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While sexual reproduction is widespread among many taxa, asexual
lineages have repeatedly evolved from sexual ancestors. Despite extensive
research on the evolution of sex, it is still unclear whether this switch rep-
resents a major transition requiring major molecular reorganization, and
how convergent the changes involved are. In this study, we investigated
the phylogenetic relationship and patterns of gene expression of sexual
and asexual lineages of Eurasian Artemia brine shrimp, to assess how gene
expression patterns are affected by the transition to asexuality. We find
only a few genes that are consistently associated with the evolution of asexu-
ality, suggesting that this shift may not require an extensive overhauling of
the meiotic machinery. While genes with sex-biased expression have high
rates of expression divergence within Eurasian Artemia, neither female-
nor male-biased genes appear to show unusual evolutionary patterns after
sexuality is lost, contrary to theoretical expectations.
1. Introduction
Sex is nearly ubiquitous in animals, despite the costs associated with sexual
reproduction. Asexual lineages typically appear at the tip of phylogenies,
reflecting their short existence [1–3]. Sex is, therefore, presumed to confer an
evolutionary advantage, primarily through the action of recombination in
increasing genetic diversity, which in turn makes natural selection more effec-
tive [4–9]. According to theory [8,10,11], asexual species should have lower
genetic diversity, reduced levels of adaptation, larger numbers of transposable
elements and generally lower fitness than their sexual relatives. Groups where
both sexual and asexual species or populations can be found have been used to
test these hypotheses [12–17]. Fitness levels are hard to estimate, and most
studies have instead focused on molecular predictions. Surprisingly, asexual
populations often have similar diversity, rates of adaptation and numbers of
transposable elements as their sexual relatives [11,13,18–22]. It is, therefore,
still unclear whether shifts to asexuality consistently bring the changes in fitness
that are predicted by theory.

The molecular mechanisms underlying asexuality are largely unknown, and
the extent to which the switch to asexuality itself is associated with large shifts
in expression is still under debate. Comparisons of gene expression have been
used to investigate both the molecular basis and the consequences of asexuality
[16,23,24], and detected many hundreds of genes differentially expressed
between sexual and asexual morphs/lineages. Similarly, Duncan et al. [25]
found evidence of an entirely different developmental programme underlying
the asexual part of the life cycle of the pea aphid. On the other hand, single
loci often seem to control the shift between sexual and asexual states [26–28].
Whether this simple genetic architecture translates into large or subtle changes
in gene expression is still unknown.
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How the peculiar selective pressures that asexual lineages
face influence the evolution of their patterns of expression is
also unclear. If the efficacy of selection is simply reduced,
gene expression should progressively drift away from its
optimum. In this case, sexual and asexual lineages may
diverge quickly in their expression patterns, but in a largely
random manner. However, there is evidence that more
complex differences exist between the selective pressures
acting on sexual and asexual populations. van der Kooi &
Schwander [29] reviewed the decay of sexual traits after the
evolution of asexuality in animals and showed that male
traits, which are presumably under relaxed purifying selec-
tion, do not decay as quickly as sexual female traits (such as
ones required for mate finding), suggesting that the latter are
costly and are thus actively selected against. The changes in
meiosis involved in the transition to asexuality also lead to
convergent evolution at the level of gene sequences and
expression, indicating a further role for selection [16,17].

Finally, asexual lineages may have a selective advantage
relative to sexual lineages, as they are relieved from the ‘intra-
locus sexual conflict’ that occurs when alleles or genes are
beneficial to one sex but deleterious to the other [11,30].
When such conflict is prevalent, sexual species experience a
‘gender load’, as neither sex is able to reach its own optimum.
In asexual lineages, selection occurs exclusively in females,
overcoming this limitation. Parker et al. [23] proposed that
asexual females should, therefore, be able to invest more in
female functions, which they assessed by testing if genes
expressed primarily in females of stick insects increased
their expression after switches to asexuality. On the contrary,
asexual females had lower levels of expression for genes that
are female-biased in sexual lineages, and higher levels for
male-biased ones (they had ‘masculinized’ patterns of gene
expression), consistent with a change in female trait optima
in the asexual lineages and the decay of sexual traits. It is
still unclear if this masculinization reflects a general trend
of asexual species, and, if so, whether decay of female
functions is the main force driving it.

