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Abstract: We prove that any deterministic matrix is approximately the identity in the
eigenbasis of a large random Wigner matrix with very high probability and with an op-
timal error inversely proportional to the square root of the dimension. Our theorem thus
rigorously verifies the Eigenstate Thermalisation Hypothesis by Deutsch (Phys Rev A
43:2046–2049, 1991) for the simplest chaotic quantum system, the Wigner ensemble.
In mathematical terms, we prove the strong form of Quantum Unique Ergodicity (QUE)
with an optimal convergence rate for all eigenvectors simultaneously, generalizing previ-
ous probabilistic QUE results in Bourgade and Yau (Commun Math Phys 350:231–278,
2017) and Bourgade et al. (Commun Pure Appl Math 73:1526–1596, 2020).

1. Introduction

Since the groundbreaking discovery of E.Wigner [53] postulating thatHermitian random
matrices can effectively model the universal statistics of gaps between energy levels of
large atomic nuclei, simple random matrices have been routinely used to replace more
complicated quantum Hamilton operators for many other physically relevant problems,
especially in disordered or chaotic quantum systems. A fundamental phenomenon of
such systems is Quantum Ergodicity (QE), stating that the eigenvectors tend to become
uniformly distributed in the phase space.

In this paper we study an enhanced version of this question, the Quantum Unique
Ergodicity (QUE), for real or complexWigner matrices and for general observables. We
recall that the Wigner matrix ensemble consists of N × N random Hermitian matrices
W = W ∗ with centred, independent, identically distributed (i.i.d.) entries up to the
symmetry constraint wab = wba . Let {ui }Ni=1 be an orthonormal eigenbasis of W . Our
main Theorem 1 asserts that for any deterministic matrix A with ‖A‖ ≤ 1 we have the
limit 〈ui , Au j 〉 → δi j 〈A〉 with very high probability (and hence uniform in i, j) with
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optimal speed of convergence 1/
√
N , i.e.

max
i j

∣
∣〈ui , Au j 〉 − 〈A〉δi j

∣
∣ � N ε

√
N

. (1)

Herewe introduced the shorthand notation 〈R〉 := 1
N Tr R for the normalized trace of any

N × N matrix. In other words, (1) establishes the QUE in strong form (i.e. uniformly
in i, j) for any Wigner matrix, and shows that the action of any bounded traceless
deterministic matrix on the eigenbasis {ui }Ni=1 makes it asymptotically orthogonal to
itself (up to an optimal error N−1/2). For genuinely complexWignermatrices our second
main Theorem 2 asserts that

max
i j

∣
∣〈ui , u j 〉

∣
∣ � N ε

√
N

, (2)

again with very high probability, showing that the eigenbases of W and Wt = W are
asymptotically orthogonal.

The question of ergodicity for general observables is also known as the Eigenstate
Thermalization Hypothesis (ETH) in the physics literature since the seminal papers of
Deutsch [22] andSrednicki [51], see also [20] and [21] for reviews and further references.
Our result thus proves ETH with an optimal speed of convergence as predicted, e.g., in
[20, Eqs. (20)] for the simplest chaotic quantum system, the Wigner ensemble.

Historically, the most prominent model for quantum ergodicity is the natural quanti-
zation of a chaotic classical dynamical system in the semiclassical or in the high-energy
regimes. The first mathematical result on QEwas obtained by Shnirelman [49]. It asserts
that formost high energy (normalized) eigenfunctionsψi of the Laplace-Beltrami opera-
tor on a surface with ergodic geodesic flow the measures |ψi (x)|2dx become completely
flat as i → ∞. This result was later extended by Colin de Verdiére [19] and Zelditch
[56] for much larger classes of observables showing that if A is an appropriate pseudod-
ifferential operator with symbol σ(A), then 〈ψi , Aψ j 〉 → δi j

∫

S∗ σ(A) for most index
pairs as i, j → ∞, where S∗ is the unit cotangent bundle of the surface. The analogous
result on large regular graphs was obtained by Anantharaman and Le Masson [2]. The
celebrated Quantum Unique Ergodicity (QUE) conjecture, formulated by Rudnick and
Sarnak [46] in 1994, is a natural strengthening of these results stating that the same limits
hold for all indices excluding that exceptional sequences may exhibit exotic behaviour
(scarring). QUE in this form is still an outstanding open question; only certain special
cases have been proven, e.g. on arithmetic surfaces for the joint eigenfunctions of the
Laplacian and theHecke operator by Lindenstrauss [42], with Soundararajan’s extension
[50], see also [15,36].

The speed of convergence in quantum ergodicity has been a fundamental question in
the theory of quantum chaos, see e.g. [54] for a review and [5] for numerical results. For
strongly chaotic (hyperbolic) systems the general physics prediction is that the variance
of 〈ψi , Aψ j 〉 is proportional with the inverse of the Heisenberg time, roughly speak-
ing the local eigenvalue spacing (see e.g. [23, Eq. (24)] building upon earlier results
by Feingold and Peres [32]). For the hyperbolic geodesic flow on general Riemannian
manifolds only inverse logarithmic decay has been proven by Zelditch [55] and Schubert
[48] which is even optimal for a special highly degenerate eigenbasis of the quantization
of Arnold’s cat map [47], see also [40] for surfaces of high genus. For similar quantita-
tive QUE results on large deterministic graphs see [1,3,16]. Much stronger polynomial
bounds hold for special arithmetic surfaces proven by Luo and Sarnak [43] and for linear
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maps on the torus [39,45] and toral eigenfunctions [35]. For random d-regular graph
optimal polynomial speed of convergence for QUE with diagonal observables has been
obtained in [6,7].

For large Wigner matrices, using the Dyson Brownian motion (DBM) for eigenvec-
tors, Bourgade andYau [12] showed that for any fixed deterministic unit vector q and any
i in the bulk spectrum or close to the edge, the squared overlaps N |〈ui , q〉|2 converge in
distribution to the square of a standard Gaussian as N → ∞ (see also [8] for deformed
Wigner matrices and [37,52] for the same result under four moment matching condition
in the bulk). The corresponding a priori bound, asserting that N |〈ui , q〉|2 � N ε with very
high probability for any ε > 0, has been known beforehand as the complete delocalisa-
tion of eigenvectors [11,29,30,38]. DBMmethods allow to obtain optimal delocalisation
estimates [10]. We mention that [12] also obtains asymptotic normality for the joint dis-
tribution of finitely many eigenvectors tested against one fixed vector q and for the joint
distribution of a single eigenvector with finitely many test vectors q1, q2, . . . qK . Very
recently the joint normality of finitely many eigenvectors and finitely many test vectors
has also been achieved [44].

These results based upon DBM establish the universality of fluctuation for individual
eigenvectors tested against finite rank observables A, i.e. for A = N

K

∑

k≤K ak |qk〉〈qk |,
with K being N -independent and ak ∈ [−1, 1]. The key mechanism of QUE for general
observables is the self-averaging (ergodic) property of this sum as the rank K = K (N )

tends to infinity. As a simple corollary of the fluctuation results, QUE in a weak formwas
also obtained asserting that 〈ui , Aui 〉 → 〈A〉 in probability for any fixed i in the bulk if
rank(A) grows with N , see [12, Corollary 1.4] (this result was stated only for diagonal
matrices A, but it directly generalizes to any A by spectral decomposition). However,
the effective probabilistic estimates in [12] were not sufficient to prove the strong form
of QUE, i.e. to guarantee that the limit holds for all eigenvectors simultaneously. This
uniformitywas proven in [13, Theorem2.5] but only for randommatriceswith aGaussian
component of size t � 1/N with an error of order 1/

√
Nt . An off-diagonal version,

〈ui , Au j 〉 → 0 for i �= j , coined as quantum weak mixing, was also obtained in [13]
and strengthened in [9]. Standard Green function comparison arguments may be used to
remove the large Gaussian component but only with a considerably suboptimal error or
under the extra assumption of matching the first several (in fact more than four) moments
of the matrix elements of W with those of the Gaussian GOE/GUE ensemble.

Summarizing, our Theorem 1 generalizes the probabilistic QUE proven in [12, Corol-
lary 1.4] and in [13, Theorem 2.5] to general Wigner ensembles in three aspects: (i) the
speed of convergence is optimal (up to an N ε factor); (ii) the limit is controlled in very
high probability, and (iii) it holds uniformly throughout the spectrum including bulk,
edge and the intermediate regime. For any deterministic Hermitian observable written
in spectral decomposition A = ∑N

k=1 ak |qk〉〈qk |, our main result,

∣
∣〈ui , Au j 〉 − δi j 〈A〉

∣
∣ =

∣
∣
∣
∣
∣

1

N

N
∑

k=1

ak
(

N 〈ui , qk〉〈qk, u j 〉 − δi j

)
∣
∣
∣
∣
∣
� N ε

√
N

, (3)

shows that the fluctuations of N 〈ui , qk〉〈qk, u j 〉 are so strongly asymptotically inde-
pendent for different k’s that their average has the expected 1/

√
N fluctuation scaling

reminiscent to the central limit theorem, up to an N ε factor. In fact, in our companion
paper [18, Theorem 2.3] we also show that the diagonal overlaps 〈ui , Aui 〉, after a small
averaging in the index i , satisfy a CLT@.
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Next we outline the novel ideas of our proof. We consider a spectrally averaged
version of the overlaps

Λ2 := max
i0, j0

1

(2J )2

∑

|i−i0|<J
| j− j0|<J

N |〈ui , Au j 〉|2 (4)

for bounded traceless observables, 〈A〉 = 0, ‖A‖ ≤ 1, where J = N ε with some tiny
ε > 0. Our goal is to show that Λ is essentially of order one, with high probability.
Denoting by G = G(z) = (W − z)−1 the resolvent at z ∈ H, notice that, by spectral
decomposition,

Λ2 ∼ sup
E,E ′∈[−2,2]

(ρρ′)−1〈�G(E + iη)A�G(E ′ + iη′)A〉, (5)

where η is slightly above the local eigenvalue spacing at E and ρ is the semicircular
density at E smoothed out on scale η; the primed quantities defined analogously. We
note that a relation analogous to (5) has previously been used in [4, Section 5]. The main
work consists in proving a high probability optimal bound on the quadratic functional of
the resolvent 〈GAGA〉, with possible imaginary parts and at different spectral param-
eters. Note that for overlaps with a rank one observable, A = |q〉〈q|, it is sufficient to
control 〈ui , Aui 〉 = |〈q, ui 〉|2. After a mild local averaging in the index i this becomes
comparable with 〈q, (�G)q〉 whose control is equivalent to a conventional single-G
isotropic local law. This served as a natural input for the DBM proofs on eigenvectors
in [12,13]. For traceless observables, however, 〈ui , Aui 〉 does not have a sign, so we
need to consider |〈ui , Aui 〉|2 to understand its size, hence the relevant quantity is Λ2

containing two G factors (5), i.e. single-G local laws are not sufficient.
For estimating (5) we face a combination of two serious difficulties. First, we need to

gain an additional cancellation from the fact that A is traceless; second,we need to handle
local laws for products of several G’s. The first issue already arises on the level of a
single-G local law: In Theorem 3we will prove that the resolvent approximationG ≈ m
by the Stieltjes transform m = m(z) of the Wigner semicircular density, commonly
referred to as a local law, holds to a higher accuracy when tested against a traceless
observable. More precisely for the decomposition 〈GA〉 = 〈A〉〈G〉+ 〈G(A−〈A〉)〉 and
with ρ := |�m| /π we have that

〈G〉 = m +O
(

1

Nη

)

, 〈G(A − 〈A〉)〉 = O
(

ρ1/2

Nη1/2

)

, (6)

with both errors being optimal, in fact they identify the scale of the asymptotic Gaussian
fluctuation of 〈G〉 and 〈G(A − 〈A〉)〉, respectively [18,34]. Note that the error term for
the traceless part is much smaller than that for 〈G〉 in the relevant small η regime. For
〈GAG∗A〉 the discrepancy is even bigger; without zero trace assumption 〈GAG∗A〉 ∼
1/η (e.g. for A = I ), while for 〈A〉 = 0 we will show that 〈GAG∗A〉 ∼ 1 even for very
small η.

The second issue touches upon the basic mechanism of the standard proof of the lo-
cal laws. It consists in deriving an approximate self-consistent equation for the quantity
in question, e.g. 〈GAGA〉, and compare it with the corresponding deterministic equa-
tion (Dyson equation) without approximation error. The main error term 〈WGAGA〉, a
renormalized version of 〈WGAGA〉, see (42), is expected to be smaller than 〈GAGA〉,
but when estimating its high moments by a cumulant expansion many terms with traces
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of more than two G-factors emerge. Trivial a priori bounds using ‖G‖ ≤ 1/η are
not affordable, so one has to continue expanding, resulting in higher and higher degree
monomials inG; reminiscent to the notoriously difficult closure problem in the BBGKY
hierarchy for the correlation functions of interacting particle dynamics. In the proof of
the conventional local law 〈G〉 = m +O (1/Nη), the expansion is stopped by using the
Ward identity GG∗ = �G/η, reducing the number of G factors by one. However, with
a deterministic matrix in between, as in GAG∗, Ward identity is not applicable. A trivial
Schwarz bound followed by Ward identity,

|〈GAG∗A〉| ≤ 〈GAA∗G∗〉 = 1

η
〈(�G)AA∗〉, (7)

is available, but at the expense of replacing the traceless matrix A with the non-zero
trace matrix AA∗, hence losing the main cancellation effect that we cannot afford. Our
main idea is to useΛ from (4) as the basic control quantity and derive a stochastic Gron-
wall inequality for it. In doing so, we use the spectral decomposition of G to estimate
traces of products of many G ′s and A′s by the lower degree term 〈GAGA〉. Techni-
cally, this requires to extract sufficiently many Λ-factors in the cumulant expansion,
which we achieve by a subtle Feynman graph analysis to estimate all high moments of
|〈WGAGA〉|.

Feynman diagrams have been systematically used to organize cumulant expansions
and their estimates come on different levels of sophistication, see e.g. [17,27,28], but also
related expansions in randommatrices, e.g. [24,25,33]. For the proof of (6) via cumulant
expansion (e.g. following [28]), it is sufficient to monitor the number of N -factors (from
the size of the cumulants and from the summationof intermediate indices) and the number
of ρ/η factors from the Ward identity. In the current analysis we additionally need to
monitor the Λ factors. While the number of traceless A-factors is preserved along the
expansion, but the cancellation effect of some of themmay be lost as in (7). Our proof has
to carefully offset all such losses by the gains from higher order cumulants that typically
accompany the loss of effective A-factors. In particular, sincewe are aiming at an optimal
bound, in the expansion terms that involve only second order cumulants we need to
gain from all A-factors. We used a similar but much simpler expansion in our work
on CLT for non-Hermitian random matrices, see [17, Prop. 5.3, Eq. (5.10c)], where the
additional smallness came from the large distance between two (non-Hermitian) spectral
parameters z1, z2. However, in [17] it was sufficient to gain only a small proportion of
all possible smallness factors since we did not aim at the optimal bound. In the current
paper, using a refined combinatorics we manage to extract the zero trace orthogonality
effect to the maximal extent; this is the key to obtain the optimal error bound in (3).
Similarly, for the proof of (2) we manage to extract the asymptotic orthogonality effect
between the eigenvectors ui and their complex conjugates ui optimally, resulting in the
bound

∣
∣〈GGt 〉∣∣ � 1, gaining a full power of η over e.g. 〈GG∗〉 ∼ 1/η.

After this introduction and presenting themain results in the next Sect. 2, we prove the
local laws involving two resolvents in Sect. 3. Themain inputs for them are the improved
bounds on renormalized (“underlined”) monomials in several G’s in Theorem 5 that are
proven in Sect. 5. Note that even thoughwe are interested in local laws onlywith twoG’s,
due to the cumulant expansion we need to control arbitrary long monomials involving a
product of G’s and A’s.

Notations and conventions. We introduce some notations we use throughout the paper.
For integers k ∈ N we use the notation [k] := {1, . . . , k}. We write H for the upper
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half-plane H :=
{

z ∈ C
∣
∣
∣�z > 0

}

. For positive quantities f, g we write f � g and

f ∼ g if f ≤ Cg or cg ≤ f ≤ Cg, respectively, for some constants c,C > 0 which
depend only on the constants appearing in (8). We denote vectors by bold-faced lower
case Roman letters x, y ∈ Ck , for some k ∈ N. Vector and matrix norms, ‖x‖ and ‖A‖,
indicate the usual Euclidean norm and the corresponding induced matrix norm. For any
N × N matrix A we use the notation 〈A〉 := N−1 Tr A to denote the normalized trace
of A. Moreover, for vectors x, y ∈ CN we define

〈x, y〉 :=
∑

xi yi , Ax y := 〈x, A y〉,
with A ∈ CN×N . We will use the concept of “with very high probability” meaning that
for any fixed D > 0 the probability of the N -dependent event is bigger than 1− N−D

if N ≥ N0(D). Moreover, we use the convention that ξ > 0 denotes an arbitrary small
constant which is independent of N .

