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Abstract 

It is practical to collect a huge amount of movement data and environmental context information 

along with the health signals of individuals because there is the emergence of new generations of 

positioning and tracking technologies and rapid advancements of health sensors. The study of the 

relations between these datasets and their sequence similarity analysis is of interest to many 

applications such as health monitoring and recommender systems. However, entering all movement 

parameters and health signals can lead to complexity of the problem and to an increase in its 

computational load. In this situation, dimension reduction techniques can be used in order to avoid 

consideration of simultaneous dependent parameters in the process of similarity measurement of the 

trajectories. The present study provides such a framework to use spatial-temporal data and movement 

parameters along with independent context information in the process of measuring the similarity of 

trajectories. In this regard, the omission of dependent movement characteristic signals is conducted by 

using an unsupervised feature selection dimension reduction technique. To evaluate the effectiveness 

of the proposed framework, it was applied to a real contextualized movement and related health signal 

datasets of individuals. The results indicated the capability of the proposed framework in measuring 

the similarity and in decreasing the characteristic signals in such a way that the similarity results -

before and after reduction of dependent characteristic signals- have small differences. The mean 

differences between the obtained results before and after reducing the dimension were 0.029 and 

0.023 for the round path, respectively. 

Keywords Movement, Context-Aware, Signal Characteristic, Similarity Measurement, Dimension 

Reduction, Health GIS 
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1 Introduction 

Movement is a complex multidimensional process involving space, time, and context (Dodge, 

2019). Moving entities (e.g., humans, animals, and vehicles) leave a trace of their position 

over time, which is referred to as spatial trajectories (Zheng and Zhou, 2011). In recent 

years, due to significant advancements in tracking and navigation technologies (e.g., Global 

Positioning System (GPS)) a large amount of movement data is recorded in the form of 

spatial trajectories along with various temporal resolutions (Basiri et al., 2018). In addition, it 

is possible to ubiquitously monitor the environment and collect contextual information (e.g., 

weather conditions, slope, traffic, and health signals) over time by fixed and moveable 

sensors along with spatial trajectories (Kays et al., 2015, Sharif and Sadeghi-Niaraki, 2017), 

which we referred to as contextual trajectories. For example, some wearable gadgets are 

equipped with sensors to measure the health signs of individuals instantly (like heart rate and 

blood pressure), along with the capability of recording the position and movement 

parameters, such as speed and direction of individuals by their embedded navigation systems 

(e.g., GPS). Therefore, studying behaviors of moving entities, while considering various 

context factors, challenges the existing methods of data mining and makes their development 

more essential than ever.  

Similarity analysis of trajectories and movement signals processing are fundamental issues in 

spatial data mining. It can be considered as a low-level knowledge extraction technique 

because the similarity outputs can be used in other data mining techniques, such as movement 

pattern recognition, classification, and clustering. On the one hand, finding the similarities 

between trajectories have been conducted by traditional geometrical functions that neglect the 

inherent nature of the entities. On the other hand, a large number of studies have used spatial, 

temporal, and movement parameters in similarity analysis of trajectories. To have a more 

accurate understanding of movement patterns of entities in different conditions, it is 

necessary to establish a relation between the movement of an entity and its context 

(Amouzandeh et al., 2018, Brum-Bastos et al., 2018, Sharif et al., 2019). Therefore, for 

context-aware analysis of trajectories there is a need to develop algorithms that can compare 

the context information along with spatial parameters and movement sequences of entities 

(Sharif et al., 2018). Indeed, analyzing all the aforementioned parameters simultaneously may 

lead to more complexity of the problem and an increase in the algorithm’s computational 

load. One possible solution is to find out the interdependent trajectories variables and 

disregard them in the similarity analysis process. This can be accomplished by developing 
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dimension reduction methods and by only entering the maximum independent movement 

data and context information.  

Context-aware movement analysis in the health sector has become more noticeable than ever. 

Monitoring individuals’ health by analyzing their functional signals during movement is 

considered as one of the significant cases in this context (Kaffash-Charandabi et al., 2019). It 

is desired to study the relation of human health indexes (e.g., heart rate and blood pressure), 

movement parameters (e.g., speed, direction, and acceleration), and environmental contexts 

(e.g., slope and elevation) by measuring the context-aware similarity of trajectories. 

However, in ubiquitous monitoring of individuals’ health, the significance of fast processing 

of the generated big movement data and context information is essential. Therefore, 

discovering and reducing dependent parameters for faster computation is possible by using 

the dimension reduction techniques in the study of both trajectories and functional signals. 

