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Abstract: The small cellular molecule inositol hexakisphosphate (IP6) has been known for ~20 years
to promote the in vitro assembly of HIV-1 into immature virus-like particles. However, the molecular
details underlying this effect have been determined only recently, with the identification of the
IP6 binding site in the immature Gag lattice. IP6 also promotes formation of the mature capsid
protein (CA) lattice via a second IP6 binding site, and enhances core stability, creating a favorable
environment for reverse transcription. IP6 also enhances assembly of other retroviruses, from both
the Lentivirus and the Alpharetrovirus genera. These findings suggest that IP6 may have a conserved
function throughout the family Retroviridae. Here, we discuss the different steps in the viral life
cycle that are influenced by IP6, and describe in detail how IP6 interacts with the immature and
mature lattices of different retroviruses.
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1. Introduction

All retroviruses code for a multidomain structural protein Gag (Figure 1A). Late in
the viral life cycle, Gag traffics to the inner leaflet of the plasma membrane where the
N-terminal Gag matrix (MA) domain interacts with the local lipid environment (Figure 1B,
step 1 and 2). Specific binding of the C-terminal Gag nucleocapsid (NC) domain to the
viral genomic RNA stimulates assembly and ultimately leads to incorporation of the
genome into the budding virus. Protein—protein interactions between the bipartite capsid
domains (consisting of CAnp and CActp) in Gag result in formation of the immature
hexameric Gag lattice. Following release of the immature virus particle from the infected
cell (Figure 1B, step 3), the viral protease (PR) cleaves Gag, liberating CA and other Gag
domains (Figure 1B, step 4). In this process, termed maturation, all immature CA-CA
interactions are broken and an entirely new set of interactions between CA proteins form
the mature lattice, consisting of CA hexamers and pentamers, resulting in the mature core
(also referred to as the capsid). Retrovirus assembly and maturation are tightly regulated
processes, in which ordered assembly and complete proteolytic cleavage of Gag in the
correct temporal sequence are required for the virus to gain infectivity [1,2]. For more
details on retrovirus assembly and maturation, we refer the reader to other excellent
reviews on this topic [3].

In the case of HIV-1, after the infecting virus fuses with the cell membrane, the
released mature core is trafficked along microtubules to nuclear pores (Figure 1B, steps 5
and 6) [4]. Reverse transcription of the viral RNA occurs within the core, which provides a
protected environment for the viral genome, while at the same time sets preconditions for
the required import of nucleotides into the core interior [5]. Recent literature has revealed
the involvement of the small negatively charged molecule inositol hexakisphosphate (IP6)
in all of these steps of the HIV-1 life cycle, supporting its key structural and functional role
in regulating HIV-1 assembly, maturation, and reverse transcription. Specifically, in HIV-1,
IP6 is essential for the formation of the immature lattice, where it is coordinated in the
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center of the CActp hexamer by two rings of six lysine residues. In the mature CA lattice,
IP6 acts at the intrahexamer interface of six arginines residues near the CA N-terminus.
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Figure 1. IP6 and the retroviral life cycle. (A) Key of the HIV-1 Gag domains on left. Right shows
the d-myo-IP6 molecule. (B) 1: Gag protein interacts with the inner leaflet of the cellular plasma
membrane. 2: Interactions between Gag, the plasma membrane, nucleic acid, and IP6 result in
the assembly of the immature Gag lattice. 3: Assembled virion buds from cell with IP6 bound to
two rings of six lysine residues at the Gag hexamer interface. 4: Retroviral protease cleaves the
Gag protein, resulting in the liberation of the CA domain. CA interacts with IP6 via a ring of six
arginine residues in the CAnp hexamer interface, which leads to the formation of the mature core.
5: Interaction between the viral Env protein and the cell receptor (CD4 in this example) results in
fusion, and release of the viral core into the cell cytoplasm. 6: Trafficking of the viral core along
microtubules to the nuclear pore. Once in the cytoplasm, dNTPs enter the capsid core where they
“feed” reverse transcription of the viral RNA genome into double-stranded DNA. Once at the nuclear
pore, or inside the nucleus, the capsid core breaks open, releasing the integration complex.

