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Abstract: Thermoelectric materials enable the direct conversion between heat and electricity. SnTe
is a promising candidate due to its high charge transport performance. Here, we prepared SnTe
nanocomposites by employing an aqueous method to synthetize SnTe nanoparticles (NP), followed
by a unique surface treatment prior NP consolidation. This synthetic approach allowed optimizing
the charge and phonon transport synergistically. The novelty of this strategy was the use of a soluble
PbS molecular complex prepared using a thiol-amine solvent mixture that upon blending is adsorbed
on the SnTe NP surface. Upon consolidation with spark plasma sintering, SnTe-PbS nanocomposite
is formed. The presence of PbS complexes significantly compensates for the Sn vacancy and increases
the average grain size of the nanocomposite, thus improving the carrier mobility. Moreover, lattice
thermal conductivity is also reduced by the Pb and S-induced mass and strain fluctuation. As a result,
an enhanced ZT of ca. 0.8 is reached at 873 K. Our finding provides a novel strategy to conduct
rational surface treatment on NP-based thermoelectrics.

Keywords: thermoelectric; SnTe; grain size; carrier mobility; nanocomposites

1. Introduction

Thermoelectric materials, which can directly convert heat into electricity, are promising
candidates for low-grade heat exploitation [1–7]. The energy conversion efficiency is
limited by the figure of merit ZT, ZT = σS2T/(κlat + κele), where σ, S, κlat, κele, T are the
electrical conductivity, Seebeck coefficient, lattice thermal conductivity, electronic thermal
conductivity, and absolute temperature, respectively. To date, significant progress has
been made by applying different strategies to synergistically modify charge and phonon
transport, including band convergence [8], all-scale hierarchical phonon scattering [9,10],
optimizing materials with intrinsically low lattice thermal conductivities [11,12], etc. These
strategies are mainly built on the top-down approach utilizing melting and sintering
methods, which are time- and energy-consuming.

Recently, the bottom-up assembly of solution-processed nanoparticles (NPs) has
provided the possibility to design alternative nanostructured materials while utilizing
mild synthesis methods and inexpensive equipment [13,14]. Most metal chalcogenides
thermoelectric materials have been produced by bottom-up solution methods, such as PbQ,
Bi2Q3, SnQ (Q = Te, Se, S), etc. [1,15,16]. However, their TE performance is usually inferior
to their equivalents synthesized by top-down approaches. One of the main issues is the
lack of facile and effective means to tune charge carrier concentration [17].

Here, we present a novel approach to optimize the charge and phonon transport
simultaneously by utilizing a NP surface treatment before their consolidation. Specifically,
we demonstrate the potential of our strategy for SnTe NPs. SnTe is a promising thermo-
electric material with high electrical conductivity [7,18,19]. Undoped SnTe shows poor
thermoelectric performance due to the low Seebeck coefficient, which derives from the ex-
cessively high carrier concentration of >1021 cm−3 and large thermal conductivity [7,20,21].
To address such problems, we employed a unique surface treatment to reduce the carrier
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concentration and the thermal conductivity. In particular, we modified SnTe NPs with PbS
molecular complexes. The strategy allowed (i) reducing the carrier concentration due to
Pb-induced vacancy compensation, (ii) enhancing mobility due to a reduction of the grain
boundary density, and (iii) reducing κlat by Pb and S-induced mass and strain fluctuations.
Overall, thanks to the PbS surface treatment, a high ZT of ca. 0.8 was obtained in SnTe-PbS
nanocomposites at 873 K.

2. Materials and Methods

SnCl2·2H2O 98%, NaOH, pellets 98%, NaBH4, 98%, PbO, 99.99%, and N-
Methylformamide (MFA, 99%) were purchased from Fisher Scientific(Austria) GmbH
(Wien, Austria). Te 100%, ethylenediamine, 99% (en), 1,2-ethanedithiol ≥ 95.0% (EDT),
extra dry acetone, and ethanol (99.5%) were purchased from Sigma-Aldrich (Darmstadt,
Germany). All chemicals were used as received without further purification.