Previous researches on trajectory similarity analysis have considered all the attributes of 

trajectories simultaneously. That causes complexity and computational load. In addition, 

previous researches have employed geometrical functions to compare the distances between 

these attributes- which have their own limitations. Therefore, this research aims to present a 

context-aware framework for similarity analysis of trajectories, which removes the dependent 

movement and context information by using a dimension reduction technique. The 

contributions of this study are mainly: (1) finding the effective variables of spatial, 

movement, and context (environmental and individual) as well as their inter-relation 

(interaction) in the analysis of individual’s movement and health data, and (2) providing a 

framework based on dimension reduction to measure the similarities of trajectories and health 

signals of individuals by maintaining the value of similarities. The results of this study can be 

used to predict the future trend of movement and its effects on the health signs of individuals 

in different systems including monitoring and health recommender systems. 

The remainder of this article is structured as follows: Section 2 explains the basic concepts 

and a review of previous research on similarity measurement of trajectories. Section 3 

proposes a context-aware similarity measurement framework based on dimension reduction 

techniques. Section 4 evaluates the developed framework by its implementation on the actual 

data of pedestrians. The obtained results are discussed in Section 5. Finally, conclusions and 

suggestions for future research are discussed in Section 6. 
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2 Preliminary and Review of Literature 

This section begins by introducing the concepts used in conducting the objectives of this 

research. The following is a review of the research conducted in the field of movement 

analysis based on the similarity measurements of the trajectories using spatial data, 

movement parameters, and context information. Finally, it introduces the existing methods 

and conducted research in dimension reduction including feature selection and extraction. 

2.1 Concepts 

2.1.1 Similarity measure of trajectories 

Basic analysis of trajectories is a similarity analysis that answers the question: “How much 

are the trajectories of two or more entities similar?” Trajectories can be considered similar if 

they have the same shapes and movement parameters, visit the same places, have identical 

patterns (Laube, 2014), and share commonalities in their contexts (Sharif and Alesheikh, 

2017). In general, the methods of determining the similarity of trajectories can be divided into 

three categories of geometric similarity based on space and time, physical similarity based on 

movement properties, and context-aware similarity based on the composition of properties 

(Demšar et al., 2015). In addition, several methods investigate the similarity of two signals 

based on the shapes and behaviors of the signals rather than their distance. These methods are 

normally used in the fields of artificial intelligence, machine learning, and pattern recognition 

and classification (Chen et al., 2009, Duch, 2000) as well as in GIScience and remote sensing 

applications, to measure spectral properties between two different vectors. Examples of these 

applications and research include dimension reduction (Hasanlou et al., 2015), target 

recognition (Zhang et al., 2015), change detection (Liu et al., 2015), image registration (Ren 

et al., 2016), image classification (Hosseini et al., 2012), and embedding representation 

(Nalmpantis and Vrakas, 2019). Among the shape-based similarity measure methods, 

Kulczynski (KU), Taminoto (TA) and Pearson correlation coefficient (PCC) have been of 

interest (Seydi and Hasanlou, 2017). In addition, PCC and their variants have been widely 

used in collaborative filtering to evaluate similarity (Wang et al., 2017). In a separate study, 

the performance, strengths, and weaknesses of similarity measurement methods were 

reviewed (Ranacher and Tzavella, 2014). 
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2.1.2 Dimension reduction  

Feature selection and feature extraction methods have been introduced for dimension 

reduction. In feature selection method, the desired output is a subset of initial data. In fact, a 

subset of the original data, which is smaller than the initial set, is chosen without any change 

in the selected data. However, in feature extraction method, the nature of data changes and 

subsequently the data computing space changes (Krızek, 2008). Therefore, one of these 

methods is selected depending on the application and data types. Feature selection method 

includes supervised filtering techniques and wrapper, and unsupervised similarity-based, 

mutual information, and dependency-based techniques. To achieve the research objective, the 

feature selection method is used, since the nature of the signals will be preserved after 

reducing dimension and selecting the optimal and efficient signals. 

2.2 Review of Literature 

A large number of studies have used distance-based similarity functions for spatial and 

spatial-temporal similarity measurements (Yuan and Raubal, 2014, Xia et al., 2010). Given 

the variety of movement properties along with spatial-temporal information, Dodge et al. 

(2012) generated trajectories based on movement parameters (i.e., speed, acceleration, and 

direction) and found the similar trajectories by applying a developed version of the editing 

distance, called the normalized weighted edit distance (NWED). Adding semantic 

information to the trajectories makes the questions and answers, analysis, and data mining of 

moving objects’ data simpler (Alvares et al., 2007). Furtado et al. (2016) transformed the 

trajectories of moving objects into a sequence of stops and considered a set of features (the 

purpose of stop and activity at stop position) which resulted in a multi-dimensional trajectory. 

Movement in the real world is significantly affected by both internal and external contexts. 

