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Abstract
Repeated idempotent elements are commonly used to characterise iterable behaviours in abstract
models of computation. Therefore, given a monoid M , it is natural to ask how long a sequence of
elements of M needs to be to ensure the presence of consecutive idempotent factors. This question
is formalised through the notion of the Ramsey function RM associated to M , obtained by mapping
every k ∈ N to the minimal integer RM (k) such that every word u ∈ M∗ of length RM (k) contains k

consecutive non-empty factors that correspond to the same idempotent element of M .
In this work, we study the behaviour of the Ramsey function RM by investigating the regular

D-length of M , defined as the largest size L(M) of a submonoid of M isomorphic to the set of
natural numbers {1, 2, . . . , L(M)} equipped with the max operation. We show that the regular
D-length of M determines the degree of RM , by proving that kL(M) ≤ RM (k) ≤ (k|M |4)L(M).

To allow applications of this result, we provide the value of the regular D-length of diverse
monoids. In particular, we prove that the full monoid of n × n Boolean matrices, which is used to
express transition monoids of non-deterministic automata, has a regular D-length of n2+n+2

2 .
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1 Introduction

The algebraic approach to language theory was initiated by Schützenberger with the definition
of the syntactic monoid associated to a formal language [14]. This led to several parallels
being drawn between classes of languages and varieties of monoids, the most famous being
that rational languages are characterised by finite syntactic monoids [12], and that star-free
languages are characterised by finite aperiodic syntactic monoids [15]. These characterisations
motivate the study of finite monoids as a way to gain some insight about automata. In this
work, we focus on the following problem:
Given a finite monoid M and k ∈ N, what is the minimal integer RM (k) such that every
word u ∈ M∗ of length RM (k) contains k consecutive factors corresponding to the same
idempotent element of M?
The interest of this problem lies in the fact that when we model the behaviours of an
abstract machine as elements of a monoid, repeated idempotent factors often characterise
the behaviours that have good properties with respect to iteration. This can be used, for
instance, to obtain pumping lemmas, as seen in [8] for weighted automata.

A partial answer to this problem is obtained by using Ramsey’s Theorem [13] or Simon’s
Factorisation Forest Theorem [16] (these techniques are detailed in the full version), as both
approaches provide upper bounds for RM (k). However, neither approximation is precise:
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44:2 A Ramsey Theorem for Finite Monoids

Ramsey’s theorem disregards the monoid structure, and the Factorisation Forest Theorem
guarantees much more than what is required here. We prove a version of Ramsey’s Theorem
adapted to monoids, or, equivalently, a weaker version of the Forest Factorisation Theorem,
that yields an improved bound relying on a parameter of monoids called the regular D-length.
We now present some examples, followed with an overview of the main concepts studied in
this paper: the Ramsey function associated to a monoid and the regular D-length.

1.1 Examples
We describe three families of monoids, along with the corresponding idempotent elements.

Max monoid. The max monoid Hn is the set {1, 2, . . . , n}, equipped with the max operation.
In this monoid, every element i is idempotent since max(i, i) = i.

Transformation monoid. The (full) transformation monoid Tn is the set of all (partial)
functions from a set of n elements into itself, equipped with the composition. See [3] for a
detailed definition of Tn and its properties. Transformation monoids contain a wide range of
idempotent elements. For instance, the identity function, mapping each element to itself, or
the constant function fi, mapping all elements to one fixed element i, are idempotent. In
general, a function f is idempotent if and only if each element i of its range satisfies f(i) = i.
Transformations are commonly used to express transition monoids of deterministic finite
state automata, as in this setting each input letter acts as a function over the set of states.

Relation monoid. For non-deterministic automata, transition monoids are more complex:
functions fail to model the behaviour of the input letters since a single state can transition
towards several distinct states. We use the (full) relation monoid Bn of all n × n Boolean
matrices (matrices with values in {0, 1}), equipped with the usual matrix composition
(considering that 1 + 1 = 1). There are plenty of idempotent matrices, for instance every
diagonal matrix, or the full upper triangular matrix. Idempotent Boolean matrices are
characterised in [9], they correspond to specific orders over the subsets of {1, 2, . . . , n}.

1.2 Ramsey function
Given a finite monoid M , the Ramsey function RM associated to M maps each k ∈ N to the
minimal integer RM (k) such that every sequence of elements of M of length RM (k) contains
k non-empty consecutive factors that all correspond to the same idempotent element of M .

Related work. There are several known methods to approximate the Ramsey function RM

of a monoid M . Ramsey’s Theorem and Simon’s Factorisation Forest Theorem are commonly
used, however, as stated before, these approaches are too general to obtain a precise bound.
The value of RM (k) is studied in [4] in the particular case k = 1. The authors prove that for
a monoid M that contains N non-idempotent elements, RM (1) ≤ 2N − 1. No general related
lower bound is proved, but they show that for every N ∈ N, there exists a monoid MN with
N non-idempotent elements that actually reaches the upper bound: RMN

(1) = 2N − 1.

