
On the Adaptive Security of
Graph-based Games

by

Karen Klein

September, 2021

A thesis submitted to the
Graduate School

of the
Institute of Science and Technology Austria

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Committee in charge:
Uli Wagner, Chair
Krzysztof Pietrzak

Daniel Wichs
Dimitar Jetchev

The thesis of Karen Klein, titled On the Adaptive Security of Graph-based Games, is approved
by:

Supervisor: Krzysztof Pietrzak, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Daniel Wichs, Northeastern University, Boston, USA, and NTT
Research, Palo Alto, USA

Signature:

Committee Member: Dimitar Jetchev, Inpher, Lausanne, Switzerland

Signature:

Defense Chair: Uli Wagner, IST Austria, Klosterneuburg, Austria

Signature:

Signed page is on file

© by Karen Klein, September, 2021
CC BY 4.0 The copyright of this thesis rests with the author. Unless otherwise indicated, its
contents are licensed under a Creative Commons Attribution 4.0 International License. Under
this license, you may copy and redistribute the material in any medium or format. You may
also create and distribute modified versions of the work. This is on the condition that: you

credit the author.

IST Austria Thesis, ISSN: 2663-337X

I hereby declare that this thesis is my own work and that it does not contain other people’s
work without this being so stated; this thesis does not contain my previous work without
this being stated, and the bibliography contains all the literature that I used in writing the
dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my
thesis committee, and that this thesis has not been submitted for a higher degree to any other
university or institution.

I certify that any republication of materials presented in this thesis has been approved by the
relevant publishers and co-authors.

Signature:

Karen Klein
September, 2021

Signed page is on file

https://creativecommons.org/licenses/by/4.0/

Abstract

Many security definitions come in two flavors: a stronger “adaptive” flavor, where the adversary
can arbitrarily make various choices during the course of the attack, and a weaker “selective”
flavor where the adversary must commit to some or all of their choices a-priori. For example,
in the context of identity-based encryption, selective security requires the adversary to decide
on the identity of the attacked party at the very beginning of the game whereas adaptive
security allows the attacker to first see the master public key and some secret keys before
making this choice. Often, it appears to be much easier to achieve selective security than it is
to achieve adaptive security.

A series of several recent works shows how to cleverly achieve adaptive security in several
such scenarios including generalized selective decryption [Pan07][FJP15], constrained PRFs
[FKPR14], and Yao’s garbled circuits [JW16]. Although the above works expressed vague
intuition that they share a common technique, the connection was never made precise. In this
work we present a new framework (published at Crypto ’17 [JKK+17a]) that connects all of
these works and allows us to present them in a unified and simplified fashion.

Having the framework in place, we show how to achieve adaptive security for proxy re-encryption
schemes (published at PKC ’19 [FKKP19]) and provide the first adaptive security proofs for
continuous group key agreement protocols (published at S&P ’21 [KPW+21]). Questioning
optimality of our framework, we then show that currently used proof techniques cannot lead
to significantly better security guarantees for "graph-building" games (published at TCC
’21 [KKPW21a]). These games cover generalized selective decryption, as well as the security
of prominent constructions for constrained PRFs, continuous group key agreement, and proxy
re-encryption. Finally, we revisit the adaptive security of Yao’s garbled circuits and extend the
analysis of Jafargholi and Wichs in two directions: While they prove adaptive security only for
a modified construction with increased online complexity, we provide the first positive results
for the original construction by Yao (published at TCC ’21 [KKP21a]). On the negative side,
we prove that the results of Jafargholi and Wichs are essentially optimal by showing that no
black-box reduction can provide a significantly better security bound (published at Crypto
’21 [KKPW21c]).

vii

Acknowledgements

I want to thank my supervisor Krzysztof Pietrzak for the great experience of doing phd studies
at IST Austria. I really enjoyed the good working atmosphere within his research group and
felt well supported. Krzysztof was always open for discussions and encouraged interaction
within the group, which I appreciated a lot. Furthermore I want to thank Daniel Wichs for
the great discussions we had on Yao’s garbling scheme, which led to the final chapter of this
thesis. I also want to thank Dimitar Jetchev for the inspiring discussions in the very beginning
of my phd studies.

I want to thank my colleagues and co-authors for the good collaboration and the many
discussions we had. Here I especially want to thank Chethan Kamath, who accompanied
me throughout my entire phd studies, was always accessible for discussions, gave me great
advice and at all times kept the big picture in mind. I also want to highlight the valuable
collaboration with Michael Walter, whose very structured way of working and approaching
research questions I appreciated a lot.

I want to thank my partner, my family and friends for their personal support, not only during
my phd studies but also on my way there.

Finally, I want to acknowledge the funding by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (682815 - TOCNeT).

viii

About the Author

Karen Klein completed a BSc and MSc in Mathematics at the University of Vienna. During
her studies she did an internship at the Vienna Institute of Demography. Besides Mathematics,
she also completed a MA at the University of Music and Performing Arts Vienna. In 2016,
she joined IST Austria for PhD studies in the research group of Krzysztof Pietrzak. Her
main research interests are applications of algebraic and combinatorial methods to theoretical
computer science, and range from foundations of cryptography to practical schemes.

Beside her main research topic related to the adaptive security of graph-based games, she also
contributed to various project unrelated to this thesis:

Continuous group key agreement

• Joel Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto-Noval, Karen Klein,
Guillermo Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. Grafting key-trees:
Efficient key-management for overlapping groups. TCC 2021, to appear, 2021

Proofs of sequential work and blockchain applications

• Hamza Abusalah, Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Michael
Walter. Reversible proofs of sequential work. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 277–291. Springer,
Heidelberg, May 2019

Automated contact tracing

• Benedikt Auerbach, Suvradip Chakraborty, Karen Klein, Guillermo Pascual-Perez, Krzysztof
Pietrzak, Michael Walter, and Michelle Yeo. Inverse-sybil attacks in automated contact
tracing. In Kenneth G. Paterson, editor, CT-RSA 2021, volume 12704 of LNCS, pages
399–421. Springer, Heidelberg, May 2021

Memory-hard functions

• Joël Alwen, Peter Gazi, Chethan Kamath, Karen Klein, Georg Osang, Krzysztof Pietrzak,
Leonid Reyzin, Michal Rolinek, and Michal Rybár. On the memory-hardness of data-
independent password-hashing functions. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim,
Yongdae Kim, Javier López, and Taesoo Kim, editors, ASIACCS 18, pages 51–65. ACM
Press, April 2018

ix

List of Collaborators and Publications

This thesis is based on the following publications and their respective full versions. All of them
were conducted in collaboration with co-authors, the contrubution of Karen Klein is enclosed
in brackets, respectively.

1. Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Daniel Wichs. Limits on
the adaptive security of yao’s garbling. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part II, volume 12826 of LNCS, pages 486–515, Virtual Event, August
2021. Springer, Heidelberg. Full version: [KKPW21d]
[significant contribution on entire paper, most technical details carried out by herself]

2. Chethan Kamath, Karen Klein, and Krzysztof Pietrzak. On treewidth, separators and
yao’s garbling. TCC 2021, to appear, 2021. Full version: [KKP21b]
[significant contribution on development of techniques]

3. Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Michael Walter. The cost of
adaptivity in security games on graphs. TCC 2021, to appear, 2021. Full version:
[KKPW21b]
[significant contribution on entire paper, many proofs carried out by herself]

4. Karen Klein, Guillermo Pascual Perez, Michael Walter, Chethan Kamath, Margarita
Capretto, Miguel Cueto, Ilia Markov, Michelle Yeo, Joel Alwen, and Krzysztof Pietrzak.
Keep the dirt: Tainted treekem, adaptively and actively secure continuous group key
agreement. In 2021 IEEE Symposium on Security and Privacy, pages 268–284. IEEE
Computer Society Press, May 2021. Full version: [ACC+19]
[main responsible for security analysis together with M. Walter and C. Kamath; only
parts of the paper are included in this thesis]

5. Georg Fuchsbauer, Chethan Kamath, Karen Klein, and Krzysztof Pietrzak. Adaptively
secure proxy re-encryption. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II,
volume 11443 of LNCS, pages 317–346. Springer, Heidelberg, April 2019. Full version:
[FKKP18]
[joint discussions on main body, analysis of lattice-based schemes carried out by herself]

6. Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof Pietrzak,
and Daniel Wichs. Be adaptive, avoid overcommitting. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 133–163.
Springer, Heidelberg, August 2017. Full version: [JKK+17b]
[minor contribution on the framework and proof of the main theorem; only parts of the
paper are included in this thesis]

x

Table of Contents

Abstract vii

Acknowledgements viii

About the Author ix

List of Collaborators and Publications x

Table of Contents xi

List of Figures xiii

List of Tables xiv

List of Algorithms xv

I Introduction and Preliminaries 1

1 Introduction 3
1.1 Our Contributions . 5

2 Preliminaries 9
2.1 Notation and Basic Definitions . 9
2.2 IND-CPA Secure Encryption . 10

II Framework 13

3 A Framework for Adaptive Security 15
3.1 Introduction . 15
3.2 The Framework . 24
3.3 Application I: Generalized Selective Decryption 30
3.4 Application II: Constrained Pseudorandom Functions 39
3.5 Open Problems . 43

III Upper Bounds 45

4 Adaptively Secure Proxy Re-encryption 47
4.1 Introduction . 47

xi

4.2 Formal Definitions . 52
4.3 Preliminaries . 57
4.4 Framework for Adaptive Security . 62
4.5 Adaptively Secure PRE Schemes . 72
4.6 Application to Key Rotation . 83
4.7 Open Problems . 86

5 Adaptively Secure Continuous Group Key Agreement 87
5.1 Introduction . 87
5.2 Description of TTKEM . 97
5.3 Security of TTKEM . 101
5.4 Open Problems . 115

6 Adaptive Indistinguishability of Yao’s Garbling 117
6.1 Introduction . 117
6.2 Preliminaries . 128
6.3 Hybrid Argument and the BGR Pebbling Game 133
6.4 BGR Pebbling Strategy . 139
6.5 Conclusion and Open Problems . 148

IV Lower Bounds 149

7 On the Cost of Adaptivity in Security Games on Graphs 151
7.1 Introduction . 151
7.2 Technical Overview . 155
7.3 Notation and Definitions . 161
7.4 Builder-Pebbler Game . 162
7.5 Combinatorial Upper Bounds . 165
7.6 Cryptographic Lower Bound I: Generalized Selective Decryption 176
7.7 Cryptographic Lower Bound II: Continuous Group Key Agreement 184
7.8 Cryptographic Lower Bound III: Constrained Pseudorandom Function . . . 194
7.9 Cryptographic Lower Bound IV: Proxy Re-encryption 198
7.10 Open Problems . 201

8 Limits on the Adaptive Security of Yao’s Garbling 205
8.1 Introduction . 205
8.2 Technical Overview . 208
8.3 Lower Bound for Yao’s Garbling Scheme 213
8.4 Conclusion and Open Problems . 238

V Conclusion 239

9 Conclusion 241

Bibliography 243

A Appendix 255
A.1 Optimize Lemma 23 and Corollary 4 from Chapter 5 255

xii

List of Figures

3.1 “Classical” hybrid argument vs. improved hybrid argument. 19
3.2 Illustration of the GGM PRF. 20
3.3 Selectivizing. 26
3.4 Schematic diagram showing the relationship between adaptive, fully selective and

partially selective hybrids. 27
3.5 Examples of key-graphs for the extreme games HL and HR. 32
3.6 Example of a sequence of hybrids. 34
3.7 Example of an edge pebbling sequence. 35
3.8 Example of an edge pebbling with “fewer” pebbles. 36

4.1 Recoding graph and challenge graph. 56
4.2 Diagram showing the partially selectivised hybrids for PRE-CPA. 67

5.1 Illustration of Updates in the ART protocol, TreeKEM, and TreeKEM with blanking. 91
5.2 Path partition resulting from an update by Charlie. 100
5.3 Schematic diagram showing the critical window. 104
5.4 Violation of the safe predicate. 106

6.1 Rules for the BG pebbling game. 123
6.2 Rules for the BGR pebbling game. 126
6.3 Recursive step in the BGR pebbling strategy BGRPath. 141
6.4 Binary component tree. 143
6.5 Schematic diagram demonstrating BGRSwitch. 147

7.1 Configuration graph for paths of length 4. 156
7.2 Lower bounds for edge-pebbling on binary trees. 157
7.3 The Builder strategy in Theorem 30. 177
7.4 Ratchet tree and group operations in TreeKEM. 187
7.5 Update in TreeKEM. 188
7.6 Embedding a regular tree in the TreeKEM key-graph. 192
7.7 Schematic diagram showing the adversarial query strategy for the GGM cPRF in

Lemma 37. 197

8.1 Schematic diagram for the candidate circuit. 215
8.2 Graph Γ⊕

d and circuit Γ⊕
d . 216

8.3 Circuit Γ⊕. 217
8.4 Splitting circuit Γ⊕ into four equal-sized quarters. 221
8.5 Pyramid graph used in the proof of Lemma 44. 225

xiii

List of Tables

4.1 PRE schemes we prove adaptively CPA and HRA secure 52
4.2 Space and time complexity for different classes of DAGs and approximate security

loss implied by Theorem 7. 72

5.1 Different security levels satisfied by CGKA protocols. 94

6.1 Garbling tables for a general gate, constant-0 gate, and constant-1 gate. . . . 118
6.2 Security of the two variants of Yao’s garbling. 120
6.3 Garbling modes in [JW16] and in our case. 135

7.1 Summary of lower bounds on the loss in security established in our work. . . . 152

8.1 Garbling tables for a general gate g, AND gate, XOR gate, constant-0 gate. . . 223

List of Algorithms

3.1 Hybrid H̃A
I+b, where H̃I+b = SELU→W [ĤI,b, w, hI] 30

3.2 GSD: Template for generating fully selective hybrids. 36

3.3 GSD: Partially selectivized hybrids. 38

3.4 Nested pebbling for path graphs. 39

3.5 A recursive edge-pebbling algorithm. 39

3.6 cPRF: Template for generating fully selective hybrids. 41

3.7 cPRF: The reduction establishing indistinguishability of H(PI) and H(PI+1). 42

3.8 cPRF: Partially selectivized hybrids ĤI,b for HI+b. 42

3.9 cPRF: The reduction establishing indistinguishability of ĤI,0 and ĤI,1. . . . 43

4.1 sPRE-CPA security game . 54

4.2 sPRE-HRA security game . 55

xiv

4.3 PRE-CPA security game . 57

4.4 PRE-HRA security game . 58

4.5 Security game IND for ciphertext indistinguishability 59

4.6 Security game KP for weak key-privacy . 59

4.7 Security game SH for source hiding . 60

4.8 A pebbling strategy for general DAGs. 61

4.9 Pebbling strategy for chains. 62

4.10 Template for generating fully selective PRE-CPA hybrids. 64

4.11 Reduction showing that H0
τ and H1

τ are indistinguishable by indistinguishability
of ciphertexts. 65

4.12 Reduction showing that hybrids Hb
ℓ and Hb

ℓ+1 are indistinguishable by weak
key-privacy. 66

4.13 Partially selectivised hybrids. 68

4.14 Intermediate game shHRA in the proof of HRA. 69

4.15 The reduction relating shHRAb to CPAb. 71

4.16 Game KRot for key rotation using a (unidirectional multi-hop) PRE scheme
PRE. 84

4.17 Challenge oracle in shKRotb
ℓ for ℓ ∈ [1, N]. 85

4.18 Challenge and reveal oracle in shKRotb
N+1. 86

6.1 Offline Yao scheme YGCSKE based on a symmetric-key encryption scheme
SKE := (Gen, Enc, Dec). 131

6.2 Selective hybrids. 136

7.1 Query strategy for the TreeKEM adversary A. 193

A.1 Security reduction for proof in the random oracle model. 257

A.2 Oracles for the security reduction in the random oracle model. 258

xv

Part I

Introduction and Preliminaries

1

CHAPTER 1
Introduction

Consider the following game1 played between a challenger C and an adversary A using a
symmetric encryption scheme (Enc, Dec). The challenger first samples, independently and
uniformly at random, N keys k1, . . . ,kN . These correspond to users ID1, . . . , IDN respectively.
The adversary A is now allowed to adaptively make two types of queries:

1. Ask for an encryption of kj under the key ki to obtain ci,j ← Encki
(kj).2

2. Corrupt a user Ui to obtain the key ki.

At the end of the game, A challenges C on a user IDi∗ and is given either the real key ki∗

or an independent, random key r. A wins this “real or random game" if it correctly guesses
which of the two it got. If no efficient A can win with probability higher than 1/2 + ϵ we say
the protocol is 2ϵ secure.

The above game can be thought of as the adversary A adaptively building a “key-graph”
G = (V , E), where the vertices V = {1, . . . , N} correspond to the users and their keys,
whereas the (directed) edges E correspond to the encryption queries that A makes: a directed
edge (i, j) is added to E if A requests the encryption of kj under the key ki. Note that
for i∗ to be a non-trivial challenge, i∗ must be a sink and must not be reachable (in the
graph-theoretic sense) from any of the corrupted vertices – otherwise, A could simply decrypt
the ciphertexts along the path from any corrupted node to the challenge to learn ki∗ .

The above game is called Generalized Selective Decryption (GSD) and it captures the security
of protocols for multicast encryption [Pan07] and continuous group key agreement [KPW+21].
Thus, the question one is interested in is whether the security of this game (given that the
key-graph is acyclic) can be based on the IND-CPA security of the underlying encryption
scheme.3 For this we need to prove a computational soundness (i.e., security) theorem of
the form: if the encryption scheme is ϵ-IND-CPA secure then the GSD game is ϵ′-secure for
some ϵ′ that depends on ϵ. Ideally, the loss in security should be kept to a polynomial, i.e.

1This introduction is taken essentially from [KKPW21a]. © IACR 2021, to appear.
2If A repeatedly queries encryptions of kj under ki, it always obtains the same encryption ci,j .
3In case the key-graph contains cycles, one must additionally assume that the encryption scheme is

key-dependent message (KDM) secure [BRS03]. Such problems are of a different flavour and we don’t deal
with them. As mentioned before, the GSD game is typically used to capture the security of protocols, and
then the acyclicity is enforced by the protocol rules.

3

1. Introduction

ϵ′ = ϵ · poly(N). Otherwise, this requires to set the security parameter of the underlying
encryption scheme very large, which implies very long keys and leads to inefficient schemes.

The simpler task of proving such a soundness theorem in case the adversary is selective, in the
sense that it commits to its queries (and thus the key-graph G) at the beginning of the GSD
game, is relatively straightforward to achieve. First consider the case N = 2. In this case, the
adversay makes at most one encryption query. Clearly, if it doesn’t make any encryption query,
then the challenge key is perfectly indistinguishable from a random, independent key; hence
A has advantage 0. Now, for a single encryption query (i, i∗), GSD-security can directly be
based on the IND-CPA security of the encryption scheme by a reduction which samples two
random, independent keys ki∗ ,k′

i∗ , sends them to the IND-CPA challenger, and answers A’s
encryption query by forwarding the challenge ciphertext it received. A’s challenge query i∗ is
answered by ki∗ . This reduction perfectly simulates the real or random GSD game, depending
on the IND-CPA challenge.

For N > 2, one can use a hybrid argument: The idea here is to define a sequence of slightly
modified games “interpolating” between the real and the random GSD game, such that each
pair of subsequent hybrid games in this sequence can be proven indistinguishable based on the
IND-CPA security of the encryption scheme (similar to the case of N = 2 above). Security of
selective GSD then follows at a loss linear in the number τ of hybrids: If the encryption scheme
is ϵ-IND-CPA secure then the selective GSD game is τϵ-secure. To define such a sequence of
indistinguishable hybrid games, a first attempt would be to simply switch the edges incident
on the challenge node i∗, one at a time, from encryptions of ki∗ to encryptions of a random,
independent key k′

i∗ . However, the issue here is that a reduction can only embed a challenge
at an edge (i, i∗) if i is a source node, since otherwise – to properly simulate the hybrid game –
it has to output an encryption of ki. To avoid this problem, one has to switch all encryptions
associated with edges incident on node i to encryptions of a random, independent key k′

i

first. Thus, one ends up with a sequence of hybrids, where – starting from edges outgoing
from source nodes in the key-graph – for all edges in the graph the associated ciphertexts are
switched, one at a time, from real encryptions of the respective sink key ki to encryptions of a
random, independent key k′

i. Once all edges incident on the challenge node are switched, one
can then switch back all edges not incident on the challenge, in reverse order. Since there are
at most N(N − 1)/2 edges in the key-graph (directed acyclic graph), this leads to a sequence
of indistinguishable hybrids of length τ = N(N − 1), and hence implies N(N − 1) · ϵ-security
of selective GSD.

The study of adaptive security of GSD, where the key-graph is unknown at the beginning of
the game and is only gradually revealed during the query phase, was initiated by Panjwani
in [Pan07] and remains notoriously hard. The difficulty here arises from the fact that the
reduction when answering A’s encryption queries has to guess their position in the final
key-graph. Non-trivial results for adaptive GSD are only known in settings where the adversary
is restricted to specific key-graphs (which needs to be enforced by the higher level protocol).

The goal of this thesis is to shed a little more light on the problem of proving adaptive security,
not only for GSD but also for other security games that involve some graph structure.

4

1.1. Our Contributions

1.1 Our Contributions

1.1.1 A Framework for Adaptive Security
As a first step4, in Chapter 3 we present a framework for proving adaptive security, which we
refer to as Piecewise-Guessing framework5. This framework connects the known results on
GSD from [Pan07, FJP15] with techniques used in the context of constrained pseudorandom
functions (cPRF) [FKPR14] and garbled circuits [JW16], and allows us to present all these
works in a unified and simplified way.

Underlying our framework is the following simple idea. It is well known that selective security,
where the adversary A commits to n bits of information about their future choices, automatically
implies adaptive security at the cost of amplifying A’s advantage by a factor of up to 2n.
However, in some cases (e.g. GSD above) the proof of selective security proceeds via a
sequence of hybrids, where each pair of adjacent hybrids locally only requires some smaller
partial information consisting of m ≪ n bits. The partial information needed might be
completely different between different pairs of hybrids, and if we look across all the hybrids
we might rely on the entire n-bit commitment. Nevertheless, the above is sufficient to prove
adaptive security, at the cost of amplifying the adversary’s advantage by a factor of only
2m ≪ 2n.

As examples using the above framework we consider the known results on GSD [Pan07, FJP15],
cPRFs [FKPR14], and garbled circuits [JW16]. For all these examples the different hybrids
can be captured by some sort of a graph pebbling game and the amount of information that
the adversary needs to commit to in each pair of hybrids is related to the maximum number of
pebbles in play at any point in time. Therefore, coming up with better strategies for proving
adaptive security translates to various pebbling strategies for different types of graphs.

1.1.2 Adaptively Secure Proxy Re-encryption
As a new application of the Piecewise-Guessing framework6, in Chapter 4 we analyze the
adaptive security of proxy re-encryption (PRE) schemes. A PRE scheme is a public-key
encryption scheme that allows the holder of a key pair (pk,sk) to derive a re-encryption
key for another public key pk′. This re-encryption key lets anyone transform ciphertexts
under pk into ciphertexts under pk′ without having to know the underlying message, while
transformations from pk′ to pk should not be possible (unidirectional). Security is defined
in a multi-user setting against an adversary that gets the users’ public keys and can ask for
re-encryption keys and can corrupt users by requesting their secret keys. Any ciphertext that
the adversary cannot trivially decrypt given the obtained secret and re-encryption keys should
be secure.

All existing security proofs for PRE only show selective security, where the adversary must first
declare the users it wants to corrupt. This can be lifted to more meaningful adaptive security
by guessing the set of corrupted users among the N users, which loses a factor exponential
in N , rendering the result meaningless already for moderate N .

4This abstract is taken essentially from [JKK+17a]. © IACR 2017, https://doi.org/10.1007/
978-3-319-63688-7_5.

5This name was introduced by Kowalczyk and Wee [KW19], who used our framework to obtain adaptively
secure attribute-based encryption.

6This abstract is taken essentially from [FKKP19]. © IACR 2019, https://doi.org/10.1007/
978-3-030-17259-6_11.

5

https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-030-17259-6_11
https://doi.org/10.1007/978-3-030-17259-6_11

1. Introduction

To avoid the exponential loss that results from guessing the adaptive choices made by an
adversary, we apply the Piecewise-Guessing framework to PRE schemes that satisfy some
natural additional properties. Concretely, we give a more fine-grained reduction for several
unidirectional PRE schemes, proving adaptive security at a much smaller loss. The loss
depends on the graph of users whose edges represent the re-encryption keys queried by the
adversary. For trees and chains the loss is quasi-polynomial in the size and for general graphs
it is exponential in their depth and indegree (instead of their size as for previous reductions).
Fortunately, trees and low-depth graphs cover many, if not most, interesting applications.

Our results apply e.g. to the bilinear-map based PRE schemes by Ateniese et al. [AFGH05,
ABH09], Gentry’s FHE-based scheme [Gen09] and the LWE-based scheme by Chandran et al.
[CCL+14].

1.1.3 Adaptively Secure Continuous Group Key Agreement
In Chapter 5 we present7 an application of the Piecewise-Guessing framework to continuous
group key agreement (CGKA) for secure messaging within dynamically changing groups. While
messaging systems with strong security guarantees are widely used in practice, designing a
protocol that scales efficiently to large groups and enjoys similar security guarantees remained
largely open. The two existing proposals to date are ART [CCG+18] and TreeKEM [BBM+20].
TreeKEM is the currently considered candidate by the IETF MLS working group, but dynamic
group operations (i.e. adding and removing users) can cause efficiency issues. Therefore
we formalize and analyze a variant of TreeKEM which we term Tainted TreeKEM (TTKEM
for short); the basic idea underlying TTKEM was suggested by Millican (MLS mailing list,
February 20188). This version is more efficient than TreeKEM for some natural distributions of
group operations; we do not provide further details in this thesis, but refer to our publication
[KPW+21], where we quantify the efficiency through simulations.

We provide two security proofs for TTKEM which establish post compromise and forward
secrecy even against adaptive attackers. If M is the group size and Q the number of operations,
the security loss (to the underlying PKE) in the random oracle model is a polynomial factor
(QM)2, and in the standard model a quasipolynomial Qlog(M). While the latter result is derived
rather straight-forward from the Piecewise-Guessing framework (similar to the case of GSD),
for the former polynomial bound we develop a new result for a public-key version of GSD in
the random oracle model, which might be of independent interest. Both our proofs can be
adapted to TreeKEM as well. Before our work no security proof for any TreeKEM-like protocol
establishing meaningful security guarantees against an adversary who can adaptively choose
the sequence of operations was known. We also are the first to prove (or even formalize)
partially active security where the server can arbitrarily deviate from the protocol specification.
Proving fully active security – where also the users can arbitrarily deviate – remains open.

1.1.4 Adaptive Indistinguishability of Yao’s Garbling
In Chapter 6, we revisit9 the adaptive security of Yao’s garbled circuits [Yao86]. Given a circuit
C and an input x, a garbling scheme allows to output a garbled circuit ˜︁C and a garbled input

7This abstract is taken essentially from [KPW+21]. © 2021 IEEE, https://doi.org/10.1109/
SP40001.2021.00035.

8[MLS] Removing members from groups, Jon Millican {jmillican@fb.com}, 12 February 2018, https:
//mailarchive.ietf.org/arch/msg/mls/4-gvXpc-LGbWoUS7DKGYG65lkxs

9This abstract is taken essentially from [KKP21a]. © IACR 2021, to appear.

6

https://doi.org/10.1109/SP40001.2021.00035
https://doi.org/10.1109/SP40001.2021.00035
https://mailarchive.ietf.org/arch/msg/mls/4-gvXpc-LGbWoUS7DKGYG65lkxs
https://mailarchive.ietf.org/arch/msg/mls/4-gvXpc-LGbWoUS7DKGYG65lkxs

1.1. Our Contributions

˜︁x that only reveal the output C(x) while everything else – besides some leakage such as the
size or topology of the circuit – remains hidden. In many applications one requires security
of the scheme also in the adaptive setting, where the adversary first – in an offline phase –
chooses a circuit C and then (after receiving its garbling) – in the online phase – adaptively
chooses its input x. Here, for the sake of efficiency, the cost during the online phase is to be
kept minimal.

Lindell and Pinkas [LP09] gave a formal proof of security in the selective setting assuming secure
symmetric-key encryption (and hence one-way functions). This was followed by results, both
positive and negative, concerning its security in the, stronger, adaptive setting: Applebaum
et al. [AIKW13] showed that Yao’s garbling scheme cannot satisfy adaptive security as is, due
to a simple incompressibility argument. Jafargholi and Wichs [JW16] considered a natural
adaptation of the scheme that circumvents this negative result, and proved that it is adaptively
secure, at least for shallow circuits. In particular, they showed that for the class of circuits of
depth D, the loss in security is at most exponential in D. The above results all concern the
simulation-based notion of security.

We show that Yao’s garbling scheme is adaptively indistinguishable – a weaker security notion
than the more common simulation-based one – for the class of Boolean circuits of size N
and treewidth w with only an NO(w) loss in security. For instance, circuits with constant
treewidth are as a result adaptively indistinguishable with only a polynomial loss. This
(partially) complements the negative result of Applebaum et al. [AIKW13]. As main technical
contributions, we introduce a new pebble game that abstracts out our security reduction and
then present a pebbling strategy for this game where the number of pebbles used is roughly
O(δoutw log(N)), δout being the fan-out of the circuit. The design of the strategy relies on
separators, a graph-theoretic notion with connections to circuit complexity.

1.1.5 On the Cost of Adaptivity in Security Games on Graphs
In many of the applications of the Piecewise-Guessing framework10 (GSD, cPRF, PRE, CGKA)
an adversary adaptively reveals edges of some graph and the loss in security is involved by
guessing certain edges in the final graph. In Chapter 7 we initiate the study of lower bounds
on the loss in adaptive security for these cryptographic protocols. We prove lower bounds that
almost match the upper bounds (proven using the Piecewise-Guessing framework).

Some of our lower bounds only apply to a restricted class of black-box reductions which we
term “oblivious" (the existing upper bounds are of this restricted type), some apply to the
broader but still restricted class of non-rewinding reductions, while our lower bound for proxy
re-encryption applies to all black-box reductions. The fact that some of our lower bounds
seem to crucially rely on obliviousness or at least a non-rewinding reduction hints to the
exciting possibility that the existing upper bounds can be improved by using more sophisticated
reductions.

Our main conceptual contribution is a two-player multi-stage game called the Builder-Pebbler
Game. We translate bounds on the winning probabilities for various instantiations of this game
into cryptographic lower bounds for the above-mentioned primitives using oracle separation
techniques.

10This abstract is taken essentially from [KKPW21a]. © IACR 2021, to appear.

7

1. Introduction

1.1.6 Limits on the Adaptive Security of Yao’s Garbling
In Chapter 8, we also analyze11 the adaptive security of Yao’s garbling scheme from a negative
side and show that the upper bound of Jafargholi and Wichs is basically optimal in a strong
sense. As our main result, we show that there exists a family of Boolean circuits, one for each
depth D ∈ N, such that any black-box reduction proving the adaptive indistinguishability-
security of the natural adaptation of Yao’s scheme from any symmetric-key encryption has
to lose a factor that is exponential in

√
D. Since indistinguishability is a weaker notion than

simulatability, our bound also applies to adaptive simulation-based security.