2. Main Results

We consider real symmetric or complex Hermitian N × N Wigner matrices W . We
formulate the following assumptions on the entries of W .

Assumption 1. Thematrix elementswab are independent up to the Hermitian symmetry

wab = wba . We assume identical distribution in the sense that wab
d= N−1/2χod, for

a < b,waa
d= N−1/2χd, with χod being a real or complex random variable and χd being

a real random variable such that E χod = E χd = 0 and E |χod|2 = 1. In the complex
case we also assume that E χ2

od ∈ R. In addition, we assume the existence of the high
moments of χod, χd, i.e. that there exist constants Cp > 0, for any p ∈ N, such that

E |χd|p + E |χod|p ≤ Cp. (8)

In this paperwe use the notationsw2 := E χ2
d ,σ := E χ2

od and their commonly occurring
combination w̃2 := w2 − 1− σ , and note that w2, w̃2, σ ∈ R.

Our first main result is the proof of the Eigenstate Thermalisation Hypothesis, that in
mathematical terms is the proof of an optimal convergence rate of the strong Quantum
Unique Ergodicity (QUE) for general observables uniformly in the spectrum of W .

Theorem 1 (Eigenstate Thermalization Hypothesis). Let W be a Wigner matrix satis-
fying Assumption 1, and denote by u1, . . . , uN its orthonormal eigenvectors. Then for
any deterministic matrix A with ‖A‖ � 1 it holds

max
i, j∈[N ]

∣
∣〈ui , Au j 〉 − 〈A〉δi j

∣
∣ + max

i, j∈[N ]
∣
∣〈ui , Au j 〉 − 〈A〉〈ui , u j 〉

∣
∣ ≤ N ξ

√
N

, (9)

with very high probability for any arbitrary small ξ > 0.

The first relation in Theorem 1 states that any deterministic observable is essentially
diagonal in the eigenbasis of W , in other words the eigenvectors remain asymptotically
orthogonal when tested against any traceless observable 〈A〉 = 0. The second relation
shows the same phenomenon between the eigenbasis {ui }i∈[N ] of W and the eigenbasis
{ui }i∈[N ] ofWt . The scalar products 〈ui , u j 〉 appearing in (9) when 〈A〉 �= 0 can also be
identified. Indeed, the next theorem shows that these two eigenbases are also essentially
orthogonal apart from the extreme cases σ = ±1 (see Remark 1 below).
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Theorem 2. LetW beaWignermatrix satisfyingAssumption1, anddenote byu1, . . . , uN
its orthonormal eigenvectors. Recall σ := E χ2

od and assume |σ | < 1, then there is a
constant Cσ < ∞ such that

max
i, j∈[N ]

∣
∣〈ui , u j 〉

∣
∣ ≤ Cσ

N ξ

√
N

, (10)

with very high probability for any arbitrary small ξ > 0.

Remark 1. Theorem 2 does not hold for σ = ±1. Indeed, for σ = 1 the matrixW is real
symmetric hence the eigenvectors can be chosen real so

∣
∣〈ui , u j 〉

∣
∣ = δi j . On the other

hand for σ = −1 andw2 = 0 the spectrum is symmetric, i.e. the eigenvalues λ1 ≤ λ2 ≤
. . . and the corresponding eigenvectors u1, u2, . . . come in pairs, λN−i+1 = −λi and
uN−i+1 = ui (up to phase) and thus

∣
∣〈ui , u j 〉

∣
∣ = δi,N− j+1.

The main inputs to prove Theorems 1–2 are the local laws for one and two resolvents
(and their transposes) tested against matrices A with 〈A〉 = 0. We recall that in the limit
N → ∞ the resolventG = G(z) = (W−z)−1 becomes approximately deterministic. Its
deterministic approximation is given by m = msc, the Stieltjes transform of the Wigner
semicircular law, which is given by the unique solution of the quadratic equation

− 1

m
= z + m, �m(z)�z > 0. (11)

We note that |m| ≤ 1 for any z. In this paperwe allow spectral parameterswith�z < 0, in
order to conveniently account for possible adjoints of the resolvent since G(z)∗ = G(z).
Therefore, in contrast with most papers on local laws, �msc may be negative and we
define ρ = ρsc(z) := π−1|�msc| and η := |�z|.

The classical local law (see e.g. in [11,30,38]) for a single resolvent in averaged and

isotropic form states that in the spectral regime
{

z
∣
∣
∣Nρη ≥ 1

}

we have

|〈(G − m)A〉| ≺ 1

Nη
, |〈x, (G − m) y〉| ≺

√
ρ

Nη
(12)

for any deterministic matrix A and vectors x, y, with ‖A‖, ‖x‖ , ‖ y‖ � 1. Here ≺
indicates the commonly used concept of stochastic domination (see, e.g. [26]) indicating
a bound with very high probability up to a factor N ε for any small ε > 0, uniformly in
A, x, y and in the spectral parameter z as long as Nρη ≥ 1. The precise definition is as
follows:

Definition 1 (Stochastic Domination). If

X =
(

X (N )(u)

∣
∣
∣N ∈ N, u ∈ U (N )

)

and Y =
(

Y (N )(u)

∣
∣
∣N ∈ N, u ∈ U (N )

)

are families of non-negative random variables indexed by N , and possibly some pa-
rameter u, then we say that X is stochastically dominated by Y , if for all ε, D > 0 we
have

sup
u∈U (N )

P
[

X (N )(u) > N εY (N )(u)
]

≤ N−D

for large enough N ≥ N0(ε, D). In this case we use the notation X ≺ Y or X = O≺ (Y ).
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Our key new insight is that whenever the deterministic matrix A in (12) is traceless,
then 〈GA〉 is considerably smaller (by a factor of

√
ρη, in the interesting small η regime)

than the general bound (12) predicts. There is no such improvement for the isotropic
law.

Theorem 3 (Traceless singleG local law).Fix ε > 0, let W beaWignermatrix satisfying
Assumption 1, let z ∈ C \R, and let G(z) = (W − z)−1. We use the notation η := |�z|,
ρ = ρsc(z), m = msc(z). Then for Nηρ ≥ N ε and for any deterministic matrix A, with
〈A〉 = 0 and ‖A‖ � 1, we have

|〈(G − m)A〉| = |〈GA〉| ≺
√

ρ

N
√

η
. (13)

We prove a similar drastic improvement owing to the traceless observables for local
laws involving two resolvents, like 〈GAGA〉, as well as local laws involving a resolvent
and its transpose, 〈GGt 〉. The isotropic laws are also improved in this case. The precise
statements will be given in Remark 3 in Sect. 3. We close the current section by a remark
indicating the optimality of the new local law (13).

Remark 2. The local law for 〈GA〉 in (13) is optimal for G,G∗, as well as �G. Indeed
a simple calculation from [18, Theorem 4.1] shows, for �z > 0, that

E |〈�GA〉|2 ≈ 〈AA∗〉
2N 2

(�m
η

−�∂zm
)

∼ �m
N 2η

. (14)

In fact, in our companion paper we prove that 〈�GA〉 is asymptotically Gaussian with
zero expectation and variance given in (14) (see [18, Eq. (94)]). This variance is much
smaller than the one without traceless observable, Var〈�G〉 ∼ (Nη)−2 (see [34]).

3. Quantum Unique Ergodicity: Proof of Theorems 1–2

For integers J ∈ N and self-adjoint matrices B = B∗ we introduce the J -averaged
observables

Ξ B
J :=

(

max
i0, j0

N

(2J )2

∑

|i−i0|<J

∑

| j− j0|<J

∣
∣〈ui , Bu j 〉

∣
∣
2
)1/2

, (15)

Ξ̄ B
J :=

(

max
i0, j0

N

(2J )2

∑

|i−i0|<J

∑

| j− j0|<J

∣
∣〈ui , Bu j 〉

∣
∣2
)1/2

. (16)

The following theorem shows that both averaged overlaps Ξ B
J , Ξ̄ B

J are essentially
bounded if B is traceless, and that Ξ̄ I

J is essentially bounded for |σ | < 1 and for
choosing the identity matrix B = I .

Theorem 4. Fix ε > 0, let J ≥ N ε , and let A = A∗ be a deterministic Hermitian
matrix1 such that 〈A〉 = 0, ‖A‖ � 1, then it holds

ΛA
J ≺ 1 for ΛA

J := Ξ A
J + Ξ

A
J . (17)

1 We use the notational convention that the letter A denotes traceless matrices, while B denotes arbitrary
matrices.
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Similarly, for any |σ | < 1 it holds

ΠJ ≺ 1 for ΠJ := Ξ̄ I
J , (18)

where the error is uniform in |σ | ≤ 1− ε′, for any fixed ε′ > 0.

Hence, up to a J -averaging, we have the asymptotic orthogonality of ui and Au j , Au j
for any i, j and for any traceless A. Similarly, for |σ | < 1 we have the asymptotic
orthogonality of ui and u j . Note that in case σ = ±1 the bound (18) does not hold
since then |ΠJ | �

√
N/J , as easily seen. Using Theorem 4 we immediately conclude

Theorems 1–2 by removing J -averaging with a small J .

Proof. (Theorems 1–2) For the proof of Theorem 1 we may assume by linearity that A
is traceless and self-adjoint. For any i, j ∈ [N ], by (17), we have that

|〈ui , Au j 〉|2 + |〈ui , Au j 〉|2 ≤ J 2

N
(ΛA

J )2 ≺ J 2

N
. (19)

Since J = N ε with ε > 0 arbitrary small, together with the definition of ≺ in Defini-
tion 1, the bound in (19) implies that |〈ui , Au j 〉|2 + |〈ui , Au j 〉|2 ≺ N−1, concluding the
proof of Theorem 1. The proof of Theorem 2 is completely analogous and so omitted. ��

As a first step towards the proof of Theorem 4, we first show that Ξ B
J , Ξ̄ B

J are
comparable with 〈�G1B�G2B〉, 〈�G1B�Gt

2B〉 for suitably chosen spectral parameters
in the resolvents Gi = G(zi ). For any J ∈ N and E ∈ [−2, 2]we define z = z(E, J ) =
E + iη(E, J ) ∈ H implicitly via the equation Nη(E, J )ρ(z(E, J )) = J . Note that this
equation has a unique solution η(E, J ) > 0 since the function η → η�m(E + iη) is
strictly increasing from 0 to 1. The following simple lemma will be proven at the end of
this section.

Lemma 1. Let ε > 0, fix some J ≥ N ε and let B = B∗ beanarbitrary deterministic self-
adjoint matrix. For E1, E2 ∈ [−2, 2] let zi = z(Ei , J ) and set Gi = G(zi ), ρi = ρ(zi ),
then we have

(Ξ B
J )2 � sup

E1,E2

〈�G1B�G2B〉
ρ1ρ2

� (Ξ B
J )2,

(Ξ̄ B
J )2 � sup

E1,E2

〈�G1B�Gt
2B〉

ρ1ρ2
� (Ξ̄ B

J )2,

(20)

with very high probability.

As the main inputs for Theorem 4, we now state the various local laws and bounds
for products of G’s, their transposes and deterministic matrices in the following Propo-
sitions 1–2. These bounds still involve the key control quantities Λ and Π . Using these
bounds, we will prove Theorem 4 by a Gronwall argument on Λ and Π that will imme-
diately imply Theorem 3. Finally, for completeness, we also state a few representative
local laws involving two resolvents in Remark 3. The key technical Propositions 1–2
will be proven in Sect. 4.

Proposition 1. Let A = A∗ be a deterministic matrix with 〈A〉 = 0. Fix ε > 0 and
consider z ∈ C \ R such that L := Nηρ ≥ N ε . Then for G = G(z) we have that

|〈GA〉| ≺
√

ρΛA
+

N
√

η
, (21)

with ΛA
+ := ΛA

L + ‖A‖.
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Proposition 2. Let A = A∗, A′ = (A′)∗ be a deterministic matrix with 〈A〉 = 0 = 〈A′〉.
Fix ε > 0, let W be a Wigner matrix satisfying Assumption 1, let z1, z2 ∈ C \R, and let
Gi = G(zi ), for i ∈ {1, 2}.We use the notationsηi := |�zi |,ρi = ρsc(zi ), mi = msc(zi ),
and set L := N mini (ηiρi ), η∗ := η1 ∧ η2 and ρ∗ = ρ1 ∨ ρ2. Then for L ≥ N ε and
setting ΛA

+ = ΛA
L + ‖A‖, Π+ := ΠL + 1, we have the averaged local laws

|〈G1G
(t)
2 A〉| ≺

√
ρ∗ΛA

+

Nη
3/2∗

, |〈�G1AG
(t)
2 〉| ≺ ρ1Λ

A
+

L
√

η∗
, |〈�G1A�G(t)

2 〉| ≺ ρ1ρ2Λ
A
+

L
√

η∗
,

(22)

〈G1AG
(t)
2 A′〉 = m1m2〈AA′〉 +O≺

(

ΛA
+ΛA′

+

√

ρ∗
Nη∗

)

, (23)

〈�G1A�G(t)
2 A′〉 = �m1�m2〈AA′〉 +O≺

(

ρ1ρ2Λ
A
+ΛA′

+√
L

)

, (24)

where G(t) indicates that the bounds are valid for both choices G or Gt . Moreover, for
any deterministic vectors x, y such that ‖x‖ + ‖ y‖ � 1 we have the isotropic law

|〈x,G1AG2 y〉| ≺ ΛA
+

√

ρ∗
η∗

. (25)

Additionally, for |σ | < 1 we have that

〈G1G
t
2〉 =

m1m2

1− σm1m2
+O≺

(

Π2
+

√

ρ∗
Nη∗

)

, (26)

and

〈�G1�Gt
2〉 =

�m1�m2(1− σ 2|m1|2|m2|2)
|1− σm1m2|2|1− σm1m2|2 +O≺

(
ρ1ρ2Π

2
+√

L

)

, (27)

where the error is uniform in |σ | ≤ 1− ε′, for any fixed ε′ > 0.

Using Lemma 1 and Propositions 1–2 as an input, we now conclude the proof of
Theorem 4.

Theorem 4. We start with the proof of (17). Choose J = N ε with a fixed arbitrary small
ε > 0, and E1, E2 ∈ [−2, 2]. Then by the definition of z(Ei , J ) = Ei +iη(Ei , J ) above
Lemma 1 it follows that

J = Nη(E1, J )ρ(z(E1, J )) = Nη(E2, J )ρ(z(E2, J )),

and thus we obtain from (24) that
∣
∣〈�G(z(E1, J ))A�G(z(E2, J ))(t)A〉∣∣

ρ(z(E1, J ))ρ(z(E2, J ))
≺ 1 +

(ΛA
+ )2

J 1/2
. (28)

By a standard grid argument using the Lipschitz continuity of the resolvent we conclude
that (28) remains valid after taking the supremum over E1, E2 ∈ [−2, 2] and therefore
from the lower bound in Lemma 1 we conclude
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(ΛA
J )2 ≺ 1 +

(ΛA
+ )2

J 1/2
. (29)

Finally, by (29) it follows that (ΛA
J )2 ≺ 1, concluding the proof of (17). The proof

of (18) is completely analogous to the proof of (17) above
using the local law (27).
This concludes the proof of Theorem 4. ��

Theorem 3. This theorem immediately follows from Propositions 1 together withΛA
L ≺

1 obtained in Theorem 4. ��
Remark 3. Proposition 2 combined with the ΛA

+ + 1(|σ | < 1)Π+ ≺ 1 obtained in
Theorem 4 also provides local laws involving two resolvents as counterparts of the single
G local law stated in Theorem 3. For example, with the notations of Proposition 2, we
have

〈G1AG
(t)
2 A′〉 = m1m2〈AA′〉 +O≺

(√

ρ∗
Nη∗

)

, |〈x,G1AG2 y〉| ≺
√

ρ∗
η∗

, (30)

and for |σ | < 1 we also have

〈G1G
t
2〉 =

m1m2

1− σm1m2
+O≺

(√

ρ∗
Nη∗

)

. (31)

We stated only the local laws for two resolvents where the asymptotic orthogonality
mechanism is detected, i.e. if a traceless deterministic matrix is present or if G and Gt

appear next to each other and |σ | < 1. Note that when both mechanisms are simultane-
ously present, as in the terms with transposes in (22), one may gain from both effects
simultaneously, but we refrain from doing this here.

For comparison, we also list some local laws without exploiting this mechanism:

〈G1G2〉 = m1m2

1− m1m2
+O≺

(
1

Nη1η2

)

,

〈x,G1G2 y〉 = m1m2〈x, y〉
1− m1m2

+O≺
( √

ρ∗
√
Nη∗η∗

)

,

(32)

and for any |σ | ≤ 1

〈G1G
t
2〉 =

m1m2

1− σm1m2
+O≺

(
1

Nη1η2

)

; (33)

these relations are proven in our companion paper [18] using Theorem 5 of the present
paper. In the most interesting critical case z := z1 = z̄2 with η = |�z| � 1, the leading
term in (32) is of order 1/η with a large error 1/Nη2, while the leading term in (30) is
bounded (even zero in the isotropic case) with a negligble error term. The leading terms
in (31) and (33) are of course the same, but the error term in (33) is much bigger since
it ignores the asymptotic orthogonality mechanism.