The term context in the movement studies is defined as “that part of a situation or data that 

influences movement or is influenced by movement” and has been divided into two forms of 

internal context (i.e., all details directly related to the entity) and external context (i.e., any 

environmental factor that affects the movement) (Sharif and Alesheikh, 2018).  Due to the 

importance of context in the movement behavior analysis, various studies have been 

conducted in this field including ranking and reduction of uncertainty of trajectories based on 

context information (Dai et al., 2016), prediction of the user's external location based on 

context information (Guessoum et al., 2016), and human movement analysis using a 

combination of trajectories made by GPS and context information (Siła-Nowicka et al., 
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2016). Similarity measures of trajectories may undergo changes while considering the context 

dimension. Buchin et al. (2014) presented a similarity measurement framework by combining 

context and spatial distances. These distance functions were the pre-defined Fréchet distance, 

Hausdorff distance, and equal time distance. Sharif and Alesheikh (2017) provided a distance 

measurement function called context-based dynamic time warping (CDTW) by using context 

information in similarity search of aircraft trajectories in order to find spatial-temporal-

context patterns in their databases. Context information has its own heterogeneity and 

uncertainty because it is collected from different sources and with quantitative (numerical) 

and qualitative (descriptive) values. Therefore, Sharif et al. (2019) developed a context-aware 

framework based on fuzzy inference systems to model the similarity of trajectories using 

different types of movement data and internal and external context information. A review of 

the relevant literature reveals that almost every research has exploited traditional similarity 

measure functions that are computationally overpriced. In addition, every research considered 

all the attributes of trajectories that caused a high computational load. 

Dimension reduction methods have been suggested to reduce computational costs especially 

in hyperspectral image analysis. Zhao and Du (2016) presented a framework based on 

spectral-spatial band feature-based classification (SSFC) using dimension reduction and deep 

learning techniques. Ren et al. (2014) used the dimension reduction principal component 

analysis (PCA) procedure in hyperspectral band imagery to overcome large dimensions 

handling. In the data mining field, Houari et al. (2016) proposed a new technique for reducing 

the high-dimensional data using the Copulas and Lu analysis tools because the use of high-

dimensional data increases noise, redundant data, and the possibility of unconnected data 

entities. General feature selection techniques are developed based on mutual information 

using single-objective and multi-objective optimizations. To solve the problem of discrete 

and continuous random variables in a dataset, Coelho et al. (2016) presented a mutual 

information estimator to solve the problems of dimension reduction and classification. Given 

the good functionality of dimension reduction methods, they are presumed to be feasible to 

be employed in movement analysis in terms of detecting and removing dependent context 

information. 

By reviewing previous researches, it can be concluded that it is possible to simultaneously 

apply spatial, movement, and contextual dimensions in the similarity measure process. 

However, realizing the interactions between these parameters and removing the dependent 

parameters may reduce the computation time. Besides, moving objects’ trajectories have been 



 

7 
 

analyzed by traditional distance-based functions in a pairwise manner where each function 

has its limitation and complexity. As an alternative, previous researches have shown the 

robustness of shape-based methods in signal analysis, which can be applied to finding the 

similarities of trajectories. Therefore, the proposed framework in this research uses shape-

based measurement along with only optimum context dimensions. It may be employed in 

applications -like recommender systems- that require high-speed decision-making. 

3 Methodology 

The methodology of the research consists of three main stages, shown graphically in Fig. 1: 

(1) data preparation, (2) unsupervised feature selection using mutual information, and (3) 

evaluation of the mutual information method performance by computing the similarity before 

and after dimension reduction.  

 

Fig. 1 Methodology for analyzing movement signals of individuals 
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3.1 Data preparation 

3.1.1 Filtering, smoothing, and resampling 

The precision of GPS raw data depends on the presence of obstacles which block GPS 

signals, multi-path effects, ionospheric and tropospheric errors, and so on. Preprocessing of 

trajectories to detect, correct, and remove erroneous records to increase the quality of the 

trajectories is fundamental before the movement data analysis (Yan and Spaccapietra, 2009). 

The data preprocessing step normally consists of filtering, resampling, smoothing, and/or 

map matching. 

Filtering is used as a statistical approach to detect and remove outlier(s). It is considered as an 

outlier if any point of the trajectory is distanced from its predecessor point as 2.5 times as the 

standard deviation of the distance between the consecutive points of the trajectory. 

Furthermore, linear interpolation techniques are used in the resampling step to create spatial 

trajectories with regular sampling intervals. The smoothing process is used to remove the 

noise effect of data. More is used in navigation applications and transportation networks, and 

there is no need for a map-matching step in this research. Various methods including least 

square, Spline approximation, moving average, Kernel-based methods, and Kalman filter 

have been used to smooth the raw GPS data (Dodge et al., 2009). Since the data of this 

research is collected by the Garmin device with defined precision, the extended Kalman filter 

is used to smooth and filter the data (Jun et al., 2006). In addition, linear interpolation is used 

in resampling. The output of the Kalman filter is spatial trajectories and movement parameter 

signals such as speed and acceleration. 