To establish our results, we build on the approach from Chapter 7, which uses pebbling lower
bounds in conjunction with oracle separations to prove fine-grained lower bounds on the loss in
cryptographic security. While the difficulty for the reduction (playing the role of the pebbler)
in “graph-building” games as discussed there lies in the fact that the graph is only revealed
edge-by-edge, in the setting of garbled circuits, in contrast, the graph structure is initially
known and the game has just two rounds. The difficulty of the reduction here comes from
having to guess the bits running over a subset of wires during evaluation of the circuit.

Epilogue
In this thesis we put forth the research on adaptive security of graph-based games. While
we do achieve several interesting positive as well as negative results, we still leave open
many exciting questions. For multi-round games such as GSD or PRE, where the adversary
adaptively queries edges and the reduction needs to guess the position of these edges in
the final graph, we prove that the quasi-polynomial upper bounds from [Pan07, FKPR14]
and Chapter 4 for restricted graph structures (paths, binary trees) are essentially optimal
when considering oblivious black-box reductions. However, it is not clear at this point how
non-obliviousness could be exploited and whether this could potentially lead to polynomial
bounds for these restricted classes of graphs. For unrestricted graph structures, we prove that
no non-rewinding black-box reduction can achieve a polynomial loss; but again, similar to
the case of obliviousness, it is not clear how rewinding could be used to prove stronger upper
bounds. Only for PRE on unrestricted graphs and for Yao’s garbling we are able to prove
lower bounds for arbitrary black-box reductions; but also here the picture is not yet complete
and we leave it for future research to construct actual counter examples.

11This abstract is taken essentially from [KKPW21c]. © IACR 2021, https://doi.org/10.1007/
978-3-030-84245-1_17.

8

https://doi.org/10.1007/978-3-030-84245-1_17
https://doi.org/10.1007/978-3-030-84245-1_17

CHAPTER 2
Preliminaries

2.1 Notation and Basic Definitions

2.1.1 General notation
Throughout, we use λ to denote the security parameter. For integers a, b ∈ Z with a ≤ b, by
[a, b] we denote the set {a, a + 1, . . . , b}. For two strings r, s we write r||s to denote their
concatenation, and s[i] for the ith entry. For a string s = s1, . . . , sn, let |s| := n denote its
length. For 1 ≤ a < b ≤ n we define s[a, b] := sa, . . . , sb and s[0] := ∅ the empty string.

Abusing notation we also use [0, 1] for the closed interval of real numbers r ∈ R with 0 ≤ r ≤ 1.
A function ϵ : N → [0, 1] is negligible if for every polynomial p(λ) there exists a λ0 ∈ N
such that ϵ(λ) < 1/p(λ) for all λ ≥ λ0. We will only consider logarithms to the base 2 (i.e.,
log := log2). We use calligraphic letters like X to denote sets and sans-serif letters like X to
denote algorithms.

2.1.2 Graphs
In this thesis we only consider (directed and undirected) simple graphs, i.e. graphs without
loops or multiple edges. For N = N(λ), G = (V , E) denotes a directed acyclic graph (DAG)
with V = {v1, . . . , vN} and E ⊆ V2. Often we associate vertices vi with the associated index
i. The set of all graphs of N vertices is denoted by G(N). For a subset of nodes X ⊆ V we
denote by G|X the subgraph of G induced on the set of vertices in X . That is G|X = (X , E|X)
where E|X := {(u, v) ∈ E : u, v ∈ X}.

For v ∈ V , we define the parents (or predecessors) of v as parents(v) := {u : (u, v) ∈ E} and
the set of ingoing edges as in(v) := {(u, v) : u ∈ parents(v)}. Similarly, we define the children
(or successors) of v as children(v) := {u : (v, u) ∈ E}. Sometimes we make the graph explicit
by writing parentsG(v) and childrenG(v). These definitions can naturally be extended to a
set of vertices X ⊆ V as in(X) := ⋃︁

v∈X in(v), as well as parents(X) := ⋃︁
v∈X parents(v)

and children(X) := ⋃︁
v∈X children(v). Finally, we say that u is adjacent to v if it is either a

predecessor or a successor of v.

The degree of a vertex v is the number of nodes that are adjacent to v. The indegree (resp.,
outdegree) of a vertex is defined as the number of parents, i.e. the number of edges coming in
to (resp., going out of) that vertex. The degree δ (resp., indegree δin, outdegree δout) of the

9

2. Preliminaries

graph is the maximum degree (resp., indegree, outdegree) over all the vertices. A vertex with
indegree (resp., outdegree) zero is called a source (resp., sink). A vertex u is connected to
another vertex v (or alternatively v is reachable from u) if there is a directed path from u to
v in G. The depth D of G is the length of the longest path in G, where the length of a path
is the number of edges in the path.

For a set of m edges P = {(vi, wi)}m
i=1 ⊆ E , let V(P) := ⋃︁m

i=1{vi, wi} denote the set of
nodes that have an incident edge in P . The edge set P is called disjoint, if they do not share
a node, i.e. if |V(P)| = |⋃︁m

i=1{vi, wi}| = 2m.

Sometimes we assume that the set of edges E is (totally) ordered: we use (u, v) < (u′, v′) to
denote that (u, v) precedes (u′, v′) in the set. We assume that parents(·) preserves the order
on E — i.e., if (u, v) < (u′, v) then u precedes u′ in parents(v). Finally, parents−1(v) denotes
the set parents(v) with elements in reverse order.

2.1.3 Sets, distributions, algorithms
For two sets X ,Y we write X∆Y := (X \ Y) ∪ (Y \ X) for the symmetric difference. We
write x ← X for sampling an element x uniformly at random from the set X ; analogously,
x1, . . . , xN ← X denotes sampling x1, . . . , xN independently and uniformly at random from
the set X . We use UX to denote the uniform distribution over X and Un to denote the
uniform distribution over {0, 1}n.

For two variables X, Y , we write X ∼ Y to denote that X and Y have the same distributions
and ∆(X, Y) to denote their statistical distance. To indicate sampling according to a
distribution X on X , we write x← X. By [X] we denote the support of X, i.e., the values
with positive probability.

Two distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N are (t, ϵ)-indistinguishable (with t =
t(λ), ϵ = ϵ(λ)), denoted X ≈(t,ϵ) Y , if for every adversary A running in time at most t

|Pr[A(X) = 1]− Pr[A(Y) = 1]| ≤ ϵ.

Throughout the paper, we will repeatedly use the following lemma concerning the transitivity
of the indistinguishability relation ≈:

Lemma 1. Let X, Y , Z be distributions on a set X . If X ≈(t1,ϵ1) Y and Y ≈(t2,ϵ2) Z, then
X ≈(min(t1,t2),ϵ1+ϵ2) Z.

For an algorithm A, we use tA to denote its run time; in a similar manner, for a set X , we use
tX to denote the complexity of sampling from X uniformly at random. For X = {0, 1}n, we
use tn to denote the time complexity of sampling a string of length n uniformly at random.
For two algorithms A, B, we denote by A ≡ B that A has exactly the same input/output
distribution as B.

2.2 IND-CPA Secure Encryption
Throughout this thesis we will repeatedly refer to the notion of IND-CPA secure encryption,
in the secret-key setting as well as in the public-key setting. The definitions are taken from
[KL14].

10

2.2. IND-CPA Secure Encryption

Symmetric-key encryption (SKE)

Definition 1. A secret-key encryption (SKE) scheme with key space K, message spaceM and
ciphertext space C is a tuple of probabilistic polynomial-time (PPT) algorithms (Gen, Enc, Dec)
such that

• Gen(1λ): The key-generation algorithm Gen takes as input a security parameter 1λ (in
unary) and outputs a key k ∈ K.

• Enck(m): The encryption algorithm Enc takes as input a key k ∈ K and a message
m ∈M, and outputs a ciphertext c ∈ C.

• Deck(c): The decryption algorithm Dec takes as input a key k ∈ K and a ciphertext
c ∈ C, and outputs a message m ∈M (or ⊥).

For correctness, it is required that for all k← Gen(1λ) and m ∈M

Deck(Enck(m)) = m.

An SKE scheme is called (t, ϵ)-indistinguishable under chosen-plaintext attack (IND-CPA
secure) if the following games G0 and G1 are (t, ϵ)-indistinguishable: The game Gb (b ∈ {0, 1})
is played between an adversary A and a challenger C, both given input the security parameter
1λ. First, C samples a key k← Gen(1λ). The adversary A can then make the following types
of queries:

• Encryption queries (encrypt,m) with m ∈M: C returns c← Enck(m).

• One challenge query (challenge,m0,m1) with m0,m1 ∈M: C returns the challenge
ciphertext c∗ ← Enck(mb).

In this work we assume K ⊆M (i.e. we can encrypt keys), and sometimes also C ⊆ M (i.e.
we can encrypt ciphertexts). Sometimes we neglect the key generation algorithm Gen and
simply assume it samples keys uniformly at random from K.

Public-key encryption (PKE)

Definition 2. A public-key encryption (PKE) scheme with public/secret key space Kpub,Ksec,
message space M and ciphertext space C is a tuple of PPT algorithms (Gen, Enc, Dec) such
that

• Gen(1λ): The key-generation algorithm Gen takes as input a security parameter 1λ (in
unary) and outputs a key pair (pk,sk) ∈ Kpub ×Ksec.

• Encpk(m): The encryption algorithm Enc takes as input a public key pk ∈ Kpub and a
message m ∈M, and outputs a ciphertext c ∈ C.

• Decsk(c): The decryption algorithm Dec takes as input a secret key sk ∈ Ksec and a
ciphertext c ∈ C, and outputs a message m ∈M (or ⊥).

11

2. Preliminaries

For correctness, it is required that for all (pk,sk)← Gen(1λ) and m ∈M

Decsk(Encpk(m)) = m.

A PKE scheme is called (t, ϵ)-indistinguishable under chosen-plaintext attack (IND-CPA secure)
if the following games G0 and G1 are (t, ϵ)-indistinguishable: The game Gb (b ∈ {0, 1}) is
played between an adversary A and a challenger C, both given input the security parameter
1λ. First, C samples a key pair (pk,sk)← Gen(1λ) and sends the public key pk to A. The
adversary A can then make a challenge query (challenge,m0,m1) with m0,m1 ∈M, upon
which C returns the challenge ciphertext c∗ ← Encpk(mb).

Similar to the case of SKE, we assume Ksec ⊆M (i.e. we can encrypt secret keys).

12

Part II

Framework

13

CHAPTER 3
A Framework for Adaptive Security

3.1 Introduction
A series of recent works achieves adaptive security in several scenarios where we previously only
knew how to achieve selective security: generalized selective decryption (GSD) [Pan07, FJP15],
constrained PRFs [FKPR14], and garbled circuits [JW16]. Although some of these works
suggest a vague intuition that there is a general technique at play, there was no attempt to
make this precise and to crystallize what the technique is or how these results are connected.
In this work we present a new framework that connects all of these works and allows us to
present them in a unified and simplified fashion.

At a high level, our framework carefully combines two basic tools commonly used throughout
cryptography: random guessing (of the adaptive choices to be made by the adversary)1 and
the hybrid argument. Firstly, “random guessing” gives us a generic way to qualitatively upgrade
selective security to adaptive security at a quantitative cost in the amount of security. In
particular, assume we can prove the security of a selective game where the adversary commits
to n bits of information about their future choices. Then, we can also prove adaptive security
by guessing this commitment and taking a factor of 2n loss in the security advantage. However,
this quantitative loss is often too high and hence we usually wish to avoid it or at least lower
it. Secondly, the hybrid argument allows us to prove the indistinguishability of two games GL
and GR by defining a sequence of hybrid games GL ≡ H0, H1, . . . , Hτ ≡ GR and showing that
each pair of neighbouring hybrids Hi and Hi+1 are indistinguishable.

Our Framework. Our framework starts with two adaptive games GL and GR that we wish to
show indistinguishable but we don’t initially have any direct way of doing so. Let HL and HR
be selective versions of the two games respectively, where the adversary initially has to commit
to some information w ∈ {0, 1}n about their future choices. Furthermore, assume there is
some sequence of selective hybrids HL = H0, H1, . . . , Hτ ≡ HR such that we can show that

This Chapter essentially replicates, with permission, large parts of the full version [JKK+17b] of our
publication [JKK+17a], © IACR 2017, https://doi.org/10.1007/978-3-319-63688-7_5.

1In many previous works – including [FJP15, FKPR14, JW16] as well as a previous version of our
paper [JKK+17a] – this random guessing was referred to as “complexity leveraging", but this seems to be an
abuse of the term. Instead, complexity leveraging [CGGM00] refers to the use of two different schemes, S1, S2,
where the two schemes are chosen with different values of the security parameter, k1 and k2, where k1 < k2,
and such that an adversary against S2 (or perhaps even the honest user of S2) can break the security of S1.

15

https://doi.org/10.1007/978-3-319-63688-7_5

3. A Framework for Adaptive Security

Hi and Hi+1 are indistinguishable. A naïve combination of the hybrid argument and random
guessing shows that GL and GR are indistinguishable at a factor of 2n · τ loss in security, but
we want to do better.

Recall that the hybrids Hi are selective and require the adversary to commit to w. However, it
might be the case that for each i we can prove that Hi and Hi+1 would be indistinguishable
even if the adversary didn’t have to commit to all of w but only some partial-information
hi(w) ∈ {0, 1}m for m≪ n (formalizing this condition precisely requires great care and is the
major source of subtlety in our framework). Notice that the partial information that we need
to know about w may be completely different for different pairs of hybrids, and if we look
across all hybrids then we may need to know all of w. Nevertheless, we prove that this suffices
to show that the adaptive games GL and GR are indistinguishable with only a 2m · τ ≪ 2n · τ
loss in security. In the following chapters we will refer to our framework as Piecewise-Guessing
framework – this name was introduced by Kowalczyk and Wee in [KW19], who used our
framework in the setting of attribute-based encryption.

Applications of Our Framework. We show how to understand all of the prior works
mentioned above as applications of our framework. In many cases, this vastly simplifies prior
works.

In all of the examples, we get a series of selective hybrids H1, . . . , Hτ that correspond to
pebbling configurations in some graph pebbling game. The amount of information needed
to show that neighbouring hybrids Hi and Hi+1 are indistinguishable only depends on the
configuration of the pebbles in the i’th step of the game. Therefore, using our framework, we
translate the problem of coming up with adaptive security proofs to the problem of coming
up with pebbling strategies that only require a succinct representation of each pebbling
configuration.

We now proceed to give a high level overview of our results applying our general framework to
GSD, constrained PRFs, and Yao’s garbled circuits, and refer to Sections 3.3 and 3.4, as well
as Chapter 6 for technical details.

3.1.1 Generalized Selective Decryption
Generalized Selective Decryption (GSD) was already briefly discussed in the introduction 1:
This game was introduced by Panjwani [Pan07] in order to capture the difficulty of proving
adaptive security of certain protocols, most notably (a variant of) the Logical Key Hierarchy
(LKH) [WGL00] multicast encryption protocol. On a high level, it deals with the scenario
where we have many secret keys ki and various ciphertexts encrypting one key under another
(but no cycles). We will discuss this problem in depth in Section 3.3, here giving a high level
overview on how our framework applies to this problem.

Let (Enc, Dec) be an IND-CPA secure symmetric encryption scheme with (probabilistic)
Enc : K ×M → C and Dec : K × C → M. We assume K ⊆ M, i.e., we can encrypt keys.
In the game, the challenger – either GL or GR – picks N + 1 independent uniformly random
keys k0, . . . ,kN ∈ K, and the adversary A is then allowed to make three types of queries:

• Encryption queries: on input (encrypt, i, j) receives Encki
(kj).

• Corruption queries: on input (corrupt, i) receives ki.

16

3.1. Introduction

• Challenge query , only one is allowed: on input (challenge, i) receives ki in the real
game GL, and an independent uniformly random key in the random game GR.

We think of this game as generating a directed graph, with vertex set V = {v0, . . . , vN},
where every (encrypt, i, j) query adds a directed edge (vi, vj), and we say a vertex vi is
corrupted if a query (corrupt, i) was made, or vi can be reached from a corrupted vertex.
The goal of the adversary is to distinguish the games GL and GR, with the restriction that
the constructed graph has no cycles, and the challenge vertex is a sink. To prove security,
i.e., reduce the indistinguishability of GL and GR to the IND-CPA security of the SKE scheme,
we can consider a selectivized version of this game where A must commit to the graph as
described above (which uses < N2 bits). The security of this selectivized game can then be
reduced to the security of the SKE scheme by a series of < N2 hybrids, where a distinguisher
for any two consecutive hybrids can be used to break the security of the SKE scheme with the
same advantage. Using random guessing followed by a hybrid argument we conclude that if
the SKE scheme is ϵ-secure, the GSD game is ϵ ·N2 ·2N2-secure. Thus, we lose an exponential
in N2 factor in the reduction.

Fortunately, if we look at the actual protocols that GSD is supposed to capture, it turns
out that the graphs that A can generate are not totally arbitrary. Two interesting cases are
given by GSD restricted to graphs of bounded depth, and to trees. For these cases better
reductions exist. Panjwani [Pan07] shows that if the adversary is restricted to play the game
such that the resulting graph is of depth at most D, a reduction losing a factor (2N)D+1

exists. Moreover, Fuchsbauer et al. [FJP15] give a reduction losing a factor N3 log N when
the underlying graph is a tree. In Section 3.3 we prove these results in our framework.2 Our
proofs are much simpler than the original ones, especially than the proof of [Pan07] which is
very long and technical. This is thanks to our modular approach, where our general framework
takes care of delicate probabilistic arguments, and basically just leaves us with the task of
designing pebbling strategies, where each pebbling configuration has a succinct description,
for various graphs, which is a clean combinatorial problem. The generic connection between
adaptive security proofs of the GSD problem and graph pebbling is entirely new to this work.

GSD on a Path. Let us sketch the proof idea for the [FJP15] result, but for an even
more restricted case where the graph is a path visiting every node exactly once. In other
words there is a permutation π over {0, . . . , N} and the adversary’s queries are of the form
(encrypt, π(i− 1), π(i)) and (challenge, π(N)). We first consider the selective game
where A must commit to this permutation π ahead of time. Let HL, HR be the selectivized
versions of GL, GR respectively.

To prove selective security, we can define a sequence of hybrid games HL = H0, . . . , Hτ = HR.
Each hybrid is defined by a path, vπ(0) → vπ(1) → . . . → vπ(N), with a subset of the edges
holding a black pebble. In the hybrid games, a pebble on (vπ(i), vπ(i+1)) means that instead of
answering the query (encrypt, π(i), π(i + 1)) with the “real” answer Enckπ(i)(kπ(i+1)), we
answer it with a “fake” answer Enckπ(i)(r) for a uniformly random key r. The goal is to move
from a hybrid with no pebbles (this corresponds to HL) to one with a single black pebble on
the “sink” edge (vπ(N−1), vπ(N)) (this corresponds to HR). We can prove that neighbouring
hybrids are indistinguishable via a reduction from IND-CPA security as long as the pebbling
configurations are only modified via the following legal moves:

2In fact, we prove a slightly weaker result than [Pan07] which depends on the indegree of the resulting
graph; bounding the indegree by N we obtain an additional factor 2 in the exponent.

17

3. A Framework for Adaptive Security

1. We can put/remove a pebble on the source edge (vπ(0), vπ(1)) at any time.
2. We can put/remove a pebble on an edge (vπ(i), vπ(i+1)) if the preceding edge (vπ(i−1), vπ(i))

has a pebble.

This is because adding/removing a pebble (vπ(i), vπ(i+1)) means changing what we encrypt
under key kπ(i) and therefore we need to make sure that either the edge is a source edge or
there is already a pebble on the preceding edge to ensure that the key kπ(i) is never being
encrypted under some other key.

The simplest “basic pebbling strategy” consists of 2N moves where we add pebbles on the
path vπ(0) → vπ(1) → . . .→ vπ(N), one by one starting on the left and then remove one by
one starting on the right, keeping only the pebble on the sink edge (vπ(N−1), vπ(N)). This is
illustrated in Figure 3.1.(a) for N = 8. The strategy uses N pebbles. However, there are
other pebbling strategies that allow us to trade off more moves for fewer pebbles. For example
there is a “recursive strategy” (recursively pebble the middle vertex, then recursively pebble
the right-most vertex, then recursively remove the pebble from the middle vertex) that uses at
most log N + 1 pebbles (instead of N), but requires 3log N + 1 moves (instead of just 2N).
This is illustrated in Figure 3.1.(b).

As we described, each pebbling strategy with τ moves gives us a sequence of hybrids HL =
H0, . . . , Hτ = HR that allows us to prove selective security. Furthermore, we can prove
relatively easily that neighbouring hybrids Hj, Hj+1 are indistinguishable even if the adversary
doesn’t commit to the entire permutation π but only to the values π(i) of indices i such that
either Hj or Hj+1 has a pebble on the edge (vπ(i−1), vπ(i)). Using our framework, we therefore
get a proof of adaptive security where the security loss is τ · Nσ where σ is the maximum
number of pebbles used and τ is the number of pebbling moves. In particular, if we use the
recursive pebbling strategy described above we only suffer a quasipolynomial security loss
3log N ·N log N+1, as compared with 2N · (N + 1)! > (N/e)N for naïve random guessing where
the adversary commits to the entire permutation π.

GSD on Low Depth and Other Families of Graphs. The proof outline for GSD on paths
is just a very special case of our general result for GSD for various classes of graphs, which we
discuss in Section 3.3. If we consider a class of graphs which can be pebbled using τ pebbling
configurations, each containing at most σ pebbles, we get a reduction showing that GSD for
this class is ϵ · τ ·Nσ secure, assuming the underlying SKE scheme is ϵ-IND-CPA secure.

Unfortunately, this approach will not gain us much for graphs with high in-degree: we can
only put a pebble on an edge (vi, vj) if all the edges (∗, vi) going into node vi are pebbled.
So if we consider graphs which can have large in-degree δin, any pebbling strategy must
at some point have pebbled all the parents of i, and thus we’ll lose at least a factor N δin

in the reduction. But remember that to apply our Theorem 2, we just need to be able to
“compress" the information required to simulate the hybrids. So even if the hybrids correspond
to configurations with many pebbles, that is fine as long as we can generate a short hint which
will allow to emulate it.

Consider the selective GSD game, where the adversary commits to all of its queries; we can
think of this as a DAG, where each edge comes with an index indicating in which query this
node was added. Assume the adversary is restricted to choose DAGs of depth D (but no
bound on the in-degree). One can show that there exists a pebbling sequence (of length
(2N)D), such that in any pebbling configuration, all pebbles lie on a path from a sink to a
root (which is of length at most D), and on edges going into this path. Moreover, we can

18

3.1. Introduction

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8•
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• • • •
0 1 2 3 4 5 6 7 8• • • • •
0 1 2 3 4 5 6 7 8• • • • • •
0 1 2 3 4 5 6 7 8• • • • • • •
0 1 2 3 4 5 6 7 8• • • • • • • •
0 1 2 3 4 5 6 7 8• • • • • • •
0 1 2 3 4 5 6 7 8• • • • • •
0 1 2 3 4 5 6 7 8• • • • •
0 1 2 3 4 5 6 7 8• • • •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• •

0 1 2 3 4 5 6 7 8•

(a)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8•
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8•
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8•
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• • • •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• • • •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• • • •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• • • •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• •

0 1 2 3 4 5 6 7 8•

(b)

Figure 3.1: “Classical” hybrid argument vs. improved hybrid argument. In both diagrams, the
edges that carry a pebble are faked. (a) Illustration of the classical hybrids H0, . . . , H15 for
GSD on a path graph with N = 8 edges: the number of hybrids is 2N = 16, and the number
of fake edges is at most N . (b) A sequence of hybrids H̃0, . . . , H̃27 that use fewer fake edges:
even though the number of hybrids is 3log N + 1 = 28, the number of fake edges is at most
log N + 1 = 4. The argument on the right is identical to the one using nested hybrids in
[FJP15], which implicitly uses the edge-pebbling generated by Algorithm 3.4.

19

3. A Framework for Adaptive Security

k∅

k0

k00

k000 k001

k01

k010 k011

k1

k10

k100 k101

k11

k110 k111

Figure 3.2: Illustration of the GGM PRF. Every left child kx∥0 of a node kx is defined as the
first half of PRG(kx), the right child kx∥1 as the second half. The circled node corresponds to
FGGM(k∅, 010).

ensure that in any configuration the following holds: if for a node vj on this path, there is a
pebble on edge (vi, vj) with index ι, then all edges of the form (∗, vj) with index < ι must
also have a pebble.

To describe such a configuration, we will output the ≤ D nodes on the path, specify for every
edge on this path if it is pebbled, and for any node vj on the path, the number of edges going
into vj that have a pebble (note that there are at most 2DN2D choices for this hint). The
hint is sufficient to emulate a hybrid, as for any query (encrypt, i, j) the adversary makes,
we will know if the corresponding edge has a pebble or not. This is clear if the edge (i, j) is
on the path, as we know this path in full. But also for the other edges that can hold a pebble,
where j is on the path but i is not. The reason is that we just have to count which query of
the form (encrypt, ∗, j) this is, as we got a number c telling us that the first c such edges
will have a pebble.

Applying Theorem 2, we recover Panjwani’s result [Pan07] showing that the GSD game
restricted to graphs of depth D only loses a factor NO(D) in the reduction.

3.1.2 Constrained Pseudorandom Functions
Goldreich et al. [GGM84] introduced the notion of a pseudorandom function (PRF). A PRF is
an efficiently computable keyed function F : K × X → Y, where F(k, ·), instantiated with a
random key k← K, cannot be distinguished from a function randomly chosen from the set of
all functions X → Y with non-negligible probability. More recently, the notion of constrained
pseudorandom functions (cPRF) was introduced as an extension of PRFs, by Boneh and
Waters [BW13], Boyle et al. [BGI14] and Kiayias et al. [KPTZ13], independently. Informally,
a constrained PRF allows the holder of a master key to derive keys which are constrained to
a set, in the sense that such a key can be used to evaluate the PRF on that set, while the
outputs on inputs outside of this set remain indistinguishable from random.

Goldreich et al., in addition to formally defining PRFs, gave a construction of a PRF from any
length doubling pseudorandom generator (PRG). Their construction is depicted in Figure 3.2.
All three of the aforementioned results [BW13, BGI14, KPTZ13] show that this GGM con-
struction already gives a so-called “prefix-constrained” PRF, which is a cPRF where for any
x ∈ {0, 1}∗, one can give out keys which allow to evaluate the PRF on all inputs whose prefix
is x. This is a simple but already very interesting class of cPRFs as it can be used to construct
a punctured PRF, which in turn is a major tool in constructing various sophisticated primitives
based on indistinguishability obfuscation (see, for example, [BW13, SW14, HSW14]).

20

3.1. Introduction

Prior work. To show that the GGM construction is a prefix-constrained PRF one must
show how to transform an adversary that breaks GGM as a prefix-constrained PRF into a
distinguisher for the underlying PRG. The proofs in [BW13, BGI14, KPTZ13] only show
selective security, where the adversary must initially commit to the output he wants to be
challenged on in the security game. There is a loss in tightness by a factor of 2n, where n is
the input length. This can then be turned into a proof against adaptive adversaries via random
guessing, losing an additional exponential factor 2n.

Fuchsbauer et al. [FKPR14] showed that it is possible to achieve adaptive security by losing
only a factor of (3q)log n, where q denotes the number of queries made by the adversary – if q
is polynomial, the loss is not exponential as before, but just quasi-polynomial. The bound
relies on the so-called “nested hybrids” technique. Informally, the idea is to iterate random
guessing and hybrid arguments several times. The random guessing is done in a way where
one only has to guess some tiny amount of information, which although insufficient to get
a full reduction using the hybrid argument, nevertheless reduces the complexity of the task
significantly. Every such iteration “cuts” the domain in half, so after logarithmically many
iterations the reduction is done. If the number of iterations is small, and the amount of
information guessed in each iteration tiny, this can still lead to a reduction with much smaller
loss than “single shot” random guessing.

Our results. We cast the result in [FKPR14] in our framework, giving an arguably simpler
and more intuitive proof. To this aim, we first describe the GGM construction and sketch its
security proof.

Given a PRG : {0, 1}λ → {0, 1}2λ, the PRF FGGM : {0, 1}λ × {0, 1}n → {0, 1}λ is defined
recursively as

FGGM(k, x) = kx where k∅ = k and kx∥0∥kx∥1 = PRG(kx).

The construction is also a prefix-constrained PRF: given a key kx for any x ∈ {0, 1}∗, one can
evaluate FGGM(k, x′) for all x′ whose prefix is x.

The security of FGGM as a PRF is given in [GGM84]. In particular, they show that if an adversary
exists who distinguishes FGGM(k, ·) (real experiment) from a uniformly random function (random
experiment) with advantage ϵ making q (adaptive) queries, then an adversary of roughly the
same time complexity exists who distinguishes PRG(Uλ) from U2λ with advantage ϵ/(nq).
Thus if we assume that PRG is ϵ′-secure, then FGGM is ϵ′nq-secure against any q-query
adversary of the same time complexity. This is one of the earliest applications of the hybrid
argument.

The security definition for cPRFs is quite different from that of standard PRFs: the adversary
will get to query the cPRF F(k, ·) in both, the real and random experiment (and can ask for
constrained keys, not just regular outputs), and only at the very end the adversary will choose
a challenge query x∗, which is then answered with either the correct cPRF output F(k, x∗) (in
the real experiment) or a random value (in the random experiment). In the selective version
of these security experiments, the adversary has to choose the challenge x∗ before making any
queries. In particular, for the case of prefix-constrained PRFs, the experiment is as follows.
The challenger samples k ∈ {0, 1}λ uniformly at random. The adversary A first commits to
some x∗ ∈ {0, 1}n. Then it can make constrain queries x ∈ {0, 1}∗ for any x which is not a
prefix of x∗, and receives the constrained key kx in return. Finally, A gets either FGGM(k, x∗)
(in the real game) or a random value, and must guess which is the case.

21

3. A Framework for Adaptive Security

Selective hybrids. A naïve sequence of selective hybrids, which is of length 2n, relies just
on the knowledge of x∗. For n = 8 the corresponding 16 hybrid games are illustrated in
Figure 3.1.a. Each path C(n) corresponds to a hybrid, and it “encodes” how the value of the
function F is computed on the challenge input x∗ (and this determines how the function is
computed on the rest of the inputs too). An edge that does not carry a pebble is computed
normally, as defined in FGGM – i.e., if the ith edge is not pebbled then kx∗[1,i−1]∥0∥kx∗[1,i−1]∥1
is set to PRG(kx[1,i−1]), where for x ∈ {0, 1}n, x[1, i] denotes its i bit prefix. On the other
hand, for an edge with a pebble, we replace the PRG output with a random value – i.e.,
kx∗[1,i−1]∥0∥kx∗[1,i−1]∥1 is set to a uniformly random string in {0, 1}2λ. It’s not hard to see that
any distinguisher for two consecutive hybrids can be directly used to break the PRG with the
same advantage by embedding the PRG-challenge – which is either U2λ or PRG(Uλ) – at the
right place. Using standard random guessing we can get adaptive security losing an additional
factor 2n in the distinguishing advantage by initially guessing x∗ ∈ {0, 1}n.

