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Abstract
Westudy the problemof recovering an unknown signal x givenmeasurements obtained
from a generalized linear model with a Gaussian sensing matrix. Two popular solu-
tions are based on a linear estimator x̂L and a spectral estimator x̂s. The former is
a data-dependent linear combination of the columns of the measurement matrix, and
its analysis is quite simple. The latter is the principal eigenvector of a data-dependent
matrix, and a recent line of work has studied its performance. In this paper, we show
how to optimally combine x̂L and x̂s. At the heart of our analysis is the exact character-
ization of the empirical joint distribution of (x, x̂L, x̂s) in the high-dimensional limit.
This allows us to compute the Bayes-optimal combination of x̂L and x̂s, given the
limiting distribution of the signal x. When the distribution of the signal is Gaussian,
then the Bayes-optimal combination has the form θ x̂L + x̂s and we derive the optimal
combination coefficient. In order to establish the limiting distribution of (x, x̂L, x̂s),
we design and analyze an approximate message passing algorithm whose iterates
give x̂L and approach x̂s. Numerical simulations demonstrate the improvement of the
proposed combination with respect to the two methods considered separately.
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1 Introduction

In a generalized linear model (GLM) [36,39], we want to recover a d-dimensional
signal x ∈ R

d given n i.i.d. measurements y = (y1, . . . , yn) of the form:

yi ∼ p(y | 〈x, ai 〉), i ∈ {1, . . . , n}, (1)

where 〈·, ·〉 denotes the scalar product, {ai }1≤i≤n are known sensing vectors, and the
(stochastic) output function p(· | 〈x, ai 〉) is a known probability distribution. GLMs
arise in several problems in statistical inference and signal processing. Examples
include photon-limited imaging [53,58], compressed sensing [19], signal recovery
from quantized measurements [7,46], phase retrieval [21,49], and neural networks
with one hidden layer [30].

The problem of estimating x from y is, in general, non-convex, and semi-definite
programming relaxations have been proposed [9,11,52,56]. However, the computa-
tional complexity and memory requirement of these approaches quickly grow with
the dimension d. For this reason, several non-convex approaches have been developed,
e.g., alternating minimization [40], approximate message passing (AMP) [15,44,48],
Wirtinger Flow [10], Kaczmarz methods [57], and iterative convex-programming
relaxations [1,7,14,25]. The Bayes-optimal estimation and generalization error have
also been studied in [3]. When the output function p(· | 〈x, ai 〉) is unknown, (1) is
called the single-index model in the statistics literature, see e.g., [8,28,33]. The prob-
lem of recovering a structured signal (e.g., sparse, low-rank) from high-dimensional
single-index measurements has been an active research topic over the past few years
[22–24,41–43,51,52,59].

Throughout this paper, the performance of an estimator x̂ will be measured by its
normalized correlation (or “overlap") with x:

∣
∣〈x, x̂〉∣∣

‖x‖2‖x̂‖2 , (2)

where ‖ · ‖2 denotes the Euclidean norm of a vector.
Most of the existing techniques require an initial estimate of the signal, which can

then be refined via a local algorithm. Here, we focus on two popular methods: a linear
estimator and a spectral estimator. The linear estimator x̂L has the form:

1

n

n
∑

i=1

TL(yi )ai , (3)

where TL denotes a given preprocessing function. The performance analysis of this
estimator is quite simple, see e.g., Proposition 1 in [43] or Sect. 2.3 of this paper. The
spectral estimator consists in the principal eigenvector x̂s of a matrix of the form:

1

n

n
∑

i=1

Ts(yi )ai aTi , (4)
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whereTs is another preprocessing function. The idea of a spectralmethodfirst appeared
in [32] and, for the special case of phase retrieval, a series of works has provided more
andmore refined performance bounds [11,12,40]. Recently, an exact high-dimensional
analysis of the spectral method for generalized linear models with Gaussian sensing
vectors has been carried out in [34,37]. These works consider a regime where both n
and d grow large at a fixed proportional rate δ = n/d > 0. The choice of Ts which
minimizes the value of δ (and, consequently, the amount of data) necessary to achieve
a strictly positive scalar product (2) was obtained in [37]. Furthermore, the choice of Ts
whichmaximizes the correlation between x and x̂s for any given value of the sampling
ratio δ was obtained in [35]. The case in which the sensing vectors are obtained by
picking columns from a Haar matrix is tackled in [16].

In short, the performanceof the linear estimate x̂L and the spectral estimate x̂s iswell
understood, and there is no clear winner between the two. In fact, the superiority of one
methodover the other depends on the output function p(· | 〈x, ai 〉) andon the sampling
ratio δ. For example, for phase retrieval (yi = |〈x, ai 〉|), the spectral estimate provides
positive correlation with the ground-truth signal as long as δ > 1/2 [37], while linear
estimators of the form (3) are not effective for any δ > 0. On the contrary, for 1-
bit compressed sensing (yi = sign(〈x, ai 〉)) the situation is the opposite: the spectral
estimator is uncorrelated with the signal for any δ > 0, while the linear estimate works
well. For many cases of practical interest, e.g., neural networks with ReLU activation
function (yi = max(〈x, ai 〉, 0)), both the linear and the spectral method give estimator
with non-zero correlation. Thus, a natural question is the following:

What is the optimal way to combine the linear estimator x̂L and the spectral
estimator x̂s?

This paper closes the gap and answers the question above for Gaussian sensing vec-
tors {ai }1≤i≤n . Ourmain technical contribution is to provide an exact high-dimensional
characterization of the joint empirical distribution of (x, x̂L, x̂s) in the limit n, d → ∞
with a fixed sampling ratio δ = n/d (see Theorem 1). In particular, we prove that the
conditional distribution of (x̂L, x̂s) given x converges to the lawof a bivariateGaussian
whose mean vector and covariance matrix are specified in terms of the preprocessing
functions TL and Ts . As a consequence, we are able to compute the Bayes-optimal
combination of x̂L and x̂s for any given prior distribution on x (see Theorem 2). In the
special case in which the signal prior is Gaussian, the Bayes-optimal combination has
the form θ x̂L + x̂s, with θ ∈ R, and we compute the optimal combination coefficient
θ∗ that maximizes the normalized correlation in (2) (see Corollary 2).

The characterization of the joint empirical distribution of (x, x̂L, x̂s) is achieved
by designing and analyzing a suitable approximate message passing (AMP) algo-
rithm. AMP is a family of iterative algorithms that has been applied to several
high-dimensional statistical estimation problems including estimation in linear mod-
els [4,5,15,29], generalized linear models [44,48,50], and low-rank matrix estimation
[13,31,38,45]. An appealing feature of AMP algorithms is that under suitable con-
ditions on the model, the empirical joint distribution of the iterates can be exactly
characterized in the high-dimensional limit, in terms of a simple scalar recursion
called state evolution.
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(a) (b) (c)

Fig. 1 a Performance comparison among the linear estimator, the spectral estimator and the proposed opti-
mal combination for a specific output function and ranging values of the sampling ratio δ. The performance
is measured in terms of the normalized correlation (2). b Optimal combination coefficient θ∗ as a function
of δ for the same output function as in a. c Percentage performance gain of the combined estimator for
different output functions and sampling ratios

In this paper, we design an AMP algorithm that is equivalent to a power method
computing the principal eigenvector of thematrix (4). Then, the state evolution analysis
leads to the desired joint empirical distribution of (x, x̂L, x̂s). Using the limiting
distribution, we reduce the vector problem of estimating x ∈ R

d given two (correlated)
observations x̂L, x̂s ∈ R

d to the scalar problem of estimating the random variable
X ∈ R given two (correlated) observations XL , Xs ∈ R. We emphasize that the focus
of thiswork is not on using theAMPalgorithmas an estimator for the generalized linear
model. Rather, we use AMP as a proof technique to characterize the joint empirical
distribution of (x, x̂L, x̂s), and thereby understand how to optimally combine the two
simple estimators.

Our proposed combination of the linear and spectral estimators can significantly
boost the correlation with the ground-truth signal (2). As an illustration, in Fig. 1a we
compare against each other the correlations ρL , ρs and ρ∗ of the linear, spectral and
optimal combined estimators, respectively, for a range of values of the sampling ratio
δ = n/d andmeasurements of the form yi = 0.3 〈x, ai 〉+〈x, ai 〉2+zi . Here, x is uni-
formly distributed on the d-dimensional sphere of radius

√
d, ai ∼i .i .d. N (0d , Id/d),

zi ∼i .i .d. N (0, 0.2), and the preprocessing functions are chosen as follows:TL (y) = y
and Ts(y) = min{y, 3.5}. The solid lines correspond to analytically derived asymp-
totic formulae, and they are compared against numerical simulations (cf. markers of
the corresponding color) computed for d = 2000. Specifically, the red line corre-
sponds to the optimal combined estimator θ∗ x̂L + x̂s (in this example, the empirical
distribution of x is Gaussian). The optimal combination coefficient θ∗ is plotted in
Fig. 1b as a function of δ. Note that for values of δ for which the spectral estimator
achieves strictly positive correlation with x, the combined estimator provides a signif-
icant performance improvement. The performance gain depends on: (i) the sampling
ratio δ (it can be as large as ∼ 30% for δ ≈ 8), and (ii) the output function that defines
themeasurement. To better visualize this dependence, we plot in Fig. 1c the percentage
gain (ρ∗ − ρmax)/ρmax × 100 for various values of δ and for different output-function
parameterizations. Specifically, the x-axis in Fig. 1c represents the value of the coef-
ficient H1 of an output function of the form yi = 0.5+ H1 〈x, ai 〉+ 0.5 〈x, ai 〉2 + zi ,
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with zi ∼i .i .d. N (0, 0.2). Above, ρ∗ denotes the correlation achieved by our pro-
posed estimator, and ρmax is the maximum correlation among the linear and spectral
estimators.

The rest of the paper is organized as follows. In Sect. 2, we describe the setting and
review existing results on the linear and the spectral estimator. In Sect. 3,we present our
contributions. Themain technical result, Theorem 1, gives an exact characterization of
the joint empirical distribution of (x, x̂L, x̂s). Using this, we derive the Bayes-optimal
combination of the estimators x̂L and x̂s. In the special case in which the signal prior
is Gaussian, the Bayes-optimal combination is linear in x̂L and x̂s, and we derive the
optimal coefficient. In Sect. 4, we demonstrate the effectiveness of our method via
numerical simulation. In Sect. 5, we describe the generalized AMP algorithm and use
it to prove Theorem 1.

2 Preliminaries

2.1 Notation and Definitions

Given n ∈ N, we use the shorthand [n] = {1, . . . , n}. Given a vector x, we denote by
‖x‖2 its Euclidean norm. Given a matrix A, we denote by ‖A‖op its operator norm.

The empirical distribution of a vector x = (x1, . . . , xd)T is given by 1
d

∑d
i=1 δxi ,

where δxi denotes a Dirac delta mass on xi . Similarly, the empirical joint distribution
of vectors x, x′ ∈ R

d is 1
d

∑d
i=1 δ(xi ,x ′

i )
.

Given two probabilitymeasuresμ (on a spaceX ) and ν (on a spaceY), a coupling ρ

ofμ and ν is a probability distribution onX ×Y whose marginals coincide withμ and
ν, respectively. For k ≥ 1, the Wasserstein-k (Wk) distance between two probability
measures μ, ν on R

n is defined by

Wk(μ, ν) ≡ inf
ρ
E(X,Y)∼ρ

{‖X − Y‖k2}1/k , (5)

where the infimum is over all the couplings of μ and ν. A sequence of probability

distributions νn on R
m converges in Wk to ν, written νn

Wk⇒ ν, if Wk(νn, ν) → 0 as
n → ∞.

2.2 Generalized Linear Model

Let x ∈ R
d be the signal of interest. We assume that ‖x‖22 = d. The signal is

observed via inner products with n sensing vectors (ai )i∈[n], with each ai ∈ R
d

having independent Gaussian entries with mean zero and variance 1/d. That is,

(ai ) ∼i .i .d. N (0d , Id/d). (6)

Given gi = 〈x, ai 〉, the measurement vector y ∈ R
n is obtained by drawing each

component independently according to a conditional distribution pY |G
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yi ∼ pY |G(yi | gi ), i ∈ [n]. (7)

We stack the measurement vectors as rows to define the n × d sensing matrix A. That
is,

A = [a1, . . . , an]T . (8)

We write δn = n
d for the sampling ratio and assume that δn → δ ∈ (0,∞). Since the

entries of the sensing matrix are ∼i .i .d. N (0, 1/d), each row of A has norm close to 1.

2.3 Linear Estimator

Given the measurements (yi )i∈[n] and a preprocessing function TL : R → R, define
the n × 1 vector

zL = [TL(y1), . . . , TL(yn)]T . (9)

Consider the following linear estimator that averages the data as follows:

x̂L :=
√
d

n
AT zL =

√
d

n

n
∑

i=1

TL(yi )ai . (10)

The following lemma characterizes the asymptotic performance of this simple
estimator. The proof is rather straightforward, and we include it in Appendix A for
completeness.

Lemma 1 Let x be such that ‖x‖22 = d, {ai }1≤i≤n ∼i .i .d. N (0d , Id/d), and y be
distributed according to (7). Let n/d → δ, G ∼ N (0, 1) and define ZL = TL(Y ) for
Y ∼ pY |G( · |G) such that E{|GZL |} < ∞. Let x̂L be the linear estimator defined as
in (10). Then, as n → ∞,

‖x̂L‖22 a.s.−→ (E {GZL})2 + E{Z2
L}

δ
, and

〈x̂L, x〉
‖x̂L‖2 ‖x‖2

a.s.−→ E {GZL}
√

(E {GZL})2 + E
{

Z2
L

}/

δ

. (11)

2.4 Spectral Estimator

Given the measurements (yi )i∈[n], consider the n × n diagonal matrix

Zs = diag(Ts(y1), . . . , Ts(yn)), (12)

where Ts : R → R is a preprocessing function. Consider the d × d matrix

Dn = AT Zs A. (13)

Let G ∼ N (0, 1), Y ∼ p(· | G), and Zs = Ts(Y ). We will make the following
assumptions on Zs .
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(A1) P(Zs = 0) < 1.
(A2) Zs has bounded support and τ is the supremum of this support, i.e.,

τ = inf{z : P(Zs ≤ z) = 1}. (14)

(A3) As λ approaches τ from the right, we have

lim
λ→τ+ E

{
Zs

(λ − Zs)2

}

= lim
λ→τ+ E

{
Zs · G2

λ − Zs

}

= ∞. (15)

Let us comment on these assumptions. First, the condition (A1) simply avoids the
degenerate case in which the measurement vector, after passing through the prepro-
cessing function, is 0with high probability. Second, the condition (A2) requires that the
support of Zs is bounded both from above and below. This assumption appears in the
papers that have recently analyzed the performance of spectral estimators [34,35,37],
and it is also required for Lemma 2. Requiring that the support of Zs is bounded from
above is rather natural, since the argument relies on the matrix Dn having a spectral
gap. It is not clear whether having the support of Zs bounded from both sides (rather
than only from above) is necessary, and investigating this aspect is an interesting
avenue for future research. Let us also point out that the condition (A2) is purely tech-
nical and rather mild. In fact, if the desired preprocessing function is not bounded,1

then one can construct a sequence of bounded approximations that approach its per-
formance, as done, e.g., in [35]. Finally, the condition (A3) essentially requires that
Zs has sufficient probability mass near the supremum of the support τ . One sufficient
condition is that the law of Zs has a point mass at τ . If this is not the case, the argument
in (115)–(118) of [37] shows how to modify the preprocessing function Ts so that (i)
condition (A3) holds, and (ii) the spectral estimator suffers no performance loss.