Our contributions. We prove new bounds for RM by following a different approach: instead
of focusing on the non-idempotent elements of M , we study its idempotent elements, and
the way in which they interact. In Section 3, we start by considering two specific cases
where the exact value of the Ramsey function is easily obtained. First, for a group G, the
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Ramsey function is polynomial with respect to the size: RG(k) = k|G|. Second, we call max
monoid Hn the set {1, 2, . . . , n} equipped with the max operation, and we show that here
the Ramsey function is exponential with respect to the size: RHn

(k) = kn. The later result
implies that kn is a lower bound for the Ramsey function of every monoid M that has Hn as
a submonoid. We prove a related upper bound: We define the regular D-length L(M) of M

as the size of the largest max monoid HL(M) embedded in M , and show the following:

▶ Theorem 1. Every monoid M of regular D-length L satisfies kL ≤ RM (k) ≤ (k|M |4)L.

Stated differently: every word u ∈ M∗ of length (k|M |4)L contains k consecutive non-empty
factors corresponding to the same idempotent element of M , and, conversely, there exists
a word uM ∈ M∗ of length kL − 1 that does not contain k consecutive non-empty factors
corresponding to the same idempotent element. Note that while the gap between the lower
and upper bound is still wide, this shows that the degree of the Ramsey function RM is
determined by the regular D-length of M .

1.3 Regular D-length
Theorem 1 states that the degree of the Ramsey function of a monoid M is determined by
the regular D-length of M , which is the size of the largest max monoid embedded in M . We
now show that for transformation monoids and relation monoids, the regular D-length is
exponentially shorter than the size. Let us begin by mentioning an equivalent definition of
the regular D-length in terms of Green’s relations. While this alternative definition is not
used in the proofs presented in this paper, it allows us to immediately obtain the regular
D-length of monoids whose Green’s relations are known.

Alternative definition. The regular D-length of a monoid M is the size of its largest chain
of regular D-classes. A D-class of M is an equivalence class of the preorder ≤D defined by
m ≤D m′ if m = s · m′ · t for some s, t ∈ M , and it is called regular if it contains at least one
idempotent element (see [11] for more details). The equivalence between both definitions is
proved in the full version.

Computing the regular D-length. The following table compares the size and the regular
D-length of the monoids mentioned earlier. The entries corresponding to the sizes are
considered to be general knowledge. We detail below the row listing the regular D-lengths.

Monoid G Hn Tn Bn

Size |G| n (n + 1)n 2(n2)

Regular D-length 1 n n + 1 n2+n+2
2

First, every group G contains a single idempotent element (the neutral element), hence its
regular D-length is 1. Then, using the definition of the regular D-length in terms of embedded
max monoid, we immediately obtain that L(Hn) is equal to n. We get the next entry using
the definition of the regular D-length in terms of chain of D-classes: The transformation
monoid Tn is composed of a single chain of n + 1 D-classes that are all regular [3], hence its
regular D-length is n + 1.

Finally, for the relation monoid Bn, the situation is not as clear: the D-classes do not form
a single chain, and some of them are not regular. Determining the exact size of the largest
chain of D-classes (note the absence of “regular”) is still an open question, yet it is known
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44:4 A Ramsey Theorem for Finite Monoids

to grow exponentially with respect to n: a chain of D-classes whose size is the Fibonacci
number Fn+3 − 1 is constructed in [2], and, conversely, the upper bound 2n−1 + n − 1 is
proved in [6] (and slightly improved in [7, 17, 5]). Our second main result is that, as long as
we only consider chains of regular D-classes, we can obtain the precise value of the maximal
length, and, somewhat surprisingly, it is only quadratic in n:

▶ Theorem 2. The regular D-length of the monoid of n × n Boolean matrices is n2+n+2
2 .

Therefore, the regular D-length of a transformation monoid is exponentially smaller than
its size, and the regular D-length of a relation monoid is even exponentially smaller than
its largest chain of D-classes. For such kind of monoids, Theorem 1 performs considerably
better than previously known methods to find idempotent factors. For instance, it was used
in [10] to close the complexity gap left in [1] for the problem of deciding whether the function
defined by a given two-way word transducer is definable by a one-way transducer.

2 Definitions and notations

We define in this section the notions that are used throughout the paper. We denote by N
the set {0, 1, 2, . . .}, and for all i ≤ j ∈ N we denote by [i, j] the interval {i, i + 1, . . . , j}.

Monoids. A (finite) semigroup (S, ·) is a finite set S equipped with a binary operation
· : S×S → S that is associative: (s1 ·s2)·s3 = s1 ·(s2 ·s3) for every s1, s2, s3 ∈ S. A monoid is
a semigroup (M, ·) that contains a neutral element 1M : m · 1M = m = 1M · m for all m ∈ M.

A group is a monoid (G, ·) in which every element g ∈ G has an inverse element g−1 ∈ G:
g · g−1 = 1G = g−1 · g. We always denote the semigroup operation with the symbol ·. As a
consequence, we identify a semigroup (S, ·) with its set of elements S.

An element e of a semigroup S is called idempotent if it satisfies e · e = e. Note that
whereas a finite semigroup does not necessarily contain a neutral element, it always contains
at least one idempotent element: iterating any element s ∈ S eventually yields an idempotent
element, called the idempotent power of s, and denoted s# ∈ S.

A homomorphism between two monoids M and M ′ is a function φ : M → M ′ preserving
the monoid structure: φ(m1·m2) = φ(m1)·φ(m2) for all m1, m2 ∈ M and φ(1M ) = φ(1M ′). A
monomorphism is an injective homomorphism, an isomorphism is a bijective homomorphism.