From selective to adaptive. Before we explain the improved reduction, we take a step back
and consider an even more selective game where A must commit, in addition to the challenge
query xq = x∗, also to the constrain queries {x1, . . . , xq−1}. We can use the knowledge of
x1, . . . , xq−1 to get a better sequence of hybrids: this requires two tricks. First, as in GSD on a
path, instead of using the pebbling strategy in Figure 3.1.a, we switch to the recursive pebbling
sequence in Figure 3.1.b. Second, we need a more concise “indexing” for the pebbles: unlike
in the proof for GSD, here we can’t simply give the positions of the (up to log n + 1) pebbles
as hint to simulate the hybrids, as the graph has exponential size; thus even the position of a
single pebble would require as many bits to encode as the challenge x∗. Instead, we assume
there’s an upper bound q on the number of queries made by the adversary. For a pebble on
the ith edge, we just give the index of the first constrain query whose i bit prefix coincides
with x∗, i.e., the minimum j such that xj[1, i] = x∗[1, i]. This information is sufficient to
tell when exactly during the experiment we have to compute a value that corresponds to a
pebbled edge.

As there are 3log n hybrids, and each hint comes from a set of size qlog n (i.e., a value ≤ q for
every pebble), our Theorem 2 implies that FGGM is a ϵ(3q)log n secure prefix-constrained PRF
if PRG is ϵ secure.

3.1.3 Yao’s Garbled Circuits
Garbled circuits, introduced by Yao in (oral presentations of) [Yao82, Yao86], can be used to
garble a circuit C and an input x in a way that reveals C(x) but hides everything else. More
precisely, a garbling scheme has three procedures; one to garble the circuit C and produce
a garbled circuit ˜︁C, one to garble the input x and produce a garbled input ˜︁x, and one that
evaluates the garbled circuit ˜︁C on the garbled input ˜︁x to get C(x). Furthermore, to prove
security, there must be a simulator that only gets the output of the computation C(x) and
can simulate the garbled circuit ˜︁C and input ˜︁x, such that no PPT adversary can distinguish
them from the real garbling.

Adaptive vs. Selective Security. In the adaptive setting, the adversary A first chooses the
circuit C and gets back the garbled circuit ˜︁C, then chooses the input x, and gets back garbled
input ˜︁x. The adversary’s goal is to decide whether he was interacting with the real garbling
scheme or the simulator. In the selective setting, the adversary has to choose the circuit C as
well as the input x at the very beginning and only then gets back ˜︁C, ˜︁x.

22

3.1. Introduction

Prior Work. The work of Bellare, Hoang and Rogaway [BHR12a] raised the question of
whether Yao’s construction or indeed any construction of garbled circuits achieves adaptive
security. The work of Hemenway et al. [HJO+16] gave the first construction of non-trivial
adaptively secure garbled circuits based on one-way functions, by modifying Yao’s construction
with an added layer of encryption having some special properties. More recently, the work of
Jafargholi and Wichs [JW16] gave the first analysis of adaptive security for Yao’s (almost)
unmodified garbled circuit construction which significantly improves on the parameters of
trivial random guessing. See Chapter 6 for a more comprehensive introduction and broader
background on garbled circuits and adaptive security.

Here, we present the work of [JW16] as a special case of our general framework. Indeed, the
work of [JW16] already implicitly follows our general framework fairly closely and therefore we
only give a high level overview of how it fits into it.

Selective Hybrids. We start by outlining the selective security proof for Yao’s garbled
circuits, following the presentation of [HJO+16, JW16] which is in turn based on the proof
of Lindell and Pinkas [LP09]. Essentially the proof proceeds via a series of hybrids which
modify one garbled gate at a time from the Real distribution to a Simulated one. However,
this cannot be done directly in one step and instead requires going through an intermediate
distribution called InputDep (we explain the name later). There are important restrictions on
the order in which these steps can be taken:

1. We can switch a gate from Real to InputDep (and vice versa) if it is at the input level
or if its predecessor gates are already InputDep.

2. We can switch a gate from InputDep to Simulated (and vice versa) if it is at the output
level or if its successor gates are already Simulated.

The simplest strategy to switch all gates from Real to Simulated is to start with the input level
and go up one level at a time switching all gates to InputDep. Then start with the output
level and go down one level at a time switching all gates to Simulated. This corresponds to
the basic proof of selective security of Yao’s garbled circuits.

However, the above is not the only possibility. In particular, any strategy for switching all gates
from Real to Simulated following rules (1) and (2) corresponds to a sequence of hybrid games
for proving selective security. We can identify the above with a pebbling game where one can
place pebbles on the gates of the circuit. The Real distribution corresponds to not having
a pebble and there are two types of pebbles corresponding to the InputDep and Simulated
distributions. The goal is to start with no pebbles and finish by placing a Simulated pebble
on every gate in the circuit while only performing legal moves according to rules (1) and (2)
above. Every pebbling strategy gives rise to a sequence of hybrid games H0, H1, . . . , Hτ for
proving selective security, where the number of hybrids τ corresponds to the number of moves
and each hybrid Hi is defined by the configuration of pebbles after i moves.

From Selective to Adaptive. The problem with translating selective security proofs into
the adaptive setting lies with the InputDep distribution of a gate. This distribution depends on
the input x (hence the name) and, in the adaptive setting, the input x that the adversary will
choose is not yet known at the time when the garbled circuit is created. To be more precise,
the InputDep distribution of a gate i only depends on the 1-bit value going over the output
wire of that gate during the computation C(x). Moreover, if we take any two fixed hybrid

23

3. A Framework for Adaptive Security

games Hi, Hi+1 corresponding to two neighbouring pebble configurations (ones which differ by
a single move) we can prove indistinguishability even if the adversary does not commit to the
entire n-bit input x ahead of time but only commits to the bits going over the output wires of
all gates i that are in InputDep mode in either configuration. This means that as long as the
pebbling strategy only uses σ pebbles of the InputDep type at any point in time, each pair
of hybrids Hi, Hi+1 can be proven indistinguishable in a partially selective setting where the
adversary only commits to σ bits of information about their input ahead of time, rather than
committing to the entire n-bit input x. Using our framework, this shows that whenever there
is a pebbling strategy for the circuit C that requires τ moves and uses at most σ pebbles of
the InputDep type, we can translate the selective hybrids into a proof of adaptive security
where the security loss is τ · 2σ.

It turns out that for any graph of depth D there is a pebbling strategy that uses O(D) pebbles
and τ = 2O(D) moves, meaning that we can prove adaptive security with a 2O(D) security
loss. This leads to a proof of adaptive security for NC1 circuits where the reduction has only
polynomial security loss, but more generally we can often get a much smaller security loss
than the trivial 2n bound achieved by naïve random guessing.3

3.1.4 Related Work
There are several additional results in the literature regarding constructions with tight security
analysis that could be placed in our framework. For example, [BKP14, Theorem 3.3] can
be viewed as a specific instantiation of our framework with the bit-projection function, that
is, hybrid i uses the ith bit of the whole commitment, and therefore the overall degradation
in security is 2λ, where λ is the security parameter (the ith bit is guessed in the relevant
neighbouring hybrids). Later works on tight security reductions based on the algebraic/adaptive
partitioning proof technique [Hof16, Hof17, GHK17] can also be placed under our framework.

After the publication of our work, we learned that Ananth et al. [ACC+16] presented a
framework for tight proofs of adaptive security called “small-loss complexity leveraging” and
applied it in the context of adaptively-secure RAM delegation of computation. Their framework
has similar underlying ideas to ours.

3.2 The Framework
We consider games described via a challenger G which interacts with an adversary A. At the
end of the interaction, G outputs a decision bit and we let ⟨G, A⟩ denote the random variable
corresponding to that bit.

Definition 3. We say that two games defined via challengers G0 and G1 are (t, ϵ)-indistinguishable,
denoted by G0 ≈(t,ϵ) G1, if for any adversary A running in time at most t:

|Pr[⟨G0, A⟩ = 1]− Pr[⟨G1, A⟩ = 1]| ≤ ϵ.

3The presentation in [JW16] follows the above outline fairly closely and the reader can easily match it with
our general framework. The one conceptual difference is that we think of all the hybrids Hi as existing in the
selective setting where the adversary commits to the entire input but then we analyze indistinguishability of
neighbouring hybrids in a partially selective setting. The work of [JW16] thought of the hybrids Hi as already
being partially selective, which made it difficult to compare neighbouring hybrids, since the adversary was
expected to commit to different information in each one. We view our new framework as being conceptually
simpler.

24

3.2. The Framework

We say that two games are perfectly indistinguishable and write G0 ≡ G1 if they are (∞, 0)-
indistinguishable.

Selectivized Games. We define two operations that convert adaptive or partially selective
games into further selective games.

Definition 4 (Selectivized Game). Given an (adaptive) game G and some function w : {0, 1}∗ →
W we define the selectivized game H = SELW [G, w] which works as follows. The adversary A
first sends a commitment w ∈ W to H. Then H runs the challenger G against A, at the end of
which G outputs a bit b′. Let transcript denote all communication exchanged between G and
A. If w(transcript) = w then H outputs the bit b′ and else it outputs 0. See Figure 3.3.(a).

Note that the selectivized game gets a commitment w from the adversary but essentially
ignores it during the rest of the game. Only, at the very end of the game, it checks that the
commitment matches what actually happened during the game.

Definition 5 (Further Selectivized Game). Assume Ĥ is a (partially selective) game which
expects to receive some commitment u ∈ U from the adversary in the first round. Given
functions w : {0, 1}∗ → W and h : W → U we define the further selectivized game H =
SELU→W [Ĥ, w, h] as follows. The adversary A first sends a commitment w ∈ W to H and H
begins running Ĥ and passes it u = h(w). It then continues running the game between Ĥ and
A at the end of which Ĥ outputs a bit b′. Let transcript denote all communication exchanged
between Ĥ and A. If w(transcript) = w then H outputs the bit b′ and else it outputs 0. See
Figure 3.3.(b).

Note that if Ĥ is a (partially selective) game where the adversary sends some commitment u,
then in the further selectivized game the adversary might have to commit to more information
w. The further selectivized game essentially ignores w and only relies on the partial information
u = h(w) during the course of the game but only at the very end it still checks that the full
commitment w matches what actually happened during the game.

Random Guessing. We first present the basic reduction using random guessing.

Lemma 2. Assume we have two games defined via challengers G0 and G1 respectively. Let
w : {0, 1}∗ →W be an arbitrary function and define the selectivized games Hb = SELW [Gb, w]
for b ∈ {0, 1}. If H0, H1 are (t, ϵ)-indistinguishable then G0, G1 are (t − tW , ϵ · |W|)-
indistinguishable, where tW denotes the time complexity of sampling uniformly at random
from W .

Proof. We prove the contrapositive. Assume that there is an adversary A of runtime t′ = t−tW
such that

|Pr[⟨A, G0⟩ = 1]− Pr[⟨A, G1⟩ = 1]| > ϵ · |W|.
Let A∗ be the adversary that first chooses a uniformly random w ←W and then runs A. Then
for b ∈ {0, 1}:

Pr[⟨A∗, Hb⟩ = 1] = Pr[⟨A, Gb⟩ = 1]/|W|
and therefore

|Pr[⟨A∗, H0⟩ = 1]− Pr[⟨A∗, H1⟩ = 1]| > ϵ.

Moreover, since A∗ runs in time t′ + tW = t this shows that H0 and H1 are not (t, ϵ)-
indistinguishable.

25

3. A Framework for Adaptive Security

H

G

A

=

wt

b′

b

w

(a)

H

Ĥ

A

=

w

h·

t

b′

b

w

u

(b)

Figure 3.3: Selectivizing. (a): SELW [G, w], and (b): SELU→W [Ĥ, w, h]. The symbol t is short
for transcript, the nodes with w and h compute the respective functions, whereas the node
with = outputs a bit b as prescribed in the consistency check.

Partially Selective Hybrids.
Consider the following setup. We have two adaptive games GL and GR. For some function
w : {0, 1}∗ → W we define the selectivized games HL = SELW [GL, w], HR = SELW [GR, w]
where the adversary commits to some information w ∈ W. Moreover, to show the indistin-
guishability of HL, HR we have a sequence of τ (selective) hybrid games HL = H0, H1, . . . , Hτ =
HR.

If we only assume that neighbouring hybrids Hi, Hi+1 are indistinguishable, then by combining
the hybrid argument and random guessing we know that GL and GR are indistinguishable at a
security loss of τ · |W|.

Theorem 1. Assume that for each i ∈ {0, . . . , τ − 1}, the games Hi, Hi+1 are (t, ϵ)-
indistinguishable. Then, GL and GR are (t − tW , ϵ · τ · |W|)-indistinguishable, where tW
denotes the time complexity of sampling uniformly at random from W .

Proof. Follows from Lemma 2 and the hybrid argument (Lemma 1).

Our goal is to avoid the loss of |W| in the above theorem. To achieve this, we will assume
a stronger condition: not only are neighbouring hybrids Hi, Hi+1 indistinguishable, but they
are selectivized versions of less selective games Ĥi,0, Ĥi,1 which are already indistinguishable
(see Figure 3.4). In particular, we assume that for each pair of neighbouring hybrids Hi, Hi+1
there exist some less selective hybrids Ĥi,0, Ĥi,1 where the adversary only commits to much
less information hi(w) ∈ U instead of w ∈ W. In more detail, for each i there is some
function hi : W → U that lets us interpret Hi+b as a selectivized version of Ĥi,b via Hi+b ≡
SELU→W [Ĥi,b, w, hi]. In that case, the next theorem shows that we only get a security loss
proportional to |U| rather than |W|. Note that different pairs of “less selective hybrids”
Ĥi,0, Ĥi,1 rely on completely different partial information hi(w) about the adversary’s choices.

26

3.2. The Framework

GL

HL = H0 H1 H2 · · · Hτ−1 Hτ = HR

GR

Ĥ0,0 Ĥ0,1 Ĥ1,0 Ĥ1,1 Ĥ2,0 Ĥτ−2,1 Ĥτ−1,0 Ĥτ−1,1

Figure 3.4: A schematic diagram showing the relationship between adaptive, fully selective
and partially selective hybrids. The adaptive games GL and GR are in green (circles); the
fully selective games H0, . . . , Hτ are in solid black (boxes); and the partially selective games
Ĥ0,0, Ĥ0,1, . . . , Ĥτ−1,0, Ĥτ−1,1 are in (dotted) blue boxes. The arrows indicate indistinguishabil-
ity.

Moreover, the “less selective” hybrid that we associate with each Hi can be different when we
compare Hi−1, Hi (in which case it is Ĥi−1,1) and when we compare Hi and Hi+1 (in which
case it is Ĥi,0).

Theorem 2 (main). Let GL and GR be two adaptive games. For some function w : {0, 1}∗ →
W we define the selectivized games HL = SELW [GL, w], HR = SELW [GR, w]. Let HL =
H0, H1, . . . , Hτ = HR be some sequence of hybrid games.
Assume that for each i ∈ [0, τ − 1], there exists a function hi : W → U and games Ĥi,0, Ĥi,1
such that:

Hi ≡ SELU→W [Ĥi,0, w, hi] , Hi+1 ≡ SELU→W [Ĥi,1, w, hi]. (3.1)

Furthermore, assume that Ĥi,0, Ĥi,1 are (t, ϵ)-indistinguishable. Then GL and GR are (t −
tU , ϵ · τ · |U|)-indistinguishable, where tU denotes the time complexity of sampling uniformly
at random from U .

Proof. Assume that A is an adaptive distinguisher for GL and GR running in time t′ such that

|Pr[⟨A, GL⟩ = 1]− Pr[⟨A, GR⟩ = 1]| > ϵ′.

Let A∗ be a fully selective distinguisher that guesses w ←W uniformly at random in the first
round and then runs A. By the same argument as in Lemma 2 and Theorem 1 we know that
there exists some i ∈ [0, τ − 1] such that:

|Pr[⟨A∗, Hi⟩ = 1]− Pr[⟨A∗, Hi+1⟩ = 1]| ≥ ϵ′/(τ · |W|). (3.2)

Let A′ be a partially selective distinguisher that guesses u← U uniformly at random in the
first round and then runs A. We want to relate the probabilities Pr[⟨A∗, Hi+b⟩ = 1] and
Pr[⟨A′, Ĥi,b⟩ = 1].

Recall that the game ⟨A∗, Hi+b⟩ consists of A∗ selecting a uniformly random value w ←W
(which we denote by the random variable W) and then we run A against Ĥi,b(u) (denoting
the challenger Ĥi,b that gets a commitment u in first round) which results in some transcript
and an output bit b∗; if w(transcript) = w the final output is b∗ else 0.

Similarly, the game ⟨A′, Ĥi,b⟩ consists of A′ selecting a uniformly random value u← U (which
we denote by the random variable U) and then we run A against Ĥi,b(u). Therefore:

27

3. A Framework for Adaptive Security

Pr[⟨A∗, Hi+b⟩ = 1]
=
∑︂
u∈U

Pr[hi(W) = u⏞ ⏟⏟ ⏞
I

] · Pr[⟨A, Ĥi,b(u)⟩ = 1⏞ ⏟⏟ ⏞
II

] · Pr[W = w(transcript)|I, II]

=
∑︂
u∈U

|h−1
i (u)|
|W|

· Pr[⟨A, Ĥi,b(u)⟩ = 1] · 1
|h−1

i (u)|

= 1
|W|
·
∑︂
u∈U

Pr[⟨A, Ĥi,b(u)⟩ = 1]

= |U|
|W|
·
∑︂
u∈U

Pr[⟨A, Ĥi,b(u)⟩ = 1] · Pr[U = u]

= |U|
|W|
· Pr[⟨A′, Ĥi,b⟩ = 1].

Combining the above with Equation 3.2 we get:

|Pr[⟨A′, Ĥi,0⟩ = 1]− Pr[⟨A′, Ĥi,1⟩ = 1]| ≥ ϵ′/(τ · |U|).

Since by assumption Ĥi,0, Ĥi,1 are (t, ϵ)-indistinguishable and A′ is running in time t′ + tU this
shows that when t′ = t− tU then ϵ′ ≤ ϵ · τ · |U| which proves the theorem.

3.2.1 Example: GSD on a Path
As an example, we consider the problem of generalized selective decryption (GSD) on a path
graph with N edges, where N is a power of two.

Let (Enc, Dec) be a symmetric encryption scheme with (probabilistic) Enc : K ×M→ C and
Dec : K×C →M. We assume K ⊆M so that we can encrypt keys, and that the encryption
scheme is (t, ϵ)-indistinguishable under chosen-plaintext attack.4 In the game, the challenger –
either GL or GR – picks N + 1 random keys {k0, . . . ,kN} ∈ K, and the adversary A is then
allowed to make two types of queries:

• Encryption queries, (encrypt, i, j): it receives back Encki
(kj).

• Challenge query, (challenge, i∗): here the answer differs between GL and GR, with
GL answering with ki∗ (real key) and GR answering with r← K (random, “fake” key).

A cannot ask arbitrary queries: it is restricted to encryption queries that form a path graph
with the challenge query as the sink. That is, a valid attacker A is allowed exactly N encryption
queries (encrypt, iι, jι), for ι ∈ [1, N], and a single (challenge, i∗) query such that the
directed graph G = (V , E) with V = {v0, . . . , vN} and E = {(vi1 , vj1), . . . , (viN

, vjN
)} forms

a path with sink vi∗ .
4To be precise, we only need the encryption scheme to be secure in a weaker model where encryptions of

two random messages m0,m1 ∈ K under a random key k ∈ K are (t, ϵ)-indistinguishable, with the adversary
having access to ciphertexts on random messages from K.

28

3.2. The Framework

Fully selective hybrids. Let’s look at a naïve sequence of intermediate hybrids {H0, . . . ,
H2N−1}. The fully selective challenger HI receives as commitment the exact permutation
π that A will query – i.e, vπ(i) is the ith vertex on the path. Therefore, W = SN+1 (the
symmetry group over [0, N]) and w is the function that outputs the observed permutation
from the transcript. Next, HI samples 2(N + 1) keys {k0, . . . ,kN}, {r0, . . . ,rN}, and when
A makes a query (encrypt, π(i), π(i + 1)), it returns
for 0 ≤ I ≤ N :

Enckπ(i)(rπ(i+1)) if (0 ≤ i ≤ I) (Fake edge)
Enckπ(i)(kπ(i+1)) otherwise, (Real edge)

for N < I ≤ 2N − 1 :

Enckπ(i)(rπ(i+1)) if (0 ≤ i ≤ 2N − 1− I) ∨ (i = N − 1) (Fake edge)
Enckπ(i)(kπ(i+1)) otherwise. (Real edge) (3.3)

Thus, in the sequence {H0, . . . , H2N−1}, edges are “faked” sequentially down the path, and
then “restored”, except for the last edge, in the reverse order up the path – see Figure 3.1.a.
By definition, H0 = GL and H2N−1 = GR. Moreover, HI and HI+1 can be shown (t, ϵ)-
indistinguishable: when A queries for (encrypt, π(I), π(I + 1)), the reduction RI returns
the challenge ciphertext

C(·,kπ(I+1),rπ(I+1)) if (I ≤ n) (Real to fake)
C(·,rπ(I+1),kπ(I+1)) otherwise. (Fake to real) (3.4)

For the rest of the queries, RI works as prescribed in eq.3.3.5 It is easy to see that RI simulates
HI when the ciphertext corresponds to the first message, and HI+1 otherwise. By Theorem 1,
(t−N · tEnc, ϵ(2N + 1)(N + 1)!)-indistinguishability of GL and GR follows, where tEnc is the
time complexity of the Enc algorithm and the (N + 1)! factor is the size of the set W = SN+1.

Partially selective hybrids. In order to simulate according to the strategy just described, it
suffices for the hybrid (as well as the reduction) to guess the edges that are faked – however,
this number can be up to N (e.g. in the middle hybrids) and, therefore, the simulator guesses
the whole path anyway. Intuitively, this is where the overall looseness of the bound stems
from. Now, consider the alternative sequence of hybrids H̃0, . . . , H̃27 given in Figure 3.1.b: the
edges in this sequence are faked and restored, one at a time, in a recursive manner to ensure
that at most four edges end up fake per hybrid. In particular, the new hybrid H̃I , fakes all
the edges that belong to a set PI ⊆ E . That is, when A makes a query (encrypt, i, j) –
instead of following Eq.3.3, – H̃I returns

Encki
(rj) if ((vi, vj) ∈ PI) (Fake edge)

Encki
(kj) otherwise. (Real edge) (3.5)

This strategy can be extended to arbitrary N , and there exists such a sequence of sets
P0, . . . ,P3log N where the sets are of size at most log N + 1.6

Next, we show that the above simulation strategy satisfies the requirements for applying
Theorem 2. Firstly, as shown in Algorithm 3.1, the strategy is partially selective – i.e.,
H̃I+b = SELU→W [ĤI,b, w, hI], where, for I ∈ [0, τ = 3log N], the function hI : SN+1 → E log N+1

computes PI .
5Even though RI does not know the key kπ(I), the query (encrypt, vπ(I−1), vπ(I)) does not cause a

problem as its response is Enckπ(I−1)(rπ(I)).
6Later, in Section 3.3.2, we see that the sequence P0, . . . ,P3log N corresponds to an “edge-pebbling” of

the path graph.

29

3. A Framework for Adaptive Security

Algorithm 3.1: Hybrid H̃A
I+b, where H̃I+b = SELU→W [ĤI,b, w, hI]

H̃A
I+b

1 Obtain π ∈ SN+1 from A
2 Compute P := {P0, . . . ,Pτ}
3 Run Ĥ

A
I,b((PI ,PI+1))

4 if w(transcript) = π then
5 return ĤI,b’s output
6 else
7 return 0

Ĥ
A
I,b((PI ,PI+1))

8 Choose 2N keys {r1, . . . ,rN}, {k1, . . . ,kN} ← K
9 Whenever A queries (encrypt, i, j):

10 if (vi, vj) ∈ PI+b then
11 return Encki

(rj)
12 else
13 return Encki

(kj)
14 return A’s output

Secondly, as the simulations in ĤI,0 and ĤI,1 differ by exactly one edge – which is real in
one and fake in the other – they can be shown to be (t, ϵ)-indistinguishable. To be precise,
if (vi∗ , vj∗) := PI△PI+1, where △ denotes the symmetric difference, when A queries for
(encrypt, i∗, j∗), the reduction R̃I returns

C(·,kj∗ , rj∗) if (PI ⊂ PI+1) (Real to fake)
C(·, rj∗ ,kj∗) otherwise. (Fake to real) (3.6)

with the rest of the queries answered as in Eq.3.5.

Although the number of hybrids is greater than in the previous sequence, the number of fake
edges in any hybrid is at most log N + 1. Thus, the reduction can work with less information
than earlier. By Theorem 2, (t − N · tEnc − tP , ϵ · 3log N · N2(log N+1))-indistinguishability
of GL and GR follows, where tP is the run time of the algorithm that generates the set
P = {P0, . . . ,Pτ}, and the N2(log N+1) factor results from the fact that the compressed set
U = E log N+1. Thus, the bound is improved considerably from exponential to quasi-polynomial.
A more formal treatment is given in the following section.

3.3 Application I: Generalized Selective Decryption
The generalized selective decryption (GSD) game was introduced in [Pan07] in order to capture
the hardness of proving adaptive security of cryptographic protocols. [Pan07] then showed
how GSD can be used to show adaptive security of multicast encryption protocols such as a
variant of the logical key hierarchy [WGL00].

30

3.3. Application I: Generalized Selective Decryption

3.3.1 Formal Definitions
We generalize the definition of GSD given in Section 3.2.1. Let (Enc, Dec) be a symmetric
encryption scheme with Enc : K ×M→ C, Dec : K × C →M and we assume K ⊆M (so
we can encrypt keys). We assume that (Enc, Dec) is correct and (t, ϵ)-IND-CPA secure – see
Definition 1.

Definition 6 (Adaptive GSD [Pan07]). The game is played between a challenger G (which
is either GL or GR) and an adversary A using (Enc, Dec). G picks N keys k1, . . . ,kN ← K
uniformly at random, and initialises a graph G := ({v1, . . . , vN}, ∅); it also initialises a set
Vcor = ∅. A can make three types of queries:

• Encryption queries, (encrypt, i, j): G returns Encki
(kj), and adds (vi, vj) to E . Here,

A is restricted to queries such that E does not contain any cycles.7

• Corruption queries, (corrupt, i): G returns ki, and adds vi to Vcor.

• One challenge query (challenge, i): Here the answer differs between GL and GR:
GL answers with ki (real key), whereas GR answers with r ← K (fake key) sampled
uniformly at random – for the task to be non-trivial, vi must be a sink and it must not
be reachable from any vertex in Vcor.8

We consider an order “<”on E , which is the “temporal” order induced by the game: if A
queried (encrypt, i, j) before (encrypt, i′, j′) in the game, then (vi, vj) was added to
the set E before (vi′ , vj′), and hence (vi, vj) < (ui′ , vj′).9 The graph G, along with the
order <, is called the key-graph. In the fully selectivized version of Definition 6, A must
commit to the key-graph beforehand – i.e., the selective challenger HL = SELG[GL, w] (resp.,
HR = SELG[GR, w]), where G = G(N) is the set of all key-graphs of N vertices (i.e., the set
of all graphs G(N) along with the set of all possible edge orderings on them), and w is the
function that extracts the key-graph from the transcript.

Definition 7. An encryption scheme (Enc, Dec) is called (t, ϵ)-adaptive (resp., selective)
GSD-secure if GL and GR (resp., HL and HR) are (t, ϵ)-indistinguishable.

Existing Results. Let tEnc denote the run time of the algorithm Enc. [Pan07] shows that if
the key-graph is of depth D = D(N), then an (t, ϵ)-indistinguishable encryption scheme is also
(t−(N · tK +N2 · tEnc), O(ϵ ·(2N)D+1))-adaptive GSD-secure. As a corollary, for perfect binary
trees the loss in tightness is only O(N log N+2). In [FJP15], it is shown that if the key-graph
is a tree, then the encryption scheme is (t− (N · tK + N2 · tEnc), O(ϵ ·NO(log N)))-adaptive
GSD-secure – the result is established using the nested hybrids technique [FKPR14]. We
recapture the result10 in [Pan07], as well as the result for paths in [FJP15] in our framework.

7Without this restriction, for security we would have to assume the encryption scheme is circular secure –
a strictly stronger security notion than IND-CPA security [MO14].

8As noted in [Pan07], through a standard hybrid argument, ϵ-security in the above model implies (ϵ ·m)-
security in a (stronger) model where m = m(λ) challenges are allowed.

9An order can be maintained even when there are parallel queries (viz., the order within the parallel query).
10In fact, we prove a slightly weaker result, however, the proof in our framework is significantly simpler.

31

3. A Framework for Adaptive Security

k2 • • k2 •

k1 r • k1 r

(a)

k4 k2 k3 • k4 k2 k3

• k1 r • • k1 r •

(b)

k4 k3 k6

• k2 k5

• k1 r

k3 k3 k6

• k2 k5

• k1 r

(c)

Figure 3.5: Examples of key-graphs for the extreme games HL and HR. (a): G1, (b): G2
and (c): G3. In the key-graphs given on the left (the left key-graph), all the edges are real,
whereas in those given on the right (the right key-graph), only the edges that are incident on
the challenge vertex (v1) are fake.

Overview.

We prove selective security first (c.f., Section 3.3.2) and then apply Theorem 2 to establish
adaptive security (c.f., Theorem 3). The main idea behind proving selective security is to
associate a hybrid experiment to a pebbling configuration of the underlying key-graph (c.f.,
Lemma 3).

3.3.2 Hybrids and Pebbling Configurations
Recall that our goal is to show that the indistinguishability of the encryption scheme implies
indistinguishability of the fully selectivized games HL and HR. To this aim, we first construct a
set of τ − 1 intermediate (fully selective) hybrids HL = H0, H1, . . . , Hτ = HR by associating
each experiment with a pebbling configuration. Then we further selectivize these games by
showing that there exists Ĥi,b, b ∈ {0, 1}, for each Hi, i ∈ [0, τ]. For this, we rely on the
pebbling sequence to have certain desirable properties.

Fully Selective Hybrids.

Let’s focus on the first part. For ease of exposition, let’s restrict the adversary to commit
key-graphs having only one sink which, by definition, is also the challenge vertex in the GSD
game. Now, consider the structure of key-graphs for HL and HR – let’s call them, respectively,
the left and the right key-graph. In the left key-graph all the edges are real, whereas in the
right key-graph only the edges that are incident on the sink are fake – some examples are
given in Figure 3.5:

Consider the simplest case of G1: the left and right key-graphs correspond, exactly, to the left
and right games in IND-CPA. To be precise, they correspond to the IND-CPA game where k2
is the challenge key, and the adversary challenges on the messages (k1,r): if the challenger
responds with a ciphertext that corresponds to k1, then we end up with the left key-graph for

32

3.3. Application I: Generalized Selective Decryption

G1, and otherwise we end up with the right key-graph. Thus, in the case of G2, changing an
edge from real to fake is indistinguishable to a GSD adversary. For G2, the edges incident
on v1 have to be faked iteratively: first (v4, v1), then (v2, v1) and finally (v3, v1), and we end
up in the right key-graph. Thus, we get a sequence of hybrids HL = H0, . . . , H3 = HR, one
corresponding to each act of faking. Each of these moves can be shown indistinguishable by
reducing to the case of G1.

Next consider the slightly more involved graph G3: unlike in the cases of G1 and G2, some of
the edges in G3 cannot be faked straight away. For example, consider the left key-graph and
the key-graph that has (v2, v1) faked. An attempt to show that these two are indistinguishable
would fail: such a reduction, which must set k2 as the challenge key, would not be able to
answer, for example, to the query (encrypt, 4, 2). However, if we first fake all the edges
that are incident on v2 (iteratively, as in the case of G2), then the query (encrypt, 4, 2)
does not pose a problem (as it is responded with Enck4(r) for some r← K). Thus, before
faking an edge (u, v) we must ensure that all the incoming edges to u are faked. Such a
sequence is given in Figure 3.6.