3.1.2 Formation of the characteristic signal 

Studying entities’ trajectories spatially along with their movement characteristics (e.g., speed, 

acceleration, and direction) and their relations have always been of interest (Giannotti and 

Pedreschi, 2008). As movement starts, a continuous time-dependent signal is created due to 

the change in movement characteristics, which is referred to as movement parameter signal 

(MPP) (Dodge et al., 2009). These parameter signals can be in the forms of spatial (such as x, 

y, z coordinates), movement (such as speed, acceleration of the individual), and performance 

(such as heart rate). Contrary to the spatial trajectories indicating the geometric 

characteristics of the movement over time, the movement characteristics represent the 

physical concepts of movement. Therefore, these characteristics describe the movement of 

the entity and help to understand movement behaviors more comprehensively, and are also 
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used in the exploration of the behavioral patterns of moving objects (Nathan et al., 2008). 

Detecting different modes of movement such as walking, bikes, cars, and buses, or ecological 

behaviors of animals including standing, flying, and forage are easily identifiable by dividing 

the trajectory using quantitative parameters (Laube, 2014). In this research, the movement 

parameter signals include speed (the displacement rate of the entity), acceleration (the rate of 

speed change of the entity), and the Kalman filter output. To enter the process of similarity 

measuring, the movement parameter signals include net displacement (beeline distance 

between a point and the initial point of the profile), consecutive displacement (beeline 

distance between two consecutive points), turning angle (direction of movement), 

straightness (path rate and consecutive displacement), traveled path (length of the trajectory), 

and slope (height differences and distance differences) are calculated. Furthermore, the 

movement parameter signal of cadence (number of steps per minute) and the performance 

parameter signal of heart rate are collected by a device. 

3.1.3 Formation of dimensions for all moving entities in the form of visual bands 

To implement the unsupervised feature selection of mutual information, all spatial trajectories 

and characteristic signals should be converted into visual bands. The O symbol is considered 

for a moving entity and the associated dataset is defined as
i i i i i i i

1 2 3 4 5 mO X ,Y , Z ,PP ,PP ,...,PP( )
, 

where m represents the number of signals collected for the ith moving entity. As shown in 

Fig. 2, the construction of the dimension of one of the parameter signals is indicated for all 

moving entities. 
i i

1 n(PP ,...,PP )
 represents the vector of one of the parameter signals for the ith 

moving object, where n is the magnitude of the vector. 
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Fig. 2 The process of generating dimension for a characteristic signal for every moving entity 
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3.2 Unsupervised Feature Selection using Mutual Information 

The mutual information method, which is regarded as one of the unsupervised feature 

selecting methods, is used in this research. Mutual information is a complete statistic for 

measuring the dependence between two random variables (Cover and Thomas, 2012). 

Furthermore, mutual information can be easily interpreted, while the interpretation of other 

statistics such as rank-ordering is more difficult (Ross, 2014). Another definition of mutual 

information is the reduction of uncertainty due to another random variable (Cover and 

Thomas, 2012). The Shannon Information Unit (symbol: sh), which is known as a bit, is 

defined by IEC 80000-13. A Shannon is the content information of an event whose 

occurrence probability is 0.5 (Stone, 2015). Mutual information for discrete (Cover and 

Thomas, 2012), continuous (Stone, 2015), and both discrete and continuous random variables 

can be calculated (Ross, 2014). The calculation method of mutual information for a visual 

band is described as follows since all the spatial trajectories and parameter signals are 

converted into visual bands. Suppose the image X is available with N pixels. The first thing 

to do for calculating the entropy and mutual information is to partition (X1, X2, ..., Xi, ..., Xt) 

to show that each pixel is assigned to a group based on its value. Xi is the number of pixels 

belonging to the ith group. (P1, P2, ..., Pi, ..., Pt) are the occurrence probability of the values in 

the image. In other words, the probability values can be obtained using a histogram of an 

image. 

The Shannon entropy represents the amount of information in a visual band. Shannon entropy 

of an image is calculated by using Eq. 1 (Wang et al., 2012).  

(1) 
x X

H(X) E[log p(x)] p(x) log(p(x))


     

The mutual information of two visual bands is calculated by Eq. 2, which indicates the 

amount of information that is mutual in two visual bands (Wang et al., 2012). 

(2) I(X;Y) H(X) H(X | Y)   

In terms of mutual information, H(X) and H(Y) are Shannon entropies for the two X and Y 

bands. H(X, Y) is the conditional entropy for the two X and Y bands. The obtained value 

from the mutual information is not between 0 and 1 range, but the obtained result from the 

mutual information is now standing within the unit interval because of using the normal 

mutual information,. Eq. 3 indicates the computation method of mutual information. 
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(3) normal

I(X,Y)
I (X,Y) 2.

H(X) H(Y)

 
  

 
 

When the obtained value is closer to one (1), the shared information in two bands becomes 

more and as the value is closer to zero (0), the shared information by the two bands becomes 

less.  