Ramsey decomposition. Let M be a monoid. A word over M is a finite sequence u =
m1m2 . . . mn ∈ M∗ of elements of M . The length of u is its number of symbols |u| = n ∈ N.
We enumerate the positions between the letters of u starting from 0 before the first letter,
until |u| after the last letter. A factor of u is a subsequence of u composed of the letters
between two such positions i and j: u[i, j] = mi+1mi+2 . . . mj ∈ M∗ for some 0 ≤ i ≤ j ≤ |u|
(where u[i, j] = ε if i = j). We denote by π(u) the element 1M · m1 · m2 · . . . · mn ∈ M ,
and we say that u reduces to π(u). For every integer k ∈ N, a k-decomposition of u is a
decomposition of u in k + 2 factors such that the k middle ones are non-empty:

u = xy1y2 . . . ykz, where x, z ∈ M∗, and yi ∈ M+ for every 1 ≤ i ≤ k.

A k-decomposition is called Ramsey if all the middle factors y1, y2, . . . , yk reduce to the same
idempotent element e ∈ M . For instance, a word has a Ramsey 1-decomposition if and
only if it contains a factor that reduces to an idempotent element. The Ramsey function
RM : N → N associated to M is the function mapping each k ∈ N to the minimal RM (k) ∈ N
such that every word u ∈ M∗ of length RM (k) has a Ramsey k-decomposition.
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3 Ramsey decompositions

In this section, we bound the Ramsey function RM associated to a monoid M . As a first step
we consider two basic cases for which the exact value of the Ramsey function is obtained: in
Subsection 3.1 we show that every group G satisfies RG(k) = k|G|, and in Subsection 3.2 we
show that every max monoid Hn (obtained by equipping the first n positive integers with
the max operation) satisfies RHn(k) = kn. Finally, in Subsection 3.3, we prove bounds in the
general case by studying the submonoids of M isomorphic to a max monoid.

3.1 Group: prefix sequence algorithm
We show that in a group, the Ramsey function is polynomial with respect to the size.

▶ Proposition 3. For every group G, RG(k) = k|G| for all k ∈ N.

We fix for this subsection a group G and k ∈ N. We begin by proving an auxiliary lemma,
which we then apply to prove matching bounds for RG(k): First, we define an algorithm that
extracts a Ramsey k-decomposition out of every word of length k|G|. Then, we present the
construction of a witness uG ∈ G∗ of length k|G| − 1 that has no Ramsey k-decompositions.

Key lemma. In a group, the presence of inverse elements allows us to establish a corres-
pondence between the factors of a word u ∈ G∗ that reduce to the neutral element, and the
pairs of prefixes of u that both reduce to the same element.

▶ Lemma 4. Two prefixes u[0, i] and u[0, j] of a word u ∈ G∗ reduce to the same element if
and only if u[i, j] reduces to the neutral element of G.

Proof. Let u ∈ G∗ be a word. The statement is a direct consequence of the fact that for
every 0 ≤ i ≤ j ≤ |u|, π(u[0, i]) · π(u[i, j]) = π(u[0, j]): If π(u[0, i]) = π(u[0, j]), then

π(u[i, j]) = π(u[0, i])−1 · π(u[0, j]) = π(u[0, i])−1 · π(u[0, i]) = 1G .

Conversely, if π(u[i, j]) = 1G , then

π(u[0, i]) = π(u[0, i]) · 1G = π(u[0, i]) · π(u[i, j]) = π(u[0, j]). ◀

Algorithm. We define an algorithm constructing Ramsey k-decompositions.

Alg1: Start with u ∈ G∗ of length k|G|;
a. Compute the k|G| + 1 prefixes π(u[0, 0]), π(u[0, 1]), . . . , π(u[0, |u|]) of u;
b. Find k + 1 indices i0, i1, . . . , ik such that all the π(u[0, ij ]) are equal;
c. Return the Ramsey k-decomposition u = u[i0, i1]u[i1, i2] . . . u[ik−1, ik].

Since Lemma 4 ensures that every pair of elements ij , ij+1 identified at step 2 satisfies
π(u[ij , ij+1]) = 1G , we are guaranteed that the returned k-decomposition is Ramsey.

Witness. We build a word uG ∈ G∗ of length k|G| − 1 that has no Ramsey k-decompositions.
Let v = a1a2 . . . ak|G| ∈ G∗ be a word of length k|G|, starting with the letter 1G , and containing
exactly k times each element of G. For instance, given an enumeration g1, g2, . . . , g|G|
of the elements of G starting with g1 = 1G , we can simply pick v = gk

1 gk
2 . . . gk

|G|. Now
let uG = b1b2 . . . bk|G|−1 be the word whose sequence of reduced prefixes is v: for every
1 ≤ i ≤ k|G| − 1, the letter bi is equal to a−1

i · ai+1. Then for every k-decomposition of uG , at
least one of the factors do not reduce to the neutral element of G, since otherwise Lemma 4
would imply the existence of k + 1 identical letters in v, which is not possible by construction.
As a consequence, uG has no Ramsey k-decompositions.
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44:6 A Ramsey Theorem for Finite Monoids

3.2 Max monoid: divide and conquer algorithm
Given an integer n ∈ N, the max monoid, denoted Hn, is the monoid over the set {1, 2, . . . , n}
with the associative operation i · j = max(i, j). Whereas in a group only the neutral element
is idempotent, each element i of the max monoid Hn is idempotent since max(i, i) = i. As a
result of this abundance of idempotent elements, an exponential bound is required to ensure
the presence of consecutive factors reducing to the same idempotent element.
▶ Proposition 5. For every max monoid Hn, RHn(k) = kn for all k ∈ N.
The proof is done in two steps: we first define an algorithm that extracts a Ramsey k-
decomposition out of every word of length kn, and then we present the construction of a
witness un of length kn − 1 that has no Ramsey k-decompositions.