To summarize, our goal is to start with the left key-graph and end up with the right key-graph
by faking edges or restoring faked edges, one at a time keeping in mind that before faking
or restoring an edge (u, v) all the edges coming in to u must be already fake. This can be
abstracted out as an edge-pebbling game: faking (resp., restoring) an edge is equivalent to
placing (resp., removing) a pebble on the edge, and the goal of the pebbling game is to pebble
all the incoming edges of the sink. A more formal definition follows.

Reversible edge-pebbling. The classical reversible black pebbling game on DAGs was
introduced in [Ben89] to model reversible computation. A pebble in the reversible edge-
pebbling game – unlike in the classical case – is placed on the edges. Thus, a pebbling
configuration is a subset of the edges. A vertex is deemed pebbled if all its incoming edges
are pebbled – i.e., v ∈ V is pebbled in a configuration Pi if in(v) ⊆ Pi.

Definition 8. A reversible edge-pebbling of a DAG G = (V , E) with source nodes S and sink
nodes T is a sequence P := (P0, . . . ,Pτ) with each configuration Pi ⊆ E and, in particular,
P0 = ∅ and Pτ = ∪v∈T ′ in(v) for some ∅ ̸= T ′ ⊆ T . In a move, a pebble can be placed on
or removed from an edge (u, v) iff the vertex u is pebbled – edges going out from S can be
pebbled or unpebbled in any move. Thus, P is a valid pebbling sequence iff

∀i ∈ [1, τ] : ∃! (u, v) ∈ Pi−1△Pi and in(u) ⊆ Pi−1.

Thus, for a target set T ′ ⊆ T , starting from a completely unpebbled graph, the aim is to achieve
a pebbling configuration in which only the vertices T ′ are pebbled, and all other edges are
unpebbled. The space complexity of an edge pebbling P is defined as σP(G) := maxi∈[0,τ] |Pi|,
and the space complexity of edge-pebbling a DAG is σ(G) := minP σP(G). Similarly, for an
edge-pebbling P = (P0, . . . ,Pτ) of a graph G, the number of moves (τ , i.e.,) is denoted by
τP(G).

Definition 9 (Ordered edge-pebbling). An edge-pebbling P = (P0, . . . ,Pτ) of a graph
G = (V , E) that has ordered E is said to be ordered if for each configuration Pi the following
holds:

(u, v) ∈ Pi =⇒ ∀ ((u′, v) < (u, v)) : (u′, v) ∈ Pi.

In other words, if an edge (u, v) carries a pebble in Pi then all the edges that are incident on
v and precede (u, v) must also carry pebbles.

33

3. A Framework for Adaptive Security

1 2 3

□ 4 5 □

• 6 □

• • •

□ • • □

• • □

• • •

□ • • □

• • □

• • •

□ • • □

• • □

• • •

□ • • □

• • □

• • •

□ • • □

• • □

• • •

□ • • □

• • □

• • •

□ • • □

• • □

• • •

□ • • □

• • □

• • •

□ • • □

• • □

• • •

□ • • □

• • □

Figure 3.6: A sequence of hybrids for G3. The square boxes indicate fake keys and, hence, the
edges incident on these boxes are the faked edges.

For an ordered edge-pebbling, we are interested in a coarser measure of space complexity
called the lateral space complexity, which takes into account the fact that an ordered pebbling
is “compressible”: in a configuration Pi, if the pebbles that come in to a vertex v are
(u1, v), . . . , (up, v) (in that order), then it suffices just to store v and the number of incident
pebbled edges, i.e., p. Note that for a graph with bounded indegree δin, the integer p is
bounded by δin. We formalize this intuition in the following definition.

Definition 10. Let G = (V , E) be a DAG, v ∈ V , and Pi an ordered pebbling configuration

34

3.3. Application I: Generalized Selective Decryption

1 2 3

4 5

6

1 2 3

4 5

6

•
1 2 3

4 5

6

• •
1 2 3

4 5

6

• • •
1 2 3

4 5

6

• • • •
1 2 3

4 5

6

• • • •

•

1 2 3

4 5

6

• • • •

• •

1 2 3

4 5

6

• • •

• •

1 2 3

4 5

6

• •

• •

1 2 3

4 5

6

•

• •

1 2 3

4 5

6

• •

Figure 3.7: An example of an edge-pebbling sequence – it corresponds to a sequence of hybrids
for the graph G3. If an edge carries a pebble, then that edge is faked during the simulation.
Thus, the first configuration is the real game, whereas the last configuration – with all the
incoming edges to the challenge faked – is the random game.

on G. Then index(v,Pi) denotes the number of incoming edges to v that are pebbled – i.e.,

index(v,Pi) := |{(u, v′) ∈ Pi : v′ = v}| .

Let the set Qi be defined as

Qi := {(v, index(v,Pi)) : v ∈ V , index(v,Pi) > 0}.

The lateral space-complexity σ′ of the edge pebbling is defined as the maximum size of these
sets – i.e., σ′

P(G) := maxi∈[0,τ] |Qi|. The lateral space complexity of edge-pebbling a DAG is
σ′(G) := minP σ′

P(G).11

The edge-pebbling equivalent to the sequence of hybrids given in Figure 3.6 is given in
Figure 3.7. However, it is not ordered. An alternative edge-pebbling, which is ordered, is given
in Figure 3.8. Next, we formally show that an ordered edge-pebbling implies a sequence of
fully selective hybrids.

Lemma 3. For G ∈ G, let (P0, . . . ,Pτ) be an ordered edge-pebbling that is generated by
a deterministic edge-pebbling algorithm P. Then the sequence of hybrids HP,I , I ∈ [0, τ]
and with HP,I defined in Algorithm 3.2, constitutes a valid sequence of fully selective hybrids.
Furthermore, if tP denotes the time complexity of P, then an encryption scheme (Enc, Dec)
that is (t, ϵ)-secure under IND-CPA, is (t−O(tP +N ·tK +N2 ·tEnc), ϵ ·τ)-selective GSD-secure.

As a corollary to Lemma 3 and Theorem 1, an encryption scheme (Enc, Dec) that is (t, ϵ)-secure
under IND-CPA, is (t−O(tP + N · tK + N2 · tEnc + tW), ϵ · τ · exp(N))-adaptive GSD-secure.

Proof of lemma. Fix a graph G and consider the pebbling sequence P = (P0, . . . ,Pτ) ←
P(G). Each configuration PI yields a challenger HI,P described in Algorithm 3.2. By the

11Note that σ′(G) ≤ σ(G), with equality holding, for example, for graphs with in-degree one – also,
σ(G) ≤ δin · σ′(G), where δin is the in-degree of the DAG.

35

3. A Framework for Adaptive Security

1 2 3

4 5

6

1 2 3

4 5

6

•
1 2 3

4 5

6

• •
1 2 3

4 5

6

• • •
1 2 3

4 5

6

• • •

•

1 2 3

4 5

6

• •

•

1 2 3

4 5

6

•

•

1 2 3

4 5

6

•

1 2 3

4 5

6

•

•

1 2 3

4 5

6

•

• •

1 2 3

4 5

6

• •

Figure 3.8: An example of edge-pebbling of G3 that uses “fewer” pebbles than in Figure 3.7.
Although the space complexity of the above DAG is four, its lateral space complexity is just
two. Note that the edge-pebbling is ordered.

Algorithm 3.2: Template for generating fully selective hybrids.
HA

P,I

1 Obtain the key-graph G ∈ G from A
2 Compute P0, . . . ,Pτ ← P(G) // Generate the ordered pebbling

3 Initialise c1, . . . , cN := 0 // Counters for edges incident on each vertex

4 Compute QI // Contains set of “pebbled” vertices and their indices

5 Choose 2N keys r1, . . . ,rN ,k1, . . . ,kN ← K
6 Whenever A makes a query (encrypt, vi, vj):
7 if (vj ∈ QI) then // Carries pebble?

8 if cj ≤ indexj then
9 return Encki

(rj) // Fake if within the index

10 else
11 return Encki

(kj) // Real edge

12 cj := cj + 1
13 else
14 return Encki

(kj) // Real edge

15 Whenever A makes a query (corrupt, vi) or (challenge, vi) return ki

16 return A’s output

properties of the pebbling configurations P0 and Pτ , it is easy to see that HP,0 ≡ HL and
HP,τ ≡ HR. Moreover, HP,I is (t − O(tP + N · tK + N2 · tEnc), ϵ)-indistinguishable from
HP,I+1, for I ∈ [0, τ − 1] – we do not give the details, but the main point is to plug in the
challenge ciphertext at the (only) edge that is different in the two hybrids. Thus, HP,0, . . . , HP,τ

constitutes a valid sequence of fully selective hybrids.

Partially Selective Hybrids.

Here we show that the fully selective sequence of hybrids HP,0, . . . , HP,τ constructed in the
previous subsection is also partially selective, with each HP,I of the form prescribed in Eq.3.1.

36

3.3. Application I: Generalized Selective Decryption

This is made possible by the fact that an ordered pebbling is, as we discussed, compressible.
As a result, better bounds on adaptive security follow by Theorem 2.

Lemma 4. For δin = δin(N) and D = D(N), let G = G(N, δin, D) denote the subset of
key-graphs in G(N) with in-degree δin and depth D. For G ∈ G(N, δin, D), let (P0, . . . ,Pτ)
be an ordered edge-pebbling that is generated by a deterministic edge-pebbling algorithm P.
Let σ′ denote its lateral space complexity. Then, for I ∈ [0, τ − 1] and b ∈ {0, 1},

HP,I+b = SELU→G[ĤI,b, w, hI],

where ĤI,b is defined in Algorithm 3.3, and U is a subset of (V × [1, δin])2σ′ .

As a corollary to Lemma 4 and Theorem 2, we get our main result for the GSD game.

Theorem 3. Let N, δin, σ′, τ be as in Lemma 4. Let tP denote the time complexity of P,
then an encryption scheme (Enc, Dec) that is (t, ϵ)-secure under IND-CPA, is (t−O(tP + N ·
tK + N2 · tEnc), ϵ · τ · (N · δin)σ′)-adaptive GSD-secure.

Proof of lemma. The partial selectivising of HP,I+b = SELU→G[ĤI,b, w, hI] is shown in Algo-
rithm 3.3. The proof for the indistinguishability of ĤI,0 and ĤI,1 follows the same line of
argument as in the proof of Lemma 3 and is omitted. For the optimized result stated in the
theorem, note that the set U can be compressed to (V × [1, δin])σ′ since QI and QI+1 only
differ in one edge. Furthermore, to simulate the game it suffices to sample N keys.

Corollaries.

As corollaries to Theorem 3, we capture the existing results on GSD: viz., the result on
paths using the nested hybrid technique, given in [FJP15], which was briefly discussed in
Section 3.2.1, and the bound for general DAGs in [Pan07].

Corollary 1 (GSD for path graphs: loss quasi-polynomial in length). Let C(N) := G(N +
1, 1, N +1) denote the set of all chain key-graphs of N edges. An encryption scheme (Enc, Dec)
that is (t, ϵ)-secure under IND-CPA is (t−O(sP1 +N ·tK+N ·tEnc), ϵ·3log N ·N log N+1)-adaptive
GSD-secure on C(N).

Proof. Suppose that N is a power of two. An edge-pebbling algorithm P1 for chain graphs
C(N) ∈ C(N) is given in Algorithm 3.4 – the algorithm is to be invoked on ((0, N), (0, N))
in order to pebble the sink. It is called the nested pebbling strategy as it is used implicitly in
the argument for path graphs using nested hybrids in [FJP15]. The number of pebbles used
by P1 is captured by the recursion σP1(C(N)) = σP1(C(N/2)) + 1, with σP1(C(1)) = 1.12

The number of moves, on the other hand, is captured by τP1(C(N)) = 3 · τP1(C(N/2)) with
τP1(C(1)) = 1. Therefore, σP1(C(N)) = log N + 1 and τP1(C(N)) = 3log N . As the indegree
of a path graph is one, all its pebbling sequences are ordered, and its lateral space complexity
is the same as the number of pebbles, i.e. σ′ = log N + 1. The corollary now follows from
Theorem 3. A similar argument can be made for arbitrary N .

12It is known that the strategy is optimal – i.e., σ(C(N)) = σP1(C(N)) [Krá01]. We will outline a proof
for this statement in 7.5.1 in Chapter 7.

37

3. A Framework for Adaptive Security

Algorithm 3.3: Partially selectivized hybrids. HP,I+b := SELU→G[ĤI,b, w, hI], where
U is a subset of (V × [1, δin])2σ′ .

HA
P,I

1 Obtain the key-graph G ∈ G from A
2 Compute P0, . . . ,Pτ ← P(G)
3 Compute QI , QI+1

4 Run ĤI,b(QI ,QI+1)
5 return ĤI,b’s output

Ĥ
A
I,b(QI ,QI+1)

6 Initialise c1, . . . , cN := 0
7 Choose 2N keys r1, . . . ,rN ,k1, . . . ,kN ← K
8 Whenever A makes a query (encrypt, i, j):
9 if (vj ∈ QI+b) then

10 if (cj ≤ indexj ∈ QI+b) then // The index of vj in QI is compared

11 return Encki
(rj)

12 else
13 return Encki

(kj)
14 cj := cj + 1
15 else
16 return Encki

(kj)
17 Whenever A makes a query (corrupt, i) or (challenge, i): return ki

18 return A’s output

Corollary 2 (GSD for DAGs: loss exponential in depth). For D = D(N), let G(N, D)
denote the subset of graphs in G(N) with depth D. An encryption scheme (Enc, Dec) that
is (t, ϵ)-secure under IND-CPA is (t−O(tP2 + N · tK + N2 · tEnc), ϵ · (2N)D ·N2D)-adaptive
GSD-secure on G(N, δin, D). 13

Proof. A reversible edge-pebbling strategy that pebbles a single edge (u∗, v∗) is given in
Algorithm 3.5. In order to pebble a vertex v∗, the algorithm is to be called sequentially on
all u∗ ∈ parents(v∗). An example of this pebbling strategy is given in Figure 3.8. Let’s first
see why the generated pebbling sequence is ordered. For an edge (u, v), the order in which
the edges incident on a vertex u are pebbled is determined by parents(u), which we assumed
preserves the edge ordering. Moreover, the edges are restored in the opposite order. Together,
these two steps ensure that in any configuration, if an edge (u, v) carries a pebble then all
the edges that are incident on v and precede (u, v) must also carry pebbles. In addition, all
the vertices that have edges with pebbles coming into them lie along a path from a source to
a sink – it follows that the lateral edge-pebbling complexity σ′ is at most D. The number
of moves in the above strategy is captured by the recursion T (D) ≤ 2N · T (D − 1) with
T (1) ≤ 2N , and hence τP2(G(N, D)) < (2N)D. Plugging in these values in Theorem 3 proves
the corollary.

13While asymptotically we get a similar factor NO(D) loss in security as [Pan07], recall that Panjwani
obtained a stronger concrete bound (2N)D+1. For small indegree δin, however, we get a comparable bound
(2δin)D · (Nδin)D.

38

3.4. Application II: Constrained Pseudorandom Functions

Algorithm 3.4: Nested pebbling for path graphs with N edges, where N is a power
of two. Note that the initial call must be P1((0, N), (0, N)).

P1((A, B), (a, b))
1 if b = a + 1 then
2 if (a, a + 1) is pebbled then
3 remove it // Pi+1 := Pi \ {(a, a + 1)}
4 else
5 place pebble on (a, a + 1) // Pi+1 := Pi ∪ {(a, a + 1)}

// Increment counter i

6 else
7 P1((A, B), (a, (a + b)/2)) // Recursively pebble left half

8 P1((A, B), ((a + b)/2, b)) // Recursively pebble right half

9 P1((A, B), (a, (a + b)/2))) // Recursively unpebble left half

10 if (A, B) = (a, b) then
11 HALT

Algorithm 3.5: A recursive edge-pebbling algorithm. Note that to pebble an edge
(u, v) ∈ E , the initial call must be P2(G, (u, v), (u, v))

P2(G, (u∗, v∗), (u, v))
1 for x ∈ parents(u) do
2 P2(G, (u∗, v∗), (x, u)) // Pebble parents recursively

3 if (u, v) is pebbled then
4 remove pebble on (u, v) // Pi+1 := Pi \ {(u, v)}
5 else
6 place pebble on (u, v) // Pi+1 := Pi ∪ {(u, v)}

// Increment counter i

7 for x ∈ parents−1(u) do
8 P2(G, (u∗, v∗), (x, u)) // Unpebble parents, in reverse

9 if (u, v) = (u∗, v∗) then
10 HALT

3.4 Application II: Constrained Pseudorandom Functions
In this section, we formalise the high level ideas that we presented in Section 3.1.2 and reprove
the results from [FKPR14] on adaptive security of the prefix-constrained PRF from [GGM84]
using our framework.

3.4.1 Formal Definitions
The formal definitions are essentially taken from [FKPR14]. First, we recall the definition of
pseudorandom generators.

Definition 11. An efficient function PRG : {0, 1}λ → {0, 1}2λ is a (t, ϵ)-secure (length-
doubling) pseudorandom generator (PRG) if

PRG(Uλ) ≈(t,ϵ) U2λ.

The GGM pseudorandom function (PRF) is now defined based on a length-doubling PRG.

39

3. A Framework for Adaptive Security

Definition 12 (GGM PRF). Given a pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ, the
PRF FGGM : {0, 1}λ × {0, 1}∗ → {0, 1}λ is defined as

FGGM(k, x) = kx where k∅ = k and ∀z ∈ {0, 1}∗ : kz∥0∥kz∥1 = PRG(kz).

Next, we give the definitions for cPRFs that are tailored to prefix-constrained PRFs.

Definition 13 (Prefix-constrained PRF). For n ∈ N, a function F : K × {0, 1}n → Y is
a prefix-constrained PRF if there are algorithms F.Constrain : K × {0, 1}≤n → Kpre and
F.Eval : Kpre × {0, 1}n → Y which for all k ∈ K, x ∈ {0, 1}≤n and kx ← F.Constrain(k, x)
satisfy

F.Eval(kx, x′) =

⎧⎨⎩F(k, x′) if x is a prefix of x′

⊥ otherwise.

That is, F.Constrain(k, x) outputs a key kx that allows evaluation of F(k, ·) on all inputs
that have x as a prefix. We can derive a prefix-constrained PRF from the GGM construction
by setting K = {0, 1}λ, Y = {0, 1}λ, and for a random k← K and x ∈ {0, 1}l with l ≤ n
defining FGGM.Constrain(k, x) = (k(1)

x ,k(2)
x) := (x, FGGM(k, x)) and

FGGM.Eval(kx, x′) :=

⎧⎨⎩FGGM(k(2)
x , z) if x′ = x||z for some z ∈ {0, 1}n−l

⊥ otherwise.

The security for prefix-constrained PRFs is argued using the following game.

Definition 14. The game is played between a challenger G (which is either GL or GR) and
an adversary A using F. The challenger G picks a random key k← K, and initialises a set
X = ∅. A can make at most q = q(n) queries, which is either:

• Constrain queries, (constrain, x): G returns F.Constrain(k, x), and adds x to X .

• One challenge query (challenge, x∗): Here the answer differs between GL and GR:
GL answers with F.Eval(k, x∗) (real output), whereas GR answers with random r ← Y
(fake, random output) – for the task to be non-trivial, no element in X must be a prefix
of x∗. G adds x∗ to X .

In the fully selectivized version of Definition 14, A must commit to the whole set X :=
{x1, . . . , xq}. Therefore, the selective challenger is defined as HL = SEL{0,1}n·q [GL, w] (resp.,
HR = SEL{0,1}n·q [GR, w]), where w is the function that extracts X from the transcript. Note
that the amount of information that A commits to in the selectivised games is much more
than the one defined in [FKPR14].

Definition 15. A prefix-constrained PRF F is (t, ϵ, q)-adaptive-secure (resp., selective-secure)
if GL and GR (resp., HL and HR) are (t, ϵ)-indistinguishable.

3.4.2 Hybrids and Pebbling Configurations
Fully Selective Hybrids.

Let’s briefly recall from Section 3.1.2 how we used the knowledge of x1, . . . , xq to get a better
sequence of hybrids. First we switched to the recursive pebbling sequence in Figure 3.1.b.

40

3.4. Application II: Constrained Pseudorandom Functions

Algorithm 3.6: Template for generating fully selective hybrids. The sub-routine
K(x) computes the key kx from the first key that has already been defined on the
path from x to the root.

HA(PI)
1 Obtain X ∈ {0, 1}n·q from A
2 Compute index := index(X ,PI)
3 Sample key k∅ ← K, set ∀ ∅ ̸= x ∈ {0, 1}≤n : kx := ⊥ // Initialise the keys

4 Initialise the counter c = 1
5 Whenever A makes a query (constrain, x):
6 if c = indexi ∈ index then set kx[1,i]∥0∥kx[1,i]∥1 ← U2λ // Fake output

7 Increment c by one
8 return K(x) // Compute the key using the sub-routine

9 return A’s output

K(x)
10 if kx ̸= ⊥ then return kx // Key already defined

11 Set l = |x| − 1, kx[1,l] = K(x[1, l]) // Recursively compute the key

12 kx[1,l]||0∥kx[1,l]||1 := PRG(kx[1,l]) // Normal output

13 return kx

Second, we managed to shrink the index of a pebble from [0, 2n] to [1, q] by assuming an
upper bound q on the number of queries made by the adversary: we set the index of a pebble
to the index of the first constrain query whose i bit prefix coincides with x∗. More formally,
the index for a pebble on the ith edge is defined as

index(X , i) := arg min
j∈[1,q]

{x∗[1, i] = xj[1, i]}.

The index of an edge-pebbling configuration is accordingly defined as

index(X ,PI) := {indexi : (i, i + 1) ∈ PI , indexi = index(X , i)}.

By using the edge-pebbling P0, . . . ,Pτ generated by P1 (Algorithm 3.4), where τ = 3log n,
we get a sequence of fully selective hybrids H(P0), . . . , H(Pτ), with H(PI) described in
Algorithm 3.6, and the following lemma.

Lemma 5. Let τ := 3log n. The sequence of hybrids H(P0), . . . , H(Pτ) constitutes a valid
sequence of fully selective hybrids. Furthermore, if the PRG is (t, ϵ)-indistinguishable then
the constrained PRF FGGM is (t−O(tP1 + qn · tPRG), ϵ · τ, q)-selective secure, where tP1 (resp,
tPRG) denotes the time complexity of P1 (resp., PRG).

Proof. By the properties of the pebbling configurations P0 and Pτ , it is easy to see that
H(P0) ≡ HL an H(Pτ) ≡ HR. In addition, the neighbouring hybrids H(PI) and H(PI+1)
are (t − qn · tPRG, ϵ, q)-indistinguishable – see Algorithm 3.7 for a reduction. The lemma
follows.

Lemma 6. The sequence of fully selective hybrids H(P0), . . . , H(P3log n) are partially selective
as

H(PI+b) = SEL{0,1}2·log n·log q→{0,1}n·q [ĤI,b, w, hI], (3.7)

41

3. A Framework for Adaptive Security

Algorithm 3.7: The reduction algorithm that establishes the indistinguishability of
H(PI) and H(PI+1). (See Algorithm 3.6 for the description of K.)

RA(PI ,PI+1, y) // y ∈ {0, 1}2λ is the PRG challenge

1 Obtain X ∈ {0, 1}n·q from A
2 index := index(X ,PI ∩ PI+1), indexi∗ := index(X ,PI△PI+1)
3 Sample key k∅ ← K, set ∀ ∅ ̸= x ∈ {0, 1}≤n : kx := ⊥ // Initialise the keys

4 Initialise the counter c = 1
5 Whenever A makes a query (constrain, x):
6 if c = indexi∗ then set kx[1,i∗]∥0∥kx[1,i∗]∥1 := y // Fake or real

7 if c = indexi ∈ index then set kx[1,i]∥0∥kx[1,i]∥1 ← U2λ // Fake output

8 Increment c by one
9 return K(x) // Compute the key using the sub-routine

10 return A’s output

Algorithm 3.8: Partially selectivized hybrids ĤI,b for HI+b := H(PI+b). (See
Algorithm 3.6 for the description of K.)

Ĥ
A
I,b(indexI+b)

1 Sample key k∅ ← K, set ∀ ∅ ̸= x ∈ {0, 1}≤n : kx := ⊥ // Initialise the keys

2 Initialise the counter c = 1
3 Whenever A makes a query (constrain, x):
4 if c = indexi ∈ indexI+b then set kx[1,i]∥0∥kx[1,i]∥1 ← U2λ // Faked

5 Increment c by one
6 return K(x) // Compute the key using the sub-routine

7 return A’s output

where ĤI,b is described in Algorithm 3.8, and hI is the function that, on input the queries
X , computes the indices indexI and indexI+1 of the pebbling configurations PI and PI+1,
respectively.14

It follows from Theorem 2 and Lemma 6 that the prefix-constrained PRF FGGM is adaptive-
secure with a quasi-polynomial loss in tightness.

Theorem 4. If the underlying PRG is (t, ϵ)-indistinguishable then FGGM is a (t−O(tP1 + qn ·
tPRG), ϵ · 3log n · n2·log q)-adaptive-secure prefix-constrained PRF.

Proof of Lemma 6. It remains to show that ĤI,0 and ĤI,1 are indistinguishable – the reduction
is given in Algorithm 3.9. The lemma follows.

14There are means to further compress hI : it suffices that it returns the indices index(X ,PI ∩ PI+1) and
index(X ,PI△PI+1), along with a bit b∗ which indicates what the pebbling move is – i.e., if, in move I + 1,
the edge (i∗, i∗ + 1) was added to PI then b∗ = 0, otherwise b∗ = 1. But we prefer the simpler hI for the
sake of simplicity of exposition.

42

3.5. Open Problems

Algorithm 3.9: The reduction algorithm that establishes the indistinguishability of
the partially selectivized hybrids ĤI,0 and ĤI,1. (See Algorithm 3.6 for the description
of K.)

R′A(indexI , indexI+1, y) // y ∈ {0, 1}2λ is the PRG challenge

1 Let indexi∗ := indexI△indexI+1, index := indexI ∩ indexI+1

2 Sample key k∅ ← K, set ∀ ∅ ̸= x ∈ {0, 1}≤n : kx := ⊥ // Initialise the keys

3 Initialise the counter c = 1
4 Whenever A makes a query (constrain, x):
5 if c = indexi∗ then set kx[1,i∗]∥0∥kx[1,i∗]∥1 := y // Fake or real output

6 if c = indexi ∈ index then set kx[1,i]∥0∥kx[1,i]∥1 ← U2λ // Fake output

7 Increment c by one
8 return K(x) // Compute the key using the sub-routine

9 return A’s output

3.5 Open Problems
In this chapter we presented a framework for proving adaptive security of various schemes
including generalized selective decryption, constrained PRFs, and Yao’s garbled circuits. Further
applications can be found in our publication [JKK+17a] (secret sharing over access structures
defined via monotone circuits), the work of Kowalczyk and Wee [KW19] (attribute-based
encryption), and the following Chapters of this thesis (proxy re-encryption, group key agreement,
Yao’s garbling).

In all these applications of the framework, the security loss of a scheme is captured by the
existence of some pebbling strategy. Thus, it is natural to ask the following questions: Does
there exist a connection in the opposite direction between the security loss of a scheme and
possible pebbling strategies? That is, is it possible to use lower bounds for pebbling strategies
to show that various security losses are necessary? In Chapters 7 and 8 we give a positive
answer to these questions by providing first lower bounds on the security loss of various
schemes.

43

Part III

Upper Bounds

45

CHAPTER 4
Adaptively Secure Proxy Re-encryption

4.1 Introduction
A proxy re-encryption (PRE) scheme is a public-key encryption scheme with an additional
functionality: Alice and Bob, who have key pairs (pkA,skA) and (pkB,skB), respectively,
can generate a re-encryption key (re-key, for short) rkA,B that allows its holder, say Peggy, to
act as a proxy; that is, she can transform ciphertexts under pkA to ciphertexts under pkB

without having to know the underlying message. A trivial way to accomplish this would be
for Alice to hand her secret key skA to Peggy, who can then decrypt ciphertexts under pkA,
encrypt them under pkB and send them to Bob. Alice’s secret key acts thus as the re-key
and de- and encryption algorithms are used for re-encryption. However, this approach requires
Alice to reveal her secret key to Peggy and therefore place complete trust on her. The more
interesting cases are when the parties are mutually distrustful.

Bidirectional vs. unidirectional. In the above setting, if the re-key rkA,B allows Peggy
to also transform ciphertexts under pkB to pkA, the PRE scheme is called “bidirectional”.
For such schemes the re-key is necessarily a function of both skA and skB. In this paper we
are interested in the more interesting case of “unidirectional” PRE schemes where the re-key
rkA,B can only transform ciphertexts from pkA to pkB, and not vice-versa, and ciphertexts
under pkB remain secure even given skA and rkA,B. (Henceforth we will always assume PRE
to be unidirectional.) As opposed to bidirectional PRE, the re-key generation algorithm in a
unidirectional PRE takes as input “source” keys (pkA,skA) and only the “target” public key
pkB.

Single hop vs. multiple hops. Suppose a third user, Charlie, holding keys (pkC ,skC),
enters the picture and suppose Peggy obtains the re-key rkB,C that allows her to transform
ciphertexts under Bob’s public key to ciphertexts under Charlie’s public key. Peggy can, by
definition, transform a ciphertext cA under pkA to a ciphertext cB under pkB using her
re-key rkA,B. If the scheme allows Peggy to transform a ciphertext cB, which has already
been re-encrypted once, to a ciphertext cC under pkC using the re-key rkB,C then we say
that the PRE scheme allows two “hops”. In a similar manner, one can consider multiple hops

This Chapter essentially replicates, with permission, the full version [FKKP18] of our publication [FKKP19],
© IACR 2019, https://doi.org/10.1007/978-3-030-17259-6_11.

47

https://doi.org/10.1007/978-3-030-17259-6_11

4. Adaptively Secure Proxy Re-encryption

of re-encryptions. Such a scheme is termed “multi-hop” as opposed to a “single-hop” scheme
(which does not allow re-encryptions of already re-encrypted ciphertexts).

4.1.1 Modelling Security
The basic notion of security for unidirectional PRE is that of indistinguishability under chosen-
plaintext attack (CPA). There are N users and, at the beginning of the game, the adversary
gets their public keys pk1, . . . ,pkN from the challenger. In the first phase, the adversary can
corrupt users of its choice by requesting their secret keys; in the second phase, it can obtain
re-keys rki,j and re-encryptions for ciphertexts of its choice. The scheme is CPA-secure if
it is infeasible for the adversary to distinguish encryptions of two messages under a key that
the adversary has not corrupted either directly or indirectly (through a re-key or re-encryption
query to a corrupted user).

Just as in standard public-key encryption, the above security definition can be strengthened to
chosen-ciphertext attack (CCA) by allowing the adversary access to a decryption oracle which,
on input a ciphertext and a public key pki returns the decryption of the ciphertext under ski.
The conditions to ensure non-triviality have to be altered accordingly.

We note that both definitions are selective in nature: the adversary must choose the set of
players it corrupts before issuing any queries.