Note that using the decomposition B = 〈B〉 + B̊, where B̊ is the traceless part of
B, a combination of (30)–(33) trivially gives local laws for any product of the form
GBG(t)B ′ for arbitrary deterministic matrices B and B ′.

Finally, we close this section by proving Lemma 1.
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Proof. (Lemma 1) We only consider 〈�G1B�G2B〉, the proof of the bounds for
〈�G1B�Gt

2B〉 is completely analogous and so omitted.
We recall that by the averaged local law for single resolvent in (13) it follows the

rigidity of the eigenvalues (see e.g. [26, Theorem 7.6] or [30]):

|λi − γi | ≺ 1

N 2/3̂i1/3
, (34)

where î := i ∧ (N + 1 − i), and γi are the classical eigenvalue locations (quantiles)
defined by

∫ γi

−∞
ρ(x) dx = i

N
, i ∈ [N ], (35)

where we recall ρ(x) = ρsc(x) = (2π)−1
√

(4− x2)+.
For E1, E2 ∈ [−2, 2], we recall that J = Nη(Ei , J )ρ(z(Ei , J )), for i ∈ {1, 2}, by

the definition of z(Ei , J ) = Ei +iη(Ei , J ) above Lemma 1, and thus, together with (35)
we conclude that there is constant C such that for any a, a0 it holds that

|γa − γa0 | ≤ η(γa0) ⇒ |a − a0| ≤ C J, |a − a0| ≤ J ⇒ |γa − γa0 | ≤ Cη(γa0).

(36)

With a slight abuse of notation we will write this relation as

|γa − γa0 | � η(γa0) ⇔ |a − a0| � J, (37)

since the implicit constants in the � relation will be irrelevant for our analysis. With
the short-hand notations Ξ = Ξ B

J , zi = z(Ei , J ), Gi = G(zi ), ηi = η(Ei , J ), and
ρi = ρ(zi ), then by (34), and writing 〈�G1B�G2B〉 in spectral decomposition

〈�G1B�G2B〉 =
∑

ab

RabSab
N

,

Rab := η1η2

|λa − z1|2|λb − z2|2 , Sab := |〈ua, Bub〉|2,
(38)

it follows that

Ξ2 � sup
E1,E2∈[−2,2]

〈�G1B�G2B〉
ρ1ρ2

� Ξ2, (39)

with very high probability on the set where the rigidity bound (34) holds. The lower
bound in (39) is trivial by choosing E1 = γa0 and E2 = γb0 . To prove the upper bound
in (39) we use the local averaging formula

∑

ab

RabSab ∼
∑

a0b0

1

(2J )2

∑

|a−a0|<J,
|b−b0|<J

RabSab ∼
∑

a0b0

Ra0b0
1

(2J )2

∑

|a−a0|<J,
|b−b0|<J

Si j (40)

for general non-negative Rab, Sab such that Rab ∼ Ra0b0 whenever |a − a0|∨|b − b0| ≤
J which is applicable for Rab in (38) as a consequence of the rigidity bound in (34),
the relation in (37), and the fact that we can choose the ξ > 0 so that N ξ , coming from
the rigidity high probability bound, is much smaller than J ≥ N ε . Finally we note that
N−2 ∑

ab Rab = 〈�G1〉〈�G2〉 ∼ ρ1ρ2 by |〈�Gi − �mi 〉| ≺ ρi from (13), concluding
the proof of the upper bound in (39). ��
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4. Local Laws for One and Two Resolvents

In this sectionwe prove the local laws in Propositions 1–2. By the self consistent equation
for m in (11), and by G(W − z) = I , we have

G = m − mWG − m〈G〉G + m〈G − m〉G. (41)

For any given functions f, g of the Wigner matrix W we define the renormalisation of
the product g(W )W f (W ) (denoted by underline) as follows:

g(W )W f (W ) := g(W )W f (W ) − Ẽg(W )W̃ (∂W̃ f )(W ) − Ẽ(∂W̃ g)(W )W̃ f (W ),

(42)

where ∂W̃ f (W ) denotes the directional derivative of the function f in the direction W̃
at the pointW , and W̃ is an independent copy ofW . The definition is chosen such that it
subtracts the second order term in the cumulant expansion, in particular if all entries of
W were Gaussian then we had E g(W )W f (W ) = 0. Note that the definition (42) only
makes sense if it is clear to which W the underline refers, i.e. it would be ambiguous
if f (W ) = W . In our applications, however, each underlined term contains exactly a
single W factor, and hence such ambiguities will not arise. As a special case we have
that

WG = WG + 〈G〉G + σ
GtG

N
+

w̃2

N
diag(G)G, (43)

recalling the notation w̃2 = w2− 1−σ from Assumption 1. Then by (41) and and (43),
it follows that

G = m − mWG +
mσ

N
GtG +

w̃2

N
diag(G)G + m〈G − m〉G. (44)

From (44) one can already see that in order to get a local law for G it is essential
to estimate the underlined term WG in averaged and isotropic sense. In order to prove
Proposition 2 we need bounds for underlined terms involving not only one G but also
two G’s (see e.g. (56) below). We now state the bound for these terms and for longer
products of resolvents and deterministic matrices both in an averaged and in an isotropic
sense, since the proof for products with more than two resolvents is very similar to the
cases we need.

For l ∈ N we consider renormalised alternating products of resolvents G1, . . . ,Gl
and deterministic matrices B1, . . . , Bl in averaged and isotropic form,

〈WG1B1G2B2 · · ·Gl Bl〉, 〈x,WG1B1G2 · · · Bl−1Gl y〉. (45)

Each resolvent Gk is evaluated at a (potentially) different spectral parameter zk ∈ C \R
and other than Gk = G(zk) we allow each resolvent to be transposed and/or being the
imaginary part, i.e.

Gk ∈
{

G(zk),G(zk)
t ,�G(zk), (�G(zk))

t} . (46)

Note that adjoints of resolvents can be included in the products by conjugating the spec-
tral parameter since G(z)∗ = G(z). For a given product of the form (45) we consider
three sets i, a, t of indices, recording special structural properties of Gk, Bk . By defini-
tion, the set i ⊂ [l] collects those indices k ∈ [l] for which Gk ∈

{�G(zk), (�G(zk))t
}

.
For the choice of the sets a, t we allow a certain freedom described in the theorem.
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Theorem 5. Fix ε > 0, let l ∈ N, z1, . . . , zl ∈ C \ R and for k ∈ [l] let Gk be as
in (46) and Bk be deterministic N × N matrices, and x, y be deterministic vectors with
bounded norms ‖Bk‖ � 1, ‖x‖ + ‖ y‖ � 1. Set

L := N min
k

(ηkρk), ρ∗ := max
k

ρk, η∗ := min
k

ηk, (47)

with ηk := |�zk |, ρk := ρ(zk) = |�m(zk)| /π and assume L ≥ N ε and η∗ � 1. Let a, t
denote disjoint sets of indices, a ∩ t = ∅, such that for each k ∈ a we have 〈Bk〉 = 0,
and for each k ∈ t exactly one of Gk,Gk+1 is transposed, where in the averaged case
and k = l it is understood that Gl+1 = G1. Recall the notations Π+ := ΠL + 1,
ΛB

+ := ΛB
L + ‖B‖. Then with a := |a| , t := |t|, we have the following bounds:

(av1) For a = t = ∅ we have

∣
∣〈WG1B1G2B2 · · ·Gl Bl〉

∣
∣ ≺ ρ∗

Nηl∗
. (48)

(av2) For a, t ⊂ [l], |a ∪ t| ≥ 1 we have the bound

∣
∣〈WG1B1G2B2 · · ·Gl Bl〉

∣
∣ ≺ (

√
Nη∗)a+t

Nηl∗

√

ρ∗
Nη∗

Π t
+

∏

k∈a
Λ

Bk
+ . (49)

(iso) For a, t ⊂ [l − 1] and for any 0 ≤ j < l we have the bound
∣
∣
∣〈x,G1B1 · · ·G j B jWG j+1Bj+1 · · · Bl−1Gl y〉

∣
∣
∣

≺ (
√
Nη∗)a+t

ηl−1∗

√

ρ∗
Nη∗

Π t
+

∏

k∈a
Λ

Bk
+ , (50)

where the j = 0 case is understood as 〈x,WG1B1 · · · Bl−1Gl y〉.
In case

∏

k∈i ρk � (ρ∗)b+1, the bounds (48)–(50) remain valid if the rhs. are multiplied
by the factor (ρ∗)−b−1 ∏

k∈i ρk , where b := l in case of (48), b := l − a − t in case
of (49), and b := l − a − t − 1 in case of (50). Moreover, for any η∗ ≥ 1 we have the
bounds

∣
∣〈WG1B1G2B2 · · ·Gl Bl〉

∣
∣ ≺ 1

Nηl∗
,

∣
∣
∣〈x,G1B1 · · ·G j B jWG j+1Bj+1 · · · Bl−1Gl y〉

∣
∣
∣ ≺ 1

N 1/2ηl∗
.

(51)

Remark 4. (Asymptotic orthogonality effect) The main result of Theorem 5 are (49)
and its isotropic counterpart (50). The essential part is the factor (

√
Nη∗)a+t in (49)

since the additional factors Π+ and Λ+ are a posteriori shown to be essentially O (1),
c.f. Theorem 4. Compared with the robust bound (48) in the relevant small η∗ regime
the bound (49) represents an improvement of

√
Nη∗ for each occurrence when the

asymptotic orthogonality can be exploited, either due to a traceless matrix B or to
a switch between a resolvent and its transpose. In addition, compared to the robust
averaged bound (48) there is a further improvement of

√
ρ∗/Nη∗ in (49) if at least one

orthogonality effect is exploited, enabling the optimal GA local law in Theorem 3. We
note that in case when

√
Nη∗ � 1 the robust bounds (48) and (50) with a + t = 0 are

always available also in the presence of traceless deterministic matrices and alternating
G,Gt simply by choosing the sets a, t to be empty.
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Remark 5. (Alternative renormalisation) In (42) we defined the renormalisation with
respect to an independent copy of W while in some previous papers [17] the same
notation was used to denote the renormalisation with respect to a suitable reference
ensemble (e.g. the GUE-ensemble in the present paper or the complex Ginibre ensemble
in case of [17]). However, mostly these two possible definitions only differ in some sub-
leading terms. For example, denoting the renormalisation with respect to an independent
GUE-matrix by

W f (W )
GUE

:= W f (W ) − ẼGUEW̃ (∂W̃ f )

we have trivially

〈WG〉 − 〈WGGUE〉 = σ
〈GtG〉
N

+ w̃2
〈diag(G)G〉

N
= O≺

(
ρ

Nη

)

.

The difference between the two renormalisations becomes relevant in Theorem 5 only
whenever at least one transposed resolvent occurs since then for example

〈WGt 〉 − 〈WGt
GUE〉 = σ 〈G〉2 + w̃2

〈diag(G)G〉
N

∼ 1.

However, this is the only relevant case and the statement ofTheorem5holds true verbatim
ifW f (W ) is replaced byW f (W )

GUE
in case no resolvents are transposed, c.f. Remark 7

in Sect. 5.

Using the bounds for the underlined terms in Theorem 5 we conclude the proof of
Proposition 1–2. We start with the proof of the local law for 〈GA〉 and then we prove
the local laws and bounds for two G’s.

Proof. (Proposition 1) Using the equation for G in (44), we start writing the equation
for GA:

GA = mA − mWGA + m〈G − m〉GA +
mσ

N
GtGA +

w̃2

N
diag(G)GA, (52)

where we recall the definition of WG in (42). Then, taking the average in (52), using
that 〈A〉 = 0 and that |〈G − m〉| ≺ (Nη)−1 by the first bound in (13), we conclude

[

1 +O≺
(

1

Nη

)]

〈GA〉 = −m〈WGA〉 + mσ

N
〈GtGA〉 + w̃2

N
〈diag(G)GA〉.

Next we notice that

1

N
|〈GtGA〉| ≤ 1

N
〈|G|〉1/2〈GA|Gt |AG∗〉1/2 ≺ Λ+

√
ρ

N
√

η
,

(53)

where in the last inequality we used Lemma 5, and the notation Λ+ := ΛA
L + ‖A‖.

Additionally, we also have that

1

N
|〈diag(G)GA〉| =

∣
∣
∣
∣
∣

1

N 2

∑

i

Gii (GA)i i

∣
∣
∣
∣
∣
≺ 1

N
, (54)
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where we used that |Gii | + |(GA)i i | ≺ 1 by (12). Combining (53)–(54) we finally
conclude that

〈GA〉 = −m〈WGA〉 +O≺
(

Λ+
√

ρ

N
√

η

)

= O≺
(

Λ+
√

ρ

N
√

η

)

, (55)

where we used |〈WGA〉| ≺ Λ+ρ
1/2N−1η−1/2 by (49). This concludes the proof of (21).

��
Next, using the local law for single resolvent proven above, we proceedwith the proof

of the bounds for for products of two resolvents and deterministic traceless matrices.

Proof. (Proposition 2) We start writing the equation for generic products of two G’s
G1B1G2B2, where Gi = (W − zi )−1 and B1, B2 are deterministic matrices. Using the
equation (52) for G1B1, writing G2 = m2 + (G2 − m2), we obtain

G1B1G2B2 = m1m2B1B2 + m1B1(G2 − m2)B2 − m1WG1B1G2B2

+ m1〈G1 − m1〉G1B1G2B2 + m1〈G1B1G2〉G2B2

+
m1σ

N
Gt

1G1B1G2B2 +
m1σ

N
(G1B1G2)

tG2B1

+
m1w̃2

N
diag(G1)G1B1G2B2 +

m1w̃2

N
diag(G1B1G2)G2B2, (56)

where we used that

WG1B1G2 = WG1B1G2 + 〈G1B1G2〉G2 +
σ

N
(G1B1G2)

tG2

+
w̃2

N
diag(G1B1G2)G2,

(57)

with WG1 from (43). The identity in (57) follows by the definition of underline in (42).

Remark 6. For notational simplicity, throughout the proof of Proposition 2 we use the
notations

Λ+ := ΛA
+ ∨ ΛA′

+ ,

rather than distinguishing the different Λ’s. However, the proof naturally yields in fact
a factor of ΛA

+ for each traceless A giving the bounds in Propositions 2.

Proof. (Eq. (22)) We focus only on the proof of the bound for 〈G1G2A〉, the bounds
for 〈Gt

1G2A〉, 〈�G1AG2〉, 〈�Gt
1AG2〉, 〈�G1A�G2〉, and 〈�Gt

1A�G2〉 are completely
analogous and so omitted, modulo the bound for the underlined term. In particular, the
bound in (62) has to be replaced by

|〈WG2�G1A〉| ≺ ρ1Λ+√
NKη∗

, |〈W�G2�G1A〉| ≺ ρ1ρ2Λ+√
NKη∗

,

for 〈�G1AG2〉, 〈�Gt
1AG2〉 and 〈�G1A�G2〉, 〈�Gt

1A�G2〉, respectively, where K :=
Nη∗ρ∗.
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Choosing B1 = I and B2 = A in (56), with 〈A〉 = 0, using |〈G1 −m1〉| ≺ (Nη1)
−1

we find that
[

1 +O≺
(

1

Nη2

)]

〈G1G2A〉 = −m1〈WG1G2A〉 + m1〈G2A〉

+ m1〈G1G2〉〈G2A〉 + m1σ

N
〈Gt

1G1G2A〉

+
m1σ

N
〈(G1G2)

tG2A〉 + m1w̃2

N
〈diag(G1)G1G2A〉

+
m1w̃2

N
〈diag(G1G2)G2A〉. (58)

Then using Cauchy-Schwarz we have that

1

N
|〈G1G2AG

t
1〉| ≤

1

N
〈G1G

∗
1〉1/2〈G2AG

t
1(G

t
1)

∗AG∗
2〉1/2

≺
√

ρ1

Nη1
√

η2
〈�G2A�Gt

1A〉1/2

≺ ρ1
√

ρ2Λ+

Nη1
√

η2
≤ ρ∗√ρ∗Λ+√

NKη1η2
,

(59)

where we used theWard identity, that 〈�G1〉 ≺ ρ1, and that K = Nη∗ρ∗. In the penulti-
mate inequality of (59) we also used Lemma 5 to prove that 〈�G2A�Gt

1A〉 ≺ ρ1ρ2Λ
2
+.