In this review, we summarize the current knowledge of the essential functions of IP6
in the early and late phases of the viral life cycle, specifically focusing on the work that
elucidated the structural aspects of IP6 binding and stabilization of both the immature
Gag lattice and subsequently the mature CA lattice. We also discuss the importance of
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IP6 for other retrovirus genera, indicating an evolutionarily conserved structural role of
this molecule.

2. Immature Lentivirus Gag Assemblies Uniquely Coordinate IP6

IP6 has been the subject of numerous studies analyzing its interaction with Gag.
Twenty years ago, inositol phosphates were reported to stimulate assembly of structurally
authentic immature virus-like particles (VLPs) from full-length Gag molecules. Initially,
it was suggested that the binding of IP6 occurs in the domains with high concentration
of positively charged residues—MA and NC [6]. These conclusions were supported by
observations showing that Gag proteins with deletions of residues 16-99 in the MA domain
were not stimulated by IP6 under conditions where full-length Gag was [6]. Indeed, this
was later confirmed as IPs were found to bind to Gag at both the N-terminal MA and
C-terminal NC domains [7,8]. A more recent study showed incubation of HIV MA with
IP6 increased MA trimerization and MA interaction with the Env glycoprotein cytoplasmic
tail [9]. However, the precise interaction between IP6 and MA and NC in the context of the
Gag lattice remained enigmatic.

In recent years, significant progress has been made in our understanding of retrovirus
assembly by studying either immature and mature virus particles or VLPs assembled
from purified proteins in vitro, via cryo-electron tomography (cryo-ET) and subtomogram
averaging (for more details on these methods, we refer the readers to exhaustive reviews on
these topics [10-12]. A variety of methodological advancements in microscope instrumenta-
tion, data acquisition, and image processing software (for examples, see [13-16]) resulted in
high resolution of such complex and pleomorphic virus assemblies, allowing unambiguous
interpretations of the CA-CA interactions forming the immature Gag lattice, which in
case of lentiviruses, remains incomplete at the site of scission during budding [17]. For
HIV-1, these studies revealed important inter- and intrahexamer CA interaction interfaces
formed by both the CAntp and CActp domains [18], and also revealed the role of the
six-helix bundle formed by the CActp—SP1 helix in stabilizing the immature hexamer
and regulating proteolytic maturation [19]. In particular, the resolution obtained for the
immature HIV-1 Gag assemblies was sufficient to model the CASP1 backbone and large
side chains. Specifically, 12 lysine residues (K290 in the MHR loop upstream of helix 8 in
CActp and K359 in the CActp—5SP1 helix) coordinate a prominent density in the center of
the immature hexamer. The identity of this density remained unassigned in this first study
but was suggested to be a negatively charged ion cluster [19].

Structural, biochemical, and cellular experiments with HIV-1 Gag proteins then un-
ambiguously demonstrated that the density coordinated by residues K290 and K359 in
native virus is IP6 [20]. A structure of HIV-1 CActp—SP1 crystal grown in the presence
of IP6 clearly showed that the molecule on the rotation axis of the CA hexamer is coordi-
nated by the two rings with a total of 12 lysines [20] (Figure 2B,C). The IP6 density in the
crystal structure is compatible with its most stable conformation—myo-IP6—with the one
phosphate in the axial position, coordinated by the K359 ring, and the other five in the
equatorial positions, coordinated by the K290 ring.

Mutational analyses have shed further light on the functions of IP6 in the immature
Gag lattice. Replication of HIV-1 carrying either a Gag K359 mutation or a K290 mutation
is severely decreased [20,21]. By selection for recovery of infectivity, it was found that Gag
with mutation T371I (residue 8 in the SP domain) suppresses the K359 defect [21]. This
mutation was described previously as stabilizing the six-helix bundle [22]. However, the
double mutant HIV-1 (Gag K359A, T371I) still packages IP6 [21]. One possible explanation
is that the K359 interaction with the axial phosphate of IP6 is required for six-helix bundle
stabilization. In the absence of this interaction (i.e., K359A), the stabilizing mutation in SP
is required. However, these changes do not alter the MHR K290 interaction with the five
equatorial phosphates.
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Figure 2. IP6 binding site in the immature retroviral CA lattice. (A) Composite isosurface representation of an immature

retroviral CA lattice derived from an EIAV VLP, representative of the immature CA arrangement in the lentivirus genus.