Algorithm. We define an algorithm that extracts a Ramsey k-decompositions out of each
word u ∈ H∗

n of length kn. It is a basic divide and conquer algorithm: we divide the
initial word u into k equal parts. If each of the k parts reduces to n, they form a Ramsey
k-decomposition since n is an idempotent element. Otherwise, one part does not contain the
maximal element n ∈ Hn, and we start over with it. Formally,

Alg2: Start with u ∈ H∗
n of length kn, initialize j to n. While j > 0, repeat the following:

a. Split u into k factors u1, u2, . . . , uk of length kj−1;
b. If every ui contains the letter j, return the Ramsey k-decomposition u = u1u2 . . . uk;
c. If ui does not contain j for some 1 ≤ i ≤ j, decrement j by 1 and set u := ui ∈ H∗

j−1.

The algorithm is guaranteed to eventually return a Ramsey k-decomposition: if the nth cycle
of the algorithm is reached, it starts with a word of length k whose letters are in the monoid
H1, which only contains the letter 1, hence the algorithm will go to step b.

Witness. We construct an infinite sequence of words u1, u2, . . . ∈ N∗ such that for all n ∈ N,
(a) un ∈ Hn satisfies |un| = kn − 1 and
(b) un has no Ramsey k-decompositions.
Let

u1 = 1k−1 ∈ H∗
1 ,

un = (un−1n)k−1un−1 ∈ H∗
n for every n > 1.

For every n > 1, the word un is defined as k copies of un−1 separated by the letter n.
We prove by induction that the two conditions are satisfied by each word of the sequence.
The base case is immediate: the word u1 has length k − 1, and as a consequence has no
decomposition into k nonempty factors. Now suppose that n > 1, and that un−1 satisfies
the two properties. Then un has the required length:

|un| = (k − 1)(|un−1| + 1) + |un−1| = (k − 1)kn−1 + kn−1 − 1 = kn − 1.

To conclude, we show that every k-decomposition

un = xy1y2 . . . ykz, with yi ∈ H+
n for all 1 ≤ i ≤ k (1)

is not Ramsey. Let y be the factor y1y2 . . . yk of un, and consider the two following cases:
If π(y) ̸= n, none of the yi contains the letter n, hence y is factor of one of the factors
un−1 of un. Therefore, by the induction hypothesis, Decomposition (1) is not Ramsey.
If π(y) = n, since un contains only k − 1 copies of the letter n, one of the factors yi does
not contain n for 1 ≤ i ≤ k. Then π(y) ̸= π(yi), hence Decomposition (1) is not Ramsey.

▶ Example 6. Here are the first three words of the sequence in the cases k = 2 and k = 3:
k = 2 : u1 = 1 u2 = 121 u3 = 1213121,

k = 3 : u1 = 11 u2 = 11211211 u3 = 11211211311211211311211211.
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3.3 General setting
We saw in the previous subsection that for the max monoid Hn, words of length exponential
with respect to n are required to guarantee the presence of Ramsey decompositions (Proposi-
tion 5). Note that the same lower bound applies to every monoid M that contains a copy
of Hn as submonoid. We now show that we can also obtain an upper bound for RM (k) by
studying the submonoids of M isomorphic to a max monoid. We formalise this idea through
the notion of regular D-length of a monoid.

Regular D-length. The regular D-length of a monoid M , denoted L(M), is the size of the
largest max monoid embedded in M . Formally, it is the largest ℓ ∈ N such that there exists
a monomorphism (i.e. injective monoid homomorphism) φ : Hℓ → M . We now present the
main theorem of this section, which states that for every monoid M , the degree of RM (k) is
determined by the regular D-length of M .

▶ Theorem 1. Every monoid M of regular D-length L satisfies kL ≤ RM (k) ≤ (k|M |4)L.

Let us fix for the whole subsection a monoid M of regular D-length L(M) and an integer
k ∈ N. The lower bound is a corollary of Proposition 5: the max monoid HL(M) has a
witness uL(M) of length kL(M) − 1 that has no Ramsey k-decompositions (its construction
is presented in the previous subsection). Then, by definition of the regular D-length, there
exists a monomorphism φ : HL(M) → M , and applying φ to uL(M) letter by letter yields a
witness u′

L(M) ∈ M∗ of length kL(M) − 1 that has no Ramsey k-decompositions.
The rest of the subsection is devoted to the proof of the upper bound. We begin by

defining an auxiliary algorithm that extracts from each long enough word a decomposition
where the prefix and suffix absorb the middle factors. Then, we define our main algorithm
which, on input u ∈ M∗ of length (k|M |4)n for some n ∈ N, either returns a Ramsey
k-decomposition of u, or a copy of the max monoid Hn+1 embedded in M . In particular,
if n is equal to the regular D-length L(M) of M , we are guaranteed to obtain a Ramsey
k-decomposition.