Using exactly the same computations we conclude the same bound for 〈(G1G2)
tG2A〉

as well. Now we show that the terms with a pre-factor w̃2 are negligible. We start with

1

N
|〈diag(G1)G1G2A〉| =

∣
∣
∣
∣
∣

1

N 2

∑

i

Gii (G1G2A)i i

∣
∣
∣
∣
∣
≺

√
ρ1ρ2

N
√

η1η2
, (60)

obtainedusing that |Gii | ≺ 1, by the isotropic law (12), and |(G1G2A)i i | ≺ √
ρ1ρ2/η1η2

by a simple Schwarz inequality. The bound for |〈diag(G1G2)G2A〉| is analogous and
so omitted. Combining (58) with (59)–(60), using the bound |〈G2A〉| ≺ √

ρ2N−1η
−1/2
2

by (21), and dividing by the factor in the lhs. of (58), we conclude that

〈G1G2A〉 = −m1〈WG1G2A〉 + m1〈G1G2〉〈G2A〉 +O≺
(

ρ∗Λ+√
NKη∗

)

= O≺
(

ρ∗Λ+√
NKη∗

)

,

(61)

where to go from the first to the second line we used that |〈G2A〉|Λ+ ≺ ρ
1/2
2 N−1η

−1/2
2

by (55), that |〈G1G2〉| ≺ √
ρ1ρ2/(η1η2) by a Schwarz inequality, and that

∣
∣〈WG1G2A〉

∣
∣ ≺ ρ∗Λ+√

NKη∗
, (62)

by (49). This concludes the proof of the bound of |〈G1G2A〉|. ��
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Proof. (Eq.(25) for 〈x,G1AG2 y〉) Using the bound for 〈G1G2A〉 and the estimates in
Lemma 5 below as an input, the proof of the bound

|〈x,G1AG2 y〉| ≺ Λ+

√

ρ∗
η∗

, (63)

follows by exactly the same computations as in the proof of the bound for |〈G1G2A〉|. ��
Proof. (Local laws for two resolvents: Eqs. (23) and (26)) We focus only on the proof
of the local law for 〈G1AG2A′〉, the proof of the local law for 〈Gt

1AG2A′〉 is exactly
the same. The prof of the local law for 〈G1Gt

2〉 is also analogous to the proof of the
local law for 〈G1AG2A′〉 with the only difference that the multiplicative factor in the
rhs. of (64) has to be replaced by

1− σm1m2 +O≺
(

1

Nη∗

)

.

This difference does not create any change since for |σ | < 1 the stability factor 1 −
σm1m2 is bounded from below by 1− |σ |.

Choosing B1 = A and B2 = A′ in (56), with 〈A〉 = 〈A′〉 = 0, and using that
|〈G1 − m1〉| ≺ (Nη1)

−1, we find that
(

1 +O
(

1

Nη2

))

〈G1AG2A
′〉

= m1m2〈AA′〉 − m1〈WG1AG2A
′〉 + 〈G1AG2〉〈G2A

′〉
+
m1σ

N
〈Gt

1G1AG2A
′〉 + m1σ

N
〈(G1AG2)

tG2A
′〉

+
m1w̃2

N

[〈diag(G1)G1AG2A
′〉 + 〈diag(G1AG2)G2A

′〉]. (64)

We start with the bound
1

N
|〈Gt

1G1AG2A
′〉| ≤ 1

N
〈G1A|G2|AG∗

1〉1/2〈(Gt
1)

∗A′|G2|A′(G1)
t 〉1/2

= 1

Nη1
〈�G1A|G2|A〉1/2〈�Gt

1A
′|G2|A′〉1/2 ≺ ρ1Λ

2
+

Nη1
, (65)

where we used a Schwarz inequality and that |〈�G1A|G2|A〉| ≺ ρ1Λ
2
+ by Lemma 5

below. Following exactly the same computationswe conclude that |〈(G1AG2)
tG2A′〉| ≺

Λ2
+ρ2η

−1
2 . Similarly, we also bound

1

N
|〈diag(G1)G1AG2A

′〉| =
∣
∣
∣
∣
∣

1

N 2

∑

i

(G1)i i (G1AG2A
′)i i

∣
∣
∣
∣
∣
≺

√
ρ1ρ2

N
√

η1η2
, (66)

wherewe used that |(G1)i i | ≺ 1 and that |(G1AG2A′)i i | ≺ √
ρ1ρ2/(η1η2) by a Schwarz

inequality. The bound for |〈diag(G1AG2)G2A′〉| is completely analogous and so omit-
ted.

Combining (64) with (65)–(66), and using that

|〈G2A
′〉| ≺

√
ρ2Λ+

N
√

η2
, |〈G2G1A〉| ≺ ρ∗Λ+√

NKη∗
,

by (21) and (22), respectively, we conclude that
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〈G1AG2A
′〉 = m1m2〈AA′〉 − m1〈WG1AG2A

′〉 +O≺
(

ρ∗Λ2
+

K 2

)

= m1m2〈AA′〉 +O≺
(

ρ∗Λ2
+√

K

)

. (67)

Togo from thefirst to the second line of (67)weused that |〈WG1AG2A′〉| ≺ Λ2
+ρ

∗K−1/2

by (49). This concludes the proof of the local law for 〈G1AG2A′〉. ��
In order to conclude the proof of Proposition 2 we are only left with the averaged

local laws for �G1A�G2A′ and �G1A�Gt
2A

′ in (24) and for �Gt
1�G2 in (27).

Proof. (Eq. (24)) We present only the proof of the local law for 〈�G1A�G2A′〉, the
proof for 〈�G1A�Gt

2A
′〉 is identical and so omitted.We start with the formula analogous

to (56) but with �G’s instead of G’s, generating altogether twelve terms with a 1/N
pre-factor. Ten of them can be estimated by Λ2

+ρ1ρ2L
−1 exactly as in (65)–(66) by

writing out 2i�Gi = Gi −G∗
i . Note that whenever the analogue of (65) is used, but with

G(t)
1 G2 instead of G

(t)
1 G1, we could gain the necessary factor

√
ρ1ρ2/(η1η2) instead of

only ρ1/η1 in the first Schwarz inequality in (65). Keeping the two special 1/N terms,
this gives the expansion

〈�G1A�G2A
′〉 +O≺

(
Λ2

+ρ1ρ2

L

)

= �m1�m2〈AA′〉 + �m1〈�(G2 − m2)A
′A〉 + m1〈G1 − m1〉〈�G1A�G2A

′〉
+ �[m1〈G1 − m1〉]〈G1A�G2A

′〉 − �m1〈WG1A�G2A
′〉

− m1〈W�G1A�G2A
′〉 + �m1〈G1AG2〉〈�G2A

′〉
+ �m1〈G1A�G2〉〈G∗

2A
′〉 + m1〈�G1AG2〉〈�G2A

′〉
+ m1〈�G1A�G2〉〈G∗

2A
′〉 + σ�m1

N
〈G1A�G2A

′Gt
1〉

+
σm1

N
〈�[Gt

1G1]A�G2A
′〉. (68)

The two remaining 1/N terms, where �G2 is separated from G1 by A’s, are estimated
as follows:

|〈G1A�G2A
′Gt

1〉| ≤ 〈G1A�G2A
′G∗

1〉1/2〈(Gt
1)

∗A�G2A
′Gt

1〉1/2 ≺
Nρ1ρ2Λ

2
+

L
, (69)

where in the last inequalitywe used theWard identity andLemma5 below. Inserting (69),
the local law |〈G2 − m2〉| ≺ (Nη2)

−1 and (21)–(22) into (68) we conclude that

〈�G1A�G2A
′〉 = �m1�m2〈AA′〉 − �m1〈WG1A�G2A

′〉

− m1〈W�G1A�G2A
′〉 +O≺

(
Λ2

+ρ1ρ2

L

)

.
(70)

Finally, combining (70) with the bound for 〈WG1A�G2A′〉, 〈W�G1A�G2A′〉 in (49),
we conclude that

〈�G1A�G2A
′〉 = �m1�m2〈AA′〉 +

(
Λ2

+ρ1ρ2√
L

)

. (71)

��
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Proof. (Local law for 〈�G1�Gt
2〉: Eq. (27))Weclosely follow theproof of 〈�G1A�G2A′〉,

hence we only explain the differences. As each traceless A, A′ between two resolvents
gave rise to a factor Λ+ in the proof of 〈�G1A�G2A′〉, here the fact that a resolvent is
followed by its transpose gives rise to a factor Π+. Keeping this modification in mind,
in the basic equation for 〈�G1�Gt

2〉we can again estimate all the 1/N terms as in (65)–
(66) and (69) by (1 + Π2)ρ1ρ2L−1. Then, using the local law |〈Gi − mi 〉| ≺ (Nηi )

−1,
similarly to (68), we conclude that

〈�G1�Gt
2〉 = �m1�m2 − �m1〈WG1�Gt

2〉 − m1〈W�G1�Gt
2〉

+σ�m1〈G1G
t
2〉〈�G2〉 + σ�m1〈G1�Gt

2〉〈G∗
2〉

+σm1〈�G1G
t
2〉〈�G2〉

+σm1〈�G1�Gt
2〉〈G∗

2〉 +O≺
(

Π2
+ρ1ρ2

L

)

, (72)

where we usedΠ+ := 1+Π . Note that several “large” terms remained in (72) in contrast
to (70) since the analogues of 〈�G2A〉 and 〈G∗

2A〉 in (68) are now not small. Then using
the bounds in (49) for the underlined terms in (72), and the local laws

〈G1G
t
2〉 =

mi�m j

1− σm1m2
+O≺

(
ρ∗Π2

+√
K

)

,

〈Gi�Gt
j 〉 =

mi�m j

(1− σmim j )(1− σmim j )
+O≺

(
ρ jΠ

2
+√

K

)

, (73)

we conclude

〈�G1�Gt
2〉 =

�m1�m2(1− σ 2|m1m2|2)
|1− σm1m2|2(1− σm1m2)

+ σm1〈�G1�Gt
2〉〈G∗

2〉

+O≺
(

Π2
+ρ1ρ2√
L

)

. (74)

We remark that the second local law in (73) follows analogously to (26). Finally, writing
〈G∗

2〉 in the last term in the rhs. of (74) as 〈G∗
2〉 = m2+〈(G2−m2)

∗〉, we conclude (27).��
This concludes the proof of Proposition 2. ��

5. Feynman Diagrams: Proof of Theorem 5

For the sake of simpler notations we abbreviate

η := η∗ = min
k

ηk, ρ := ρ∗ = max
k

ρk, K := Nη∗ρ∗ ≥ L = N min
k

(ηkρk) (75)

and within this section write ρi and Λa
+ with i := |i| , a = |a| and Λ+ := maxk∈a Λ

Bk
+

rather than carrying the products
∏

k∈i ρi and
∏

k∈a Λ
Bk
+ . Within the formal proof of

Theorem5we argue, however, that the proof naturally yields the latter. In order to present
the main body of the proof of Theorem 5 more concisely we make four simplifying
assumptions, the removal of which are routine modifications.2

2 In Appendix A of the arXiv:2012.13215 version of the present paper the necessary minor technical
changes to remove each of these four simplifying assumptions are addressed in details.

https://arxiv.org/abs/2012.13215
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(A-i) we assume that w2 = 1 + σ ,
(A-ii) we consider the regime η � 1,
(A-iii) for the averaged case we assume that l ∈ a ∪ t whenever |a ∪ t| �= 0,
(A-iv) in the isotropic bound we only consider j ≥ 1.

5.1. Graphical representation of the cumulant expansion. Using multiple cumulant ex-
pansions we expand the high moments

E
∣
∣〈WG1B1G2B2 · · ·Gl Bl〉

∣
∣
2p

and
∣
∣
∣〈x,G1B1 · · ·G j B jWG j+1Bj+1 · · · Bl−1Gl y〉

∣
∣
∣

2p

as a polynomial of resolvent entries for any p ∈ N. More precisely, we iteratively use
the expansion

E wab f (W ) =
R

∑

k=1

∑

α∈{ab,ba}k

κ(ab,α)

k! E ∂α f (W ) + ΩR (76)

with some explicit error term ΩR (see [28, Proposition 3.2 and Appendix C] applied
with N (ab) = {ab, ba}, or the previous works with slightly different error terms [14]
and [34, Lemmata 3.1, 7.1]) which for our application can easily be seen to beO (

N−2p
)

if R = 12p. Here for a k-tuple of double indices α = (α1, . . . , αk) we use the short-
hand notation κ(ab, (α1, . . . , αk)) := κ(wab, wα1 , . . . , wαk ) for the joint cumulant of
the random variables wab, wα1 , . . . , wαk and set ∂α := ∂wα1

· · · ∂wαk
, ∂ab := ∂wab . We

wish to express the cumulant factors in (76) as a matrix with a, b matrix elements. To
encode the fact the that cumulants have slightly different combinatorics for a = b and
a �= b, we rewrite (76) as

E wab f (W ) =
R

∑

k=1

(

1(a = b)
κ({aa}k+1)

k! E ∂kaa f (W )

+ 1(a �= b)
∑

q+q ′=k

(
k

q

)
κ({ab}q+1 , {ba}q ′)

k! E ∂
p
ab∂

q ′
ba f (W )

)

+ ΩR,

(77)

where we used that cumulants are invariant under reordering their entries, and thus
κ(ab,α) can be expressed as the cumulant of q + 1 copies {ab}q+1 of ab and q ′ copies
{ba}q ′ of ba. In order to simplify notations we introduce the matrices κq+1,q ′ for integers
q, q ′ ≥ 0 with q + q ′ ≥ 1 with matrix elements

κ
1,1
ab := 1, κ

2,0
ab := σ,

κ
q+1,q ′
ab

N (k+1)/2
:= 1(a = b)

κ({aa}k+1)
(k + 1)k! + 1(a �= b)

(
k

q

)
κ({ab}q+1 , {ba}q ′)

k! , (78)
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with k = q + q ′ ≥ 2, so that (76) can be rewritten as

E wab f (W ) =
R

∑

k=1

∑

q+q ′=k

κ
q+1,q ′
ab

N (k+1)/2
E ∂

q
ab∂

q ′
ba f (W ) + ΩR

= E
∂ba f (W ) + σ∂ab f (W )

N

+
R

∑

k=2

∑

q+q ′=k

κ
q+1,q ′
ab

N (k+1)/2
E ∂

q
ab∂

q ′
ba f (W ) + ΩR,

(79)

wherewe used that due to (A-i) we have that κ(
{√

Nwaa

}2
) = w2 = 1+σ = κ

1,1
aa +κ

2,0
aa .

We begin with some examples before describing the general structure of the expan-
sion. We consider the case p = 1 and l = 2 and perform a cumulant expansion

E
∣
∣〈WGA�GA〉∣∣2
= E〈WGA�GA〉〈A�GAG∗W 〉
= N−1

∑

ab

E
(

〈ΔabGA�GA〉∂ba〈A�GAG∗W 〉

+ σ 〈ΔabGA�GA〉∂ab〈A�GAG∗W 〉
)

+
R

∑

k=2

∑

q+q ′=k

κ
q+1,q ′
ab

N (k+1)/2
E ∂

q
ab∂

q ′
ba

[

〈ΔabGA�GA〉〈A�GAG∗W 〉
]

, (80)

where (Δab)cd = δacδbd . In order to compute the derivative of �G we write

∂ba�G = η∂baGG∗ = −η(GΔbaGG∗ + GG∗ΔbaG∗) = −(GΔba�G + �GΔbaG∗).

By distributing the derivatives according to Leibniz’ rule we can write (80) as

E
∑

ab

κ
1,1
ab

N
〈ΔabGA�GA〉〈A�GAG∗Δba − A(GΔba�G + �GΔbaG∗)AG∗W 〉

+ E
∑

ab

κ
2,0
ab

N
〈ΔabGA�GA〉〈A�GAG∗Δab − A(GΔab�G + �GΔabG∗)AG∗W 〉

− E
∑

ab

κ
2,1
ab

N 3/2 〈ΔabGΔbaGA�GA〉〈A�GAG∗Δab − A�GAG∗ΔabG∗W 〉 + · · ·

(81)
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where we chose two representative terms for k = 1 and k = 2 each. By performing
another cumulant expansion for the remaining underlined terms in (81) we obtain

N 2 E
∣
∣〈WGA�GA〉∣∣2

= E
∑

ab

κ
1,1
ab

N
(GA�GA)ba

[

(A�GAG∗)ab + σ(A�GAG∗)ba
]

− E
∑

ab

κ
2,1
ab

N 3/2Gbb(GA�GA)aa(A�GAG∗)ab

+ E
∑

abcd

κ
1,1
ab

N

κ
1,1
cd

N
Gbd(GA�GA)ca

[

(A�G)db(G
∗AG∗)ac + (A�G)da(G

∗AG∗)bc
]

− E
∑

abcd

κ
2,1
ab

N 3/2

κ
1,1
ab

N
Gbb(GA�G)ad(G

∗A)ca(A�GAG∗)daG∗
bc

+ E
∑

abcd

κ
2,1
ab

N 3/2

κ
2,1
cd

N 3/2GbbGacGdd(GA�GA)ca(A�GAG∗)daG∗
bc + · · · , (82)

where we again selected representative terms. We notice that the rhs. can be written as
a polynomial in the entries of two types of matrices; the κ-matrices representing cu-
mulants like κ2,1, and the G-matrices representing resolvents like �G or G∗, or their
multiples with A like A�G, G∗A. In order to achieve this representation we intro-
duce additional internal summation indices to expand longer products e.g. we write
(A�GAG∗)da = ∑

e(A�G)de(AG∗)ea . The value of any given graph is the numerical
result of summing up all indices. The precise definition will be given later in (89);
here, as an example, the first term in (82) with indicated summation indices reads

ab ij

1
N

E(GA)bi( GA)ia(A G)aj(AG∗)jb = EVal

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

a

b

i

j

,

where the (directed) edges represent matrices and the vertices represent summation
indices. The edge orientation indicates the order of indices of the represented matrix
which for the G-edges is uniquely determined from the expansion, while for κ-edges
it may be chosen arbitrarily, as long as the represented matrix is defined consistently
with the orientation, see (88) later. Here we drew the internal vertices as empty, and the
κ-vertices as filled nodes, the κ-matrices as dashed, and the G-matrices as solid edges.
Both internal- and κ-vertices correspond to independent summations over the index set
[N ].
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Thus, graphically we can represent (82) as

N2 E|〈WGA�GA〉|2

= E

[
Val

( )
+Val

( )
− Val

⎛
⎜⎝

⎞
⎟⎠ +Val

⎛
⎝

⎞
⎠

− Val

⎛
⎝

⎞
⎠ − Val

⎛
⎜⎜⎝

⎞
⎟⎟⎠ +Val

⎛
⎜⎜⎝

⎞
⎟⎟⎠ + · · ·

]
.