Please note that in authentic immature lentivirus particles, the Gag lattice is incomplete. (B,C) Top and side view of the IP6

binding site in the immature CA hexamer, respectively. Left: cartoon model of an immature CA hexamer; cyan: CANTD,

orange: CActp, purple: SP1, and red: IP6. Middle: X-ray crystallographic model of IP6 binding to the immature HIV-1
CActp—SP1 hexamer (pdb: 6BHR). Right: model of IP6 binding to the immature EIAV CANC hexamer, based on a structure
solved by cryo-ET and subtomogram averaging (pdb: 6T64). The color coding for CActp-SP1 is as in the left panel. The IP6

molecule is shown as sphere representation in green, orange, and red. The lysines coordinating the IP6 molecule are shown

in a green stick representation and are annotated.

IP6, and to a lesser extent inositol phosphates with fewer phosphate groups, is more
favorable to immature lattice formation, acting like a switch in HIV-1 CASPNC in vitro
assembly [23], from a mature to an immature lattice. Replacing residues K290 and K359
with alanines abrogates inositol phosphate responsiveness. Since the CASPNC protein
employed in these experiments lacks the MA domain, an assembly effect of IP6 via the N-
terminal end of Gag can be ruled out. Remarkably, the minimal CASP1 protein in presence
of IP6 also assembles into VLPs with a lattice consistent with an immature arrangement of
CA [20]. Assembly of CASP1 under these conditions represents one of just a few examples
of immature assembly in the absence of NC or nucleic acid [24,25].

As mentioned above, the position of the IP6 molecule in the CActp—SP1 crystal
coincides with the density observed in cryo-ET structures obtained from purified immature
HIV-1 [18,19]. A similar density also was found in a sub-4 Angstrom structure of the
immature CASP1 lattice obtained from an in vitro assembled, E. coli-expressed truncated
Gag protein missing most of the MA domain (amino acids 16-99) [19]. Since E. coli does
not contain IP6, and no additional IP6 was added to the assembly reaction, other molecules
presumably also can be coordinated by the 12 lysines [26]. In any case, in the absence of a
negatively charged molecule that neutralizes the two rings of twelve lysines, immature
assembly appears not to occur. This conclusion is in accordance with the interpretation
that the main effect of IP6 binding is charge compensation, a role that could in principle
be taken by other negatively charged molecules. Indeed, the structurally similar, but
not biologically relevant, molecule hexacarboxybenzene (mellitic acid) promotes limited
immature virus-like particle assembly of HIV-1 CANC protein [20]. In contrast, ANTPs
do not influence immature assembly [20], suggesting that while charge compensation is
important, the positioning of charges within the molecule is also relevant.

Originally, CACTDSP1 protein was found to be refractory to crystallization in an
immature-like form. However, a seminal study by Wagner and colleagues [27] was suc-
cessful in identifying appropriate crystallization conditions. In this study, the authors were
able to obtain a high-resolution structure of parts of the immature lattice, at the same time
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as identical results were obtained by cryo-ET and subtomogram averaging in native virus
particles [19]. The compound that was required for crystallization was bis-tris propane, a
2-fold symmetric molecule with negative hydroxyl groups at either end. The dimension of
this compound along its long axis is similar to that of IP6. The dynamic behavior of the
CAc1p-SP1 hexamer and the importance of IP6 in stabilizing it were further exemplified
by molecular dynamics (MD) simulations [20]. Again, in line with the shown potential
of other inositol derivatives or mellitic acid to promote immature HIV-1 CANC assembly,
these molecules led to a clear stabilization of the CASP1 helix and hence the immature
CASP1 hexamer.