For λ ∈ (τ,∞) and δ ∈ (0,∞), define

φ(λ) = λ · E
{
Zs · G2

λ − Zs

}

, (16)

and

ψδ(λ) = λ

(
1

δ
+ E

{
Zs

λ − Zs

})

. (17)

Note that φ(λ) is a monotone non-increasing function and that ψδ(λ) is a convex
function. Let λ̄δ be the point at which ψδ attains its minimum, i.e.,

λ̄δ = argmin
λ≥τ

ψδ(λ). (18)

For λ ∈ (τ,∞), define also

ζδ(λ) = ψδ(max(λ, λ̄δ)). (19)

1 This is the case, e.g., in noiseless phase retrieval, where yi = 〈x, ai 〉2 and the optimal preprocessing
function is T ∗

s (y) = 1 − 1/y.
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The spectrum of Dn exhibits a phase transition as δ increases. The most basic
phenomenon of this kind was unveiled for low-rank perturbations of a Wigner matrix:
the well-known BBAP phase transition, first discovered in the physics literature [26],
and named after the authors of [2]. Here, the model for the random matrix Dn is quite
different from that considered in [2,26], and the phase transition is formalized by the
following result.

Lemma 2 Let x be such that ‖x‖22 = d, {ai }1≤i≤n ∼i .i .d. N (0d , Id/d), and y be
distributed according to (7). Let n/d → δ, G ∼ N (0, 1) and define Zs = Ts(Y ) for
Y ∼ pY |G( · |G). Assume that Zs satisfies the assumptions (A1)–(A2)–(A3). Let x̂

s

be the principal eigenvector of the matrix Dn, defined as in (13). Then, the following
results hold:

1. The equation
ζδ(λ) = φ(λ) (20)

admits a unique solution, call it λ∗
δ , for λ > τ .

2. As n → ∞,

|〈x̂s, x〉|2
∥
∥x̂s

∥
∥
2
2 ‖x‖22

a.s.−→

⎧

⎪⎨

⎪⎩

0, if ψ ′
δ(λ

∗
δ ) ≤ 0,

ψ ′
δ(λ

∗
δ )

ψ ′
δ(λ

∗
δ ) − φ′(λ∗

δ )
, if ψ ′

δ(λ
∗
δ ) > 0,

(21)

where ψ ′
δ and φ′ denote the derivatives of these two functions.

3. Let λDn
1 ≥ λ

Dn
2 denote the two largest eigenvalues of Dn. Then, as n → ∞,

λ
Dn
1

a.s.−→ δ ζδ(λ
∗
δ ),

λ
Dn
2

a.s.−→ δ ζδ(λ̄δ).
(22)

The proof immediately follows from Lemma 2 of [37]. In that statement, it is
assumed that x is uniformly distributed on the d-dimensional sphere, but this assump-
tion is actually never used. In fact, since the sensing vectors {ai }1≤i≤n are i.i.d. standard
Gaussian, to prove the result above, without loss of generality we can assume that
x = √

de1, where e1 is the first element of the canonical basis of Rd . We also note
that the signal x and the measurement matrix A differ from Lemma 2 in [37] for a
scaling factor. This accounts for an extra term δ in the expression of the eigenvalues
of Dn .

3 Main Results

Throughout this section, we will make the following additional assumptions on the
signal x, the output function of the GLM, and the preprocessing functions TL and Ts
used for the linear and spectral estimators, respectively.

(B1) Let P̂X ,d denote the empirical distribution of x ∈ R
d , with ‖x‖22 = d. As d →

∞, P̂X ,d convergesweakly to a distribution PX such that, for some k ≥ 2, the following
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hold: (i) EPX {|X |2k−2} < ∞, and (ii) limd→∞ EP̂X ,d
{|X |2k−2} = EPX {|X |2k−2}.

Furthermore, E{|Y |2k−2} < ∞, with Y ∼ pY |G( · |G) and G ∼ N (0, 1).
(B2) The function TL : R → R is Lipschitz and |E{TL(Y )G}| > 0; the function

Ts : R → R is bounded and Lipschitz.
The assumption (B2) is mainly technical and rather mild, since one can construct

a sequence of approximations of the desired TL , Ts that satisfy (B2).
Lemmas 1 and 2 in the previous sections derive formulae for the asymptotic corre-

lation of x with the linear estimator x̂L and the spectral estimator x̂s. For convenience,
let us denote these as follows:

ρL := E {ZLG}
√

(E {ZLG})2 + E
{

Z2
L

}/

δ

, and ρs :=
√

ψ ′
δ(λ

∗
δ )

ψ ′
δ(λ

∗
δ ) − φ′(λ∗

δ )
. (23)

We also denote by nL the high-dimensional limit of ‖x̂L‖2,

nL =
√

(E {GZL})2 + E
{

Z2
L

}/

δ, (24)

and we define

q :=
√

ψ ′
δ(λ

∗
δ )

ψ ′
δ(λ

∗
δ ) − φ′(λ∗

δ )
·

E

{

ZL ·G
1− 1

λ∗
δ
Zs

}

√

(E {ZL · G})2 + E
{

Z2
L

}

δ

. (25)

3.1 Joint Distribution of Linear and Spectral Estimators

The key technical challenge is to compute the limiting joint empirical distribution of
the signal x, the linear estimator x̂L, and the spectral estimator x̂s. This result is stated
in terms of pseudo-Lipschitz test functions.

Definition 1 (Pseudo-Lipschitz test function) We say that a function ψ : Rm → R is
pseudo-Lipschitz of order k ≥ 1, denoted ψ ∈ PL(k), if there is a constant C > 0
such that

‖ψ(x) − ψ( y)‖2 ≤ C(1 + ‖x‖k−1
2 + ‖ y‖k−1

2 ) ‖x − y‖2 , (26)

for all x, y ∈ R
m .

Examples of test functions in PL(2)withm = 2 includeψ(a, b) = (a−b)2,ψ(a, b) =
ab, and ψ(a, b) = |a − b|. We note that if ψ ∈ PL(k), then ψ(x) ≤ C ′(1 + ‖x‖k2)
for some constant C ′ > 0. Also note that if ψ ∈ PL(k) for k ≥ 2, then ψ ∈ PL(k′)
for 1 ≤ k′ ≤ (k − 1).

Theorem 1 (Joint distribution) Let x be such that ‖x‖22 = d, {ai }1≤i≤n ∼i .i .d.

N (0d , Id/d), and y be distributed according to (7). Let n/d → δ, G ∼ N (0, 1),
ZL = TL(Y ), and Zs = Ts(Y ) for Y ∼ pY |G( · |G). Assume that (A1)–(A2)–(A3)
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and (B1)–(B2) hold. Assume further that ψ ′
δ(λ

∗
δ ) > 0, and let x̂s be the principal

eigenvector of Dn, defined as in (13) with preprocessing function Ts , with the sign of
x̂s chosen so that 〈x̂s, x〉 ≥ 0. Let x̂L be the linear estimator defined as in (10) with
preprocessing function TL .

Consider the rescalings xs = √
d x̂s and xL = √

d x̂L/nL . Then, the following
holds almost surely for any PL(k) function ψ : R3 → R:

lim
d→∞

1

d

d
∑

i=1

ψ(xi , x
L
i , xsi ) = E{ψ(X , ρL X + WL , ρs X + Ws))}. (27)

Here, X ∼ PX , and (WL ,Ws) are independent of X and jointly Gaussian with zero
mean and covariance given by E{W 2

L} = 1− ρ2
L , E{W 2

s } = 1− ρ2
s and E{WLWs} =

q − ρLρs .

Note that the order k of the pseudo-Lipschitz test function appearing in (27) is
the same as the integer k appearing in assumption (B1). In particular, the order of
pseudo-Lipschitz functions for which (27) holds is only constrained by the fact that
the random variables X and Y should have finite moments of order 2k − 2. The proof
of the theorem is given in Sect. 5.

Remark 1 (What happens if either linear or spectral are ineffective?) From Lemma 1,
the assumption |E{TL(Y )G}| > 0 contained in (B2) implies that |ρL | > 0. Similarly,
from Lemma 2, the assumption ψ ′

δ(λ
∗
δ ) > 0 implies that ρs > 0. Thus, Theorem 1

assumes that both the linear and the spectral estimators are effective. We note that a
similar result also holds when only one of the two estimators achieves strictly positive
correlation. In that case, ψ : R2 → R takes as input the components of the signal x
and of the estimator that is effective (as well as the corresponding random variables),
and a formula analogous to (27) holds. The proof of this claim is easily deduced from
the argument of Theorem 1. A simpler proof using a rotational invariance argument
along the lines of (144)-(151) also leads to the same result.

Remark 2 (Convergence inWk) The result in Eq. (27) is equivalent to the statement that
the empirical joint distribution of (x, xL, xs) converges almost surely in Wk distance
to the joint law of

(X , ρL X + WL , ρs X + Ws). (28)

This follows from the fact that a sequence of distributions Pn with finite k-th moment
converges in Wk to P if and only if Pn converges weakly to P and

∫ ‖a‖k dPn(a) →
∫ ‖a‖k dP(a), see [55, Definition 6.7, Theorem 6.8].

3.2 Optimal Combination

Equippedwith the result ofTheorem1,wenow reduce the vector problemof estimating
x given (x̂L, x̂s) to an estimation problem over scalar random variables, i.e., how to
optimally estimate X from observations XL := ρL X + WL and Xs := ρs X + Ws ,
where WL and Ws are jointly Gaussian. The Bayes-optimal estimator for this scalar
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problem is given by

F∗(xL , xs) := E{X | XL = xL , Xs = xs}. (29)

This is formalized in the following result.

Lemma 3 Let (X , XL , Xs) be jointly distributed random variables such that

XL = ρL X + WL and Xs = ρs X + Ws , (30)

where (WL ,Ws) are jointlyGaussian independent of X with zeromean and covariance
given by E{W 2

L} = 1 − ρ2
L , E{W 2

s } = 1 − ρ2
s and E{WLWs} = q − ρLρs . Assume

that ρL �= 0 or ρs �= 0. Let

V :=
{

f (XL , Xs) : 0 < E{ f 2(XL , Xs)} < ∞
}

, (31)

and consider the following optimal estimation problem of X given XL and Xs over
all measurable estimators f : R2 → R in V:

max
f ∈V

|E {X · f (XL , Xs)} |
√

E{X2} · E {

f 2(XL , Xs)
}
. (32)

Then, for any c �= 0, X̂ = cF∗(XL , Xs) attains the maximum in (32), where F∗ is
defined in (29).

Proof By the tower property of conditional expectation, for any f ∈ V we have

|E {X · f (XL , Xs)}|
√

E{ f (XL , Xs)2}
= |E {E{X | XL , Xs} · f (XL , Xs)}|

√

E{ f (XL , Xs)2}
≤

√

E
{

E{X | XL , Xs}2
}

,

(33)

where we have used the Cauchy–Schwarz inequality. Moreover, the inequality in (33)
becomes an equality if and only if f (XL , Xs) = cE{X | XL , Xs}, for some c �= 0,
which proves the result.

At this point, we are ready to show how to optimally combine the linear estimator
x̂L and the spectral estimator x̂s.

Theorem 2 (Optimal combination) Consider the setting of Theorem 1. Let F∗ be
defined in (29) and assume that F∗ ∈ PL(�k/2�). Then, as n → ∞,

|〈F∗(xL, xs), x〉|
‖F∗(xL, xs)‖2‖x‖2

a.s.−→ ρ∗ := |E {X · F∗(XL , Xs)} |
√

E
{

F2∗ (XL , Xs)
}

, (34)
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where F∗ acts component-wise on xL and xs, i.e., F∗(xL, xs) = (F∗(xL1 , xs1), . . . ,
F∗(xLd , xsd)). Furthermore, for any f ∈ PL(�k/2�) acting component-wise on xL and
xs, almost surely,

lim
n→∞

|〈 f (xL, xs), x〉|
‖ f (xL, xs)‖2‖x‖2 ≤ ρ∗. (35)

Proof If f (b, c) ∈ PL(�k/2�), then one can immediately verify that (i) ψ(a, b, c) =
a f (b, c) ∈ PL(k), and (ii) ψ(a, b, c) = ( f (b, c))2 ∈ PL(k). Thus, by applying Theo-
rem 1, we have that, for any f (b, c) ∈ PL(�k/2�), as n → ∞,

|〈 f (xL, xs), x〉|
‖ f (xL, xs)‖2‖x‖2

a.s.−→ E{X f (ρL X + WL , ρs X + Ws)}
√

E{ f 2(ρL X + WL , ρs X + Ws)}
. (36)

By taking f = F∗, the result (34) immediately follows. By applying Lemma 3, (35)
also follows and the proof is complete.

The integer k appearing in assumption (B1) is the same one defining the order �k/2�
of the pseudo-Lipschitz functions F∗ and f in (34)–(35).

Remark 3 (What happens if either linear or spectral are ineffective?) Theorem 2 con-
siders the same setting of Theorem 1, and therefore it assumes that ρL �= 0 and
ρs �= 0. The results in (34)–(35) still hold if either ρL = 0 or ρs = 0 (and even in the
case ρL = ρs = 0). For the sake of simplicity, suppose that ρL = 0 (the argument
for ρs = 0 is analogous). Then, XL = WL is independent of X and therefore the
conditional expectation in (29) does not depend on xL . Recall from Remark 1 that if
ρL = 0, then a formula analogous to (27) holds where ψ : R2 → R takes as input the
components of x and xs on the LHS, and the corresponding random variables on the
RHS. Hence, (34)–(35) are obtained by following the same argument in the proof of
Theorem 2.

We highlight that, even if one of the two estimators is ineffective, the proposed
optimal combination can still improve on the performance of the other one. This is
due to the fact that the function F∗ takes advantage of the knowledge of the signal
prior. We showcase an example of this behavior for a binary prior in Fig. 5 discussed
in Sect. 4.2. We also note that if the signal prior is Gaussian, then no improvement
is possible when one of the two estimators has vanishing correlation with the signal,
see Figs. 2, 3 and 4 in Sect. 4.1. In fact, as detailed in Sect. 3.3, in the Gaussian case
F∗(xL, xs) is a linear combination of xL and xs. Thus, if ρL = 0 (resp. ρs = 0), then
F∗(xL, xs) is aligned with xs (resp. xL).

Remark 4 (Sign of x̂s) The spectral estimator x̂s is defined up to a change of sign,
since it is the principal eigenvector of a suitable matrix. In Theorem 1 and 2, we pick
the sign of x̂s such that 〈x̂s, x〉 ≥ 0. In practice, there is a simple way to resolve the
sign ambiguity: one can match the sign of q as defined in (25) with the sign of the
scalar product 〈x̂L, x̂s〉 (see also (41)).
Remark 5 (Sufficient condition for pseudo-Lipschitz F∗) The assumption that the
Bayes-optimal estimator F∗ in (29) is pseudo-Lipschitz is fairly mild. In fact, F∗
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(a) (b)

(c)

(d)

Fig. 2 Monte Carlo simulations and theoretical predictions for an i.i.d. Gaussian signal and measurements
model yi = f (〈ai , x〉) + σ zi , zi ∼i .i .d. N (0, 1). Here, f (x) = max{x,−0.4x} (cf. a)

is Lipschitz if either of the following two conditions on X hold [20, Lemma 3.8]: (i) X
has a log-concave distribution, or (ii) there exist independent random variables U , V

such that U is Gaussian, V is compactly supported and X
d= U + V .