Auxiliary algorithm. We define an algorithm which, on input u ∈ M∗ of length k|M |2,
returns a k-decomposition

u = xy1y2 . . . ykz, where x, z ∈ M∗, and yi ∈ S+ for every 1 ≤ i ≤ k

such that for every 1 ≤ i ≤ k, both x and z are able to absorb the factor yi: π(xyi) = π(x)
and π(yiz) = π(z). This is done as follows: since u is a word of length k|M |2, it can be split
into k|M |2 + 1 distinct prefix-suffix pairs. Then k + 1 of these pairs reduce to the same pair
of elements of M , which immediately yields the desired decomposition. Formally,

Alg3: Start with u ∈ M∗ of length k|M |2;

1. a. Compute the k|M |2 + 1 prefixes π(u[0, 0]), π(u[0, 1]), . . . , π(u[0, |u|]) ∈ M of u,
b. Compute the k|M |2 + 1 suffixes π(u[0, |u|]), π(u[1, |u|]), . . . , π(u[|u|, |u|]) ∈ M of u,
c. Identify k + 1 indices s0, s1, . . . , sk such that

(1) all the π(u[0, si]) are equal,
(2) all the π(u[si, |u|]) are equal;

2. Set x = u[0, s0], z = u[sk, |u|], and yi = u[si−1, si] for every 1 ≤ i ≤ k;

3. Return the k-decomposition xy1y2 . . . ykz of u.
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44:8 A Ramsey Theorem for Finite Monoids

Main algorithm. We define an algorithm extracting Ramsey k-decompositions. Over an
input u ∈ M∗ of length (k|M |4)n for n ∈ N, the algorithm works by defining gradually
shorter words un, un−1, . . . ∈ M∗, where each uj has length (k|M |4)j , along with a sequence
of idempotent elements en+1, en, . . . ∈ M . Starting with un = u, we define en+1 as the
idempotent power of some well chosen factors of un. We then consider k consecutive factors
of un. If all of them reduce to en+1, they form a Ramsey k-decomposition, and we are done.
Otherwise, we pick a factor un−1 that does not reduce to en+1, and we start over. This
continues until either a Ramsey k-decomposition is found, or n cycles are completed. In
the later case, we show that the function φ : Hn+1 → M mapping i to ei is a monomorphism.

Alg4: Start with u ∈ M∗ of length (k|M |4)n. Initialize un to u and j to n.

While j > 0, repeat the following:
1. a. Call Alg3 to get an m-decomposition uj = xy1y2 . . . ymz, where m = kj |M |4j−2;

b. Set v := π(y1)π(y2) . . . π(ym) ∈ M∗;
2. a. Call Alg3 to get an m′-decomposition v = x′y′

1y′
2 . . . y′

m′z′, where m′ = kj |M |4j−4;
b. Set w := π(y′

1)π(y′
2) . . . π(y′

m′) ∈ M∗, and set ej+1 := (π(z′x′))#;
3. a. Split w into k factors y′′

1 , y′′
2 , . . . , y′′

k of length (k|M |4)j−1;
b. If every y′′

i satisfies π(yi) = ej+1, then w = y′′
1 y′′

2 . . . y′′
k is a Ramsey decomposition.

Return the corresponding Ramsey k-decomposition of u;
c. If π(y′′

i ) ̸= ej+1 for some 1 ≤ i ≤ n, set uj−1 := y′′
i , and decrement j by 1.

Set e1 = 1M , and return the idempotent elements e1, e2, . . . , en+1 ∈ M .

Step 1. We use the auxiliary algorithm to obtain a decomposition uj = xy1y2 . . . ymz, and
we build v by concatenating the reductions of the yi. Since both x and z absorb each yi,
and in step 2b we define ej+1 as the idempotent power of reduced factors of v:

The word uj , its prefix x and its suffix z satisfy π(uj) = π(xz) = π(x) ·ej+1 ·π(z). (1)

Step 2. We use the auxiliary algorithm to get a decomposition u′ = x′y′
1y′

2 . . . y′
m′z′, we

build w by concatenating the reductions of the y′
i, and we set ej+1 as the idempotent

power of π(z′x′). As both x′ and z′ absorb each y′
i, and in step 3c we define uj−1 as a

factor of w:

For every factor y of uj−1, ej+1 · π(y) = ej+1 = π(y) · ej+1. (2)

Step 3. We divide w into k factors of equal length. If each of them reduces to ej+1, they
form a Ramsey k-decomposition of w. As w is obtained form u by iteratively reducing
factors and dropping prefixes and suffixes, this decomposition can be transferred back to
a Ramsey k-decomposition of u = un. If one factor does not reduce to ej+1, we assign its
value to uj−1. Therefore:

The word uj−1 does not reduce to ej+1. (3)

Proof of correctness. To prove that the algorithm behaves as intended, we show that
if it completes n cycles without returning a Ramsey k-decomposition, then the function
φ : Hn+1 → M defined by φ(j) = ej is a monomorphism. Since ej is the idempotent power of
reduced factors of uj−1 for all 1 ≤ j ≤ n, Equation (2) yield that ej+1 · ej = ej+1 = ej · ej+1.