A threshold is defined in using mutual information techniques to remove the dependent 

dimensions. If the mutual information of two dimensions is greater than the threshold, they 

will be kept in the dataset. However, one of these two dimensions should be removed if 

mutual information of the two dimensions is greater than the threshold value. The way of 

choosing the threshold is empirical. More details on selection procedure of the threshold are 

explained in the implementation section. 

3.3 Performance Evaluation of the Proposed Framework 

To evaluate the performance of the mutual information method, the comparison of the 

obtained results from the context-based similarity measurement process is required before 

and after the dimension reduction. First, all the signal parameters and spatial trajectories are 

entered into the similarity measurement process and the similarity value is obtained for both 

moving entities. Then, the dimensions are removed through using the mutual information 

technique. Finally, the reduced dataset enters the context-based similarity measurement 

process. Two series of similarity values are compared before and after dimension reduction in 

order to evaluate the proposed approach of the research. The context-based similarity 

measurement process is explained below. 

3.3.1 Context-based similarity measurement process 

In this research, a method for measuring the similarity of two moving entities is introduced. 

This method can enter all context dimensions in the process of similarity measurement and it 

has a higher speed in comparison to other methods. Furthermore, this method can operate 

more efficiently when there is context information in the dataset collected for a moving 

entity. Using this method, the simultaneous effect of two dependent dimensions can be 

avoided in terms of the value obtained for the similarity value. The context-based similarity 

measurement framework for moving entities is explained as follows. 
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Letter O represents a moving entity. The associated dataset is defined as

1 2 n

i i i i i i i i

1,1 1,2 1,m 2,1 2,2 2,m n,mO ,C ,...,C ,C ,C ,...,C ,...,C(C )
. In addition, 

n

K

K 1

m



 equals the number of 

signals collected for the ith moving entity. The context-based similarity measurement 

approach includes the following four steps: 

Step 1: The visual bands are created based on the number of signals collected for each 

moving object. The number of created visual bands is

n

K

K 1

m



. If the existing bands are 

categorized in such a way that the dependent bands are gathered in one category, n is the 

number of categories, and mk is the number of dependent bands belonging to each category. 

Step 2: Dependent dimensions for moving entities were determined in the first step. The 

second step is to consider two moving entities to calculate the similarity of each band in each 

category. As it was already mentioned, there are methods that measure the similarity of two 

signals based on the shape and behavior of the signals rather than on the distance between 

them. In these shape-based methods, signals can be used to assess the similarity of spatial 

trajectories and functional and movement characteristic signals. In this research, one of the 

shape-based similarity measurement methods of signals is used because the obtained 

similarity value for spatial trajectories and functional and movement characteristic signals 

with different numerical scales are in the same range. In addition, this method is faster than 

the distance-based methods. 

One of the similarity measurement methods based on the shape of the signal is the Pearson 

correlation coefficient (PCC). This method expresses the dependence of two signals. The 

more similar the behavior and the shape of the two signals are, the greater dependence the 

two signals indicate. Therefore, this method can be considered as an appropriate criterion to 

measure the similarity of two signals. The computational formula of this method is presented 

for two signals of n

i

n,mC
and n

j

n,mC
in Eq. 4 (Wang, 2012),  

(4) 

   

   

i j
n nn ,m n ,mn n

n ,mn

i j
n nn ,m n ,mn n

n
i j

n,m n,mC C
i, j i 1
C 0.5 0.5

n n
i j

n,m n,mC C
i 1 i 1

C . C

S

C . C



 

 


   

    
   



 
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where 
i
n ,mn

C


 indicates the mean of the values of signal n

i

n,mC
and 

j
n ,mn

C


 represents the mean 

of the values of the signal n

j

n,mC
. The n ,mn

i, j

CS
is the obtained similarity for the signal n

i

n,mC
and 

n

j

n,mC
for the i and j entities. Therefore, the similarity is calculated by using Eq. (4) in each 

category for each dimension. 

Step 3: The average is obtained according to Eq. (5) from the obtained similarity values in 

each category. 

(5) n ,1 n ,mn

i, j i, j

i C,

n

Cj

n

S ... S
S

m

 


 

where 
i, j

nS
is the obtained similarity in the nth category. Therefore, a similarity value is 

obtained for each category. The n values of similarity are computed because the number of 

categories is equal to n. 

Step 4: Finally, an average is derived from n similarity value. The computational similarity 

formula for the moving objects Oi and Oj is according to Eq. 6. 

(6) 

 

where n ,mn

i, j

CS
 is considered as the similarity obtained for n

i

n,mC
 and n

j

n,mC
signals using the 

PCC. 
i, jS is the final similarity obtained for i and j moving entities. 