Remark 6 (Non-separable combinations) The optimality of F∗ in Theorem 2 can be
extended to a class of combined estimators of the form fd(xL, xs), where fd : Rd ×
R
d → R

d may not act component-wise on (xL, xs). Given fd , we define the function
S fd (x

L, xs) = 1
d ‖ fd(xL, xs)‖2. Let fd : Rd → R

d be any sequence of functions
(indexed by d) such that S fd : Rd × R

d → R is uniformly pseudo-Lipschitz of order
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(a) (b)

(c)

(d)

Fig. 3 Monte Carlo simulations and theoretical predictions for an i.i.d. Gaussian signal and measurements
model yi = f (〈ai , x〉) + σ zi , zi ∼i .i .d. N (0, 1). Here, f (x) = |x | · 1{|x |≥1.5} + x · 1{|x |<1.5} (cf. a)

k. That is, for each d, the property (26) holds for S fd with a pseudo-Lipschitz constant
C that does not depend on d. Then, the state evolution result in [6, Theorem 1] for
non-separable test functions implies that

lim
d→∞P

( |〈 fd(xL, xs), x〉|
‖ fd(xL, xs)‖2‖x‖2 ≤ ρ∗

)

= 1. (37)

123



Foundations of Computational Mathematics

(a) (b)

(c)

(d)

Fig. 4 Monte Carlo simulations and theoretical predictions for an i.i.d. Gaussian signal and measurements
model yi = f (〈ai , x〉) + σ zi , zi ∼i .i .d. N (0, 1). Here, f (x) = 0.3x + x2 (cf. a)

The result above is in terms of convergence in probability, while the limiting statement
in (35) holds almost surely. This is because the state evolution result forAMPwith non-
separable functions [6, Theorem 1] is obtained in terms of convergence in probability.

3.3 A Special Case: Optimal Linear Combination

Theorem 2 shows that the optimal way to combine x̂L and x̂s is via the Bayes-optimal
estimator F∗ for the corresponding scalar problem. If the signal prior X is standard
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Gaussian, then F∗(xL, xs) is a linear combination of xL and xs. In this section, we
provide closed-form expressions for the performance of such optimal linear combi-
nation.

For convenience, let us denote the normalized linear estimator as x̄L, i.e., x̄L =
x̂L/‖x̂L‖2. (Recall that the spectral estimator x̂s is already normalized, i.e., ‖x̂s‖2 =
1.) We consider an estimator x̂c(θ) of x, parameterized by θ ∈ R∪ {±∞}, defined as
follows:

x̂c(θ) := θ x̄L + x̂s, θ ∈ R ∪ {±∞}, (38)

where we use the convention, x̂c(θ) = ±x̄L for θ = ±∞.
Let us now compute the asymptotic performance of the proposed estimator x̂c(θ)

in (38). Specifically, using Lemmas 1 and 2, it follows immediately that

〈

x̂c(θ),
x

‖x‖2

〉

a.s.−→ θ · ρL + ρs . (39)

In order to conclude with the limit of the normalized correlation 〈x̂c(θ),x〉
‖x̂c(θ)‖2‖x‖2 , it still

remains to compute the magnitude of the new estimator:

∥
∥x̂c(θ)

∥
∥2
2 = θ2‖x̄L‖22 + ∥

∥x̂s
∥
∥2
2 + 2θ〈x̄L, x̂s〉 = θ2 + 1 + 2θ〈x̄L, x̂s〉. (40)

This is possible thanks to the following result, which gives the correlation between
the linear and the spectral estimator as well as the asymptotic performance of the linear
combination x̂c(θ).

Corollary 1 (Performance of linear combination) Consider the setting of Theorem 1.
Then, as n → ∞,

〈x̂L, x̂s〉
‖x̂L‖2

∥
∥x̂s

∥
∥
2

a.s.−→ q, (41)

where q is given by (25). Furthermore, let x̂c(θ) be the estimator defined in (38)
parameterized by θ ∈ R. Then, as n → ∞,

〈x̂c(θ), x〉
∥
∥x̂c(θ)

∥
∥
2 ‖x‖2

a.s.−→ θρL + ρs
√

1 + θ2 + 2θq
=: F(θ). (42)

Proof The limit of the correlation (41) follows by applying Theorem 1 with the PL(2)
function ψ(a, b, c) = bc and using that ‖x̂L‖2 a.s.−→ nL . The result (42) then follows

from (40) and (41), recalling that 〈x̄L, x̂s〉 = 〈x̂L,x̂s〉
‖x̂L‖2 ‖x̂s‖2

and ‖x̂s‖2 = 1.
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Using (23), the parameter q can be alternatively expressed in terms of ρL and ρs in
the following compact form:

q = ρL · ρs · E
⎧

⎨

⎩

ZLG

1 − 1
λ∗

δ
Zs

⎫

⎬

⎭

/

E {ZLG} . (43)

Observe also that F(0) = ρs and F(∞) := limθ→±∞ F(θ) = ±ρL .
Using the characterization of Corollary 1, we can compute the combination coeffi-

cient θ∗ that leads to the asymptotically optimal linear combination of the form (38).

Corollary 2 (Optimal linear combination)Recall the notation inCorollary 1 and define

θ∗ = ρL − ρsq

ρs − ρLq
∈ R ∪ {±∞}. (44)

Assume |q| < 1. Then, for all θ ∈ R ∪ {±∞}, it holds that

|F(θ)| ≤ F(θ∗) =
√

ρ2
s + ρ2

L − 2qρLρs

1 − q2
. (45)

The proof of Corollary 1 is deferred to Appendix B. Let us now comment on the
assumption |q| < 1. If x̂L and x̂s are perfectly correlated (i.e., |q| = 1), then it is clear
that the combined estimator x̂c(θ) cannot improve the performance for any value of θ .
On the contrary, when |q| < 1, Corollary 2 characterizes when the linear combination
x̂c strictly improves upon the performance of the individual estimators x̂L and x̂s.
Specifically, by denoting

ρmax := max{|ρL |, ρs} and p :=
{

ρs/ρL , if |ρL | ≥ ρs,

ρL/ρs, else,
(46)

such that the right-hand side of (45) becomes

F(θ∗) = ρmax

√

1 + (p − q)2

1 − q2
, (47)

it can be readily checked that F(θ∗) > ρmax provided that |q| < 1 and q �= p.

Remark 7 (Optimization of preprocessing functions) The linear estimator x̂L and the
spectral estimator x̂s use the preprocessing functions TL (cf. (3)) and Ts (cf. (4)),
respectively. The choice of these functions naturally affects the performance of the
two estimators, as well as, that of the combined estimator F∗(xL, xs). Lemmas 1–2,
Theorem 2 and Corollary 2 derive sharp asymptotics on the estimation performance
that hold for any choice of the preprocessing functions TL and Ts satisfying our tech-
nical assumptions (A1), (A2), (A3), (B2). In Appendix C, we briefly discuss how these
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results can be used to yield optimal such choices. Specifically, the optimal preprocess-
ing function that maximizes the normalized correlation of the spectral estimator is
derived in [35], see Appendix C.2. The optimal choice for the linear estimator is much
easier to obtain and we outline the process in Appendix C.1. In Appendix C.3, we
combine these two results to derive a precise characterization of the sampling regimes
in which the linear estimator surpasses the spectral estimator, and vice-versa. Finally,
in Appendix C.4, we use Corollary 2 to cast the problem of optimally choosing TL and
Ts to maximize the correlation of the combined estimator x̂c(θ∗) as a function opti-
mization problem. Solving the latter is beyond the scope of this paper, and it represents
an intriguing future research direction.

4 Numerical Simulations

This section validates our theory via numerical experiments and provides further
insights on the benefits of the proposed combined estimator.

First, we consider a setting in which the signal x is uniformly distributed on the
d-dimensional sphere. In this case, the limiting empirical distribution PX is Gaussian.
Thus, the Bayes-optimal estimator F∗(xL, xs) in (29) is linear and is given by x̂c(θ∗),
where θ∗ is determined in Corollary 2. For this scenario, we study in Figs. 2, 3 and 4
the performance gain of x̂c(θ∗) for three different measurementmodels and for various
noise levels.

Second, in Fig. 5 we consider a setting in which the the entries of x are binary,
drawn i.i.d. from the set {1,−1}, such that the empirical distribution is of the form
PX (1) = 1− PX (−1) = p, for some p ∈ (0, 1). For this case, we compute the Bayes-
optimal estimator F∗(xL , xs) and compare it with the optimal linear combination
x̂c(θ∗) for various choices of output functions.

4.1 Optimal Linear Combination

In Fig. 2, we fix the input–output relation as yi = f (〈ai , x〉) + σ zi , with zi ∼i .i .d.

N (0, 1) and f (x) = max{x,−0.4x} (cf. Fig. 2a), and we investigate the performance
gain of the proposed combined estimator for different values of the noise variance
σ 2. Here, x is generated via a standard Gaussian vector which is normalized such
that ‖x‖2 = √

d. Also, ai ∼i .i .d. N (0d , Id/d) and the pre-processing functions are
chosen: TL(y) = y and Ts(y) = min{y, 3.5}. Note that the empirical distribution of x
tends to a standardGaussian distribution in the high-dimensional limit. Thus, following
Sect. 3.3, the optimal combined estimator is (asymptotically) linear and is given by
(38) for θ = θ∗ chosen as in (44). In Fig. 2b, we plot the percentage improvement
ρ∗−ρmax

ρmax
×100 as a function of the sampling ratio δ, for three values of the noise variance

σ 2 = 0, 0.4 and 0.8. Here, ρ∗ = F(θ∗) defined in (45) and ρmax = max{|ρL |, ρs}.
We observe that, as σ 2 increases, larger values of the sampling ratio δ are needed for
the combined estimator to improve upon the linear and spectral estimators. However,
for sufficiently large δ, the benefit of the combined estimator is more pronounced for
larger values of the noise variance. For instance, for σ 2 = 0.8 and large values of δ, the

123



Foundations of Computational Mathematics

percentage gain is larger than 10%. In Fig. 2c, we fix σ 2 = 0.4 and plot the correlations
ρL , ρs and ρ∗. The solid lines correspond to the theoretical predictions obtained by
Lemma 1, Lemma 2 and Corollary 2, respectively. The theoretical predictions are
compared against the results of Monte Carlo simulations. For the simulations, we
used d = 1000 and averaged over 15 independent problem realizations. In Fig. 2c

(Middle), we also plot the limit q (cf. (25)) of the cross-correlation 〈xL,xs〉
‖xL‖‖xs‖ and the

ratio p in (46). The corresponding values of the optimal combination coefficient θ∗ are
plotted in Fig. 2c (Right). For values of δ smaller than the threshold for weak-recovery
of the spectral method (where ρs = 0), we observe that ρ∗ = ρL and θ∗ = ∞.
However, for larger values of δ, the value of the optimal coefficient θ∗ is non-trivial.
Finally, Fig. 2d shows the same plots as in Fig. 2c, but for σ 2 = 0.8.

The setting of Fig. 3 is the same as in Fig. 2, only now the input–output function is
chosen as f (x) = |x | ·1{|x |≥1.5} + x ·1{|x |<1.5}. Comparing Fig. 3b to Fig. 2b, note that
the benefit of the combined estimator is more significant for the link function studied
here. Moreover, in contrast to Fig. 2b, here, the percentage gain of the combined
estimator takes its maximum value in the noiseless case: σ 2 = 0.

In Fig. 4, we repeat the experiments of Figs. 2 and 3, but for f (x) = 1 + 0.3x +
(x2 − 1). Compared to the two functions studied in Figs. 2 and 3, in Fig. 4 we observe
that the performance gain is significantly larger and reaches values up to 30%. This
can be argued by considering the expansion of the input–output functions on the basis
of the Hermite polynomials, i.e., f (x) = ∑∞

i=0 Hihi (x), where hi (x) is the i th-order
Hermite polynomial with leading coefficient 1 and Hi = 1

i !EG∼N (0,1){ f (G)hi (G)}.
Specifically, recall that the first three Hermite polynomials are as follows: h0(x) = 1,
h1(x) = x and h2(x) = x2 − 1. Thus, for f (x) = 1 + 0.3x + (x2 − 1), only the
first three coefficients {Hi }, i = 0, 1, 2, are non-zero. To see the relevance of these
coefficients to the linear and spectral estimators, note that for identity pre-processing
functions it holds that E{GZL} = E{GY } = E{G f (G)} = H1 and E{(G2 − 1)Zs} =
E{(G2 − 1) f (G)} = 2H2. Thus, it follows directly from Lemma 1 that ρL = 0 if the
first Hermite coefficient H1 is zero. Similarly, it can be shown using Lemma 2 that
ρs = 0 if the second Hermite coefficient H2 is zero; in fact, the threshold of weak
recovery of the spectral method is infinity in this case (see (167) in Appendix C).
Intuitively, the linear and spectral estimators exploit the energy of the output function
corresponding to the Hermite polynomials of first- and second-order, respectively;
see also [17,52]. In this example, we have chosen f (x) such that all of its energy is
concentrated on the Hermite polynomials of order up to two.

As a final note, from the numerical results in Figs. 2, 3 and 4, we observe that the
proposed optimal combination leads to a performance improvement only if both the
linear and the spectral estimators are asymptotically correlated with the signal. This
is because the signal prior is Gaussian (see Remark 3). In contrast, as we will see in
the next section, when the signal prior is binary, the combined estimator provides an
improvement even when only the linear estimator is effective.
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4.2 Bayes-Optimal Combination

In Figs. 5a–d, we consider the same setting as in Figs. 3 and 4, respectively. However,
here each entry of x takes value either +1 or −1. Each entry is chosen independently
according to the distribution PX (1) = 1 − PX (−1) = p, for p ∈ (0, 1). Thus, the
Bayes optimal combination x̂mmse = F∗(xL, xs) is not necessarily linear as in the
Gaussian case. In Appendix D, we compute the Bayes-optimal estimator F∗(xL , xs)
(cf. (29)) for the setting considered here. Then, we use the prediction of Theorem 2 to
plot in solid black lines the normalized correlation of x̂mmse with x (i.e., ρmmse∗ = ρ∗
in (34)). The theoretical predictions (solid lines) are compared against the results of
Monte Carlo simulations (markers). Moreover, we compare the optimal performance
against those of the linear estimator (cf. ρL ), the spectral estimator (cf. ρs) and the
optimal linear combination x̂c(θ∗) (cf. ρlinear∗ ). We have chosen p = 0.3 in Fig. 5a,
c and p = 0.5 in Fig. 5b, d. Note that the optimal linear combination provides a
performance improvement only for the values of δ s.t. ρL > 0 and ρs > 0. On the
contrary, ρmmse∗ is strictly larger than ρL even when ρs = 0.

