈ 2π

L Z
3, we denote by fk the k-th Fourier

coefficient of f . We also denote

f̂ := f − L−3
∫
T
3
L

f. (3.0.1)

We shall use the following definition of fractional Sobolev semi-norms for functions
f ∈ L2(T3

L), 0 �= s ∈ R:

‖ f ‖2
H̊ s (T3

L )
= 〈 f |(−�L)s | f 〉 =

∑
0 �=k∈ 2π

L Z3

|k|2s | fk |2. (3.0.2)

Before moving on with the discussion, we recall in the following subsection the
definition and relevant properties of the full-space Pekar functional.

3.1. The Full-Space Pekar Functional

Let ψ ∈ H1(R3) be an L2(R3)-normalized function and ϕ ∈ L2
R
(R3). Then

G(ψ, ϕ) := 〈ψ |hR3

ϕ |ψ〉 + ‖ϕ‖22 (3.1.1)

where hR
3

ϕ is the Schrödinger operator

hR
3

ϕ := −�R3 + Vϕ, Vϕ := −2(−�R3)−1/2ϕ. (3.1.2)

Comparing with (2.2.1) and (2.2.2), we note the analogy between the definitions
and observe that we are slightly abusing notation by denoting both potentials with
the same symbol (we do this for simplicity and since ambiguity does not arise).
Analogously to (2.2.4), we define

E(ψ) := inf
ϕ
G(ψ, ϕ), F(ϕ) := inf

ψ
G(ψ, ϕ). (3.1.3)

In analogy with (2.2.3), we denote

e∞ := inf
ψ,ϕ

G(ψ, ϕ) = inf
ψ

E(ψ) = inf
ϕ
F(ϕ). (3.1.4)

For our purposes, in the case of R3, it is sufficient to focus our discussion on the
functionalE , ofwhichwenow recall themain properties.As shown in [16],E admits
a unique positive and radially decreasing minimizer Ψ which is also smooth, the
set of minimizers of E coincides with

�(Ψ ) := {eiθΨ y | θ ∈ [0, 2π), y ∈ R
3}, (3.1.5)

and Ψ satisfies the Euler–Lagrange equation(−�R3 + VσΨ − μΨ

)
Ψ = 0, (3.1.6)
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with

σΨ := (−�R3)−1/2|Ψ |2, VσΨ = −2(−�R3)−1|Ψ |2, μΨ = T (Ψ ) − 2W (Ψ ),

(3.1.7)

where T and W defined in (3.2.1) below
Furthermore, as was shown in [15], the Hessian of E at its minimizers is strictly

positive above the trivial zeromodes resulting from the invariance under translations
and changes of phase. This implies the validity of the following Theorem, which
is not stated explicitly in [15] but can be obtained by standard arguments (see, e.g.,
[5, Appendix A] or [7]) as a consequence of the results therein contained.

Theorem A. There exists a constant C > 0, such that, for any L2-normalized
f ∈ H1(R3)

E( f ) − e∞ � C dist2H1 (�(Ψ ), f ) . (3.1.8)

Our strategy to prove Proposition 3.5 relies on Theorem A and in comparing
T
3
L with R3 for large L .

3.2. Study of ELand Proof of Theorem 2.3

To compare EL and E , we prefer to write both of them in the following form,
which can be obtained from (2.2.4) and (3.1.3), respectively, by a simple completion
of the square,

E(ψ) =
∫
R3

|∇ψ(x)|2 dx −
∫
R3

∫
R3

ρψ(x)(−�R3)−1(x, y)ρψ(y) dx dy

=: T (ψ) − W (ψ), (3.2.1)

EL(ψ) =
∫
T
3
L

|∇ψ(x)|2 dx −
∫
T
3
L

∫
T
3
L

ρψ(x)(−�L)−1(x, y)ρψ(y) dx dy

=: TL(ψ) − WL(ψ). (3.2.2)

The next ingredient, needed for the comparison of EL and E , is the following lemma:

Lemma 3.1. There exists a universal constant C such that

sup
x,y∈T3

L

∣∣∣(−�L)−1(x, y) − (4π)−1( dist
T
3
L
(x, y)

)−1
∣∣∣ � C

L
. (3.2.3)

Proof. We define FL(x) := −�−1
L (x, 0) and F(x) = (4π)−1|x |−1 and observe

that our statement is equivalent to showing that

‖FL − F‖L∞([−L/2,L/2]3) � C

L
. (3.2.4)

By definition, we have FL(x) = 1
L F1(

x
L ). Hence, (3.2.4) is equivalent to

‖F1 − F‖L∞([−1/2,1/2]3) � C. (3.2.5)
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Again by definition, F1−F is harmonic (distributionally and hence also classically)
on
(
R
3\{Z3}) ∪ {0} (when F1, and only F1, is extended to the whole space by

periodicity). Thus we conclude that F1 − F is in C∞ ((−1, 1)3
)
and, in particular,

bounded on [−1/2, 1/2]3. ��

The analogy between (3.2.2) and (3.2.1), combined with Lemma 3.1, clearly
suggests that EL formally converges to E as L → ∞. Hence, we set out to show
that this convergence can be made rigorous and allows to infer properties of EL by
comparing it to E , in the large L regime.

In Section 3.2.1 we derive an important preliminary result, namely Proposi-
tion 3.5. It formalizes in a mathematical useful way the concept of EL converging
to E . In Section 3.2.2, we study the Hessian of EL , showing that it converges (in
the sense of Proposition 3.7) to the Hessian of E and therefore is strictly positive
above its trivial zero modes for large L . Finally, in Section 3.2.3 we use the results
obtained in Sections 3.2.1 and 3.2.2 to show the validity of Theorem 2.3.

We remark that our approach differs from the one used on R
3 and on balls to

show, for the related E-functional, uniqueness of minimizers and strict positivity of
the Hessian (see [15,16] for the case of R3 and [6] for the case of balls). In those
cases, rotational symmetry allows to first show uniqueness of minimizers and then
helps to derive the positivity of the Hessian at the minimizers. We take somewhat
the opposite road: comparing EL to E , we first show that minimizers (even if not
unique) all localize around the full-space minimizers (see Proposition 3.5) and that
the Hessian at each minimizer is universally strictly positive (see Proposition 3.7)
for large L . We then use these two properties to derive, as a final step, uniqueness
of minimizers.

3.2.1. Preliminary Results The next Lemma proves the existence of minimizers
for any L > 0. Moreover, it shows that there exists L0 > 0 such that, for L <

L0, EL is strictly positive on any non-constant L2-normalized function, as already
mentioned in Remark 2.6.

Lemma 3.2. For any L > 0, eL in (2.2.3) is attained, and there exists a universal
constant C > 0 such that eL > −C. Moreover, there exists L0 > 0 such that, for
L < L0, EL(ψ) > 0 for any non-constant L2-normalized ψ .

Proof. We consider any L2-normalized ψ ∈ H1(T3
L) and begin by observing that

in terms of the Fourier coefficients we have

WL(ψ) =
∑

0 �=k∈ 2π
L Z3

|(ρψ)k |2
|k|2 , (3.2.6)

(ρψ)k =
∑

j∈ 2π
L Z3

ψ̄ jψ j+k

L3/2 = (ρ
ψ̂
)k + ψ̄0ψk

L3/2 + ψ̄−kψ0

L3/2 . (3.2.7)
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By Parseval’s identity |ψ0| � 1 and thus, using the Cauchy–Schwarz inequality,
we can deduce that

|(ρψ)k |2 �
{
L−3,

3|(ρ
ψ̂
)k |2 + 3

L3 (|ψk |2 + |ψ−k |2). (3.2.8)

Therefore

WL(ψ) � 3

⎛
⎜⎝ ∑

0 �=k∈ 2π
L Z3

|(ρ
ψ̂
)k |2

|k|2

⎞
⎟⎠+ 6

L3

⎛
⎜⎝ ∑

0 �=k∈ 2π
L Z3

|ψk |2
|k|2

⎞
⎟⎠

� 3WL(ψ̂) + 6

(2π)2L
‖ψ̂‖2

L2(T3
L )

. (3.2.9)

We can bound both terms on the r.h.s. in two different ways, one which is good for
small L and one which is good for all the other L . Indeed, by applying estimate
(3.2.8) and using the Poincaré–Sobolev inequality (see [17], chapter 8) on the zero-
mean function ψ̂ , we get

WL(ψ̂) �

⎛
⎜⎝ ∑

0 �=k∈ 2π
L Z3

|(ρ
ψ̂
)k |2

|k|4

⎞
⎟⎠

1/2⎛
⎜⎝ ∑

0 �=k∈ 2π
L Z3

|(ρ
ψ̂
)k |2
⎞
⎟⎠

1/2

� L2‖(ρ
ψ̂
)k‖l∞‖ψ̂‖2

L4(T3
L )

� L1/2‖ψ̂‖2
L4(T3

L )
� L‖ψ̂‖2

L6(T3
L )

� LTL(ψ̂) = LTL(ψ). (3.2.10)

Moreover,

L−1‖ψ̂‖2
L2(T3

L )
� LTL(ψ̂) = LTL(ψ). (3.2.11)

Therefore, we can conclude that

WL(ψ) � LTL(ψ) ⇒ EL(ψ) � (1 − CL)TL(ψ). (3.2.12)

Thus, for L < L0 := C−1, eitherψ ≡ const. andEL(ψ) = 0 orEL(ψ) � TL(ψ) >

0. Moreover, this also implies

EL(ψ) � TL(ψ) � (2π)2

2L2
0

‖ψ̂‖22 + 1

2
TL(ψ) � dist2H1

(
�L

(
1

L3/2

)
, ψ

)
,

(3.2.13)

which is the analogue of (2.2.10) from Theorem 2.3 in the case L < L0.
We now proceed to study the more interesting regime L � L0. By Lemma 3.1,

splitting dist−1
T
3
L
(x, ·) into an L3/2 part and the remaining L∞ part (whose norms
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can be chosen to be proportional to ε and ε−1, respectively, for any ε > 0), and by
applying again the Poincaré-Sobolev inequality, we obtain

WL(ψ̂) �
∫
T
3
L×T

3
L

ρ
ψ̂
(x)ρ

ψ̂
(y)

4π dist
T
3
L
(x, y)

dx dy + C

L
� ε‖ψ̂‖2

L6(T3
L )

+ ε−1 + 1

� TL(ψ)

6
+ C. (3.2.14)

Moreover, since L � L0, trivially L−1‖ψ̂‖2
L2(T3

L )
� 1 and we can conclude that

for any L2-normalized ψ ∈ H1(T3
L)

WL(ψ) � TL(ψ)

2
+ C ⇒ EL(ψ) � TL(ψ)

2
− C. (3.2.15)

From this we can infer that eL � −C for any L . To show existence of minimizers,
we observe that by (3.2.15) any minimizing sequence ψn on T

3
L must be bounded

in H1(T3
L). Therefore, there exists a subsequence (which we still denote by ψn for

simplicity) that converges weakly in H1(T3
L) and strongly in L p(T3

L), for any 1 �
p < 6 to some ψ (by the Banach–Alaoglu Theorem and the Rellich–Kondrachov
embedding Theorem). The limit function ψ is L2-normalized and

TL(ψ) � lim inf
n→∞ TL(ψn) (3.2.16)

by weak lower semicontinuity of the norm. Using the L4-convergence of ψn to ψ

and the fact that ‖ · ‖H̊−1(T3
L )

� L‖ · ‖L2(T3
L ), we finally obtain

|WL(ψn) − WL(ψ)|
=
(
‖ρψ‖H̊−1(T3

L )
+ ‖ρψn‖H̊−1(T3

L )

) ∣∣∣‖ρψ‖H̊−1(T3
L )

− ‖ρψn‖H̊−1(T3
L )

∣∣∣
� L‖ρψn − ρψ‖H̊−1(T3

L )
� L2‖ρψn − ρψ‖L2(T3

L )

� L2‖ψn − ψ‖L4(T3
L )

(
‖ψn‖L4(T3

L ) + ‖ψ‖L4(T3
L )

)
→ 0. (3.2.17)

This implies that

EL(ψ) � lim inf
n→∞ EL(ψn) = eL , (3.2.18)

and thus that ψ is a minimizer. Note that, since EL(ψn) → eL = EL(ψ) by
definition of ψn and, as shown, WL(ψn) → WL(ψ), it also holds

TL(ψn) = EL(ψn) + WL(ψn) → EL(ψ) + WL(ψ) = TL(ψ) (3.2.19)

which implies that ψn actually converges to ψ strongly in H1(T3
L). ��

Once we have shown existence of minimizers, we need to investigate more
carefully their properties. Some of them are derived in the following Lemma. Recall
that

Vψ = −2(−�L)−1/2ψ, σψ = (−�L)−1/2|ψ |2, (3.2.20)

and that, as stated above, we call any property universal which does not depend on
L � L0.
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Lemma 3.3. Let ψ ∈ ME
L (as defined in (2.2.5)). Then ψ satisfies the following

Euler–Lagrange equation(− �L + Vσψ − μL
ψ

)
ψ = 0, with μL

ψ = TL(ψ) − 2WL(ψ). (3.2.21)

Moreover, ψ ∈ C∞(T3
L), is universally bounded in H2(T3

L) (and therefore in
L∞(T3

L)), has constant phase and never vanishes. Finally, any L2-normalized
sequence fn ∈ H1(T3

Ln
) such that ELn ( fn) is universally bounded, is universally

bounded in H1(T3
Ln

).

Proof. The fact that sequences fn ∈ H1(T3
Ln

) of L2-normalized functions for

which ELn is universally bounded are universally bounded in H1(T3
Ln

) follows
trivially from estimate (3.2.15). This immediately yields a universal bound on the
H1-norm of minimizers.

The Euler–Lagrange equation (3.2.21) for the problem is derived by standard
computations omitted here. By Lemma 3.1 and by splitting (dist

T
3
L
(0, · ))−1 in its

L3/2 and L∞ parts, we have

|Vσψ (x)| � 2
∫
T
3
L

1

dist
T
3
L
(x, y)

|ψ(y)|2 dy + C

L
�
(
‖ψ‖2

L6(T3
L )

+ 1
)

� (TL(ψ) + 1) . (3.2.22)

Therefore, by the universal H1-boundedness of minimizers, Vσψ is universally

bounded in L∞(T3
L), for any ψ ∈ ME

L . This immediately allows to conclude uni-
versal H̊2 (and hence H2) bounds for functions inME

L , using the Euler–Lagrange
equation (3.2.21), Lemma 3.2 and the universal H1-boundedness of minimizers,
which guarantee that

0 � μL
ψ = 2EL(ψ) − TL(ψ) � −C.

Since L � L0, universal H2-boundedness also implies universal L∞-boundedness
of minimizers by the Sobolev inequality.

For any L > 0, any ψ ∈ ME
L satisfies (3.2.21), is in H1(T3

L) and is such that
Vσψ ∈ L∞(T3

L). Therefore ψ also satisfies, for any λ > 0

ψ = (−�L + λ)−1(− Vσψ + μL
ψ + λ

)
ψ. (3.2.23)

In particular, by a bootstrap argument we can conclude that ψ ∈ C∞(T3
L). More-

over, picking λ > −μL
ψ + ‖Vσψ ‖L∞(T3

L ) and using that (−�L + λ)−1 is positivity

improving, we can also conclude that if ψ � 0 then ψ > 0. By the convexity prop-
erties of the kinetic energy (see [17], Theorem 7.8), we have that TL(|ψ |) � TL(ψ)

which implies that if ψ ∈ ME
L then TL(ψ) = TL(|ψ |) and also |ψ | ∈ ME

L . Hence
bothψ and |ψ | are eigenfunctions of the least and simple (by positivity of one of the
eigenfunctions) eigenvalue μL

ψ = μL|ψ | of the Schrödinger operator −�L + Vσψ ,
which allows us to infer that ψ has constant phase and never vanishes. ��
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We now proceed to develop the tools that will allow to show the validity of
Theorem 2.3. We begin with a simple Lemma.

Lemma 3.4. For ψ ∈ H1(T3
L),

‖ρψ‖H̊1/8(T3
L )

� ‖ψ‖2
H1(T3

L )
. (3.2.24)

Proof. We have

‖ρψ‖2
H̊1/8(T3

L )
= ∣∣〈∇ρψ |∇((−�L)−7/8ρψ

)〉∣∣

= 2

∣∣∣∣∣∣∣
∫
T
3
L

|ψ(x)|∇(|ψ(x)|) · ∇x

⎛
⎜⎝ ∑

0 �=k∈ 2π
L Z3

(ρψ)k

|k|7/4
eik·x

L3/2

⎞
⎟⎠ dx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
3∑

i=1

∫
T
3
L

|ψ(x)|∂i (|ψ(x)|)
∑

0 �=k∈ 2π
L Z3

ki (ρψ)k

|k|7/4
eik·x

L3/2 dx

∣∣∣∣∣∣∣ .
(3.2.25)

We define

gi (x) :=
∑

0 �=k∈ 2π
L Z3

ki (ρψ)k

|k|7/4
eik·x

L3/2 , (3.2.26)

and observe that (gi )0 = 0 and |(gi )k | = |ki (ρψ )k |
|k|7/4 � |(ρψ )k |

|k|3/4 for k �= 0. These
estimates on the Fourier coefficients of gi imply that, for i = 1, 2, 3,

‖gi‖2H̊3/4(T3
L )

=
∑

0 �=k∈ 2π
L Z3

|k|3/2|(gi )k |2 �
∑

0 �=k∈ 2π
L Z3

|(ρψ)k |2 � ‖ψ‖4
L4(T3

L )
.

(3.2.27)

Moreover, using the fractional Sobolev embeddings (see, for example, [3]) and that
gi has zero mean, we have

‖gi‖L4(T3
L ) � ‖gi‖H̊3/4(T3

L )
� ‖ψ‖2

L4(T3
L )

. (3.2.28)

Applying these results to (3.2.25) and using Hölder’s inequality two times, the
Poincaré–Sobolev inequality and the convexity properties of the kinetic energy
(see [17], Theorem 7.8), we conclude that

‖ρψ‖2
H̊1/8(T3

L )
� ‖ψ‖L4(T3

L )‖g1/8i ‖L4(T3
L )‖∇(|ψ |)‖L2(T3

L ) � ‖ψ‖3
L4(T3

L )
‖ψ‖H̊1(T3

L )

� ‖ψ‖3/4
L2(T3

L )
‖ψ‖9/4

L6(T3
L )

‖ψ‖H̊1(T3
L )

� ‖ψ‖4
H1(T3

L )
. (3.2.29)

��
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Our next goal is to show that eL → e∞ as L → ∞, and that in the large L
regime the states that are relevant for the minimization of EL are necessarily close
to the full space minimizer (or any of its translates). This is a key ingredient for
the discussion carried out in the following sections, and is stated in a precise way
in the next proposition. The coercivity results obtained in [15] are of fundamental
importance here as they guarantee that, at least for the full space model, low energy
states are close to minimizers.

We recall that the full-space Pekar functional, defined in (3.2.1), admits a unique
positive and radialminimizerΨ which is also smooth (see (3.1.5)), andwe introduce
the notation

ΨL := Ψ χ[−L/2,L/2]3 . (3.2.30)

Note that ΨL ∈ H1(T3
L), by radiality and regularity of Ψ .

Proposition 3.5. We have

lim
L→∞ eL = e∞. (3.2.31)

Moreover, for any ε > 0 there exist Lε and δε such that for any L > Lε and any
L2-normalized ψ ∈ H1(T3

L) with EL(ψ) − eL < δε,

distH1 (�L(ψ), ΨL) � ε, |μL
ψ − μΨ | � ε, (3.2.32)

where�L(ψ),ΨL ,μL
ψ andμΨ are defined in (2.2.7), (3.2.30), (3.2.21) and (3.1.7),

respectively.