4.1.2 Prior Work
Bidirectional PRE was introduced as “atomic proxy cryptography” by Blaze, Bleumer and
Strauss [BBS98a], who constructed a multi-hop scheme under the decisional Diffie-Hellman
assumption. Unidirectional PRE was introduced later by Ateniese et al. [AFGH05]. Their main
motivation was to limit the amount of trust placed on the proxy, as required by their application
to access control for distributed storage. Since the notion of security for unidirectional PRE
is different from bidirectional PRE, they also reformulated the notion of CPA (for the single-
hop setting). Assuming hardness of certain problems on bilinear groups, they constructed
CPA-secure schemes that are single-hop and unidirectional.

The definition of CCA security for single-hop bidirectional schemes is due to Canetti and
Hohenberger [CH07] and is more involved than previous definitions, mainly because the
adversary is allowed adaptive corruption. They gave a scheme satisfying their notion under
the standard decisional bilinear Diffie-Hellman assumption. The definition of CCA security in
the unidirectional setting is due to Libert and Vergnaud [LV08], who instantiate it under a
slightly non-standard assumption on bilinear groups.

The earlier constructions of multi-hop, unidirectional schemes were based on program obfusca-
tion [HRsV07, CCV12]. In his seminal paper, Gentry [Gen09] gave a generic construction of
PRE from fully homomorphic encryption. The first construction (with succinct ciphertexts)
based on a standard assumption is due to Chandran et al. [CCL+14]: their scheme is CPA-
secure assuming decisional learning with errors. Phong et al. [PWA+16] followed up with
a construction that, in addition, enjoys a security property called “key-privacy”. The only
construction of a CCA-secure multi-hop, unidirectional scheme is due to Fan and Liu [FL19].
In their paper, they also defined the security models (CPA and CCA) for the multi-hop setting.

Cohen [Coh19] has recently argued that CPA security might be too weak for some applications
and introduced indistinguishability against honest-reencryption attack (HRA), a notion that

48

4.1. Introduction

implies CPA (but is incomparable to CCA). He also showed that if a PRE scheme satisfies
a property called “source-hiding”, which several existing CPA-secure schemes do, then HRA
security follows from CPA security.

4.1.3 Our Contribution
Our starting point is the observation that, unlike bidirectional PRE, the security definitions for
unidirectional PRE (that is, CPA, HRA and CCA) are all selective in nature: the adversary
must choose the set of parties it corrupts before issuing any queries. A more meaningful notion
would be adaptive security, where the adversary is allowed to corrupt users at any time during
the game. However, modelling this turns out to be as tricky as in the bidirectional setting. In
this paper, we lift the definitions for CPA and HRA to the adaptive setting.

First Contribution: Modelling Adaptive Corruption.

The main problem that arises when we allow the adversary to adaptively corrupt users is that
we must ensure that the adversary cannot trivially win the security game. For bidirectional
PRE this was handled in [CH07] by defining a relation that keeps track of the dependency
between the re-keys and re-encryptions that were issued during the game. Our approach is
similar in spirit: the security game maintains a “recoding graph” that has N nodes, and whose
edges are derived from the re-keys and re-encryptions issued to the adversary. The exact
definitions of the recoding graph for adaptive CPA and for adaptive HRA differ slightly, but in
both cases it is defined so that no corrupt key is reachable from the challenge key. That is,
the adversary is forbidden from making any re-key or re-encryption queries from a key that is
reachable from the challenge key to a corrupt user. The recoding graph now allows to ensure
non-triviality of the adversary’s actions by checking a few basic graph properties.

Second Contribution: The Reduction.

Proving adaptive security can be reduced to showing selective security by initially guessing the
set of users that will be corrupted. However, this reduction loses an exponential factor in N ,
rendering the reduction meaningless already for moderate N . As our main contribution, we
give a more fine-grained reduction from adaptive to selective security which in many practical
settings and for several existing schemes (or minor variants thereof) implies adaptive security
at much smaller (quasi-polynomial, or even polynomial) loss. More precisely, the loss in our
reduction depends on the structure of the recoding graph: for trees and chains we get a
quasi-polynomial NO(log N) loss, whereas for general graphs the loss is exponential in their
depth. Fortunately, trees, chains, and low-depth graphs cover many, if not most, interesting
applications.

Security assumptions. A key step in our search for a tighter reduction was the identification
of the basic security assumptions on a PRE scheme that we required in our arguments. For
the case of CPA, it turned out to be ciphertext indistinguishability and weak key-privacy, both
fairly standard security requirements already explored in some of the previous works.

As the name suggests, a PRE scheme is ciphertext-indistinguishable (or, for short, indistin-
guishable) if the underlying encryption is. Since the syntax of the encryption algorithm for a
PRE scheme is slightly different from that of a standard public-key encryption, the definition
of indistinguishability has to be slightly changed. To be precise, the encryption algorithm
for a PRE scheme takes also a “level” as input, and we require that the ciphertexts are

49

4. Adaptively Secure Proxy Re-encryption

indistinguishable on all levels. It is not hard to see that any selectively CPA-secure PRE scheme
has to trivially satisfy indistinguishability.

The notion of key-privacy was introduced in a strong form in [ABH09]. We require the PRE
scheme to satisfy a much weaker property: While strong key-privacy requires that a re-key
rkA,B looks pseudorandom given just the source and target public keys pkA and pkB, weak
key-privacy only requires a re-key to hide the source key. Existing PRE schemes that satisfy
the stronger key privacy as defined in [ABH09] are therefore candidates for our reduction.

To apply our reduction to HRA-secure PRE, we need a third assumption to hold: source-hiding.
This is the same property that allowed Cohen [Coh19] to lift a CPA-secure PRE scheme to an
HRA-secure one. Informally, a PRE scheme is source-hiding if ciphertexts that result from
re-encryptions are distributed close to fresh encryptions (at the corresponding level).

For PRE schemes satisfying these assumptions, we show that the Piecewise-Guessing framework
from Chapter 3 can be applied. This is the first application of the framework in the public-key
setting.

Applying the Piecewise-Guessing framework. First, we consider a fully selective security
notion defined as two games HL and HR being indistinguishable where the adversary has to
commit to all its choices w ∈ W (not only the set of corrupt users) right in the beginning
of the game. If HL and HR can be proven indistinguishable via a sequence of hybrid games
(H0, . . . , Hτ) with H0 = HL and Hτ = HR, then adaptive security can be proven by defining
a new reduction that guesses the adversary’s choices w ∈ W at random and then follows
the selective reduction. Now, recall that the key observation in Chapter 3 was that in many
such selective reductions, only a highly compressed version h(w) of the information w ∈ W
that the adversary commits to is actually used in the simulation of intermediate hybrids. We
called these “partially selective” hybrids, as opposed to the original hybrids, which are “fully
selective”, and showed that the security loss is only exponential in the length of h(w) (its the
longest value for any two consecutive hybrids), and not exponential in the length of the entire
w.

The adversary’s choices in adaptive CPA and HRA are precisely captured by the recoding
graph. (Strictly speaking, it suffices to consider the subgraph that is reachable from the
challenge vertex, which we will call the “challenge graph”.) Similar to the case of GSD in
Section 3.3 we define the hybrid games (H0, . . . , Hτ) via a pebbling sequence (P0, . . . ,Pτ)
following appropriately defined pebbling rules. The presence (or not) of a pebble on a vertex
dictates how the re-encryption and re-key queries outgoing from that vertex are simulated.
Therefore in the fully selective games, the adversary commits to the recoding graph (which
is different from the original selective game in which the adversary committed to the set
of corrupt users), whereas in the partially selective games it “commits” just to a pebbling
configuration.

Let us first consider adaptive CPA: the edges of the recoding graph correspond to the re-key
and re-encryption queries made by the adversary during the game. For simplicity, assume that
the recoding graph has a single source vertex i∗ that is also the vertex the adversary wants to
be challenged on. When making a challenge query, the adversary receives an encryption of
either m∗

0 or m∗
1 under pki∗ ; let GL = CPA0 and GR = CPA1 denote the respective games. In

case there are no outgoing edges from i∗, indistinguishability of CPA0 and CPA1 follows from
ciphertext indistinguishability (the first assumption): The reduction embeds the challenge
public key (of the indistinguishability game) as the i∗th key, relays (m∗

0,m
∗
1) to its challenger

50

4.1. Introduction

and forwards the challenge ciphertext it receives to the adversary. As there are no outgoing
re-keys from i∗, the simulation does not require the secret key ski∗ .

In case i∗ does have outgoing edges, the idea is to use a sequence of hybrids to reach a
game where knowledge of ski∗ is not required for simulation, just like above. To argue
indistinguishability of hybrids, we use weak key-privacy, which guarantees that a re-key looks
pseudorandom given the source and target public keys. Weak key-privacy allows the simulator
to fake the outgoing edges from a vertex, after which the secret key for this vertex is not
required for simulation anymore. However, the simulator cannot fake edges right away: it has
to fake all children of a vertex first, before it can rely on weak key-privacy. Consequently, the
pebbling must obey the following rule: in a move, a pebble can be placed on or removed from
a vertex only if all its children carry pebbles.

To be precise, in game Hℓ, for each pebbled vertex in Pℓ all queried re-keys outgoing from
that vertex are faked. Observe that as the secret key corresponding to a vertex is used only
for the generation of the re-keys outgoing from that vertex, the simulation of a hybrid can be
carried out without knowledge of the secret keys corresponding to the pebbled vertices.

Main result. Our main result bounds the security loss for arbitrary recoding graphs in terms
of their space and time complexity, where a graph is said to have space complexity σ and
time complexity τ if there exists a valid pebbling strategy for that graph that uses at most σ
pebbles and requires at most τ moves. More generally, a class of graphs has space complexity
σ and time complexity τ if this is the case for every graph in that class.

Theorem 5 (Informal Theorem 7 and Theorem 8). Let G(N) denote a family of graphs
on N vertices with space-complexity σ and time-complexity τ . Then a PRE scheme that is
ciphertext-indistinguishable and weakly key-private for computationally bounded adversaries is
also adaptively CPA-secure against computationally bounded adversaries for recoding graphs
in G with a loss in security of ≈ τ ·Nσ. If the PRE is also statistically source-hiding then it is
also adaptively HRA-secure.

In many applications, the underlying recoding graph has a very particular structure like trees
(or even paths) and low-depth graphs. For paths, or bounded-arity trees, our reduction only
loses a quasi-polynomial factor. For low-depth graphs, the loss is exponential only in the depth
(and thus polynomial for constant depth-graphs). Below, we mention two such applications.

1. In key rotation for encrypted cloud storage, a client has its data encrypted on a server,
and occasionally wants to re-encrypt it (say, to restore security after key leakage). As
the client does not trust the server, it will not want to hand it the decryption key. When
using PRE, the client can simply send a re-key to the server, which enables it to locally
re-encrypt all ciphertexts to the new key. In this application the recoding graph is simply
a chain.

2. Another common application is forwarding of encrypted email without involving the
receiver, say, for delegation during vacation or for filtering spam emails. In most cases
the underlying delegation structure will be captured by simple graphs. For example, if
delegation only happens to subordinates, the depth of the recoding graph is bounded by
the depth of the hierarchy of the organisation.

51

4. Adaptively Secure Proxy Re-encryption

Scheme Setting Assumption(s) Hops
Construction 2 [AFGH05] Bilinear maps eDBDH and XDH Single
Construction 4 [ABH09] Bilinear maps eDBDH and DLin Single
Construction 5 [Gen09] – FHE Multiple

Construction 7 [CCL+14] Lattices LWE Multiple

Table 4.1: PRE schemes we prove adaptively CPA and HRA secure (see Section 4.5 for the
definitions of the assumptions).

Third Contribution: Adaptively-Secure PRE.

Finally, we show that the aforementioned three properties are satisfied by several existing
constructions or by minor variants thereof, and thus Theorem 5 can be applied to them. An
overview of these schemes is given in Table 4.1. We consider the most interesting corollary to
our results the adaptive security of the LWE-based scheme by Chandran et al. [CCL+14]:

Theorem 6 (Informal Theorem 13). The quasi-polynomially secure decisional LWE problem
implies multi-hop, unidirectional adaptively CPA/HRA-secure PRE for chains or complete
binary trees.

4.2 Formal Definitions
4.2.1 Proxy Reencryption: Formal Definitions
Definition 16 (Multi-hop, unidirectional PRE). A multi-hop, unidirectional PRE scheme for
a message space M consists of the six-tuple of algorithms (S, K, RK, E, D, RE), which are
explained below.

• S(1λ, 1L)→ pp: On input the security parameter λ and the maximum level L supported
by the scheme (both in unary), setup outputs the public parameters pp. We assume
that pp is implicit in other function calls.

• K(pp)→ (pk,sk): Key generation returns a public key pk and the corresponding
secret key sk.

• RK((pki,ski),pkj)→ rki,j : On input a source key pair (pki,ski) and a target public
key pkj, re-key generation generates a unidirectional re-encryption key (rekey, for
short) rki,j.

• E(pk, (m, l))→ (c, l): Encryption takes as input the public key pk, a message m and
a level l ∈ [1, L], and outputs a level-l ciphertext (c, l).

• D(sk, (c, l)) → m: On input a ciphertext (c, l) and the secret key sk, decryption
outputs a message m, or the symbol ⊥ (if the ciphertext is invalid).

• RE(rki,j,pki,pkj, (ci, l))→ (cj, l + 1): Reencryption takes a re-key rki,j, a source
public key pki, a target public key pkj and a level-l ciphertext ci under pki and
transforms it to a level-(l + 1) ciphertext cj under pkj. Only ciphertexts belonging to
levels l ∈ [1, L− 1] can be re-encrypted. In constructions where arguments pki and/or
pkj are optional, we simply drop them.

52

4.2. Formal Definitions

Definition 16 differs slightly from the definition of multi-hop unidirectional PRE in [FL19].
Here, the re-keys are level-agnostic: the same re-key can be used to re-encrypt a ciphertext
belonging to any level. In [FL19], however, a re-key associated to a level cannot be used to
re-encrypt a ciphertext from a different level.

We require the PRE to satisfy the following two correctness properties.

Definition 17 (Correctness [ABH09]). A proxy re-encryption scheme (as in Definition 16) is
correct w.r.t. the message space M if the following two properties hold:

1. Correctness of encryption: ∀λ, L ∈ N, ∀pp ∈ [S(1λ, 1L)], ∀ (pk,sk) ∈ [K(pp)],
∀ (m, l) ∈M× [1, L]:

Pr [D (sk, E(pk, (m, l))) ̸= m] = negl(λ, L),

where the probability is over the random coins of E.

2. Correctness of re-encryption: ∀λ, L ∈ N, ∀pp ∈ [S(1λ, 1L)], ∀ (pki,ski), (pkj,skj)
∈ [K(pp)], ∀rki,j ∈ [RK((pki,ski),pkj)], ∀ (m, l) ∈M× [1, L− 1]:

Pr
[︂
D
(︂
skj, RE(rki,j,pki,pkj, (ci, l))

)︂
̸= m

]︂
= negl(λ, L),

where (ci, l) is a level-l ciphertext of m under pki resulting either from direct encryption
or reencryption of a level-(l− 1) ciphertext, and the probability is over the random coins
of E and RE.

4.2.2 Modelling Security
Selective Corruption.

The selective security of a multi-hop, unidirectional PRE scheme against a chosen-plaintext
attack is modelled using the security game given in Algorithm 4.1.1 It is an extension of
the security model for single-hop PRE from [ABH09] to the multi-hop setting.2 The limiting
feature of the model is that the adversary has to fix, beforehand in Phase 1, the honest and
corrupt public keys. Its goal is to distinguish an encryption of m0 from an encryption of m1
(for m0,m1 of its choice) under a key of its choice. The game aborts if the adversary does one
of the following:

• query the challenge oracle on a corrupt public key (abort1);
• request a re-key from an honest key to a corrupt key (abort2);
• query a re-encryption from an honest to a corrupt key (abort3).

Definition 18 (sPRE-CPA-security). A PRE scheme is (t, ϵ)-selectively secure against chosen-
plaintext attack if sCPA0 ≈(t,ϵ) sCPA1, where sCPAb is defined in Algorithm 4.1.

1The formulation here is slightly different from the original one in [ABH09]. In [ABH09], the adversary
has access to two oracles in Phase 1, one for generating honest keys (i.e., the adversary gets just the public
key) and the other for generating corrupted keys (i.e., the adversary gets both public and secret key). In
Algorithm 4.1 the adversary is first given all the public keys and can then, in Phase 1, choose the keys it wants
to corrupt.

2[FL19] formalised security differently; we stick to the definition from [ABH09].

53

4. Adaptively Secure Proxy Re-encryption

Algorithm 4.1: sPRE-CPA security game
Challenger sCPAb(1λ, 1L, N)

1 Set C = ∅ // Stores the corrupt public keys

2 pp← PRE.S(1λ, 1L), (pk1,sk1), . . . , (pkN ,skN)← PRE.K(pp) // Generate

keys

3 ∀i, j ∈ [1, N], i ̸= j : rki,j ← PRE.RK((pki,ski),pkj) // Generate re-keys

4 state← A(corrupt,·)
1 (pp) // Phase 1

5 b′ ← A(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)
2 (pk1, . . . ,pkN , state) // Phase 2

6 return b′

Oracle (corrupt, i)
7 Add i to C
8 return ski

Oracle (rekey, i, j)
9 if i /∈ C and j ∈ C then

10 HALT // abort2

11 return rki,j

Oracle (reencrypt, i, j, (ci, l))
12 if i /∈ C and j ∈ C then
13 HALT // abort3

14 return (cj, l + 1)← PRE.RE(rki,j,pki,pkj, (ci, l))

Oracle (challenge, i∗, (m∗
0,m

∗
1), l∗) // Single access

15 if i∗ ∈ C then
16 HALT // abort1

17 return (ci∗ , l∗)← PRE.E(pki∗ , (m∗
b , l∗))

Security against honest-reencryption attack. A stronger security definition was intro-
duced in [Coh19] to address some of the restrictions that sPRE-CPA imposes on the adversary.
The idea is to allow re-encryptions from honest to corrupt keys, if the ciphertexts to re-encrypt
were honestly generated. The adversary can obtain such honest ciphertexts via an encrypt
oracle, which stores them in a list. The reencrypt oracle now takes the index of an honestly
generated ciphertext. It was shown in [Coh19] that (selective) HRA-security implies (selective)
CPA-security and also that if the PRE scheme is re-encryption-simulatable (a generalization of
Definition 24) then (selective) CPA-security implies (selective) HRA-security. In sPRE-HRA,
which we formally define in Algorithm 4.2, abort3 is relaxed to

• abort∗
3: The adversary queries the re-encryption of a ciphertext that is the result of a

chain of re-encryptions of the challenge ciphertext from an honest to a corrupt key.

Definition 19 (sPRE-HRA-security). A PRE scheme is (t, ϵ)-selectively secure against honest-
reencryption attack if sHRA0 ≈(t,ϵ) sHRA1, where sHRAb is defined in Algorithm 4.2.

54

4.2. Formal Definitions

Algorithm 4.2: sPRE-HRA security game
Challenger sHRAb(1λ, 1L, N)

1 Set C, E = ∅ // C stores corrupt keys, E re-keys and re-encryptions

2 Set ctr = 0 // Counts ciphertexts generated

3 Set L,L∗ = ∅ // Stores honest ciphertexts and which derived from

challenge

4 pp← PRE.S(1λ, 1L), (pk1,sk1), . . . , (pkN ,skN)← PRE.K(pp) // Generate

keys

5 ∀i, j ∈ [1, N], i ̸= j : rki,j ← PRE.RK((pki,ski),pkj) // Generate re-keys

6 state← A(corrupt,·)
1 (pp) // Phase 1

7 b′ ← A(encrypt,·,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)
2 (pk1, . . . ,pkN , state)

// Phase 2

8 return b′

Oracles corrupt and rekey are defined like in Algorithm 4.1.

Oracle (encrypt, i, (m, l))
9 (c, l)← PRE.E(pki, (m, l))

10 Increment ctr and add (ctr, i,m, (c, l)) to L
11 return (c, l)

Oracle (reencrypt, i, j, k)
12 Retrieve (k, i,m, (ci, l)) from L and increment ctr
13 (cj, l + 1)← PRE.RE(rki,j,pki,pkj, (ci, l))
14 if k ∈ L∗ then // The ciphertext is derived from the challenge

15 if j ∈ C then HALT
16 else add ctr to L∗ // abort∗

3

17 Add (ctr, j,m, (cj, l + 1)) to L
18 return (cj, l + 1)

Oracle (challenge, i∗, (m∗
0,m

∗
1), l∗) // Single access

19 Compute (ci∗ , l∗)← PRE.E(pki∗ , (m∗
b , l∗)) and increment ctr

20 if i∗ ∈ C then HALT
21 else add ctr to L∗ // abort1

22 Add (ctr, i∗,m∗
b , (ci∗ , l∗)) to L

23 return (ci∗ , l∗)

Modelling Adaptive Corruption.

The adaptive security games corresponding to Algorithms 4.1 and 4.2 are given in Algorithms 4.3
and 4.4, respectively. To model adaptive corruption, we think of the game being played on a
directed graph G = (V , E) called the “recoding” graph. The vertices of the recoding graph
correspond to the public keys, i.e., V = [1, N]. The edges are derived from the re-keys and
re-encryptions issued to the adversary in the security game, and their purpose is to ensure that
the adversary does not win the game in a trivial manner. In particular, the recoding graph is
defined so that no corrupt key is reachable from the challenge key. To be precise, in CPA an

55

4. Adaptively Secure Proxy Re-encryption

1

2

3 4

7

5 6

8

9

10

11

12

14

15

16

sk2

rk1,3

ReEnc(rk3,5,c3)
Encpk3(mb)

Figure 4.1: Recoding graph. The round green nodes represent the honest users, whereas the
square red nodes are the corrupted users. The edges denote the recoding information. In
particular, a solid black edge from node i to node j represents that a rekey rki,j from i to
j was issued. Similarly, the dashed orange edges represent the re-encryptions related to the
challenge ciphertext (therefore, 3 is the challenge vertex) and dotted blue edges represent
the remaining re-encryptions. For CPA, all the edges are counted, but for HRA the dotted
blue edges are not counted. The subgraph of the recoding graph that forms the challenge
graph (cf. Section S:AS) is shaded: the darker inner shading for HRA, whereas the lighter
outer shading is the challenge graph for CPA. Note that the edge (7, 8) is valid in the case of
HRA, but invalid for CPA (and therefore the CPA challenger would abort at the end of such
an execution.)

edge (i, j) is added to E if the adversary made either a (rekey, i, j) or (reencrypt, i, j, ·)
query (see Algorithm 4.3 and Figure 4.1). Consequently, the adversary is forbidden from making
any re-key or re-encryption queries to a corrupt user that is reachable from the challenge key.3

For HRA, on the other hand, (i, j) is added to E if the adversary made either a (rekey, i, j)
query or a (reencrypt, i, j, k) query where the k-th ciphertext is a re-encryption of the
challenge ciphertext (see Algorithm 4.4 and Figure 4.1). This is less restrictive than in CPA:
the adversary can make re-encryption queries to a corrupt user that is reachable from the
challenge key unless the ciphertext is related to the challenge ciphertext.

Definition 20 (PRE-CPA-security). A PRE scheme is (t, ϵ)-adaptively secure against chosen-
plaintext attack if CPA0 ≈(t,ϵ) CPA1, where CPAb is defined in Algorithm 4.3.

Definition 21 (PRE-HRA-security). A PRE scheme is (t, ϵ)-adaptively secure against honest-
reencryption attack if HRA0 ≈(t,ϵ) HRA1, where HRAb is defined in Algorithm 4.4.

3The selective CPA notion (Algorithm 4.1) is in fact more restrictive in that it does not allow re-keys and
re-encryptions from any honest user to a corrupt user.

56

4.3. Preliminaries

Algorithm 4.3: PRE-CPA security game
Challenger CPAb(1λ, 1L, N)

1 Set C, E = ∅ // C stores corrupt keys, E re-keys and re-encryptions

2 pp← PRE.S(1λ, 1L), (pk1,sk1), . . . , (pkN ,skN)← PRE.K(pp) // Generate

keys

3 ∀i, j ∈ [1, N], i ̸= j : rki,j ← PRE.RK((pki,ski),pkj) // Generate re-keys

4 b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp,pk1, . . . ,pkN)
5 if A made call (challenge, i∗, ·, ·) for some i∗ // Check abort conditions

6 then
7 if ∃ i ∈ C : i∗ is connected to i in ([1, N], E) then
8 return 0
9 return b′

Oracle (corrupt, i)
10 Add i to C
11 return ski

Oracle (rekey, i, j)
12 Add (i, j) to E // Add to recoding graph

13 return rki,j

Oracle (reencrypt, i, j, (ci, l))
14 Add (i, j) to E // Add to recoding graph

15 return (cj, l + 1)← PRE.RE(rki,j,pki,pkj, (ci, l))

Oracle (challenge, i∗, (m∗
0,m

∗
1), l∗) // Single access

16 return (ci∗ , l∗)← PRE.E(pki∗ , (m∗
b , l∗))

4.3 Preliminaries
This section provides the background necessary for the main results in Section 4.4. We
start with the security assumptions on PRE that allow us to prove adaptive security (Sec-
tion 4.3.1) and then give the description of the pebbling game that is used in the design of
the hybrids (Section 4.3.2).

4.3.1 Security Assumptions on PRE
In this section we describe the three security properties of PRE schemes that allow us to prove
adaptive security: indistinguishability, key-privacy and source-hiding.

Indistinguishability of ciphertexts. For proxy re-encryption, we require the notion of
indistinguishability, as defined for public-key encryption in [GM82], to hold on all levels:

Definition 22 (Indistinguishability). A proxy re-encryption scheme PRE has (t, ϵ)-indistinguishable
ciphertexts if IND0 ≈(t,ϵ) IND1 with IND as in Algorithm 4.5.

57

4. Adaptively Secure Proxy Re-encryption

Algorithm 4.4: PRE-HRA security game
Challenger HRAb(1λ, 1L, N)

1 Set C,L,L∗ = ∅ and ctr = 0 // L stores honest enc’s, L∗ marks challenge

reenc’s

2 E = ∅ // The edges of the recoding graph

3 pp← PRE.S(1λ, 1L), (pk1,sk1), . . . , (pkN ,skN)← PRE.K(pp) // Generate

keys

4 ∀i, j ∈ [1, N], i ̸= j : rki,j ← PRE.RK((pki,ski),pkj) // Generate re-keys

5 b′ ← A(corrupt,·),(rekey,·,·),(encrypt,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp,pk1, . . . ,pkN)
6 if A made call (challenge, i∗, ·, ·) for some i∗ // Check abort conditions

7 then
8 if ∃ i ∈ C : i∗ is connected to i then
9 return 0

10 return b′

Oracle (corrupt, i)
11 Add i to C
12 return ski

Oracle (rekey, i, j)
13 Add (i, j) to E // Add to recoding graph

14 return rki,j

Oracle (encrypt, i, (m, l))
15 c← PRE.E(pki, (m, l)), increment ctr and add (ctr, i,m, (c, l)) to L
16 return c

Oracle (reencrypt, i, j, k)
17 Retrieve (k, i,m, (ci, l)) from L
18 (cj, l + 1)← PRE.RE(rki,j,pki,pkj, (ci, l))
19 Increment ctr and add (ctr, j,m, (cj, l + 1)) to L
20 if k ∈ L∗ then // cj derived from challenge

21 Add ctr to L∗ and add (i, j) to E // Add to recoding graph

22 return (cj, l + 1)

Oracle (challenge, i∗, (m∗
0,m

∗
1), l∗) // Single access

23 Compute (ci∗ , l∗)← PRE.E(pki∗ , (m∗
b , l∗))

24 Increment ctr, add (ctr, i∗,m∗
b , (ci∗ , l∗)) to L and ctr to L∗

25 return (ci∗ , l∗)

Key-privacy. The original notion of key-privacy for PRE, which we refer to as “strong”
key-privacy, was introduced in [ABH09]. It is modelled by a security game similar to sPRE-CPA:
the adversary has access to corrupt, rekey and reencrypt oracles, but as a challenge
it has to distinguish a real re-key from a re-key sampled uniformly at random from the support
of re-keys. We refer the readers to [ABH09] for the details.

58

4.3. Preliminaries

Algorithm 4.5: Security game IND for ciphertext indistinguishability
Challenger INDb(1λ, 1L)

1 pp← PRE.S(1λ, 1L), (pk,sk)← PRE.K(pp)
2 return b′ ← A(challenge,·,·)(pp,pk)

Oracle (challenge, (m∗
0,m

∗
1), l∗)

3 return PRE.E(pk, (m∗
b , l∗))

Algorithm 4.6: Security game KP for weak key-privacy
Challenger KPb(1λ, 1L)

1 pp← PRE.S(1λ, 1L), (pk0,sk0), . . . , (pkδout
,skδout)← K(pp)

2 ∀j ∈ [1, δout] : rk(0)
0,j ← RK((pk0,sk0),pkj)

3 rk(1)
0,j ← RK∗(pp,pkj)

4 return b′ ← A(pp,pk0, . . . ,pkδout
,rk(b)

0,1, . . . ,rk(b)
0,δout

)

We only need a weaker definition stating that re-keys should hide the source keys. That is,
the re-key rk0,1 from source (pk0,sk0) to a target key pk1 should be indistinguishable from
a random source to pk1. In addition, we need this property to hold with respect to multiple
re-keys. More formally, the security game for weak key-privacy is given in Algorithm 4.6 where
the simulator RK∗ is defined as

RK∗(pp,pk1) := RK((pk0,sk0),pk1) : (pk0,sk0)← K(pp).

Definition 23 (Weak key-privacy). Let δout ∈ N. A proxy re-encryption scheme PRE is
(t, ϵ, δout)-weakly key-private if KP0 ≈(t,ϵ) KP1 with KP as in Algorithm 4.6.

Source-hiding. Source-hiding is a special case of re-encryption-simulatability, a notion that
was introduced in [Coh19]. It requires that re-encryptions can be simulated without knowledge
of the secret key. In particular, the simulated re-encryptions should be indistinguishable from
re-encrypted ciphertexts even when given the secret keys for the source and target public keys,
as well as the re-key that was used for re-encryption (hence the notion of indistinguishability
is at least that of statistical indistinguishability). A PRE scheme is called source-hiding if
re-encrypted ciphertexts have the same distribution as “fresh” ciphertexts, i.e., the encryption
algorithm can be used as a simulator for re-encryption.

Definition 24 (Source-hiding). A proxy re-encryption scheme PRE is (t, ϵ)-source-hiding if
SH0 ≈(t,ϵ) SH1, with SH as defined in Algorithm 4.7.