(a) (b)

(c) (d)

Fig. 5 Bayes-optimal combination vs optimal linear combination for a binary prior PX (1) = 1−PX (−1) =
p. In a, b (resp. c, d) the setting is otherwise the same as in Fig. 3 (resp. Fig. 4)
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(a) (b)

(c) (d)

Fig. 6 Normalized correlation of gradient descent iterates for different initializations: (i) linear x̂L, (ii)
spectral x̂s, (iii) optimal linear combination x̂linear (Bayes-optimal for Gaussian signal prior), and (iv)
Bayes-optimal combination x̂mmse. Depicted are means (solid lines) and standard errors (shaded regions)
over 10 Monte Carlo realizations. In all cases, yi = f (〈ai , x〉) + zi , i ∈ [n], zi ∼ N (0, 0.2) and d = 250.
a f (x) = 0.3x + 0.5(x2 − 1), δ = 3, Gaussian prior. b f (x) = 0.3x + 0.5x2, δ = 5, Gaussian prior. c, d
f (x) = 0.3x + 0.5x2, δ = 5, prior over {+1,−1} with PX (1) = p = 0.3 for c and PX (1) = p = 0.1 for
d

4.3 The Combined Estimator as Initialization for Local Algorithms

As mentioned in the introduction, the initial estimates of the signal obtained by either
the linear/spectral methods or our proposed combined estimator can then be refined via
local algorithms such as gradient descent (GD). The theory and numerical simulations
in the previous sections showed the superiority of our proposed combined estimator
x̂mmse = F∗(xL, xs) over xL and xs in terms of correlation with the true signal. In
Fig. 6, by plotting the correlation of GD iterates xt , t ≥ 1 for different initializations,
we show numerically how this improvement translates to improved performance of
gradient descent refinements. Specifically, we ran GD on squared error loss with step
size 1/2, that is xt+1 = xt − ∑

i∈[n] f ′(〈ai , xt 〉) (yi − f (〈ai , xt 〉)). Here, f is the
output function described in the caption of the figure.

In Fig. 6a, b, the true signal has i.i.d. Gaussian entries, thus the linear combined
estimator x̂c is the optimal combination in terms of correlation performance. We
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observe that for two different choices of output function and sampling ratio (see
caption), GD with linear or spectral initialization requires hundreds of iterations to
reach the performance of the combined estimator. In Fig. 6c, d, the true signal has
entries in {+1,−1}, chosen independently with PX (1) = p = 0.3 and PX (−1) =
p = 0.1, respectively. Here, the linear combined estimator is sub-optimal (but still
improves upon linear/spectral), thus we also compute and study the Bayes-optimal
estimator. Interestingly, while for both priors, GD converges to the same correlation
as t increases, for p = 0.1, GD achieves higher correlation if stopped early. It is a
fascinating, albeit challenging, question to better understand the evolution of the GD
trajectory as a function of the initialization, signal prior and output function.

5 Proof of Theorem 1

5.1 Proof Sketch

The proof of Theorem 1 is based on the design and analysis of a generalized approx-
imate message passing (GAMP) algorithm. GAMP is a class of iterative algorithms
proposed by Rangan [44] for estimation in generalized linear models. A GAMP algo-
rithm is defined in terms of a sequence of Lipschitz functions ft : R → R and
gt : R × R → R, for t ≥ 0. For t ≥ 0, the GAMP iteration computes:

ut = 1√
δ
A ft (v

t ) − bt gt−1(ut−1; y),

vt+1 = 1√
δ
AT gt (ut ; y) − ct ft (v

t ).

(48)

Here, the functions ft and gt are understood to be applied component-wise, i.e.,
ft (vt ) = ( ft (vt1), . . . , ft (vtd)) and gt (ut ; y) = (gt (ut1; y1), . . . , gt (utn; yn)). The
scalars bt , ct are defined as

bt = 1

n

d
∑

i=1

f ′
t (v

t
i ), ct = 1

n

n
∑

i=1

g′
t (u

t
i ; yi ), (49)

where g′
t (·, ·) denotes the derivative with respect to the first argument. The iteration

(48) is initialized with

u0 = c1n, v1 = 1√
δ
AT g0(u0; y), (50)

for some constant c > 0. Here, 1n ∈ R
n denotes the all-ones vector.

A key feature of the GAMP algorithm (48) is that the asymptotic empirical distribu-
tion of its iterates can be succinctly characterized via a deterministic recursion, called
state evolution. Hence, the performance of the high-dimensional problem involving
the iterates ut , vt is captured by a scalar recursion. Specifically, this result gives that
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for t ≥ 1, the empirical distributions of ut and vt converge in Wk distance to the laws
of the random variables Ut and Vt , respectively, with

Ut ≡ μU ,tG + σU ,tWU ,t , (51)

Vt ≡ μV ,t X + σV ,tWV ,t , (52)

where (G,WU ,t ) ∼i.i.d. N (0, 1). Similarly, X ∼ PX and WV ,t ∼ N (0, 1) are inde-
pendent. The deterministic parameters (μU ,t , σU ,t , μV ,t , σV ,t ) are computed via the
recursion (56) detailed in Sect. 5.2, and the formal statement of the state evolution
result is contained in Proposition 1 (again in Sect. 5.2).

Next, in Sect. 5.3, we show that a suitable choice of the functions ft , gt leads to
a GAMP algorithm such that (i) v1 = √

d x̂L, and (ii) vt is aligned with
√
d x̂s as t

grows large. Specifically, choosing g0(u; y) = TL(y)/
√

δ in (50) immediately gives
v1 = √

d x̂L. In order to approach the spectral estimator as t → ∞, we pick ft , gt to
be linear functions; see (68). The idea is that, with this choice of ft and gt , the GAMP
iteration is effectively a power method. Let us now briefly discuss why this is the case.
With the choice of ft , gt in (68), the GAMP iteration can be expressed as

ut = 1√
δ βt

[

Avt − Zut−1],

vt+1 = AT Zut −
√

δ

βt
E{Z} vt ,

(53)

where Z = diag(T (y1), . . . , T (yn)), Z = E{T (Y )}, and the function T : R → R is
defined later in terms of the spectral preprocessing function Ts ; see (82). Then, Lemma
4 analyzes the fixed points of the state evolution of the GAMP algorithm (53), and
Lemma 6 proves that in the high-dimensional limit, the vector vt tends to align with
the principal eigenvector of the matrix Mn = AT Z(Z + δE{Z(G2 − 1)}In)−1A as
t → ∞. Here, we provide a heuristic sanity check for this last claim. Assume that
the iterates vt and ut converge to the limits v∞ and u∞, respectively, in the sense
that limt→∞ 1

d ‖vt − v∞‖2 = 0 and limt→∞ 1
n ‖ut − u∞‖2 = 0. Then, from (53), the

limits v∞ and u∞ satisfy

u∞ = 1√
δ β∞

[

Av∞ − Zu∞]

,

v∞ = AT Zu∞ −
√

δ

β∞
E{Z} v∞.

(54)

Furthermore, from the analysis of the fixed points of state evolution of Lemma 4, we
obtain that β∞ = √

δE{Z(G2 − 1)}. Thus, after some manipulations, (54) can be
rewritten as

u∞ = (Z + δE{Z(G2 − 1)}In)−1Av∞
(

1 + E{Z}
E{Z(G2 − 1)}

)

v∞ = AT Z(Z + δE{Z(G2 − 1)}In)−1Av∞.
(55)
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Hence, v∞ is an eigenvector of the matrix AT Z(Z + δE{Z(G2 − 1)}In)−1A, and
the GAMP algorithm is effectively performing a power method. Finally, we choose
T (and consequently Z) so that Z(Z + δE{Z(G2 − 1)}In)−1 = Zs , with Zs given
by (12). In this way, the matrix AT Z(Z + δE{Z(G2 − 1)}In)−1A coincides with
the spectral matrix Dn , as defined in (13), and therefore vt approaches the spectral
estimator x̂s.

In conclusion, as v1 = √
d x̂L and vt tends to be aligned with

√
d x̂s for large t ,

we can use the state evolution result of Proposition 1 to analyze the joint empirical
distribution of (x,

√
d x̂L,

√
d x̂s). At this point, the proof of Theorem 1 becomes a

straightforward application of Lemma 6 and is presented at the end of Sect. 5.3. The
proof of Lemma 6 is quite long, so it is provided separately in Sect. 5.4.

5.2 State Evolution for Generalized Approximate Message Passing (GAMP)

For t ≥ 1, let us define the following deterministic recursion for the parameters
(μU ,t , σU ,t , μV ,t , σV ,t ) appearing in (51)–(52):

μU ,t = 1√
δ
E{X ft (Vt )},

σ 2
U ,t = 1

δ
E

{(

ft (Vt ) − XE{X ft (Vt )}
)2

}

= 1

δ
E

{(

ft (Vt ) − √
δ μU ,t X

)2
}

,

μV ,t+1 = √
δE{Ggt (Ut ; Y )} − E{g′

t (Ut ; Y )}E{X ft (Vt )},
σ 2
V ,t+1 = E{gt (Ut ; Y )2}.

(56)

Recalling from (50) that u0 = c1n , the state evolution recursion is initialized with

μV ,1 = √
δ E{g0(c; Y )G}, σ 2

V ,1 = E{g0(c; Y )2}. (57)

Furthermore, for t ≥ 0, let the sequences of random variables (WU ,t )t≥0 and
(WV ,t )t≥0 be each jointly Gaussian with zero mean and covariance defined as follows
[6,47]. First, we have:

E{WV ,1WV ,t } = 1

σV ,1 σV ,t
E

{

g0(c; Y ) gt−1(μU ,t−1G + σU ,t−1WU ,t−1; Y )
}

, t ≥ 2. (58)

Then, for r , t ≥ 1, we iteratively compute:

E{WU ,rWU ,t }
= 1

σU ,r σU ,t
· 1
δ
E

{(

fr (μV ,r X + σV ,rWV ,r ) − X
√

δ μU ,r
)(

ft (μV ,t X + σV ,tWV ,t )

− X
√

δ μU ,t }
)}

, (59)

E{WV ,r+1WV ,t+1} = 1

σV ,r+1 σV ,t+1
E

{

gr (μU ,r G + σU ,rWU ,r ; Y ) gt (μU ,t G + σU ,tWU ,t ; Y )
}

. (60)

Note that for r = t , by (56) we have E{W 2
U ,t } = E{W 2

V ,t } = 1.
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At this point, we are ready to present the state evolution result [27,44] for theGAMP
algorithm (48)-(49).

Proposition 1 (State Evolution) Consider the GAMP iteration in Eqs. (48)–(49), with
initialization u0 = c1n ∈ R

n, for any constant c > 0. Assume that for t ≥ 0, the
functions gt : R × R → R and ft : R → R are Lipschitz, and that Assumption (B1)
on p.6 holds for some k ≥ 2.

Then, the following holds almost surely for any PL(k) function ψ : Rt+1 → R, for
t ≥ 1:

lim
n→∞

1

n

n
∑

i=1

ψ(gi , u
t
i , u

t−1
i , . . . , u1i ) = E{ψ(G, Ut , Ut−1, . . . ,U1)}, (61)

lim
d→∞

1

d

d
∑

i=1

ψ(xi , v
t
i , v

t−1
i , . . . , v1i ) = E{ψ(X , Vt , Vt−1, . . . , V1)}, (62)

where the distributions of the random vectors (G,Ut , . . . ,U1) and (X , Vt , . . . , V1)
are given by the state evolution recursion in Eqs. (51)–(60).

Remark 8 Suppose that we have a sequence of PL(k) functions ψt : R
t+1 → R

(indexed by t) such that

lim
t→∞E{ψt (G, Ut , Ut−1, . . . ,U1)} = cU ,

lim
t→∞E{ψt (X , Vt , Vt−1, . . . , V1)} = cV ,

(63)

for some constants cU , cV ∈ R. Then, since the statements (61) and (62) hold with
probability 1 for each fixed t ≥ 1, we have that, almost surely,

lim
t→∞ lim

n→∞
1

n

n
∑

i=1

ψ(gi , u
t
i , . . . , u

1
i ) = cU , (64)

lim
t→∞ lim

d→∞
1

d

d
∑

i=1

ψ(xi , v
t
i , . . . , v

1
i ) = cV . (65)

5.3 GAMP as a Power Method to Compute the Spectral Estimator

Consider the GAMP iteration in (48) initialized with u0 = 1
δ
1n , and the function

g0 : R × R → R chosen as

g0(u; y) = TL(y)√
δ

, (66)

so that

v1 = 1

δ
AT TL( y). (67)
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(The function f0 is assumed to be zero.) From (10), we note that v1 = √
d x̂L.

For t ≥ 1, let the functions gt : R × R → R and ft : R → R be chosen as

gt (u; y) = √
δ uT (y), ft (v) = v

βt
, (68)

where the function T : R → R is bounded and Lipschitz, and βt is a constant, defined
iteratively for t ≥ 1 via the state evolution equations below (Eqs. (72)–(74)). To prove
Theorem 1, we will choose T as a suitable function of Ts (see (82)). Note that the
functions gt and ft are required to be Lipschitz for t ≥ 0, and this will be ensured
choosing T to be bounded and Lipschitz (see Lemma 6).

With this choice of ft , gt , for t ≥ 1, the scalars in (49) are given by

bt = 1

δβt
, ct = √

δ · 1
n

n
∑

i=1

T (yi ). (69)

In the GAMP iteration below, we will replace the parameter ct by its almost sure limit
c̄t = √

δ E{Z}, where Z � T (Y ). The state evolution result in Proposition 1 still
holds when ct is replaced with c̄t in the GAMP iteration [27,44]. This can be shown
using the pseudo-Lipschitz property of the test functions ψ in Eqs. (61)–(62) and the
fact that limn→∞ 1

n

∑n
i=1 T (yi ) = E{Z} almost surely, due to the strong law of large

numbers.
With these choices, the GAMP iteration in (48) is as follows. Initializing with

u0 = 1

δ
1n, v1 = 1

δ
AT TL( y), (70)

we have for t ≥ 1:

ut =
⎧

⎨

⎩

1√
δ βt

[

Avt − ZLut−1
]

, for t = 1,
1√
δ βt

[

Avt − Zut−1
]

, for t > 1,

vt+1 = AT Zut −
√

δ

βt
E{Z} vt ,

(71)

where ZL = diag(TL(y1), . . . , TL(yn)) and Z = diag(T (y1), . . . , T (yn)). The state
evolution equations in (56) become:

μU ,t = μV ,t√
δβt

, σ 2
U ,t = σ 2

V ,t

δ β2
t
, (72)

μV ,t+1 = √
δ

μV ,t

βt

[

E{ZG2} − E{Z}], σ 2
V ,t+1 = 1

β2
t

[

μ2
V ,tE{Z2G2} + σ 2

V ,tE{Z2}], (73)

βt+1 =
√

μ2
V ,t+1 + σ 2

V ,t+1. (74)
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Here, we recall that G ∼ N (0, 1) and Z = T (Y ), for Y ∼ pY |G(· | G). From (57),
the state evolution iteration is initialized with the following:

μV ,1 = E{TL(Y )G}, σ 2
V ,1 = 1

δ
E{TL(Y )2}, β1 =

√

μ2
V ,1 + σ 2

V ,1. (75)

We will show in Lemma 6 that in the high-dimensional limit, the vector vt in (71)
tends to alignwith the principal eigenvector of thematrixMn = AT Z(Z+δE{Z(G2−
1)}In)−1A as t → ∞. In other words, the GAMP iteration is equivalent to a power
iteration for Mn . This equivalence, together with Proposition 1, allows us to precisely
characterize the limiting empirical distribution of the eigenvector of Mn in Lemma 6.