Proof. We first show that lim supL→∞ eL � e∞ by using ΨL as a trial state for
EL . Observe that ‖ΨL‖L2(T3

L ) → 1 and TL(ΨL) → T (Ψ ) as L → ∞. To estimate
the difference of the interaction terms we note that ΨL(Ψ −ΨL) = 0 and therefore

|WL(ΨL) − W (Ψ )| � |WL(ΨL) − W (ΨL)| + W (Ψ − ΨL)

+ 2
〈
(Ψ − ΨL)2

∣∣∣�−1
R3 Ψ

2
L

〉
. (3.2.33)

By dominated convergence, the last two terms converge to zero as L → ∞. On the
other hand, by Lemma 3.1 and since Ψ is normalized

|WL(ΨL) − W (ΨL)| �
C

L
+ 1

4π

∫
[−L/2,L/2]6

ΨL(x)2ΨL(y)2
∣∣∣∣∣ 1

dist
T
3
L
(x, y)

− 1

|x − y|

∣∣∣∣∣ dx dy.
(3.2.34)

Moreover, since dist
T
3
L
(x, y) = |x − y| for x, y ∈ [−L/4, L/4]3 and using the

symmetry and the positivity of the integral kernel and the fact that dist
T
3
L
(x, y) �
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|x − y|, we get
∫

[−L/2,L/2]6
ΨL(x)2ΨL(y)2

∣∣∣∣∣ 1

dist
T
3
L
(x, y)

− 1

|x − y|

∣∣∣∣∣ dx dy
� 2

∫
[−L/2,L/2]3

Ψ 2
L (x)

(∫
[−L/2,L/2]3

(ΨL − ΨL/2)
2(y)

dist
T
3
L
(x, y)

dy

)
dx . (3.2.35)

Finally, by splitting dist−1
T
3
L
(x, ·) in its L∞ and L1 parts and using that Ψ is normal-

ized,wecanbound the r.h.s. of (3.2.35) by
(
C1‖ΨL − ΨL/2‖22 + C2‖ΨL − ΨL/2‖2∞

)
,

which vanishes as L → ∞, since Ψ (x)
|x |→∞−−−−→ 0. Putting the pieces together, we

conclude that

|WL(ΨL) − W (ΨL)| = oL(1). (3.2.36)

This shows our first claim, since

eL � EL(ΨL/‖ΨL‖2) = 1

‖ΨL‖22

(
TL(ΨL) − 1

‖ΨL‖22
WL(ΨL)

)
→ e∞. (3.2.37)

We now proceed to show that

lim inf
L→∞ eL � e∞ (3.2.38)

and the validity of (3.2.32) using IMS localization. We shall show that for any
L2-normalized sequence ψn ∈ H1(T3

Ln
) with Ln → ∞ such that

ELn (ψn) − eLn → 0, (3.2.39)

we have

lim inf
n→∞ ELn (ψn) � e∞, lim

n→∞ distH1
(
�Ln (ψn), ΨLn

) = 0,

lim
n→∞

∣∣μLn
ψn

− μΨ

∣∣ = 0, (3.2.40)

which implies the claim of the proposition.
Pick η ∈ C∞(R3) with supp(η) ⊂ B1 and ‖η‖2 = 1. We denote by ηR the

rescaled copy of η supported on BR with L2-norm equal to 1. As long as R � L/2,
ηR ∈ C∞(T3

L) and we then consider the translates η
y
R for any y ∈ T

3
L . Given

ψ ∈ H1(T3
L), we also define

ψ
y
R := ψη

y
R/‖ψη

y
R‖2. (3.2.41)

By standard properties of IMS localization, for any R � L/2, we have∫
T
3
L

TL
(
ψ

y
R

)∥∥ψη
y
R

∥∥2
2 dy =

∫
T
3
L

TL
(
ψη

y
R

)
dy = TL(ψ) +

∫ |∇η|2
R2 . (3.2.42)
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Moreover, by using that |ψ |2 = ∫
T
3
L
|ψη

y
R |2 dy = ∫

T
3
L
|ψ y

R |2‖ψη
y
R‖2 dy and com-

pleting the square

WL(ψ) =
∫
T
3
L

[
WL
(
ψ

y
R

)−
∥∥∥∣∣ψ y

R

∣∣2 − |ψ |2
∥∥∥2
H̊−1(T3

L )

] ∥∥ψη
y
R

∥∥2
2 dy. (3.2.43)

Combining (3.2.42) and (3.2.43), we therefore obtain

EL(ψ) + C

R2 =
∫
T
3
L

[
EL
(
ψ

y
R

)+
∥∥∥∣∣ψ y

R

∣∣2 − |ψ |2
∥∥∥2
H̊−1(T3

L )

] ∥∥ψη
y
R

∥∥2
2 dy.

(3.2.44)

Since the integrand on the r.h.s. is equal to the l.h.s. on average (indeed ‖ψη
y
R‖22dy

is a probability measure) there exists ȳ ∈ T
3
L such that

EL
(
ψ

ȳ
R

)+
∥∥∥∣∣ψ ȳ

R

∣∣2 − |ψ |2
∥∥∥2
H̊−1(T3

L )
� EL(ψ) + C

R2 . (3.2.45)

This fact has several consequences and it is particularly useful if we apply it to our
sequence ψn with a radius R = Rn � Ln/2 (we take for simplicity R = Ln/4).
Indeed, by the above discussion and (3.2.39), we obtain that there exists ȳn ∈ T

3
Ln

such that the L2-normalized functions

ψ̄n := ψnη
ȳn
Ln/4∥∥ψnη
ȳn
Ln/4

∥∥
2

(3.2.46)

are competitors both for the minimization of ELn and E (indeed, ψ̄n can then be
thought of as a function in C∞

c (R3), supported on BLn/4) and satisfy

ELn (ψ̄n) � ELn (ψn) + C

L2
n

� eLn + oLn (1),

‖ρψ̄n
− ρψn‖2H̊−1(T3

Ln
)
� C

L2
n
. (3.2.47)

In other words, we can localize any element of our sequence ψn to a ball of
radius R = Ln/4 with an energy expense of order L−2

n , and the localized function
is close (in the sense of the second line of (3.2.47)) to ψn itself, up to an error again
of order L−2

n .
Moreover TLn (ψ̄n) = T (ψ̄n) and, using Lemma 3.1 and the fact that

dist
T
3
Ln

(x, y) = |x − y| for all x, y ∈ BLn/4, we have

|WLn (ψ̄n) − W (ψ̄n)| � 1

Ln
. (3.2.48)

Therefore, using (3.2.47)

e∞ � E(ψ̄n) � ELn (ψ̄) + C

Ln
� eLn + oLn (1), (3.2.49)
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which shows the first claim in (3.2.40). By Theorem A and (3.2.49), it also follows
that

distH1
(
�(Ψ ), ψ̄n

) n→∞−−−→ 0. (3.2.50)

Hence, up to an n-dependent translation and change of phase (which we can both

assume to be zero without loss of generality by suitably redefiningψn), ψ̄n
H1(R3)−−−−→

Ψ , and the convergence also holds in L p(R3) for any 2 � p � 6. From this and
the second line of (3.2.47), we would like to deduce that alsoψn and ΨLn are close.
We first note that, by a simple application of Hölder’s inequality, it follows that for
any f ∈ L2(T3

L) with zero mean

‖ f ‖2
L2(T3

L )
�

⎛
⎜⎝ ∑

0 �=k∈ 2π
L Z3

|k|1/4| fk |2
⎞
⎟⎠

8/9⎛
⎜⎝ ∑

0 �=k∈ 2π
L Z3

|k|−2| fk |2
⎞
⎟⎠

1/9

= ‖ f ‖16/9
H̊1/8(T3

L )
‖ f ‖2/9

H̊−1(T3
L )

. (3.2.51)

We combine this with (3.2.47) and apply it to the zero mean function (ρψn − ρψ̄n
),

obtaining

‖ρψ̄n
− ρψn‖2L2(T3

Ln
)
�

⎛
⎝‖ρψn‖2H̊1/8(T3

Ln
)
+ ‖ρψ̄n

‖2
H̊1/8(T3

Ln
)

L1/4
n

⎞
⎠

8/9

. (3.2.52)

Applying Lemma 3.4 to ψn and ψ̄n (which are uniformly bounded in H1 by

Lemma 3.3) we conclude that (ρψn − ρψ̄n
)

L2−→ 0.

As a consequence, since ψn and ψ̄n have the same phase, ψn and ψ̄n are arbi-
trarily close in L4. Indeed,

‖ψn − ψ̄n‖4L4(T3
Ln

)
=
∫
T
3
Ln

∣∣|ψn| − |ψ̄n|
∣∣4 dx �

∫
T
3
Ln

(
ρψn − ρψ̄n

)2 dx n→∞−−−→ 0.

(3.2.53)

By the identificationofT3
Ln

with [−Ln/2, Ln/2]3,wefinally get‖ψn−Ψ ‖L4(R3) →
0, if ψn is set to be 0 outside [−Ln/2, Ln/2]3. Moreover, ψn converges to Ψ in

L p(R3) for any 2 � p < 6, since ‖ψn‖2 = 1, ψn
L4−→ Ψ , ‖Ψ ‖2 = 1 and ‖ψn‖p is

uniformly bounded for any 2 � p � 6.
To show the second claim in (3.2.40), we need to show that the convergence

actually holds in H1(T3
Ln

), i.e., that ‖ψn − ΨLn‖H1(T3
Ln

) → 0. First, we show

convergence in H1(BR) for fixed R. Note that(
‖ψn‖H1(T3

Ln
) − ‖Ψ ‖H1(R3)

)
→ 0, (3.2.54)
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since

|TLn (ψn) − TLn (ψ̄n)| = |ELn (ψn) + WLn (ψn) − ELn (ψ̄n) + WLn (ψ̄n)|
� |ELn (ψn) − ELn (ψ̄n)| + |WLn (ψn) − WLn (ψ̄n)| → 0,

(3.2.55)

and TLn (ψ̄n) = T (ψ̄n) → T (Ψ ) by H1 convergence. Moreover, given that ψn

is uniformly bounded in H1(BR) and ψn → Ψ in L2(BR), we have ψn ⇀ Ψ in
H1(BR) for any R and this, together with (3.2.54) and weak lower semicontinuity
of the norms, implies ψn → � in H1(BR) for any R.

Finally, for any ε > 0 there exists R = R(ε) such that ‖Ψ ‖H1(Bc
R) � ε and,

using strong H1-convergence on balls and again (3.2.54), we obtain

‖ψn − ΨLn‖H1(T3
Ln

) � ‖ψn − Ψ ‖H1(BR) + ‖ψn − Ψ ‖H1([−Ln/2,Ln/2]3\BR)

� ‖ψn − Ψ ‖H1(BR) + ‖ψn‖H1([−Ln/2,Ln/2]3\BR)

+ ‖Ψ ‖H1([−Ln/2,Ln/2]3\BR)

� ‖ψn − Ψ ‖H1(BR) + 2ε + on(1) → 2ε, (3.2.56)

which concludes the proof of the second claim in (3.2.40).
Finally, we show the third claim in (3.2.40). This simply follows from the

previous bounds, which guarantee that ELn (ψn) → e∞ and TLn (ψn) → T (�) and
hence

μL
ψn

= TLn (ψn) − 2WLn (ψn) = 2ELn (ψn) − TLn (ψn) → 2e∞ − T (�) = μΨ .

(3.2.57)

��
We conclude this section with a simple corollary of Proposition 3.5.

Corollary 3.6. There exists L∗ such that for L > L∗ and any ψ ∈ ME
L we have

ψ �= ψ y for 0 �= y ∈ T
3
L .

Proof. It is clearly sufficient to show the claim for ψ ∈ ME
L such that

distH1(�L(ψ),�L) = ‖ψ − �L‖H1(T3
L ) (3.2.58)

and for y ∈ T
3
L such that |y| � L/4 (indeed, if the claim fails for some y′ such that

|y′| < L/4 it also fails for some y such that |y| � L/4). For any such ψ and y,
Proposition 3.5 and the fact that � �= � y for any y ∈ R

3 guarantee the existence
of L∗ such that for any L > L∗ we have

‖ψ − ψ y‖H1(T3
L ) � ‖� y

L − �L‖H1(T3
L ) − 2‖ψ − �L‖H1(T3

L ) � C > 0 (3.2.59)

and this completes the proof. ��
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3.2.2. Study of the Hessian of EL In this section we study the Hessian of EL at
its minimizers, showing that it is strictly positive, universally, for L big enough.
Positivity is of course understood up to the trivial zero modes resulting from the
symmetries of the problem (translations and changes of phase). This is obtained by
comparing EL with E and exploiting Theorem A.

For any minimizer ψ ∈ ME
L , the Hessian of EL at ψ is defined by

lim
ε→0

1

ε2

(
EL
(

ψ + ε f

‖ψ + ε f ‖2
)

− eL

)
= HEL

ψ ( f ) ∀ f ∈ H1(
T
3
L

)
. (3.2.60)

An explicit computation gives

HEL
ψ ( f ) = 〈Im f |LL

ψ |Im f 〉 + 〈Re f |Qψ

(
LL

ψ − 4XL
ψ

)
Qψ |Re f 〉 , (3.2.61)

with Qψ = 11 − |ψ〉〈ψ | and
LL

ψ := −�L + Vσψ − μL
ψ , XL

ψ(x, y) := ψ(x)(−�L)−1(x, y)ψ(y). (3.2.62)

(We use the same notation for the operator XL
ψ and its integral kernel for sim-

plicity.) We recall that μL
ψ = TL(ψ) − 2WL(ψ) (see (3.2.21)) and that Vσψ =

−2(−�L)−1ρψ (see (3.2.20)) and we note that LL
ψψ = 0 is exactly the Euler–

Lagrange equation derived in Lemma 3.3.
By minimality of ψ , we know that inf spec L = inf spec Q(L − 4X)Q = 0,

since both operators are clearly nonnegative and ψ is in the kernel of both of them.
Moreover, ker LL

ψ = span{ψ}, since it is a Schrödinger operator of least (simple)

eigenvalue 0. The situation is more complicated for Qψ(LL
ψ − 4XL

ψ)Qψ , whose
kernel contains at least ψ and ∂iψ (by the translation invariance of the problem).
Since both LL

ψ and Qψ(LL
ψ − 4XL

ψ)Qψ have compact resolvents (they are given
by bounded perturbations of −�L ), they both have discrete spectrum. Our aim is
two-fold: first we need to show that the kernel of Qψ(LL

ψ − 4XL
ψ)Qψ is exactly

spanned byψ and its partial derivatives, secondly we want to show that the spectral
gap (above the trivial zero modes) of both operators is bounded by a universal
positive constant.

Before stating the main result of this section, we introduce the relevant full-
space objects: let again Ψ be the unique positive and radial full-space minimizer
of the Pekar functional (3.2.1) and, analogously to (3.2.62), define

LΨ := −�R3 + VσΨ − μΨ , XΨ (x, y) := Ψ (x)(−�R3)−1(x, y)Ψ (y).
(3.2.63)

We introduce

h′∞ := inf
f ∈H1

R
(R3),‖ f ‖2=1

f ∈(span{Ψ })⊥

〈 f |LΨ | f 〉 ,

h′′∞ := inf
f ∈H1

R
(R3),‖ f ‖2=1

f ∈(span{Ψ,∂1Ψ,∂2Ψ,∂3Ψ })⊥

〈 f |LΨ − 4XΨ | f 〉 . (3.2.64)
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We emphasize that the results contained in [15] imply that min{h′∞, h′′∞} > 0.
Moreover, it is easy to see, using that VσΨ (x) � −|x |−1 for large x , that LΨ

has infinitely many eigenvalues between 0, its least and simple eigenvalue with
eigenfunction given by Ψ , and −μΨ , the bottom of its continuous spectrum. Since
furthermore XΨ is positive, this implies, in particular, that

h′′∞, h′∞ < −μΨ , (3.2.65)

which we shall use later.

Proposition 3.7. For any L > 0, we define

h′
L := inf

ψ∈ME
L

inf
f ∈H1

R
(T3L ),‖ f ‖2=1

f ∈(span{ψ})⊥

〈 f |LL
ψ | f 〉 , (3.2.66)

h′′
L := inf

ψ∈ME
L

inf
f ∈H1

R
(T3L ),‖ f ‖2=1

f ∈(span{ψ,∂1ψ,∂2ψ,∂3ψ})⊥

〈 f |LL
ψ − 4XL

ψ | f 〉 . (3.2.67)

Then

lim inf
L→∞ h′

L � h′∞, lim inf
L→∞ h′′

L � h′′∞. (3.2.68)

It is not difficult to show that

lim sup
L→∞

h′
L � h′∞, lim sup

L→∞
h′′
L � h′′∞, (3.2.69)

simply by considering localizations of the full-space optimizers and using Propo-
sition 3.5. Hence there is actually equality in (3.2.68).

To prove Proposition 3.7 we need the next two Lemmas.

Lemma 3.8. For ψ ∈ ME
L , the operator Y L

ψ with integral kernel Y L
ψ (x, y) :=

(−�L)−1(x, y)ψ(y) is universally bounded from L2(T3
L) to L∞(T3

L). This in par-
ticular implies that the operators X L

ψ , defined in (3.2.62), are universally bounded

from L2(T3
L) to L2(T3

L).

Proof. Using Lemma 3.1 and the normalization of ψ , we have

|Y L
ψ ( f )(x)| =

∣∣∣∣∣
∫
T
3
L

(−�L )−1(x, y)ψ(y) f (y)dy

∣∣∣∣∣ � ‖ f ‖2 +
∫
T
3
L

|ψ(y) f (y)|
4π dist

T
3
L
(x, y)

dy

� ‖ f ‖2 +
∫
B1(x)

|ψ(y) f (y)|
dist

T
3
L
(x, y)

dy � (1 + C‖ψ‖∞)‖ f ‖2 � ‖ f ‖2.
(3.2.70)

To conclude, we also made use of the fact that the minimizers are universally
bounded in L∞ by Lemma 3.3. ��

Recall the definition of ΨL in (3.2.30).
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Lemma 3.9. For any ε > 0, there exists R′
ε and L ′

ε (with R′
ε � L ′

ε/2) such that for
any L > L ′

ε, anynormalized f in L2(T3
L) supportedon Bc

R′
ε

:= [−L/2, L/2]3\BR′
ε
,

and any ψ ∈ ME
L such that

‖ψ − ΨL‖H1(T3
L ) = distH1(�L(ψ), ΨL) (3.2.71)

we have

〈 f |LL
ψ − 4XL

ψ | f 〉 � −μΨ − ε. (3.2.72)

Proof. By definition of LL
ψ and XL

ψ , we have

〈 f |LL
ψ − 4XL

ψ | f 〉 = TL( f ) − μL
ψ + 〈 f |Vσψ

| f 〉 − 4 〈 f |XL
ψ | f 〉

� −μL
ψ + 〈 f |Vσψ

| f 〉 − 4 〈 f |XL
ψ | f 〉 . (3.2.73)

By Proposition 3.5, taking L ′
ε sufficiently large guarantees that

|μL
ψ − μΨ | � ε/2. (3.2.74)

Thus we only need to show that 〈 f |Vσψ
| f 〉 and 〈 f |XL

ψ | f 〉 can be made arbitrary
small by taking L ′

ε and R′
ε sufficiently large. Since f is normalized and supported

on Bc
R′

ε
,

| 〈 f |Vσψ
| f 〉 | � ‖Vσψ ‖

L∞
(
Bc
R′
ε

). (3.2.75)

Moreover, using Lemma 3.1, splitting the integral over Bt (x) and Bc
t (x) (for some

t > 0), and assuming x ∈ Bc
R′

ε
, we find

|Vσψ (x)| � C

L
+ C

∫
T
3
L

|ψ(y)|2
dist

T
3
L
(x, y)

dy � C

L
+ Ct‖ψ‖2

L6
(
Bc
R′
ε−t

) + 1/t.