Eurasian brine shrimp of the genus Artemia is a promising
model for testing these theories. The clade consists of multiple
sexual species as well as several parthenogenetic asexual
lineages. The ancestral state of the group is sexual repro-
duction, with males and females showing extensive
morphological dimorphism [31]. Asexual lineages are thought
to have arisen multiple times as a result of ‘contagious parthe-
nogenesis’: asexual females occasionally produce males that
can fertilize females of closely related sexual populations,
thereby giving rise to new asexual lineages [32–36]. However,
the relationship between sexual and asexual lineages, and how
diverged they are, are still questions under debate, which have
mostly been investigated using a small number of mitochon-
drial and nuclear sequences [32,34,37]. How different these
species and populations are at the gene expression level, and
whether the asexual lineages share a single reproductive pro-
gramme (as expected under contagious parthenogenesis), is
still unknown. Here we describe a large RNA-sequencing
dataset for the three sexual species (Artemia sinica, Artemia
urmiana sexual and Artemia sp. Kazakhstan) as well as three
diploid asexual Artemia parthenogenetica lineages (Artemia
parthenogenetica Aibi Lake, Artemia parthenogenetica Atanasovsko
and Artemia parthenogenetica urmiana, referred to, respectively,
as Aaib, Aata and Aurm in the figures) of Eurasian Artemia
(see Methods and the electronic supplementary material for
details on their origin). We investigate the relationship
between these using thousands of transcript sequences as
well as patterns of genetic diversity. We characterize patterns
of expression in males and females of sexual species, and com-
pare them to expression patterns found in asexual females,
allowing us to test whether a core set of genes changes consist-
ently with the evolution of asexuality and whether we can
detect a feminization in expression patterns in asexual females,
consistent with a release from sexual antagonism.
2. Results
(a) Phylogeny and evolution of asexuality
The phylogenetic relationship between the six Eurasian
Artemia lineages used in this analysis was first established
based only on mitochondrial data and two nuclear genes
[33], which had suggested the existence of independent
asexual lineages, including one more closely related to A. sp.
Kazakhstan and another to A. urmiana sexual. A recent study
using more detailed mitochondrial and nuclear markers
found that all diploid asexual lineages are more closely related
to A. sp. Kazakhstan, and probably originated through a com-
plex demographic scenario involving a single origin of
asexuality followed by backcrossing to A. sp. Kazakhstan [37].
To examine these relationships with genome-wide data, we
sequenced RNA from multiple tissues for each lineage (elec-
tronic supplementary material, table S2), and assembled
high-quality transcriptomes for each of them (electronic sup-
plementary material, figure S1). The American species
Artemia franciscana (Afra) [36] was used as the outgroup.

Protein sequences were inferred from each transcriptome
with EVIGENE [38] (see Methods). Orthologous proteins were
obtained by finding reciprocal best hits between all seven pro-
teomes, then these 8389 sequences were aligned, concatenated
and used for maximum-likelihood (ML) phylogenetic analysis
with PHYML. The resulting tree is in figure 1a. A similar top-
ology was obtained with a Bayesian approach using BEAST2
(not shown). All sampled asexual lineages cluster with A. sp.
Kazakhstan, with A. urmiana sexual being an outgroup to the
cluster, consistent with [37]. These lineages (grey rectangle,
figure 1a) are very closely related, and the lengths of the
branches separating them are almost zero. We called genetic
variants in each population and estimated pairwise Fst
(figure 1a). The Fst analysis shows little genetic differentiation
within the A. sp. Kazakhstan/asexuals clade, consistent with
new strains of asexual Artemia having arisen repeatedly from
an A. sp. Kazakhstan-related lineage in a very short amount
of time [39].