SnTe NPs were synthesized by the method reported by Guang Han et al. [22]. Details
can be found in SI. The PbS molecular complex preparation method applied in this work
was developed by R. L. Brutchey et al. [23]. The solubility of PbO in en+EDT solvent (1:10)
is ca. 20–30%. Here, we dissolved 100 mg PbO with 1.1 mL en+EDT solvent (1 mL en,
0.1 mL EDT) in a N2-filled vial. The mixture was sonicated until complete dissolution. All
the PbS molecular ink was prepared fresh before blending with SnTe NPs in MFA.

All surface treatments were performed in an inert atmosphere (N2). We used 5 mL
MFA to disperse 0.75 g SnTe in a 20 mL vi al. SnTe with different molar amounts of PbS
molecular complex was prepared (1/2/3 mol% PbO), then the mixture was vigorously
stirred (800 rpm) at room temperature for 24 h. After that, the mixture was rinsed with
acetone 3 times.

As-prepared SnTe-xPbS (x = 1%, 2%, and 3% PbO molecular precursors) nanocompos-
ites were firstly annealed at 650 ◦C for 120 min under a slow forming gas (95% N2 + 5%
H2) flow inside a tube furnace (MTI Co., Shenyang, China) with ca. 10 ◦C/min heating
rate. Afterward, the annealed nanopowder was ground with an agate mortar and loaded
into a graphite die in a nitrogen-filled glovebox. The nanopowder was then consolidated
into pellet (Ø 8.6 mm × h 2 mm) under vacuum in an AGUS PECS Spark Plasma Sintering
(SPS) System-Model SPS 210Sx (SUGA Co., Ltd., Hokkaido, Japan). First, the axial pressure
was slowly increased to 45 MPa in 0.5 min and kept at that pressure during the sintering
process. After that, the temperature was rapidly increased from room temperature to
600 ◦C within 6 min and slowly increased to 650 ◦C within 1.5 min. Then the sample was
kept at 650 ◦C for 5 min. All consolidated pellets presented relative densities of >98% of
the theoretical value.

X-ray diffraction analyses were carried out on a Bruker AXS D8 ADVANCE powder
diffractometer (Bruker, Billerica, MA, USA). The morphology and element composition of
as-prepared SnTe were examined by field-emission scanning electron microscopy and an
energy dispersive X-ray spectrometer (EDX, Oxford, UK) on an Auriga Zeiss operated at
5.0 kV and 15.0 kV, respectively. Both the Seebeck coefficient and the electrical resistivity
were simultaneously measured in an LSR-3 LINSEIS system (Linseis Messgeraete GmbH,
Vielitzerstr, Germany) from room temperature to 873 K under a helium atmosphere. Room-
temperature hall charge carrier concentrations (nH) and mobilities (µH) were measured
with the Van der Pauw method using a magnetic field of 0.6 T (ezHEMS, NanoMagnet-
ics, NanoMagnetics Instruments, Ltd., Oxford, UK). An LFA 1000 Laser Flash (Linseis
Messgeraete GmbH, Vielitzerstr, Germany) was used to determine the samples’ thermal
diffusivities (α).

3. Results and Discussions

The PbS molecular complex was injected into SnTe NP suspension in N-Methylformamide
(MFA), and was absorbed on the NPs surface. Experiments showed that such PbS molecu-
lar complex decomposed under mild annealing (300 ◦C) and transformed into crystalline
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PbS (Figure 1a). Therefore, the PbS surface-modified SnTe NPs yielded SnTe-PbS nanocom-
posites (Figure 1b).
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assembly processing with the corresponding XRD pattern of heat recovered PbS and PbS surface-
modified SnTe NPs.