(3.2.76)

On the other hand, by Lemma 3.8,

| 〈 f |XL
ψ | f 〉 | � C‖ f ‖2

∫
T
3
L

ψ(y)| f (y)| dy � C‖χBc
R′
ε

ψ‖2. (3.2.77)

Therefore, by applying Proposition 3.5, we can conclude that there exists L ′
ε and

R′
ε such that, for any L > L ′

ε and any L2-normalized f supported on Bc
R′

ε
, we have

〈 f |Vσψ
| f 〉 − 4 〈 f |XL

ψ | f 〉 � −ε/2, (3.2.78)

which concludes our proof. ��
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Proof of Proposition 3.7. We only show the second inequality in (3.2.68), as its
proof can easily be modified to also show the first. Moreover, we observe that the
second inequality in (3.2.68) is equivalent to the statement that for any sequence
ψn ∈ MLn with Ln → ∞,

lim inf
n

inf
f ∈H1(T3Ln

),‖ f ‖2=1

f ∈span{ψn ,∂1ψn ,∂2ψn ,∂3ψn }⊥

〈 f |LLn
ψn

− 4XLn
ψn

| f 〉 � h′′∞, (3.2.79)

which we shall prove in the following.
We consider ψn ∈ MLn , Ln → ∞, and define

hn := inf
f ∈H1(T3Ln

),‖ f ‖2=1

f ∈span{ψn ,∂1ψn ,∂2ψn ,∂3ψn }⊥

〈 f |LLn
ψn

− 4XLn
ψn

| f 〉 . (3.2.80)

By translation invariance of ELn and by Proposition 3.5, we can also restrict to
sequences ψn converging to Ψ in L2(R3) and such that ‖ψn − ΨLn‖H1

(
T
3
Ln

) → 0,

where ΨLn is defined in (3.2.30).
Let now gn be a normalized function in L2(T3

Ln
), orthogonal toψn and its partial

derivatives, realizing hn (which exists by compactness, and can be taken to be a
real-valued function). We define the following partition of unity 0 � η1R, η2R � 1,
with ηiR ∈ C∞(R3), ηiR(x) = ηi (x/R) and

η1(x) =
{
1 x ∈ B1,

0 x ∈ Bc
2

η2 =
√
1 − |η1|2. (3.2.81)

We define ηin := ηiLn/8
and

gin := ηingn/‖ηingn‖2. (3.2.82)

Standard properties of IMS localization imply that

hn = 〈gn|LLn
ψn

− 4XLn
ψn

|gn〉
=
∑
i=1,2

‖ηingn‖22
〈
gin

∣∣∣LLn
ψn

− 4XLn
ψn

∣∣∣gin〉

−
∑
i=1,2

(
〈gn||∇ηin|2|gn〉 + 2 〈gn|

[
ηin,
[
ηin, X

Ln
ψn

]]|gn〉 ). (3.2.83)

Clearly, the first summand in the second sum is of order O(L−2
n ), by the scaling of

ηin . For the second summand, we observe that

[
ηin,
[
ηin, X

Ln
ψn

]]
(x, y) = ψn(x)(−�Ln )

−1(x, y)ψn(y)
(
ηin(x) − ηin(y)

)2
,

(3.2.84)
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and proceed to bound theHilbert–Schmidt norm of both operators (i = 1, 2), which
will then bound the last line of (3.2.83). We make use of Lemma 3.1 to obtain∫

T
3
Ln

×T
3
Ln

|�−1
Ln

(x, y)|2ψn(x)
2ψn(y)

2
(
ηR
i (x) − ηin(y)

)4
dxdy

� 1

L2
n

+
∫
T
3
Ln

×T
3
Ln

(
ηin(x) − ηin(y)

)4
d2
T
3
Ln

(x, y)
ψn(x)

2ψn(y)
2 dx dy � 1

L2
n

+ ‖∇ηin‖2∞.

(3.2.85)

Therefore, also the second summand in the error terms is order L−2
n , which allows

us to conclude that∑
i=1,2

‖ηingn‖22
〈
gin

∣∣∣LLn
ψn

− 4XLn
ψn

∣∣∣gin〉 = hn + O(L−2
n ). (3.2.86)

By Lemma 3.9 applied to g2n (which is supported on Bc
Ln/4

) and (3.2.65), we find

〈
g2n

∣∣∣LLn
ψn

− 4XLn
ψn

∣∣∣g2n〉 � −μΨ + on(1) > h′′∞ + on(1). (3.2.87)

Since the l.h.s. of (3.2.86) is a convex combination and (LLn
ψn

− 4XLn
ψn

) is uniformly
bounded from below, (3.2.87) allows to restrict to sequences ψn such that

‖η1ngn‖2 � C (3.2.88)

uniformly in n and 〈
g1n

∣∣∣LLn
ψn

− 4XLn
ψn

∣∣∣g1n〉 � hn + on(1), (3.2.89)

since our claim holds on any sequence for which (3.2.88) and (3.2.89) are not
simultaneously satisfied. Using (3.2.88) it is easy to see that g1n is almost orthogonal
to ψn , in the sense that∣∣∣〈g1n∣∣∣ψn

〉∣∣∣ = 1

‖gnη1n‖2
∣∣∣〈gn(η1n − 1)

∣∣∣ψn

〉∣∣∣
� 1

C

∥∥∥(1 − η1n

)
ψn

∥∥∥
2

� 1

C
‖χBc

Ln/8
ψn‖2 n→∞−−−→ 0. (3.2.90)

Here we used the L2-convergence of ψn to Ψ . Clearly, the same computation (to-
gether with the H1-convergence ofψn toΨ ) shows that g1n is also almost orthogonal
to the partial derivatives of ψn .

To conclude, we wish to modify g1n in order to obtain a function g̃n which
satisfies the constraints (i.e., is a competitor) of the full-space variational problem
introduced in (3.2.64). We also wish to have

〈g̃n|LΨ − 4XΨ |g̃n〉 =
〈
g1n

∣∣∣LLn
ψn

− 4XLn
ψn

∣∣∣g1n〉+ on(1). (3.2.91)
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Indeed, (3.2.91) together with (3.2.89) and the fact that g̃n is a competitor on R
3,

would imply that

hn �
〈
g1n

∣∣∣LLn
ψn

− 4XLn
ψn

∣∣∣g1n〉− on(1) = 〈g̃n|LΨ − 4XΨ |g̃n〉 − on(1) � h′′∞ − on(1),

(3.2.92)

which finally yields the proof of the Proposition also for sequences ψn satisfying
(3.2.88) and (3.2.89).

We have a natural candidate for g̃n , which is simply

g̃n := (11 − P)g1n
‖(11 − P)g1n‖2

, (3.2.93)

withP(g1n) := Ψ
〈
Ψ
∣∣g1n 〉+∑i=1,2,3

∂iΨ‖∂iΨ ‖2
〈

∂iΨ‖∂iΨ ‖2
∣∣∣g1n〉. Clearly g̃n is a competitor

for the full space minimization and we are only left with the task of proving that
g̃n satisfies (3.2.91).

We observe that, since g1n is almost orthogonal to ψn and its partial derivatives,
and using Proposition 3.5,∣∣∣〈Ψ ∣∣∣g1n〉∣∣∣ � ‖Ψ − ψn‖L2(BLn/4)

+
∣∣∣〈ψn

∣∣∣g1n〉∣∣∣ = on(1),∣∣∣〈∂iΨ ∣∣∣g1n〉∣∣∣ � ‖Ψ − ψL‖H1(BLn/4)
+
∣∣∣〈∂iψn

∣∣∣g1n〉∣∣∣ = on(1). (3.2.94)

Therefore ∥∥P(g1n)∥∥2 → 0 and ‖(11 − P)g1n‖2 → 1. (3.2.95)

Hence, the normalization factor does not play any role in the proof of (3.2.91).
Moreover 〈

(11 − P)g1n

∣∣∣(LΨ − 4XΨ )

∣∣∣(11 − P)g1n
〉

=
〈
g1n

∣∣∣(LΨ − 4XΨ )

∣∣∣g1n〉+ 〈
P(g1n)∣∣∣(LΨ − 4XΨ )

∣∣∣P(g1n)〉
− 2

〈
g1n

∣∣∣ (LΨ − 4XΨ )

∣∣∣P(g1n)〉 , (3.2.96)

and thus we can conclude that also P(g1n) does not play any role in the proof of
(3.2.91), since (LΨ −4XΨ )P is a bounded operator (P has finite dimensional range
contained in the domain of (LΨ − 4XΨ )), P is a projection and ‖P(g1n)‖2 → 0.
With this discussion, we reduced our problem to showing that〈

g1n

∣∣∣(LΨ − 4XΨ )

∣∣∣g1n〉 = 〈
g1n

∣∣∣(LLn
ψn

− 4XLn
ψn

)∣∣∣g1n〉+ on(1). (3.2.97)

Clearly the kinetic energy terms coincide for every n and μ
Ln
ψn

→ μ, by Proposi-
tion 3.5. Therefore we only need to prove that∣∣∣ 〈g1n∣∣∣Vσψn

− VσΨ

∣∣∣g1n〉∣∣∣ , ∣∣∣ 〈g1n∣∣∣XLn
ψn

− XΨ

∣∣∣g1n〉∣∣∣→ 0. (3.2.98)
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For the first term, using that g1n is supported on BLn/4, we have∣∣∣ 〈g1n∣∣∣Vσψn
− VσΨ

∣∣∣g1n〉∣∣∣ � ‖VσΨ − Vσψn
‖L∞(BLn/4). (3.2.99)

If we define ΨR := χBRΨ and (ψn)R := χBRψn we have VσΨ = VσΨR
+ Vσ[Ψ −ΨR ]

and Vσψn
= Vσ(ψn )R

+ Vσ[ψn−(ψn )R ] . We consider R = R(n) = Ln/8 and observe
that

|Vσ[Ψ −ΨR ](x)| = 2
∫
R3

(−�R3)−1(x, y)(Ψ − ΨR)2 dy

� ‖Ψ − ΨR‖26 + ‖Ψ − ΨR‖22 → 0. (3.2.100)

Similar computations, together with Lemma 3.1, yield similar estimates for
|Vσ[ψn−(ψn )R ](x)|. Moreover, since dist

T
3
Ln

(x, y) = |x − y| for x, y ∈ BLn/8, we

have, for any x ∈ BLn/8∣∣∣(VσΨR
− Vσ(ψn )R

)
(x)
∣∣∣

�
∣∣∣∣∣
∫
BLn/4

1

|x − y| (Ψ (y) − ψn(y))(Ψ (y) + ψn(y)) dy

∣∣∣∣∣+ 1

Ln

� ‖Ψ + ψn‖∞‖Ψ − ψn‖6 + ‖Ψ − ψn‖2‖Ψ + ψn‖2 + 1

Ln
→ 0. (3.2.101)

Here we used again Lemma 3.1, the convergence of ψn to Ψ and the universal
L∞-boundedness of minimizers. Putting the pieces together we obtain

‖VσΨ − Vσψn
‖L∞(BLn/4) � ‖Vσ[Ψ −ΨR ]‖∞ + ‖Vσ[ψn−(ψn )R ]‖∞

+ ‖VσΨR
− Vσ(ψn )R

‖L∞(BR(n)) → 0, (3.2.102)

as desired. The study is similar for
〈
g1n
∣∣XLn

ψn
− XΨ

∣∣g1n 〉, hence we shall not write it
down explicitly.

We conclude that (3.2.97) holds and, by the discussion above, the proof is
complete. ��
3.2.3. Proof of Theorem 2.3 In this section we first prove universal local bounds
for EL around minimizers. These are a direct consequence of the results on the
Hessian in the previous subsection, the proof follows along the lines of [7], [9,
Appendix A] and [5, Appendix A]. Such universal local bounds yield universal
local uniqueness of minimizers, i.e., the statement that minimizers that are not
equivalent (i.e., not obtained one from the other by translations and changes of
phase) must be universally apart (in H1(T3

L)). Together with Proposition 3.5, this
clearly implies uniqueness of minimizers for L big enough, which is the first part
of Theorem 2.3. A little extra effort will then complete the proof of Theorem 2.3.

In this section, for any ψ ∈ ME
L and any f ∈ L2(T3

L), we write eiθψ y =
PL2

�L (ψ)( f ), respectively eiθψ y = PH1

�L (ψ)( f ), to mean that eiθψ y realizes the

L2-distance, respectively the H1-distance, between f and �L(ψ). Note that by
compactness these always exist, but they might not be unique. The possible lack of
uniqueness is not a concern for our analysis, however.
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Proposition 3.10. (Universal local bounds) There exist universal constants K1 > 0
and K2 > 0 and L∗∗ > 0 such that, for any L > L∗∗, any ψ ∈ ME

L and any L2-
normalized f ∈ H1(T3

L) with

distH1(�L(ψ), f ) � K1, (3.2.103)

we have

EL( f ) − eL � K2
∥∥PL2

�L (ψ)( f ) − f
∥∥
H1(T3

L )
� K2 dist

2
H1 (�L(ψ), f ) .

(3.2.104)

Proof. We can restrict to positive ψ ∈ ME
L and normalized f such that

PL2

�L (ψ)( f ) = ψ, (3.2.105)

which clearly implies

〈ψ | f 〉 � 0, 〈Re f |∂iψ〉 = 0. (3.2.106)

Under this assumption, we prove that if (3.2.103) holds then

EL(φ) − eL � K2‖ψ − f ‖2
H1(T3

L )
� K2 dist

2
H1 (�L(ψ), f ) . (3.2.107)

The general result follows immediately by invariance of EL under translations and
changes of phase.

We denote δ := f − ψ and proceed to expand EL around ψ :

EL( f ) = EL(ψ + δ) = eL + HEL
ψ (δ) + Errψ(δ). (3.2.108)

We recall that HEL
ψ is simply the quadratic form associated to the Hessian of EL at

ψ and it is defined in (3.2.61). We denote Pψ := |ψ〉 〈ψ |. The last term, which we
see as an error contribution, is explicitly given by

Errψ(δ) = − 8 〈Re δ| XL
ψ

∣∣Pψ Re δ
〉+ 4

〈
Pψ Re δ

∣∣XL
ψ

∣∣Pψ Re δ
〉

− 4
〈
|δ|2
∣∣∣ (−�L)−1 |ψ Re δ〉 + WL(δ). (3.2.109)

Our first goal is to estimate |Errψ(δ)|. By (3.2.106) and the normalization of both
ψ and f , we find

‖δ‖22 = 2 − 2 〈ψ | f 〉 . (3.2.110)

Therefore, also using the positivity of ψ , we have

Pψ Re δ = ψ(〈ψ | f 〉 − 1) = −1

2
ψ‖δ‖22. (3.2.111)
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We now apply Lemma 3.8 to obtain∣∣∣〈Re δ| XL
ψ

∣∣Pψ Re δ
〉∣∣∣ � ‖Re δ‖2‖Pψ Re δ‖2 � ‖δ‖32,∣∣∣ 〈Pψ Re δ

∣∣XL
ψ

∣∣Pψ Re δ
〉∣∣∣ � ‖Pψ Re δ‖22 � ‖δ‖42,∣∣∣〈|δ|2|(−�L)−1|ψ Re δ
〉∣∣∣ � ‖δ‖22‖Re δ‖2 � ‖δ‖32. (3.2.112)

Finally, by (3.2.15),

WL(δ) = ‖δ‖42WL

(
δ

‖δ‖2
)

� ‖δ‖42
(
1

2
TL

(
δ

‖δ‖2
)

+ C

)
� ‖δ‖22‖δ‖2H1(T3

L )
.

(3.2.113)

Recalling (3.2.103), we can estimate

‖δ‖2 = distL2( f,�L(ψ)) � distH1( f,�L(ψ)) � K1, (3.2.114)

and this implies, combined with (3.2.112) and (3.2.113), that

|Errψ(δ)| � ‖δ‖3
H1(T3

L )
. (3.2.115)

We now want to bound HEL
ψ (δ). We fix 0 < τ < min{h′∞, h′′∞}, where h′∞ and

h′′∞ are defined in (3.2.64). Proposition 3.7 implies that there exists L∗∗ such that
for L > L∗∗ and ψ ∈ ME

L , we have

LL
ψ � τQψ, Qψ

(
LL

ψ − 4XL
ψ

)
Qψ � τQ′

ψ, (3.2.116)

where we define Qψ = 11 − Pψ and Q′
ψ := 11 − Pψ −∑i=1,2,3 P∂iψ/‖∂iψ‖2 . We

note that, by (3.2.106) and since ψ is orthogonal in L2 to its partial derivatives, we
have

Qψ(Re f − ψ) = Q′
ψ(Re f − ψ). (3.2.117)

Therefore, recalling the definition of HEL
ψ given in (3.2.61),

HEL
ψ (δ) = 〈Im f |LL

ψ |Im f 〉 + 〈Re f − ψ |Qψ

(
LL

ψ − 4XL
ψ

)
Qψ |Re f − ψ〉

� τ
(‖Qψ Im f ‖22 + ‖Q′

ψ(Re f − ψ)‖22
) = τ‖Qψδ‖2

L2
(
T
3
L

). (3.2.118)

Moreover, applying (3.2.110),

‖Qψδ‖2
L2(T3

L )
= ‖δ‖22 − 〈ψ |δ〉2 = ‖δ‖22

(
1 − 1

4
‖δ‖22

)
� 1

2
‖δ‖22, (3.2.119)

and we can thus conclude that

HEL
ψ (δ) � τ

2
‖δ‖22. (3.2.120)
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On theother hand, by the universal boundedness ofVσψ in L∞(T3
L) and the universal

boundedness of μL
ψ (see Proposition 3.5), we have, for some universal C1 > 0,

LL
ψ � −�L − C1. (3.2.121)

Similarly, also using Lemma 3.8, for some universal C2 > 0,

Q
(
LL

ψ − 4XL
ψ

)
Q � −�L − C2. (3.2.122)

If we then define C := (max{C1,C2} + 1), we can conclude the validity of the
universal bound

HEL
ψ (δ) � ‖δ‖2

H1(T3
L )

− C‖δ‖2
L2(T3

L )
. (3.2.123)

By interpolating between (3.2.120) and (3.2.123), we obtain

HEL
ψ (δ) � τ

τ + 2C
‖δ‖2

H1(T3
L )

. (3.2.124)

Using (3.2.115) and (3.2.124) in (3.2.108), we can conclude that there exists a
universal constant C such that for any L > L∗∗, any 0 < ψ ∈ ME

L and any
normalized f satisfying (3.2.105),

EL( f ) − eL � 1

C
‖δ‖2

H1(T3
L )

− C‖δ‖3
H1(T3

L )
. (3.2.125)

In particular, for K2 sufficiently small, we can find a universal constant c such that
(3.2.107) holds, as long as

‖δ‖H1(T3
L ) = ∥∥PL2

�L (ψ)( f ) − f
∥∥
H1(T3

L )
� c. (3.2.126)

To conclude the proof, it only remains to show that there exists a universal
K1 such that (3.2.126) holds as long as (3.2.103) holds. This can be achieved
as follows. We have, using that both ψ and PH1

�L (ψ)( f ) are in ME
L and thus are

universally bounded in H2(T3
L) (by Lemma 3.3) and recalling (see (3.2.105)) that

ψ = PL2

�L (ψ)( f ),∥∥ψ − PH1

�L (ψ)( f )
∥∥
H̊1(T3

L )
�
∥∥ψ − PH1

�L (ψ)( f )
∥∥1/2
L2(T3

L )

∥∥(−�L )
(
ψ − PH1

�L (ψ)( f )
)∥∥1/2

L2(T3
L )

�
∥∥ψ − PH1

�L (ψ)( f )
∥∥1/2
L2(T3

L )

�
(
distL2 (�L (ψ), f ) + ∥∥ f − PH1

�L (ψ)( f )
∥∥
L2(T3

L )

)1/2
� dist1/2

H1 (�L (ψ), f ) . (3.2.127)

Therefore, for some universal C

‖ f − ψ‖H1(T3
L ) � distH1 (�L(ψ), f ) + C dist1/2

H1 (�L(ψ), f ) , (3.2.128)

and it suffices to take K1 �
[
(−C + √

C2 + 4c)/2
]2

to conclude our discussion.
��
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We are ready to prove Theorem 2.3.

Proof of Theorem 2.3. Fix K1 as in Proposition 3.10. Using Proposition 3.5, we
know that there exists LK1/2 such that, for any L > LK1/2 and any ψ ∈ ME

L , we
have

distH1 (�L(ψ), ΨL) � K1/2. (3.2.129)

We claim that (2.2.9) holds with L1 := max{LK1/2, L
∗, L∗∗}, where L∗ is the same

as in Corollary 3.6 and L∗∗ is the same as in Proposition 3.10.
Let L > L1 and ψ ∈ ME

L . Since L > L1 � L∗, we have ψ y �= ψ for any
0 �= y ∈ T

3
L . Moreover, since L > L1 � LK1/2 and using the triangle inequality,

for any other ψ1 ∈ ME
L we have

distH1 (�L(ψ), ψ1) � K1. (3.2.130)

Since L > L1 � L∗∗, we can apply Proposition 3.10, finding

K2 dist
2
H1(�L(ψ), ψ1) � EL(ψ1) − eL = 0, (3.2.131)

i.e., ψ1 ∈ �L(ψ), and (2.2.9) holds for L > L1.
For ψ ∈ ME

L = �L(ψ), and L > L1, we now show the quadratic lower
bound (2.2.10), independently of L . Lemma 3.3, which guarantees universal H1-
boundedness of minimizers, and estimate (3.2.15) ensure, by straightforward com-
putations, that there exists 0 < κ∗ < 1/2 such that, if f ∈ L2(T3

L) is normalized
and satisfies

EL( f ) − eL < κ∗ dist2H1 (�L(ψ), f ) , (3.2.132)

then f is universally bounded in H1(T3
L) and must satisfy

EL( f ) − eL < δK1 , (3.2.133)

where δK1 is the δε from Proposition 3.5 with ε = K1. On the other hand, Proposi-
tion 3.5 and Proposition 3.10 combinedwith the fact that we have taken L1 � LK1/2
(and that trivially LK1/2 � LK1 ), guarantee that any L2-normalized f satisfying
(3.2.133) must satisfy

EL( f ) − eL � K2 dist
2
H1(�L(ψ), f ). (3.2.134)

Therefore the bound (2.2.10) from Theorem 2.3 holds with the universal constant
κ1 := min{κ∗, K2} and our proof is complete. ��

This concludes our study of EL . We now move on to the study of the functional
FL .
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3.3. Study of FL

This section is structured as follows. In Section 3.3.1 we prove Corollary 2.4.
In Section 3.3.2, we compute the Hessian of FL at its minimizers, showing the
validity of (2.2.16). This allows to obtain a more precise lower bound for FL

(compared to the bounds (2.2.13) and (2.2.14) from Corollary 2.4), which holds
locally around the 3-dimensional surface of minimizers MF

L = �L(ϕL). Finally,
in Section 3.3.3, we investigate closer the surface of minimizers �L(ϕL) and the
behavior of the functional FL close to it. In particular, we show that the Hessian
of FL at its minimizers is strictly positive above its trivial zero modes and derive
some key technical tools, which we exploit in Section 4.