The close relationship between A. sp. Kazakhstan and
the asexual lineages is also reflected in the gene expression
data. We profiled head and gonad expression, two sexually
dimorphic organs (as males have modified antennae used
for grasping females), from all lineages. The principal com-
ponent analysis (PCA) of expression shows that head
samples cluster primarily by species (figure 1b). In gonads,
males cluster by species, but among females, only A. sinica
forms a separate cluster. A. urmiana sexual and A. sp. Kazakh-
stan females overlap with asexuals, confirming the close
relationship between asexual and sexual lineages. The PCA
for the thorax shows the same pattern as heads, with A. sp.
Kazakhstan clustering with the asexuals independent of sex
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(electronic supplementary material, figure S5; RNA-seq for
this tissue is not available in A. urmiana sexual).
(b) Small shifts in expression associated with asexuality
We compared A. sp. Kazakhstan sexual females to asexual
females to find differentially expressed genes between the
two modes of reproduction using two approaches: first, we
pooled asexual females from all three lineages (A. urmiana,
A. Aibi Lake and A. Atanasovsko), and compared them jointly
to A. sp. Kazakhstan females (combined analysis); second,
we compared each individual asexual lineage to A. sp.
Kazakhstan females and identified genes that showed signifi-
cant differences in all three comparisons (individual
analysis). In the combined analysis, we find 11 up- and 42
downregulated genes in heads and 15 up- and 45 downregu-
lated genes in gonads (electronic supplementary material,
table S4). Of these, three are upregulated and nine are down-
regulated in both tissues. Similarly, although more genes are
found to be differentially expressed in the individual com-
parisons, only 30 (four up, 26 down) and 36 (nine up, 27
down) are found in all three comparisons in heads and
gonads, respectively (figure 2; electronic supplementary
material, figures S6 and S9). In this case, one gene is upregu-
lated and six are downregulated in both tissues of asexuals,
again indicating that only a few genes change their
expression consistently in response to asexual reproduction.
Genes that are differentially expressed in at least two of the
individual analyses tend to have high fold change differences
and very low adjusted p-values (figure 2), and the low
number of shared genes among all three asexual lineages
may be owing to limited statistical power to detect small
changes (on the other hand, genes with large expression
differences are likely the most biologically relevant).

Although only a few differentially expressed genes in asex-
uals are shared among the three populations (figure 2), these
numbers are higher than expected by chance, indicating that
there is a core set of ‘asexuality genes’, consistent with a
single origin of asexuality. Namely, we find four genes upregu-
lated and 26 genes downregulated in heads (versus 0.05 and 0.1
expected, p = 4.7 × 10−7 and p > 2.2 × 10−16, SUPEREXACTTEST).
For gonads, nine genes are up- and 27 are downregulated in
all three comparisons (versus 0.5 and 0.2 expected, p < 2.2 ×
10−16 for both, SUPEREXACTTEST). Forty-eight of these 59 genes
were also identified in the combined analysis (‘*’ electronic
supplementary material, tables S5 and S6).