Figure 2a–c shows the XRD patterns of SnTe and PbS surface-modified SnTe NPs,
prepared with different content of PbS, before and after annealing, and the corresponding
consolidated pellets using annealed NPs. Diffraction patterns matched to SnTe rock-salt
structure without any additional peaks. No peak shift was observed either in XRD patterns
before powder annealing. In contrast, after the thermal processing, we observed small
peak shifts, Figure 2d. The calculated lattice parameters of pellets and the Vegard’s law
line are shown in Figure S1, indicating the solid solution between SnTe and PbS.
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To evaluate the effect of PbS molecular complex on the TE performance of SnTe,
we analyzed the electrical and thermal transport properties. As shown in Figure 3a, the
electrical conductivity of SnTe and SnTe-PbS nanocomposites showed metallic behavior,
with the electrical conductivity decreasing as the temperature increased. Compared with
pristine SnTe, the room temperature electrical conductivity decreased from ca. 7200 S cm−1

to ca. 6000 S cm−1 as the amount of PbS in the composite increased up to 3%. Such a
decrease in electrical conductivity with the increasing amount of PbS was maintained
through the whole temperature range studied. To investigate the origin of the electrical
conductivity reduction, room temperature hall measurements were performed, Figure 3b.
The carrier concentration was 1.4 × 1021 cm−3 in the SnTe nanomaterial and decreased to
2.7 × 1020 cm−3 in the SnTe-3% PbS nanocomposite. The decreased carrier concentration
in SnTe-PbS derived from the Pb-induced vacancy compensation. It is well-known that
large content of Sn vacancies results in excessively high carrier concentration in pristine
SnTe. The large amounts of Sn vacancies in SnTe were due to their negative formation
energy [24]. In comparison, the formation energy of Pb vacancies was much higher in PbTe.
Accordingly, Pb was expected to fill the Sn vacancy by forming a solid solution [6,24].
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Figure 3. The electrical transport properties of SnTe nanomaterial and SnTe-PbS nanocomposites.
(a) The electrical conductivity; (b) the carrier concentration and carrier mobility; (c) the carrier
mobility as a function of carrier concentration.

Figure 3b shows the carrier mobility as a function of nominal PbS amount. In undoped
SnTe, the room temperature carrier mobility was only 34 cm2 V s−1. In contrast, the
hall carrier mobility in SnTe prepared by melting method was ca. 400 cm2 V s−1 [25].
We attribute the low carrier mobility to the point defect scattering from the intrinsic Sn
vacancies or possible impurities (e.g., Na, C, H, O) introduced during the synthesis, the
intense electron-electron scattering from the high carrier concentration, and the strong
grain boundary scattering from the small grain size [26]. Strikingly, the carrier mobility
improved significantly in SnTe-PbS nanocomposites, increasing to 150 cm2 V s−1 for 3%
PbS content. The remarkable carrier mobility enhancement cannot be solely attributed
to the reduced carrier concentration and thus reduced electron-electron scattering. In
Figure 3c, the relationship between carrier mobility and carrier concentration is compared
with the one derived from the two-bands model using a Kane band (SKB) for the light and
a parabolic (SPB) for the heavy valence band [27]. The non-negligible deviation between
the experimental data and the calculated model curve in this work, grey areas in Figure 3c,
especially for the pristine SnTe, indicates that other factors played a role in the carrier
mobility tuning (The SnTe1−xIx and SnTe1+y data were taken from reference [27]). After
investigating the materials’ microstructure, we found that the surface treatment promoted
grain growth during the consolidation. This phenomenon explains the abnormal carrier
mobility trend, where grain boundary scattering is significantly reduced due to the lower
grain boundary density.