3.3.1. Proof of Corollary 2.4 In this section, we show the validity of Corol-
lary 2.4. We need the following Lemma. Recall that in our discussion constants are
universal if they are independent of L for L � L0 > 0.

Lemma 3.11. For ψ, φ ∈ H1(T3
L), ‖ψ‖2 = ‖φ‖2 = 1,

〈
ρψ − ρφ

∣∣(−�L)−1/2
∣∣ρψ − ρφ

〉
� ‖|ψ | − |φ|‖2

H1(T3
L )

. (3.3.1)

Proof. We define f (x) := |ψ(x)| + |φ(x)| and g(x) := |ψ(x)| − |φ(x)|. By the
Hardy-Littlewood-Sobolev and the Sobolev inequality (see for example [3] for a
comprehensive overview of such results on the torus), and using the normalization
of φ and ψ we have

〈
ρψ − ρφ

∣∣(−�L )−1/2
∣∣ρψ − ρφ

〉 = ‖(−�L )−1/4( f g)‖22 � C‖ f g‖23/2
� C‖ f ‖22‖g‖26 � C ′‖g‖2

H1(T3
L )

= C ′‖|ψ | − |φ|‖2
H1(T3

L )
,

(3.3.2)

which proves the Lemma. ��
Proof of Corollary 2.4. With ψL as in Theorem 2.3, let ϕL := σψL ∈ C∞(T3

L).
Observing that

GL(ψ, ϕ) = EL(ψ) + ‖σψ − ϕ‖22, (3.3.3)

and using Theorem 2.3 we can immediately conclude that in the regime L > L1

MF
L = �L(ϕL). (3.3.4)

It is also immediate, recalling the definition of GL in (2.2.1) and that ψL > 0 (as
proven in Theorem 2.3), to conclude that ψL must be the unique positive ground
state of hϕL .

To prove (2.2.13), we first of all observe that if ϕ ∈ L2(T3
L), we have

FL(ϕ) = |(ϕ)0|2 + FL(ϕ̂). (3.3.5)
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Therefore, it is sufficient to restrict to ϕ with zero-average and show that in this
case

FL(ϕ) − eL � min
y∈T3

L

〈
ϕ − ϕ

y
L

∣∣11 − (11 + κ ′(−�L)1/2)−1
∣∣ϕ − ϕ

y
L

〉
. (3.3.6)

Using Theorem 2.3, we obtain

GL(ψ, ϕ) − eL = EL(ψ) − eL + ‖ϕ − σψ‖22 � EL(|ψ |) − eL + ‖ϕ − σψ‖22
� κ1 dist

2
H1(|ψ |,�(ψL)) + ‖ϕ − σψ‖22

= κ1‖|ψ | − ψ
y
L‖2

H1(T3
L )

+ ‖ϕ − σψ‖22, (3.3.7)

for some y ∈ T
3
L . We now apply Lemma 3.11 and use that ϕy

L = σψ
y
L
(see (3.3.3)),

obtaining with a simple completion of the square

GL(ψ, ϕ) − eL � κ ′ 〈ρψ − ρψ
y
L

∣∣∣(−�L)−1/2
∣∣∣ρψ − ρψ

y
L

〉
+ ‖ϕ − σψ‖22

= ∥∥F1/2(σψ − ϕ
y
L

)+ F−1/2(ϕy
L − ϕ

)∥∥2
2

+ 〈
ϕ − ϕ

y
L

∣∣11 − F−1
∣∣ϕ − ϕ

y
L

〉
, (3.3.8)

where F = 11+κ ′(−�L)1/2. Dropping the first term and minimizing overψ yields
our claim. Finally, (2.2.14) immediately follows from (2.2.13) and the spectral gap
of the Laplacian, using the fact that ϕL and all its translates have zero average since
ϕL = σψL . ��

3.3.2. The Hessian of FL For any ϕ ∈ L2
R
(T3

L), we introduce the notation

e(ϕ) := inf spec hϕ, (3.3.9)

and observe that FL , defined in (2.2.4), can equivalently be written as

FL(ϕ) = ‖ϕ‖22 + e(ϕ), ϕ ∈ L2
R
(T3

L). (3.3.10)

We compute the Hessian of FL at its minimizers using standard arguments
in perturbation theory, showing the validity of expression (2.2.16). We need the
following two Lemmas.

Lemma 3.12. For L � L0 > 0, any ϕ ∈ L2(T3
L) and any T > 0

‖(−�L + T )−1ϕ‖ = ‖ϕ(−�L + T )−1‖ � CT ‖ϕ‖L2(T3
L )+L∞(T3

L ) (3.3.11)

for some constant CT > 0 with limT→∞ CT = 0. Here ϕ is understood as a
multiplication operator, ‖ · ‖ denotes the operator norm on L2(T3

L), and

‖ϕ‖L2(T3
L )+L∞(T3

L ) := inf
ϕ1+ϕ2=ϕ

ϕ1∈L2(T3L ), ϕ2∈L∞(T3L )

(
‖ϕ1‖L2(T3

L ) + ‖ϕ2‖L∞(T3
L )

)
. (3.3.12)
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Note that

‖ϕ‖L2(T3
L ) � L3/2‖ϕ‖L2(T3

L )+L∞(T3
L ) � L3/2‖ϕ‖L2(T3

L ), (3.3.13)

which clearlymakes the two norms equivalent. Nevertheless, we find itmore natural
to work with a bound of the form (3.3.11), where CT is independent of L .

Lemma3.12 implies that, for anyϕ ∈ L2(T3
L)+L∞(T3

L), themultiplication op-
erator associated with ϕ is infinitesimally relatively bounded with respect to −�L .

More precisely, for any δ > 0, there exists C
(
δ, ‖ϕ‖L2(T3

L )+L∞(T3
L )

)
depending

on ϕ only through ‖ϕ‖L2(T3
L )+L∞(T3

L ), such that for any f ∈ Dom(−�L)

‖ϕ f ‖ � δ‖�L f ‖ + C
(
δ, ‖ϕ‖L2(T3

L )+L∞(T3
L )

)
‖ f ‖. (3.3.14)

Whenever infinitesimal relative boundedness holds with a constant C(δ) uniform
over a class of operators, we will say that the class is uniformly infinitesimally
relatively bounded. In this case, Lemma 3.12 ensures that multiplication operators
associated to functions in (L2 + L∞)-balls are uniformly infinitesimally relatively
bounded with respect to −�L .

Proof. We first observe that, by self-adjointness of (−�L +T )−1, it is sufficient to
show that the claimed bound holds for ‖ϕ(−�L + T )−1‖. For any f, ϕ ∈ L2(T3

L)

and any decomposition of the form ϕ = ϕ1 + ϕ2 with ϕ1 ∈ L2(T3
L) and ϕ2 ∈

L∞(T3
L) we have

‖ϕ(−�L + T )−1 f ‖2 � ‖ϕ1‖2‖(−�L + T )−1 f ‖∞ + ‖ϕ2‖∞‖(−�L + T )−1 f ‖2
� ‖ϕ1‖2‖(−�L + T )−1 f ‖∞ + T−1‖ϕ2‖∞‖ f ‖2.

(3.3.15)

Moreover,

‖(−�L + T )−1 f ‖∞

�
∑

k∈ 2π
L Z3

1

L3/2(|k|2 + T )
| fk | �

⎛
⎜⎝ 1

L3

∑
k∈ 2π

L Z3

1

(|k|2 + T )2

⎞
⎟⎠

1/2

‖ f ‖2

� C

(∫
R3

1

(|x |2 + T )2

)1/2
‖ f ‖2 = CT−1/2‖ f ‖2. (3.3.16)

Therefore, picking CT := max
{
T−1,CT−1/2

}
yields

‖ϕ(−�L + T )−1 f ‖2 � CT (‖ϕ1‖2 + ‖ϕ2‖∞) ‖ f ‖2, (3.3.17)

optimizing over ϕ1 and ϕ2 completes the proof. ��
Lemma 3.13. For ϕ ∈ L2(T3

L)

‖(−�L)−1/2ϕ‖L∞(T3
L )+L2(T3

L ) � ‖(−�L + 1)−1/2ϕ‖L2(T3
L ). (3.3.18)
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Proof. We write f1 = χ[0,1) and f2 = χ[1,+∞) and

ϕ1 = f1
[
(−�L)−1/2

]
ϕ, ϕ2 = f2

[
(−�L)−1/2

]
ϕ. (3.3.19)

Clearly (−�L)−1/2ϕ = ϕ1 + ϕ2. Moreover

‖(−�L)−1/2ϕ‖L∞+L2 � ‖ϕ1‖∞ + ‖ϕ2‖2

�

⎛
⎜⎜⎝ ∑

0 �=k∈ 2π
L Z3

|k|<1

1

L3|k|2

⎞
⎟⎟⎠

1/2⎛
⎜⎜⎝ ∑

0 �=k∈ 2π
L Z3

|k|<1

|ϕk |2
⎞
⎟⎟⎠

1/2

+

⎛
⎜⎜⎜⎝
∑

k∈ 2π
L Z3

|k|�1

|ϕk |2
|k|2

⎞
⎟⎟⎟⎠

1/2

�

⎛
⎜⎜⎝ ∑

0 �=k∈ 2π
L Z3

|k|<1

|ϕk |2
⎞
⎟⎟⎠

1/2

+

⎛
⎜⎜⎜⎝
∑

k∈ 2π
L Z3

|k|�1

|ϕk |2
|k|2

⎞
⎟⎟⎟⎠

1/2

�

⎛
⎜⎝ ∑

k∈ 2π
L Z3

1

|k|2 + 1
|ϕk |2

⎞
⎟⎠

1/2

= C‖(−�L + 1)−1/2ϕ‖L2(T3
L ). (3.3.20)

This concludes the proof. ��
Lemmas 3.12 and 3.13 together yield the following Corollary, whose proof is

omitted as it is now straightforward.

Corollary 3.14. For anyϕ such that ‖(−�L+1)−1/2ϕ‖2 is finite, themultiplication
operator Vϕ (defined in (2.2.2)) is infinitesimally relatively bounded with respect
to (−�L). Moreover, for T > 0 there exists CT such that

‖(−�L + T )−1Vϕ‖ � CT ‖(−�L + 1)−1/2ϕ‖2, and CT↘0 as T → ∞.

(3.3.21)

In particular, Corollary 3.14 implies that the family of multiplication opera-
tors associated to {Vϕ | ‖(−�L + 1)−1/2ϕ‖2 � M} is uniformly infinitesimally
relatively bounded with respect to −�L for any M .

With these tools at hand we now investigate FL close to its minimum and, in
particular, compute the Hessian of FL at its minimizers. We follow very closely
the analogous analysis carried out in [9]. By translation invariance of the problem,
it is clearly sufficient to perform the computation with respect to ϕL , where ϕL is
the same as in Corollary 2.4.

Proposition 3.15. For L > L1 let ϕ ∈ L2
R
(T3

L) be such that

‖(−�L + 1)−1/2(ϕ − ϕL)‖L2(T3
L ) � εL (3.3.22)
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for some εL > 0 small enough. Then

|FL(ϕ) − eL − 〈ϕ − ϕL |11 − KL |ϕ − ϕL〉|
�L ‖(−�L + 1)−1/2(ϕ − ϕL)‖2 〈ϕ − ϕL |JL |ϕ − ϕL〉 , (3.3.23)

where

KL := 4(−�L)−1/2ψL
QψL

hϕL − e(ϕL)
ψL(−�L)−1/2,

JL = 4(−�L)−1/2ψL(−�L + 1)−1ψL(−�L)−1/2, (3.3.24)

and ψL , which we recall (see (2.2.12)) is the (positive) ground state of hϕL , is
understood, in the expressions for KL and JL , as a multiplication operator.

Note that this implies that HFL
ϕL = 11−KL , as claimed in (2.2.16). In particular,

KL � 11 by minimality of ϕL . It is also clear, by definition, that KL � 0. We
emphasize that JL is trace class, being the square of 2 (−�L+1)−1/2ψL(−�L)−1/2,
which is Hilbert-Schmidt since ψL is in L2, as a function of x , and f (k) :=
(|k|2 +1)−1/2|k|−1 is in L2, as a function of k. From the trace class property of JL ,

together with the boundedness of (−�L + 1)1/2
QψL

hϕL −e(ϕL )
(−�L + 1)1/2 (which

follows from Corollary 3.14), we immediately infer the trace class property of KL .
We even show in Lemma 3.16 that JL , KL �L (−�L + 1)−2.

We shall in the following denote by K y
L , respectively J y

L , the unitary equivalent
operators obtained from KL and JL by a translation by y. Note that K y

L and J y
L

appear if one expandsFL with respect to ϕ
y
L instead of ϕL . Moreover, the invariance

under translations of FL implies that

span{∂ jϕL}3j=1 ⊂ ker(11 − KL). (3.3.25)

We show in Section 3.3.3 that these two sets coincide. Finally, even though both εL
and the estimate (3.3.23) in Proposition 3.15 depend on L , with a little extra work
one can show that the bound is actually uniform in L (for large L). For simplicity
we opt for the current version of Proposition 3.15, as it is sufficient for the purpose
of our investigation, which is set on a torus of fixed linear size L > L1.

Proof. Weshall denote h0 := hϕL . By assumption (3.3.22) and sinceϕL ∈ L2(T3
L),

we can apply Corollary 3.14 to ϕL and to (ϕ − ϕL). This way we see that Vϕ−ϕL is
uniformly infinitesimally relatively bounded with respect to h0 for any ϕ satisfying
(3.3.22).

It is clear that h0 admits a simple and isolated least eigenvalue e(ϕL). Standard
results in perturbation theory then imply that there exist εL > 0 and a contour γ

around e(ϕL) such that for any ϕ satisfying (3.3.22) e(ϕ) is the only eigenvalue of
hϕ = h0 + Vϕ−ϕL inside γ . (For fixed ϕ, the statement above is a standard result
in perturbation theory, see [26, Theorem XII.8]; moreover it is also possible to
get a ϕ-independent γ encircling e(ϕ) (see [26, Theorem XII.11]) since Vϕ−ϕL is
uniformly infinitesimally relatively bounded with respect to h0.) We can thus write

e(ϕ) = Tr
∫

γ

z

z − (h0 + Vϕ−ϕL )

dz

2π i
. (3.3.26)
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Moreover, by the uniform infinitesimal relative boundedness of Vϕ−ϕL with respect
to h0, we have

sup
z∈γ

‖Vϕ−ϕL (z − h0)
−1‖ < 1 (3.3.27)

for εL sufficiently small. For any z ∈ γ , we can thus use the resolvent identity in
the form

1

z − h0 − Vϕ−ϕL

=
(
11 − QψL

z − h0
Vϕ−ϕL

)−1 QψL

z − h0

+
(
11 − QψL

z − h0
Vϕ−ϕL

)−1 PψL

z − h0

(
11 − Vϕ−ϕL

1

z − h0

)−1

.

(3.3.28)

Thefirst term is analytic inside the contour γ and hence it gives zero after integration
when inserted in (3.3.26). Inserting the second term of (3.3.28), which is rank one,
in (3.3.26) and using Fubini’s Theorem to interchange the trace and the integral,
we obtain

e(ϕ) =
∫

γ

z

z − e(ϕL )

〈
ψL

∣∣∣∣∣
(
11 − Vϕ−ϕL

1

z − h0

)−1 (
11 − QψL

z − h0
Vϕ−ϕL

)−1
∣∣∣∣∣ψL

〉
dz

2π i
.

(3.3.29)

For simplicity, we introduce the notation

A = Vϕ−ϕL

1

z − h0
, B = QψL

z − h0
Vϕ−ϕL . (3.3.30)

Because of (3.3.27), both A and B are smaller than 1 in norm, uniformly in z ∈ γ .
We shall use the identity

1

11 − A

1

11 − B
= 11 + A + A(A + B) + B

11 − B

+ A3

11 − A
+ A2

11 − A
B + A

11 − A

B2

11 − B
. (3.3.31)

We insert the various terms in (3.3.29) and do the contour integration. The term 11
gives e(ϕL). The term A, recalling (see (2.2.12)) that (−�L)−1/2ρψL = ϕL , yields

〈ψL |Vϕ−ϕL |ψL 〉 = −2 〈ϕ − ϕL |ϕL〉 . (3.3.32)

A standard calculation shows that the term A(A + B) gives

〈
ψL

∣∣∣∣Vϕ−ϕL

QψL

e(ϕL) − h0
Vϕ−ϕL

∣∣∣∣ψL

〉
= −〈ϕ − ϕL |KL |ϕ − ϕL〉 . (3.3.33)
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Furthermore, since QψLψL = 0, the term B(11 − B)−1 yields zero. Recalling that
FL(ϕ) = ‖ϕ‖2 + e(ϕ) we obtain from (3.3.29)

FL(ϕ) − FL(ϕL) − 〈ϕ − ϕL |11 − KL |ϕ − ϕL〉

=
∫

γ

z

z − e(ϕL)

〈
ψL

∣∣∣∣ A3

11 − A
+ A

(
A

11 − A
+ 1

11 − A

B

11 − B

)
B

∣∣∣∣ψL

〉
dz

2π i
.

(3.3.34)

We observe that, since γ is uniformly bounded and uniformly bounded away from
e(ϕL), we can get rid of the integration, i.e., it suffices to bound

(I ) := sup
z∈γ

∣∣∣∣
〈
ψL

∣∣∣∣ A3

11 − A

∣∣∣∣ψL

〉∣∣∣∣ ,
(I I ) := sup

z∈γ

∣∣∣∣
〈
ψL

∣∣∣∣A
(

A

11 − A
+ 1

11 − A

B

11 − B

)
B

∣∣∣∣ψL

〉∣∣∣∣ , (3.3.35)

with the r.h.s. of (3.3.23) to conclude the proof. We note that

〈ϕ − ϕL |JL |ϕ − ϕL〉 =
∥∥∥(−�L + 1)1/2Vϕ−ϕLψL

∥∥∥2
2
, (3.3.36)

and that, by infinitesimal relative boundedness of VϕL with respect to (−�L) and
since γ is uniformly bounded away from e(ϕL), there exists some constant CL > 0
such that

sup
z∈γ

∥∥∥(−�L + 1)1/2(z − h0)
−k(−�L + 1)1/2

∥∥∥ � CL for k = 1, 2. (3.3.37)

Therefore,

(I ) = sup
z∈γ

∣∣(z − e(ϕL))−1 〈Vϕ−ϕLψL
∣∣(z − h0)

−1A(11 − A)−1
∣∣Vϕ−ϕLψL

〉∣∣
�L sup

z∈γ

∥∥∥∥(−�L + 1)1/2(z − h0)
−1 A

11 − A
(−�L + 1)1/2

∥∥∥∥ 〈ϕ − ϕL |JL |ϕ − ϕL 〉

�L sup
z∈γ

∥∥∥∥(−�L + 1)−1/2 A

11 − A
(−�L + 1)1/2

∥∥∥∥ 〈ϕ − ϕL |JL |ϕ − ϕL 〉 , (3.3.38)

(I I ) � sup
z∈γ

∥∥∥∥ A

11 − A
+ 1

11 − A

B

11 − B

∥∥∥∥ 〈ψL |AA†|ψL 〉1/2 〈ψL |BB†|ψL 〉1/2

�L sup
z∈γ

∥∥∥∥ A

11 − A
+ 1

11 − A

B

11 − B

∥∥∥∥ 〈ϕ − ϕL |JL |ϕ − ϕL 〉 (3.3.39)

Since

A(11 − A)−1 = Vϕ−ϕL (z − hϕ)−1, (3.3.40)

it follows that∥∥∥∥(−�L + 1)−1/2 A

11 − A
(−�L + 1)1/2

∥∥∥∥
� ‖(−�L + 1)−1/2Vϕ−ϕL (−�L)−1/2‖∥∥(−�L)1/2(z − hϕ)−1(−�L)1/2

∥∥
�L ‖(−�L + 1)−1(ϕ − ϕL)‖, (3.3.41)
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where we used the relative boundedness of hϕ w.r.t to −�L and Corollary 3.14.
This yields the right bound for (I ). Similar estimates yield the right bounds for
‖A(11 − A)−1‖ and ‖(11 − A)−1B(11 − B)−1‖ �L ‖B‖, concluding the proof. ��

As a final result of this subsection, we prove the following Lemma about the
operators KL and JL :

Lemma 3.16. Let KL and JL be the operators defined in (3.3.24). We have

KL , JL �L (−�L + 1)−2. (3.3.42)

Proof. We prove the result for JL . By the relative boundedness of hϕL with respect
to −�L the same proof applies to KL . We shall show that (−�L + 1)(−�L)−1/2

ψL(−�L + 1)−1/2 is bounded as an operator on L2(T3
L). In fact, for f ∈ L2(T3

L),∥∥(−�L + 1)(−�L)−1/2ψL(−�L + 1)−1/2 f
∥∥2
2

=
∑

0 �=k∈ 2π
L Z3

( |k|2 + 1

|k|
)2 ∣∣∣∣∣∣∣

∑
ξ∈ 2π

L Z3

(ψL)k−ξ

fξ
(|ξ |2 + 1)1/2

∣∣∣∣∣∣∣
2

� ‖(−�L + 1)3/2ψL‖22
∑

0 �=k∈ 2π
L Z3

( |k|2 + 1

|k|
)2 ∑

ξ∈ 2π
L Z3

| fξ |2
(|k − ξ |2 + 1)3(|ξ |2 + 1)

�L

∑
ξ∈ 2π

L Z3

| fξ |2
|ξ |2 + 1

∑
0 �=k∈ 2π

L Z3

(|k|2 + 1)2

|k|2(|k − ξ |2 + 1)3
�L ‖ f ‖22, (3.3.43)

where we used that ψL ∈ C∞(T3
L) and that

∑
0 �=k∈ 2π

L Z3
(|k|2+1)2

|k|2(|k−ξ |2+1)3
� |ξ |2 + 1.