(83)

Note that the dashed edges connect only filled nodes and they form a perfect match-
ing. The number of G-edges adjacent to each filled vertex is equal to the order of the
corresponding cumulant expansion.

Similarly, for the isotropic case we obtain, for example the polynomials

E
∣
∣〈x,GAWG y〉∣∣2 = E〈x,GAWG y〉〈 y,G∗W AG∗x〉

= E
∑

ab

κ
1,1
ab

N
(GA)xaGb yG

∗
yb(AG

∗)ax

+ E
∑

abcd

κ
1,1
ab

N

κ
1,1
cd

N
(GA)xaGbdGc y

[

G∗
ybG

∗
ac(AG

∗)dx + G∗
yc(AG

∗)dbG∗
ax

]

− E
∑

abcd

κ
2,1
ab

N 3/2

κ
1,1
cd

N
(GA)xaGbbGadGc yG

∗
yaG

∗
bc(AG

∗)dx + · · · (84)

which we represent graphically as

E|〈x, GAWGy〉|2 = EVal

⎛
⎜⎜⎜⎜⎝

x

a b

y

yx
⎞
⎟⎟⎟⎟⎠ +EVal

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

+EVal

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠ − EVal

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠ + · · · ,

(85)

with external vertices drawn as squares. Note that the vectors x and y are naturally
represented by external vertices that are drawn as solid squares.
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After these examples we now explain the general structure of the graphs and give a
precise definition of graphs and their graph value used in (83) and (85).

Definition 2. We define the class G of oriented graphs used within this paper by the
following requirements. Each Γ = (V, E) ∈ G has three types of vertices, κ-vertices
Vκ , internal vertices Vi and external vertices Ve, so that V = Vκ ∪̇Vi∪̇Ve, and two types
of edges, κ-edges Eκ and G-edges Eg , so that E = Eκ ∪̇Eg . For each vertex v ∈ V we
define its G-in- and out-degree d ing (v), doutg (v) as the number of incoming and outgoing
G-edges. The total degree dg(v) is defined as the sum dg(v) := d ing (v) + doutg (v) of in-
and out-degrees and the three vertex classes satisfy

dg(v) =
{

1, v ∈ Ve
2, v ∈ Vi,

, dg(v) ≥ 2, v ∈ Vκ . (86)

We can partition Vκ = ⋃

k≥2 V
k
κ with V k

κ :=
{

v ∈ Vκ

∣
∣
∣dg(v) = k

}

.

Within the graphs Γ each external vertex v ∈ Ve carries some x(v) ∈ CN as a vector-
valued label recording which vector the vertex represents. Each κ-edge e ∈ Eκ carries
two integer-valued labels r(e) ≥ 1, s(e) ≥ 0 recording the cumulant type. Each G-edge
e ∈ Eg carries six labels. The binary labels i(e), t (e), ∗(e) ∈ {0, 1} indicate whether e
represents the imaginary part, the transpose and/or the adjoint of a resolvent. The scalar
label z(e) records the spectral parameter of the resolvent and the matrix-valued labels
L(e), R(e) record deterministic matrices which are multiplied with the resolvent from
the left/right.

We now relate the graphs to the polynomials they represent. Each internal vertex
or κ-vertex v corresponds to an independent summation av ∈ [N ]. In order to unify
notations we define a labelling map

x : V → CN , v  → xv :=
{

x(e), v ∈ Ve,
eav , v ∈ Vi ∪ Vκ ,

(87)

where ea is the a-th unit vector in the standard basis, and for v ∈ Ve, the vector x(v)

is the label of v from Definition 2. The G-edges e ∈ Eg represent resolvents defined
via the labels of e from Definition 2. We define the matrix Ge as the resolvent G(z(e))
modified according to i(e), t (e), ∗(e) and multiplied by L(e), R(e) from the left/right.
As an example, we set

Ge = B(�G(z))t for e ∈ Eg

with
(

i(e), t (e), ∗(e), z(e), L(e), R(e)
)

= (1, 1, 0, z, B, I ).

We remark that for all G-edges e considered in this paper at most one of the matri-
ces L(e), R(e) is different from the identity matrix I . The κ-edges e ∈ Eκ represent
N × N cumulant matrices κe which are determined by the two integers r(e), s(e) from
Definition 2 such that for a �= b,

κ
(uv)
ab := κ

r((uv)),s((uv))
ab , (88)
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where on the rhs. κ was defined in (78). We note that
∣
∣
∣κ

(uv)
ab

∣
∣
∣ � 1 by (8). Finally, we

define the graph value

Val(Γ ) :=
∑

av∈[N ]
v∈Vi∪Vκ

[
∏

(uv)∈Eκ

(

N−dg(u)/2κ(uv)
auav

)](
∏

(uv)∈Eg

G(uv)
xuxv

)

.
(89)

Among the degree-2 vertices the ones between edges representing matrices whose
eigenvectors are asymptotically orthogonal are of particular importance. There are two
differentmechanism for such orthogonality; (a) two resolvents, onewith and onewithout
transpose stand next to each other, e.g. GGt or G∗(A(�G)t ), (b) a traceless matrix A
stands between two resolvents, e.g. (GA)G∗ or G(A(�G)t ). Note that in some cases,
e.g. (GA)(�G)t , both mechanism can be present simultaneously, and hence a vertex can
be 0tr- and t-vertex at the same time.

Definition 3 (Orthogonality vertices).

(a) A vertex v ∈ V 2
κ ∪Vi is called a t-orthogonality vertex, or short t-vertex if the two

unique G-edges e1, e2 ∈ Eg adjacent to v satisfy (t (e1), t (e2)) ∈ {(0, 1), (1, 0)},
i.e. if exactly one of the two G-edges adjacent to v is transposed.

(b) A vertex v ∈ Vi ∪ V 2
κ is called an zero-trace-orthogonality vertex, or short 0tr-

vertex if exactly one of the two edges adjacent to v represents a resolvent (which is
allowed to be the imaginary part, transposed, or adjoint) multiplied by a traceless
matrix on the side of v, while the other adjacent edge represents a resolvent matrix
multiplied by the identity matrix on the side of v. More precisely, using the labels
L(e), R(e) of the edges, v is defined to be an 0tr-vertex if one of the following
three conditions is satisfied:
(b.i) there are incoming/outgoing edges (uv), (vw) ∈ Eg such that either

〈R((uv))〉 = 0, L((vw)) = I or 〈L((vw))〉 = 0, R((uv)) = I ,
(b.ii) there are two outgoing edges (vu), (vw) ∈ Eg such that either 〈L((vu))〉 =

0, L((vw)) = I or 〈L((vw))〉 = 0, L((vu)) = I ,
(b.iii) there are two incoming edges (uv), (wv) ∈ Eg such that either 〈R((uv))〉 =

0, R((wv)) = I or 〈R((wv))〉 = 0, R((uv)) = I .

Proposition 3 (Cumulant expansion). Let a, t, i be fixed sets as in Theorem 5 of sizes
a := |a| , t := |t| , i := |i|. Then for any p ∈ N there exists a finite (N-independent)
family of graphs Gp = Gav

p ∪ Giso
p ⊂ G such that

E
∣
∣TrWG1B1G2B2 · · ·Gl Bl

∣
∣
2p =

∑

Γ ∈Gav
p

EVal(Γ ) +O
(

N−2p
)

,

(90)

E
∣
∣
∣〈x,G1B1 · · ·G j B jWG j+1Bj+1 · · · Bl−1Gl y〉

∣
∣
∣

2p =
∑

Γ ∈Giso
p

EVal(Γ ) +O
(

N−2p
)

,

(91)

and for each graph Γ we may select two disjoint subsets V t
o ∪̇V 0tr

o =: Vo of t- and
0tr-vertices, respectively, such that the following properties are satisfied:

(P1) The graph (Vκ , Eκ) is a perfect matching, in particular, |Vκ | = 2 |Eκ |.
(P2) The number of κ-edges satisfies 1 ≤ |Eκ | ≤ 2p.
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(P3) The number of G-edges satisfies
∣
∣
∣

{

e ∈ Eg

∣
∣
∣i(e) = 1

}∣
∣
∣ = 2i p (92a)

∣
∣Eg

∣
∣ =

∑

e∈Eκ

dg(e) + 2(l − 1)p ≥ 2p. (92b)

(P4) For (uv) ∈ Eκ the G-degrees of u, v ∈ Vκ satisfy d ing (u) = doutg (v), d ing (v) =
doutg (u) and dg(u) = dg(v) ≥ 2. Therefore we may define the G-degree of

(uv) as dg((uv)) := dg(u) = dg(v) and partition Eκ = ˙⋃
k≥2E

k
κ into Ek

κ :=
{

e ∈ Eκ

∣
∣
∣dg(e) = k

}

.

(P5) Every Eg-cycle on V 2
κ ∪Vi must contain at least two V 2

κ -vertices, and in particular
there cannot exist isolated loop edges, and there are at most

∣
∣E2

κ

∣
∣ cycles.

(P6) Denoting the number of isolated cycles in (Vκ ∪ Vi, Eg) with k vertices in Vo by
no=k
cyc , we have

2no=0
cyc + no=1

cyc ≤ 2
∣
∣
∣E2

κ

∣
∣
∣−

∣
∣
∣Vo ∩ V 2

κ

∣
∣
∣ .

(P7) The numbers of selected internal 0tr- and t-vertices are

∣
∣
∣Vi ∩ V 0tr

o

∣
∣
∣ =

{

2p(a − 1), j ∈ a

2pa, j �∈ a,
,

∣
∣Vi ∩ V t

o

∣
∣ =

{

2p(t − 1), j ∈ t

2pt, j �∈ t,

where in the averaged case j := l and j is determined by the lhs. of (91) in the
isotropic case.

(P8) If j ∈ a (with again j := l in the averaged case), then the set of selected 0tr-vertices
V 0tr
o satisfies

2
∣
∣
∣E2

κ

∣
∣
∣ +

∣
∣
∣E≥3

κ

∣
∣
∣− 2p ≤

∣
∣
∣V 0tr

o ∩ V 2
κ

∣
∣
∣ ≤ 2p,

while otherwise V 0tr
o ∩V 2

κ = ∅. Similarly, if j ∈ t, then the set of selected t-vertices
V t
o satisfies

2
∣
∣
∣E2

κ

∣
∣
∣ +

∣
∣
∣E≥3

κ

∣
∣
∣− 2p ≤

∣
∣
∣V t

o ∩ V 2
κ

∣
∣
∣ ≤ 2p,

while otherwise V t
o ∩ V 2

κ = ∅.
The graphs Γ ∈ Gav

p satisfy (P1)-(P8) and in addition:

(Pav9) There are no external vertices, i.e. Ve = ∅
(Pav10) The number of internal vertices satisfies |Vi| = 2(l − 1)p. The graphs
Γ ∈ Giso

p satisfy (P1)-(P8) and in addition:

(P iso9) The number of external vertices is |Ve| = 4p each v ∈ Ve has degree
dg(v) = 1 and the unique connected vertex u ∈ V with (uv) ∈ Eg or (vu) ∈ Eg
satisfies u ∈ Vκ .
(P iso10) The number of internal vertices satisfies |Vi| = 2p(l − 2).
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Definition 4. For some parameters a, t, l, i, p ∈ N we call graphs Γ ∈ G together with
their selected V t

o , V
0tr
o sets satisfying (P1)-(P8) and (Pav9)-(Pav10) av-graphs, while we

call graphs Γ ∈ G (together with the sets V t
o , V

0tr
o and the extra parameter j ∈ [l − 1])

satisfying (P1)-(P8) and (Piso9)-(Piso10) iso-graphs.

Proof. (Proposition 3) In order to obtain (90) we iteratively perform cumulant expan-
sions exactly as in the examples (80) and (84) until no underlined terms remain. Each
cumulant expansion removes at least one underlined term, hence this process terminates.

We now explain which kinds ofG-edges are created through this cumulant expansion
procedure for the averaged case (90), the isotropic case (91) being very similar. Initially,
the graph representing the lhs. of (90) after writing out |Tr X |2p = (Tr X)p(Tr X∗)p
consists of 2p cycles each with a W factor and l G-edges representing G-factors Gk Bk
or B∗

k G
∗
k for k ∈ [l]. Each of these G-factors can be fully described via the labels

i(e), t (e), ∗(e), z(e), L(e), R(e) from Definition 2, the first four being determined by
the form of Gk while the latter two encode the multiplication from the left/right by
deterministicmatrices, e.g. L(e) = I, R(e) = Bk forGk Bk .While performing cumulant
expansions of some W = ∑

ab wabΔ
ab using (76) these G-edges are modified and new

G edges are created via the action of derivatives, and κ-edges representing κ(ab,α)

are also created. This process creates creates (finitely) many different graphs for every
cumulant expansion, both through the explicit summation over cumulants in (76) and
the Leibniz rule for the derivative ∂α acting on the product of all remaining W ’s and
G’s. We note that for resolvent derivatives we have

∂abG = −GΔabG, ∂abG
∗ = −G∗ΔabG∗,

∂abG
t = −GtΔbaGt , ∂ab(G

∗)t = −(G∗)tΔba(G∗)t

and

∂ab�G = −GΔab�G − �GΔabG∗,
∂ab(�G)t = −(�G)tΔbaGt − (G∗)tΔba(�G)t .

Hence, a derivative action on e representing the G-factor Ge = Gk Bk(or similarly
B∗
k G

∗
k ) creates two G-edges e1, e2, such that only the resolvent representing e2 is

multiplied from the right by R(e2) = Bk while L(e2) = L(e1) = R(e1) = I .
The labels t (e), z(e) indicating the transposition status and spectral parameter are di-
rectly inherited to both e1, e2, while the label i(e) is inherited to exactly one of e1, e2,
i(e1) = 1 the other one satisfying i(e2) = 0, ∗(e2) ∈ {0, 1}. If ∗(e) = 1, i(e) =
0, then both e1, e2 satisfy ∗(e1) = ∗(e2) = 1. It follows inductively that each G-
factor encountered in the expansion can be represented by an edge e with six labels
i(e), t (e), ∗(e), z(e), L(e), R(e), with L(e) = I , or L(e) = B∗

k for some k, while
R(e) = I or R(e) = Bk for some k, with for each e at least one of L(e), R(e) being the
identity. The spectral parameter label z(e) satisfies z(e) ∈ {z1, . . . , zl} for each e. For
example, the ab-derivative of the G-factor Ge = B(�G(z))t described by the edge ewith
labels (1, 1, 0, z, B, I ) yields a sum of two terms and hence the two new graphs given by

∂ab

(1, 1, 0, z, B, I)

⇒

b

a

(1, 1, 0, z, B, I)

(0, 1, 0, z, I, I)
&

b

a

(0, 1, 1, z, B, I)

(1, 1, 0, z, I, I)

or, in formulas,

∂ab

[

B(�G(z))t
]

= −B(�G(z))tΔbaGt − B(G∗)tΔba(�G(z))t .
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We now describe the selection of the orthogonality vertices V t
o , V

0tr
o which is done

in two steps. To unify notations we set j := l in the averaged case.

(orth-1) For each k ∈ t \ { j} , a \ { j} we collect 2p distinct vertices from Vi into the
sets V t

o and V 0tr
o , respectively.

(orth-2) If j ∈ t or j ∈ a, then we select one vertex from V 2
κ into V t

o or V 0tr
o ,

respectively, for each W acting as a degree-2 cumulant on some resolvent.

Regarding (orth-1) for k ∈ a∪ t\ { j} the initial graphs representing the lhs. of (90)–(91)
contain p internal vertices v1, . . . vp betweenG-edges representing (Gk Bk), (Gk+1Bk+1)

and p internal verticesvp+1, . . . v2p betweenG-edges representing (B∗
k+1G

∗
k+1), (B

∗
k G

∗
k).