We also tested for differential expression using the more
distantly related sexual species A. urmiana sexual (electronic
supplementary material, figure S7) and A. sinica (electronic
supplementary material, figure S8) as reference. As expected,
we find more differentially expressed genes with increasing
phylogenetic distance, but again only a small proportion of
differentially expressed genes are shared between the three
asexual lineages.
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Genes showing consistent differential expression between
sexual and asexual females (combined and individual ana-
lyses with A. sp. Kazakhstan as reference) are not significantly
enriched for specific gene ontology (GO) terms (electronic sup-
plementary material, tables S5 and S6). Blast searches of
candidates suggest that some of the observed differences
may be related to modifications of meiosis in asexual females,
similar to Parker et al. [23]. For instance, the only gene upregu-
lated in all asexuals in heads and gonads is most similar to a
crustacean transitional endoplasmatic reticulum ATPase, a
class of genes that, among other functions, is required for
chromosome condensation during meiosis [40]. To systemati-
cally test for enrichment of meiosis genes, we searched for
homologues of annotated meiosis genes from Drosophila mela-
nogaster [41] in our A. sinica transcriptome, yielding 873
putative homologues. There is no excessive overlap with
gonad asexuality genes when asexuals are compared to A.
sp. Kazakhstan. When they are compared to A. urmiana sexual
or A. sinica we find significant enrichment of meiosis genes
among the differentially expressed genes in gonads (13 in
both comparisons, p = 4.7 × 10−9 and p = 7.6 × 10−5, respect-
ively, Fisher's exact test (FET)) and heads (6 and 23 genes,
respectively, p = 0.006 and p > 2.2 × 10−16, respectively, FET).
These results, therefore, hint at but do not fully confirm a
function inmeiosis for some of these putative asexuality genes.
(c) Evolution of sex-biased genes in asexual lineages
Theory predicts that genes with sex-specific functions,
and/or those under sex-specific selection are more likely to
diverge in expression after shifts to asexuality (see Introduc-
tion). We used the outgroup A. sinica to define sex-biased
genes in three tissues: heads, thorax and gonads. Sex-biased
genes were called using DESeq2 (adjusted p > 0.05).

We compared females of the three asexual lineages to
sexual A. sinica females. As a control, we performed the
same comparison for sexual A. sp. Kazakhstan and A. urmiana
sexual females (except for the thorax in A. urmiana sexual).
Overall, we observe masculinization of gene expression in
the asexuals: genes that are female-biased in A. sinica are
downregulated in the asexuals, whereas male-biased genes
in A. sinica have significantly higher expression in asexual
than in A. sinica females (figure 3). This is largely consistent
across all three tissues (figure 3a; electronic supplementary
material, figures S10A and S11A), consistent with results in
stick insects [23], and the idea that decay of female functions
rather than relaxation of sexual antagonism is the dominant
force at play. However, this pattern is not specific to asexuals.
Whenwe compared female expression of the sexualA. urmiana
sexual andA. sp. Kazakhstan, we find the samemasculinization
of expression (figure 3a; all Wilcoxon rank test p < 0.001 except
for male-biased genes in A. sp. Kazakhstan). Two hypotheses
could account for this: (i) the whole clade may have decreased
its investment in female functions, and/or increased its invest-
ment in male functions; and (ii) if there is a fast turnover of
genes with sex-biased expression, as has been observed in
many clades [42,43], female-biased genes with ancestrally
high female expression may over time reduce their expression,
and vice versa for genes with low male expression, leading to
an apparent masculinization of expression when only females
are considered.

To test for masculinization of the clade, we analysed
the expression in males of the sexual species, which should
also show evidence of masculinized expression. In fact, the
opposite is observed (figure 3b): female-biased genes have
increased and male-biased genes have decreased expression
in males when comparing A. urmiana sexual or A. sp. Kazakh-
stan to A. sinica. This is significant in gonads, heads and
thorax (figure 3b; electronic supplementary material, figures
S10B and S11B, respectively), with the exception of male-
biased genes in gonads and female-biased genes in heads
of A. sp. Kazakhstan, which does not significantly differ
from unbiased genes. We also performed a PCA–linear discri-
minant analysis (LDA) by using gene expression from all
males and females from the three sexual species as the train-
ing set for a linear model that infers sex and then running the
model on the asexuals to estimate their LD1 score (which in
this case works as a ‘maleness score’). Again, asexuals did
not appear masculinized (figure 3c); their LD1 distribution
overlapped with that of sexual females but was significantly
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different from that of males. Similar patterns are observed
with the head (electronic supplementary material, figure
S10C), whereas the thorax had too few samples for the
model to be trained correctly (electronic supplementary
material, figure S11C).