I. Jecker 44:9

Therefore φ is a homomorphism. We conclude by showing that it is injective. Suppose,
towards building a contradiction, that φ(j) = ej = ei = φ(i) for some 1 ≤ j < i ≤ n. Since
φ is a homomorphism, all the intermediate elements collapse: in particular ej = ej+1. Then

π(uj−1) =
(1)

π(x) · ej · π(z) = π(x) · ej+1 · π(z) =
(2)

ej+1,

which cannot hold by Equation (3).

4 Regular D-length of the monoid of Boolean matrices

A Boolean matrix is a matrix A whose components are Boolean elements: Aij ∈ {0, 1}. The
(full) Boolean matrix monoid Bn is the set of all n × n Boolean matrices, equipped with the
matrix composition defined as follows: (A · B)ik = 1 if and only if there exists j ∈ [1, n]
satisfying Aij = Bjk = 1. This fits the standard matrix multiplication if we consider that
1 + 1 = 1: addition of Boolean elements is the OR operation, and multiplication is the AND
operation. The main contribution of this section is the following theorem.

▶ Theorem 2. The regular D-length of the monoid of n × n Boolean matrices is n2+n+2
2 .

The proof is split in two parts. We prove the upper bound by studying the structure of the
idempotent elements of Bn (Subsection 4.1). Then, we prove the lower bound by constructing
a monomorphism from the max monoid of size n2+n+2

2 into Bn (Subsection 4.2). We begin
by introducing definitions tailored to help us in the following demonstrations.

Stable matrix. A Boolean matrix A ∈ Bn is called stable if for each component Aik equal
to 1, there exists j ∈ [1, n] satisfying Aij = Ajj = Ajk = 1. Idempotent matrices are stable
(see the full version).

Positive set. A (maximal) positive set of an idempotent matrix A ∈ Bn is a maximal set
I ⊆ [1, n] such that all the corresponding components of A are 1: Aij = 1 for all i, j ∈ I, and
for every k ∈ [1, n] \ I, there exists i ∈ I such that Aik = 0 or Aki = 0. The positive sets of
an idempotent matrix are disjoint (see the full version), hence A has at most n positive sets.

Free pair. For each idempotent matrix A ∈ Bn we define the relation �A on [1, n] as follows:
given i, j ∈ [1, n], we have i �A j if for all i2, j2 ∈ [1, n], Ai2i = 1 = Ajj2 implies Ai2j2 = 1.
A free pair of A is a set of two distinct elements i, j ∈ [1, n] incomparable by �A: i ̸�A j and
j ̸�A i. Note that A has at most n(n−1)

2 free pairs (all sets of two distinct elements in [1, n]).
Let us state some observations concerning �A that follow immediately from the definition
(see the full version for the proofs). First, as A is idempotent, �A is reflexive. However, it
might not be transitive. Moreover, for every component Aij of A equal to 1, we have that
i �A j. The converse implication is not true, as shown by the following example. Finally, for
every i ∈ [1, n], if the ith row contains no 1, i.e., Aik = 0 for all k ∈ [1, n], then i �A j for
every j ∈ [1, n]. Conversely, if the ith column contains no 1, then j �A i for every j ∈ [1, n].

▶ Example 7. We depict below a submonoid of B4 generated by two matrices A and B. The
six elements of this submonoid, including the identity matrix D ∈ Bn, are all idempotent.
Under each matrix, we list its positive sets. We then compute the corresponding free pairs.
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D

{1}, {2}, {3}, {4}
A

{1, 3}, {2, 4}
B

{1}, {4}
A · B

{1, 3}, {4}
B · A

{1}, {2, 4}
A · B · A

{1, 3}, {2, 4}

Every pair is free in D since the relation �D is the identity: given two distinct elements
i, j ∈ [1, n], we have Dii = 1 = Djj , yet Dij = 0, hence i ̸�D j. On the contrary, the four
matrices B, A · B, B · A and A · B · A has no free pairs: the relation �B only lacks (4, 1),
�A·B only lacks (4, 1) and (4, 3), �B·A only lacks (2, 1) and (4, 1), �A·B·A only lacks (2, 1),
(4, 1) and (4, 3). Finally, for A, the relation �A is the union of the identity and the four pairs
{(1, 3), (3, 1), (2, 4), (4, 2)}, which yields the free pairs {1, 2}, {1, 4}, {2, 3} and {3, 4}.

4.1 Upper bound
To prove the upper bound of Theorem 2, we show that every monomorphism φ : Hm → Bn

satisfies m ≤ n2+n+2
2 . To this end, we study the sequence of matrices sφ = A1, A2, . . . , Am

obtained by listing the elements φ(i) = Ai of the image of φ. Note that all the elements of
sφ are distinct as φ is injective, and Ai · Ai+1 = Ai+1 = Ai+1 · Ai for all 1 ≤ i < m as φ is
a homomorphism. We introduce three lemmas that imply interesting properties of every
pair Ai, Ai+1 of successive matrices of sφ. First, Lemma 8 shows that every positive set of
Ai+1 contains a positive set of Ai. Therefore, since positive sets are disjoint, the number of
positive sets can never increase along sφ. Second, Lemma 9 shows that every free pair of
Ai+1 is also a free pair of Ai. As a consequence, the number of free pairs can never increase
along sφ. Finally, Lemma 10 shows that either the number of positive sets or free pairs
differs between Ai and Ai+1, as otherwise these two matrices would be equal.