We beginwith a result characterizing the fixed points of the state evolution recursion
in (72)–(73).

Lemma 4 Assume that E{Z(G2 − 1)} > 0 and that δ >
E{Z2}

(E{ZG2}−E{Z})2 . Then, the
state evolution recursion (72)–(73) has three fixed points: one is FP0 ≡ (μ̄V =
0, σ̄ 2

V = E{Z2}), and the other two are FP1 ≡ (μ̃V , σ̃ 2
V ) and FP2 ≡ (−μ̃V , σ̃ 2

V ),
where

μ̃V =
√

β̃2(β̃2 − E{Z2})
β̃2 + E{Z2G2} − E{Z2} , σ̃ 2

V = β̃2
E{Z2G2}

β̃2 + E{Z2G2} − E{Z2} , (76)

with
β̃2 = δ (E{ZG2} − E{Z})2. (77)

Furthermore, if the initialization (75) is such that μV ,1 > 0, then the recursion
converges to FP1. If μV ,1 < 0, the recursion converges to FP2.

The lemma is proved in Appendix E. We note that Lemma 4 (and the subsequent

Lemmas 5–6 as well) assumes thatE{Z(G2−1)} > 0 and δ >
E{Z2}

(E{ZG2}−E{Z})2 . These
conditions concern the auxiliary random variable Z (or, equivalently, the auxiliary
function T ). In the proof of Theorem 1, which appears at the end of this section, we
will provide a choice of Z (depending on Zs) that fulfills these requirements; see (82).

Let us also point out that the condition δ >
E{Z2}

(E{ZG2}−E{Z})2 follows from ψ ′
δ(λ

∗
δ ) > 0,

which in turn ensures that ρs > 0. For a discussion of the case ρs = 0, see Remark 1.
The next lemma shows that the mean-squared difference between successive AMP

iterates vanishes as t → ∞ in the high-dimensional limit.

Lemma 5 Assume that E{Z(G2 − 1)} > 0, δ >
E{Z2}

(E{ZG2}−E{Z})2 , and |E{TL(Y )G}| >

0. Consider the GAMP iteration in (71) initialized with u0 = 1
δ
1n. Then, the following

limits hold almost surely:

lim
t→∞ lim

n→∞
1

n
‖ut − ut−1‖2 = 0, lim

t→∞ lim
d→∞

1

d
‖vt+1 − vt‖2 = 0. (78)
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The proof of the lemma is given in Appendix F. The next result is themain technical
lemmaneeded to proveTheorem1. It shows that, as t grows large, vt tends to be aligned
with the principal eigenvector of the matrix Mn defined in (79). Theorem 1 is then
obtained from Lemma 6 by using a suitable choice for T (·) in the GAMP iteration
(71), which ensures that Mn is a scaled version of Dn in (13).

Lemma 6 Let x be such that ‖x‖2 = d, {ai }1≤i≤n ∼i .i .d. N (0d , Id/d), and y be
distributed according to (7). Let n/d → δ, G ∼ N (0, 1) and Z = T (Y ) for Y ∼
pY |G( · |G). Assume that the conditions (B1)–(B2) on p.6 hold (with Ts(·) replaced
by T (·) in (B2)). Assume also that Z is bounded, P(Z > −1) = 1, E{Z(G2 −1)} > 0

and δ >
E{Z2}

(E{ZG2}−E{Z})2 . Define Z
′ = Z

Z+δE{Z(G2−1)} and assume that Z
′ satisfies the

assumptions (A1), (A2), (A3) on p.5. Define the matrix

Mn = AT Z(Z + δE{Z(G2 − 1)}In)−1A, (79)

where Z = diag(T (y1), . . . , T (yn)). Let ϕ̂1 be the principal eigenvector of Mn, let
its sign be chosen so that 〈ϕ̂1, x〉 ≥ 0, and consider the rescaling ϕ̃(1) = √

dϕ̂1. Also,
let x̃L = √

d x̂L, where x̂L is the linear estimator defined in (10).
Then, the following holds almost surely for any PL(k) functionψ : R×R×R → R:

lim
d→∞

1

d

d
∑

i=1

ψ(xi , x̃
L
i , ϕ̃

(1)
i ) = E{ψ(X , μV ,1X + σV ,1WV ,1, β̃−1(μ̃V X + σ̃V WV ,∞))}. (80)

Here X ∼ PX , μ̃V , σ̃V , β̃ are given by (76)–(77), and μV ,1, σ
2
V ,1 are given by (75).

The random variables (WV ,1,WV ,∞) are independent of X, and jointly Gaussian with
zero mean and covariance:

E{W 2
V ,1} = E{W 2

V ,∞} = 1, E{WV ,1WV ,∞} = μ̃V E{TL(Y )ZG}
β̃σ̃V

√

E{TL(Y )2} . (81)

We first show howTheorem 1 is obtained from Lemma 6, and then prove the lemma
in the following subsection.

Proof of Theorem 1 Recall that λ∗
δ is the unique solution of (20) for λ > τ , where τ is

the supremum of the support of Zs . Define

Z � Zs

λ∗
δ − Zs

= Ts(Y )

λ∗
δ − Ts(Y )

. (82)

We now verify that Z satisfies the assumptions of Lemma 6. As λ∗
δ > τ and Zs has

bounded support with supremum τ , we have that Z is bounded. Furthermore, Z is a
Lipschitz function of Y , since Zs is a Lipschitz function of Y and Zs is bounded away
from λ∗

δ . Thus, Z satisfies the condition (B2) (with Ts(·) replaced by T (·)).
Next, note that τ > 0 (since Zs satisfies assumption (A3)). AsP(λ∗

δ −Zs > 0) = 1,
we have that P(Z > −1) = 1.
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As ψ ′
δ(λ

∗
δ ) > 0, we have that λ∗

δ > λ̄δ , where λ̄δ denotes the point at which ψδ

attains its minimum (see Eq. (18)). Consequently, since λ∗
δ solves (20), we have that

ψδ(λ
∗
δ ) = φ(λ∗

δ ). (83)

As Zs satisfies assumption (A3), we have that τ > 0, which implies that λ∗
δ > 0.

Thus, by using the definitions (16)–(17), (83) can be rewritten as

E

{
Zs(G2 − 1)

λ∗
δ − Zs

}

= 1

δ
. (84)

By combining (82) and (84), we obtain that

E{Z(G2 − 1)} = 1

δ
> 0. (85)

Finally, we compute the derivative of ψδ(λ) at λ∗
δ , noting that the derivative and the

expectation in (17) can be interchanged due to bounded convergence. We thus obtain
that the condition ψ ′

δ(λ
∗
δ ) > 0 is equivalent to

1

δ
> E

{
Z2
s

(λ∗
δ − Zs)2

}

= E

{

Z2
}

, (86)

where the last equality follows from (82). From (85) and (86), we have δ >
E{Z2}

(E{ZG2}−E{Z})2 .
We also have

Z ′ � Z

Z + δE{Z(G2 − 1)} = Z

Z + 1
= Zs

λ∗
δ

, (87)

where in the first equality we use (85) and in the second equality we use (82). Thus,
Z ′ satisfies the assumptions (A1)–(A2)–(A3) (with τ/λ∗

δ being the supremum of its
support), and we can apply Lemma 6.

Using (87) in (79), we see thatMn = 1
λ∗

δ
AT Zs A. Therefore, the principal eigenvec-

tor of Mn is equal to x̂
s. Furthermore, from (76)–(77), we can compute the coefficients

μ̃V , σ̃V , β̃ as

β̃2 = δ (E{ZG2} − E{Z})2 = 1

δ
,

μ̃V =
√

β̃2(β̃2 − E{Z2})
β̃2 + E{Z2G2} − E{Z2} =

√
√
√
√
√
√

1
δ

(
1
δ

− E

{
Z2
s

(λ∗
δ−Zs )2

})

1
δ

+ E

{
Z2
s (G

2−1)
(λ∗

δ−Zs )2

} ,

σ̃V =
√

β̃2E{Z2G2}
β̃2 + E{Z2G2} − E{Z2} =

√
√
√
√
√
√

1
δ
E

{
Z2
s ·G2

(λ∗
δ−Zs )2

}

1
δ

+ E

{
Z2
s (G

2−1)
(λ∗

δ−Zs )2

} .
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By using also (75), one can easily verify that

μV ,1 = nLρL , σV ,1 = nL

√

1 − ρ2
L , β̃−1μ̃V = ρs,

β̃−1σ̃V =
√

1 − ρ2
s ,

q − ρsρL
√

(1 − ρ2
s )(1 − ρ2

L)

= μ̃V E{TL(Y )ZG}
β̃σ̃V

√

E{TL(Y )2} ,

which yields the desired result.

5.4 Proof of Lemma 6

Fix c > 0, and let Z̃ = cZ and Z̃ = cZ . Then,

Z(Z + δE{Z(G2 − 1)}In)−1 = Z̃(Z̃ + δE{Z̃(G2 − 1)}In)−1. (88)

Thus, by inspecting the definition (79), one immediately obtains that ϕ̃(1) does not
change if we rescale Z and Z by the multiplicative factor c. Furthermore, by using the
definitions (76)–(77), we have that

β̃−1μ̃V =
√

δ (E{ZG2}−E{Z})2−E{Z2}
δ (E{ZG2}−E{Z})2+E{Z2G2}−E{Z2}

=
√

δ (E{Z̃G2}−E{Z̃})2−E{Z̃2}
δ (E{Z̃G2}−E{Z̃})2+E{Z̃2G2}−E{Z̃2} , (89)

β̃−1σ̃V =
√

E{Z2G2}
δ (E{ZG2}−E{Z})2+E{Z2G2}−E{Z2}

=
√

E{Z̃2G2}
δ (E{Z̃G2}−E{Z̃})2+E{Z̃2G2}−E{Z̃2} , (90)

and that

μ̃V E{TL(Y )ZG}
β̃σ̃V

√

E{TL(Y )2} = E{TL(Y )ZG}√
δ(E{ZG2} − E{Z})

√

δ (E{ZG2} − E{Z})2 − E{Z2}
E{Z2G2}E{TL(Y )2}

= E{TL(Y )Z̃G}√
δ(E{Z̃G2} − E{Z̃})

√

δ (E{Z̃G2} − E{Z̃})2 − E{Z̃2}
E{Z̃2G2}E{TL(Y )2} .

(91)
Consequently, both the LHS and the RHS of (80) are unchanged when we rescale Z
and Z by the multiplicative factor c.

The argument above proves that, without loss of generality, we can rescale Z and Z
by anymultiplicative factor c > 0. To simplify the rest of the argument, it is convenient
to assume the normalization condition

E{Z(G2 − 1)} = 1

δ
, (92)
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under which Mn = AT Z(Z + In)−1A.
Consider the iteration (71) with the initialization in (70). Since by hypothesis,

μ2
V ,1 = (E{TL(Y )G})2 > 0, Lemma 4 guarantees that the state evolution recursion

(73) converges to either fixed point FP1 or FP2 as t → ∞. That is,

lim
t→∞ μ2

V ,t = μ̃2
V , lim

t→∞ σ 2
V ,t = σ̃ 2

V , lim
t→∞ β2

t = μ̃2
V + σ̃ 2

V = β̃2 = 1

δ
. (93)

The last equality above follows by combining (77) and (92).
By substituting the expression for ut in (71) in the vt+1 update, the iteration can be

rewritten as follows, for t ≥ 2:

ut = 1√
δ βt

[

Avt − Zut−1], (94)

vt+1 = 1√
δβt

[(

AT ZA − δE{Z} Id
)

vt − AT Z2ut−1
]

. (95)

In the remainder of the proof, we will assume that t ≥ 2. Define

et1 = ut − ut−1, (96)

et2 = vt+1 − vt . (97)

By combining (96) with (94), we have that

ut−1 = (Z + √
δβt In)−1Avt − √

δβt (Z + √
δβt In)−1et1. (98)

By substituting the expression for ut−1 obtained in (98) into (95), we have

vt+1 =
(

AT Z(Z + √
δβt In)−1A −

√
δE{Z}
βt

Id

)

vt + AT Z2(Z + √
δβt In)−1et1

=
(

AT Z(Z + In)−1A − δE{Z} Id
)

vt

+ (1 − √
δβt )AT Z(Z + In)−1(Z + √

δβt In)−1Avt

+ δE{Z}
(

1 − 1√
δβt

)

vt + AT Z2(Z + √
δβt In)−1et1.

(99)
Let

et3 =
(

AT Z(Z + In)−1A − (δE{Z} + 1) Id
)

vt . (100)

From (97) and (99), we obtain

et3 = et2 − (1 − √
δβt )AT Z(Z + In)−1(Z + √

δβt In)−1Avt

− δE{Z}
(

1 − 1√
δβt

)

vt − AT Z2(Z + √
δβt In)−1et1.

(101)
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Let us decompose vt into a component in the direction of ϕ̂1 plus an orthogonal
component r t :

vt = ξt ϕ̂1 + r t , (102)

where ξt = 〈vt , ϕ̂1〉.
At this point, the idea is to show that, when t is large, r t is small, thus vt tends to

be aligned with ϕ̂1. To do so, we prove that, as n → ∞, the largest eigenvalue of the
matrix Mn defined in (79) converges almost surely to δE{Z} + 1. Furthermore, we
prove that the matrix Mn exhibits a spectral gap, in the sense that the second largest
eigenvalue of Mn converges almost surely to a value strictly smaller than δE{Z} + 1.
Since r t is orthogonal to ϕ̂1 and Mn has a spectral gap, the norm of et3 in (100) can
be lower bounded by a strictly positive constant times the norm of r t . Next, using the
expression in (101), we show that the norm of et3 can be made arbitrarily small by
taking n and t sufficiently large. From this, we conclude that r t must be small.

We begin by proving that Mn has a spectral gap.

Lemma 7 (Spectral gap for Mn) The following holds almost surely:

lim
n→∞ λ

Mn
1 = 1 + δE{Z}, (103)

lim sup
n→∞

λ
Mn
2 < 1 + δE{Z} − c1, (104)

for a numerical constant c1 > 0 that does not depend on n.

Proof of Lemma 7 By hypothesis, Z ′ = Z/(Z + 1) satisfies the assumptions (A1)-
(A2)-(A3). Thus, we can use Lemma 2 to compute the almost sure limit of the two
largest eigenvalues of Mn , call them λ

Mn
1 ≥ λ

Mn
2 .