A role of IP6 in lentiviruses other than HIV-1 was then shown in a study focusing
on equine infectious anemia virus (EIAV), which is distantly related to HIV, separated by
~100 million years [28]. While it was previously observed that the quaternary CA assembly
between different retrovirus genera can substantially differ [1,18,29-31], the comparison of
EIAV and HIV immature Gag assemblies demonstrated that within the Lentivirus genus,
the immature CA assembly is largely conserved [32]. The sub-4 A structures of EIAV
CANC VLPs obtained by cryo-ET and subtomogram averaging revealed similar inter and
intrahexameric CA interactions in EIAV and HIV-1, involving trimeric CANTp contacts as
well CActp interactions around the hexameric ring, respectively. Notably, EIAV also forms
a 6HB consisting of the last residues of CA and the first residues of SP, which is slightly
shorter than its HIV-1 counterpart.

The EIAV CASP model also showed IP6 binding identical to that in HIV-1, with two
lysine rings (K282 and K351 in EIAV Gag, see Figure 2) being stacked on top of each other
and coordinating an IP6 molecule in its myo-conformation in the center. Biochemistry and
mutagenesis experiments, where the lysines were mutated to alanines, underscored the
conserved role of IPs in the immature assembly within the Lentivirus genus. However,
in contrast to HIV-1, molecular dynamic simulation studies on the EIAV CASP hexamer
showed that IP6 is not required to stabilize the six-helix bundle [32]. While the binding of
IP6 to the lysine-coordinated position was stable, the stability of the 6HB in the absence
of IP6 was conferred by the stronger hydrophobic side chain interactions between the
6HB helices.

Beyond HIV-1 and EIAV, no other immature lentivirus structures from Gag assem-
blies are available. However, it is reasonable to assume that the striking structural fea-
ture of 12 lysines coordinating a negatively charged molecule is widely conserved within
lentiviruses, as conserved lysine residues can be observed at identical positions in Gag
of other members of this genus, including HIV-2, SIV, FIV, and BIV (Figure 3). Experi-
mental support for this hypothesis was provided by in vitro assembly experiments using
Gag-derived truncation variants of these viruses, where IP6 had a significant stimulatory
effect [32]. IP6 has been speculated to have an influence on the immature assembly of Rous
Sarcoma virus (RSV), based on assembly kinetics in vitro [33]. However, this effect has so
far not been explained in structural terms.

At the moment, no data indicate that the immature assembly of retrovirus species
from genera other than Lentivirus and Alpharetrovirus is IP6-dependent, as they do not
contain positively charged residues in the same positions within Gag (Figure 3). Moreover,
the available structures of immature Gag assemblies of the Alpharetrovirus RSV [29], the
Betaretrovirus M-PMV [18,30], or the Gammaretrovirus MLV [31] do not show a similar
structural site that would coordinate an IP6-like density. This could mean either that there
is an alternative binding site in other Gag domains, or that IP6 is dispensable for immature
assembly of these viruses.
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Figure 3. Retrovirus sequence comparison. The immature IP6 binding site in Lentiviruses in the MHR and CActpSPNC

region (immature) and CA helix 1 (mature). Lys (K) and Arg (R) residues that are at or near known IP6 binding sites are in

red. Simplified morphologies shown are on the right; conical, spherical, cylindrical, nested cores (layering). A minimum of

one sequence is displayed for each retrovirus. * = retroviruses with reported IP6-related phenotypes. Italics = endogenous

retroviruses. Underlined = retroviruses with solved structures with an IP6 interaction. Underlined amino acid sequences

correspon

d to known alpha-helical structures.

3. IP6 Enhances Key CA Properties Required for Infectivity

In immature Gag assembly, the quaternary Gag protein arrangement can vary because
of different CAnTp interactions, while in mature CA assembly the CA-CA interactions
appear well conserved in different retrovirus genera [1,31,34-38]. However, mature CA
cores display a remarkable polymorphism, where the architectures from different virus
species (and even within one species) can vary significantly (Figure 3, morphology panel).
Thus, different retroviruses can display conical CA cores (e.g., HIV-1), irregular multi-
layered cores (MLV), polyhedral cores (RSV), tubular cores, and closed cylindrical cores
(M-PMYV, RSV). As shown for HIV-1, the stability of the mature core is a very tightly bal-
anced parameter that is critical for infectivity [39-41]. On the one hand, the core of HIV-1
must be stable enough for trafficking through the cytoplasm to the nucleus, to protect the
viral genome during reverse transcription and to allow for ANTP import as a substrate for
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reverse transcription. On the other hand, it must be able to disassemble to allow integration
of the proviral DNA into a chromosome.