Therefore

JL �
∥∥(−�L + 1)(−�L)−1/2ψL(−�L + 1)−1/2

∥∥2(−�L + 1)−2

�L (−�L + 1)−2, (3.3.44)

as claimed. ��

3.3.3. Local Properties of MF
L and FL For L > L1 we introduce the notation

�L∇ := L2-projection onto span{∂ jϕL}3j=1, (3.3.45)

which is going to be used throughout this section and Section 4. According to
Theorem 2.3, the condition L > L1 guarantees that ψ

y
L �= ψL for any ψL ∈ ME

L
and any y �= 0, which implies that ran�L∇ is three dimensional (i.e that the partial
derivatives of ϕL are linearly independent); if not, there would exist ν ∈ S

2 such
that ∂νψL = 0 and this would imply ψL = ψ

y
L for any y parallel to ν.

For technical reasons, we also introduce a family of weighted norms which will
be needed in Section 4. For T � 0, we define

‖ϕ‖WT := 〈ϕ|WT |ϕ〉1/2 , (3.3.46)
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where WT acts in k-space as multiplication by

WT (k) =
{
1 |k| � T

(|k|2 + 1)−1 |k| > T .
(3.3.47)

Note that ‖ϕ‖2W0
= 〈ϕ|(−�L + 1)−1|ϕ〉 and ‖ϕ‖W∞ = ‖ϕ‖2.

For the purpose of this section we could formulate the following Lemma only
with respect to ‖ · ‖2 = ‖ · ‖W∞ , but we opt for this more general version since we
shall need it in Section 4:

Lemma 3.17. For any L > L1, there exists ε′
L (independent of T ) such that for any

ϕ ∈ L2
R
(T3

L) with distWT (ϕ,�L(ϕL)) � ε′
L there exist a unique couple (yϕ, vϕ),

depending on T , with yϕ ∈ T
3
L and vϕ ∈ (spani=1,2,3{WT ∂iϕL})⊥, such that

ϕ = ϕ
yϕ
L + (vϕ)yϕ and ‖vϕ‖WT � ε′

L . (3.3.48)

As Proposition 3.15 above, we opt for an L-dependent version of Lemma 3.17
for simplicity, as it is sufficient for our purposes.We nevertheless believe it is possi-
ble to prove a corresponding statement that is uniform in L . Note that Lemma 3.17
is equivalent to the statement that there exists a T -independent ε′

L such that the
WT -projection onto�L(ϕL) is uniquely defined in an ε′

L -neighborhood of�L(ϕL)

with respect to the WT -norm, and that, for any ϕ therein, ϕ
yϕ
L characterizes the

WT -projection of ϕ onto �L(ϕL), so that

distWT (ϕ,�L(ϕL)) = ‖ϕ − ϕ
yϕ
L ‖WT = ‖vϕ‖WT . (3.3.49)

Proof. We begin by observing that the Lemma is equivalent to showing that for any
‖ · ‖WT -normalized v ∈ (spani=1,2,3{WT ∂iϕL})⊥, any ε � ε′

L and any 0 �= y ∈ T
3
L

we have

ε <
∥∥ϕL + εv − ϕ

y
L

∥∥
WT

. (3.3.50)

Indeed, if the Lemma holds then ϕ = ϕL +εv does not admit other decompositions
of the form (3.3.48), which implies that, for any y �= 0, (3.3.50) holds (otherwise
there would exist y �= 0 minimizing the WT -distance of ϕ from �L(ϕL) and such
y would necessarily yield a second decomposition of the form (3.3.48)). On the
other hand, if the statement (3.3.50) holds and the Lemma does not, then there
exists ϕ such that distWT (ϕ,�L(ϕL)) � ε′

L and also such that (y1, v1) and (y2, v2)
yield two different decompositions of the form (3.3.48) for ϕ (note that at least one
decomposition of the form (3.3.48) always exist, as there exist at least one element
of �L(ϕL) realizing the WT -distance of ϕ from �L(ϕL)). By considering ϕ−y1

(respectively ϕ−y2 ) we find ‖v1‖WT > ‖v2‖WT (respectively ‖v2‖WT > ‖v1‖WT ),
which is clearly a contradiction. We shall hence proceed to prove the statement
(3.3.50).

Taylor’s formula and the regularity ofϕL imply the existence of a T -independent
constant C1

L such that

ϕ
y
L = ϕL + y · (∇ϕL) + gy, with ‖gy‖WT � ‖gy‖2 � C1

L |y|2. (3.3.51)
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As remarked after (3.3.45), the kernel of �L∇ is three-dimensional, hence there
exists a constant C2

L independent of T such that

min
ν∈S2

‖ν · ∇ϕL‖WT � min
ν∈S2

‖ν · ∇ϕL‖W0 � C2
L . (3.3.52)

Therefore, using that v ⊥WT ∇ϕL in combination with (3.3.51) and (3.3.52), we
find, for

|y| <
(
C2
L − 2εC1

L

)1/2
(C1

L)−1, (3.3.53)

that ∥∥ϕL + εv − ϕ
y
L

∥∥
WT

= ∥∥εv − y · (∇ϕL) − gy
∥∥
WT

�
(
ε2 + |y|2C2

L

)1/2 − C1
L |y|2 > ε, (3.3.54)

i.e., that (3.3.50) holds for y satisfying (3.3.53). Furthermore, we have

∥∥ϕL + εv − ϕ
y
L

∥∥2
WT

� ε2 + ∥∥ϕL − ϕ
y
L

∥∥
WT

(∥∥ϕL − ϕ
y
L

∥∥
WT

− 2ε
)

, (3.3.55)

and this implies that (3.3.50) holds for any y such that∥∥ϕL − ϕ
y
L

∥∥
WT

> 2ε. (3.3.56)

Using again (3.3.52) and (3.3.51), there exist C3
L , c1L , c4L > 0 independent of T

such that

‖ϕL − ϕ
y
L‖WT = ‖y · (∇ϕL ) + gy‖WT � C2

L |y| − C1
L |y|2 � C3

L |y|, for |y| � c1L ,∥∥ϕL − ϕ
y
L

∥∥
WT

> c4L for |y| > c1L , (3.3.57)

where the second line simply follows from ‖ · ‖WT � ‖ · ‖W0 , the fact that ϕL �= ϕ
y
L

for any 0 �= y ∈ [−L/2, L/2]3 and the continuity of ϕL . Combining (3.3.56) and
(3.3.57), we conclude that (3.3.50) holds if either |y| > c1L or

|y| > 2ε(C3
L)−1. (3.3.58)

Picking ε′
L sufficiently small, the fact that (3.3.50) holds both under the conditions

(3.3.53) and (3.3.58) shows that it holds for any y ∈ T
3
L , and this completes the

proof. ��
We conclude our study of the Pekar functional FL by showing that ker(11 −

KL) = span{∂ jϕL}3j=1 = ran�L∇ . Since clearly ran�L∇ ⊂ ker(11 − KL), this is a
consequence of the following Proposition:

Proposition 3.18. Recalling the definition of τL from Corollary 2.4, we have

11 − KL � τL(11 − �L∇). (3.3.59)
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Proof. We need to show that for all normalized v ∈ ran(11 − �L∇) the bound

〈v|11 − KL |v〉 � τL (3.3.60)

holds. Using Lemma 3.17 in the case T = ∞, for any such v and ε small enough,
denoting ϕ = ϕL + εv, we obtain

dist2L2(ϕ,�L(ϕL)) = ε2. (3.3.61)

Moreover, since ‖(−�L + 1)−1(ϕ − ϕL)‖ � ε‖v‖2 = ε, for ε small enough we
can expand FL(ϕ) with respect to ϕL using Proposition 3.15. Combining this with
(2.2.14), we arrive at

τLε2 � FL(ϕL + εv) − eL � ε2 〈v|11 − KL |v〉 + ε3 〈v|JL |v〉 . (3.3.62)

Since ε can be taken arbitrarily small, the proof is complete. ��

4. Proof of Main Results

In this Section we give the proof of Theorem 2.5. In Section 4.1 we prove
the upper bound in (2.3.2). In Section 4.2 we estimate the cost of substituting the
full Hamiltonian HL with a cut-off Hamiltonian depending only on finitely many
phonon modes, a key step in providing a lower bound for inf specHL . Finally, in
Section 4.3, we show the validity of the lower bound in (2.3.2).

The approach used in Sections 4.1 and 4.2 follows closely the one used in
[9], even if, in our setting, minor complications arise in the proof of the upper
bound due the presence of the zero modes of the Hessian. For the lower bound in
Section 4.3, however, a substantial amount of additional work is needed to deal
with the translation invariance, which complicates the proof significantly.

4.1. Upper Bound

In this section we construct a trial state, which will be used to obtain an upper
bound on the ground state energy ofHL for fixed L > L1. This is carried out using
the Q-space representation of the bosonic Fock space F(L2(T3

L)) (see [25]). Even
though the estimates contained in this section are L-dependent, we believe it is
possible, with little modifications to the proof, to obtain the same upper bound with
the same error estimates uniformly in L .

Our trial state depends non-trivially only on finitely many phonon variables,
and we proceed to describe it more in detail. If one picks � to be a real finite rank
projection on L2(T3

L), then

F(L2(
T
3
L

)) ∼= F(�L2(
T
3
L

))⊗ F((11 − �)L2(
T
3
L

))
. (4.1.1)
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The first factorF(�L2(T3
L)) can isomorphically be identified with L2(RN ), where

N is the complex dimension of ran�. In particular, there is a one-to-one corre-
spondence between any real ϕ ∈ ran� and λ = (λ1, . . . , λN ) ∈ R

N , explicitly
given by

ϕ =
N∑
i=1

λiϕi ∼= (λ1, . . . , λN ) = λ, (4.1.2)

where {ϕi }Ni=1 denotes an orthonormal basis of ran� consisting of real-valued
functions. The trial state we use corresponds to the vacuum in the second factor
F((11 − �)L2(T3

L)) and shall hence be written only as a function of x (the electron
variable) and λ (the finitely many phonon variables selected by �). We begin by
specifying some properties we wish � to satisfy. Consider ϕL from Corollary 2.4
and define � to be a projection of the form � = �′ + �L∇ , where �L∇ is defined in
(3.3.45) and �′ is an (N − 3)-dimensional projection onto (span{∂ jϕL}3j=1)

⊥ =
ran(11 − �L∇) that will be further specified later but will always be taken so that
ϕL ∈ ran�. Our trial state is of the form

�(x, ϕ) = G(ϕ)η(ϕ)ψϕ(x), (4.1.3)

where

• x ∈ T
3
L and ϕ is a real element of ran� (identified with λ ∈ R

N as in (4.1.2)),
• G(ϕ) is a Gaussian factor explicitly given by

G(ϕ) = exp
(
−α2 〈ϕ − ϕL |[�(11 − KL)�]1/2|ϕ − ϕL〉

)
, (4.1.4)

• η is a ‘localization factor’ given by

η(ϕ) = χ
(
ε−1‖(−�L + 1)−1/2(ϕ − ϕL)‖L2(T3

L )

)
, (4.1.5)

for some 0 < ε < εL (with εL as in Proposition 3.15), where 0 � χ � 1 is a
smooth cut-off function such that χ(t) = 1 for t � 1/2 and χ(t) = 0 for t � 1,

• ψϕ is the unique positive ground state of hϕ = −�L + Vϕ .

We note that our state actually depends on two parameters (N and ε) and, of course,
on the specific choice of �′. We choose {ϕi }i=1,...,N to be a real orthonormal basis
of eigenfunctions of [�(11 − KL)�] corresponding to eigenvalues μi = 0 for
i = 1, 2, 3 and μi � τL > 0 for i = 4, . . . , N . Recalling Proposition 3.18,
this amounts to choosing {ϕi }i=1,2,3 to be a real orthonormal basis of ran�L∇ and
{ϕi }i=4,...,N to be a real orthonormal basis of eigenfunctions of [�′(11 − KL)�′].
With this choice, we have (with a slight abuse of notation)

G(ϕ) = G(λ4, . . . , λN ) = exp

(
−α2

N∑
i=4

μ
1/2
i

(
λi − λL

i

)2)
, (4.1.6)

where ϕL ∼= λL = (0, 0, 0, λL
4 , . . . , λL

N ), since ϕL ∈ ran� by construction, and

the first three coordinates are 0 since ϕL ∈ (ran�L∇
)⊥

.
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We first show that even if G does not have finite L2(RN )-norm, � does due to
the presence of η. We define

Tε := {‖(−�L + 1)−1/2(ϕ − ϕL)‖ � ε} ⊂ R
N (4.1.7)

and

γL := inf
ϕ∈ran�L∇‖ϕ‖2=1

〈ϕ|(−�L + 1)−1|ϕ〉 > 0. (4.1.8)

Then, on Tε, noting that �L∇ϕL = 0, we have

γ
1/2
L

√
λ21 + λ22 + λ23 = γ

1/2
L ‖�L∇ϕ‖ � ‖(−�L + 1)−1/2�L∇(ϕ − ϕL)‖2

� ‖(−�L + 1)−1/2�′(ϕ − ϕL)‖2 + ε � ‖�′(ϕ − ϕL)‖ + ε

=
(

N∑
i=4

(λi − λL
i )2

)1/2

+ ε (4.1.9)

and this implies, using the normalization of ψϕ , that

‖�‖2 =
∫
RN

G(λ4, . . . , λN )2η(λ)2dλ1 . . . dλN

�
∫
RN

G(λ4, . . . , λN )211Tε (λ)dλ1 . . . dλN

� 4π

3

∫
RN−3

G(λ4, . . . , λN )2γ
−3/2
L

⎡
⎣( N∑

i=4

(λi − λL
i )2

)1/2

+ ε

⎤
⎦
3

× dλ4 . . . dλN < ∞. (4.1.10)

We spend a few words to motivate our choice of �. The absolute value squared
of � has to be interpreted as a probability density over the couples (ϕ, x), with
ϕ being a classical state for the phonon field and x the position of the electron.
In the electron coordinate, our � corresponds to the ground state of hϕ for any
value of ϕ. This implies, by straightforward computations, that the expectation
value of the Fröhlich Hamiltonian in � equals the one of e(ϕ) + N, e(ϕ) being
the ground state energy of hϕ and N the number operator. Moreover, because of
the factor η, we are localizing our state to the regime where the Hessian expansion
of e(ϕ) from Proposition 3.15 holds. To leading order, this effectively makes our
system formally correspond to a system of infinitely many harmonic oscillators
with frequencies given by the eigenvalues of (11− KL)1/2, with a Gaussian ground
state. To carry out this analysis out rigorously, we need to choose a suitable finite
rank projection �, as detailed in the remainder of this section.

We are now ready to delve into the details of the proof. It is easy to see that
the interaction term appearing in the Fröhlich Hamiltonian acts in the Q-space
representation as the multiplication by Vϕ(x). Therefore, since � corresponds to
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the vacuum on (11 − �)L2(T3
L) and only depends on x through the factor ψϕ(x),

the g.s. of hϕ , it follows that

〈�|HL |�〉 = 〈�|e(ϕ) + N|�〉 (4.1.11)

where ϕ = �ϕ ∼= λ ∈ R
N and the inner product on the r.h.s. is naturally interpreted

as the one on L2(T3
L)⊗L2(RN ). In the Q-space representation, the number operator

takes the form

N =
N∑

n=1

(
− 1

4α4 ∂2λn + λ2n − 1

2α2

)
= 1

4α4 (−�λ) + |λ|2 − N

2α2 . (4.1.12)

Using the fact that η is supported on the set Tε defined in (4.1.7), we can use the
Hessian expansion from Proposition 3.15 to obtain bounds on e(λ). Consequently,
for a suitable positive constant CL ,

〈�|HL |�〉 � 〈�|eL + 〈ϕ − ϕL |11 − KL + εCL JL |ϕ − ϕL〉|�〉
+
〈
�

∣∣∣∣ 1

4α4 (−�λ) − N

2α2

∣∣∣∣�
〉

=
(
eL − 1

2α2 Tr(�)

)
‖�‖2 + A + B, (4.1.13)

with

A =
〈
�

∣∣∣∣∣ 1

4α4 (−�λ) +
N∑
i=4

μi (λi − λL
i )2

∣∣∣∣∣�
〉

, (4.1.14)

B = εCL 〈�| 〈ϕ − ϕL |JL |ϕ − ϕL〉|�〉 . (4.1.15)

We shall now proceed to first show that B only contributes as an error term and
then to rewrite A as the sum of a leading order energy correction term and an error
term. We recall that by Lemma 3.16

JL �L (−�L + 1)−2. (4.1.16)

Therefore, since η is supported on Tε, we have

B �L ε3‖�‖2. (4.1.17)

To treat A a bit more work is required. A direct calculation shows that

[
1

4α4 (−�λ) +
N∑
i=4

μi
(
λi − λL

i

)2]
G = 1

2α2 Tr
(
[�(11 − KL)�]1/2

)
G.

(4.1.18)
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The previous identity, together with straightforward manipulations involving inte-
gration by parts, shows that

A = 1

4α4

(
〈ψϕGη|ψϕ(−�λG)η〉 +

∫
T
3
L×RN

G2|∇λ(ηψϕ)|2
)

+
〈
�

∣∣∣∣∣
N∑
i=4

μi
(
λ − λL

i

)2∣∣∣∣∣�
〉

� 1

2α2 Tr
(
[�(11 − KL)�]1/2

)‖�‖2

+ 1

2α4

[∫
T
3
L×RN

G2η2|∇λψϕ |2 +
∫
T
3
L×RN

G2|∇λη|2|ψϕ |2
]

=: 1

2α2 Tr
(
[�(11 − KL)�]1/2

)‖�‖2 + A1 + A2, (4.1.19)

where the first term is clearly a leading order energy correction whereas A1 and
A2 have to be interpreted as error terms, as we now proceed to show. By standard
first order perturbation theory (using that the phase of ψϕ is chosen so that it is the
unique positive minimizer of hϕ) we have

∂λnψϕ = − Qψϕ

hϕ − e(ϕ)
Vϕnψϕ, (4.1.20)

where we recall that Qψϕ = 11 − ∣∣ψϕ

〉 〈
ψϕ

∣∣. This implies that, for fixed ϕ,

∫
T
3
L

|∇λψϕ(x)|2dx =
N∑

n=1

∥∥∥∥ Qψϕ

hϕ − e(ϕ)
Vϕnψϕ

∥∥∥∥
2

L2(T3
L )

=
N∑

n=1

〈ϕn|(−�L)−1/2ψϕ

(
Qψϕ

hϕ − e(ϕ)

)2
ψϕ(−�L)−1/2|ϕn〉

= Tr(�(−�L)−1/2ψϕ

(
Qψϕ

hϕ − e(ϕ)

)2
ψϕ(−�L)−1/2�), (4.1.21)

where ψϕ is interpreted as a multiplication operator in the last two expressions.