The G-edges adjacent to these internal vertices may change due to derivative actions
along the cumulant expansions, however in case k ∈ a, due to the derivative rules ex-
plained in the paragraph above it is ensured that all times the two unique G-edges e1, e2
adjacent to vk satisfy R(e1) = Bk, L(e2) = I for k ≤ p and R(e1) = I, L(e2) = B∗

k ,
so that vk is guaranteed to remain an 0tr-vertex. Similarly, for k ∈ t it is ensured that
the two unique G-edges e1, e2 adjacent to vk satisfy t (e1) = 1, t (e2) = 0, so that vk is
guaranteed to remain an t-vertex.

Regarding (orth-2) we note that while performing the cumulant expansion for W =
∑

ab wabΔ
ab in G j B jWG j+1 we obtain the degree-2 cumulant term as

∑

ab

G j B jΔ
abG j+1

(

∂ba + σ∂ab
)

the derivatives ∂ab or ∂ba acting on some resolvent G result in GΔabG or GΔbaG. In
case j ∈ a the κ-vertex corresponding to the summation index a satisfies the definition
of 0tr-vertex since 〈Bj 〉 = 0 and the other resolvent is not multiplied by some additional
matrix in the a-direction. Similarly, in case j ∈ t either both or none of the two G’s
in GΔabG or GΔbaG are transposed, while, by definition, exactly one of G j ,G j+1 is
transposed. Thus exactly one of the κ-vertices corresponding to the a or b-summations
satisfies the definition of being a t-vertex.

We note that the condition a∩ t = ∅ ensures the sets V t
o , V

0tr
o constructed in this way

to be disjoint. We now check that the properties (P1)-(P8), as well as (Pav9)-(Pav10) and
(Piso9)-(Piso10) also hold for these graphs.

The properties (P1)-(P2) are obvious by construction since each cumulant expansion
comes with two κ-vertices, and in total there are 2p underlined terms and thereby at
most 2p cumulant expansions. The properties (Pav10)-(Piso10) follow from the fact that
for each factor of TrWG1B1 · · ·Gl Bl and

〈x,G1B1 · · ·G j B jWG j+1Bj+1 · · · Bl−1Gl y〉
there are l−1 and respectively l−2 internal vertices of in- and out-degree 1 and that these
properties remain invariant under cumulant expansions. Similarly, the properties (Pav9)
and (Piso9) hold true trivially for the initial terms and remain invariant under cumulant
expansions.

For (P4) note that the cumulant κ(ab, (α1, . . . , αk)) comes together with matrices

Δab, (Δα1)(t), . . . , (Δαk )(t)

after derivative action, where the transpose is taken in case the derivative acts on a
transposed resolvent. In all cases the in-degree of the vertex associated with a is equal
to the out-degree of the vertex associated with b.
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For (P5) note that by the definition of the underline-renormalisation it follows that
for degree two edges the corresponding ∂ba derivative cannot act on its own trace and
therefore cycles have to involve at least two V 2

κ vertices.
For (P6) we note that

∣
∣V 2

κ \ Vo
∣
∣ = 2

∣
∣E2

κ

∣
∣− ∣

∣Vo ∩ V 2
κ

∣
∣, while due to (P5) each cycle

with zero Vo-vertices contains at least two V 2
κ \ Vo-vertices and each cycle with one

Vo-vertex contains at least one V 2
κ \ Vo-vertex.

The claim (P7) follows immediately from the construction (orth-1). Similarly, claim (P8)
follows from the construction (orth-2) together with the observation that because |Eκ |
is the total number of cumulant expansions, a total of 2p − |Eκ | derivatives have acted
on some W , and thus the number n of W ’s acting on as degree-2 cumulants on some G
satisfies

n ≥
∣
∣
∣E2

κ

∣
∣
∣− (2p − |Eκ |) = 2

∣
∣
∣E2

κ

∣
∣
∣ +

∣
∣
∣E≥3

κ

∣
∣
∣− 2p, (93)

and, trivially, n ≤ 2p. This concludes the proof of (P8) in the mutually exclusive cases
j ∈ a and j ∈ t (recall that a ∩ t = ∅ by assumption).

For the claim (92a) on the number of G-edges in (P3) note that the number of �G’s
remains invariant under the derivative actions. For (92b) note that each derivative acting
on some G increases the number of G’s by one, while each of the 2p− |Eκ |derivatives
acting on some W leaves the number of G’s invariant. Thus we conclude that the total
number of G’s is

2lp +
∑

e∈Eκ

dg(e) − |Eκ | − (2p − |Eκ |) =
∑

e∈Eκ

dg(e) + 2(l − 1)p

and (92b) follows. ��
Remark 7. Proposition 3 holds true verbatim also under the alternative definition of the
renormalisation outlined in Remark 5 in case no G is transposed. Also the proof of the
proposition remains unchanged except for the proof of Property (P5). For the alternative
renormalisation also for degree twoedgeswhenexpandingWG · · · = ∑

ab ΔabG · · · ∂ba
the derivative σ∂ab may act on its own trace. However, since no G is transposed this
action will necessarily result in ΔabG · · ·GΔab and therefore no loops are created.

Using Proposition 3, in order to conclude Theorem 5, it remains to estimate Val(Γ )

for each Γ ∈ Gp as follows. We note that the following Proposition is valid for any
av-/iso-graphs Γ ∈ G from Definition 4, i.e. graphs satisfying the properties (P1)-(P8)
and (Pav9)-(Pav10)/(Piso9)-(Piso10) above rather than only for the specific families of
graphs Gav

p ,Giso
p arising in the cumulant expansion.

Proposition 4. (Value estimate) For each av-graph Γ ∈ G for some parameters a, t,
l, p, i ∈ N we have the bound

|Val(Γ )| ≺
{

ρ2(b+1)pN 2bpK−2bp, b = l

Λ
2ap
+ Π

2tp
+ ρ2i p∨2(b+1)pN p(a+t+2b)K−p(1+2b), b < l,

, b := l − a − t

(94)

with K as in (75), while for each iso-graph Γ for some parameters a, t, l, p, i ∈ N we
have the bound

|Val(Γ )| ≺ Λ
2ap
+ Π

2tp
+ ρ2i p∨2(b+1)pN p(a+t+2b)K−p(1+2b), b := l − a − t − 1.

(95)
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Proof. (Theorem 5) Theorem 5 follows immediately by combining Propositions 3 and
4 under the simplifying assumptions made at the beginning of Sect. 5. Their removal is
a routine technicality whose details we present in Appendix A of the arXiv:2012.13215
version of the present paper. Following the proof Proposition 4 it is evident that both
Λ

2ap
+ and Π

2tp
+ can be replaced by the product of individual ΛBk

+ , Π Bk
+ for k ∈ a ∪ t, as

claimed in Theorem 5.
Finally, regarding the replacement of ρi by

∏

k∈i ρ(zk) in the bounds of Theorem 5, it
is easy to see that during the cumulant expansion the number of �G(zk) is preserved and
each gives rise to a factor ρ(zk) in Proposition 4, hence the factor ρ2i p may be replaced
by the factor

∏

k∈i ρ(zk)2p. Similarly, for the replacement of Λa
+ by

∏

k∈a Λ
Bk
+ we note

that each Bk appears exactly 2p times also after the cumulant expansions, and therefore
each Λ

Bk
+ can only appear in at most the 2p-th power on the rhs. of (94)–(95). ��

5.2. Estimating graph values: Proof of Proposition 4. The proof of Proposition 4 goes
in three major steps formulated in Lemmata 2, 3 and 4 which we first state and then use
to conclude the proof of Proposition 4.

First, we express the value Val(Γ ) = Val(Γred) as the value of the reduced graph Γred
obtained from Γ by collapsing all degree-2 vertices Vi ∪ V 2

κ . Thus, in graph-theoretic
terms, Γred is the minimal (with the least number of edges) graph having Γ \ E2

κ as a
subdivision. We claim that each summation index av for v ∈ Vi ∪ V 2

κ appears in exactly
two G-factors and no κ-matrices, and thus the summation can be written as a matrix
product after (potentially) transposing one of the two G’s in the cases of two incoming
or two outgoing edges, e.g.

∑

av
(GB)xavG yav = (GBGt )x y. Indeed, the index av

appears only in exactly two G-edges since dg(v) = 2, cf. Definition 2. Moreover, due
to (P1) no κ-edge is adjacent to Vi while for v ∈ V 2

κ the corresponding κ-edge (uv) or
(vu) due to (78) and (88) is given by κ1,1 or κ2,0 which are constant-1, and constant
σ -matrices, and thus effectively the index av does not appear in any κ(vu)/(uv) matrix.

In the reduction process the value of Γ effectively reduces to a summation over
vertices of degree at least 3, traces ofG-cycles and entries ofG-chains and E≥3

κ -matrices,
represented by Γred. Here we use the terminology that a G-cycle is a cycle of G-edges
on V 2

κ ∪ Vi vertices, irrespective of the edge orientation, and that a G-chain is a chain of
G-edges with internal V 2

κ ∪Vi-vertices and external V≥3
κ ∪Ve-vertices, again irrespective

of the edge orientation. Note that the reduction completely collapses each Eg-cycles on
Vi ∪ V 2

κ -vertices into a single vertex with a loop edge. The sets of these single vertices

and loop edges are denoted by Vcyc and E red,cyc
g . Therefore the edge set of reduced

graph Γred is naturally partitioned into V (Γred) := V≥3
κ ∪̇Ve∪̇Vcyc and its edge set is

E(Γred) := E red
g ∪̇E≥3

κ .
The graph reduction by partial resummations corresponds to generalising the defini-

tion of value to

Val(Γred) := N−∣
∣E2

κ

∣
∣+|Vcyc| ∑

av∈[N ]
v∈V≥3

κ

[
∏

(uv)∈E≥3
κ

(

N−dg(u)/2κ(uv)
auav

)]

×
(

∏

v∈Vcyc
〈G(vv)〉

)(
∏

(uv)∈E red
g \E red,cyc

g

G(uv)
xuxv

)

. (96)

https://arxiv.org/abs/2012.13215
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where we defined

G(v1vk ) := (G(v1v2))(t) · · · (G(vk−1vk ))(t) (97)

as a matrix product of (possibly transposed, depending on the in- and out-degrees) of
G(v1v2), . . . ,G(vk−1vk), whenever dg(v2) = · · · = dg(vk−1) = 2. For each edge e ∈ E red

g
we record the number of �G’s, the total number of G-edges and the number of summed
up V t/0tr

o -vertices in the corresponding chains and cycles by i(e), l(e), t (e), a(e), re-
spectively and set o(e) := a(e) + t (e). The letter o refers to the counting of vertices
with the asymptotic orthogonality effect. Note that for cycles all V t/0tr

o -vertices in the
cycle contribute towards t (e), a(e) while for chains the first and last vertex necessarily
are in V≥3

κ ∪ Ve and hence, by definition cannot be V
t/0tr
o -vertices. Thus the parameters

a, t, i, l satisfy the relations

1 ≤ l(e), 0 ≤ i(e) ≤ l(e),

0 ≤ a(e) + t (e) = o(e) ≤
{

l(e), e ∈ E red,cyc
g ,

l(e) − 1, e ∈ E red
g \ E red,cyc

g .

(98)

We denote the set of v ∈ Vcyc with o((vv)) = k by V o=k
cyc which are of cardinality

∣
∣
∣V o=k

cyc

∣
∣
∣ = no=k

cyc , c.f. (P6).

Lemma 2. For each av-/iso-graph Γ ∈ G with parameters a, t, l, i, p and the selected
vertex sets V 0tr

o , V t
o , let Γred = (V≥3

κ ∪ Ve ∪ Vcyc, E red
g ∪ E≥3

κ ) denote its reduction. The
reduced graph then satisfies

∣
∣
∣E red

g

∣
∣
∣ = ∣

∣Eg
∣
∣− |Vi| −

∣
∣
∣V 2

κ

∣
∣
∣ +

∣
∣Vcyc

∣
∣ = ∣

∣Eg
∣
∣− |Vi| − 2

∣
∣
∣E2

κ

∣
∣
∣ +

∣
∣Vcyc

∣
∣ (99)

and

Val(Γred) = Val(Γ ).

Moreover, we have
∑

e∈E red
g

t (e) = ∣
∣V t

o

∣
∣ ,

∑

e∈E red
g

a(e) =
∣
∣
∣V 0tr

o

∣
∣
∣ ,

∑

e∈E red
g

l(e) = ∣
∣Eg

∣
∣ ,

∑

e∈E red
g

i(e) = 2i p.

(100)

Second, we estimate the value of each graph by bounding the size of each of the reduced
G-edges entrywise and the summations trivially.

Lemma 3. For each av-/iso-graph Γ ∈ G with the selected vertex sets V 0tr
o , V t

o we have
|Val(Γred)| ≺ I2-Est(Γ ) with

I2-Est(Γ ) := Λ

∣
∣V 0tr

o

∣
∣

+ Π
|V t

o |
+ ρ2i p∨(|Vi|+2

∣
∣E2

κ

∣
∣−|Vo|)N |Vi|+

∣
∣E2

κ

∣
∣+

∣
∣E3

κ

∣
∣/2−|Vo|/2−δ≥4

× K
|Vo|−|Vi|−2

∣
∣E2

κ

∣
∣+

∣
∣
∣V o=0

cyc

∣
∣
∣+

∣
∣
∣V o=1

cyc

∣
∣
∣/2

,

(101)

where

δ≥4 :=
∑

e∈Eκ

(dg(e)

2
− 2

)

+
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Finally, in the third step we improve upon the entrywise estimate as by estimating
summations corresponding to some V≥3

κ -vertices more effectively, using a Schwarz
inequality followed by the Ward identity GG∗ = �G/η.

Lemma 4. For each av-graph Γ ∈ G with the selected vertex sets V 0tr
o , V 0tr

o we have
|Val(Γred)| ≺ I3-Est(Γ ) with

I3-Est(Γ ) := Λ

∣
∣V 0tr

o

∣
∣

+ Π
|V t

o |
+ ρ2i p∨(|Vi|+2

∣
∣E2

κ

∣
∣+

∣
∣E3

κ

∣
∣−|Vo|)N |Vi|+

∣
∣E2

κ

∣
∣+

∣
∣E3

κ

∣
∣/2−|Vo|/2−δ≥4

× K
|Vo|−|Vi|−2

∣
∣E2

κ

∣
∣−∣

∣E3
κ

∣
∣/2+

∣
∣
∣V o=0

cyc

∣
∣
∣+

∣
∣
∣V o=1

cyc

∣
∣
∣/2

(102a)

and for each iso-graph Γ ∈ G we have |Val(Γred)| ≺ I3-Est(Γ ) with

I3-Est(Γ ) := Λ

∣
∣V 0tr

o

∣
∣

+ Π
|V t

o |
+ ρ2i p∨(|Vi|+2

∣
∣E2

κ

∣
∣+

∣
∣E3

κ

∣
∣−|Vo|

)

N |Vi|+
∣
∣E2

κ

∣
∣+

∣
∣E3

κ

∣
∣/2−|Vo|/2−δ≥4

× K
|Vo|−|Vi|−2

∣
∣E2

κ

∣
∣−∣

∣E3
κ

∣
∣/2+

∣
∣
∣V o=0

cyc

∣
∣
∣+

∣
∣
∣V o=1

cyc

∣
∣
∣/2−

(

p−∣
∣E2

κ

∣
∣+|Vcyc|−δ≥4

)

+

(102b)

Before proving Lemmata 2–4 we conclude the proof of Proposition 4.

Proof. (Proposition 4) The proof of Proposition 4 distinguishes several cases. For the av-
eraged boundwe consider the two cases a = t = 0 and a+t = o > 0, |Vi ∩ Vo| = 2(o−
1)p separately, while for the isotropic bound we consider the cases o ≥ 0, |Vi ∩ Vo| =
2op and o > 0, |Vi ∩ Vo| = 2(o− 1)p separately.

We first consider the o = 0 case of the averaged bound where we obtain from
Lemma 2, (102a) with Vo = ∅ from (P8),

∣
∣Vcyc

∣
∣ ≤ ∣

∣E2
κ

∣
∣ from (P6) and |Vi| = 2p(l− 1)

from (Pav10) that

|Val(Γ )| ≺ ρ|Vi|+2
∣
∣E2

κ

∣
∣+

∣
∣E3

κ

∣
∣

N |Vi|+
∣
∣E2

κ

∣
∣+

∣
∣E3

κ

∣
∣/2K−|Vi|−

∣
∣E2

κ

∣
∣−∣

∣E3
κ

∣
∣/2

= ρ2(l−1)p+2
∣
∣E2

κ

∣
∣+

∣
∣E3

κ

∣
∣

N 2lpK−2p(l−1)N−2p+
∣
∣E2

κ

∣
∣+

∣
∣E3

κ

∣
∣/2K−∣

∣E2
κ

∣
∣−∣

∣E3
κ

∣
∣/2

� ρ2p(l+1)N 2lpK−2lp,

where in the last step we used K � Nρ2 due to η = mink ηk � maxk ρk = ρ and∣
∣E2

κ

∣
∣ +

∣
∣E3

κ

∣
∣ /2 ≤ |Eκ | ≤ 2p from (P2) and (P4) .