 

4 Implementation and Results 

This section firstly introduces the study area and dataset and then describes the effective 

movement and context parameters attributed to individuals’ health. Secondly, it evaluates the 

proposed framework and demonstrates its efficiency in reducing the number of collected 

movement signals by implementing it on a movement dataset. 

 

 

1,1 1,m 2,1 2,m n ,1 n ,m1 2 n

i, j i, j i, j i, j i, j i, j

i, j 1 2 n

i, j i, j i, j

1

C C C C C C

2 n

S ... S S ... S S ... S
....

m m m
S

n

S S ... S
     

n

     
  



  

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4.1 Data  

The data were collected in a region in the north of Tehran, Iran, called Bam-e-Tehran. Bame 

Tehran refers to the upper part of Velenjak region. Bam-e-Tehran complex starts at an 

altitude of 1830 meters in Velengak Street and ends at an altitude of 1920 meters above sea 

level. This 2-km long and high-slope path is used as a recreational and pedestrian path for its 

beautiful mountain views in the highest point of Tehran city (Fig. 3a). 

The dataset comprises of the time series of spatial, movement, and functional characteristics 

of individuals’ movements. In particular, 50 trajectories of 25 different pedestrians are 

collected so that each person traveled (going up and returning down) the designated path on 

foot. Hereinafter, we name the upward and downward paths as path 1 and path 2, 

respectively. The traveled path and its profile are illustrated in Fig. 3b. The spatial data 

including latitude, longitude, and altitude, the movement signals including speed, 

acceleration, net displacement, consecutive displacement, turning angle, straightness, and 

traveled path, the functional signals including heart rate, and cadence (the number of steps 

per minute), and path slope (the height difference and distance difference) of each moving 

object are either collected or calculated. The data collection rate is 1 second. The averages of 

the total sampling points for all trajectories and the length of path are, respectively, 1303 and 

0.991 km for path 1, and 1323 and 0.981 km for path 2. The spatial trajectory units including 

x, y, height, net displacement, consecutive displacement, and traveled path are in meter. 

Furthermore, units of speed, acceleration, turning angle, and heart rate are m/s, m/s2, radians, 

and beats per minute (BPM), respectively. 

The employed device for data acquisition is a Garmin GPS smart watch, Vivoactive HR 

model. Among its several features, the Elevate™ wrist heart rate technology enables us to 

measure heart rate from the wrist. Furthermore, using its built-in GPS, the Garmin device 

allows us to have spatial data including latitude, longitude, and altitude synchronized with 

time. It also calculates speed, acceleration, slope, distance, time, and cadence. This wearable 

device can be used with the web-based Garmin Express software. 
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(a) 

 
(b) 

Fig. 3 Study region: (a) the traveled path by individuals, (b) path profile in 3D 

As already mentioned, the GPS data needs to be preprocessed. The extended Kalman filter 

algorithm is implemented on latitude, longitude, and height data. The outputs of the Kalman 

filter are 3D spatial trajectories (x, y, and height), which are smoothed and filtered. In 

addition, speed and acceleration movement signals were calculated using the Kalman filter. 

Further, the collected and calculated signals were resampled to make them symmetric. 

4.2 Results 

The proposed research model was implemented on the dataset. In the following, the 

implementation results are presented in two sub-sections. The first sub-section examines the 

relations between movement parameters. The second examines the performance of the 

proposed framework of the research and clarifies in detail the results of the evaluation of 

similarity values before and after the feature selection procedure.  

4.2.1 Investigating the relation between movement parameters 

This section examines the relations in the dataset. There certainly are relations between for 

the round trip path, the signals of paths, the height and the heart rate, the height and the 
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consecutive displacement signals, and slope and speed. Therefore, the spatial signals of 

height and movement parameters of paths are effective on heart rate signals, and slope affects 

the movement parameter of speed. As shown in Fig. 4, the average heart rate signal and the 

height of all individuals are depicted for the round trip path. The linear regression of both 

signals is also given. For path 1, the overall trend of both signals is increasing. In other 

words, the heart rate increases as the height increases. It is worth noting that there is an 

increasing heart rate pattern for all individuals in path 1. 

 
(a) 

 
(b) 

Fig. 4 Relation between heart rate and height: (a) path 1, (b) path 2 

As shown in Fig. 5, the average heart rate signals and paths of all individuals along with the 

linear regression of both signals are depicted for paths, respectively. As observed, the overall 

trend of both signals is increasing. This means that the heart rate increases as the traveled 

path increases. On path 2, there is an increased heart rate pattern for all individuals. However, 

an increase in heart rate for path 2 was lower than the increase in heart rate for path 1 because 

the height of path 2 is descending as observed in Fig. 4b. 
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(a) 

 
(b) 