As discussed, upon maturation and proteolytic cleavage, CA—CA interactions within
the immature Gag lattice are broken or rearranged and new interactions are formed to
build the mature CA core [1]. This structural maturation also involves release of IP6 from
the immature CASP coordination site. IP6 is then available to act to promote assembly of
and stabilize the mature CA core.

Similar to the immature HIV-1 CASP1 assembly, the mature HIV-1 CA hexamer
contains a ring of positively charged residues (R150 in Gag, R18 in CA—here referred to as
R18) that coordinate IP6 in the hexamer center. Moreover, the center of the CA hexamer
was designated to be a pore important for ANTP import and reverse transcription [42].
An earlier study had previously proposed a role of arginine clusters in protein function
and assembly [43], by suggesting that clustered arginines could be involved in charge
compensation of negatively charged counter ions.

In 2018, the same study that first reported the structural role of IP6 in the immature
assembly also reported how IP6 regulates mature HIV-1 capsid assembly and stability [20].
Specifically, IP6 stimulates high efficiency in vitro CA assembly, which is lost upon mutation
of R18 to alanine. Infectivity data also revealed that the R18A mutation leads to reduced
infectivity; however, this effect likely is due to a reduced virus production [44]. In line
with these results, it was also shown that IP6 can stabilize capsid cores isolated from
cells [39,40,45,46].

A crystal structure confirmed the expected IP6 binding site in the mature HIV-1 CA
hexamer, where IP6 was found in the central pore coordinated by the six R18 sidechains [20].
However, in one of two solved crystals, not one but two densities for IP6 were observed,
indicating that IP6 can be situated above or below this ring of basic residues formed by
R18 (Figure 4B,C). These structural observations of IP6 binding in the mature HIV-1 CA
hexamer were independently confirmed by others [40,44,47] (Figure 4C).

Based on structural data, IP6 appears to have the greatest number of interactions
when bound above the R18 ring. A density in the same position had been observed earlier
in authentic mature HIV-1 particles [48]. However, the resolution of the structure from
authentic HIV-1 virions was too low to unambiguously identify the molecule, and hence
the density in the mature CA pore could have been due to other charge-compensating
molecules. Specifically, the pore formed by helix 1 has been proposed to mediate transport
of negatively charged molecules into the mature core [42], and different polyanions have
been captured by X-ray crystallography in the center of CA hexamer, e.g., mellitic acid,
dNTPs, or a reverse transcriptase inhibitor [40,42].