Let τ denote the supremum of the support of Z ′. As P(Z > −1) = 1 and Z has
bounded support, we have that τ < 1. For λ ∈ (τ,∞), define

φ(λ) = λ · E
{
Z ′ · G2

λ − Z ′

}

= λ · E
{

Z · G2

(λ − 1)Z + λ

}

, (105)

and

ψδ(λ) = λ

(
1

δ
+ E

{
Z ′

λ − Z ′

})

= λ

(
1

δ
+ E

{
Z

(λ − 1)Z + λ

})

. (106)

Note that

φ(1) = E{Z · G2}, ψδ(1) = 1

δ
+ E{Z}. (107)

Thus, by using (92), we have that

φ(1) = ψδ(1). (108)
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Furthermore,

ψ ′
δ(λ) = 1

δ
− E

{(
Z ′

λ − Z ′

)2
}

= 1

δ
− E

{(
Z

(λ − 1)Z + λ

)2
}

. (109)

Thus,

ψ ′
δ(1) = 1

δ
− E{Z2} > 0, (110)

where in the last step we combine the hypothesis δ >
E{Z2}

(E{ZG2}−E{Z})2 with the nor-
malization condition (92).

Let λ̄δ be the point at which ψδ attains its minimum, as defined in (18), define ζδ as
in (19) and let λ∗

δ be the unique solution of (20). Since ψδ is convex, (109) and (110)
imply that λ̄δ < 1. Furthermore, (108) implies that λ∗

δ = 1. By Lemma 2, we obtain
that, as n → ∞,

λ
Mn
1

a.s.−→ δ ζδ(1),

λ
Mn
2

a.s.−→ δ ζδ(λ̄δ).
(111)

Note that
δ ζδ(1) = δ φ(1) = δE{Z · G2} = 1 + δE{Z}, (112)

where the first equality comes from the fact that λ∗
δ = 1 is the unique solution of (20),

while the second and third equalities follow from (107) and (108). By combining (112)
and (111), we obtain λ

Mn
1

a.s.−→ 1+ δE{Z}. Furthermore, ζδ(λ̄δ) = ψδ(λ̄δ). As λ̄δ < 1
and ψδ is Lipschitz continuous (from (109)), there exists a numerical constant c1 > 0
such that

δψδ(λ̄δ) ≤ 1 + δE{Z} − c1. (113)

Hence, λMn
2

a.s.−→ δ ψδ(λ̄δ) ≤ 1 + δE{Z} − c1.

Let us now go back to (100) and combine it with (102). Then,

(

AT Z(Z + In)−1A − (δE{Z} + 1) Id
)

r t = et3 + ξt (δE{Z}+ 1−λ
Mn
1 )ϕ̂1. (114)

We now prove that, almost surely, for all sufficiently large n, the following lower
bound on the norm of the LHS of (114) holds:

∥
∥
∥

(

AT Z(Z + In)−1A − (δE{Z} + 1) Id
)

r t
∥
∥
∥
2

≥ c2‖r t‖2, (115)

where c2 > 0 is a numerical constant independent of n, t .
As the matrix AT Z(Z+ In)−1A− (δE{Z} + 1) Id is symmetric, it can be written

in the form Q�QT , with Q orthogonal and � diagonal. Furthermore, the columns
of Q are the eigenvectors of AT Z(Z + In)−1A − (δE{Z} + 1) Id and the diagonal
entries of� are the corresponding eigenvalues. As r t is orthogonal to ϕ̂1, we can write

(

AT Z(Z + In)−1A − (δE{Z} + 1) Id
)

r t = Q�′ QT r t , (116)
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where�′ is obtained from� by changing the entry corresponding toλ
Mn
1 −(δE{Z}+1)

to any other value. For our purposes, it suffices to substitute λ
Mn
1 − (δE{Z} + 1) with

λ
Mn
2 − (δE{Z} + 1). Note that

‖Q�′ QT r t‖22 ≥ ‖r t‖22 min
s:‖s‖=1

‖Q�′ QT s‖22
= ‖r t‖22 min

s:‖s‖=1
〈s, Q (

�′)2 QT s〉

= ‖r t‖22 λmin(Q
(

�′)2 QT ),

(117)

where λmin(Q
(

�′)2 QT ) denotes the smallest eigenvalue of Q
(

�′)2 QT and the last
equality follows from the variational characterization of the smallest eigenvalue of a
symmetric matrix. Note that

λmin(Q
(

�′)2 QT ) = λmin

(

(�′)2
)

= min
i∈{2,...,d}

(

((δE{Z} + 1) − λ
Mn
i )2

)

. (118)

By using (104), we obtain that, almost surely, for all sufficiently large n,

min
i∈{2,...,d}

(

((δE{Z} + 1) − λ
Mn
i )2

)

≥
(c1
2

)2
. (119)

By combining (116), (117), (118) and (119), we conclude that (115) holds.
Recalling that r t satisfies (114), we will next show that, almost surely,

lim
t→∞ lim

d→∞
1√
d

∥
∥
∥et3 + ξt (δE{Z} + 1 − λ

Mn
1 )ϕ̂1

∥
∥
∥
2

= 0. (120)

Combined with (114) and (115), this implies that limt→∞ limd→∞ ‖r t‖2√
d

= 0 almost
surely.

By using the triangle inequality, we have

∥
∥
∥et3 + ξt (δE{Z} + 1 − λ

Mn
1 )ϕ̂1

∥
∥
∥
2

≤ ∥
∥et3

∥
∥
2 + |ξt | · |δE{Z} + 1 − λ

Mn
1 | · ∥∥ϕ̂1

∥
∥
2

≤ ∥
∥et3

∥
∥
2 + ‖vt‖2 · |δE{Z} + 1 − λ

Mn
1 |,

(121)
where the second inequality uses

∥
∥ϕ̂1

∥
∥
2 = 1 and that |ξt | = 〈vt , ϕ̂1〉 ≤ ‖vt‖2.

We can bound the second term on the RHS of (121) using the result in Proposition
1, applied with the PL(2) test function ψ(v) = v2. Then, almost surely,

lim
d→∞

1

d
‖vt‖22 = E{V 2

t } = β2
t . (122)

Here we used the definitions of Vt and β2
t from (52) and (74). Recalling from (93)

that limt→∞ β2
t = 1

δ
, the limit in (122) combined with Remark 8 and the continuous

mapping theorem implies that, almost surely,
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lim
t→∞ lim

d→∞
1√
d

‖vt‖2 = 1√
δ
. (123)

Thus, by using (103), we conclude that, almost surely,

lim
t→∞ lim

n→∞
1√
d

‖vt‖2 · |δE{Z} + 1 − λ
Mn
1 | = 0. (124)

We now bound the first term on the RHS of (121). Recalling the definition of et3 in
(101), an application of the triangle inequality gives

∥
∥et3

∥
∥
2 ≤ ∥

∥et2
∥
∥
2 + |1 − √

δβt | ·
∥
∥
∥AT Z(Z + In)−1(Z + √

δβt In)−1Avt
∥
∥
∥
2

+ δ|E{Z}| ·
∣
∣
∣
∣
1 − 1√

δβt

∣
∣
∣
∣
· ∥∥vt

∥
∥
2 +

∥
∥
∥AT Z2(Z + √

δβt In)−1et1

∥
∥
∥
2

≤ ∥
∥et2

∥
∥
2 + |1 − √

δβt | ·
∥
∥
∥AT Z(Z + In)−1(Z + √

δβt In)−1A
∥
∥
∥
op

‖vt‖2

+ δ|E{Z}| ·
∣
∣
∣
∣
1 − 1√

δβt

∣
∣
∣
∣
· ∥∥vt

∥
∥
2 +

∥
∥
∥AT Z2(Z + √

δβt In)−1
∥
∥
∥
op

‖et1‖2,
(125)

where the second inequality follows from the fact that, given a matrix M and a vector
v, ‖Mv‖2 ≤ ‖M‖op‖v‖2.

Let us bound the operator norm of the two matrices appearing in the RHS of (125).
As the operator norm is sub-multiplicative, we have

∥
∥
∥AT Z(Z + In)−1(Z + √

δβt In)−1A
∥
∥
∥
op

≤ ‖Z‖op
∥
∥
∥(Z + In)−1

∥
∥
∥
op

∥
∥
∥(Z + √

δβt In)−1
∥
∥
∥
op

‖A‖2op ,

∥
∥
∥AT Z2(Z + √

δβt In)−1
∥
∥
∥
op

≤ ‖Z‖2op
∥
∥
∥(Z + √

δβt In)−1
∥
∥
∥
op

‖A‖2op .

(126)

As Z is bounded, the operator norm of Z is upper bounded by a numerical constant
(independent of n, t). The operator norm of (Z + In)−1 and (Z + √

δβt In)−1 is
also upper bounded by a numerical constant (independent of n, t). Indeed, from (93)
βt → 1/

√
δ as t → ∞, and the support of Z does not contain points arbitrarily close

to −1. We also have that, almost surely, for all sufficiently large n, the operator norm
of A is upper bounded by a constant (independent of n, t). As a result, we deduce that,
almost surely, for all sufficiently large n, t ,

∥
∥
∥AT Z(Z + In)−1(Z + √

δβt In)−1A
∥
∥
∥
op

≤ C,

∥
∥
∥AT Z2(Z + √

δβt In)−1
∥
∥
∥
op

≤ C,
(127)
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where C is a numerical constant (independent of n, t). Furthermore, by Lemma 5, the
following limits hold almost surely:

lim
t→∞ lim

n→∞
1√
n

∥
∥et1

∥
∥
2 = 0,

lim
t→∞ lim

n→∞
1√
d

∥
∥et2

∥
∥
2 = 0.

(128)

By combining (93), (123), (127) and (128), we obtain that, almost surely, each of the
terms in the RHS of (125) vanishes when scaled by the factor 1/

√
n, as t, n → ∞.

As a result, almost surely,

lim
t→∞ lim

d→∞
1√
d

∥
∥et3

∥
∥
2 = 0. (129)

By combining (121), (124) and (129), we conclude that, almost surely, (120) holds.
Recall that r t satisfies (114). Thus, by combining the lower bound in (115) with

the almost sure limit in (120), we obtain that, almost surely,

lim
t→∞ lim

d→∞
1√
d

∥
∥r t

∥
∥
2 = 0. (130)

Recalling from (102) that r t is the component of vt orthogonal to ϕ̂1, the result in
(130) implies that vt tends to be aligned with ϕ̂1 in the high-dimensional limit. In
formulas, by combining (102) with (130), we have that, almost surely,

lim
t→∞ lim

n→∞
1√
n

∥
∥vt − ξt ϕ̂1

∥
∥
2 = 0. (131)

Note that
∥
∥vt − ξt ϕ̂1

∥
∥2
2 = ∥

∥vt
∥
∥2
2 − ξ2t . (132)

Thus, by using (123), we obtain that, almost surely,

lim
t→∞ lim

n→∞
1√
d

|ξt | = 1√
δ
. (133)

To obtain the sign of ξt , we first observe that, by Proposition 1, almost surely,

lim
d→∞

1

d
〈vt , x〉 = μV ,t . (134)

As μV ,0 = α > 0 and E{Z(G2 − 1)} = 1/δ, the state evolution iteration (73) implies
that μV ,t > 0 for all t ≥ 0. Using (102), we can write

1

d
〈vt , x〉 = ξt√

d

〈ϕ̂1, x〉√
d

+ 〈r t , x〉
d

. (135)
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Recall that by hypothesis, 〈ϕ̂1, x〉 ≥ 0. Moreover, using (130) and Cauchy–Schwarz,
we have that, almost surely,

lim
t→∞ lim

d→∞
〈r t , x〉√

d
= 0.

Thus we deduce that, almost surely,

lim
t→∞ lim

d→∞
ξt√
d

= + 1√
δ
.

Therefore,

lim
t→∞ lim

d→∞
1√
d

∥
∥
∥

√
δvt − ϕ̃(1)

∥
∥
∥
2

= 0 a.s., (136)

with ϕ̃(1) = √
dϕ̂1.

At this point, we are ready to prove (80). For any PL(k) function ψ : R3 → R, we
have that

∣
∣
∣
∣
∣

1

d

d
∑

i=1

ψ(xi , x̃
L
i , ϕ̃

(1)
i ) − 1

d

d
∑

i=1

ψ(xi , x̃
L
i ,

√
δvti )

∣
∣
∣
∣
∣

≤ 1

d

d
∑

i=1

∣
∣
∣ψ(xi , x̃

L
i , ϕ̃

(1)
i ) − ψ(xi , x̃

L
i ,

√
δvti )

∣
∣
∣

≤ C

d

d
∑

i=1

|ϕ̃(1)
i − √

δvti |
[

1 +
((

ϕ̃
(1)
i

)2 + (x̃Li )2 + x2i

)(k−1)/2 + (

δ(vti )
2 + (x̃Li )2 + x2i

)(k−1)/2
]

≤ C

d

d
∑

i=1

|ϕ̃(1)
i − √

δvti |
[

1 + 3
k−1
2

( ∣
∣
∣ϕ̃

(1)
i

∣
∣
∣

k−1 + ∣
∣x̃Li

∣
∣
k−1 + |xi |k−1 +

∣
∣
∣

√
δvti

∣
∣
∣

k−1 + ∣
∣x̃Li

∣
∣
k−1 + |x |k−1

i

)]

≤ C ′ ‖ϕ̃(1) − √
δvt‖2√

d

[

1 +
d

∑

i=1

(

|ϕ̃(1)
i |2(k−1) + |x̃Li |2(k−1) + |xi |2(k−1) + |√δvti |2(k−1)

d

)]1/2

,

(137)
where C,C ′ are universal constants (which may depend on k but not on d, n). The
inequality in the second line above uses ψ ∈ PL(k), and the third and fourth lines are
obtained via the Hölder and Cauchy–Schwarz inequalities. We now claim that, almost
surely,

lim
d→∞

d
∑

i=1

(

|ϕ̃(1)
i |2(k−1) + |x̃Li |2(k−1) + |xi |2(k−1) + |√δvti |2(k−1)

d

)

≤ C, (138)
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where, from now on, we will use C to denote a generic positive constant that does not
depend on d, n. If (138) holds, then by using (136) and (137), we deduce that, almost
surely,

lim
t→∞ lim

d→∞

∣
∣
∣
∣
∣

1

d

d
∑

i=1

ψ(xi , x̃
L
i , ϕ̃

(1)
i ) − 1

d

d
∑

i=1

ψ(xi , x̃
L
i ,

√
δvti )

∣
∣
∣
∣
∣
= 0. (139)

Let us now prove (138). First, by assumption (B1), we have that

lim
d→∞

1

d

∑

i

|xi |2(k−1) ≤ C . (140)

Next, the main technical lemma [27, Lemma 2] leading to the state evolution result in
Proposition 1 implies that, almost surely, for t ≥ 1,

lim sup
d→∞

1

d

∑

i

|vti |2(k−1) ≤ C . (141)

In particular, this follows from [27, Lemma 2(e)] (see also [4, Lemma 1(e)]). Since
x̃L = v1, we also have that, almost surely,

lim sup
d→∞

1

d

∑

i

|x̃Li |2(k−1) ≤ C . (142)

It remains to show that, almost surely,

lim sup
d→∞

1

d

∑

i

(ϕ̃
(1)
i )2(k−1) ≤ C . (143)

To do so, we use a rotational invariance argument. Let R ∈ R
d×d be an orthogonal

matrix such that Rx = x. Then,

〈x, ai 〉 = 〈Rx, Rai 〉 = 〈x, Rai 〉. (144)

Consequently, we have that

RAT Z(Z + In)−1ART d= AT Z(Z + In)−1A, (145)

which immediately implies that

Rϕ̃(1) d= ϕ̃(1). (146)
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Then, we can decompose ϕ̃(1) as

ϕ̃(1) = ad x +
√

1 − a2d ϕ⊥, (147)

where ϕ⊥ is uniformly distributed over the set of vectors orthogonal to x with norm√
d and

1

d
〈x, ϕ̃(1)〉 = ad . (148)

Relating the uniform distribution on the sphere to the normal distribution [54,
Sec. 3.3.3], we can express ϕ⊥ as follows:

ϕ⊥ = √
d

u − 1

d
〈u, x〉x

∥
∥
∥u − 1

d
〈u, x〉x

∥
∥
∥
2

, (149)

where u ∼ N (0d , Id) and independent of x. By the law of large numbers, we have
the almost sure limits

lim
d→∞

1

d
〈u, x〉 = 0, lim

d→∞
1

d

∥
∥
∥u − 1

d
〈u, x〉x

∥
∥
∥

2

2
= 1. (150)

Thus, by combining (147) and (149), we conclude that

ϕ̃(1) = c1x + c2u, (151)

where the coefficients c1 and c2 can be bounded by universal constants (independent
of n, d) using (150). As a result,

1

d

∑

i

(ϕ̃
(1)
i )2(k−1) ≤ 22(k−1)|c1|2(k−1) 1

d

∑

i

|xi |2(k−1) + 22(k−1)|c2|2(k−1) 1

d

∑

i

|ui |2(k−1). (152)

Note that, almost surely,

lim
d→∞

1

d

∑

i

|ui |2(k−1) = E{U 2(k−1)} ≤ C, (153)

whereU ∼ N (0, 1). By combining (140), (152) and (153), (143) immediately follows.
Finally, by combining (140), (141), (142) and (143), we deduce that (138) holds.