Combining the three lemmas yields that between each pair of successive matrices of sφ,
neither the number of positive sets nor the number of free pairs increases, and at least one
decreases. This immediately implies the desired upper bound: as the number of positive sets
of matrices of Bn ranges from 0 to n and the number of free pairs ranges from 0 to n(n−1)

2 ,
sφ contains at most n + n(n−1)

2 + 1 = n2+n+2
2 matrices. To conclude, we now proceed with

the formal statements and the proofs of the three lemmas.

▶ Lemma 8. Let A and B be two idempotent matrices of Bn satisfying A · B = B = B · A.
Then every positive set of B contains a positive set of A.

Proof. Let us pick two idempotent matrices A, B ∈ Bn satisfying A · B = B = B · A. If B

has no positive sets, the statement is trivially satisfied. Now let us suppose that B has at
least one positive set I ⊆ [1, n]. We show the existence of a positive set J ⊆ I of A.

Since I is not empty by definition, it contains an element i, and Bii = 1. Then, as
B = B · A, there exists k ∈ [1, n] satisfying Bik = Aki = 1. Moreover, as A is stable, there
exists j ∈ [1, n] satisfying Akj = Ajj = Aji = 1. In particular, Ajj = 1, hence A has a
positive set J containing j. Then, for every i2 ∈ I and every j2, j3 ∈ J , we obtain

Bj2i2 = (A · A · B)j2i2 = 1 since Aj2j = Aji = Bii2 = 1,

Bi2j3 = (B · B · A · A)i2j3 = 1 since Bi2i = Bik = Akj = Ajj3 = 1,

Bj2j3 = (B · B)j2j3 = 1 since Bj2i2 = Bi2j3 = 1.

As a consequence, J is a subset of I since positive sets are maximal by definition. ◀

▶ Lemma 9. Let A and B be two idempotent matrices of Bn satisfying A · B = B = B · A.
Then every free pair of B is a free pair of A.
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Proof. Let us pick two idempotent matrices A, B ∈ Bn satisfying A · B = B = B · A. We
prove the lemma by contraposition: we show that for every pair of elements i, j ∈ [1, n],
i �A j implies i �B j (hence if i and j are incomparable by �B , so are they by �A).

Let us pick i, j ∈ [1, n] satisfying i �A j, and i2, j2 ∈ [1, n] satisfying Bi2i = 1 = Bjj2 . To
conclude, we show that Bi2j2 = 1. To this end, we introduce two new elements i1, j1 ∈ [1, n]:
First, as (B · A)i2i = Bi2i = 1, there exists i1 ∈ [1, n] such that Bi2i1 = 1 and Ai1i = 1;
Second, as (A · B)jj2 = Bjj2 = 1, there exists j1 ∈ [1, n] such that Ajj1 = 1 and Bj1j2 = 1.
Then, as i �A j by supposition, we get that Ai1j1 = 1, which implies

Bi2j2 = (B · A · B)i2j2 = 1, since Bi2i1 = Ai1j1 = Bj1j2 = 1.

Since this holds for every i2, j2 ∈ [1, n] satisfying Bi2i = 1 = Bjj2 , we obtain that i �B j. ◀

▶ Lemma 10. Let A and B be two idempotent matrices of Bn satisfying A · B = B = B · A.
If A and B have the same number of positive sets and free pairs, then they are equal.

Proof. Let us pick two idempotent elements A, B ∈ Bn such that A ·B = B = B ·A. Suppose
that A and B have the same number of positive sets. By Lemma 8, each positive set of B

contains at least one positive set of A. Since the positive sets of B are disjoint, the pigeonhole
principle yields the two following claims.

▷ Claim 1. Each positive set of A is contained in a positive set of B.

▷ Claim 2. Each positive set of B contains exactly one positive set of A.

Moreover, suppose that A and B have the same number of free pairs. By Lemma 9 every
free pair of B is a free pair of A. This yields the following claim.

▷ Claim 3. The free pairs of A and B are identical.

We now prove that A = B. First, we show that for every component Aik equal to 1, the
corresponding component Bik is also equal to 1. Since A is stable, there exists j ∈ [1, n]
satisfying Aij = Ajj = Ajk = 1. Then j is contained in a positive set of A, which is itself
contained in a positive set of B by Claim 1. Therefore we obtain that Bjj = 1, which yields

Bik = (A · B · A)ik = 1, since Aij = Bjj = Ajk = 1.

To conclude, we show that for every component Bij equal to 1, the corresponding
component Aij is also equal to 1. To this end, we introduce four new elements i1, i2, j1, j2 in
[1, n]: First, as (A · B · A)ij = Bij = 1, there exist i2, j2 ∈ [1, n] such that Aii2 = Bi2j2 =
Aj2j = 1. Second, as A is stable, there exist i1, j1 ∈ [1, n] such that Aii1 = Ai1i1 = Ai1i2 = 1
and Aj2j1 = Aj1j1 = Aj1j = 1. These definitions ensure that

Bi1j1 = (A · B · A)i1j1 = 1, since Ai1i2 = Bi2j2 = Aj2j1 = 1.