The SEM images of all NPs and the corresponding consolidated pellets are shown
in Figure 4 (The SEM images of powders after annealing can be found in Figure S2). The
as-synthesized SnTe NPs showed irregular spherical shape with a dimension of ca. 80 nm.
No apparent shape and size changes were observed after the thiol-amine surface treatment.
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However, the NP morphology of each sample changed dramatically after the thermal
processing. The grains in SnTe-PbS nanocomposites were much larger than the bare SnTe
with a dimension of >10 µm, with larger grains as we increased the content of PbS.
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Grain growth during the pressure-assisted sintering through spark plasma sintering
(SPS) is associated with a diffusion-induced grain boundary [28,29]. The high temperature
and pressure promoted the formation of a solid solution through PbS migration from
the surface to the inner grain [30,31], as illustrated in Figure 5. The EDX mapping of the
pellets in Figure S3 shows Pb homogeneously distributed in the SnTe, confirming the
atomic diffusion process. This phenomenon happened because PbS and SnTe can form
a complete solid solution [25]. As a result, the grain boundary moved along the atomic
diffusion, leading to enhanced grain growth. Therefore, all SnTe-PbS nanocomposites have
an average larger grain size than bare SnTe pellets [32]. Correspondingly, the larger grain
sizes reduce the grain boundary density, decreasing electron grain boundary scattering
and leading to higher carrier mobility in SnTe-PbS nanocomposites.
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Figure 6a shows the temperature-dependent Seebeck coefficients. The Seebeck coeffi-
cients showed positive values for all the materials explored in the whole temperature range,
indicating the p-type nature of the material associated with the intrinsic Sn vacancies. After
PbS addition, the room temperature Seebeck coefficients decreased with incrementing PbS
content. However, above 600 K, the tendency was inverted and the Seebeck coefficients
increased in value for the material with higher content of PbS. A similar phenomenon was
reported in Sn1+xTe, where excess Sn was introduced to compensate for Sn vacancies [26].

Figure 6b shows the room temperature Seebeck coefficient behavior as a function of car-
rier concentration (the undoped and ball-milled SnTe data are taken from reference [33,34]).
The carrier concentration-dependent Seebeck coefficient was the opposite of the expected
behavior for a p-type semiconductor with the single parabolic band, where the Seebeck
coefficient was reversely proportional to the carrier concentration. A sharp Seebeck co-
efficient upturn was detected in the carrier concentration range of 1.2 × 1020 cm−3 to
5.5 × 1020 cm−3. This anomalous Seebeck coefficient behavior was related to the unique
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character of the two non-degenerate valence bands in SnTe, the light valence band and
the heavy valence band. Zhang et al. calculated the Pisarenko relationship applying
the two-bands model [33]. When the carrier concentration was high, the fermi level in
SnTe was pushed down, crossing both the light and heavy valence bands. In this case,
both valence bands contributed to the charge carrier transport, leading to large effective
mass and Seebeck coefficient. When the carrier concentration decreased, the Fermi level
gradually lifted away from the heavy valence band. As a result, the effective mass and
Seebeck coefficient decreased with lower carrier concentration. In this work, the carrier
concentration coincidently lay in this heavy valence transition region.
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Notably, the Seebeck coefficient of SnTe nanomaterial was above the two-band Pis-
arenko line and was also higher than SnTe references with similar carrier concentrations.
Considering the high grain boundary density in undoped SnTe, we speculate that energy
barrier effects enhanced the Seebeck coefficient [35]. With increasing temperature, the
detrimental effect of single valence band transport on the Seebeck coefficient was offset.
Because of thermal activation, charge carriers have high enough energy to occupy the heavy
valence band [9,36], which led to the Seebeck coefficient at 873 K increasing significantly
from 97 µV K−1 to 150 µV K−1 with the rising PbS amount. Benefitting from the enhanced
Seebeck coefficient and moderate electrical conductivity at high temperatures, the SnTe-PbS
nanocomposites had much higher power factors than bare SnTe, with maximum values of
ca. 20 µW cm−1 K−1 at 873 K, Figure 6c.