4.3.2 Pebbling Games
In Chapter 3 we already saw how pebbling games on graphs can be used to define suitable
hybrid games; see Section 3.3.2, Definition 8. While for GSD we required an edge-pebbling
game, in the setting of PRE we consider a variant of the original reversible node-pebbling
game from [Ben89]. In particular, the rules are exactly the opposite of those in [Ben89] (see

59

4. Adaptively Secure Proxy Re-encryption

Algorithm 4.7: Security game SH for source hiding
Challenger SHb(1λ, 1L)

1 pp← PRE.S(1λ, 1L)
2 (pk0,sk0), (pk1,sk1)← PRE.K(pp)
3 rk0,1 ← PRE.RK((pk0,sk0),pk1)
4 b′ ← A(challenge,·,·)(pp, (pk0,sk0), (pk1,sk1),rk0,1)
5 return b′

Oracle (challenge,m∗, l∗) // l∗ ∈ [1, L− 1]
6 (c0, l∗)← PRE.E(pk0, (m∗, l∗))
7 (c(0)

1 , l∗ + 1)← PRE.RE(rk0,1,pk0,pk1, (c0, l∗)) // Real re-encryption

8 (c(1)
1 , l∗ + 1)← PRE.E(pk1, (m∗, l∗ + 1)) // Simulate re-encryption

9 return (c0,c
(b)
1)

Definition 61 in Chapter 7): a pebble can be placed on or removed from a vertex if all its
children carry a pebble, and the goal is to place a pebble on some target sources.4

Definition 25. A reversible source-pebbling of a directed acyclic graph G = (V , E) with a
unique source vertex i∗ is a sequence P := (P0, . . . ,Pτ) of pebbling configurations Pℓ ⊆ V .
Two subsequent configurations differ only in one vertex and the following rule is respected in a
move: a pebble can be placed on or removed from a vertex iff all its children carry a pebble.
That is, P is a valid sequence iff

∀ℓ ∈ [1, τ] ∃! i ∈ Pℓ−1△Pℓ and children(i, G) ⊆ Pℓ−1.

Starting with an empty graph (i.e., P0 = ∅), the goal of the game is to place a pebble on the
source (i.e., i∗ ∈ Pτ).

For a DAG G, let PG denote the set of all valid reversible source-pebbling sequences (as per
Definition 25) for G. The time complexity of a particular sequence P = (P0, . . . ,Pτ) for a
DAG G is defined as τP(G) := τ , whereas its space complexity is defined as

σP(G) := max
ℓ∈[0,τ]

|Pℓ|.

Definition 26 (Space- and time-complexity of a class of DAGs). We say that a class of DAGs
G has time complexity τ and space complexity σ if

∀G ∈ G ∃P ∈ PG : τP(G) ≤ τ ∧ σP(G) ≤ σ.

Concrete Bounds. We compute upper bounds on the reversible source-pebbling complexity
for the following classes of single-source graphs on N vertices:

[Lemma 7]: G(N, δout, D), DAGs of size N with outdegree δout and depth D;
[Lemma 8]: B(N) ⊂ G(N, 2, log N), complete binary trees of size N ; and
[Lemma 9]: C(N) ⊂ G(N, 1, N), chains of length N .

4Alternatively, one can think of the pebbling game in Definition 25 as the classical reversible pebbling
game played on a DAG whose edges have their direction flipped.

60

4.3. Preliminaries

Algorithm 4.8: A pebbling strategy for general DAGs.
P1(G, ℓ)

1 Set T = 0 and P = ∅ // Global variables

2 Let i∗ denote the source of the graph G
3 return P′

1(G, ℓ, i∗, i∗)

P′
1(G, T, i∗, i) // i∗ denotes the source; i is the vertex currently

pebbled

4 for j ∈ children(i, G) do
5 P′

1(G, T, i∗, j) // Pebble children recursively

6 if i ∈ P then
7 P := P \ {i} // Unpebble if i already pebbled

8 else
9 P := P ∪ {i} // Place pebble on i

10 if i = i∗ then
11 return P // Placed pebble on source

12 Increment T
13 if T = ℓ then
14 return P // P currently stores the ℓth pebbling configuration

15 for j ∈ children(i, G) do
16 P′

1(G, T, i∗, j) // Unpebble children

Note that the same bounds hold for normal reversible node-pebbling on the respective classes
of graphs that are obtained by flipping the direction of the edges. The algorithms for
arbitrary DAGs and chains are closely related to those presented in Section 3.3.2 for reversible
edge-pebbling.5

Lemma 7 (Arbitrary DAGs). G(N, δout, D) has space-complexity (δout + 1) · D and time-
complexity (2δout)D.

Proof. The pebbling algorithm P1 that pebbles any graph in G(N, δout, D) using at most
(δout + 1) ·D pebbles in at most (2δout)D moves is given in Algorithm 4.8. The strategy is
recursive in the depth, and to pebble a vertex i, P1 (recursively) pebbles all of i’s children. We
consider the time and space complexity of the pebbling sequence defined by P1 as functions
τ(D) and σ(D) of the depth D. Then the number of moves incurred is captured by the
expression τ(D) ≤ 2δout · τ(D − 1) with τ(1) ≤ 2δout, and hence τ(δout) ≤ (2δout)D. The
number of pebbles, on the other hand, is captured by the recursion σ(D) < (δout+1)+σ(D−1)
with σ(1) = δout + 1; hence σ(D) = (δout + 1) ·D.

Lemma 8 (Complete binary trees). B(N) has space-complexity 3 · log N and time-complexity
N2.

Proof. This follows from Lemma 7 on substituting δout = 2 and D = log N .

Lemma 9 (Chains). C(N) has space-complexity log N + 1 and time-complexity 3log N .

5Actually, one can view node-pebbling as a special case of edge-pebbling; see Section 7.3.1 in Chapter 7.

61

4. Adaptively Secure Proxy Re-encryption

Algorithm 4.9: A pebbling strategy for chains with N vertices, for N a power of
two.

P2(N, ℓ) // N denotes the length of the chain

1 Set T = 0 and P = ∅ // Global variables

2 return P′
2(1, N, T)

P′
2(i, j, T) // i and j denote the end points of the active chain

3 if i = j then // End of recursion

4 if i ∈ P then
5 P := P \ {i} // Unpebble if i already pebbled

6 else
7 P := P ∪ {i} // Place pebble on i

8 if i = 1 then // Placed pebble on challenge

9 return P
10 Increment T
11 if T = ℓ then
12 return P // P currently stores the ℓth pebbling configuration

13 else
14 P′

2(i, (i + j − 1)/2, T) // Recursively pebble left half

15 P′
2((i + j + 1)/2, j, T) // Recursively pebble right half

16 P′
2(i, (i + j − 1)/2, T) // Recursively unpebble left half

Proof. A pebbling algorithm P2 for pebbling the source vertex of C(N), where N is a power
of two, is given in Algorithm 4.9 – the argument is similar to the case of edge pebbling (see
Section 3.3.2) and can easily be extended for arbitrary N and vertex. Let σ(N) and τ(N)
denote the space and time complexity of the pebbling defined by P2 for chains of length N .
Then the number of pebbles used by P2 is captured by the recursion σ(N) = σ(N/2) + 1,
with σ(1) = 1. The number of moves, on the other hand, is captured by τ(N) = 3 · τ(N/2)
with τ(1) = 1. Therefore, σ(N) = log N + 1 and τ(N) = 3log N .

4.4 Framework for Adaptive Security

In this section we demonstrate, using the Piecewise-Guessing framework from Chapter 3, how
adaptive security can be achieved for PRE. In particular, we show that for CPA and derive
an analogous result for HRA. Similar to the applications given in Chapter 3, we use pebbling
games on DAGs to design the hybrid games. Each pebbling configuration uniquely determines
a hybrid game bridging the two real games CPA0 and CPA1. The DAG that we pebble in the
proof is the subgraph of the recoding graph that is reachable from the challenge i∗ (via the
edges E defined during the game); it is thus a subgraph of the recoding graph with one unique
source i∗, which we call the challenge graph. A pebble on a vertex allows the simulation of
the hybrid to be carried out without the knowledge of the secret key associated with that
vertex. The pebbling rules will ensure that hybrids corresponding to two successive pebbling
configurations can be proven indistinguishable assuming key-privacy.

62

4.4. Framework for Adaptive Security

4.4.1 Adaptive Security Against Chosen-Plaintext Attack
We first show how a pebbling sequence on the challenge graph defines a sequence of fully
selective hybrids (Lemma 10), and then prove that these hybrids are partially selectivised
(Lemma 11).

Fully Selective Hybrids.

In the fully selectivised version of PRE-CPA (Algorithm 4.3), A first makes a commitment Ĝ
to the challenge graph. Any correct commitment Ĝ must therefore have one unique source,
which we denote by ı̂. The selective challenger is thus SELG [CPAb, w], where w is the function
that extracts the recoding graph G and the challenge user i∗ from the transcript and returns
the challenge graph, i.e., the subgraph of G reachable from i∗. Note that this is fundamentally
different from the original selective game (i.e., sCPA in Algorithm 4.1) where the adversary
commits, beforehand, to the set of corrupt public keys.

Each hybrid is associated with a pebbling configuration Pℓ and a bit b, and we consider the
sequence of hybrids H0

0, . . . , H0
τ , H1

τ , . . . , H1
0. The pebbling state of a vertex dictates how the

outgoing re-key and re-encrypt queries are simulated, whereas the bit determines how the
challenge query is answered. To be precise, in game Hb

ℓ, for each pebbled vertex in Pℓ all
used re-keys outgoing from that vertex are faked, and the challenge query is answered by an
encryption of m∗

b . (Rekeys outgoing from pebbled vertices that are not used for any queries
are defined as real re-keys.) Observe that the secret key corresponding to a vertex is used
only for the generation of the re-keys outgoing from that vertex; the simulation of a hybrid
can thus be carried out without knowledge of the secret keys corresponding to the pebbled
vertices (as the non-queried re-keys need not be generated).

Since the initial pebbling configuration is the empty set, H0
0 and H1

0 correspond to the (fully
selectivised) games SELG [CPA0, w] and SELG [CPA1, w], respectively. Now, consider the middle
hybrids H0

τ and H1
τ : they are the same except for the response to the challenge query which is

the encryption of m∗
0 in the former and the encryption of m∗

1 in the latter. Since the pebbling
configuration Pτ , by definition, contains a pebble on the challenge vertex i∗, the simulation of
this hybrid can be carried out without knowledge of the secret key corresponding to i∗. This
means we can prove the indistinguishability of these two hybrids from the indistinguishability
of the PRE scheme. To be precise, the reduction embeds the challenge public key at ı̂, which
is defined by the commitment Ĝ and replies to the challenge query (in the CPA game) by
sending the challenge ciphertext (of the indistinguishability game). Note that if i∗ ̸= ı̂, that is,
the commitment Ĝ doesn’t coincide with the transcript of the CPA game, then the hybrid
returns 0 anyway. The reduction is formally defined in Algorithm 4.11.

Next, consider any two hybrids Hb
ℓ and Hb

ℓ+1, ℓ ∈ [0, τ − 1] and b ∈ {0, 1}. Also, assume Pℓ+1
results from Pℓ by placing a pebble on the vertex i0 (the case when a pebble is removed can
be argued analogously). The simulation of Hb

ℓ and Hb
ℓ+1 is the same except for the (used)

re-keys outgoing from i0: in Hb
ℓ they are all real whereas in Hb

ℓ+1 they are all fake. By the rules
of the pebbling game, the children of i0 all carry pebbles in the configurations Pℓ and Pℓ+1;
therefore the simulation doesn’t need to know the corresponding secret keys. This means that
we can prove indistinguishability of Hb

ℓ and Hb
ℓ+1 from weak key-privacy: the reduction embeds

the (key-privacy) challenge public keys pk0, . . . ,pkδout
at i0 and its children, and uses the

challenge re-keys rk0,1, . . . ,rk0,δout to simulate the re-key oracle for queries from i0 to its
children. The reduction is formally defined in Algorithm 4.12. (Note that the simulation of
the reduction in Algorithm 4.12 is perfect: if the commitment Ĝ does not match with the

63

4. Adaptively Secure Proxy Re-encryption

Algorithm 4.10: Template for generating fully selective PRE-CPA hybrids given a
pebbling configuration. All the oracles are defined like in Algorithm 4.3.

Hybrid Hb
ℓ(1λ, 1L, N)

1 Obtain the challenge graph Ĝ ∈ G(N, δout, D) from A
2 Compute Pℓ ← P(Ĝ, ℓ) // The ℓth pebbling configuration

3 Set C, E = ∅ // C stores corrupt keys, E re-keys and re-encryptions

4 pp← PRE.S(1λ, 1L), (pk1,sk1), . . . , (pkN ,skN)← PRE.K(pp)
5 ∀i ∈ Pℓ,∀j ∈ childrenĜ(i): rki,j ← RK∗(pp,pkj) // Fake re-keys

6 ∀i ∈ Pℓ,∀j ∈ [1, N] \ {childrenĜ(i) ∪ i}: rki,j ← PRE.RK((pki,ski),pkj)
// Real re-keys

7 ∀i ∈ [1, N] \ Pℓ,∀j ̸= i: rki,j ← PRE.RK((pki,ski),pkj) // Real re-keys

8 b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp,pk1, . . . ,pkN)
9 if A made call (challenge, i∗, ·, ·) for some i∗ // Check abort conditions

10 then
11 if ∃ i ∈ C : i∗ is connected to i in ([1, N], E) then
12 return 0
13 if Ĝ is the subgraph of ([1, N], E) reachable from i∗ then
14 return b′

15 return 0

transcript, it returns 0; else, we have ı̂ = i∗ and by definition of the pebbling, i0 is reachable
from ı̂ = i∗ and so are its children i1, . . . , iδout . If the adversary corrupts any of these, then the
game returns 0.)

In summary, we get a sequence of hybrids SELG[CPA0, w] = H0
0, . . . , H0

τ , H1
τ , . . . , H1

0 =
SELG[CPA1, w], where each pair of subsequent hybrids can be proven indistinguishable. Se-
curity in the fully selectivised CPA game follows by Lemma 22. We state this formally in
Lemma 10 below.

Lemma 10 (Security against fully selectivised PRE-CPA). Consider the sequence of hybrids
H0

0, . . . , H0
τ , H1

τ , . . . , H1
0, where Hb

ℓ is defined in Algorithm 4.10 using the pebbling configuration
Pℓ ← P(Ĝ, ℓ), where P is a reversible source-pebbling strategy (cf. Definition 25). Hb

0 is the
fully selectivised game of CPAb: i.e., Hb

0 = SELG[CPAb, w] where w extracts the challenge
graph (subgraph reachable from the challenge vertex) from the transcript. Moreover, if the
adversary makes at most QRE re-encryption queries, then a PRE scheme that is (t1, ϵ1)-
indistinguishable and (t2, ϵ2, δout)-weakly key-private is (t, ϵ)-secure against fully selectivised
PRE-CPA restricted to challenge graphs in G(N, δout, D) with

t := min(t1, t2)− tCPA and ϵ := ϵ1 + 2τ · ϵ2,

where tCPA ≈ O(tP + N2 · tRK + QRE · tRE) denotes the complexity of simulating the CPA
game.

PRE-CPA-security follows from random guessing (Section 3.2, Theorem 1) but with a security
loss of 2N2 , where N2 is an upper bound on the number of bits required to encode the
challenge subgraph:

Corollary 3 (PRE-CPA-security by random guessing). A PRE scheme that is (t1, ϵ1)-
indistinguishable and (t2, ϵ2, δout)-weakly key-private is (t, ϵ)-secure against PRE-CPA restricted

64

4.4. Framework for Adaptive Security

Algorithm 4.11: The reduction showing that the hybrids H0
τ and H1

τ are indistin-
guishable by indistinguishability of ciphertexts.

Reduction R(IND.challenge,·,·)
τ (pp∗,pk∗) // pk∗ the challenge public key

1 Obtain the challenge graph Ĝ ∈ G(N, δout, D) from A
2 Compute Pτ ← P(Ĝ, τ) // The τth pebbling configuration

3 Set C, E = ∅ // C stores corrupt keys, E re-keys and re-encryptions

4 Let ı̂ be the source of Ĝ, set pkı̂ := pk∗ // Embed challenge public key

5 (pk1,sk1), . . . , (pkı̂−1,skı̂−1), (pkı̂+1,skı̂+1), . . . , (pkN ,skN)← PRE.K(pp∗)
6 ∀i ∈ Pτ ,∀j ∈ childrenĜ(i): rki,j ← RK∗(pp,pkj) // Fake re-keys

7 ∀i ∈ Pτ ,∀j ∈ [1, N] \ {childrenĜ(i) ∪ i}: rki,j ← PRE.RK((pki,ski),pkj)
// Real re-keys

8 ∀i ∈ [1, N] \ Pτ ,∀j ̸= i: rki,j ← PRE.RK((pki,ski),pkj) // Real re-keys

9 b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp∗,pk1, . . . ,pkN)
10 if A made call (challenge, i∗, ·, ·) for some i∗ // Check abort conditions

11 then
12 if ∃ i ∈ C : i∗ is connected to i in ([1, N], E) then
13 return 0
14 if Ĝ is the subgraph of ([1, N], E) reachable from i∗ then
15 return b′

16 return 0

Oracles rekey and reencrypt are defined like in Algorithm 4.3.

Oracle (corrupt, i)
17 if i = ı̂ then
18 HALT: Rτ returns 0 // Commitment Ĝ doesn’t match or i∗ corrupted

19 Add i to C and return ski

Oracle (challenge, i∗, (m∗
0,m

∗
1), l∗) // Single access

20 (ci∗ , l∗)← IND.challenge((m∗
0,m

∗
1), l∗) // Embed challenge ciphertext

21 return (ci∗ , l∗)

to challenge graphs in G(N, δout, D), where

t := min(t1, t2)− tCPA − tG and ϵ := (ϵ1 + 2τ · ϵ2) · 2N2
.

Partially Selective Hybrids.

In hybrid Hb
ℓ described in Algorithm 4.10, we observe that not all information on the committed

recoding graph Ĝ is actually required for the simulation. In fact, only the pebbling configuration
Pℓ is required to simulate the hybrid: re-keys are only required once a corresponding re-key or
a re-encrypt query is issued; for a pebbled node, such queries lead to an edge added in E ; thus
the re-key is simulated (while the “not-queried” re-keys are never used during the experiment).

In addition to the pebbling configuration Pτ , the reduction from ciphertext indistinguishability
(cf. Algorithm 4.11) also needs to know the challenge vertex ı̂ in order to embed the challenge

65

4. Adaptively Secure Proxy Re-encryption

Algorithm 4.12: The reduction showing that the hybrids Hb
ℓ and Hb

ℓ+1, for ℓ ∈
[0, τ − 1] and b ∈ {0, 1}, are indistinguishable by weak key-privacy.

Reduction Rb
ℓ(pp∗,pk∗

0, . . . ,pk∗
δout

,rk∗
0,1, . . . ,rk∗

0,δout
);

1 Obtain the challenge graph Ĝ ∈ G(N, δout, D) from A;
2 Compute Pℓ ← P(Ĝ, ℓ), Pℓ+1 ← P(Ĝ, ℓ + 1) ; // The ℓth and (ℓ + 1)th pebbling

configurations

3 Set C, E = ∅ ; // C stores corrupt keys, E re-keys and re-encryptions

4 i0 := Pℓ∆Pℓ+1, i1, . . . , iδout := childrenĜ(i0); // i0 the pebbled/unpebbled

vertex

5 ∀k ∈ [0, δout]: pkik
:= pk∗

k; // Embed the challenge public keys

6 ∀k ∈ [1, N] \ {i0, . . . , iδout}: (pkk,skk)← PRE.K(pp∗); // Fresh keys

7 ∀k ∈ [1, δout] : rki0,ik
:= rk∗

0,k; // Embed challenge re-keys

8 ∀i ∈ Pℓ \ {i0},∀j ∈ childrenĜ(i): rki,j ← RK∗(pp∗,pkj) ; // Fake re-keys

9 ∀i ∈ Pℓ,∀j ∈ [1, N] \ {childrenĜ(i) ∪ i}: rki,j ← PRE.RK((pki,ski),pkj) ;
// Real re-keys

10 ∀i ∈ [1, N] \ (Pℓ ∪ {i0}),∀j ̸= i: rki,j ← PRE.RK((pki,ski),pkj); // Real

re-keys

11 b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp∗,pk1, . . . ,pkN);
12 if A made call (challenge, i∗, ·, ·) for some i∗ ; // Check abort conditions

13 then
14 if ∃ i ∈ C : i∗ is connected to i in ([1, N], E) then
15 return 0;
16 if Ĝ is the subgraph of ([1, N], E) reachable from i∗ then
17 return b′;
18 return 0;

Oracles rekey, reencrypt and challenge are defined like in Algorithm 4.3;

Oracle (corrupt, i);
19 if i ∈ {i0, . . . , iδout} then
20 HALT: Rτ returns 0 ; // Commitment Ĝ doesn’t match or i∗ connected to i

21 Add i to C and return ski;

public key. The reduction from weak key-privacy (cf. Algorithm 4.12) requires, in addition to
Pℓ, the vertex that is pebbled or unpebbled in Pℓ+1 (i.e., the vertex i0) and its children, so it
can embed its challenge public keys and re-keys.

To sum up, two consecutive hybrids Hb
ℓ and Hb

ℓ+1 can be shown to be indistinguishable using a
lot less information than what the adversary commits to. We thus have the following:

Lemma 11 (Partially selectivised hybrids). Let P0, . . . ,Pτ and H0
0, . . . , H0

τ , H1
τ , . . . , H1

0 be
defined as in Lemma 10, and let σ denote the space complexity of the pebbling sequence.
Then, for ℓ ∈ [0, τ − 1] and b, β ∈ {0, 1},

Hb
ℓ+β ≡ SELU→G[Ĥ

b

ℓ,β, w, hℓ] and Hb
τ ≡ SELU→G[Ĥ

b

τ,0, w, hτ],

where Ĥ
b

ℓ,β is defined in Algorithm 4.13 (see also Figure 4.2) and w extracts the challenge

66

4.4. Framework for Adaptive Security

CPA0

H0 = H0
0 H0

1 H0
2 · · · H0

τ H1
τ · · ·

Ĥ
0
0,0 Ĥ

0
0,1 Ĥ

0
1,0 Ĥ

0
1,1 Ĥ

0
2,0 Ĥ

0
τ−1,1 Ĥ

0
τ,0 Ĥ

1
τ,0 Ĥ

1
τ−1,1

Figure 4.2: Diagram showing the partially selectivised hybrids for PRE-CPA.

graph from the transcript (as in Lemma 10). For ℓ ∈ [0, τ − 1], hℓ is the function that extracts
the pebbling configuration Pℓ, the pebbled/unpebbled vertex in Pℓ+1 and its children; hτ

extracts the pebbling configuration Pτ and the challenge node i∗. Thus, U corresponds to the
set Vσ+δout+1.

The tighter bound for PRE-CPA-security now results by applying Theorem 2:

Theorem 7 (Main, PRE-CPA security). Let σ and τ denote, respectively, the pebbling
space and time complexity for the class G(N, δout, D). Then a PRE scheme that is (t1, ϵ1)-
indistinguishable and (t2, ϵ2, δout)-weakly key-private is (t, ϵ)-PRE-CPA-secure restricted to
challenge graphs in G(N, δout, D), where

t := min(t1, t2)− tCPA − tG and ϵ := (ϵ1 + 2τ · ϵ2) ·Nσ+δout+1.

4.4.2 Adaptive Security Against Honest-Reencryption Attack
Cohen [Coh19] showed that if a PRE scheme is re-encryption-simulatable then selective security
against HRA reduces to showing selective security against CPA. We now consider such a
reduction in the adaptive setting. This is not immediate because the reduction in [Coh19]
simulates all re-encryption queries from honest keys to corrupt keys. This works in the selective
setting, where the set of corrupt users is known in advance, but not in the adaptive setting.

The recoding graphs ([1, N], E) for CPA and HRA are defined differently: for HRA, only
re-encryptions of the challenge ciphertexts lead to edges in E , whereas for CPA all re-encryption
queries do. To prove that CPA implies HRA we need to define a reduction playing the CPA
game and simulating the HRA game for an adversary. It cannot forward the adversary’s
re-encryption queries to its own challenger, as this might create edges in the CPA game, but
not in the HRA game. An adversary that then corrupts the target key of such a re-encryption
query might still win the HRA game, while the reduction loses the CPA game.

Assuming source-hiding, the reduction could answer all re-encryption queries by fresh encryp-
tions. But then every re-encryption of the challenge ciphertext would also be freshly encrypted,
meaning that the reduction needs to make multiple challenge queries. This would require
a multi-challenge notion of CPA and thus worsen the security guarantees; we proceed thus
differently. Instead of replacing all re-encryptions by fresh encryptions, the reduction only
replaces those that do not concern the challenge ciphertext, while still forwarding re-encryption
queries of (derivatives of) the challenge ciphertext to its own re-encryption oracle. The vertices
created in the HRA game correspond then precisely to those created in the CPA game and
the adversary’s success probability translates directly to that of the reduction.

67

4. Adaptively Secure Proxy Re-encryption

Algorithm 4.13: Partially selectivised hybrids. For ℓ ∈ [0, τ − 1] and b, β ∈
{0, 1}: Hb

ℓ+β = SELU→G[Ĥ
b

ℓ,β, w, hℓ] and Hb
τ = SELU→G[Ĥ

b

τ,0, w, hτ]. Moreover,
U := Vσ+δout+1. Note that the sampling of re-keys is deferred to the actual calls.

Hybrid Hb
ℓ+β

1 Obtain the challenge graph Ĝ ∈ G(N, δout, D) from A and let ı̂ be its source
2 Compute Pℓ ← P(Ĝ, ℓ), Pℓ+1 ← P(Ĝ, ℓ + 1) // ℓth, (ℓ + 1)th configuration

3 i0 := Pℓ∆Pℓ+1, i1, . . . , iδout := children(i0, Ĝ) // i0 pebbled/unpebbled vertex

4 if t < τ then b′ ← Ĥ
b

ℓ,β(Pℓ, {i0, . . . , iδout}) // Key-privacy hybrid

5 else b′ ← Ĥ
b

τ,0(Pτ , {ı̂,⊥, . . . ,⊥}) // indistinguishability hybrid

6 if Ĝ is the subgraph of ([1, N], E) reachable from i∗ then return b′

7 return 0

Ĥ
b

ℓ,β(Pℓ, {i0, . . . , iδout})
8 Set C, E = ∅ // C stores corrupt keys, E re-keys and re-encryptions

9 if t < τ then
10 if i0 ∈ Pℓ then Pℓ+1 := Pℓ \ {i0}
11 else Pℓ+1 := Pℓ ∪ {i0}
12 pp← PRE.S(1λ, 1L), (pk1,sk1), . . . , (pkN ,skN)← PRE.K(pp)
13 ∀i, j ∈ [1, N], i ̸= j : rki,j = ⊥ // Delay re-key generation till the query

14 b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp,pk1, . . . ,pkN)
15 if A made call (challenge, i∗, ·, ·) for some i∗ then // Check abort conditions

16 if ∃ i ∈ C : i∗ is connected to i in ([1, N], E) then return 0
17 return b′

Oracles corrupt and challenge are defined like in Algorithm 4.3.

Oracle (rekey, i, j)
18 if rki,j = ⊥ then // Re-key not generated

19 if i ∈ Pℓ+β then rki,j ← RK∗(pp,pkj) // Fake re-key

20 else rki,j ← RK((pki,ski),pkj) // Real re-key

21 Add (i, j) to E // Add to recoding graph

22 return rki,j

Oracle (reencrypt, i, j, (ci, l))
23 if rki,j = ⊥ then // Re-key not generated

24 if i ∈ Pℓ+β then rki,j ← RK∗(pp,pkj) // Fake re-key

25 else rki,j ← RK((pki,ski),pkj) // Real re-key

26 Add (i, j) to E // Add to recoding graph

27 return (cj, l + 1)← PRE.RE(rki,j,pki,pkj, (ci, l))

HRA from CPA and Source-Hiding.

We start by defining, in Algorithm 4.14, the intermediate game shHRAb just discussed. It
proceeds like HRAb, except that all re-encryption queries which do not re-encrypt the challenge

68

4.4. Framework for Adaptive Security

Algorithm 4.14: Intermediate game shHRA in the proof of HRA.
Hybrid shHRAb

1 Set C,L,L∗, E = ∅ and ctr = 0 // As in Algorithm 4.2, E...edges of

recoding graph

2 pp← PRE.S(1λ, 1L), (pk1,sk1), . . . , (pkN ,skN)← PRE.K(pp)
3 ∀i, j ∈ [1, N], i ̸= j : rki,j ← PRE.RK((pki,ski),pkj)
4 b′ ← A(corrupt,·),(rekey,·,·),(encrypt,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp,pk1, . . . ,pkN)
5 if A made call (challenge, i∗, ·, ·) for some i∗ then // Check abort conditions

6 if ∃ i ∈ C : i∗ is connected to i then
7 return 0
8 return b′

Oracles corrupt, rekey, encrypt, challenge are defined as in Algorithm 4.4.

Oracle (reencrypt, i, j, k)
9 Retrieve (k, i,m, (ci, l)) from L and increment ctr

10 if k /∈ L∗ then // Not a re-encryption of challenge ciphertext

11 (cj, l + 1)← PRE.E(pkj, (m, l + 1)) // Simulate re-encryption

12 else
13 (cj, l + 1)← PRE.RE(rki,j,pki,pkj, (ci, l)) // Real re-encryption

14 Add ctr to L∗ and add (i, j) to E // cj derived from challenge

15 Add (ctr, j,m, (cj, l + 1)) to L
16 return (cj, l + 1)

ciphertext are simulated. The games HRAb and shHRAb are shown to be indistinguishable
assuming source-hiding by a standard hybrid argument (without pebbling) which includes a
moderate amount of guessing: when replacing a re-encryption by a fresh encryption, it guesses
the two concerned users and which ciphertext will be re-encrypted. This loses a factor of
N(N − 1)(QRE + QE) in the distinguishing advantage. As there are QRE hybrids, we get the
following:

Lemma 12. If a PRE scheme is (t3, ϵ3)-source-hiding as per Definition 24 then HRAb and
shHRAb are (t, ϵ)-indistinguishable, where

t := t3 − tHRA and ϵ := N(N − 1)(QE + QRE)QRE · ϵ3

where QE and QRE are upper bounds on the number of the adversary’s encryption and
re-encryption queries.

Proof. We define a sequence of intermediate hybrids shHRAb
0, . . . , shHRAb

QRE
between HRAb

and shHRAb where certain re-encrypt queries are simulated by computing fresh encryptions. In
particular, the simulation in shHRAb

q is similar to that in HRAb, except that the first q queries
(reencrypt, ·, ·, k) with k /∈ L∗ are replied by fresh encryptions. Therefore, we have

shHRAb
0 ≡ HRAb and shHRAb

QRE
≡ shHRAb.

We show that two neighbouring hybrids shHRAb
q−1 and shHRAb

q are indistinguishable assuming
that the PRE scheme is source-hiding. The reduction receives a (source-hiding) challenge

69

4. Adaptively Secure Proxy Re-encryption

(pp, (pk,sk), (pk′,sk′),rk) and has (one-time) access to an oracle (SH.challenge, ·, ·).
The reduction proceeds as follows:

1. It first makes a guess (i∗, j∗, k∗) ∈ [1, N]× ([1, N] \ {i∗})× [1, QE + q − 1] that the
q-th re-encryption query will be of the form (reencrypt, i∗, j∗, k∗)

2. It simulates game shHRAb
q−1 setting (pki∗ ,ski∗) := (pk,sk), (pkj∗ ,skj∗) := (pk′,sk′)

and rki∗,j∗ := rk.

3. When the adversary makes the k∗-th encrypt or re-encrypt query, the reduction does
the following:

a) (encrypt, i, (m, l)): if i ̸= i∗ abort; else query (SH.challenge,m, l) to receive
(c,c′); reply (c, l) after adding the new entry to L.

b) (reencrypt, i, j, k): if k ∈ L∗ then proceed as in Algorithm 4.4. Otherwise: if
j ̸= i∗ abort; else retrieve (k, i,m, (ci, l − 1)) from L, query (SH.challenge,
m, l) to receive (c,c′); reply (c, l) after adding the new entry to L.