We also repeated our analysis using only sex-biased genes
shared by all three sexual species. This conservative approach
ensures that only sex-biased genes that have not undergone
turnover are investigated. The gonad results show that,
except in A. Aibi Lake, higher expression of male-biased
genes compared to A. sinica can no longer be observed (elec-
tronic supplementary material, figure S12), although some
reduction of expression of female-biased genes remains. In
heads, too few sex-biased genes (11) are conserved for a
meaningful analysis. Finally, similar patterns of ‘masculiniza-
tion’ are observed when A. sp. Kazakhstan is used as the
reference to call sex-biased genes and as the proxy for ances-
tral expression (electronic supplementary material, table S1),
further arguing against a shift in expression in the whole
Kazakhstan clade. Using A. urmiana sexual as the reference
gives inconsistent results (electronic supplementary material,
table S1), although this seems to be owing to peculiarities of
the data or biology for this species, which also yields much
fewer sex-biased genes in the gonad. Taken together, these
analyses indicate that true masculinization is unlikely to
have occurred, whereas fast turnover of sex-biased genes
may partly explain our results, and that asexual and sexual
species experience similar shifts in gene expression patterns.
(d) Fast evolution of sex-biased genes in sexual Artemia
If the rate of turnover of sex-biased genes is very high,
these genes should show fast evolution of gene expression
(typically associated with fast sequence evolution [44,45]).
To test this, we investigated the expression and sequence
divergence of the different classes of sex-biased genes
(as defined in A. sinica gonads). We find that female-biased
genes evolve significantly faster than unbiased genes both in
their sequence and gene expression (figure 4a; electronic
supplementary material, figure S14) in all species (except
for sequence divergence in A. Atanasovsko, which is non-
significant). Male-biased genes have greater expression
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divergence than both unbiased and female-biased genes,
especially when male tissues are included in the calculation
(figure 4b), but do not show faster evolution of their protein
sequences (electronic supplementary material, figure S14).
Taken together, this indicates that sex-biased genes, especially
female-biased ones, have a fast rate of evolution in the
Eurasian Artemia species included in this analysis, consistent
with turnover contributing to the apparent masculinization
of the transcriptome.
3. Discussion
(a) Asexuality does not lead to a major shift in gene

expression
It is generally assumed that the transition between sexual and
asexual reproduction represents a major evolutionary change
[46], potentially requiring a major molecular and cellular
reorganization. Previous studies have indeed detected hun-
dreds of genes that are differentially expressed between
sexual and asexual lineages [16], or even between sexual
and asexual parts of the life cycle of aphids and Daphnia
[24,47–49]. In the light of this, it is surprising that we find
few genes consistently associated with the transition from
sexual to asexual reproduction. While it is possible that we
do not have enough statistical power to detect genes with
minor changes, several biological reasons could be behind
this small set of core asexuality genes. First, species with cycli-
cal parthenogenesis typically switch from asexual to sexual
reproduction under specific environmental conditions.
Genes involved in the response to the change in environments
may, therefore, erroneously be detected as differentially
expressed between sexual and asexual parts of the life cycle.
Second, substantial divergence has often occurred between
sexual populations and obligatory parthenogenetic females.
Because the lineages studied here are very closely related,
there should be little divergence resulting from relaxed selec-
tion in asexuals, and this differentiation may be further
eroded by ongoing gene flow among them [37,39]. Third,
while some asexual species bypass meiosis altogether (e.g.
Daphnia, aphids and Timema stick insects [50–52]), partheno-
genesis in diploid Artemia is thought to occur through
automixis, i.e. with the occurrence of meiosis [53], leading to
more similar patterns of expression between sexual and
asexual females. Finally, shifts in gene expression of asexual
lineages may occur early in development, as observed in the
pea aphid [25]. Futurework sampling sexual and asexualArte-
mia throughout their developmentwill provide a full picture of
how asexuality is encoded at the molecular level in this clade.