Below R18, a second ring of basic residues is formed by lysines (K25 in HIV-1 CA).
K25 mutations result in reduced infectivity [49], reduced reverse transcriptase activity,
and maturation defects [47]. All-atom MD simulations (MD) for HIV-1 pentamers and
hexamers [50] revealed how the presence of these two rings of basic residues can coordinate
IP6 in different binding modes. While hexamers could stably bind IP6 molecules at two
positions, either above or below the R18 ring, pentamers could coordinate only one IP6
molecule above the basic residues. These simulations, which characterized the binding of
IP6 to preformed mature CA hexamers and pentamers, and the co-assembly of CA and
IP6, also suggested that IP6 stabilizes pentamers more strongly than it does hexamers,
and therefore could shift assembly conditions towards pentamers. This prediction is
consistent with the early observation that low concentrations of IP6 stimulate CA assembly
into tubes (which are made primarily of hexamers), while high concentrations of IP6
stimulate assembly of polyhedrons (which must contain pentamers) [20]. The role of K25 in
dNTP import was also analyzed in more detail by all-atom MD simulations [46] and later
by encapsidated reverse transcription experiments, in which the RT activity of purified
capsid cores from pseudotyped virus is assayed as a measure of ANTP import and core
stability [47].
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Figure 4. IP6 binding site in the mature retroviral CA lattice. (A) Composite isosurface representation of the mature CA
lattice forming a conical core. Adapted from [37]. Grey: CA hexamers, red: CA pentamers. (B,C) Top and side view of the
IP6 binding site in the mature CA hexamer, respectively. Left: schematic model of mature HIV-1 CA hexamer; cyan: CANTD,
orange: CActp, and red: IP6. Middle: X-ray crystallographic model of IP6 binding to mature HIV-1 CA hexamer (6BHS, top
view). IP6 has been reported to bind at different heights of the HIV-1 CANtp pore, based on different crystal structures,
shown in (C) (pdb: 6BHT (top and bottom), 6BHS (middle)). Right: model of IP6 binding in the RSV CANC hexamer,
derived from a structure solved by cryo-ET and subtomogram averaging (pdb: 7NO2). Note the orientation of the IP6
molecule with four axial phosphates pointing up or down, and one axial and the equatorial phosphate pointing horizontally.
The color coding for CAnNTp is as in the left panel. The IP6 molecule is shown in sphere representation in green, orange, and
red. The arginines and lysines coordinating the IP6 molecule are shown in a green stick representation and are annotated.
(D) Helix 1 orientation with respect to IP6 binding. Left: cylinder model of the central pore formed by helix 1. Middle and
right: cross-section through helix 1 cylinders at the height of IP6 binding plane for the C6 symmetric HIV-1 CA hexamer (as
seen in the middle panel of B) and the C2 symmetric RSV CA hexamer (as seen in the right panel of B), respectively. IP6 is
shown as a stick model. Dashed lines show distances between the opposite Cox atoms of R18 of HIV-1 CA in the middle
image and K17 of RSV CA in the right image, and emphasize the deviation of the RSV hexamer from sixfold symmetry.

In immature retrovirus Gag assemblies, the positively charged residues required to
coordinate IP6 in the hexamer center seem to be predominantly found in the Lentivirus
genus. In contrast, a putative IP6 binding site in mature CA cores appears to be conserved
among different retroviral genera. Specifically, positively charged residues (either lysines or
arginines, or both) are present within helix 1 (or adjacent regions) of almost all orthoretro-
viruses (Figure 3). Proof for such a conserved role of IP6 outside the lentiviruses genus was
recently provided by a study on the mature alpharetrovirus RSV. A structure of the mature
RSV CA hexamer solved from CANC tubes, which were assembled in vitro in the presence
of IP6, showed a density in the center of the hexamer pore [37], where it is coordinated
by a ring of six lysines (K17 in RSV CA) and six arginines (R21 in RSV CA) (Figure 4B-D
right panel). The density suggested that the IP6 molecule is oriented “on edge” with the
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equatorial phosphates pointing up and down in the pore, which contrasts with the “flat”
orientation of IP6 in HIV-1 CA.

One explanation for the different orientation of IP6 in mature RSV could be that
the RSV CA hexamer is more flexible than the HIV CA hexamer, and the central pore
is wider than in HIV-1 (Figure 4D). The implementation of classification and alignment
workflows to address the increased structural pleomorphism of RSV cores [37], which can
form polyhedrons, cones, or tubes [51], showed that the RSV CA hexamer substantially
deviates from C6 symmetry. This results in a deformation of the central pore, manifested
as increased and uneven separation of helices 1 from different CA molecules (Figure 4D).
This deformation allows the small IP6 molecule to be captured inside the lysine ring in
an upright position, unlike the binding observed in HIV-1 above and below the R18 pore.
Experiments in RSV also showed that phosphate promotes pentamer formation, while
inositol phosphates promote hexamer formation. Such differential mechanisms of charge
compensation in RSV could be related to the varying flexibility of hexamers over pentamers,
where the latter have been found to be structurally rigid organization centers within the
mature CA lattice [37].

Aswe and others have hypothesized [5], HIV selectively recruits the cytosolic molecule
IP6 into virions via its immature Gag IP6-binding site, thus increasing the local concen-
tration of IP6 within virions and promoting formation of a mature lattice following Gag
cleavage. Consistent with the absence of basic residues near or at the MHR and the putative
6HB of RSV, IP6 did not enhance immature RSV assembly [37]. This observation suggests
that IP6 is not selectively recruited into immature RSV particles, and also agrees with
the finding that RSV requires significantly lower IP6 concentrations than does HIV-1 to
promote mature assembly [37]. Thus, one may speculate that other retroviruses lacking
basic residues for an immature IP6 binding site, but having conserved basic residues at
the mature CAnTp position, could also use IP6 to regulate mature core assembly and
maturation. Whether nonspecific incorporation of IP6 into the assembling virus is sufficient
to promote mature assembly needs to be addressed in future studies.