Fig. 5 Relation between heart rate and traveled path: (a) path 1, (b) path 2 

In addition, the average movement signal of speed for all the individuals and the slope for 

paths 1 and 2 are shown in Fig. 6. As shown, slope and speed generally have a level of 

relationship with each other. The part of the graph between the two green hachure lines 

indicates the uphill. Further, the part of the diagram between the two orange hachure lines 

indicates the downhill. It is worth noting that speed in the uphill and downhill decreases and 

the speed starts to increase when the slope of path decreases as long as it is zero. This trend 

exists for both paths. Interestingly, this is the pattern for all individuals. 
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(a) 

 
(b) 

Fig. 6 Relation between slope and speed: (a) path 1, (b) path 2 

4.2.2 Evaluating the performance of the proposed framework 

To evaluate the proposed framework, the obtained results from the similarity measurement 

function are compared to each other before and after reducing the number of signals. In this 

study, the results for path 1 indicated that the average difference between the obtained results 

before and after the dimension reduction is about 0.029 by choosing a mutual information 

threshold of 0.2. The same number for path 2 is 0.023. 

In the mutual information method, removing dimensions is dependent on choosing a 

threshold. The threshold selection method is empirical. To select this value, the research 

approach is implemented by considering a certain threshold and the variation in the similarity 

value is evaluated. The similarity obtained from the process of similarity measurement before 

and after dimension reduction becomes less when a higher threshold is selected. For example, 

the average number of similarity variations is more than 0.3 by choosing a threshold less than 

0.2. Furthermore, the average variation of similarity values is greater than 0.0005 by 

choosing a threshold less than 0.9. Regarding the variation in the similarity values before and 

after using the mutual information with different threshold limits, the value of 0.2 was 

selected as the threshold. This value can be set more than 0.2, in which case the variation in 
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similarity value is less than 0.03. However, it is possible to effectively remove a higher 

number of dimensions by choosing a threshold of 0.2 while achieving acceptable variations in 

similarity values. 

The amount of mutual information of dimensions for path 1 and 2 is shown in Table 1 and 2. 

For example, the mutual information of heart rate and height dimensions of path 1 was 

calculated to be 0.231. By choosing a threshold of 0.2 for path 1, the speed dimension among 

the dimensions of consecutive displacement, slope, and speed, and the heart rate dimension 

among the dimensions of path, height, and heart rate enter the measurement process. The 

height, path, slope, and consecutive displacement dimensions are removed from the entities’ 

dataset. However, the height dimension for path 2 is not removed. 

Table 1 Mutual information for path 1 

 Table 2 Mutual information for path 2 

Traveled 

path 
Height 

Heart 

rate 
Slope 

Consecutive 

displacement 
Speed  

- - - 0.254 0.950 1 Speed 

- - - 0.253 1 - 
Consecutive 

displacement 

- - - 1 - - Slope 

0.377 0.231 1 - - - Heart rate 

0.467 1 - - - - Height 

1  - - - - Traveled path 

Traveled 

path 
Height 

Heart 

rate 
Slope 

Consecutive 

displacement 
Speed  

- - - 0.243 0.948 1 Speed 

- - - 0.242 1 - 
Consecutive 

displacement 

- - - 1 - - Slope 

0.341 0.190 1 - - - Heart rate 

0.465 1 - - - - Height 

1 - - - - - Traveled path 



 

20 
 

The difference in similarity due to the removal of the dependent dimensions is less than other 

dimensions because the remaining signals in the dataset can represent the dependent signals 

separately. For example, on path 1, the heart rate signal in the process of similarity 

measurement can represent the two dimensions of the height and path; and the speed signal 

can represent two dimensions of slope and consecutive displacement due to dependence. 

Furthermore, in path 2, the heart rate signal in the process of similarity measurement can 

represent path and the speed signal can represent two dimensions of slope and consecutive 

displacement due to dependence. Therefore, it is possible to remove dependent signals. 

To provide a better understanding of the dependent signals, Table 3 presents the results of the 

similarity difference before and after the reduction of each signal. In fact, a two-by-two 

average similarity difference between all individuals before and after the reduction of each 

signal is represented. In each path, the data for 25 people were collected. Therefore, there are 

45 comparative modes for every two individuals in each path. In this context, in each path, 45 

similarity differences between two individuals are obtained before and after reducing each 

signal. Then, the average of these 45 values is calculated and given in Table 3. As observed, 

the obtained changes resulting from removing dependent dimensions are much less than other 

dimensions because there is a dimension in the dataset which has the same effect on the 

similarity value as its dependent dimension after removing the dependent dimensions. 