(b) Turnover of sex-biased genes and masculinization of
the asexual transcriptome

We do not observe feminization of gene expression in asexual
lineages of Eurasian brine shrimp, as expected if sexual con-
flict over gene expression is released in the absence of males.
On the contrary, asexual gene expression profiles seemmascu-
linized, as observed in stick insects [23]. However, comparing
sexual species to each other and including male expression
suggests that fast turnover of sex-biased gene expression,
and in particular the fast evolution of female-biased genes, is
probably responsible for these patterns, rather than true
differences between sexual and asexual lineages.

It is possible that true masculinization or feminization
does occur in asexual lineages of brine shrimp, but are not
detectable in our dataset. These effects could be very small
(concerning only a few genes or very small expression
changes) or the turnover in sex-biased gene expression
could be large enough that it masks signals of feminization/
masculinization. Parker et al. [23] used much more divergent
sexual–asexual pairs of stick insects, allowing for larger
shifts in gene expression to occur, and potentially giving
them more power to detect masculinization. On the other
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hand, this may have also increased the amount of turnover of
genes with sex-specific functions. Asexual stick insects
occasionally produce rare males [54], whose expression
could potentially be used to confirm the true masculinization
of asexual transcriptomes: in this case, rare males should also
have increased expression of genes with male functions, and
reduced expression of genes with female functions, relative
to their male sexual cousins.

(c) Why do female-biased genes evolve faster in
Artemia?

Sex-biased genes often diverge faster than genes with similar
expressions in both sexes. While male-biased genes are often
the fastest-evolving category [42,43], accelerated evolution of
female-biased genes has been observed in some species [55–
57] and is thought to reflect unusual selective pressures
acting on females. For instance, selection on female bird be-
haviour has been proposed to explain the fast divergence of
genes expressed primarily in the brain of the female zebra
finch [55]. In mosquitoes, female-biased genes may have
evolved rapidly to enable adaptations to blood-feeding [57].
The reproductive life cycle of Artemia is also likely to induce
strong selection on females, as males use their claspers to
grasp females and guard them for days [58]. Mate-guarding
may be costly for females, as it can reduce foraging and
mating opportunities, potentially leading to widespread
sexual conflict and male-female coevolutionary arms-races
[59,60]. Direct evidence of this was found in A. franciscana,
where females have reduced fitness when mated with males
derived from cysts with which they have not co-evolved [61].

Finally, brine shrimp have ZW sex determination
[36,62–65]. Sex-linked genes often evolve faster than those on
autosomes [66,67] and sex-biased genes can be enriched on
sex chromosomes [42,43]. Female-biased genes are particularly
prone to the ‘faster-Z’ effect [66,67]. If many of our female-
biased genes are Z-specific, this may contribute to their high
evolutionary rates. However, the Z-chromosome of the close
species A. franciscana harbours few sex-biased genes [36]. The
faster-Z effect is, therefore, unlikely to explain the high evol-
utionary rates of female-biased genes, although a full
characterization of the sex chromosomes of Eurasian Artemia
will be necessary to exclude this possibility.
4. Methods
A list of all program versions is provided in the electronic sup-
plementary material, table S7. Detailed pipelines are available
in the electronic supplementary material, Methods and at:
https://git.ist.ac.at/bvicoso/artsexasex.

(a) Sample collection and sequencing
Artemia strains were obtained from the Instituto de Acuicultura
de Torre de la Sal (C.S.I.C.) Artemia cyst collection in Spain
(diploid parthenogenetic: A. parthenogenetica urmiana: Urmia
Lake (Iran); A. parthenogenetica Aibi Lake: Aibi Lake (PR China);
A. parthenogenetica Atanasovsko: Atanasovsko Lake (Bulgaria).
Diploid sexual: A. sinica: Tanggu salterns (PR China); A. sp.
Kazakhstan: Kazakhstan unknown locality; A. urmiana sexual:
Urmia Lake (Iran)). Detailed information is provided in the
electronic supplementary material.