We now use Proposition 1 which guarantees that, almost surely,
∣
∣
∣
∣
∣
lim
d→∞

1

d

d
∑

i=1

ψ(xi , x̃
L
i ,

√
δvti ) − E{ψ(X , μV ,1X + σV ,1WV ,1,

√
δ(μV ,t X + σV ,tWV ,t ))}

∣
∣
∣
∣
∣
= 0, t ≥ 1.

(154)
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To conclude the proof of (80), we take the limit t → ∞ and use Remark 8. For this,
we will show that

lim
t→∞E{ψ(X , μV ,1X + σV ,1WV ,1,

√
δ(μV ,t X + σV ,tWV ,t ))}

= E{ψ(X , μV ,1X + σV ,1WV ,1,
√

δ(μ̃V X + σ̃VWV ,∞))},
(155)

where (WV ,1,WV ,∞) are zero mean jointly Gaussian random variables with covari-
ance given by (81). Using (58) and the formulas for g0 and gt from (66) and (68), we
have

E{WV ,1WV ,t } = 1

σV ,1σV ,t
E{TL(Y )Z(μU ,t−1G + σU ,t−1WU ,t−1)}

= μV ,t−1√
δβt−1σV ,1σV ,t

E{TL(Y )ZG}.
(156)

In the second equality above, we used (72). Using the expression for σV ,1 from (75)
and letting t → ∞, we have

lim
t→∞E{WV ,1WV ,t } = μ̃VE{TL(Y )ZG}

β̃σ̃V
√

E{TL(Y )2} = E{WV ,1WV ,∞}. (157)

Therefore, the sequence of zero mean jointly Gaussian pairs (WV ,1,WV ,t )t≥1 con-
verges in distribution to the jointly Gaussian pair (WV ,1,WV ,∞), whose covariance is
given by (81).

To show (155), we use Lemma 9 in Appendix G. We apply this result taking Qt to
be the distribution of

(X , μV ,1X + σV ,1WV ,1, μV ,t X + σV ,tWV ,t ).

Since μV ,t → μ̃V , σV ,t → σ̃V , the sequence (Qt )t≥2 converges weakly to Q, which
is the distribution of

(X , μV ,1X + σV ,1WV ,1, μ̃V X + σ̃VWV ,∞).

In our case, ψ : R
3 → R is PL(k), and therefore ψ(a, b, c) ≤ C ′(1 + |a|k +

|b|k + |c|k), for all (a, b, c) ∈ R
3 for some constant C ′. Choosing h(a, b, c) =

|a|k + |b|k + |c|k , we have |ψ |
1+h ≤ C ′. Furthermore,

∫

h dQt is a linear combination

of {μV ,t , μ
2
V ,t , . . . , μ

k
V ,t , σV ,t , σ

2
V ,t , . . . , σ

k
V ,t }, with coefficients that do not depend

on t . The integral
∫

h dQ has the same form, except that μV ,t , σV ,t are replaced by
μ̃V , σ̃V , respectively. Since μV ,t → μ̃V and σV ,t → σ̃V , we have that

lim
t→∞

∫

h dQt =
∫

h dQ.
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Therefore, by applying Lemma 9 in Appendix G, we have that

lim
t→∞

∫

ψ dQt =
∫

ψ dQ,

which is equivalent to (155). This completes the proof of the lemma.
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A Proof of Lemma 1

By rotational invariance of the Gaussian measure, we can assume without loss of
generality that x = √

de1 = [√d, 0, . . . , 0]T . Let us also denote the first columnof the
matrix A by u ∈ R

n and the remaining n× (d −1) sub-matrix by Ã, i.e., A = [

u Ã
]

.

In this notation, each measurement yi , i ∈ [n] depends only on the corresponding
element ui of the vector u. In particular, the random variables zLi = T (yi ), i ∈ [n]
are independent of the sub-matrix Ã. Furthermore, we may express x̂L as follows:

x̂L =
√
d

n

[

uT zL

Ã
T
zL

]

.

We are now ready to prove (11). First, we compute the correlation 〈x̂L, x
‖x‖2 〉:

〈x̂L,
x

‖x‖2 〉 = 1

n

√
d(uT zL) = 1

n

∑

i∈[n]

√
dui z

L
i

a.s.−→ E {GZL} , (158)

where we have that
√
dui

iid∼ N (0, 1) and the almost sure convergence follows from
the law of large numbers.

Second, we compute the norm of the estimator ‖x̂L‖2:

‖x̂L‖22 = d

n2
(uT zL)2 + d

n2

∥
∥
∥ Ã

T
zL

∥
∥
∥

2

2
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d= 1

n2

( ∑

i∈[n]

√
dui z

L
i

)2 + 1

n2

∥
∥
∥‖zL‖2h

∥
∥
∥

2

2

a.s.−→ (E {GZL})2 + E
{

Z2
L

}

δ
,

(159)

where we have used the following: (i)
√
d Ã

T
zL

d= ‖zL‖2h with h ∼ N (0, Id−1); (ii)
‖zL‖22/n

a.s.−→ E
{

Z2
L

}

and ‖h‖22/n
a.s.−→ 1/δ, by the law of large numbers.

Combining the above displays completes the proof of the lemma.

B Proof of Corollary 2

Consider F(θ) = θρL+ρs√
1+θ2+2θq

. It can be checked that

F ′(θ) = (ρL − qρs) − θ(ρs − qρL)

(1 + θ2 + 2θq)3/2
. (160)

We consider three cases.

Case 1:ρs = ρLq . Here, F is either strictly increasing or strictly decreasing depend-
ing on the sign of ρL −qρs . But, q ∈ (−1, 1), thus, ρs < |ρL | �⇒ sign(ρL −qρs) =
sign(ρL). Thus, F is maximized at θ̃ → sign(ρL) · ∞ and approaches the value |ρL |.
Moreover, F(θ) ≤ |ρL |. To conclude with the desired, notice that if ρs = ρLq, then θ∗
and F(θ∗) defined in the lemma take the values θ∗ = sign(ρL) ·∞ and F(θ∗) = |ρL |,
respectively.

Case 2: ρs > ρLq . Here, it can be readily checked from (160) that F is maximized
at θ̃ := ρL−ρsq

ρs−ρLq
. Also, a bit of algebra shows that

F(θ̃) =
√

ρ2
s + ρ2

L − 2qρLρs

1 − q2
= F(θ∗).

Thus, |F(θ)| is maximized either at θ̃ or as θ approaches ±∞. But, F(θ∗)2 − ρ2
L =

(ρs−qρL )2

1−q2
> 0 ⇒ F(θ̃) > |ρL |. Hence, |F(θ)| is indeed maximized at θ̃ = θ∗ and

attains the value F(θ̃) = F(θ∗).
Case 3: ρs < ρLq . Here, it can be checked from (160) that F is minimized at

θ̃ := ρL−ρsq
ρs−ρLq

and the minimum value is F(θ̃) = −F(θ∗). Moreover, similar to Case

2 above, F(θ∗) = |F(θ̃)| > |ρL |. Thus, again, |F(θ)| is maximized at θ∗ and taking
the value F(θ∗).

This completes the proof of the result.
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C Optimization of Preprocessing Functions

In order to state the results in this section, let us define the following functions for
y ∈ R and G ∼ N (0, 1),

μ0(y) = EG[pY |G(y | G)], (161a)

μ1(y) = EG[G · pY |G(y | G)], (161b)

μ2(y) = EG[G2 · pY |G(y | G)]. (161c)

Note that the functions μ0, μ1 and μ2 only depend on the conditional distribution
pY |G( · |G). Furthermore, let S denote the support of the probability measure Y (i.e.,
the support of μ0(y)).

C.1 Linear Estimator

In terms of the notation in (161), for a preprocessing function TL(y), we can write

E{GZL} =
∫

S
TL(y)μ1(y)dy and E{Z2

L} =
∫

S
T 2
L (y)μ0(y)dy.

Thus, it follows from (11) in Lemma 1 that

|ρL | =
(

1 + 1

δ

∫

S T 2
L (y)μ0(y)dy

(∫

S TL(y)μ1(y)dy
)2

)−1/2

, (162)

provided
∫

S TL(y)μ1(y)dy �= 0 and E{|GZL |} < ∞.

Assume, henceforth, that

0 <

∫

S

μ2
1(y)

μ0(y)
dy < ∞. (163)

Then, we will show in this section that the optimal preprocessing function for the
linear estimator is

T ∗
L (y) = μ1(y)

μ0(y)
, (164)

and the achieved (optimal) normalized correlation is

ρ∗
L =

⎛

⎝1 + 1

δ
∫

S
μ2
1(y)

μ0(y)
dy

⎞

⎠

−1/2

. (165)

To see this, note from (162) that ρ2
L is maximized for the choice of TL

that minimizes the ratio
∫

S T 2
L (y)μ0(y)dy

/(∫

S TL(y)μ1(y)dy
)2, while ensuring
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∫

S TL(y)μ1(y)dy �= 0. Furthermore, by using the Cauchy–Schwarz inequality, we
obtain:

(∫

S
TL(y)μ1(y)dy

)2

=
(∫

S
TL(y)

√

μ0(y)
μ1(y)√
μ0(y)

dy

)2

≤
(∫

S
T 2
L (y)μ0(y)dy

)(
∫

S

μ2
1(y)

μ0(y)
dy

)

. (166)

Rearranging the above and substituting in the expression for |ρL | from (162) yields
ρ2
L ≤ (

ρ∗
L

)2, with equality achieved if and only if TL(y) = c · μ1(y)
μ0(y)

,∀y ∈ R and some

constant c > 0. Clearly, the correlation performance of x̂L is insensitive to scaling TL
by a constant. Thus, we can choose c = 1 to arrive at (164). To complete the proof of
the claim, note that for the choice in (164):

∫

S
T ∗
L (y)μ1(y)dy =

∫

S

μ2
1(y)

μ0(y)
dy > 0,

and

E{|GZL |} ≤
√

E{G2}
(∫

S
(T ∗

L (y))2μ0(y)dy

)1/2

=
√

E{G2}
(
∫

S
μ2
1(y)

μ0(y)
dy

)1/2

< ∞,

where the last inequalities in the above lines follow from (163).
As a final note, observe that the optimal T ∗

L does not depends on the sampling
ratio δ.

C.2 Spectral Estimator

The optimal preprocessing function for the spectral estimator is derived in [35]. For
ease of reference, we present here their result in the special case where inf y

μ2(y)
μ0(y)

> 0.
If this condition does not hold, the idea is to construct a sequence of approximations
of the optimal preprocessing function (we refer the reader to [35] for the details).

Assume δ ≥ δ∗, where

δ∗ :=
(∫

S

(μ2(y) − μ0(y))2

μ0(y)
dy

)−1

(167)

is the threshold for weak recovery of the spectral estimator [37]. For a preprocessing
function Ts(y), we have from Lemma 2 that

ρs =
⎛

⎜
⎝1 +

∫

S
(

Ts (y)
λ∗

δ−Ts (y)

)2
μ2(y)dy

1
δ

− ∫

S
(

Ts (y)
λ∗

δ−Ts (y)

)2
μ0(y)dy

⎞

⎟
⎠

−1/2

,
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where λ∗
δ is the unique solution to the following equation for λ ≥ τ :

∫

S

Ts(y)
λ − Ts(y)

(μ2(y) − μ0(y)) dy = 1

δ
, (168)

and also (cf. ψ ′
δ(λ

∗
δ ) ≥ 0),

∫

S

( Ts(y)
λ∗

δ − Ts(y)

)2

μ0(y)dy ≤ 1

δ
. (169)

Using this characterization, [35] shows that the optimal preprocessing function for
the spectral estimator is

T ∗
s (y) = 1 − μ0(y)

μ2(y)
, (170)

and the achieved (optimal) normalized correlation is

ρ∗
s = (1 + βδ)

−1/2 , where
∫

S

(μ2(y) − μ0(y))2

μ0(y) + μ2(y)/βδ

dy = 1

δ
. (171)

As for the linear estimator, the optimal function T ∗
s does not depend on the sampling

ratio δ.

C.3 Spectral Versus Linear

As mentioned in the introduction, there is no clear winner between the linear and the
spectral estimator: the superiority of one method over the other depends on the mea-
surement model and on the sampling ratio. Here, we fix the measurement model (i.e.,
the stochastic output function pY |G( · | 〈x, ai 〉)) and we present an analytic condition
that determines which method is superior for any given δ > 0 after optimizing both
in terms of the preprocessing function.

Lemma 8 Assume that inf y
μ2(y)
μ0(y)

> 0 and (163) hold. Consider the function h :
R+ → R+,

h(t) :=
∫

S

(μ2(y) − μ0(y))2

μ0(y) + μ2(y)/t
dy, (172)

and let γδ :=
(

δ
∫

S
μ2
1(y)

μ0(y)
dy

)−1

. Then, the following holds:

δ · h(γδ) ≶ 1 �⇒ ρ∗
s ≶ ρ∗

L , (173)

where ρ∗
L and ρ∗

s are defined in (165) and (171), and denote the optimal normalized
correlation for the linear and the spectral estimator, respectively.
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Proof It can be checked by direct differentiation and the fact that μ2(y) > 0, that h(·)
is strictly increasing. Thus, from (171), we find that h(γδ) ≶ 1/δ �⇒ βδ ≷ γδ .
To conclude the proof, note from (165) and (171) that ρ∗

L = u(γδ) and ρ∗
s = u(βδ),

respectively, where we define u(t) = (1 + t)−1/2 and u(·) is strictly decreasing.