Since (−�L + 1)1/2
(

Qψϕ

hϕ−e(ϕ)

)2
(−�L + 1)1/2 is uniformly bounded over the

support of η (the potential Vϕ being uniformly infinitesimally relatively bounded
with respect to −�L by Corollary 3.14) and recalling that ψϕ is normalized by
definition, we get

Tr(�(−�L)−1/2ψϕ

(
Qψϕ

hϕ − e(ϕ)

)2
ψϕ(−�L)−1/2�)

�L Tr(�(−�L)−1/2ψϕ(−�L + 1)−1ψϕ(−�L)−1/2�) �L 1. (4.1.22)
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In summary, we conclude that

A1 �L
1

α4 ‖�‖2. (4.1.23)

Finally, we proceed to bound A2. Recalling the definition of η and Tε, we see
that

|∇λη|2 =
∣∣∣∇λ

[
χ
(
ε−1‖(−�L + 1)−1/2(ϕ − ϕL)‖L2(T3

L )

)]∣∣∣2
� ε−211Tε (ϕ)

∣∣∣∇λ‖(−�L + 1)−1/2(ϕ − ϕL)‖L2(T3
L )

∣∣∣2
� ε−211Tε (ϕ)

‖(−�L + 1)−1(ϕ − ϕL)‖2
‖(−�L + 1)−1/2(ϕ − ϕL)‖2 � 11Tε (ϕ)ε−2, (4.1.24)

where we used that η is supported on Tε and that χ is smooth and compactly
supported. Therefore, using also the normalization of ψϕ , we obtain

A2 � 1

α4ε2
‖11TεG‖2L2(RN )

. (4.1.25)

We now need to bound ‖11TεG‖L2(RN ) in terms of ‖�‖ = ‖ηG‖L2(RN ). We define

Sν := {ϕ ∈ ran� | ‖�′(ϕ − ϕL)‖2 � ν} (4.1.26)

and observe that on Sν ∩ Tε we have, by the triangle inequality,

‖(−�L + 1)−1/2�L∇ϕ‖2 � ε + ν, (4.1.27)

and that on Scν

G(λ) � exp
(
−α2τ

1/2
L ν2

)
, (4.1.28)

where we used that [�(11 − KL)�]1/2 � τ
1/2
L �′ (with τL being the constant

appearing in Proposition 3.18). We then have, using (4.1.27), that

‖11TεG‖22 = ‖11Tε∩SνG‖22 + ‖11Tε∩ScνG‖22
�
∫

{‖(−�L+1)−1/2�L∇ϕ‖2�ε+ν}∩Sν

G2dλ1 . . . dλN +
∫
Tε∩Scν

G2dλ1 . . . dλN .

(4.1.29)

We now perform the change of variables (λ1, λ2, λ3) = 3(λ′
1, λ

′
2, λ

′
3) in the first

integral and the change of variables λ − λL = 2(λ′ − λL) in the second integral
and fix ν = ε/8, obtaining

‖11TεG‖22 � 27
∫

{‖(−�L+1)−1/2�L∇ϕ‖2�(ε+ν)/3}∩Sν

G2dλ + 2N
∫
Tε/2∩Scν/2

G(λ′)8dλ′

�
(
27 + 2N exp

(
−6α2τ

1/2
L ν2/4

)) ∫
Tε/2

G2dλ

�
(
27 + 2N exp

(
−6α2τ

1/2
L ν2/4

))
‖�‖2, (4.1.30)
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where in the second stepwe used that {‖(−�L+1)−1/2�L∇ϕ‖2 � (ε+ν)/3}∩Sν ⊂
Tε/2 by the triangle inequality if ν = ε/8, and (4.1.28) to estimate the Gaussian
factor on Scν/2. Therefore, as long as

√
N � C1

Lαε for a sufficiently small C1
L , we

conclude that

A2 � 1

α4ε2
‖�‖2. (4.1.31)

Plugging estimates (4.1.17), (4.1.19), (4.1.23), and (4.1.31) into (4.1.13), we infer,
for

√
N � C1

Lαε, that for a sufficiently large C2
L

〈�|HL |�〉
〈�|�〉 � eL − 1

2α2 Tr
(
� − [�(11 − KL)�]1/2

)+ C2
L

(
ε3 + α−4ε−2).

(4.1.32)

We now proceed to choose a real orthonormal basis for ran� which is conve-
nient to bound the r.h.s. of (4.1.32). Let {g j } j∈N be an orthonormal basis of eigen-
functions of KL with corresponding eigenvalue k j , ordered such that k j+1 � k j .
By Proposition 3.18 we have k j = 1 for j = 1, 2, 3 and k j < 1 for j > 3.
Moreover, �L∇ coincides with the projection onto span{g1, g2, g3}. We pick �′
to be the projection onto span{g4, . . . , gN } if ϕL is spanned by {g1, . . . , gN } and
onto span{g4, . . . , gN−1, ϕL} otherwise. With this choice the eigenvalues μi of
�(11 − KL)� appearing in the Gaussian factor G are equal to

μ j = 1 − k j , j = 1, . . . , N − 1,

μN =
{
1 − kN if ϕL ∈ span{g1, . . . , gN },
〈ϕ̃L |11 − KL |ϕ̃L〉 otherwise,

(4.1.33)

with ϕ̃L := ϕL−∑N−1
j=4 g j〈g j |ϕL〉

‖ϕL−∑N−1
j=4 g j〈g j |ϕL〉‖2 . In any case

Tr
(
� − [�(11 − KL)�]1/2

)
�

N−1∑
j=1

(
1 − (1 − k j )

1/2) = Tr
(
11 − (11 − KL)1/2

)−
∞∑
j=N

(
1 − (1 − k j )

1/2).
(4.1.34)

In order to estimate
∑∞

j=N (1 − (1 − k j )1/2), we note that Lemma 3.16 implies

that k j �L (l j + 1)−2, where l j denotes the ordered eigenvalues of −�L . Since
l j ∼ j2/3 for j � 1, we have

∞∑
j=N

(
1 − (1 − k j )

1/2) �L N−1/3. (4.1.35)

This allows us to conclude that

〈�|HL |�〉
〈�|�〉 � eL − 1

2α2 Tr
(
11 − (11 − KL)1/2

)+ C3
L

(
ε3 + α−4ε−2 + α−2N−1/3),

(4.1.36)
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as long as
√
N � C1

Lαε. The error term is minimized, under this constraint, for
ε ∼ α−8/11 and N ∼ α2ε2 ∼ α6/11, which yields

〈�|HL |�〉
〈�|�〉 � eL − 1

2α2 Tr
(
11 − (11 − KL)1/2

)+ CLα−24/11, (4.1.37)

as claimed in (2.3.2).

4.2. The Cutoff Hamiltonian

As a first step to derive the lower bound in (2.3.2), we show that it is possible
to apply an ultraviolet cutoff of size � to HL at an expense of order �−5/2 (this is
proven in Proposition 4.5 in Section 4.2.3). Our approach follows closely the one
in [9]. It relies on an application of a triple Lieb–Yamazaki bound (extending the
method of [19]) which we carry out in Section 4.2.1, and on a consequent use (in
Section 4.2.2) of a Gross transformation [13,23].

We shall in the following, for any real-valued f ∈ L2(T3
L), denote

�( f ) := a†( f ) + a( f ), (4.2.1)

�( f ) := �(i f ) = i(a†( f ) − a( f )). (4.2.2)

We recall that (see (2.1.4)) the interaction term in the Fröhlich Hamiltonian is given
by

−a†(vxL) − a(vxL) = −�(vxL), (4.2.3)

where vL was defined in (2.1.3) and a and a† satisfy the rescaled commutation
relations (2.1.5). We shall apply an ultraviolet cutoff of size � in k-space, which
amounts to substituting the interaction term with

−a†
(
vxL ,�

)− a
(
vxL ,�

) = −�
(
vxL ,�

)
, (4.2.4)

where

vL ,�(y) :=
∑

0 �=k∈ 2π
L Z3

|k|<�

1

|k|
e−ik·y

L3 . (4.2.5)

To quantify the expense of such a cutoff we clearly need to bound

−a†
(
wx

L ,�

)− a
(
wx

L ,�

) = −�
(
wx

L ,�

)
, (4.2.6)

where

wL ,�(y) = vL(y) − vL ,�(y) =
∑

k∈ 2π
L Z3

|k|��

1

|k|
e−ik·y

L3 . (4.2.7)
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4.2.1. Triple Lieb–Yamazaki Bounds Let us introduce the notation p = (p1,
p2, p3) = −i∇x for the electron momentum operator. Note that on any function
of the form f (x, y) = f (y − x), such as wx

L ,� for example, the operator p simply
acts as multiplication by k in k-space and agrees, up to a sign, with −i∇y .

The purpose of this section is to prove the following Proposition.

Proposition 4.1. Let wL ,� be defined as in (4.2.7) and � > 1. Then

a†
(
wx

L ,�

)+ a
(
wx

L ,�

) = �
(
wx

L ,�

)
� (|p|2 + N + 1)2

(
�−5/2 + α−1�−3/2),

(4.2.8)

as quadratic forms on L2(T3
L) ⊗ F(L2(T3

L)).

We first need the following Lemma.

Lemma 4.2. Let wL ,� be defined as in (4.2.7) and � > 1. Then for any j, l,m ∈
{1, 2, 3}

a†
[
(∂ j∂l∂m(−�L)−3wL ,�)x

]
a
[
(∂ j∂l∂m(−�L)−3wL ,�)x

]
� �−5

N, (4.2.9)

‖∂ j∂l(−�L)−2wL ,�‖2
L2(T3

L )
� �−3, (4.2.10)

a†
[
(∂ j∂l(−�L)−2wL ,�)x

]
a
[
(∂ j∂l(−�L)−2wL ,�)x

]
� �−5(|p|2 + L−3�−1)N, (4.2.11)

as quadratic forms on L2(T3
L) ⊗ F(L2(T3

L)).

Proof. For any j, l,m ∈ {1, 2, 3}, (4.2.9) follows from a†(g)a(g) � ‖g‖22N for
g ∈ L2(T3

L), and then proceeding along the same lines of the proof of (4.2.10). To
prove (4.2.10) we estimate

‖∂ j∂l(−�L)−2wL ,�‖2
L2(T3

L )
= 1

L3

∑
|k|��

k∈ 2π
L Z3

k2j k
2
l

|k|10 �
∫
Bc

�

1

|t |6 dt = 4π

3
�−3.

(4.2.12)

If we denote f xj,l := (−∂ j∂l(−�L)−2wL ,�)x , in order to show (4.2.11) it suffices
to prove that

∣∣∣ f xj,l 〉 〈 f xj,l ∣∣∣ � �−5
(
|p|2 + �−1

)
on L2(

T
3
L

)⊗ L2(
T
3
L

)
, (4.2.13)

where the bracket notation refers to the second factor in the tensor product, i.e., the
left side is a rank-one projection on the second factor parametrized by x , which acts
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via multiplication on the first factor. For any � ∈ L2(T3
L) ⊗ L2(T3

L) with Fourier
coefficients �q,k , we have

〈
�

∣∣∣ ∣∣∣ f xj,l 〉 〈 f xj,l ∣∣∣ ∣∣∣�〉 =
∫

dx

∣∣∣∣
∫

dy f xj,l (y)�(x, y)

∣∣∣∣
2

=
∑

q∈ 2π
L Z3

∣∣∣∣∣∣∣∣∣
∑

k∈ 2π
L Z3

|k|��

k j kl
L3/2|k|5 �q−k,k

∣∣∣∣∣∣∣∣∣

2

�
∑

q∈ 2π
L Z3

⎛
⎜⎜⎜⎝

∑
k∈ 2π

L Z3

|k|��, k �=q

1

L3|k|6|q − k|2

⎞
⎟⎟⎟⎠
⎛
⎜⎝ ∑

k∈ 2π
L Z3

|q − k|2|�q−k,k |2
⎞
⎟⎠+

∑
q∈ 2π

L Z3

|q|��

|�0,q |2
L3|q|6

� sup
q∈ 2π

L Z3

⎛
⎜⎜⎜⎝

∑
k∈ 2π

L Z3

|k|��, k �=q

L−3

|k|6|q − k|2

⎞
⎟⎟⎟⎠ 〈�||p|2|�〉 + L−3�−6‖�‖2

� 〈�|�−5(|p|2 + L−3�−1)|�〉 , (4.2.14)

which shows our claim.We only need to justify the last step, i.e., that the supremum
appearing in (4.2.14) is bounded by C�−5. We have

∑
0 �=k∈ 2π

L Z3

|k|��, k �=q

L−3

|k|6|q − k|2 �
∫
Bc

�

1

|x |6|q − x |2 dx = �−5
∫
Bc
1

1

|x |6|�−1q − x |2

� �−5

(∫
B1(�−1q)

1

|�−1q − x |2 +
∫
Bc
1

|x |−6

)
� 16π

3
�−5.

(4.2.15)

This concludes the proof. ��
We are now able to prove Proposition 4.1.

Proof of Proposition 4.1. Following the approach by Lieb and Yamazaki in [19],
we have

3∑
j=1

[
p j , a

(
p j |p|−2wx

L ,�

)] = −a
(
wx

L ,�

)
. (4.2.16)

Applying this three times, we obtain

3∑
j,k,l=1

[
p j ,
[
pk,
[
pl , a

(
p j pk pl |p|−6wx

L ,�

)]]] = −a
(
wx

L ,�

)
. (4.2.17)

Similarly,

3∑
j,k,l=1

[
p j ,
[
pk,
[
pl , a

†(p j pk pl |p|−6wx
L ,�

)]]] = a†
(
wx

L ,�

)
. (4.2.18)
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Therefore, if we define

Bjkl := a†
(
p j pk pl |p|−6wx

L ,�

)− a
(
p j pk pl |p|−6wx

L ,�

)
= a†

[(
∂ j∂l∂m(−�L)−3wL ,�

)x]− a
[(

∂ j∂l∂m(−�L)−3wL ,�

)x]
,

(4.2.19)

we have

a†
(
wx

L ,�

)+ a
(
wx

L ,�

) = �
(
wx

L ,�

) =
3∑

j,k,l=1

[
p j ,
[
pk,
[
pl , Bjkl

]]]
. (4.2.20)

Using that B†
jkl = −Bjkl and that Bjkl is invariant under exchange of indices, we

arrive at

�
(
wx

L ,�

) =
3∑

j,k,l=1

(
p j pk

[
pl , Bjkl

]+ [B†
jkl , pl

]
p j pk

)

− 2
3∑

j,k,l=1

(
p j pk B jkl pl + pl B

†
jkl p j pk

)
. (4.2.21)

By the Cauchy–Schwarz inequality, we have for any λ > 0

−p j pk B jkl pl − pl B
†
jkl p j pk � λp2j p

2
k + λ−1 pl B

†
jkl B jkl pl . (4.2.22)

Moreover, using (4.2.9) and the rescaled commutation relations (2.1.5) satisfied by
a and a†, we have

B†
jkl B jkl � C

(
4N + 2α−2

)
�−5. (4.2.23)

Using (4.2.22) and (4.2.23) and picking λ = C1/2�−5/2 we conclude that

−2
3∑

j,k,l=1

(
p j pk B jkl pl + pl B

†
jkl p j pk

)
� �−5/2

(
|p|4 + 3|p|2(4N + 2α−1)) .

(4.2.24)

We now define

C jk :=
3∑

l=1

[
pl , Bjkl

] = a†
(
p j pk |p|−4wx

L ,�

)+ a
(
p j pk |p|−4wx

L ,�

)
= a†

[(
∂ j∂k(−�L)−2wL ,�

)x]+ a
[(

∂ j∂k(−�L)−2wL ,�

)x] = C†
jk .

(4.2.25)

Using (4.2.10), (4.2.11) and the Cauchy-Schwarz inequality, we have for any λ > 0

p j pkC jk + C jk p j pk � λp2j p
2
k + λ−1C2

jk . (4.2.26)
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Moreover,

C2
jk � 4a†

(
p j pk |p|−4wx

L ,�

)
a
(
p j pk |p|−4wx

L ,�

)+ 2α−2‖p j pk |p|−4wx
L ,�‖22

� �−5(|p|2 + �−1)
N + α−2�−3. (4.2.27)

Picking λ = �−5/2 + α−1�−3/2, we therefore conclude that

3∑
j,k,l=1

(
p j pk

[
pl , Bjkl

]+ [B†
jkl , pl

]
p j pk

)

�
(
�−5/2 + α−1�−3/2)[|p|4 + N

(|p|2 + L−3�−1)+ 1
]
. (4.2.28)

Applying (4.2.24) and (4.2.28) in (4.2.21), we finally obtain

�(wx
L ,�) �

(
�−5/2 + α−1�−3/2) [|p|4 + N

(|p|2 + L−3�−1)+ 1
]

+ �−5/2
(
|p|4 + 3|p|2(4N + 2α−1))

�
(|p|2 + N + 1

)2(
�−5/2 + α−1�−3/2), (4.2.29)

as claimed. ��

4.2.2. Gross Transformation The bound (4.2.8), derived in Proposition 4.1, is
not immediately useful as it stands. In order to relate the r.h.s. of (4.2.8) to the square
of the Fröhlich Hamiltonian HL in (2.1.4), we shall apply a Gross transformation
[13,23].