However, in the case of removing other dimensions, more variations are available in the 

similarity value. For example, by removing the x independent spatial dimension, the 

similarity value for both paths varies -0.0275 while the similarity value varies -0.0075 by 

removing the dependent dimension for path 1 and -0.0091 for path 2. The variations after 

removing the dependent dimension of paths are far less than removing the x independent 

spatial dimension. 
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Table 3 Results of the similarity differences before and after reducing each of the signals 
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The boxplots of a two-by-two similarity measurement of all individuals before and after the 

reduction of each signal for both paths are presented in Fig. 7. The first boxplot is named 

“None of Dimension” because none of the dimensions is removed and it is depicted for the 

two-by-two similarity of all individuals without removing any of the dimensions in both 

shapes. However, one of the dimensions is removed and is named after the deleted dimension 

in the next boxplots. The boxplots related to the removal of the dependent dimension of 

consecutive displacement, slope, traveled path, and height for path 1 had very little changes 

compared to the first boxplot, which indicates little variation of similarity values. The 

boxplots related to the removal of independent dimensions for path 1 had more changes 

compared to the first boxplot, which indicates more variations of similarity values. For 

example, as shown in Fig. 7, the boxplot associated with the removal of the dependent 

consecutive displacement shows very slight changes compared with the first boxplot. 

However, the boxplot related to removing the independent dimension of acceleration 

indicates much more displacement and changes in comparison with the first boxplot. The 

above-mentioned cases are also true with a slight difference for path 2. In other words, the 

amount of variations in the boxplots for path 2 and path 1 is slightly different because the 

mutual information is different for these paths, leading to the variations in the similarity 

values for each path. 
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(b) (a) 

Fig. 7 Results of similarity measure function after and before each signal reduction for (a) path 1, (b) 

path 2 

5 Discussion 

As it was already mentioned, an individual’s movement speed is affected by the path slope. 

This is clearly observable on round trips, especially on the uphill and downhill. Further, for 

path 1 the heart rate is partly influenced by the traveled path and height. This connection is 

weaker for path 2 because the height of this path is descending, which can have less fatigue 

for pedestrians. 

In addition, there can be dependent signals in the collected dataset for each moving entity. 

The inclusion of these dependent signals in the process of similarity measurement should be 

avoided because they are affected by other spatial movement signals. These dependent 

signals can be identified using the unsupervised feature selection technique of mutual 

information. Table 1 and 2 indicate the values related to the mutual information of dependent 

signals. The remaining signals in the dataset can represent the dependent signals in the 

similarity measurement process. The similarity values before and after the reduction of 

dependent dimensions have little variations depending on the selection of the threshold. The 

average similarity variations from the comparison of both moving entities are presented in 

Table 3. Removing dependent dimensions of consecutive displacement, path, height, and 

slope caused less variation in the value of final similarity than in other dimensions. This is 

because the heart rate dimension represents the two dimensions of path and height and the 

speed dimension represents the two consecutive displacement and slope dimensions. Two 

dimensions of heart rate and speed have approximately the same effect as the final similarity 

due to their dependence on the mentioned dimensions. 
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The results of the similarity measurement function before and after the reduction of each of 

the signals for both paths indicate fewer changes after removing the dependent signals of 

consecutive displacement, slope, and path. Therefore, it is possible to consider all context 

dimensions in the similarity measurement process and avoid the inclusion of dependent 

dimensions which contain information affected by other dimensions effectively. 

Choosing the appropriate threshold for the intended application is considered as an important 

issue in implementation of the research approach. In applications where a similarity variation 

of 0.03 is considered high, it is recommended to use higher thresholds. Furthermore, setting 

the threshold can be challenging in such a way that the height signal for path 2 cannot be 

removed by selecting a threshold of 0.2. However, the height and heart rate signal for path 2 

have mutual information of 0.19. 

6 Conclusion 

Dependent movement, context dimensions and their relations had not been precisely 

considered in most movement studies. Due to significance of these issues in similarity 

measurement, attempts were made to identify and remove dependent dimensions by using 

one of the unsupervised feature selection techniques. Therefore, the present study introduced 

a novel context-aware framework for similarity measurement of the trajectories by only 

taking independent movement data and context information into account. The study aimed to 

specifically investigate the relationship between movement and context parameters in health 

indexes to reflect the behavior of affecting factors on health indicators. To this aim, a new 

approach was introduced for similarity measurement of trajectories, which could prevent the 

simultaneous effect of dependent dimensions on the dataset. In addition, the methods based 

on shapes and behaviors of signals, which have not been spatially used so far, were used in 

the calculation of the similarity of two signals. The implementation of these methods is 

relatively simpler than the ones introduced in the literature and the calculation of similarity is 

less time consuming. Finally, the dependent dimensions were removed using the 

unsupervised feature selection technique of mutual information. These issues will be very 

helpful in applications such as health recommender systems in which quick decision-making 

is a basic requirement. 

According to the proposed framework results, it is possible to identify and remove dependent 

dimensions using the unsupervised feature selection method in dimension reduction 

techniques, so that the results of the similarity measurement process can have very little 
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variations. This framework can be evaluated in other studies with spatial trajectories and 

signals of vehicles or animals along with different context information. Furthermore, the 

findings of this research can be used in classifying and pattern discovering, and evaluating 

the performance of the research approach in different areas. 
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