Nauplii were hatched in 25°C water with 27 g l−1 salinity and
then maintained at 30 g l−1 salinity under a 14 h : 10 h light : dark
cycle. Virgin adults were maintained at 60 g l−1 salinity (asexuals
produced offspring), and dissected to obtain head and gonad
tissue (all species), thorax (all but A. urmiana sexual) and whole
bodies (A. sinica, A. sp. Kazakhstan, A. Aibi Lake). Total RNA was
extracted from pools of five individuals for each sample using
the Bioline Isolate II RNA Mini Kit (cat. no. BIO-52073). At least
two biological replicates (using different individuals) were
collected per sex and tissue from the first generation to emerge
from the cysts (electronic supplementary material, table S2). The
RNA-seq samples originally obtained for A. Aibi Lake were used
for transcriptome assembly but were outliers in the expression
analyses. Hence, we sampled and sequenced two new replicates
of each tissue (samples 101424–101429 and 101440–101441; elec-
tronic supplementary material, table S2), which were used for
all downstream expression analyses. Paired-end 125 bp RNA-
seq was performed on an Illumina HiSeqV4 at Vienna Biocenter
Next Generation Sequencing Core Facility. All RNA-seq libraries
were submitted to the NCBI short read archive under bioproject
number PRJNA748528.

(b) Transcriptome assemblies
Transcriptome assemblies for the six Eurasian lineages were
performed as described for A. franciscana [35]. Briefly, reads
were cleaned with TRIMMOMATIC [68] and quality control was
performed with FASTQC [69]. All available libraries per species
were included in the transcriptome assemblies (except for the
A. Aibi Lake samples obtained later, see the previous section).
For each species, we used SOAPDENOVO-TRANS [70] for multiple
K-mers (31–81, step size 10), TRANS-ABYSS [71] for multiple
K-mers (40–84, step size 4) and TRINITY [72] for K-mer 25. All
SOAPDENOVO-TRANS assemblies were merged with CD-HIT-EST
[73] with a sequence identity threshold of 1.0. TRANS-ABYSS
assemblies were merged with transabyss-merge. Sequences
longer than 200 bp in the resulting three assemblies (one per
assembler) were combined into one final assembly using the
EVIGENE pipeline [38], yielding a set of transcripts and protein
sequences for each species. The number of reads and resulting
contigs in all assemblies can be found in the electronic supplemen-
tary material, table S3. The quality of our assemblies was assessed
with BUSCO [74] (electronic supplementary material, figure S1),
using the OrthoDB arthropod reference set [75] with Daphina
pulex as the reference. All final transcriptome assemblies are avail-
able in our git page (https://git.ist.ac.at/bvicoso/artsexasex) and
at the ISTAustria Data repository (https://doi.org/10.15479/AT:
ISTA:9949).

(c) Orthology and function
Each species was blasted against the A. sinica transcriptome and
vice versa (BLAST+, [76]). Reciprocal best hits were classified as
orthologous genes. This was done on the nucleotide and the
amino acid sequences and resulted in 6382 orthologous transcripts
and 8389 orthologous proteins found in all seven transcriptomes.

The A. sinica transcriptome was functionally annotated using
INTERPROSCAN [77]. Annotated Pfam domains were used to infer
GO terms and TOPGO [78] was used to assess over- and under-
represented GO terms among differentially expressed genes.
Significance testing was done with Fisher’s exact test using the
Benjamini–Hochberg correction for multiple testing at a signifi-
cance cut-off of p-adj > 0.05.