For a real-valued f ∈ H1(T3
L), recalling that f x ( · ) = f ( · − x), we consider

the following unitary transformation on L2(T3
L) ⊗ F

U = ea(α2 f x )−a†(α2 f x ) = ei�(α2 f x ), (4.2.30)

where U is understood to act as a ‘multiplication’ with respect to the x variable.
For any g ∈ L2(T3

L), we have

Ua(g)U † = a(g) + 〈g∣∣ f x 〉 and Ua†(g)U † = a†(g) + 〈 f x ∣∣g〉 , (4.2.31)

and therefore

UNU † = N + �( f x ) + ‖ f ‖22. (4.2.32)

Moreover,

UpU † = p + α2�(p f x ) = p + α2�[(i∇ f )x ]. (4.2.33)

This implies that

Up2U † = p2 + α4(�[(i∇ f )x ])2 + 2α2 p · a[(i∇ f )x ]
+ 2α2a†[(i∇ f )x ] · p + α2�[(−�L f )x ]. (4.2.34)
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Therefore, we also have

UHLU
† = |p|2 + α4(�[(i∇ f )x ])2 + 2α2 p · a[(i∇ f )x ] + 2α2a†[(i∇ f )x ] · p

+ �[(−α2�L f + f − vL)x ] + N + ‖ f ‖22 − 2 〈vL | f 〉 . (4.2.35)

We denote

g = −α2�L f + f − vL , (4.2.36)

and we shall pick

f (y) =
[
(−α2�L + 1)−1(−�L)−1/2χBc

K2
(−�L)

]
(0, y)

=
∑
|k|�K

k∈ 2π
L Z3

1

(α2|k|2 + 1)|k|
e−ik·y

L3 (4.2.37)

for some K > 0. Recalling (4.2.5), this implies that

g(y) = −vL ,K (y) = −
∑

0 �=k∈ 2π
L Z3

|k|<K

1

|k|
e−ik·y

L3 . (4.2.38)

For simplicity we suppress the dependence on K in the notation for f and g, but
we will keep track of the parameter K by denoting the operator U related to this
choice of f (depending onα and K ) via (4.2.30) byUK

α .We shall need the following
estimates for norms involving f and g. We have

‖g‖22 =
∑

0 �=k∈ 2π
L Z3

|k|<K

1

L3|k|2 � K , (4.2.39)

‖ f ‖22 =
∑

0 �=k∈ 2π
L Z3

|k|�K

1

L3|k|2(α2|k|2 + 1)2
� α−4

∫
Bc
K

1

|t |6 dt � α−4K−3, (4.2.40)

〈vL | f 〉 =
∑

k∈ 2π
L Z3

|k|�K

1

L3|k|2(α2|k|2 + 1)
� α−2

∫
Bc
K

1

|t |4 dt � α−2K−1, (4.2.41)

‖∇ f ‖22 =
∑

k∈ 2π
L Z3

|k|�K

1

L3(α2|k|2 + 1)2
� α−4

∫
Bc
K

1

|t |4 dt � α−4K−1. (4.2.42)

We now state and prove the main result of this subsection, the proof of which
follows the approach used in [12] for the analogous statement on R3, and in [9] for
the analogous statement on a domain with Dirichlet boundary conditions.
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Proposition 4.3. For any ε > 0 there exist Kε > 0 and Cε > 0 such that, for all
α � 1 and any � ∈ L2(T3

L) ⊗ F in the domain of |p|2 + N

(1 − ε)‖(|p|2 + N)�‖ − Cε‖�‖ �
∥∥UKε

α HL(UKε
α )†�

∥∥
� (1 + ε)‖(|p|2 + N)�‖ + Cε‖�‖. (4.2.43)

Proof. We shall use the following standard (given the rescaled commutation rela-
tions satisfied by a and a†) properties, which hold for any� ∈ F , any f ∈ L2(T3

L)

and any function h : [0,∞) → R

‖a( f )�‖ � ‖ f ‖2‖
√
N�‖, ‖a†( f )�‖ � ‖ f ‖2‖

√
N + α−2�‖, (4.2.44)

h(N + α−2)a = ah(N), h(N)a† = a†h(N + α−2). (4.2.45)

It is then straightforward, with the aid of the estimates (4.2.39), (4.2.40), (4.2.41)
and (4.2.42), to show, for any � ∈ L2(T3

L) ⊗ F , any δ > 0 and any K > 0, that

α4‖(�[(i∇ f )x ])2�‖ � α4‖∇ f ‖2‖(N + α−2)�‖ � K−1‖(N + α−2)�‖,
(4.2.46)

‖�(gx )�‖ � K 1/2‖
√
N + α−2�‖ � δ‖(N + α−2)�‖ + δ−1K‖�‖,

(4.2.47)

α2‖a†[(i∇ f )x ] · p�‖ � K−1/2‖
√
N + α−2

√
|p|2�‖

� K−1/2‖(|p|2 + N + α2)�‖. (4.2.48)

It remains to bound the term

‖α2 p · a[(i∇ f )x ]�‖ � ‖α2a[(i∇ f )x ] · p�‖ + ‖a[(−α2�L f )x ]�‖
=: (I) + (II). (4.2.49)

As in (4.2.48), we can easily bound

(I) � K−1/2‖(|p|2 + N + α−2)�‖. (4.2.50)

By (4.2.36) and (4.2.38) and recalling (4.2.5) and (4.2.7), we have

a[(−α2�L f )x ] = a[(g − f + vL)x ] = −a( f x ) + a
(
wx

L ,K

)
. (4.2.51)

With the same arguments used in the proof of Lemma 4.2 we obtain

‖a(wx
L ,K )�‖ � K−1/2

∥∥√N(|p|2 + K−1)�
∥∥, (4.2.52)

and therefore, using (4.2.40) to bound ‖a( f x )�‖ , we arrive at

(II) � α−2K−3/2‖√N�‖ + K−1/2‖
√
N(|p|2 + K−1)�‖

� α−2K−3/2(‖(N + α−2)�‖ + ‖�‖) + K−1/2‖(|p|2 + N + K−1)�‖.
(4.2.53)
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Combining (4.2.46)–(4.2.48), (4.2.50), (4.2.53), (4.2.40) and (4.2.41)with (4.2.35),
we obtain, for any K � 1

‖UK
α HL(Uk

α)†�‖ � [1 + C(K−1/2 + δ)]‖(|p|2 + N)�‖
+ C(δ−1K + 3α−2K−1)‖�‖, (4.2.54)

‖UK
α HL(UK

α )†�‖ � [1 − C(K−1/2 + δ)]‖(|p|2 + N)�‖
− C(δ−1K + 3α−2K−1)‖�‖, (4.2.55)

which allows us to conclude the proof by picking Kε ∼ ε−2, δ ∼ ε and Cε ∼ ε−3.
��

Remark 4.4. Proposition 4.3 has as an important consequence the fact that the
ground state energy of HL is uniformly bounded for α � 1.

4.2.3. Final Estimates for Cut-off Hamiltonian With Propositions 4.1 and 4.3
at hand, we are finally ready to prove the main result of this section. Note that all
the estimates performed in this section are actually independent of L .

Proposition 4.5. Let

H
�
L = −�L − �

(
vxL ,�

)+ N, (4.2.56)

where vL ,� is defined in (4.2.5). Then, for any � � 1 and α � 1,

inf specHL − inf specH�
L � −(�−5/2 + α−1�−3/2 + α−2�−1). (4.2.57)

Note that for the error term introduced in (4.2.57) to be negligible compared to
α−2 it suffices to pick � � α4/5.

Proof. We begin by recalling that Proposition 4.1 implies that

a
(
wx

L ,�

)+ a†
(
wx

L ,�

) = �
(
wx

L ,�

)
�
(
�−5/2 + α−1�−3/2)(|p|2 + N + 1)2.

(4.2.58)

Applying the unitary Gross transformation UK
α introduced in the previous subsec-

tion (with f defined in (4.2.37) and K large enough for Proposition 4.3 to hold for
some 0 < ε < 1) to both sides of the previous inequality and recalling (4.2.31), we
obtain(

UK
α

)†
�
(
wx

L ,�

)
UK

α = �
(
wx

L ,�

)+ 2
〈
f
∣∣wL ,�

〉
�
(
�−5/2 + α−1�−3/2)(UK

α

)†
(|p|2 + N + 1)2UK

α .

(4.2.59)

Proposition 4.3 implies that

(
UK

α

)†
(|p|2 + N + 1)2UK

α � (HL + C)2, (4.2.60)
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where C is a positive constant (independent of α for α � 1). Recalling the defini-
tions of f and wL ,� we also have

∣∣〈 f ∣∣wL ,�

〉∣∣ � ∑
0 �=k∈ 2π

L Z3

|k|>�

1

L3(α2|k|2 + 1)|k|2 � α−2�−1, (4.2.61)

and this allows us to conclude, in combination with (4.2.59) and (4.2.60), that

�
(
wx

L ,�

)
�
(
�−5/2 + α−1�−3/2 + α−2�−1)(HL + C)2. (4.2.62)

Hence

〈�|HL |�〉 � 〈�|H�
L |�〉 − (�−5/2 + α−1�−3/2 + α−2�−1) 〈�|(HL + C)2|�〉 .

(4.2.63)

By Remark 4.4, to compute the ground state energy ofHL it is clearly sufficient to
restrict to the spectral subspace relative to |HL | � C for some suitable C , which
then yields (4.2.57). This concludes the proof and the section. ��

4.3. Final Lower Bound

In this section we show the validity of the lower bound in (2.3.2), thus complet-
ing the proof of Theorem 2.5.With Proposition 4.5 at hand, we have good estimates
on the cost of substituting HL with H�

L and, in particular, we know that the differ-
ence between the ground state energies of the two is negligible for � � α4/5. We
are thus left with the task of giving a lower bound on inf specH�

L .
While the previous steps in the lower bound follow closely the analogous strat-

egy in [9], the translation invariance of our model leads to substantial complications
in the subsequent steps, and the analysis given in this subsection is the main novel
part of our proof. In contrast to the case considered in [9], the set of minimizers
MF

L = �L(ϕL) is a three-dimensional manifold, and in order to decouple the
resulting zero-modes of the Hessian of the Pekar functional we find it necessary
introduce a suitable diffeomorphism that ’flattens’ the manifold of minimizers and
the region close to it. Special attention also has to be paid on the metric in which
this closeness is measured, necessitating the introduction of the family of norms in
(3.3.47).

We emphasize that the non-uniformity in L also results from the subsequent
analysis, where the compactness of resolvent of −�L enters in an essential way.

Let � denote the projection

ran� = span

{
L−3/2eik·x , k ∈ 2π

L
Z
3, |k| � �

}
, N = dimC ran�. (4.3.1)

For later use we note that

N ∼
(

L

2π

)3
�3 as � → ∞. (4.3.2)
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The Fock space F(L2(T3
L)) naturally factorizes into the tensor product

F(�L2(T3
L)) ⊗ F((11 − �)L2(T3

L)) and H
�
L is of the form A ⊗ 11 + 11 ⊗ N

>,
with A acting on L2(T3

L) ⊗ F(�L2(T3
L)) and N

> being the number operator on
F((11 − �)L2(T3

L)). In particular, inf specH�
L = inf specA.

As in Section 4.1, we can, for any L2-orthonormal basis of real-valued functions
{ fn} of ran�, identify F(�L2(T3

L)) with L2(RN ) through the Q-space represen-
tation (see [25]). In particular, any real-valued ϕ ∈ ran� corresponds to a point
λ ∈ R

N via

ϕ = �ϕ =
N∑

n=1

λn fn ∼= (λ1, . . . , λN ) = λ. (4.3.3)

Note that, compared to Section 4.1, we are using a different choice of � here for
the decomposition L2(T3

L) = ran� ⊕ (ran�)⊥.
In the representation given by (4.3.3), the operator A is given by

A = −�L + Vϕ(x) +
N∑

n=1

(
− 1

4α4 ∂2λn + λ2n − 1

2α2

)
(4.3.4)

on L2(T3
L) ⊗ L2(RN ). For a lower bound, we can replace hϕ = −�L + Vϕ with

the infimum of its spectrum e(ϕ), obtaining

inf specH�
L � inf specK, (4.3.5)

where K is the operator on L2(RN ) defined as

K = − 1

4α4

N∑
n=1

∂2λn − N

2α2 + FL(ϕ) = 1

4α4 (−�λ) − N

2α2 + FL(λ), (4.3.6)

where FL , which is understood as a multiplication operator in (4.3.6), can be seen
as a function of ϕ ∈ spanR{ f j }Nj=1 or λ ∈ R

N through the identification (4.3.3).

Using IMS localization we shall splitRN into two regions, one localized around
the surface of minimizers ofFL , i.e.,MF

L = �L(ϕL), and the other localized away
from it. On each of these regions we can bound FL from below with the estimates
contained in Proposition 3.15 and in Corollary 2.4, respectively. Because of the
prefactor α−4 in front of −�λ the outer region turns out to be negligible compared
to the inner one (at least if we define the inner and outer region with respect to an
appropriate norm). At the same time, employing an appropriate diffeomorphism,
the inner region can be treated as if �L(ϕL) was a a flat torus, leading to a system
of harmonic oscillators whose ground state energy can be calculated explicitly.

We start by specifying the norm with respect to which we measure closeness
to �L(ϕL). Recall the definition of the WT -norms given in (3.3.47). Note that
for T � � the L2-norm coincides with the WT -norm on ran�, which makes
0 < T < � the relevant regime for our discussion. In fact, we shall pick

1 � T � �2/3 , α4/5 � �, (4.3.7)
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where T � 1 is needed for the inner region to yield the right contribution, and
T � �2/3 ensures that the outer region contribution is negligible.

We proceed by introducing an IMS type localization with respect to ‖ · ‖WT .
Let χ : R+ → [0, 1] be a smooth function such that χ(t) = 1 for t � 1/2 and
χ(t) = 0 for t � 1. Let ε > 0 and let j1 and j2 denote the multiplication operators
on L2(RN )

j1 = χ
(
ε−1distWT (ϕ,�L(ϕL))

)
, j2 =

√
1 − j21 . (4.3.8)

Then

K = j1K j1 + j2K j2 − E, (4.3.9)

where E is the IMS localization error given by

E = 1

4α4

N∑
n=1

(
|∂λn j1|2 + |∂λn j2|2

)
, (4.3.10)

which is estimated in the following lemma.

Lemma 4.6.

E � α−4ε−2 (4.3.11)

Proof. To boundEwe apply Lemma 3.17, which states that for ε sufficiently small,
for any ϕ ∈ supp j1, there exists a unique yϕ ∈ T

3
L such that

dist2WT
(ϕ,�L(ϕL)) =

〈
ϕ − ϕ

yϕ
L

∣∣∣WT

∣∣∣ϕ − ϕ
yϕ
L

〉
. (4.3.12)

Likewise, for any n ∈ {1, . . . , N } and any h sufficiently small there exists a unique
yn,h ∈ T

3
L such that

dist2WT
(ϕ + h fn,�L(ϕL)) =

〈
ϕ + h fn − ϕ

yn,h
L

∣∣∣WT

∣∣∣ϕ + h fn − ϕ
yn,h
L

〉
.

(4.3.13)

It is easy to see, using again Lemma 3.17, that limh→0 yh,n = yϕ for any n. There-
fore, using that distWT (ϕ+h fn,�L(ϕL)) � ‖ϕ−ϕ

yϕ
L ‖WT anddistWT (ϕ,�L(ϕL)) �

‖ϕ − ϕ
yh,n
L ‖WT , we arrive at

2 〈 fn|WT

∣∣∣ϕ − ϕ
yϕ
L

〉
= lim

h→0
2 〈 fn|WT

∣∣∣ϕ − ϕ
yh,n
L

〉
� lim

h→0
h−1

(
dist2WT

(ϕ + h fn,�L(ϕL)) − dist2WT
(ϕ,�L(ϕL))

)
� 2 〈 fn|WT

∣∣∣ϕ − ϕ
yϕ
L

〉
, (4.3.14)

which shows that

∂λn dist
2
WT

(ϕ,�L(ϕL)) = 2
〈
fnWT

(
ϕ − ϕ

yϕ
L

)〉
. (4.3.15)
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Using that |χ ′|,
∣∣∣[(1 − χ2)1/2

]′∣∣∣ � 11[1/2,1], for k = 1, 2 we obtain

∣∣[∂λn jk
]
(ϕ)
∣∣2 � ε−4

∣∣∣∂λn dist
2
WT

(ϕ,�L(ϕL))

∣∣∣2 11{distWT (ϕ,�L (ϕL ))�ε
}

� ε−4
∣∣〈 fnWT

(
ϕ − ϕ

yϕ
L

)〉∣∣211{distWT (ϕ,�L (ϕL ))�ε
}. (4.3.16)

Summing over n, using that ‖WT ‖ � 1 and that { fn} is an orthonormal system, we
arrive at (4.3.11). ��

Thus, the localization error is negligible as long as ε � α−1. Hence, we are left
with the task of providing lower bounds for j1K j1 and j2K j2 under the constraint
ε � α−1. We carry out these estimates in the next two Sections 4.3.1 and 4.3.2.
Finally, in Section 4.3.3, we combine these bounds to prove the lower bound in
(2.3.2).

4.3.1. Bounds on j1K j1 Let us look closer at the intersectionof the ε-neighborhood
of �L(ϕL) with respect to the WT -norm with ran�, i.e., the set

[��L(ϕL)]ε,T := {ϕ ∈ ran� | ϕ̄ = ϕ, distWT (ϕ,�L(ϕL)) � ε}
= supp j1 ∩ ran�. (4.3.17)

In the following we shall show that this set is, for ε small enough, a tubular neigh-
borhood of ��L(ϕL), which can be mapped via a suitable diffeomorphism (given
in Definition 4.7) to a tubular neighborhood of a flat torus.

Since ϕ ∈ ran� and � commutes both with WT and with the transformation
g �→ gy for any y ∈ T

3
L , we have

dist2WT
(ϕ,�L(ϕL)) = ‖(11 − �)ϕL‖2WT

+ dist2WT
(ϕ,�L(�ϕL)). (4.3.18)

This implies that [��L(ϕL)]ε,T is non-empty if and only if

rT,ε :=
√

ε2 − ‖(11 − �)ϕL‖2WT
> 0. (4.3.19)

Since ϕL ∈ C∞(T3
L), rT,ε > 0 as long as

ε �L �−h (4.3.20)

for some h > 0 and � sufficiently large. In particular, (4.3.20) is satisfied with
h = 5/4 for α large enough since, as discussed above, we need to pick ε � α−1

and � � α4/5 for the IMS and the cutoff errors to be negligible.
Lemma 3.17 implies that any ϕ ∈ [��L(ϕL)]ε,T , for ε � ε′

L (independently
of T and N ), admits a unique WT -projection ϕ

yϕ
L onto �L(ϕL) and

ϕ = ϕ
yϕ
L + (vϕ)yϕ , with vϕ ∈ ( span {�WT ∂ jϕL

}3
j=1

)⊥L2 . (4.3.21)

Since WT and � commute, �L(ϕL) is ‘parallel’ to ran� with respect to ‖ · ‖WT ,
i.e., distWT (ran�,ϕ

y
L) is independent of y and the WT -projection of ϕ

y
L onto � is

simply �(ϕ
y
L) = (�ϕL)y . Therefore, for ε � ε′

L , any ϕ ∈ [��L(ϕL)]ε,T admits



The Strongly Coupled Polaron on the Torus 1895

a unique WT -projection (�ϕL)yϕ onto �L(�ϕL) and (4.3.21) induces a unique
decomposition of the form

ϕ = (�ϕL )yϕ + (ηϕ)yϕ , with ηϕ ∈ ( span {�WT ∂ jϕL
}3
j=1

)⊥L2 , ‖ηϕ‖WT � rT,ε,

(4.3.22)

where ηϕ = �vϕ (note that (11 − �)vϕ = −(11 − �)ϕL ). This allows to intro-
duce the following diffeomorphism, which is a central object in our discussion. It
maps [��L(ϕL)]ε,T onto a tubular neighborhood of a flat torus. We shall call this
diffeomorphism Gross coordinates, as it is inspired by an approach introduced in
[14].

Definition 4.7. (Gross coordinates) For

BT,�
ε :=

{
η ∈ ( span {�WT ∂ jϕL

}3
j=1

)⊥L2 ∩ ran� | ‖η‖WT � rT,ε

}
⊂ ran�,

(4.3.23)

we define the Gross coordinates map u as

u : [��L(ϕL)]ε,T → T
3
L × BT,�

ε ,

ϕ �→ (yϕ, ηϕ), (4.3.24)

where yϕ and ηϕ are defined through the decomposition (4.3.22).

By the discussion above it is clear that u is well-defined and invertible, for
ε � ε′

L (defined in Lemma 3.17), with inverse u−1 given by

u−1 : T3
L × BT,�

ε → [��L(ϕL)]ε,T
(y, η) �→ (�ϕL)y + ηy . (4.3.25)

We emphasize that the whole aim of the discussion above is to show that u is well-
defined, since once that has been shown the invertibility of u and the form of u−1

are obvious. In other words, the map u−1 as defined in (4.3.25) is trivially-well
defined, but it is injective and surjective with inverse u only thanks to the existence
and uniqueness of the decomposition (4.3.22).

To show that u is a smooth diffeomorphism, we prefer to work with its inverse
u−1, which we proceed to write down more explicitly. For this purpose, we pick a
real L2-orthonormal basis { fk}Nk=1 of ran�, such that f1, f2 and f3 are an orthonor-

mal basis of span{�WT ∂ jϕL}3j=1 and f4 = �ϕL‖�ϕL‖2 . Note that span{�WT ∂ jϕL}3j=1
is three dimensional, as remarked after (3.3.45), at least for N and T large enough,
and that f4 is indeed orthogonal to f1, f2 and f3 since in k-space WT and � are
even multiplication operators while the partial derivatives are odd multiplication
operators. We denote the projection onto span{�WT ∂ jϕL}3j=1 by

�L∇,T :=
3∑

k=1

| fk〉 〈 fk | . (4.3.26)
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Having fixed a real orthonormal L2-basis, we can identify any real-valued function
in ran� (and hence also any function in [��L(ϕL)]ε,T ) with a point (λ1, . . . , λN )

via (4.3.3). In these coordinates, the orthogonal transformation that acts on functions
in ran� as the translation by y, i.e., ϕ �→ ϕy , reads

R(y) :=
N∑

k=1

∣∣ f yk 〉 〈 fk | , (4.3.27)

and we can write BT,�
ε in (4.3.23) as

BT,�
ε :=

⎧⎨
⎩η = (η4, . . . , ηN ) ∈ spanR{ f4, . . . , fN }

∣∣∣
∥∥∥∥∥

N∑
k=4

ηk fk

∥∥∥∥∥
WT

� rT,ε

⎫⎬
⎭ .

(4.3.28)

In this basis, we can write u−1 explicitly as

u−1(y, η) = (�ϕL)y + ηy = R(y)(0, 0, 0, ‖�ϕL‖2 + η4, η5, . . . , ηN ).

(4.3.29)

The following Lemma uses this explicit expression for u−1 and shows that it is
a smooth diffeomorphism (therefore showing that the Gross coordinates map u is
as well).

Lemma 4.8. Let u−1 be the map defined in (4.3.29). There exists ε1L � ε′
L (in-

dependent of T and N) and NL > 0 such that for any ε � ε1L , any T > 0
and any N > NL the map u−1 is a C∞-diffeomorphism from T

3
L × BT,�

ε onto
[��L(ϕL)]ε,T . Moreover, for ε � ε1L , | det Du−1| and all its derivatives are uni-
formly bounded independently of T and N.