Next, we consider the |Vo ∩ Vi| = 2op case of isotropic bound, where we obtain
from Lemma 2, (102b), and |Vi| = 2p(o + b − 1) from (P iso10) that

|Val(Γ )| ≺ Λ
2ap
+ Π

2tp
+ ρ2i p∨(2p(b−1)+2

∣
∣E2

κ

∣
∣+

∣
∣E3

κ

∣
∣)N p(o+2b)N

∣
∣E2

κ

∣
∣+

∣
∣E3

κ

∣
∣/2−2p−δ≥4

× K p(1−2b)−∣
∣E2

κ

∣
∣−∣

∣E3
κ

∣
∣/2+δ≥4

� Λ
2ap
+ Π

2tp
+ ρ2i p∨2p(b+1)N p(o+2b)K−p(1+2b)

again using K � Nρ2 and
∣
∣E2

κ

∣
∣ +

∣
∣E3

κ

∣
∣ /2 ≤ |Eκ | ≤ 2p.

Next, we consider the |Vo ∩ Vi| = 2(o−1)p, o > 0 case of both the averaged bound,
and the isotropic bound where we similarly obtain (from estimating (. . .)+ ≥ 0 for the
iso-graphs)
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|Val(Γ )|
≺ Λ

∣
∣V 0tr

o

∣
∣

+ Π
|V t

o |
+ ρi ′N |Vi|+

∣
∣E2

κ

∣
∣+

∣
∣E3

κ

∣
∣/2−|Vo|/2K |Vo|−|Vi|−2

∣
∣E2

κ

∣
∣−∣

∣E3
κ

∣
∣/2+

∣
∣
∣V o=0

cyc

∣
∣
∣+

∣
∣
∣V o=1

cyc

∣
∣
∣/2

= Λ

∣
∣V 0tr

o

∣
∣

+ Π
|V t

o |
+ ρi ′N p(o+2b−1)+

∣
∣E2

κ

∣
∣+

∣
∣E3

κ

∣
∣/2−|Vo∩Vκ |/2

× K
|Vo∩Vκ |−2pb−2

∣
∣E2

κ

∣
∣−∣

∣E3
κ

∣
∣/2+

∣
∣
∣V o=0

cyc

∣
∣
∣+

∣
∣
∣V o=1

cyc

∣
∣
∣/2

≤ Λ
2pa
+ Π

2pt
+ ρi ′N p(o+2b)K−(2b+1)p

(K

N

)p+|Vo∩Vκ |/2−
∣
∣E2

κ

∣
∣−∣

∣E3
κ

∣
∣/2

� Λ
2pa
+ Π

2pt
+ ρ2i p∨2(b+1)pN p(o+2b)K−(2b+1)p, (103)

with

i ′ = 2i p ∨ (|Vi| + 2
∣
∣
∣E2

κ

∣
∣
∣ +

∣
∣
∣E3

κ

∣
∣
∣− |Vo|) = 2i p ∨

(

2bp + 2
∣
∣
∣E2

κ

∣
∣
∣ +

∣
∣
∣E3

κ

∣
∣
∣− |Vo ∩ Vκ |

)

.

Here we used (P3) and (Pav10)/(Piso10) and Vo ⊂ Vi ∪ V 2
κ (since by definition Vo are

degree-2 vertices, while Ve = ∅ due to (Pav10) in the averaged case and dg(v) = 1, v ∈
Ve due to (Piso10) in the isotropic case and V≥3

κ -vertices have degree at least 3 by (P4))
in the equality. Furthermore, we used (P6) in the first inequality, and (P8) in the second
inequality, and K/N � ρ2 and (P8) in the final step. ��

5.2.1. Graph reduction: Proof of Lemma 2 Since for dg((uv)) = 2 we have κ
(uv)
ab = 1

or κ(uv)
ab = σ for all a, b due to (78) (using Assumption (A-i)) it is possible to write (with

potential transpositions) the summation over av for v ∈ Vi ∪ V 2
κ as matrix products

which are then associated with edges of the reduced graph Γred. In this way G-chains
(v1v2), . . . , (vk−1vk) ∈ Eg withv2, . . . , vk−1 ∈ V 2

κ ∪Vi andv1, vk �∈ V 2
κ ∪Vi are reduced

to the edge (v1vk) ∈ E red
g , and G-cycles (v1v2), . . . , (vkv1) ∈ Eg with v1, . . . , vk ∈

V 2
κ ∪ Vi are reduced to isolated loops which we represent by the vertex v1 ∈ Vcyc and

the loop-edge (v1v1) ∈ E red,cyc
g ⊂ E red

g . For each cycle of length k we arbitrarily pick
one of the k possible reductions since they are all equivalent.

The first relation in (99) follows trivially since for each of the carried out summations
corresponding toV 2

κ ∪Vi the number ofG-edges is reduced by onewith the exception that
for cycles the last index is kept in Vcyc. The second relation in (99) is a direct consequence
of (P1). Next, the claim (100) follows from (P3) and by noting that the definition of
a(e), t (e) is consistent with the counting of t/0tr-vertices in Γ . This concludes the
proof of Lemma 2.

5.2.2. Entrywise bound: Proof of Lemma 3 For edges in the reduced graph we use the
bound from the following lemma. Note that o(e) ≤ l(e) for cycles e and o(e) ≤ l(e)−1
for chains e and therefore the exponents of K below are guaranteed to be non-positive.

Lemma 5. For e ∈ E red,cyc
g we have the averaged bound

∣
∣〈Ge〉∣∣ ≺ Λ

a(e)
+ Π

t (e)
+ ρi(e)∨(l(e)−o(e)+1[0<o(e)<l(e)])Nl(e)− o(e)

2 −1

× Ko(e)−l(e)+1(o(e)=0)+ 1(o(e)=1)
2

(104a)
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and for e ∈ E red
g \ E red,cyc

g the isotropic bound

∣
∣〈v,Gew〉∣∣ ≺ ‖v‖ ‖w‖Λ

a(e)
+ Π

t (e)
+ ρi(e)∨(l(e)−o(e)−1[o(e)=l(e)−1])Nl(e)− o(e)

2 −1

× Ko(e)−l(e)+1 (104b)

for any two deterministic vectors v,w. Moreover, the same bounds hold true if within the
chainG absolute values of resolvents |G(z)|appear in addition, to (�G)(t), (G∗)(t), (G)(t).

Remark 8. The estimates (104a)–(104b) are designed to take advantage of the asymptotic
orthogonality vertices. Indeed, using that a posteriori we will show that Λ+ + Π+ ≺ 1
in the bulk, ρ ∼ 1, both inequalities essentially depend on the number of orthogonality-
vertices as (K/

√
N )o ∼ (

√
Nη)o (ignoring some K factors in (104a) for o = 0, 1).

Therefore as long as η � N−1/2 the orthogonality helps and our bounds do exploit this
effect. However, for η � N−1/2 it is better to use (104a)–(104b) by simply ignoring the
asymptotic orthogonality, i.e. choosing a = t = ∅.
Using Lemma 5, the proof of which we defer to the the end of the subsection, we now
conclude the proof of Lemma 3. From Lemma 2 we obtain Val(Γ ) = Val(Γred) with

Val(Γred) as in (96). By estimating
∣
∣
∣κ

(uv)
ab

∣
∣
∣ � 1 andG via Lemma 5we obtain from (100),

∏

(uv)∈E≥3
κ

(
∑

au ,av

N−dg((uv))/2
)

=
∏

k≥3

(

N 2−k/2
)
∣
∣Ek

κ

∣
∣

= N
∣
∣E3

κ

∣
∣/2−δ≥4

,

and
∣
∣Vcyc

∣
∣ =

∣
∣
∣E

red,cyc
g

∣
∣
∣ that

|Val(Γ )| ≺ Λ

∣
∣V 0tr

o

∣
∣

+ Π
|V t

o |
+ ρi ′′N

−∣
∣E2

κ

∣
∣+|Vcyc|+∣∣E3

κ

∣
∣/2+|Eg|−|Vo|/2−

∣
∣
∣E red

g

∣
∣
∣−δ≥4

× K
|Vo|−|Eg|+

∣
∣
∣E red

g

∣
∣
∣−|Vcyc|+

∣
∣
∣V o=0

cyc

∣
∣
∣+

∣
∣
∣V o=1

cyc

∣
∣
∣/2

� Λ

∣
∣V 0tr

o

∣
∣

+ Π
|V t

o |
+ ρ2i p∨(|Vi|+2

∣
∣E2

κ

∣
∣−|Vo|)N

∣
∣E2

κ

∣
∣+

∣
∣E3

κ

∣
∣/2+|Vi |−|Vo|/2−δ≥4

× K
|Vo|−|Vi |−2

∣
∣E2

κ

∣
∣+

∣
∣
∣V o=0

cyc

∣
∣
∣+

∣
∣
∣V o=1

cyc

∣
∣
∣/2

, (105)

where we used (99) in the second step. Here we counted the factors of ρ as

i ′′ :=
∑

e∈E red
g

i(e) ∨
{

l(e) − o(e) + 1(0 < o(e) < l(e)), e ∈ E red,cyc
g ,

l(e) − o(e) − 1(o(e) = l(e) − 1), e ∈ E red
g \ E red,cyc

g ,

≥
∑

e∈E red
g

i(e) ∨ [l(e) − o(e) − 1(e �∈ E red,cyc
g )]

≥ 2i p ∨
(∣
∣Eg

∣
∣− |Vo| −

∣
∣
∣E red

g

∣
∣
∣ +

∣
∣Vcyc

∣
∣

)

= 2i p ∨
(

|Vi| + 2
∣
∣
∣E2

κ

∣
∣
∣− |Vo|

)

(106)

due to (99), completing the proof of Lemma 3.
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Proof. (Lemma 5) We actually prove a slightly more general bound which allows for
chains Ge = G1B1 · · ·Gl Bl with

Gk ∈
{

G(zk),G(zk)
∗,�G(zk), |G(zk)| , (G(zk))

t , (G(zk)
∗)t , (�G(zk))

t , |G(zk)|t
}

,

i.e. including factors of the form |G| = √
G∗G = √

GG∗. Within the proof we will
repeatedly use (98) which implies o(e) ≤ l(e) for e ∈ E red,cyc

g and o(e) ≤ l(e) − 1 for

e ∈ E red
g \ E red,cyc

g . We prove (104a) by distinguishing several cases depending on the
parameters o(e) and l(e) and a new parameter c(e) counting the number of alternating
chains associated with e defined as follows. For any e ∈ E red

g we consider the original
chain or cycle in Γ that was reduced to e. The alternating chains associated with e
are the maximal subchains of these original chain/cycle with internal vertices from Vo
and at least one Vo-vertex. For example, if e ∈ E red

g was the reduction of the cycle
〈(GA)(�GA)(BG∗)(G)(AG∗)(�G)t 〉 then the alternating chains associated with e are
(GA)(�GA) and (G)(AG∗)(�G)t . By maximality, o(e), the number of Vo-vertices in
the original chain/cycle that has been reduced to e is equal to the total number of Vo
vertices in the alternating chains associated with e. In particular, c(e) ≤ o(e).

Averaged bound for o(e) = 0 In the case without alternating chains, i.e. for o(e) = 0
we simply split off any G-factor by Cauchy-Schwarz and obtain

|〈G1B1G2B · · ·Gl Bl〉| ≤
√

〈G1 |B1|2 G∗
1〉〈G2B2 · · ·Gl |Bl |2 G∗

l · · · B∗
2G

∗
2〉

≺ ρ

ηl−1 ≤ ρl N l−1K 1−l .

Here, and frequently in the remaining proof we use the norm bounds ‖G‖ � 1/η,
‖Bk‖ � 1, and the Ward identity G(z)G(z)∗ = �G(z)/�z.

Averaged bound for a(e) = l(e) For Ge = G1B1G2B2 · · ·Gl Bl we use spectral de-
composition to write

〈Ge〉 = N−1
∑

a1...al

〈u(1)
a1 , B1u(2)

a2 〉 · · · 〈u(l)
al , Blu(1)

a1 〉p(1)
a1 · · · p(l)

al ,

where p(k)
a = (λa−zk)−1, (λa−zk)−1,�(λa−zk)−1, |λa − zk |−1 depending onwhether

Gk = G,G∗,�G, |G|, and u(k)
a ∈ {ua, ua}, depending on whether Gk is transposed

or not. By additional averaging using the analogue of (40), Cauchy-Schwarz and the
high-probability bounds

∑

a

1

|λa − z| � N log N ,
∑

a

∣
∣
∣
∣
� 1

λa − z

∣
∣
∣
∣
� ρ(z)N , (107)
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from rigidity (34) it follows that
∣
∣〈Ge〉∣∣ � 1

N

∑

ak∈[N ]
k∈[l]

∣
∣
∣p(1)

a1

∣
∣
∣ · · ·

∣
∣
∣p(l)

al

∣
∣
∣
1

Ll

∑

|bk−ak |≤L
k∈[l]

∣
∣
∣〈u(1)

b1
, B1u

(2)
b2

〉
∣
∣
∣ · · ·

∣
∣
∣〈u(l)

bl
, Blu

(1)
b1
〉
∣
∣
∣

� 1

N

∑

ak∈[N ]
k∈[l]

∣
∣
∣p(1)

a1

∣
∣
∣ · · ·

∣
∣
∣p(l)

al

∣
∣
∣

√
√
√
√

1

L2

∑

|a1−b1|≤L

∑

|a2−b2|<L

∣
∣
∣〈u(1)

b1
, B1u

(2)
b2

〉
∣
∣
∣

2 · · ·

×
√
√
√
√

1

L2

∑

|al−bl |≤L

∑

|a1−b1|<L

∣
∣
∣〈u(l)

bl
, Blu

(1)
b1
〉
∣
∣
∣

2

≺ Λa
+Π

t
+ρ

i N l/2−1, (108)

where log N factors have been incorporated into the≺ notation in the ultimate inequality.

Averaged bound for o(e) = 1 By cyclicity we may assume Ge = G1B1G2Bl · · ·Gl Bl
is such that the index between G1B1 and G2B2 is the asymptotic orthogonality index
and estimate

|〈G1B1G2B2 · · ·Gl Bl〉| ≤
√

〈G1B1G2G∗
2B

∗
1G

∗
1〉〈B2G3 · · ·Gl |Bl |2 G∗

l · · ·G∗
3B

∗
2 〉

≺ η−1Λ+ρN
l−5/2ρl−2K 5/2−l ≤ Λ+ρ

l N l−3/2K 3/2−l ,

from the o(e) = 0 and o(e) = l(e) cases, and using the Ward identity.

Averaged bound for 2 ≤ o(e) < l(e) and c(e) = 1 For this case we may assume by
cyclicity that

Ge = G1B1 · · ·GoBoGo+1Bo+1 · · ·Gl Bl

such that the summations between G1 and Go correspond to orthogonality indices. Here
we make use of the inequality

|〈XY Z〉| ≤
[

〈X∗X (YY ∗)1/2〉〈Z Z∗(Y ∗Y )1/2〉
]1/2

(109)

for arbitrary matrices X,Y, Z which follows from singular value decomposition of Y =
USV ∗ and Cauchy-Schwarz in the form

|〈XY Z〉|2 =
∣
∣
∣〈XU

√
S
√
SV ∗Z〉

∣
∣
∣

2

≤ 〈XUSU∗X∗〉〈Z∗V SV ∗Z〉 = 〈X∗X (YY ∗)1/2〉〈Z Z∗(Y ∗Y )1/2〉.
By (109) with X = G1B1,Y = G2, Z = B2G3 · · · BoGo+1Bo+1 · · ·Gl Bl we obtain

|〈G1B1 · · ·GoBoGo+1 · · ·Gl Bl〉|
≤

√

〈B∗
1G

∗
1G1B1 |G2|〉〈|G2|1/2 B2G3 · · ·Gl |Bl |2 G∗

l · · ·G∗
3B

∗
2 |G2|1/2〉

� 1

ηl−o

[

〈B∗
1�G1B1 |G2|〉〈|G2| B2G3 · · · Bo�Go+1B

∗
o · · ·G∗

3B
∗
2 〉

]1/2

≺ Λa
+Π

t
+ρ

l−o+1+i2...o Nl−o/2−1Ko−l ,

where i2···o is the number of �G’s among G2, . . .Go, and we used the previously con-
sidered o(e) = l(e) case in the last step.
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Averaged bound for 2 ≤ o(e) < l(e) and c(e) ≥ 2 For at least two alternating chains,
c(e) ≥ 2, we may write by cyclicity 〈Ge〉 = 〈Ge1 · · ·Gec(e)〉 for

Ge j = G j,1Bj,1G j,2 · · · Bj,o j G j,o j+1Bj,o j+1 · · ·G j,l j B j,l j ,

for some 1 ≤ o j ≤ l j − 1 such for each Ge j the first o j internal summation indices are
orthogonality indices. By Cauchy-Schwarz it follows that

∣
∣〈Ge〉∣∣ ≤ 1

N

√
∏

j∈[c(e)]
Tr Ge j (Ge j )∗

� 1

N

∏

j∈[c(e)]

1

ηl j−o j

√

Tr �G j,1Bj,1 · · ·G j,o j B j,o j�G j,o j+1B
∗
j,o j

G∗
j,o j

· · · B∗
j,1

≺ 1

N

∏

j∈[c(e)]

Noj /2ρi j+1

ηl j−o j
Λ

a j
+ Π

t j
+

≤ Λ

∑

j a j
+ Π

∑

j t j
+ ρ

∑

j (l j−o j+i j+1)N
∑

j (l j−o j /2)−1K
∑

j (o j−l j ), (110)

where i j denotes the number of�G’s amongG j,2, . . . ,G j,o j , andweused the previously
discussed o(e) = l(e) case in the third inequality. This concludes the proof of (104a).