C.4 Combined Estimator

In the previous sections of Appendix C, we have discussed how to optimally choose
TL and Ts to maximize the correlation of the linear and spectral estimators. This was
possible thanks to the asymptotic characterizations in Lemmas 1 and 2. Theorem 2
opens up the possibility to optimally choose TL and Ts to maximize the correlation
achieved by the Bayes-optimal combination F∗(xL, xs). Here, we focus on the special
case inwhich the signal prior isGaussian and, hence, F∗(xL, xs) is a linear combination
of xL and xs, see Corollary 2. In the rest of this section, we formalize the problem of
(optimally) choosing the functions TL and Ts .

To begin, note from (43) that q = ρL · ρs · s, where we define

s :=

∫

S
TL (y)μ1(y)
1− 1

λ∗
δ
Ts (y)

dy

∫

S TL(y)μ1(y)dy
. (174)

Furthermore, by using (174) in (45), we can express the achieved correlation F(θ∗)
of x̂c(θ∗) as follows

F2(θ∗) = ρ2
s + ρ2

L − 2ρ2
s ρ

2
Ls

1 − ρ2
s ρ

2
Ls

2
=

1
ρ2
s

+ 1
ρ2
L

− 2s

1
ρ2
s ρ2

L
− s2

(175)

=
2 − 2s + 1

δ

∫

S T 2
L μ0

(
∫

S TLμ1)2
+

∫

S

(
T̃s

1−T̃s

)2
μ2

1
δ
−∫

S

(
T̃s

1−T̃s

)2
μ0

(

1 + 1
δ

∫

S T 2
L μ0

(
∫

S TLμ1)2

)(

1 +
∫

S

(
T̃s

1−T̃s

)2
μ2

1
δ
−∫

S

(
T̃s

1−T̃s

)2
μ0

)

− s2

, (176)

where we have denoted T̃ (y) := 1
λ∗

δ
T (y) and all integrals are over y (not explicitly

written for brevity). Thus, the problem of choosing TL and Ts can be reformulated as
follows:

max
γ,TL ,T̃s

γ

s.t. (176) ≥ γ
∫

S

T̃s(y)
1 − T̃s(y)

(μ2(y) − μ0(y)) dy = 1

δ
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∫

S

(

T̃s(y)
1 − T̃s(y)

)2

μ0(y)dy ≤ 1

δ
∫

S
TL(y)μ1(y)dy > 0 .

The second and the third constraints above follow from (168) and (169), respectively.
These further guarantee that ρs > 0 (so division in (175) is allowed). Similarly, the
last constraint on TL ensures that ρ2

L > 0.
Though concrete, the formulation above is a difficult function optimization problem.

Solving this goes beyond the scope of this paper, but it may be an interesting future
direction. Another related question is whether the solution to this problem coincides
(or not) with the “individually" optimal choices in (164) and (170), respectively.

D Example: Bayes-Optimal Combination for Binary Prior

In this section, we evaluate explicitly the Bayes-optimal estimator F∗(xL , xs) =
E{X | XL = xL , Xs = xs} in (29) for the case where X ∈ {1,−1} with PX (1) = p
and PX (−1) = 1 − p.

Using this prior, we obtain

F∗(xL , xs) = E{X | XL = xL , Xs = xs} = E{X | ρL X + WL = xL , ρs X + Ws = xs}
= 2P(X = 1 | ρL X + WL = xL , ρs X + Ws = xs) − 1

= 2

1 + 1−p
p

pWL ,WS (xL+ρL ,xs+ρs )

pWL ,WS (xL−ρL ,xs−ρs )

− 1, (177)

where the last line follows by Bayes rule and simple algebra. Here, pWL ,Ws denotes
the joint density of (WL ,Ws) as predicted by Theorem 1, i.e.,

pWL ,Ws (wL , ws) = 1

C
exp

(

−1

2

[

wL ws
]

�−1
[

wL

ws

] )

, (178)

where � =
[

1 − ρ2
L q − ρLρs

q − ρLρs 1 − ρ2
s

]

, and C is a constant that is irrelevant for our

purpose as it cancels in (177). Using (178) in (177) gives an explicit expression for
F∗(xL , xs).

In Sect. 4.2, we numerically implement the optimal combined estimator for various
measurement models. Specifically, we use the linear and spectral estimators xL and
xs to form the combined estimator

x̂mmse = F∗(xL, xs),

where F∗ acts element-wise on the entries of its arguments as specified in (177).
The asymptotic correlation of the estimator x̂mmse is given by Theorem 2 as follows:
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ρ∗ = |E{X ·F∗(XL ,Xs )}|√
E{F2∗ (XL ,Xs )} (see (34)). Equippedwith the explicit expression for F∗(XL , Xs)

in (177), we can compute ρ∗ using Monte Carlo averaging over realizations of the
triplet (X , XL , Xs).

E Proof of Lemma 4

Take t → ∞ in (73), and letμV = limt→∞ μV ,t , σ 2
V = limt→∞ σ 2

V ,t ,β
2 = σ 2

V +μ2
V .

Then, by solving these equations, we obtain two solutions for the pair (μ2
V , σ 2

V ): one
solution gives the fixed point FP0; and the other solution gives FP1 and FP2. Note
that the fixed points FP1 and FP2 exist only when β̃2 > E{Z2}. From (77), this

is equivalent to δ >
E{Z2}

(E{ZG2}−E{Z})2 , which is the condition in the statement of the
lemma.

Let us define

γ 2
t ≡ μ2

V ,t

σ 2
V ,t

.

Using this definition, the two equations in (73) can be combined to obtain the following
recursion in γ 2

t :

γ 2
t+1 = δ(E{ZG2} − E{Z})2

E{Z2G2} + E{Z2}/γ 2
t

. (179)

Note that E{Z2} > 0. In fact, if E{Z2} = 0, then P(Z = 0) = 1 and the condition
E{Z(G2 − 1)} > 0 cannot hold. Thus, the two fixed points of this recursion are
γ 2
FP0

= 0, and

γ 2
FP12

= δ(E{ZG2} − E{Z})2 − E{Z2}
E{Z2G2} = β̃2 − E{Z2}

E{Z2G2} = μ̃2
V

σ̃ 2
V

. (180)

As discussed above, the fixed point γ 2
FP12

exists when δ >
E{Z2}

(E{ZG2}−E{Z})2 . The
recursion can be written as γ 2

t+1 = f (γ 2
t ), where

f (x) = δ(E{ZG2} − E{Z})2
E{Z2G2} + E{Z2}/x .

The derivative of f is given by

f ′(x) = δ (E{ZG2} − E{Z})2 E{Z2}
(E{Z2} + x E{Z2G2})2 . (181)
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We now argue that, whenever γ 2
1 = μ2

V ,1

σ 2
V ,1

is strictly positive, the recursion γ 2
t+1 =

f (γ 2
t ) converges to γ 2

FP12
. We will separately consider the two cases γ 2

1 < γ 2
FP12

and

γ 2
1 > γ 2

FP12
.

We consider first the case γ 2
1 < γ 2

FP12
. Since f ′(x) > 0, the function f (x) is

strictly increasing for x ≥ 0. Therefore, if for any t ≥ 0 we have γ 2
t < γ 2

FP12
, then

γ 2
t+1 = f (γ 2

t ) < f (γ 2
FP12

) = γ 2
FP12

. Next, we argue that f (x) > x for 0 < x <

γ 2
FP12

. To show this claim, we first note that f ′(0) > 1 since δ >
E{Z2}

(E{ZG2}−E{Z})2 .
Thus, f (x) > x for x sufficiently close to 0. If f (γ ′) ≤ γ ′ for some 0 < γ ′ < γ 2

FP12
,

then there exists a fixed point between 0 and γ ′, as f (x) is continuous. However, this
is not possible since γ ′ < γ 2

FP12
and γ 2

FP12
is the unique fixed point > 0. As a result,

f (x) > x for 0 < x < γ 2
FP12

. Hence, if γ 2
1 < γ 2

FP12
, then the sequence (γ 2

t )t≥1 is

strictly increasing and bounded above by γ 2
FP12

. Furthermore, by using the uniqueness

of the fixed point, one obtains that its supremum is γ 2
FP12

. Therefore, the sequence

(γ 2
t )t≥1 converges to γ 2

FP12
.

Next, consider the case γ 2
1 > γ 2

FP12
. We observe that

f ′(γ 2
FP12

) = E{Z2}
δ(E{ZG2} − E{Z})2 < 1 (182)

since δ >
E{Z2}

(E{ZG2}−E{Z})2 . From (181), we see that f ′(x) is strictly decreasing for

x > 0, hence f ′(x) < 1 for x ≥ γ 2
FP12

. Therefore, by the Banach fixed point theorem,

the iteration (179) converges to γ 2
FP12

whenever γ 2
1 ≥ γ 2

FP12
.

Finally, we observe from (73) that:

μ2
V ,t+1 = δ(E{Z(G2 − 1)})2 γ 2

t

1 + γ 2
t

,

σ 2
V ,t+1 = γ 2

t

1 + γ 2
t
E{Z2G2} + 1

1 + γ 2
t
E{Z2}. (183)

Thus, for any initialization such that γ 2
1 > 0,

lim
t→∞ μ2

V ,t+1 = δ(E{Z(G2 − 1)})2 γ 2
FP12

1 + γ 2
FP12

= μ̃2
V ,

lim
t→∞ σ 2

V ,t+1 = γ 2
FP12

1 + γ 2
FP12

E{Z2G2} + 1

1 + γ 2
FP12

E{Z2} = σ̃ 2
V ,

(184)

where we have used the expression for γ 2
FP12

from (180). Note that both fixed points

FP1 and FP2 correspond to the same (μ̃2
V , σ̃ 2

V ). The assumption thatE{Z(G2−1)} >
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0 ensures that the sign of μV ,t+1 in (73) remains unchanged and hence the iteration
converges to either FP1 or FP2 depending on the sign of μV ,1.

F Proof of Lemma 5

We first consider a fixed t ≥ 2 and write

1

n
‖ut − ut−1‖2 = ‖ut‖2

n
+ ‖ut−1‖2

n
− 2

〈ut , ut−1〉
n

. (185)

Applying Proposition 1 with the PL(2) functions ψ(a) = a2 (for the first two terms)
and ψ(a, b) = ab (for the last term), we obtain

lim
n→∞

1

n
‖ut − ut−1‖2 a.s.= E

{

(μU ,tG + σU ,tWU ,t )
2
}

+ E

{

(μU ,t−1G + σU ,t−1WU ,t−1)
2
}

− 2E
{

(μU ,tG + σU ,tWU ,t )(μU ,t−1G + σU ,t−1WU ,t−1)
}

= μ2
U ,t + σ 2

U ,t + μ2
U ,t−1 + σ 2

U ,t−1

− 2μU ,tμU ,t−1 − 2σU ,tσU ,t−1E{WU ,t−1WU ,t }.

(186)

Similarly, we have for any t ≥ 1

lim
d→∞

1

d
‖vt+1 − vt‖2 a.s.= μ2

V ,t+1 + σ 2
V ,t+1

+μ2
V ,t + σ 2

V ,t − 2μV ,tμV ,t+1 − 2σV ,t+1σV ,tE{WV ,t+1WV ,t }. (187)

Since |E{TL(Y )G}| > 0, the initialization μV ,1 of the state evolution recursion
in (75) is strictly non-zero. Therefore, Lemma 4 guarantees that the state evolution
recursion (72)–(73) converges to either the fixed point FP1 or to FP2 depending on
the sign ofμV ,1.Without loss of generality assume thatμV ,1 > 0, so that the recursion
converges to FP1. (The argument for μV ,1 < 0 is identical.)

lim
t→∞ μV ,t = μ̃V , lim

t→∞ σ 2
V ,t = σ̃ 2

V , lim
t→∞ μU ,t = μ̃V√

δβ̃
, lim

t→∞ σ 2
U ,t = σ̃ 2

V

δβ̃2
.

(188)
Hence, the desired result immediately follows from (186), (187) and Remark 8, if we
show that E{WV ,t+1WV ,t } → 1 and E{WU ,t−1WU ,t } → 1 as t → ∞.

Taking r = (t − 1) in (60) and using the formula for gt (·, ·) from (68), we obtain

E{WV ,t+1WV ,t }σV ,t+1σV ,t = δE
{

Z2(μU ,t G + σU ,tWU ,t )(μU ,t−1G + σU ,t−1WU ,t−1)
}

= δ
(

E{Z2G2}μU ,tμU ,t−1 + E{Z2}E{WU ,tWU ,t−1}σU ,tσU ,t−1
)

.

(189)
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Next, taking r = (t − 1) in (59) and using the formula for ft (·) from (68), we get

E{WU ,tWU ,t−1}σU ,tσU ,t−1

= 1

δ
E

{(
μV ,t X + σV ,tWV ,t

βt
− X

√
δμU ,t

)(
μV ,t−1X + σV ,t−1WV ,t−1

βt−1
− X

√
δμU ,t−1

)}

= 1

δ

σV ,t σV ,t−1

βt βt−1
E{WV ,tWV ,t−1}.

(190)
Here, the last equality is obtained by noting from (72) that

√
δμU ,t = μV ,t

βt
, hence the

coefficients on X cancel. Combining (189) and (190), we obtain

E{WV ,t+1WV ,t } = δE{Z2G2}μU ,t μU ,t−1

σV ,t+1σV ,t
+ E{Z2}σV ,t σV ,t−1

βt βt−1 σV ,t+1σV ,t
E{WV ,tWV ,t−1}.

(191)
For brevity, we write this iteration as wt+1 = at + btwt , where

wt = E{WV ,tWV ,t−1}, at = δE{Z2G2}μU ,t μU ,t−1

σV ,t+1σV ,t
, bt = E{Z2}σV ,t σV ,t−1

βt βt−1 σV ,t+1σV ,t
.

(192)
The iteration is initialized with w1 = E{WV ,1WV ,0} = 0. Note that, as t → ∞, the
sequences at and bt converge to well-defined limits determined by (188). By using
the sub-additivity of lim sup, we have that

lim sup
t→∞

wt+1 = lim sup
t→∞

(at + btwt ) ≤ lim
t→∞ at + lim

t→∞ bt lim sup
t→∞

wt . (193)

Rearranging and using the limits from (188), we obtain

lim sup
t→∞

wt ≤ E{Z2G2}
(β̃2 − E{Z2})

μ̃2
V

σ̃ 2
V

= 1, (194)

where the last equality follows from (76). By using the super-additivity of lim inf, we
also have that

lim inf
t→∞ wt+1 = lim inf

t→∞ (at + btwt ) ≥ lim
t→∞ at + lim

t→∞ bt lim inf
t→∞ wt , (195)

which leads to

lim inf
t→∞ wt ≥ E{Z2G2}

(β̃2 − E{Z2})
μ̃2
V

σ̃ 2
V

= 1. (196)

By combining (194) and (196), we conclude that

lim
t→∞E{WV ,t+1WV ,t } = 1.

By using (190) and (188), we also have that

lim
t→∞E{WU ,t−1WU ,t } = 1,
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which completes the proof.

G An Auxiliary Lemma

Lemma 9 (Lemma 4.5 in [18]) Let (Qt )t≥1 be a sequence of distributions converging
weakly to some distribution Q, and let h be a non-negative continuous function such
that

lim
t→∞

∫

h dQt =
∫

h dQ. (197)

Then, for any continuous function ψ such that |ψ | /(1 + h) is bounded,

lim
t→∞

∫

ψ dQt =
∫

ψ dQ. (198)
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