Proof. We introduce the notation J (y, η) = Du−1(y, η) and d(y, η) :=
| det J (y, η)|. Note that R(y) in (4.3.27) satisfies R(−y) = R(y)−1 = R(y)t

since { f yj }Nj=1 is an orthonormal basis of ran� for any y. Hence, for j = 1, . . . , N
we have

(u−1) j (y, η) =
〈
f j
∣∣∣u−1(y, η)

〉
=
〈
R(−y) f j

∣∣∣∣∣�ϕL +
N∑
l=4

ηl fl

〉
. (4.3.30)

This yields the smoothness of u−1 in η and in y (noting that { f j }Nj=1 ⊂ ran�

is a set of smooth functions for any N ). We proceed to compute J . We have, for
4 � k � N ,

∂ηk (u
−1) j (y, η) = 〈R(−y) f j

∣∣ fk 〉 = 〈 f j ∣∣R(y) fk
〉
, (4.3.31)
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and

∂yk (u
−1) j (y, η) =

〈
f j

∣∣∣∣∣∂yk R(y)

(
�ϕL +

N∑
l=4

ηl fl

)〉

= −
〈
f j

∣∣∣∣∣R(y)∂k

(
�ϕL +

N∑
l=4

ηl fl

)〉
(4.3.32)

for 1 � k � 3. Therefore

J (y, η) = R(y)

⎡
⎣ 3∑
k=1

|vk〉 〈 fk | +
∑
k�4

| fk〉 〈 fk |
⎤
⎦

= R(y)

(
11 − �L∇,T +

3∑
k=1

|vk〉 〈 fk |
)

=: R(y)J0(η), (4.3.33)

where vk(η) := −∂ku−1(0, η) = −∂k

(
�ϕL +∑N

l=4 ηl fl
)
. Since R(y) is orthog-

onal, we see that d = | det J0| (implying, in particular, that d is independent of
y).

Observe that

J0 =
(
A0 0
A1 11

)
, (4.3.34)

where A0 is the 3 × 3 matrix given by

(A0) jk = 〈 f j ∣∣vk 〉 =
〈
f j

∣∣∣∣∣−∂k

(
�ϕL +

N∑
l=4

ηl fl

)〉
, j, k ∈ {1, 2, 3}, (4.3.35)

and A1 is the (N − 3) × 3 matrix defined by

(A1) jk =
〈
f j+3

∣∣∣∣∣−∂k

(
�ϕL +

N∑
l=4

ηl fl

)〉
j ∈ {1, . . . , N − 3}, k ∈ {1, 2, 3}.

(4.3.36)

Since J0 is the identity in the bottom-right (N − 3) × (N − 3) corner and 0 in
the top-right 3 × (N − 3) corner, d = | det A0|. On ran�L∇,T the operators ∂k

with k = 1, 2, 3 and W−1
T are uniformly bounded in N and T . Recall also that

‖η‖WT � ε1L . Hence, for some constant CL independent of N and T , and for any
j, k ∈ {1, 2, 3}, we have

|(A0) jk | � ‖∂k f j‖2‖�ϕL‖2 + ‖W−1
T ∂k f j‖WT ‖η‖WT � CL . (4.3.37)

Moreover, for any j, k ∈ {1, 2, 3} and any l, l1, l2 ∈ {4, . . . , N }, we also have

∂ηl (A0) jk = 〈∂k f j ∣∣ fl 〉 , ∂ηl1
∂ηl2

(A0) jk = 0. (4.3.38)
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Clearly, (4.3.37) and (4.3.38) together with the fact that d = | det A0| show that d
and all its derivatives are uniformly bounded in N and T . To show that there exists
ε1L and NL such that d � CL > 0 for all ε � ε1L , T > 0 and N > NL , we show that
the image of the 3-dimensional unit sphere under A0 is uniformly bounded away
from 0, which clearly yields our claim. For this purpose, we observe that the k-th

column of A0 is given by �L∇,T

[
−∂k

(
�ϕL +∑N

l=4 ηl fl
)]

and therefore, for any

unit vector a = (a1, a2, a3) ∈ R
3,

A0a =
3∑

k=1

ak�
L∇,T

[
−∂k

(
�ϕL +

N∑
l=4

ηl fl

)]
= −�L∇,T ∂au

−1(0, η), (4.3.39)

where we denote
∑3

k=1 ak∂k = ∂a . To bound the norm of A0a from below, it is
then sufficient to test ∂au−1(0, η) against one normalized element of ran�L∇,T , say

�WT ∂aϕL‖�WT ∂aϕL‖2 . We obtain

‖A0a‖22 = ‖�L∇,T ∂au
−1(0, η)‖22 �

∣∣∣∣∣
〈

�WT ∂aϕL

‖�WT ∂aϕL‖2

∣∣∣∣∣∂a
(

�ϕL +
N∑
l=4

ηl fl

)〉∣∣∣∣∣
2

= ‖�WT ∂aϕL‖−2
2

∣∣∣∣‖�W 1/2
T ∂aϕL‖22 −

〈
�∂2aϕL

∣∣∣η〉
WT

∣∣∣∣
2

� ‖∂aϕL‖−2
2

(
‖�W 1/2

0 ∂aϕL‖22 − ‖�∂2aϕL‖WT ‖η‖WT

)2
+

� ‖∂aϕL‖−2
2

(
‖�W 1/2

0 ∂aϕL‖22 − ε‖∂2aϕL‖2
)2

+ , (4.3.40)

where we used that ‖η‖WT � ε, 0 � WT � 11 and � � 11, and ( · )+ denotes
the positive part. As remarked after (3.3.45), ∂aϕL = (−�L)−1/2∂a |ψL |2 �= 0 and
since ϕL ∈ C∞, ∂aϕL and ∂2aϕL are uniformly bounded in a. We can thus find
NL > 0 and ε1L such that the r.h.s. of (4.3.40) is bounded from below by some
constant CL > 0 uniformly for T > 0, N > NL and ε � ε1L . This shows that A0
(and hence J ) is invertible at every point and that d � CL > 0 uniformly in T > 0,
N > NL and ε � ε1L , as claimed. This concludes the proof. ��

Since u is a diffeomorphism, we can introduce a unitary operator that lifts u−1

to L2, defined by

U : L2(T3
L × BT,�

ε ) −→ L2([��L(ϕL)]ε,T )

U (ψ) := | det (Du) |1/2ψ ◦ u. (4.3.41)

Recall that j1 is supported in [��L(ϕL)]ε,T , hence we can apply U to j1K j1,
obtaining an operator that acts on functions on T

3
L × R

N−3 that are supported in
T
3
L × BT,�

ε . In particular,

j1K j1 � j21 inf specH1
0

(
T
3
L×BT,�

ε

)[U∗
KU ], (4.3.42)
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where the subscript indicates that the operator has to be understood as the corre-
sponding quadratic form with form domain H1

0 (T3
L × BT,�

ε ) (i.e., with Dirichlet
boundary conditions on the boundary of BT,�

ε ). We are hence left with the task of
giving a lower bound on inf spec

H1
0

(
T
3
L×BT,�

ε

)[U∗
KU ], which will be done in the

remainder of this subsection.
Recalling the definition of K given in (4.3.6), we proceed to find a convenient

lower bound for U∗FLU . Any (�ϕL)yϕ + (wϕ)yϕ = ϕ ∈ [��L(ϕL)]ε,T satis-
fies (3.3.22) with ϕ

yϕ
L in place of ϕL , and we can therefore expand FL(ϕ) using

Proposition 3.15, obtaining

FL(ϕ) − eL

�
〈
(wϕ)yϕ − ((11 − �)ϕL)yϕ

∣∣11 − K
yϕ
L − εCL J

yϕ
L

∣∣(wϕ)yϕ − ((11 − �)ϕL)yϕ
〉

= 〈ϕL |(11 − �)(11 − KL − εCL JL)(11 − �)|ϕL〉
− 2 〈(11 − �)ϕL | 11 − KL − εCL JL

∣∣wϕ

〉+ 〈
wϕ

∣∣11 − KL − εCL JL
∣∣wϕ

〉
.

(4.3.43)

Since KL and JL are trace class operators,

(11 − �)(11 − KL − εCL JL)(11 − �) > 0 (4.3.44)

holds for � sufficiently large and ε sufficiently small. Moreover, since ϕL ∈
C∞(T3

L),

| 〈(11 − �)ϕL | 11 − KL − εCL JL
∣∣wϕ

〉 |
� ‖W−1/2

T (11 − KL − εCL JL)(11 − �)ϕL‖2‖wϕ‖WT = O(ε�−h) (4.3.45)

for arbitrary h > 0 and uniformly in T . This implies that, for any ϕ = (�ϕL)yϕ +
(wϕ)yϕ ∈ [��L(ϕL)]ε,T , any � sufficiently large, any ε sufficiently small and an
arbitrary h

FL (ϕ) = FL((�ϕL )yϕ + (wϕ)yϕ ) � eL − O(ε�−h) + 〈
wϕ

∣∣11 − KL − εCL JL
∣∣wϕ

〉
.

(4.3.46)

Therefore, if we define the [(N − 3) × (N − 3)]-matrix M with coefficients

Mk, j := 〈 fk+3| 11 − KL − εCL JL
∣∣ f j+3

〉
, (4.3.47)

then, by (4.3.46), the multiplication operator U∗FLU satisfies

(U∗FLU )(y, η) � eL + 〈η|M |η〉 − O(ε�−h). (4.3.48)

It is easy to see that M is a positive matrix, at least for ε sufficiently small and T
and� sufficiently large. Indeed, the positivity of M is equivalent to the positivity of
(11−KL −εCL JL) on ran(�−�L∇,T ) and, by Proposition 3.18, (11−KL −εCL JL)

is positive on any vector space with trivial intersection with ran�L∇ . Clearly, since
�L∇,T → �L∇ as T → ∞, the bound

M � cL > 0 (4.3.49)

holds, uniformly in T , � and for ε sufficiently small.
We now proceed to bound −U∗�λU from below.
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Lemma 4.9. Let U be the unitary transformation defined in (4.3.41). There exists
CL > 0, independent of N , T and ε, such that, for ε � ε1L , T > 0 and N > NL

U∗ (−�λ)U � −�η − CL . (4.3.50)

Proof. Since (4.3.33) shows that J (y, η) = R(y)J0(η) with R(y) orthogonal, we
have

U∗ (−�λ)U = −d−1/2∇ · d1/2
[
J−1(J−1)t] d1/2∇d−1/2

= −d−1/2∇ · d1/2
[
J−1
0

(
J−1
0

)t]
d1/2∇d−1/2, (4.3.51)

with d(y, η) = | det J (y, η)| and ∇ denoting the gradient with respect to (y, η) ∈
R

N . Recalling the expression (4.3.34) for J0, we find

J−1
0 =

(
A−1
0 0

−A1A
−1
0 11

)
=
(
0 0
0 11

)
+
(

A−1
0 0

−A1A
−1
0 0

)
=: (1 − �L∇,T ) + D.

(4.3.52)

Since D(11 − �L∇,T ) = (11 − �L∇,T )Dt = 0, we have

J−1
0 (J−1

0 )t = (11 − �L∇,T ) + DDt � 11 − �L∇,T . (4.3.53)

With (4.3.51) and (4.3.53), we thus obtain

U∗ (−�λ)U � −d−1/2∇ · d1/2
(
11 − �L∇,T

)
d1/2∇d−1/2

= −�η − (2d)−2|∇d|2 + (2d)−1�d. (4.3.54)

Lemma 4.8 guarantees that d and all its derivatives are bounded, and d is bounded
away from 0 uniformly in N > NL , T > 0 and ε � ε1L , leading to (4.3.50). ��

In combination, (4.3.48), (4.3.50) and the positivity of M imply that

j1K j1 � j21 inf specH1
0

(
T
3
L×BT,�

ε

)(U∗
KU ) (4.3.55)

� j21

(
eL − N

2α2 − O(ε�−h) − O(α−4) + inf specL2(RN )

[
− 1

4α4 �η + 〈η|M |η〉
])

= j21

(
eL − 1

2α2 (N − Tr(M1/2)) − O(ε�−h) − O(α−4)

)
. (4.3.56)

Note that since we are taking � � α4/5, ε � 1 and h > 0 was arbitrary, picking
h = 5 allows to absorb the error term O(ε�−h) in the error term O(α−4). Recalling
the definition of M given in (4.3.47), we have

Tr
(
M1/2) = Tr

[√(
� − �L∇,T

)(
11 − KL − εCL JL

)(
� − �L∇,T

)]
. (4.3.57)
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With {t j }N−3
j=1 an orthonormal basis of ran(� − �L∇,T ) of eigenfunctions of (� −

�L∇,T )(11 − KL − εCL JL)(� − �L∇,T ), we can write

Tr
(
M1/2) =

N−3∑
j=1

〈
t j
∣∣11 − KL − εCL JL

∣∣t j 〉1/2

=
N−3∑
j=1

[ 〈
t j
∣∣11 − KL

∣∣t j 〉1/2 − εCL

2ξ1/2j

〈
t j
∣∣JL ∣∣t j 〉

]
(4.3.58)

for some {ξ j }N−3
j=1 satisfying

cL �
〈
t j
∣∣11 − KL − εCL JL

∣∣t j 〉 � ξ j �
〈
t j
∣∣11 − KL

∣∣t j 〉 � 1 (4.3.59)

for T and� large enough and ε small enough, where we used (4.3.49) for the lower
bound. Using the concavity of the square root and the trace class property of JL ,
we conclude that

Tr(M1/2) �
N−3∑
j=1

〈
t j
∣∣√11 − KL

∣∣t j 〉− εCLTr(JL)

= Tr
[(

� − �L∇,T

)√
11 − KL

]
− εCL . (4.3.60)

Since ϕL ∈ C∞ and recalling (4.3.7), for an arbitrary h > 0 we can bound

‖�L∇ − �L∇,T ‖ �L min{�, T }−h = T−h, (4.3.61)

which also implies the same estimate for the trace-norm of the difference of�L∇ and
�L∇,T , both operators being of rank 3. Recalling that�

L∇ projects onto ker(11−KL),
we finally obtain

Tr(M1/2) � Tr[�√11 − KL ] − O(ε) − O(T−h). (4.3.62)

The error term O(T−h) forces T → ∞ as α → ∞, but allows T to grow with an
arbitrarily small power of α. By picking h to be sufficiently large we can absorb it
in the error term O(ε).

We obtain the final lower bound

j1K j1 � j21

[
eL − 1

2α2 Tr
[
�
(
11 − (11 − KL)1/2

)]− O(εα−2) − O(α−4)

]

� j21

[
eL − 1

2α2 Tr
[(
11 − (11 − KL)1/2

)]− O(εα−2) − O(α−4)

]
.

(4.3.63)
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4.3.2. Bounds on j2K j2 We recall Corollary 2.4, which implies that, for any
ϕ ∈ L2

R
(T3

L),

FL(ϕ) � eL + inf
y∈T3

L

〈
ϕ − ϕ

y
L

∣∣B∣∣ϕ − ϕ
y
L

〉
, (4.3.64)

where B acts in k-space as the multiplication by

B(k) =
{
1 for k = 0,

1 − (1 + κ ′|k|)−1 for k �= 0.
(4.3.65)

Note that B − ηWT > 0 for η > 0 small enough (independently of T ). Moreover,
for any ϕ in the support of j2 and any y ∈ T

3
L ,〈

ϕ − ϕ
y
L

∣∣WT
∣∣ϕ − ϕ

y
L

〉
� ε2/4. (4.3.66)

Therefore, on the support of j2, we have

FL(ϕ) � eL + inf
y∈T3

L

〈
ϕ − ϕ

y
L

∣∣B − ηWT
∣∣ϕ − ϕ

y
L

〉+ ηε2/4. (4.3.67)

By the Cauchy–Schwarz inequality, using that all the operators involved commute,
we have

〈
ϕ − ϕ

y
L

∣∣B − ηWT
∣∣ϕ − ϕ

y
L

〉
� 〈ϕ|(11 − W 1/2

γ )(B − ηWT )|ϕ〉
+ 〈ϕL |(11 − W−1/2

γ )(B − ηWT )|ϕL〉 (4.3.68)

for any γ > 0. Note that the right hand side is independent of y. Since ϕL ∈
C∞(T3

L), the Fourier coefficients of ϕL satisfy

(1 + |k|2)5/2|(ϕL)k |2 � CL ,tγ
−t for |k| � γ (4.3.69)

for any t > 0. Using the positivity of B − ηWT we can bound

〈ϕL |(11 − W−1/2
γ )(B − ηWT )|ϕL〉

� −
∑

k∈ 2π
L Z3

|k|>γ

(B(k) − ηWT (k))(1 + |k|2)1/2|(ϕL)k |2

= −
∑

k∈ 2π
L Z3

|k|>γ

(B(k) − ηWT (k))

(1 + |k|2)2 (1 + |k|2)5/2|(ϕL)k |2

� −CL ,tγ
−t

∑
k∈ 2π

L Z3

|k|>γ

1

(1 + |k|2)2 �L γ −t−1. (4.3.70)
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Therefore we conclude, using the positivity of 11 − W 1/2
γβ and of B − ηWT , that

j2K j2

� j22 inf spec

[
eL − N

2α2 + ηε2

4
− O(γ −t−1) − 1

4α4 �λ + 〈ϕ|(11 − W 1/2
γ )(B − ηWT )|ϕ〉

]

= j22

(
eL + ηε2

4
− O(γ −t−1) − 1

2α2 Tr

[
�

(
11 −

√
(11 − W 1/2

γ )(B − ηWT )

)])
. (4.3.71)

We need to estimate the behavior in N = rank�, T and γ of the trace appearing
in the last equation, which equals

Tr

[
�

(
11 −

√
(11 − W 1/2

γ )(B − ηWT )

)]

=
∑

k∈ 2π
L Z3

|k|��

(
1 −

√
(1 − Wγ (k)1/2)(B(k) − ηWT (k))

)
. (4.3.72)

The contribution to the sum from |k| � max{γ, T } can be bounded by
C(L max{γ, T })3. For |k| > max{γ, T }, Wγ (k) = WT (k) = (1 + |k|2)−1, and
the coefficient under the square root in the last line of (4.3.72) behaves asymp-
totically for large momenta as 1 − |k|−1. Hence, recalling (4.3.2), we conclude
that

Tr

[
�

(
11 −

√(
11 − W 1/2

γ

)
(B − ηWT )

)]
� O

(
max{γ, T }3

)
+ O(�2).

(4.3.73)

Because of (4.3.7), the first term on the right hand side is negligible compared to
the second if we choose γ to equal α to some small enough power. Because t was
arbitrary, we thus arrive at

j2K j2 � j22

(
eL + ηε2

4
− O(α−2�2)

)
. (4.3.74)

Therefore, if

ε � CLα−1� (4.3.75)

for a sufficiently large constant CL , we conclude that for sufficiently large α and �

j2K j2 � j22 eL . (4.3.76)
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4.3.3. Proof of Theorem 2.5, lower bound By combining the results (4.3.63)
and (4.3.76) of the previous two subsections with (4.3.9) and (4.3.11), we obtain

K � j1K j1 + j2K j2 + O
(
α−4ε−2)

� j21

[
eL − 1

2α2 Tr
[(
11 − (11 − KL)1/2

)]+ O
(
εα−2)+ O

(
α−4)]

+ j22 eL + O
(
α−4ε−2)

� eL − 1

2α2 Tr
[(
11 − (11 − KL)1/2

)]+ O
(
εα−2)+ O

(
α−4)+ O

(
α−4ε−2)

(4.3.77)

under the constraint (4.3.75). With Proposition 4.5 we can thus conclude that

inf specHL � inf specH�
L + O

(
�−5/2)+ O

(
α−1�−3/2)+ O

(
α−2�−1)

� inf specK + O
(
�−5/2)+ O

(
α−1�−3/2)+ O

(
α−2�−1)

� eL − 1

2α2 Tr
[(
11 − (11 − K )1/2

)]+ O
(
εα−2)+ O

(
α−4)

+ O
(
α−4ε−2)+ O

(
�−5/2)+ O

(
α−1�−3/2)+ O

(
α−2�−1).

(4.3.78)

To minimize the error terms under the constraint (4.3.75), we pick ε ∼ α−1/7 and
� ∼ α6/7, which yields the claimed estimate

inf specHL � eL − 1

2α2 Tr
[(
11 − (11 − KL)1/2

)]+ O
(
α−15/7). (4.3.79)

This concludes the proof of the lower bound, and hence the proof of Theorem 2.5.
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