4. When the adversary makes the q-th re-encrypt query (reencrypt, i, j, k), the reduction
aborts if (i, j, k) ̸= (i∗, j∗, k∗). Otherwise it replies (c′, l + 1), with c′ received on its
SH.challenge query.

5. If the reduction aborted the simulation, it returns a random bit, otherwise it returns the
adversary’s output bit b′.

Assuming the reduction’s guess is right, if the c′ returned by the source-hiding challenger is a
re-encryption then the reduction simulated shHRAb

q−1 while if c′ was a fresh encryption, it
simulated shHRAb

q.

We next show that shHRA0 and shHRA1 are indistinguishable assuming CPA0 and CPA1 are.
To do so, we construct a reduction R in Algorithm 4.15, which simulates game shHRA to an
adversary A (denoted R[A]); the reduction itself attacks game CPA. It is easy to see that R
perfectly simulates the oracles of shHRA to A and that at the end of the game the sets C
and the graphs ([1, N], E) which were implicitly defined by the adversary’s oracle calls in the
simulated HRA game and the reduction’s calls in the CPA game are the same. The CPA game
thus returns the reduction’s output b′ (which is A’s output) whenever the shHRA game would.
Thus, we have:

⟨shHRAb, R[A]⟩ ≡ ⟨CPAb, A⟩, (4.1)
that is, the two games are equally distributed. (This can also be seen by replacing A in the
definition of CPA (Algorithm 4.3) by the code of R[A′] (Algorithm 4.15), which yields game
HRA (Algorithm 4.4) played by A′.)
Combining Lemma 12 and (4.1), we get that HRAb and CPAb are (t3− tHRA, N(N − 1)(QE +
QRE)QRE · ϵ3)-indistinguishable, and together with Theorem 7 this finally yields:

Theorem 8 (main, PRE-HRA security). Let σ and τ denote, respectively, an upper bound
on space and time complexity for the class G = G(N, δout, D). Then a PRE scheme that
is (t1, ϵ1)-indistinguishable, (t2, ϵ2, δout)-weakly key-private and (t3, ϵ3)-source-hiding is (t, ϵ)-
PRE-HRA-secure restricted to challenge graphs in G, where t := min(t1, t2, t3)− tHRA − tG
and

ϵ := 2N(N − 1)(QE + QRE)QRE · ϵ3 + Nσ+δout+1
(︂
ϵ1 + 2τ · ϵ2

)︂
.

70

4.4. Framework for Adaptive Security

Algorithm 4.15: The reduction relating shHRAb to CPAb.
Rb,(CPA.corrupt,·),(CPA.rekey,·,·),(CPA.reencrypt,·,·,·),(CPA.challenge,·,·,·)(pp,pk1, . . . ,pkN)

1 Set L,L∗ = ∅ and ctr = 0 // Stores honestly created ciphertexts

2 b′ ← A(corrupt,·),(rekey,·,·),(encrypt,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp,pk1, . . . ,pkN)
3 return b′

Oracle (corrupt, i)
4 return ski ← (CPA.corrupt, i)

Oracle (rekey, i, j)
5 return rki,j ← (CPA.rekey, i, j)

Oracle (encrypt, i, (m, l))
6 c← PRE.E(pki, (m, l)), increment ctr and add (ctr, i,m, (c, l)) to L
7 return c

Oracle (reencrypt, i, j, k)
8 Retrieve (k, i,m, (ci, l)) from L and increment ctr
9 if k /∈ L∗ then

10 (cj, l + 1)← PRE.E(pkj, (m, l + 1))
11 else
12 (cj, l + 1)← (CPA.reencrypt, i, j, k) and add ctr to L∗

13 Add (ctr, j,m, (cj, l + 1)) to L
14 return (cj, l + 1)

Oracle (challenge, i∗, (m∗
0,m

∗
1), l∗) // Single access

15 (ci∗ , l∗)← (CPA.challenge, i∗, (m∗
0,m

∗
1), l∗)

16 Increment ctr, add (ctr, i∗,m∗
b , (ci∗ , l∗)) to L and ctr to L∗

17 return (ci∗ , l∗)

Remark 1. All the schemes that we inspect in Section 4.5 turn out to be statistically source-
hiding, and therefore ϵ3 is exponentially small. In such cases, assuming that the adversary is
allowed to make only polynomially many queries to the encryption and re-encryption oracle, the
term 2N(N − 1)(QE + QRE)QRE · ϵ3 is negligible and therefore ϵ = O(Nσ+δout+1(ϵ1 + 2τ · ϵ2))
(just like in CPA).

4.4.3 Corollaries

We calculate concrete bounds to Theorems 7 and 8 for the following families of recoding graphs:
arbitrary DAGs in G(N, δout, D), complete binary trees B(N) and chains C(N). Table 4.2 lists
the space and time complexity for these classes (from Lemmas 7, 8 and 9) and the approximate
security loss (assuming ϵ1 = ϵ2 = ϵ′) that we obtain when substituting these bounds for CPA
in Theorem 7. The same bounds hold for HRA if one assumes that QRE and QE (i.e., number
of queries) are polynomial and ϵ3 = 2−λ (i.e., the PRE scheme is statistically source-hiding).

71

4. Adaptively Secure Proxy Re-encryption

Family Bounds
Space (σ) Time (τ) Security loss (≈ ϵ/ϵ′)

Arbitrary DAGs G(N, δout, D) (Lemma 7) (δout + 1) ·D (2δout)D NO(D·δout)

Complete binary trees B(N) (Lemma 8) log N N2 NO(log N)

Chains C(N) (Lemma 9) log N + 1 3log N NO(log N)

Table 4.2: Space and time complexity for different classes of DAGs and approximate security
loss implied by Theorem 7.

4.5 Adaptively Secure PRE Schemes
We show that several existing PRE schemes satisfy the requirements in Section 4.3.1 and,
therefore, can be proven adaptively secure using Theorems 7 and 8.

4.5.1 Single-Hop Schemes from Bilinear Maps
We start with the unidirectional, single-hop schemes based on bilinear maps from [AFGH05]
and [ABH09]. The definition of bilinear maps is given below in Definition 27; the hardness
assumptions on which security of the constructions is based are then listed in Definitions 29
through 31.

Definition 27 (Bilinear maps). Let BS′ be an algorithm that on input a security parameter
1λ outputs the description of cyclic groups G1, G2 and GT , all of prime order p ∈ Θ(2λ),
generators g1 ∈ G1, g2 ∈ G2, and an asymmetric cryptographic bilinear map e′ : G1×G2 → GT

– i.e., e′ is efficiently computable, bilinear (i.e., e′(ga
1 , gb

2) = e′(g1, g2)ab) and non-degenerate
(i.e., for a generator g1 for G1 and a generator g2 for G2: e′(g1, g2) ̸= 1GT

).
The algorithm BS for symmetric bilinear groups is defined similar to BS′, except for having
G1 = G2 and g1 = g2.

Definition 28 (eDBDH in asymmetric groups [AFGH05]). Let Grp = (p, g1, g2,G1,G2,GT , e′)←
BS′(1λ) and a, b, c, r ← Zp. The extended decisional bilinear Diffie-Hellman problem is (t, ϵ)-
hard in the asymmetric setting if

(ga
2 , gb

1, gc
1, e′(g1, g2)bc2

, e′(g1, g2)abc, Grp) ≈(t,ϵ) (ga
2 , gb

1, gc
1, e′(g1, g2)bc2

, e′(g1, g2)r, Grp).

The symmetric variant of the above is obtained by replacing G1 and G2 by G, and g1 and g2
by g:

Definition 29 (eDBDH assumption [AFGH05]). Let Grp := (p, g,G,GT , e)← BS(1λ) and
a, b, c, r ← Zp. The extended decisional bilinear Diffie-Hellman problem is (t, ϵ)-hard if

(ga, gb, gc, e(g, g)bc2
, e(g, g)abc, Grp) ≈(t,ϵ) (ga, gb, gc, e(g, g)bc2

, e(g, g)r, Grp).

Definition 30 (XDH [Sco02, BBS04]). Let Grp = (p, g1, g2,G1,G2,GT , e′)← BS′(1λ) and
a, b, r ← Zp. The external Diffie-Hellman problem is (t, ϵ)-hard if the decisional Diffie-Hellman
problem is (t, ϵ)-hard in the group G1, that is

(ga
1 , gb

1, gab
1 , Grp) ≈(t,ϵ) (ga

1 , gb
1, gr

1, Grp).

Definition 31 (DLin [BBS04]). Let Grp = (p, g,G,GT , e)← BS(1λ), a, b, r ← Zp and h, f
be two random generators of G. The decision linear problem is (t, ϵ)-hard if

(h, f, ga, hb, fa+b, Grp) ≈(t,ϵ) (h, f, ga, hb, f r, Grp).

72

4.5. Adaptively Secure PRE Schemes

1. S(1λ): (p, g,G,GT , e) ← BS(1λ). Compute Z = e(g, g) and return the public
parameters pp = ((p, g,G,GT , e), Z).

2. K(pp): Pick a, b← Zp and set pk := (Za, gb) and sk := (a, b). Return the keys
(pk,sk).

3. RK((pki,ski),pkj): Parse ski as (ai, bi) ∈ Z2
p and pkj as (pkj,1,pkj,2). Return

the re-key rki,j := pkai
j,2 = gbj ·ai .

4. E(pk, (m, l)): Parse pk as (pk1,pk2) ∈ GT ×G and pick k ← Zp. If l = 1 return
the (level-1) ciphertext ((gk, m · pkk

1 = m · Zak), 1);
otherwise return the (level-2) ciphertext ((e(pk2, g)k, m · Zk) = (Zbk, m · Zk), 2).

5. RE((ci, 1),rki,j): Parse ci as (ci,1,ci,2) ∈ G×GT and return the level-2 ciphertext
((e(rki,j,ci,1), ci,2) = (Zbj ·(aik), m · Zaik), 2).

6. D((c, l),sk): Parse the secret key sk as (a, b) ∈ Z2
p. Parse a level-1 ciphertext

as (c1,c2) ∈ G × GT and return c2/e(c1, g)a. Parse a level-2 ciphertext as
(c1,c2) ∈ G2

T and return c2/c
1/b
1 .

Construction 1: Unidirectional, single-hop PRE from [AFGH05]; basis for Construction 2.

The AFGH Scheme.

The original scheme (Construction 1) encrypts messages from Gℓ and was shown selectively
secure against CPA assuming eDBDH, but [AFGH05] did not consider key-privacy. We prove
that when instantiated over asymmetric bilinear groups, their scheme is key-private assuming
XDH. To additionally make the scheme source-hiding we rerandomize the re-encryption
algorithm. The modified scheme is given in Construction 2.

Security. If the eDBDH problem is (t1, ϵ1)-hard then the original scheme (Construction 1) is
(t1, 2ϵ1)-sPRE-CPA-secure – and hence has indistinguishable ciphertexts [AFGH05, Theorem
3.1]. They also claim security when instantiated in the asymmetric setting, presumably
assuming that the eDBDH problem is hard in the asymmetric setting: this reduction works for
Construction 2 too. It moreover satisfies the remaining two properties:

Lemma 13. Construction 2 is statistically source-hiding.

Proof. A level-2 ciphertext under pkj that results from the re-encryption of a level-1 ciphertext
ci = (ci,1,ci,2) under pki = (pki,1,pki,2) is of the form cj = (cj,1,cj,2)

cj,1 = e′(rki,j,ci,1 · gk′

2) = e′(gbj ·ai

1 , gk
2 · gk′

2) = e′(gbj

1 , g2)ai·(k+k′)

cj,2 = ci,2 · pkk′

i,1 = m · Zai·k · Zai·k′ = m · Zai·(k+k′). (4.2)

From (4.2) it is clear that the distribution of the re-encrypted ciphertext is statistically close
to a fresh level-2 ciphertext under pkj.

73

4. Adaptively Secure Proxy Re-encryption

1. S(1λ): (p, g1, g2,G1,G2,GT , e′)← BS′(1λ) . Compute Z = e′(g1, g2) and return
the public parameters pp = ((p, g1, g2,G1,G2,GT , e′), Z).

2. K(pp): Pick a, b← Zp and set pk := (Za, gb
1) and sk := (a, b). Return the keys

(pk,sk).

3. RK((pki,ski),pkj): Parse ski as (ai, bi) ∈ Z2
p and pkj as (pkj,1,pkj,2) ∈ GT×G1.

Return the re-key rki,j := pkai
j,2 = g

bj ·ai

1 .

4. E(pk, (m, l)): Parse pk as (pk1,pk2) ∈ GT ×G1 and pick k ← Zp. If l = 1 return
the (level-1) ciphertext ((gk

2 , m · pkk
1 = m · Zak), 1);

otherwise return the (level-2) ciphertext ((e′(pk2, g2)k = Zbk, m · Zk), 2).

5. RE(rki,j,pki, (ci, 1)): Parse ci as (ci,1,ci,2) ∈ G2×GT and pki as (pki,1,pki,2) ∈
GT × G1. Pick k′ ← Zp for rerandomization and return the level-2 ciphertext
((e′(rki,j,ci,1 · gk′

2),ci,2 · pkk′

i,1), 2) = (Zbj ·ai(k+k′), m · Zai(k+k′)).

6. D(sk, (c, l)): Parse the secret key sk as (a, b). Parse a level-1 ciphertext as
c = (c1,c2) ∈ G2 × GT and return c2/e′(g1,c1)a. Parse a level-2 ciphertext as
c = (c1,c2) ∈ G2

T and return c2/c
1/b
1 .

Construction 2: Rerandomised [AFGH05] in the asymmetric setting. The differences from
Construction 1 are highlighted in boxes.

Lemma 14. If XDH is (t2, ϵ2)-hard then Construction 2 is (t2 − δout · tExp, ϵ2, δout)-weakly
key-private, where tExp is the complexity of four exponentiations in G1.

Proof. For (p, g1, g2,G1,G2,GT , e′)← BS′(1λ) and Z := e′(g1, g2), our goal is to show that
KP0 ≈(t2,ϵ2) KP1, where

KP0 := ((Za0 , gb0
1), (Za1 , gb1

1), . . . , (Zaδout , g
bδout
1), gb1·a0

1 , . . . , g
bδout

·a0
1) and

KP1 := ((Za0 , gb0
1), (Za1 , gb1

1), . . . , (Zaδout , g
bδout
1), gb1·r1

1 , . . . , g
bδout

·rδout
1)

with a0, b0, a1, b1, . . . , aδout , bδout , r1, . . . , rδout ← Zp. Let A be an adversary of size t2 that
distinguishes KP0 from KP1 with probability at least ϵ2. Given an XDH instance (A, B, C, Grp),
where Grp := (p, g1, g2,G1,G2,GT , e′), the reduction first uses random self-reducibility of
XDH to generate δout instances (A, Bi,ci, Grp): it picks ui, vi ← Zp and sets Bi := Buigvi

1
and ci := CuiAvi . (If A = ga

1 , B = gb
1, C = gc

1 then Bi = gbi
1 with bi = bui + vi and ci = gci

1
with ci = ui(c− ab) + abi; thus if c = ab then (A, Bi,ci) is a DH tuple, otherwise Bi and ci

are independently random.) The reduction picks b0, a1, . . . , aδout ← Zp and sends

KP := ((e′(A, g2), gb0
1), (Za1 , B1), . . . , (Zaδout , Bδout),c1, . . . ,cδout)

to A. Depending on whether C was real or random, the adversary sees either KP0 or KP1,
and any distinguishing advantage it has is translated to that of the reduction.

74

4.5. Adaptively Secure PRE Schemes

Note that the reduction of XDH to δout-weak key-privacy is without any security loss due to
the use of random self-reducibility of XDH. The adaptive security of Construction 2 against
CPA (resp., HRA) is now follows from Theorem 7 (resp., Theorem 8), [AFGH05, Theorem
3.1], Lemma 13 and Lemma 14.

Theorem 9 (PRE-CPA and PRE-HRA security of Construction 2). Let σ and τ denote,
respectively, the space and time complexity for the class G = G(N, δout, D). Assume BS′

generates asymmetric bilinear groups for which eDBDH is (t1, ϵ1)-hard, XDH is (t2, ϵ2)-hard
and where four exponentiations in G1 cost tExp. Then Construction 2 is (t, ϵ)-PRE-CPA-secure
and (t′, ϵ′)-PRE-HRA-secure restricted to challenge graphs in G where

t := min(t1, t2 − δout · tExp)− tCPA − tG,

ϵ := 2(ϵ1 + τ · ϵ2) ·Nσ+δout+1,

t′ := min(t1, t2 − δout · tExp)− tHRA − tG and
ϵ′ := 2N(N − 1)(QE + QRE)QRE · 2−λ + ϵ.

The ABH Scheme.

This scheme, given in Construction 3, can be thought of as a variant of Construction 1 with
a randomized re-key generation algorithm, and it is this feature that enabled [ABH09] to
show (strong) key-privacy assuming DLin. In Construction 4, we simplify their scheme and
show that it is still weakly key-private assuming DLin. The main difference from the original
construction is the way the re-randomization of a re-encrypted ciphertext is carried out: it
is now done just like in Construction 2, and this allows for shorter re-keys (just two group
elements compared to four).

Security. If the eDBDH problem is (t1, ϵ1)-hard then Construction 3 is (t1, 2ϵ1)-sPRE-CPA-
secure [ABH09, Theorem 3.1]. The sPRE-CPA security of Construction 4 follows by the same
reduction: we refer the readers to [ABH09] for the details. It was also shown in [ABH09,
Theorem 3.4] that if the DLin problem is (t2, ϵ2)-hard then Construction 3 is (t2, 4N2 · ϵ2)-
(strongly) key-private. Below we simplify this reduction to show that Construction 4 is
(t2, δout · ϵ2, δout)-weakly key-private (Lemma 15). We also show (Lemma 16) that it is
statistically source-hiding.

Lemma 15. If the DLin problem is (t2, ϵ2)-hard then Construction 4 is (t2, δout ·ϵ2, δout)-weakly
key-private.

Proof. For (p, g,G,GT , e)← BS(1λ), a random generator h ∈ G and Z := e(g, h), our goal
is to show that KP0 ≈(t2,ϵ2) KP1, where

KP0 :=
(︂
(Za0 , gb0), . . . , (Zaδout , gbδout), ((gb1)a0+r1 , hr1), . . . , ((gbδout)a0+rδout , hrδout)

)︂
and

KP1 :=
(︂
(Za0 , gb0), . . . , (Zaδout , gbδout), ((gb1)a′

1+r1 , hr1), . . . , ((gbδout)a′
δout

+rδout , hrδout)
)︂

with a0, b0, a1, a′
1, b1, r1, . . . , aδout , a′

δout
, bδout , rδout ← Zp. Unfortunately, in contrast to Lemma

14, random self-reducibility of DLin does not apply here, since the DLin instances share one of
their exponents (a0); we therefore proceed via a hybrid argument. Let A be an adversary of
size t2 that distinguishes KP0 from KP1 with probability at least ϵ2. With probability ϵ2/δout it

75

4. Adaptively Secure Proxy Re-encryption

1. S(1λ): (p, g,G,GT , e) ← BS(1λ). Pick a random generator h ∈ G and compute
Z = e(g, h). Return the public parameters pp = ((p, g,G,GT , e), h, Z).

2. K(pp): Pick a, b← Zp and set the public key as pk := (Za, gb) and the secret key
as sk := (a, b). Return the keys (pk,sk).

3. RK((pki,ski),pkj): Parse ski as (ai, bi) ∈ Z2
p and pkj as (pkj,1,pkj,2) ∈ GT×G.

Pick r, w ← Zp and return the re-key:

rki,j := ((pkj,2)ai+r, hr, e(pkj,2, h)w, e(g, h)w) = ((gbj)ai+r, hr, Zwbj , Zw).

4. E(pk, (m, l)): Parse the public key as pk = (pk1,pk2) ∈ GT ×G and pick k ← Zp.
If l = 1 return the (level-1) ciphertext ((gk, hk, m · pkk

1), 1); otherwise, return the
(level-2) ciphertext ((e(pk2, h)k,m · Zk), 2).

5. RE(rki,j, (ci, 1)): Parse the re-key rki,j as (rki,j,1, . . . ,rki,j,4) ∈ G2 × G2
T , and

the ciphertext ci as (ci,1,ci,2,ci,3) ∈ G2 × GT . Verify that the ciphertext is
well-formed by checking if e(ci,1, h) = e(g,ci,2) – if it is not, halt. Compute
t1 = e(rki,j,1,ci,2) = Zbj(ai+r)k and t2 = ci,3 ·e(ci,1,rki,j,2) = m ·Zaik ·Zkr; choose
w′ ← Zp and re-randomise t1, t2 by setting t′

1 = t1 · rkw′

i,j,3 and t′
2 = t2 · rkw′

i,j,4 .
Return ((t′

1, t′
2), 2).

6. D(sk, (c, l)): Parse the secret key sk as (a, b) ∈ Z2
p. Parse a level-1 ciphertext as

(c1,c2,c3) ∈ G2×GT ; halt if e(c1, h) ̸= e(g,c2), and otherwise return c3/e(c1, h)a.
Parse a level-2 ciphertext as as (c1,c2) ∈ G2

T and return c2/c
1/b
1 .

Construction 3: Unidirectional, single-hop PRE from [ABH09]: the differences to our simplified
version (Construction 4) are boxed.

must therefore distinguish two of the hybrid games KP0 = KP0, . . . , KPδout = KP1 defined as

KPi :=
(︂
(Za0 , gb0), . . . , (Zaδout , gbδout), ((gb1)a′

1+r1 , hr1), . . . , ((gbi)a′
i+ri , hri),

((gbi+1)a0+ri+1 , hri+1), . . . ((gbδout)a0+rδout , hrδout)
)︂
.

Given a DLin instance (h, f, A, B, C, Grp), where Grp := (p, g,G,GT , e), the reduction picks
a1, . . . , aδout , b0, r0, . . . , bi−1, ri−1, bi+1, ri+1, . . . , bδout , rδout ← Zp and runs A on(︂

(e(A, h), gb0), (Za1, gb1), . . . , (Zai−1, gbi−1), (Zai , f), (Zai+1 , gbi+1), . . . , (Zaδout , gbδout),

((gb1)a′
1+r1 , hr1), . . . , ((gbi−1)a′

i−1+ri−1 , hri−1), (c, B),
(Abi+1gbi+1ri+1 , hri+1), . . . , (Abδout gbδout

rδout , hrδout)
)︂
.

Letting a0, ri be such that A = ga0 and B = hri , the challenge C is either fa0+ri (real) or
fa′

i+ri (random). Thus the above is either distributed as KPi−1 (real) or KPi (random). Its
distinguishing advantage thus translates to that of the reduction.

76

4.5. Adaptively Secure PRE Schemes

1. S(1λ): (p, g,G,GT , e) ← BS(1λ). Pick a random generator h ∈ G and compute
Z = e(g, h). Return the public parameters pp = ((p, g,G,GT , e), h, Z).

2. K(pp): Pick a, b← Zp and set the public key as pk := (Za, gb) and the secret key
as sk := (a, b). Return the keys (pk,sk).

3. RK((pki,ski),pkj): Parse ski as (ai, bi) ∈ Z2
p and pkj as (pkj,1,pkj,2) ∈ GT×G.

Pick r ← Zp and return the re-key:

rki,j := ((pkj,2)ai+r, hr) = ((gbj)ai+r, hr).

4. E(pk, (m, l)): Parse the public key as pk = (pk1,pk2) ∈ GT ×G and pick k ← Zp.
If l = 1 return the (level-1) ciphertext (c, 1) = ((gk, hk,m · pkk

1), 1); otherwise,
return the (level-2) ciphertext (c, 2) = ((e(pk2, h)k = Zb·k,m · Zk), 2).

5. RE(rki,j,pki, (ci, 1)): Parse the re-key rki,j as (rki,j,1,rki,j,2) ∈ G2, the public
key pki as (pki,1,pki,2) ∈ GT × G and the ciphertext ci as (ci,1,ci,2,ci,3) ∈
G2×GT . Verify that the ciphertext is well-formed by checking if e(ci,1, h) = e(g,ci,2)
– if it is not, halt. Pick k′ ← Zp and return ((cj,1,cj,2), 2), where

cj,1 := e(rki,j,1, ci,2 · hk′) = Zbj(ai+r)(k+k′) and
cj,2 := ci,3 · pkk′

i,1 · e(ci,1 · gk′
, rki,j,2) = m · Zaik · Zaik

′ · Z(k+k′)r.

6. D(sk, (c, l)): Parse the secret key sk as (a, b) ∈ Zp. Parse a level-1 ciphertext as
(c1,c2,c3) ∈ G2×GT ; halt if e(c1, h) ̸= e(g,c2), and otherwise return c3/e(c1, h)a.
Parse a level-2 ciphertext as (c1,c2) ∈ G2

T and return c2/c
1/b
1 .

Construction 4: Simplified version of scheme from [ABH09] (Construction 3).

Lemma 16. Construction 4 is statistically source-hiding.

Proof. A level-2 ciphertext under pkj that results from the re-encryption of a level-1 ciphertext
ci = (ci,1,ci,2,ci,3) under pki = (pki,1,pki,2) is of the form

cj = (cj,1,cj,2)
= (e(rki,j,1,ci,2 · hk′),ci,3 · pkk′

i,1 · e(ci,1 · gk′
,rki,j,2))

= (e(gbj(ai+r), hk · hk′),m · Zaik · Zaik
′ · e(gk · gk′

, hr))
= (Zbj(k+k′)(ai+r),m · Z(k+k′)(ai+r)). (4.3)

From (4.3) it is clear that the distribution of the re-encrypted ciphertext is statistically close
to a fresh level-2 ciphertext under pkj.

The adaptive security of Construction 4 against CPA (resp., HRA) now follows from Theorem 7
(resp., Theorem 8) and [ABH09, Theorem 3.1] using the above lemmas.

77

4. Adaptively Secure Proxy Re-encryption

Theorem 10 (PRE-CPA and PRE-HRA security of Construction 4). Let σ and τ denote, resp.,
the space and time complexity for the class G = G(N, δout, D). Assume BS generates bilinear
groups for which eDBDH is (t1, ϵ1)-hard and DLin is (t2, ϵ2)-hard. Then Construction 4 is
(t, ϵ)-PRE-CPA-secure and (t′, ϵ′)-PRE-HRA-secure restricted to challenge graphs in G where

t := min(t1, t2)− tCPA − tG ϵ := 2(ϵ1 + τ · δout · ϵ2) ·Nσ+δout+1

t′ := min(t1, t2)− tHRA − tG ϵ′ := 2N(N − 1)(QE + QRE)QRE · 2−λ + ϵ

Remark 2. We note that since the proofs for key-privacy in both Constructions 2 and 4
proceed via a hybrid argument, by using a trick of Panjwani [Pan07], one can improve the
bound for ϵ to 2(ϵ1 + τ · ϵ2) ·Nσ+log δout+1 and 2(ϵ1 + τ · δout · ϵ2) ·Nσ+log δout+1, respectively.
We refer the reader to Chapter 3.

4.5.2 Multi-Hop Scheme from Fully Homomorphic Encryption.
We now describe the generic construction of a unidirectional multi-hop PRE scheme from fully
homomorphic encryption (FHE) due to Gentry [Gen09].

Gentry’s Scheme.

A fully homomorphic encryption scheme consists of a five-tuple of algorithms (S, K, E, D, F),
where S is the setup algorithm, K the key-generation algorithm, E the encryption algorithm, D
the decryption algorithm and F the homomorphic evaluation algorithm, which takes a function
f and encrypted inputs for f and returns an encryption of the evaluation of f on the inputs.

Gentry [Gen09] gave a generic construction of PRE from FHE. We show that this scheme,
given in Construction 5.a, is adaptively secure against CPA. In Construction 5.b, we “sanitize”
the previous construction and prove that the resulting construction is adaptively secure against
HRA.

Security. The ciphertext indistinguishability of Construction 5.a directly follows from the
semantic security of the underlying FHE scheme. We show that weak key-privacy also follows
from semantic security. If, in addition, the FHE scheme is sanitizable, then Construction 5.b
is source-hiding and thus satisfies PRE-HRA. In particular, if sanitizability is as defined and
discussed in [DS16] (see Definition 32), then Construction 5.b is statistically source-hiding.

Lemma 17. If FHE is (t1, ϵ1)-semantically secure then Construction 5.a is (t1 − δout · tE −
N · tK, δout · ϵ1, δout)-weakly key-private.

Proof. Our goal is to show that KP0 ≈(t1,ϵ1) KP1 where

KP0 := (pp,pk0,pk1, . . . ,pkδout
, FHE.E(pk1,sk0), . . . , FHE.E(pkδout

,sk0)) and
KP1 := (pp,pk0,pk1, . . . ,pkδout

, FHE.E(pk1,sk
′
0), . . . , FHE.E(pkδout

,sk′
δout

)),

where pp← FHE.S(1λ) and (pk0,sk0), . . . , (pkδout
,skδout), (pk′

1,sk
′
1), . . . , (pk′

δout
,sk′

δout
)

← FHE.K(pp). We use a sequence of hybrid distributions KP0 = KP0, . . . , KPδout = KP1,
where in the i-th hybrid the first i re-keys are random and the rest real. That is,

KPi :=
(︂
pp,pk0,pk1, . . . ,pkδout

, FHE.E(pk1,sk
′
0), . . . , FHE.E(pki,sk

′
i),

FHE.E(pki+1,sk0), . . . , FHE.E(pkδout
,sk0)

)︂
.

78

4.5. Adaptively Secure PRE Schemes

1. Algorithms S,K and D for PRE are defined the same as their counterparts in FHE.

2. PRE.RK((pki,ski),pkj): The re-key rki,j is an encryption of ski under pkj:

PRE.RK((pki,ski),pkj) := FHE.E(pkj,ski).

3. PRE.E(pk,m): Given a message m and a public key pk, the encryption algorithm
outputs a “sanitized” FHE encryption:

(PRE.E(pk,m) := Sanitize (pk, FHE.E(pk,m)).

4. PRE.RE(rki,j,pki,pkj, (ci, l)) → (cj, l + 1): Given a re-key rki,j and a level-l
ciphertext ci that was encrypted under pki, the re-encryption algorithm homomor-
phically decrypts the ciphertext ci and “sanitizes” the result :

cj ← Sanitize(pkj, FHE.F(FHE.D, (rki,j, FHE.E(pkj,ci)))).

Construction 5: PRE from sanitizable FHE. Sanitize denotes the sanitization algorithm. We
refer to the construction without the boxes by Construction 5.a and the construction with
blurring (including the boxes) by Construction 5.b.

Let A be an adversary of size t1 that distinguishes KP0 from KP1 with probability at least ϵ1.
Given a challenge for FHE semantic security containing parameters pp∗ and public key pk∗,
the reduction sets pki := pk∗, picks (pk0,sk0), (pk′

i,sk
′
i)← FHE.K(pp∗), sends (sk0,sk

′
i)

to its own challenger and receives c∗. The reduction embeds c∗ at position i and sends

KPi−1,i :=
(︂
pp,pk0,pk1, . . . ,pkδout

, FHE.E(pk1,sk
′
0), . . . , FHE.E(pki−1,sk

′
i−1),c∗,

FHE.E(pki+1,sk0), . . . , FHE.E(pkδout
,sk0)

)︂
to A. Depending on whether c∗ encrypts sk0 or sk′

i, KPi−1,i is distributed as KPi−1 or
KPi.

PRE-CPA security of Construction 5.a now follows from Theorem 7.