Note that, as observed after the definition of the relation induced by an idempotent matrix,
this implies that i1 �B j1. We derive from this that either i1 �A j1 or j1 �A i1: if i1 = j1
this follows from the fact that �A is reflexive, and if i1 ̸= j1 this follows from Claim 3. We
show that both possibilities lead to Aij = 1.

If i1 �A j1, then we obtain Ai1j1 = 1 as Ai1i1 = 1 = Aj1j1 . Therefore,

Aij = (A · A · A)ij = 1 since Aii1 = Ai1j1 = Aj1j = 1.
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If j1 �A i1, then we obtain Aj1i1 = 1 as Aj1j1 = 1 = Ai1i1 . Therefore,

Bj1i1 = (A · B · A)j1i1 = 1 since Aj1i1 = Bi1j1 = Aj1i1 = 1.

As a consequence, i1 and j1 are in the same positive set of B. Moreover, as Ai1i1 =
Aj1j1 = 1, both i1 and j1 are elements of positive sets of A. Combining these two
statements with Claim 2 yields that i1 and j1 are in the same positive set of A. Therefore
Ai1j1 = 1, which implies that i1 �A j1, and we can conclude as in the previous point.

Since we successfully showed that every 1 of A corresponds to a 1 of B, and reciprocally, we
obtain that A = B, which proves the statement. ◀

4.2 Lower bound
We construct a monomorphism φ between the max monoid Hf(n), where f(n) = n2+n+2

2 ,
and the monoid of Boolean matrices Bn. The construction is split in two steps. First, we
define φ over the domain [1, g(n)+1], where g(n) = n(n−1)

2 is the number of pairs of elements
i < j in [1, n]. Then, we complete the definition over the domain [g(n) + 1, f(n)].

Diagonal to triangular. Let us define φ over [1, g(n) + 1]. We map the neutral element 1 ∈
Hf(n) to the neutral element Dn ∈ Bn: the identity matrix. Then, we map g(n) + 1 ∈ Hf(n)
to the full upper triangular matrix Un ∈ Bn. Note that Un contains g(n) more 1’s than Dn

does. We define the images of the elements between 1 and g(n)+1 by gradually adding to Dn

the 1’s of Un it lacks. Formally, we order the indices corresponding to the components above
the diagonal p1 < p2 < . . . < pg(n) ∈ [1, n] × [1, n] according to the lexicographic order: (i, j)
comes before (i′, j′) if either i < i′, or i = i′ and j < j′. Then, for every m ∈ [1, g(n) + 1],
we construct the image φ(m) ∈ Bn as follows:

Every component (φ(m))ii of the diagonal is 1;
Every component (φ(m))ij below the diagonal is 0;
Every component (φ(m))ij above the diagonal is 1 if (i, j) < pm, and 0 otherwise.

Triangular to empty. Let us define φ over [g(n) + 1, f(n)]. To fit the first part of the
definition, we map g(n) + 1 ∈ Hf(n) to the upper diagonal matrix Un ∈ Bn. Then, we map
the absorbing element f(n) = g(n) + 1 + n ∈ Hf(n) to the absorbing element 0n ∈ Bn: the
null matrix. Finally, for m ∈ [0, n], we construct φ(g(n) + 1 + m) by replacing the last m

rows of Un with 0’s. Formally, we have:
Every component (φ(g(n) + 1 + m))ij is 1 if i ≤ j and i ≤ n − m, and 0 otherwise.

Proof of correctness. We prove that the function φ just defined is a monomorphism.
We show that φ is a homomorphism: φ(m)·φ(m′) = φ(m′) = φ(m′)·φ(m) for all 1 ≤ m ≤

m′ ≤ f(n). First, note that if (φ(m′))ij = 1, then (φ(m) · φ(m′))ij = (φ(m′) · φ(m))ij = 1:
if m ≤ g(n) + 1, this follows from the fact that the diagonal of φ(m) is filled with 1’s, and if
m > g(n)+1, since m ≤ m′ we obtain that (φ(m))ii = (φ(m′))ij = 1 = (φ(m′))ii = (φ(m))ij .
It remains to show that if (φ(m) · φ(m′))ik = 1 or (φ(m′) · φ(m))ik = 1, then (φ(m′))ik = 1.
If m′ ≤ g(n) + 1, this holds since for every triple i ≤ j ≤ k ∈ [1, n], the pair (i, k) is
lexicographically smaller than or equal to (j, k). If m′ > g(n) + 1, this holds since for every
triple i ≤ j ≤ k ∈ [1, n], trivially i is smaller than or equal to both i and j.

We conclude by showing that φ is injective: between φ(1) and φ(g(n) + 1) a new 1 is
added at each step, and between φ(g(n) + 1) and φ(f(n)) we remove at each step a 1 of the
diagonal that was present in all the previous images.
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▶ Example 11. We depict the monomorphism φ : Hf(n) → Bn in the case n = 4 by listing
the f(4) = 11 elements of its image in B4. Under each element, we state its number of
positive sets followed by its number of free pairs.

(4, 6) (4, 5) (4, 4) (4, 3) (4, 2) (4, 1) (4, 0) (3, 0) (2, 0) (1, 0) (0, 0)

Starting with the identity matrix D4, we gradually add 1’s, reaching the triangular matrix
U4 in g(4) = 6 steps. Then, we erase line after line, reaching the null matrix 04 in 4 steps.
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