4. IP6 in Infected Cells Is Essential for HIV-1 and RSV Replication

How do these structural effects of IP6 binding to and stabilizing the immature and
the mature viral lattice relate to IP6 in cells? As already outlined in the above sections,
mutations of residues involved in IP6 coordination have a significant impact on viral
replication and spread. An alternative approach taken by multiple research groups has
been to modify IP6 (and IP5) levels in cells by knocking out the enzymes that convert IPs
to IP6, or to transiently express enzymes that ablate IP6 [32,37,44,52,53], or to carry out
recovery assays in which kinases required for IP6 synthesis are added back to KO cell
lines [52].

In mammalian cells, IP6 concentrations are reported to range from 10 to 100 uM [54].
The last step in the biosynthetic pathway leading to IP6 is the phosphorylation of IP5
by the enzyme IPPK [55-58] (Figure 1). Ablation of the IPPK gene by CRISPR-Cas9
knockout reduces IP6 to nondetectable levels. When infected with HIV-1, these IPPK-
KO cells fail to release virus particles, demonstrating that IP6 is required for immature
virus particle formation [20,21,32,37,52,53]. The effect of IP6 removal is not cell type-
dependent, since HIV-1 production was found to be highly diminished both in MT4 and
in HEK 293T cells when the IPPK gene was ablated [53]. Consistent with these results,
a pulse-chase experiment in which virus was collected from 3H-inositol-labeled cells,
contained radiolabeled IP6 calculated to be at levels of 309 (plus or minus 41) molecules
per virion, corresponding to approximately one IP6 molecule per Gag hexamer [40]. Other
lentiviruses are similarly dependent on IP6. Simian immunodeficiency virus (SIV) and
feline immunodeficiency virus (FIV), and EIAV all demonstrate a loss in infectious virus
particle release when IP6 synthesis is blocked [44,52]. Beyond the Lentivirus genus, RSV
also requires IP6 for efficient infectious virus particle release from cells [37].
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Beyond its critical structural role in stabilizing the mature CA lattice, IP6 may also be
critical in the early phases of the virus replication cycle. A long-held model posits that the
HIV capsid cracks open in the cytoplasm, and dNTPs enter the core through these cracks.
However, recent evidence clearly shows that the intact capsid core enters the nucleus
through nuclear pores [4], where the integration complex (viral DNA and integrase) is
released from the core, and integration of the viral genome into the host genome occurs.
This would require that the capsid core remains intact during reverse transcription. Recent
studies suggest that during trafficking, dNTPs from the cytoplasm enter the capsid core
where they feed reverse transcription of the viral RNA into first single-stranded and
then double-stranded DNA [39,40,46]. All-atom MD simulations demonstrate that ANTPs
can enter the capsid core via the hexamer pore formed by the ring of six R18 residues,
and that the presence of IP6 facilitates ANTP import [46]. This model is supported by
in vitro experiments demonstrating that capsid core stability and reverse transcription are
enhanced by the presence of IP6 [39,40,46]. Taken together, these observations provide an
updated picture of both early and late effects on HIV-1 replication.

5. Conclusions and Future Directions

Since the elucidation of the structural aspects of IP6 binding to immature Gag and
mature CA lattices, numerous follow-up studies have further characterized how this small
molecule regulates the retroviral life cycle at numerous steps. While initially observed for
HIV-1, increasing evidence shows that IP6 plays an evolutionarily conserved role in the
Lentivirus genus and, at least to some extent, also in other orthoretroviruses.

Exciting directions remain to be explored: For example, why did HIV-1 and other
retroviruses develop and maintain such a peculiar dependence on a charge-compensatory
molecule like IP6? Future work should also examine if IP6 plays a role in even more
distantly related exogenous and endogenous retroviruses, and in DNA and RNA viruses
of other taxa.
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