(d) Phylogenetic analysis
The 8389 1-to-1 orthologous protein sequences from the BBH Blast
were used to reconstruct the phylogeny. For ML analysis, each set
of orthologous sequenceswas first alignedwithMUSCLE [79] and
filtered with GBLOCKS [80]. Individual alignments for 1-to-1 ortho-
logues were concatenated and phylogenetic reconstruction was

https://git.ist.ac.at/bvicoso/artsexasex
https://git.ist.ac.at/bvicoso/artsexasex
https://git.ist.ac.at/bvicoso/artsexasex
https://git.ist.ac.at/bvicoso/artsexasex
https://doi.org/10.15479/AT:ISTA:9949
https://doi.org/10.15479/AT:ISTA:9949
https://doi.org/10.15479/AT:ISTA:9949
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performed using PHYML [81] with 1000 bootstraps. Bayesian infer-
ence was also tested using BEAST2 [82]. As ML and Bayesian
inference agreed on the tree topology, only the ML results are
shown here.

(e) Single nucleotide polymorphism calling and Fst
analysis

Raw RNA-seq reads were mapped to the A. sinica filtered tran-
scriptome using BWA, and the resulting sequence alignment/
map format (SAM) alignments were sorted using SAMTOOLS

[83]. Single nucleotide polymorphisms were called using
BCFTOOLS [83] and filtered using VCFTOOLS [84] for a minimum
frequency of 0.1, a minimum quality score of 30 and a coverage
depth between 10 and 100. We further removed sites with more
than two alleles per sample using BCFTOOLS. A customized script
was used to calculate Nei’s Fst [85] between each pair of lineages
from the total number of reads supporting the reference and
alternative allele in each species/population.

( f ) Gene expression
Artemia sinica transcripts longer than 500 bp were used as a refer-
ence (20 888 transcripts). Trimmed RNA-seq reads of all species
were mapped to this transcriptome with NEXTGENMAP [86] (see
the electronic supplementary material, Methods). Analyses were
also performed with the full set of 103 813 transcripts but
as results are qualitatively similar, only data from the filtered
transcriptome are shown. In addition, reads were mapped to
the individual transcriptomes and 1-to-1 orthologues between
all species were used to perform differential expression analysis.
These results are shown in the electronic supplementary material,
figures S13 and S15.

All statistical analyses were performed in R [87]. Principal
component and differential gene expression analyses (adjusted
p > 0.05) were performed using the Bioconductor package
DESeq2 [88] separately for each tissue with the Benjamini–
Hochberg correction for multiple testing. Expected overlaps
between sex-biased genes in sexual species were tested using the
SUPEREXACTTEST [89].

Reads per kilobase per million mapped reads (RPKM) values
were calculated and normalized across species but separately
within each tissue using quantile normalization. Pearson
correlations were calculated and samples were hierarchically
clustered and visualized using the pheatmap package [90].

For the PCA-LDA analysis, RPKM values were normalized
with NORMALYZERDE [91]. We obtained principal components
with the R function ‘prcomp’, and ran a LDA on a subset of
these principal components using the R packages MASS [92]
and caret [93].

(g) Divergence
Both non-synonymous substitutions (dN) and synonymous sub-
stitutions (dS) values were obtained using the script Script12_
KaKs.pl of Picard et al. [94]. For each pair of species, reciprocal
hits were obtained from the unfiltered transcriptomes using
BLAT [95] and aligned with TRANSLATORX [96] with GBLOCKS [80]
in codon mode. dN and dS values were estimated using KaKs_
calculator [97] with a Jukes–Cantor model of substitution for
alignments longer than 500 bp.

Expression divergence for each A. sinica transcript was calcu-
lated using Euclidean distance [98] from normalized expression
values for heads and gonads (averaged biological replicates).
Male and female values were treated as separate tissues.
Sex-biased genes were compared using the Wilcoxon rank tests.

Data accessibility. All raw RNA-seq data have been uploaded to the
NCBI under project PRJNA748528. Processed data files and pipelines
are available at: https://git.ist.ac.at/bvicoso/artsexasex.
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