The temperature-dependent thermal conductivities (κtot, κlat, κele) for SnTe-PbS
nanocomposites are shown in Figure 7a. The heat capacity and specific heat can be found
in Figures S4 and S5). The lattice and electronic thermal conductivity can be obtained by
the Wiedemann-Franz relationship:

κlat = κtot − κele = κtot − LσT (1)
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Figure 7. (a) The thermal conductivity as a function of temperature; (b) the lattice thermal conductivity as a function of Pb
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The Lorenz number L is estimated by the Seebeck coefficient data and the reduced
chemical potential using a single parabolic band model with acoustic phonon scattering,
Figure S6. With increasing PbS content, κtot decreases gradually because of the reduction
in both κlat and κele. The decreased κele comes from the reduced electrical conductivity. κlat
shows strikingly low values with the lowest being ca. 0.37 W m−1 K−1 at 873 K, which
is even lower than the theoretically minimum κmin of 0.5 W m−1 K−1 for SnTe calculated
using the disordered crystal model [37].

κmin =
π

4
kBV− 2

3 v (2)

where V is the unit cell volume, kB is the Boltzmann constant, and v is the sound velocity
(ca. 1800 m s−1 for SnTe [38]).

To get a deep insight into the origin of low κlat in the SnTe-PbS system, we made a
comparison between the experimental data and the Klemens-Drabble (KD) model [25].
The detailed calculations are shown in the SI. In the KD model, the κlat reduction of the
doped or alloyed crystal depends on the disorder parameter Γ, depending on mass and
strain fluctuations.

Γ = x(1 − x)
[(

∆M
M

)
+ ε

(
∆a
a

)]
(3)

where x is the dopant content in a binary system. ε is a phenomenological parameter
related to the Grüneisen parameter, M and a are the molar mass and lattice constant of
the alloy, and ∆M and ∆a are the differences in mass and lattice constant between the two
constituents. The higher Γ is, the lower κlat will be. The calculated κlat as a function of Pb
amount is shown as the solid black line in Figure 7b. It is clear that the experimental data
lie well below the calculated values, indicating additional phonon scattering factors that
contribute to the further κlat reduction. Considering the microstructure and the composition
of SnTe-PbS nanocomposites, we speculated that the grain boundary scattering, possible
formation of PbS nanoprecipitates, and other impurity scattering may be responsible for
the κlat reduction.

Combining the enhanced power factor and the significantly reduced thermal con-
ductivity allowed achieving a remarkable ZT enhancement with respect to bare SnTe at
high temperatures, increasing from 0.47 to 0.82 at 873 K, Figure 7c. Compared with other
bottom-up assembled SnTe [14], SnTe-PbS nanocomposites revealed moderately high ZT
while utilizing more facile and inexpensive synthetic methods.

4. Conclusions

We synthetized SnTe nanoparticles in water and treated their surface with different
amounts of PbS complexes. The PbS surface-treated SnTe particles were then consolidated
in a bulk pellet. Thanks to such surface treatment, positive synergistic effects were achieved
in both electrical and thermal transport properties, enhancing the thermoelectric perfor-
mance. For one site, the ultrahigh carrier concentration was reduced by Pb-induced Sn
vacancy compensation. Moreover, the formation of a solid solution with PbS promotes
grain growth, hence contributing to the high carrier mobility. Finally, κlat was significantly
reduced because of the Pb- and S-induced mass and strain fluctuation and grain boundary
scattering. As a result, a moderate-high ZT of 0.82 was achieved at 873 K. Our work pro-
vides a new simple and versatile approach to produce bottom-up processed thermoelectric
materials through surface treatments.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14185416/s1, Figure S1: The lattice parameter as a function of PbS amount. Vegard’s law
is listed for comparison, Figure S2: The SEM images of powders after annealing, Figure S3: EDX
mapping of SnTe-1/2/3% PbS, Figure S4: The heat capacity Cp of SnTe as a function of temperature.
This figure of Cp values is taken from previous work by Zhao et al. [5] Cp in some other references are
listed for comparision [6–9], Figure S5: The temperature dependent thermal diffusivity of SnTe-xPbO
nanocomposites (x = 0, 1%, 2%, 3%), Figure S6: The temperature dependent Lorenz number of
SnTe-xPbO nanocomposites (x = 0, 1%, 2%, 3%).
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