Isotropic bound for o(e) = l(e)− 1 The claimed bound is trivial if l(e) = 1 (and hence
o(e) = 0). Otherwise for l(e) ≥ 2 we estimate
∣
∣〈v,Gew〉∣∣
= |〈v,G1B1G2B2 · · · Bl−1Gl ,w〉|
�

∑

ak∈[N ]
k∈[l]

∣
∣
∣p(1)

a1

∣
∣
∣ · · ·

∣
∣
∣p(l)

al

∣
∣
∣

∣
∣
∣〈v, u(1)

a1 〉
∣
∣
∣

∣
∣
∣〈u(1)

a1 , B1u(2)
a2 〉

∣
∣
∣ · · ·

∣
∣
∣〈u(l−1)

al−1
, Bl−1u(l)

al 〉
∣
∣
∣

∣
∣
∣〈u(l)

al ,w〉
∣
∣
∣

≺ 1

N

∑

ak∈[N ]
k∈[l]

∣
∣
∣p(1)

a1

∣
∣
∣ · · ·

∣
∣
∣p(l)

al

∣
∣
∣
1

Ll

∑

|bk−ak |≤L
k∈[l]

∣
∣
∣〈u(1)

b1
, B1u

(2)
b2
〉
∣
∣
∣ · · ·

∣
∣
∣〈u(l−1)

bl−1
, Bl−1u

(l)
bl
〉
∣
∣
∣

≺ Λa
+Π

t
+ρ

i N l/2−1/2,

using delocalisation |〈ua, v〉|+ |〈ua, v〉| ≺ N−1/2 for any deterministic v with ‖v‖ � 1,
by the isotropic law in (12), in the second inequality.

Isotropic bound for o(e) ≤ l(e) − 2 We decompose Ge = Ge1 · · ·Gek such that each
of Ge2 , . . . ,Gek−1 begins with a new alternating chain followed (potentially) by further
G’s, Ge1 either begins with an alternating chain, or is a chain without orthogonality
indices, and Gek is either an alternating chain or a chain without orthogonality indices.
For example, by brackets denoting the decomposition, we would separate

〈v, (GB1G
∗B2(�G)t B3)(GB4G

t B5)(G
∗B6)w〉

if the indices associated with B1, B2, B4 are orthogonality indices, and estimate
∣
∣〈v,Gew〉∣∣

≤
[

〈v,Ge1(Ge1)∗v〉(Tr Ge2(Ge2)∗) · · · (Tr Gek−1(Gek−1)∗)〈w, (Gek )∗Gekw〉
]1/2

.
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For the two isotropic factors of length l j with o j orthogonality indices and i j many �G’s
we claim that

∣
∣〈v,Ge j (Ge j )∗v〉∣∣ ≺ N 2l j−o j−1ρ2i j∨2(l j−o j )Λ

2a j
+ Π

2t j
+

K 2(l j−o j )−1
(111)

which follows from
∣
∣〈v,G1B1 · · ·GoBoGo+1Bo+1 · · ·GlG

∗
l · · · B∗

o+1G
∗
o+1B

∗
oGo · · · B∗

1G
∗
1v〉

∣
∣

�
∣
∣〈v,G1B1 · · ·GoBo�Go+1B∗

oGo · · · B∗
1G

∗
1v〉

∣
∣

η2(l−o)−1

≺ N 2l−o−1ρ2i1···o+2(l−o)Λ2a
+ Π2t

+

K 2(l−o)−1
,

where i1···o is the number of �G’s among G1, . . . ,Go. For the tracial factors we have,
as in (110), that

Tr Ge j (Ge j )∗ ≺ N 2l j−o j ρ2i j∨2(l j−o j )Λ
2a j
+ Π

2t j
+

K 2(l j−o j )
. (112)

By combining (111)–(112) we obtain

∣
∣〈v,Gew〉∣∣ ≺ K

N

∏

j∈[k]

Nl j−o j /2ρi j∨(l j−o j )Λ
a j
+ Π

t j
+

Kl j−o j

= Λa
+Π

t
+ρ

i∨(l−o)Nl−o/2−1Ko−l+1,

completing the proof of (104b) also in this case. ��

5.2.3. Improveddegree three estimate:Proof of Lemma4 Theproof ofLemma4consists
of identifying improvements over the estimate given in Lemma 3 that relied solely on
entrywise bounds for each individual G-factor. In order to quantify the improvement we
distinguish the two different entrywise bounds in Lemma 3 as

|Val(Γred)| ≺ Ii2-Est(Γ ) ∧ I02-Est(Γ ), (113)

where Ii2-Est, I
0
2-Est are defined as in (101) but with Ii2-Est having ρ-exponent 2i p,

and I02-Est having ρ-exponent |Vi| + 2
∣
∣E2

κ

∣
∣ − |Vo|. Note that ρ � 1 and therefore the

maximum in the exponent of ρ in (101) corresponds to the minimum of Ii2-Est, I
0
2-Est.

Within the reducedgraphswecall a subset EWard ⊂ E red
g \(E red,cyc

g ∪
{

(vv)

∣
∣
∣v ∈ V≥3

κ

}

)

Wardable if each subgraph Γ ′ ⊂ (Ve ∪ V≥3
κ , EWard) satisfies min

{

dΓ ′
g (v)

∣
∣
∣v ∈ V≥3

κ

}

≤
2. The contribution of these Wardable edges will be estimated better than their trivial
entrywise bound to obtain I3-Est. We start with a simple alternative characterization of
Wardable subsets (see [27, Lemma 4.5] and [31,41]).

Lemma 6. A subset EWard is Wardable if and only if there exists an ordering V≥3
κ =

{v1, v2, . . .} such that the sequence of graphsΓ0 := (Ve∪V≥3
κ , EWard),Γk := Γk−1\{vk}

satisfies dΓk−1
g (vk) ≤ 2 for each k ≥ 1, where it is understood that Γk is obtained from

Γk−1 by removing vk and all adjacent edges.
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Proof. Suppose that EWard isWardable. Thenbydefinition there existsv1 withd
Γ0
g (v1) ≤

2 and we obtain Γ1 which in turn contains some vertex v2 with d
Γ1
g (v2) ≤ 2. Continuing

inductively yields the desired ordering.
For the reverse implication let v1, v2, . . . be the given ordering and letΓ ′ be arbitrary.

Set kmin := min
{

k
∣
∣
∣vk ∈ Γ ′

}

so that Γ ′ ⊂ Γkmin−1 and consequently dΓ ′
g (vkmin) ≤

d
Γkmin−1
g (vkmin) ≤ 2. ��
Lemma 4 follows immediately from combining the following two statements (where

for the iso-graphs we simply estimate ρ|EWard| ≤ ρ
∣
∣E3

κ

∣
∣
in the definition of I3-Est(Γ )

below):

(S1) For each av-graph Γ the reduced graph Γred admits a Wardable set EWard of size

|EWard| ≥
∣
∣
∣E3

κ

∣
∣
∣ . (114a)

and for each iso-graph Γ satisfying the reduced graph Γred admits a Wardable set
of size

|EWard| ≥
∣
∣
∣E3

κ

∣
∣
∣ +

(

2p − 2(
∣
∣
∣E2

κ

∣
∣
∣− ∣

∣Vcyc
∣
∣) −

∑

e∈Eκ

(dg(e) − 4)+
)

+
. (114b)

(S2) For any av- or iso-graph Γ ∈ G and a given Wardable set EWard we have the
improved estimates

|Val(Γred)| ≺ Ii3-Est(Γ ) ∧ I03-Est(Γ )

with

Ii3-Est(Γ ) : = K−|EWard|/2 Ii2-Est(Γ ),

I03-Est(Γ ) : = ρ|EWard|K−|EWard|/2 I02-Est(Γ ).

Proof. (Step (S1)) We start with two inequalities that will be proven later. Denoting the
number of E red

g -edges between two subsets of vertices V ′, V ′′ ⊂ V by eg(V ′, V ′′), we
claim that for av-/iso graphs Γ we have

eg(V
3
κ , Ve) + eg(V

3
κ , V≥3

κ ) ≥ 3
∣
∣
∣E3

κ

∣
∣
∣ , (115a)

while for iso-graphs Γ we also have

eg(V
≥3
κ , Ve) + eg(V

≥3
κ , V≥3

κ ) ≥
∑

e∈E≥3
κ

dg(e) + 2p − 2(
∣
∣
∣E2

κ

∣
∣
∣− ∣

∣Vcyc
∣
∣). (115b)

Armed with these inequalities, we first construct candidate sets of edges within E red
g \

E red,cyc
g which are not necessarily Wardable, and then iteratively remove certain edges

to make the sets Wardable. For the proof of |EWard| ≥
∣
∣E3

κ

∣
∣ for both av- and iso-graphs

we start with the candidate set consisting of all G-edges adjacent to V 3
κ -vertices. The

size of this set is eg(V 3
κ , Ve) + eg(V 3

κ , V≥3
κ ). We remove at most one edge adjacent

to any v ∈ V 3
κ , so that the at most two remaining edges are not loops. After doing

so in arbitrary order for all V 3
κ -vertices we obtain an edge set which is Wardable by
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construction. Since the total number of removed edges is at most
∣
∣V 3

κ

∣
∣ = 2

∣
∣E3

κ

∣
∣, we

immediately obtain (114a), and (114b) in case (. . .)+ = 0 from (115a).
For the proof of (114b) in case (. . .)+ > 0 we consider a larger candidate set of size

eg(V≥3
κ , Ve) + eg(V≥3

κ , V≥3
κ ) that consists of all edges adjacent to V≥3

κ -vertices. Going
through all V≥3

κ -vertices in arbitrary order we remove at most k − 2 edges for each
vertex v ∈ V k

κ , so that the at most two remaining edges are not loops; this yields again
a Wardable set. Since

∣
∣V k

κ

∣
∣ = 2

∣
∣Ek

κ

∣
∣, the total number of removed edges is at most

∑

k≥3

∑

e∈Ek
κ

2(k − 2) =
∑

e∈E≥3
κ

(2dg(e) − 4) =
∑

e∈E≥3
κ

dg(e) +
∑

e∈Eκ

(dg(e) − 4)+ −
∣
∣
∣E3

κ

∣
∣
∣ ,

which, togetherwith (115b) yields (114b). This completes the proof of (S1)modulo (115)
that we prove now. ��
Proof. (Eq. (115)) The bound (115a) follows from

6
∣
∣
∣E3

κ

∣
∣
∣ = 2

∑

(uv)∈E3
κ

dg((uv)) =
∑

v∈V 3
κ

dg(v)

= 2eg(V
3
κ , V 3

κ ) + eg(V
3
κ , V≥4

κ ∪ Ve) ≤ 2eg(V
3
κ , V≥3

κ ∪ Ve).

For the bound (115b) we note that the set E red
g \ E red,cyc

g can be partitioned into edges
within V≥3

κ , edges within Ve and edges between these two sets, and thus from (P3)–
(P iso10) and (99) we obtain

eg(V
≥3
κ , Ve) + eg(V

≥3
κ , V≥3

κ )

=
∣
∣
∣E red

g \ E red,cyc
g

∣
∣
∣− eg(Ve, Ve) =

∣
∣
∣E red

g

∣
∣
∣− ∣

∣Vcyc
∣
∣− eg(Ve, Ve)

=
∑

e∈E≥3
κ

dg(e) + 2p − eg(Ve, Ve).

Furthermore, by (P iso9) each Ve-Ve edge corresponds to at least one V 2
κ -vertex, while

by (P5) each cycle E red,cyc
g corresponds to at least two V 2

κ -vertices in Γ (which are in
particular not part of any chain), whence

eg(Ve, Ve) ≤
∣
∣
∣V 2

κ

∣
∣
∣− 2

∣
∣Vcyc

∣
∣ = 2(

∣
∣
∣E2

κ

∣
∣
∣− ∣

∣Vcyc
∣
∣)

and the claim follows. ��
Proof. (Claim 5.2.3) We recall from the proof of Lemma 3 that (101) is the minimum of
two different estimates given in (113). Estimating each Ge for e ∈ E red

g by Lemma 5with
a ρ-exponent of i(e) in (96) yields the first bound |Val(Γred)| ≺ Ii2-Est(Γ ). Similarly,

estimating each Ge by Lemma 5with a ρ-exponent of l(e)−o(e)−1(e ∈ E red
g \E red,cyc

g )

yields the second bound |Val(Γred)| ≺ I02-Est(Γ ), cf. the first inequality in (106). In order

to prove 5.2.3 for a given Wardable set EWard we estimate Ge for e ∈ E red,cyc
g ∪ (E red

g \
(E red,cyc

g ∪EWard)) exactly as in Lemma 3 and remove the corresponding edges from the
graph, leaving only EWard-edges. In order to conclude the proof it remains to establish
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an additional gain of K−1/2 (compared to the first bound) and ρK−1/2 (compared to the
second bound) per EWard-edge e compared to the entrywise estimates.

Let v1, v2, . . . denote the ordering of V≥3
κ guaranteed to exist by Lemma 6. By

definition of EWard at most two Wardable edges are adjacent to v1 and whence the part
of the value depending on av1 can be estimated by either

∑

av1

∣
∣
∣G(wv)

xwav1

∣
∣
∣ ≤ N 1/2

√

[G(wv1)(G(wv1))∗]xwxx (116)

or

∑

av1

∣
∣
∣G(wv1)

xwav1

∣
∣
∣

∣
∣
∣G(v1y)

av1 x y

∣
∣
∣ ≤

√

[G(wv1)(G(wv1))∗]xwxw

√

[(G(v1y))∗G(yv1)]x yx y (117)

using Cauchy-Schwarz for some w, y ∈ V≥3
κ ∪ Ve. In case of Ii2-Est the entrywise

estimate on the lhs. of (116)–(117) used in the proof of Lemma 3 is at least

Λa
+Π

t
+ρ

i N l−o/2Ko−l+1 and Λa+a′
+ Π t+t ′

+ ρi+i ′Nl+l ′−o/2−o′/2−1Ko+o′−l−l ′+2

with i = i((wv1)), l = l((wv1)), a = a((wv1)), t = t ((wv1)), o = t + a and
i ′ = i((v1y)), l ′ = l((v1y)), a′ = a((v1y)), t ′ = t ((v1y)), o′ = t ′ + a′ while applying
Lemma 5 to the rhs. yields

Λa
+Π

t
+ρ

i N l−o/2Ko−l+1/2 and Λa+a′
+ Π t+t ′

+ ρi+i ′Nl+l ′−o/2−o′/2−1Ko+o′−l−l ′+1,

demonstrating the gains of at least K−1/2 and (K−1/2)2, respectively. Similarly, the
I02-Est-estimate on the lhs. of (116)–(117) is at least

Λa
+Π

t
+ρ

l−o−1Nl−o/2Ko−l+1

and

Λo+o′
+ ρl+l ′−o−o′−2Nl+l ′−o/2−o′/2−1Ko+o′−l−l ′+2

while, in comparison, when applying Lemma 5 to the rhs. of (116)–(117), we obtain
bounds of

Λa
+Π

t
+ρ

l−oNl−o/2Ko−l+1/2 and Λo+o′
+ ρl+l ′−o−o′Nl+l ′−o/2−o′/2−1Ko+o′−l−l ′+1,

demonstrating exactly the claimed gain of ρK−1/2 per edge. Here, for example, we
counted that G(wv1)(G(wv1))∗ contains 2l factors of G and 2o orthogonality indices
satisfying 2o ≤ 2l − 2 < 2l − 1.

The proof now follows by induction since by Lemma 6 after the removal of v1, the
next vertex v2 has degree at most 2 etc. and (116)–(117) can be used to establish the
gain of (ρ)K−1/2 iteratively for each e ∈ EWard. ��
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17. Cipolloni, G., Erdős, L., Schröder, D.: Central limit theorem for linear eigenvalue statistics of non-
Hermitian random matrices. Commun. Pure Appl. Math. (to appear). arXiv:1912.04100
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