Theorem 11 (PRE-CPA security of Construction 5.a). Let σ and τ denote the space and time
complexity for G = G(N, δout, D). If FHE is (t1, ϵ1)-semantically secure then Construction 5.a
is (t, ϵ)-PRE-CPA-secure restricted to challenge graphs in G, where

t := t1 − (δout · tE + N · tK + tCPA + tG) and ϵ := (2τ · δout + 1) · ϵ1 ·Nσ+δout+1.

Definition 32 (Sanitizability of encryptions [DS16]). An encryption scheme (S, K, E, D) is
called sanitizable if there exists a polynomial-time algorithm Sanitize which takes as input a
public key and a ciphertext, outputs a ciphertext, and satisfies the following two properties
(with all but negligible probability):

79

4. Adaptively Secure Proxy Re-encryption

• Message-preserving. For any key pair (pk,sk) ← K(1λ) and any c in the ciphertext
space

D(sk, Sanitize(pk,c)) = D(sk,c).

• Sanitizing. For all c,c′ such that D(sk,c) = D(sk,c′)

∆((Sanitize(pk,c),pk,sk), (Sanitize(pk,c′),pk,sk)) ≤ 2−λ.

PRE-HRA security of Construction 5.b easily follows from Theorem 7.

Theorem 12 (PRE-HRA-security of Construction 5.b). Let ϵ be defined as in Theorem 11
and let σ and τ denote the space and time complexity for G = G(N, δout, D). If FHE
is a sanitizable FHE scheme that is (t1, ϵ1)-semantically secure, then Construction 5.b is
(t′, ϵ′)-PRE-HRA-secure restricted to challenge graphs in G, where

s′ := t1 − (δout · tE + N · tK + tHRA + tG) and ϵ′ := N(N − 1)(QE + QRE)QRE · 2−λ + ϵ.

4.5.3 Lattice-based Multi-Hop Schemes
Here, we decribe the lattice-based unidirectional multi-hop PRE scheme from [CCL+14]. Being
based directly on the decision LWE (DLWE) problem it achieves better parameters than the
construction from FHE above.

The CCL+ Scheme.

In [CCL+14], Chandran et al. propose two lattice-based unidirectional multi-hop PRE schemes.
The schemes are built upon Regev’s encryption [Reg05] and its dual version [GPV07], respec-
tively. Here, we will describe the former one, which is inspired by the fully homomorphic
encryption scheme of [BV11]. Security can be proven assuming the hardness of the decisional
learning with errors (DLWE) problem (cf. Definition 33 below).

We recall Regev’s encryption scheme RGV in Construction 6. We can now define the PRE
scheme from [CCL+14] using RGV in Construction 7.a. To achieve source-hiding, Chandran
et al. propose the variant given as Construction 7.b.

In both schemes, the LWE error will grow with each re-encryption and the level bound L
needs to be chosen appropriately so that correctness of decryption is still guaranteed (with
overwhelming probability). The second variant achieves the stronger notion of PRE-HRA-
security (see below) at the cost of worse parameters; only a small number L of re-encryptions
is supported by this scheme and the underlying security assumption is very strong.

Security. We will first show PRE-CPA-security of Construction 7.a and then consider
PRE-HRA-security of Construction 7.b.

Definition 33 (DLWE [Reg05]). Let M, M ′, p ∈ N. For a matrix A ← ZM ′×M
p and a

secret vector s ← ZM
p , each sampled uniformly at random, and a vector e ← χ for an

error distribution χ on ZM ′
p , the decisional LWE problem DLWEM,M ′,p,χ is to distinguish

(A, A · s + e) from (A, b) for a uniformly random sample b← ZM ′
p .

To prove adaptive security for the two variants of Construction 7, we will need the following
lemma [BV11].

80

4.5. Adaptively Secure PRE Schemes

1. S(1λ): Pick lattice parameters M, M ′, p ∈ N and a B-bounded error distribution χ
on ZM ′

p . Sample A← ZM ′×M
p uniformly at random and return the public parameters

pp = (A, M, M ′, p, χ).

2. K(pp): Sample s← ZM
p uniformly at random and compute b = A · s + e, where

e ← χ. Set pk := b as the public key and sk := s as the secret key. Return
(pk,sk).

3. E(pk,m): On input pk ∈ ZM ′
p and a message bit m ∈ {0, 1}, sample r ← {0, 1}M ′

and output
c := rT (A, b) + (0M ,m · ⌈p/2⌋) ∈ ZM+1

p .

4. D(sk,c): On input a secret key sk = s ∈ ZM
p and a ciphertext c = (α, β) ∈

ZM
p × Zp, output 0 if β − ⟨α, s⟩ is closer to 0 than to ⌈p/2⌋, else output 1.

Construction 6: Regev’s encryption scheme RGV [Reg05].

Lemma 18 (Matrix-vector leftover hash lemma). Let λ, m, p ∈ N, and M ′ ≥M · log p + 2λ.
For A← ZM ′×M

p , r ← {0, 1}M ′ , and y ← ZM
p each sampled uniformly at random, it holds

∆((A, AT r), (A, y)) ≤ 2−λ.

Assuming the computational hardness of DLWEM,M ′,p,χ for appropriate parameters, we get
for any pp = (A,m, M ′, p, χ), pk = b and m ∈ {0, 1}: RGV.E(pk,m) = rT (A, b) +
(0M ,m · ⌈p/2⌋) is computationally indistinguishable from rT (A, b′) + (0M ,m · ⌈p/2⌋), where
r ← {0, 1}M ′

and b′ ← ZM ′
p . By the above lemma, the latter distribution is, in turn,

statistically close to the uniform distribution on ZM+1
p . Informally, since RGV.E(pk, 0) is

computationally indistinguishable from uniformly random, ciphertexts, re-keys and re-encrypted
ciphertexts all look uniformly random; in particular Construction 7.a satisfies indistinguishability
of ciphertexts as well as δout-weak key privacy.

Lemma 19. Assuming DLWEM,M ′,p,χ is (t1, ϵ1)-hard for parameters M, M ′, p as in Lemma 18,
Construction 7.a satisfies (t1− tE, 2(ϵ1 + 2−λ))-indistinguishability and (t1−O(δout M ⌈log p⌉ ·
(tZM+1

p
+ tRGV.E)), δoutM⌈log p⌉ · ϵ1, δout)-weak key-privacy.

PRE-CPA security of Construction 7.a now follows from Theorem 7.

Theorem 13 (PRE-CPA-security of Construction 7.a). Let σ and τ denote the space and time
complexity for the class G = G(N, δout, D). Assume the DLWEM,M ′,p,χ problem is (t1, ϵ1)-hard
for parameters M, M ′, p as in Lemma 18. Then Construction 7.a is (t, ϵ)-PRE-CPA-secure
restricted to challenge graphs in G, where

t := t1 −O(δout M ⌈log p⌉ · (tZM+1
p

+ tRGV.E))− tCPA − tG and
ϵ := (2τ · δoutM⌈log p⌉+ 1) · ϵ1 ·Nσ+δout+1.

81

4. Adaptively Secure Proxy Re-encryption

1. S(1λ): Get parameters pp′ ← RGV.S(1λ), level bound L and
“blurring error” bound El for each level l ∈ [1, L] . Return the parameters
pp = (pp′, L, (El)l∈[1,L]).

2. K(pp): Run RGV.K(pp′) and output the result.

3. E(pk, (m, l)): Compute the ciphertext

c = RGV.E(pk,m) + (0M , fl) ,

where fl ← [−El, El] ∩ Z , and return the level-l ciphertext (c, l).

4. RK((pki,ski),pkj): Parse ski as si = (ti,1, . . . , ti,M) ∈ ZM
p . For k ∈ [1, M] and

l ∈ [1, ⌈log p⌉], compute Kk,l ← RGV.E(pkj, 0) + (0M , ti,k · 2l). Return the re-key:

rki,j := {Kk,l}k∈[1,M],l∈[1,⌈log p⌉].

5. RE(rki,j,pki,pkj, (ci, ℓ)) → (cj, ℓ + 1): If ℓ ≥ L, abort. Otherwise, parse the
level-l ciphertext ci as (α, β) ∈ ZM

p × Zp and rki,j as {Kk,l}k∈[1,M],l∈[1,⌈log p⌉].
Denote by αk the k-th component of α, and denote the bit decomposition of αk as
{αk,l}l∈[1,⌈log p⌉], i.e., αk = ∑︁

l∈[1,⌈log p⌉] αk,l2l, where each αk,l ∈ {0, 1}. Compute

cj = (0M , β) +∑︁
k,l αk,l ·Kk,l + RGV.E(pkj, 0) + (0M , fl+1) ,

where fl+1 ← [−El+1, El+1] ∩ Z , and return (cj, ℓ + 1).

6. D(sk, (c, ℓ)): Run RGV.D(sk,c) and output the result.

Construction 7: source-hiding unidirectional multi-hop PRE from [CCL+14]. We refer to the
construction without the blurring (ignoring the boxes) by Construction 7.a and the construction
with blurring (including the boxes) by Construction 7.b.

Construction 7.a clearly does not satisfy source-hiding and, thus, cannot be proven PRE-HRA-
secure using our results. Fortunately, Construction 7.b solves this issue, but at the cost of only
allowing for a constant level bound L. The additional uniform error fl ← [−El, El]∩Z added
in E and RE in Construction 7.b is used to “blur out” the different errors caused by encryption
or re-encryption, respectively. Choosing the error bounds El appropriately guarantees the
source-hiding property of the scheme while still preserving correctness.6 Chandran et al. refer
to this rerandomisation technique as strong blurring ; a more detailed analysis can be found in
[DS16, Section 4.1], where the same method for rerandomization of Regev ciphertexts is used

6In fact, we need to choose the error bounds (El)l∈[1,L] exponentially large, eg., E1 ≥ (M ′ + 1)B2λ.
Thus, to provide correctness of the scheme, one needs to choose the modulus p to be of size exp(O(λ)) and
the level bound L of size O(1).

82

4.6. Application to Key Rotation

to discuss sanitizability of the FHE scheme from [BV11].

To prove PRE-HRA-security of Construction 7.b, note that, as above, semantic security and
δout-weak key-privacy of (E, D) directly follow by the security of Regev’s encryption scheme.
We state the result for source-hiding only informally:.

Lemma 20. For large enough (see Footnote 6) error ranges El, l ∈ [1, L], Construction 7.b
is (statistically) source-hiding.

PRE-HRA security of Construction 7.a now follows from Theorem 8.

Theorem 14 (PRE-HRA-security of Construction 7.b). Let ϵ be as in Theorem 13 and let
σ and τ denote the space and time complexity for G = G(N, δout, D). If DLWEM,M ′,p,χ

is (t1, ϵ1)-hard for parameters M, M ′, p as in Lemma 18 and El (l ∈ [1, L]), L are chosen
appropriately, then Construction 7.b is (t′, ϵ′)-PRE-HRA-secure restricted to challenge graphs
in G, where

t′ := t1 −O(δout M ⌈log p⌉ · (tZM+1
p

+ tRGV.E))− tHRA − tG, and
ϵ′ := 2N(N − 1)(QE + QRE)QRE · 2−λ + ϵ.

4.6 Application to Key Rotation
An interesting application of unidirectional multi-hop PRE is key rotation in remote storage
systems, for which it can mitigate the risk of key compromise. Consider a user that stores
content on a server which is encrypted under her public key pk. Using key rotation, from time
to time the user creates a new key pair (pk′,sk′) and would like to replace the encryption of
the content under pk by an encryption under pk′.

To do so, it seems she must either download the content, re-encrypt it and upload it again; or
give the secret key sk for pk to the server, so the latter can obtain the content and encrypt
it under the new key. PRE allows avoiding both costly transfer of content and unnecessary
trust in the server: the user simply creates rk ← RK((pk,sk),pk′) and sends rk to the
server. The latter uses rk to re-encrypt the content to the new key pk′ without knowing
either content nor any secret keys.

There are several attack scenarios to consider: an adversary could (i) obtain the encrypted
content or (ii) a re-key by breaking into the server; and it could obtain (iii) the secret key by
attacking the user. We would like to guarantee that, as long as the adversary does not see a
ciphertext which it can decrypt by either obtaining the secret key for it or re-keys that allow it
to (consecutively) re-encrypt it to a key it knows, nothing is leaked on the plaintext.

We formalize this via a game that considers N epochs in each of which a new key pair is
generated and the content is re-encrypted. The adversary obtains all public keys and can ask
for messages to be encrypted at certain epochs; one of which is its challenge query which lets it
choose two messages (m0,m1). The adversary can at any time query secret keys for any epoch
and re-keys between two epochs. It can also ask to see (re-)encryptions of (the challenge)
messages. If it asks to see the challenge ciphertext in some epoch i and corrupts a secret key
in some epoch j such that either j = i or it has obtained all re-keys rki,i+1, . . . ,rkj−1,j then
it loses. Otherwise, the adversary wins if it guesses the bit b chosen by the challenger that
determines whether m0 or m1 was encrypted.

83

4. Adaptively Secure Proxy Re-encryption

Algorithm 4.16: Game KRot for key rotation using a (unidirectional multi-hop) PRE
scheme PRE.

Challenger KRotb(1λ, 1N)
1 Set C, E ,S = ∅ // Stores corrupted keys (C), re-keys (E) and revealed

challenges (S)
2 Set L,L∗ = ∅ // Stores ciphertexts and challenge ciphertexts

3 Set ctr = 0 // Counter for generated ciphertexts

4 pp← PRE.S(1λ, 1N) // N determines the number of levels

5 (pk1,sk1), . . . , (pkN ,skN)← PRE.K(pp)
6 ∀i ∈ [2, N] : rki−1,i ← PRE.RK((pki−1,ski−1),pki)
7 b′ ← A(corrupt,·),(rekey,·),(encrypt,·,·),(challenge,·,·,·),(reveal,·,·)(pp,pk1, . . . ,pkN)
8 if ∃ i ∈ S ∃ j ∈ C : i is connected to j then
9 return 0

10 return b′

Oracle (corrupt, i)
11 Add i to C
12 return ski

Oracle (rekey, i)
13 Add (i− 1, i) to E
14 return rki−1,i

Oracle (encrypt, i,m)
15 Increment ctr, compute (ci, i)← PRE.E(pki, (m, i))
16 for j = i + 1 . . . N do
17 (cj, j)← PRE.RE(rkj−1,j,pkj−1,pkj, (cj−1, j − 1))
18 Increment ctr, add (ctr, i,m, (ci, . . . ,cN)) to L

Oracle (challenge, i, (m∗
0,m

∗
1)) // Single access

19 Compute (ci, i)← PRE.E(pki, (m∗
b , i))

20 for j = i + 1 . . . N do
21 (cj, j)← PRE.RE(rkj−1,j,pkj−1,pkj, (cj−1, j − 1))
22 Increment ctr, add (ctr, i,m∗

b , (ci, . . . ,cN)) to L and ctr to L∗

Oracle (reveal, k, j)
23 Retrieve (k, i,m, (ci, . . . , cN)) from L
24 if k ∈ L∗ then add j to S
25 return cj

Definition 34 (KRot security). A PRE scheme is (t, ϵ)-adaptively secure against key rotation
attacks if KRot0 ≈(t,ϵ) KRot1, where KRotb is defined in Algorithm 4.16.

Note that, as with all other notions, restricting the adversary to a single challenge call
is without loss of generality: a standard hybrid argument shows that this notion implies a

84

4.6. Application to Key Rotation

Algorithm 4.17: Challenge oracle in shKRotb
ℓ for ℓ ∈ [1, N].

Oracle (challenge, i, (m∗
0,m

∗
1))

1 Compute (ci, i)← PRE.E(pki, (m∗
b , i))

2 for j = i + 1 . . . ℓ do
3 (cj, j)← PRE.E(pkj, (m∗

b , j))
4 for j = ℓ + 1 . . . N do
5 (cj, j)← PRE.RE(rkj−1,j,pkj−1,pkj, (cj−1, j − 1))
6 Increment ctr, add (ctr, i,m∗

b , (ci, . . . ,cN)) to L and ctr to L∗

more general multi-challenge variant of this definition. (In the jth hybrid, the first j − 1 calls
(challenge, i, (m0,m1)) are answered like (encrypt, i,m1) and the remaining ones like
(encrypt, i,m0).)

The adaptive notion of key-rotation security we defined is not immediately implied by HRA
security: in the former the adversary is allowed to ask for mb to be encrypted under pk1, to
see its re-encryption under pk2 and to corrupt pk1. This is not allowed by the HRA game, as
a challenge ciphertext is immediately revealed by the oracle and the corresponding key must
therefore not be corrupted. We show however that if the PRE scheme is source-hiding then
HRA security implies key-rotation (KRot) security.

Theorem 15 (KRot security). Let N ∈ N. Then a PRE scheme that is (t1, ϵ1)-PRE-HRA-
secure (under multiple challenges) and (t2, ϵ2)-source-hiding is (t, ϵ)-KRot-secure, where

t := min(t1, t2)− tKRot, and ϵ := ϵ1 + (N − 1)ϵ2,

where tKRot denotes the time complexity of simulating game KRot.

Proof. To prove the theorem we show that if the encryption scheme is source-hiding then
the game KRot is indistinguishable from a game where, instead of being re-encrypted, the
challenge is freshly encrypted when the adversary queries its reveal oracle on it.

Consider the hybrid game shKRotb
ℓ defined similar to KRotb, except that the challenge

oracle is defined as in Algorithm 4.17. The difference between shKRotb
ℓ−1 and shKRotb

ℓ is
whether the challenge oracle computes cℓ by reencrypting or by freshly encrypting. An
adversary distinguishing shKRotb

ℓ−1 from shKRotb
ℓ can thus be turned into an adversary

against source-hiding (Definition 24): the reduction receives (pp, (pk,sk), (pk′,sk′),rk),
simulates the experiment setting (pkℓ−1,skℓ−1) := (pk,sk), (pkℓ,skℓ) := (pk′,sk′),
and rkℓ−1,ℓ := rk. When the adversary queries (challenge, i, (m∗

0,m
∗
1)), the reduction

first computes for j = i + 1 . . . ℓ − 2: (cj, j) ← PRE.E(pkj, (m∗
b , j)); it then queries

(challenge,m∗
b , ℓ − 1) to receive cℓ−1 (a fresh encryption) and cℓ (a re-encryption of

cℓ−1 or a fresh encryption depending on the challenger); for j = ℓ + 1 . . . N it computes
(cj, j)← PRE.RE(rkj−1,j,pkj−1,pkj, (cj−1, j−1)). The reduction continues the simulation
of the game (it has all secret keys) and returns whatever the adversary does.

shKRotb
1 is the original game KRotb, whereas shKRotb

N is a game where the challenge message
is freshly encrypted for every pki. Moreover, shKRotb

N is equivalently distributed to a game
shKRotb

N+1 where the challenge oracle does not compute anything yet, and the reveal oracle
directly computes challenge ciphertexts. shKRotb

N+1 is thus defined like KRotb except that
challenge and reveal oracle are defined as in Algorithm 4.18. Game shKRotb

N+1 can now

85

4. Adaptively Secure Proxy Re-encryption

Algorithm 4.18: Challenge and reveal oracle in shKRotb
N+1.

Oracle (challenge, i, (m∗
0,m

∗
1))

1 Increment ctr, add (ctr, i,m∗
b , ∅) to L and ctr to L∗

Oracle (reveal, k, j)
2 Retrieve (k, i,m, (ci, . . . ,cN)) from L // (ci, . . . ,cN) could be empty

3 if k ∈ L∗ then
4 Add j to S
5 Compute (cj, j)← PRE.E(pkj, (m, j))
6 return cj

be simulated for an adversary A in a straightforward way by a reduction R that plays (the
multi-challenge version of) game HRAb: R forwards all corrupt and rekey queries; when
A makes a query encrypt, then R generates (ci,ci+1, . . . ,cN) as follows: it queries its
encrypt oracle to get ci and its reencrypt oracle to obtain ci+1, . . . ,cN . (Note that
this does not lead to any edges being added to E .) When A makes its query challenge
then R faithfully simulates shKRotb

N+1 and stores the message in L and the current counter
value in L∗. Queries (reveal, k, j) with k /∈ L∗ are answered as specified in shKRotb

N+1; if
k ∈ L∗ then R queries (challenge, j, (m∗

0,m
∗
1), j) and forwards the reply. Finally R returns

A’s final output b′.

R’s probability of winning KRotb is the same as A’s probability of winning shKRotb
N+1, as R

only violates the winning condition that no key that was challenged is connected to a corrupt
key via re-keys (represented by edges in E in both games) if and only if A does in game
shKRotb

N+1.

4.7 Open Problems
We leave as open problems to find adaptively secure PRE schemes (either via the Piecewise-
Guessing framework or using a new technique) for more general settings, which includes
unidirectional PRE on general graphs, bidirectional PRE and CCA-secure PRE (the schemes
above only satisfy CPA, and the slightly stronger HRA security notion).

Here we want to point forward to Chapter 7: The results there indicate that adaptive CPA
security for unidirectional PRE on general DAGs cannot be derived from the properties of
ciohertext indistinguishability and weak key-privacy alone, but other assumptions on the PRE
scheme would be necessary.

86

CHAPTER 5
Adaptively Secure Continuous Group

Key Agreement

5.1 Introduction
Messaging systems allow for asynchronous communication, where parties need not be online
at the same time. Messages are buffered by an untrusted delivery server, and then relayed
to the receiving party when it comes online. Secure messaging protocols (like Open Whisper
Systems’ Signal Protocol) provide end-to-end privacy and authenticity but, by having parties
perform regular key updates, also stronger security guarantees like forward secrecy (FS) and
post-compromise security (PCS). Here, FS means that even if a party gets compromised,
previously delivered messages (usually all messages prior to the last key update) remain private.
In turn, PCS guarantees that even if a party was compromised and its state leaks, normal
protocol execution after the compromise ensures that eventually (usually after the next key
update) future messages will again be private and authenticated.

Most existing protocols were originally designed for the two party case and do not scale beyond
that. Thus, group messaging protocols are usually built on top of a complete network of two
party channels. Unfortunately, this means that message sizes (at least for the crucial key
update operations) grow linearly in the group size. In view of this, constructing messaging
schemes that provide strong security – in particular FS and PCS – while efficiently 1 scaling to
larger groups is an important but challenging open problem. Designing such a protocol is the
ongoing focus of the IETF working group Message Layer Security (MLS) [mls].

Instead of constructing a messaging scheme directly, a modular approach seems more natural.
For the two party case this was done by Alwen et al. [ACD19]. In this work we consider the
concept of Continuous Group Key Agreement (CGKA), a generalization of their Continuous
Key Agreement (CKA) to groups. Such a primitive can then be used to build a group messaging
protocol as in [ACD19].

This Chapter essentially replicates, with permission, large parts of the full version [ACC+19] of our
publication [KPW+21], © 2021 IEEE, https://doi.org/10.1109/SP40001.2021.00035.

1The meaning of efficient here will be determined by what can be implemented and receive adoption by
the general public, but we think of it as having message sizes (poly)logarithmic in the size of the group.

87

https://doi.org/10.1109/SP40001.2021.00035

5. Adaptively Secure Continuous Group Key Agreement

5.1.1 Continuous Group Key Agreement
Informally, in a CGKA protocol any party ID1 can initialise a group U = (ID1, . . . , IDn) by
sending a message to all group members, from which each group member can compute a shared
group key K. ID1 must know a public key pki of each invitee IDi, which in practice could be
realized by having a key-server where parties can deposit their keys. As this key-management
problem is largely orthogonal to the construction of a CGKA, we will assume that such an
infrastructure exists.

Apart from initialising a group, CGKA allows any group member IDi to update its key.
Informally, after an Update2 operation the state of IDi is secure even if its previous state
completely leaked to an adversary. Moreover, any group member can add a new party, or
remove an existing one.

These operations (Update, Add, Remove) require sending a message to all members of the
group. As we do not assume that the parties are online at the same time, IDi cannot simply
send a message to IDj . Instead, all protocol messages are exchanged via an untrusted delivery
server. Although the server can always prevent any communication taking place, we require
that the shared group key in the CGKA protocol – and thus the messages encrypted in the
messaging system built upon it – remains private.

Another issue we must take into account is the fact that (at least for the protocols discussed
below) operations must be performed in the same order by all parties in order to maintain
a consistent state. Even if the delivery server is honest, it can happen that two parties
try to execute an operation at the same time. In this case, an ordering must be enforced,
and it is natural to let the delivery server do it. Whenever a party wants to initiate an
Update/Remove/Add operation, it sends the message to the delivery server and waits for an
answer. If it gets a confirmation, it updates its state and deletes the old one. If it gets a
reject, it deletes the new state and keeps the old one. Note that when a party gets corrupted
while waiting for the confirmation, both the old and new state are leaked.

The formalization of CGKA is fairly recent, having first been introduced in [ACDT20]. In
particular, the MLS working group predates it, which only complicates any account of its
development. We try to give a brief overview below. Up to the writing of this paper, the
MLS protocol has seen 9 versions, through which we can find two different CGKA protocols:
ART and TreeKEM, both of which were incorporated as candidates in the initial MLS protocol
draft. ART was later removed in the second version of the protocol, with TreeKEM (which
has seen several modifications throughout the different versions) being the current candidate.
Accordingly, we will refer to the CGKA construction underlying version X of the MLS draft as
TreeKEMvX. We will also loosely use the term TreeKEM when referring to aspects that are
not unique to specific versions or when there is no ambiguity.

Asynchronous Ratcheting Tree (ART). The first proposal of (a simplified variant of) a
CGKA is the Asynchronous Ratcheting Tree (ART) by Cohn-Gordon et al. [CCG+18]. This
protocol (as well as TreeKEM and the protocol formalized in this paper) identifies the group
with a binary tree where edges are directed from the leaves to the root.3 Each party IDi in
the group is assigned their own leaf, which is labelled with an ElGamal secret key xi (known

2We use capital letters to refer to the operations (as opposed to verbs).
3The non standard direction of the edges here captures that knowledge of (the secret key of) the source

node implies knowledge of the (secret key of the) sink node. Note that nodes therefore have one child and
two parents.

88

5.1. Introduction

only to IDi) and a corresponding public value gxi . The values of internal nodes are defined
recursively: an internal node whose two parents have secret values a and b has the secret
value gab and public value gι(gab), where ι is a map to the integers. The secret value of the
root is the group key. As illustrated in Figure 5.1, a party can update its secret key x to a
new key x′ by computing a new path from x′ to the (new) root, and then send the public
values on this new path to everyone in the group so they can switch to the new tree. Note
that the number of values that must be shared equals the depth of the tree, and thus (as the
tree is balanced) is only logarithmic in the size of the group.

The authors prove the ART protocol secure even against adaptive adversaries. However, in
this case, their reduction loses a factor that is super-exponential in the group size. To get
meaningful security guarantees based on this reduction one requires a security parameter for
the ElGamal scheme that is super-linear in the group size, resulting in large messages and
defeating the whole purpose of using a tree structure.

TreeKEM. The TreeKEM proposal [BBR18, BBM+20] is similar to ART, as a group is still
mapped to a balanced binary tree where each node is assigned a public and secret value. In
TreeKEM those values are the public/secret key pair for an arbitrary public-key encryption
scheme. As in ART, each leaf is assigned to a party, and only this party should know the secret
key of its leaf, while the secret key of the root is the group key. Unlike in ART, TreeKEM
does not require any relation between the secret key of a node and the secret key of its parent
nodes. Instead, an edge u→ v in the tree (recall that edges are directed and pointing from
the leaves to the root) denotes that the secret key of v is encrypted under the public key of u.
This ciphertext can now be distributed to the subset of the group who knows the secret key of
u to convey the secret key of v to them. We will refer to this as “encrypting v to u". Below
we will outline a slightly simplified construction, close to TreeKEMv7, which will later ease the
understanding of the protocol here proposed.

To initialise a group, the initiating party creates a tree by assigning the leaves to the keys of
the invited parties. She then samples fresh secret/public-key pairs for the internal nodes of
the tree and computes the ciphertexts corresponding to all the edges in the tree. (Note that
leaves have no ingoing edges and thus the group creator only needs to know their public keys.)
Finally she sends all ciphertexts to the delivery server. If a party comes online, it receives the
ciphertexts corresponding to the path from its leaf to the root from the server, and can then
decrypt (as it has the secret key of the leaf) the nodes on this path all the way up to the
group key in the root.

As illustrated in Figure 5.1, this construction naturally allows for adding and removing parties.
If IDi wants to remove IDj, she simply samples a completely fresh path from a (fresh) leaf to
a (fresh) root replacing the path from IDj’s leaf to the root. She then computes and shares
all the ciphertexts required for the parties to switch to this new path except the ciphertext
that encrypts to IDj ’s leaf. IDi can add IDj similarly, she just samples a fresh path starting at
a currently not occupied leaf, using IDj’s key as the new leaf node, and communicates the
new keys to IDj. This process can be optimized if the keys are derived hierarchically from a
hash chain of seeds, so that a single seed needs to be encrypted to each party.

Unfortunately, adding and removing parties like this creates a new problem. After IDi added or
removed IDj , it knows all the secret keys on the new path (except the leaf). To see why this is
a problem, assume IDi is corrupted while adding (or removing) IDj (and no other corruptions
ever take place), and later – once the adversary loses access to IDi’s state – IDi executes an
Update. Assume we use a naïve protocol where this Update replaces all the keys on the path

89

5. Adaptively Secure Continuous Group Key Agreement

from IDi’s leaf to the root (as in ART) but nothing else. As IDi’s corruption also leaked keys
not on this path, thus not replaced with the Update, the adversary will potentially still be able
to compute the new group key, so the Update failed to achieve PCS.

To address this problem, TreeKEM introduced the concept of blanking. In a nutshell, TreeKEM
wants to maintain the invariant that parties know only the secrets for nodes on the path
from their leaf to the root. However, if a party adds (or removes) another party as outlined
above, this invariant no longer holds. To fix this, TreeKEM declares any nodes violating the
invariant as not having any secret (nor public) value assigned to them. Such nodes are said
to be “blanked", and the protocol basically specifies to act as if the child of a blank node
is connected directly to the blanked node’s parents. In particular, when TreeKEM calls for
encrypting something to a blank node, users will instead encrypt to this node’s parents. In
case one or both parents are blanked, one recurses and encrypts to their parents and so forth.

This saves the invariant, but hurts efficiency, as we now no longer consider a binary tree and,
depending on the sequence of Adds and Removes, can end up with a “blanked" tree that has
effective indegree linear in the number of parties. The reason one can still hope for TreeKEM’s
efficiency to not degrade too much and stay close to logarithmic in practice comes from the
fact that blanked nodes can heal: whenever a party performs an Update operation, all the
blank nodes on the path from its leaf to the root become normal again.

For completeness, we mention that the design of TreeKEMv9 differs in essentially two aspects.
First, operations are not executed standalone, but bundled into groups: users can at any point
propose an operation, not having any impact on the group state; then, a user IDj can collect
those proposals and execute them at once in a Commit, which includes an update of IDj’s
path, and moves the group forward into a new epoch. This allows e.g. for IDi to propose an
Update by just sending their new leaf public key and waiting for someone else to commit that
proposal (which will in turn blank IDi’s path). Second, Adds no longer involve blanking: a
new user’s leaf node will be directly connected to the root, and progressively pushed down the
tree as users within the appropriate subtree commit. In particular, the initialization of the tree
will now consist of a Commit including Add proposals for each of the group members. Since
none of these aspects help in the understanding of the proposed protocol, we omit the details
and refer the reader to the MLS draft [BBM+20].

5.1.2 Our Contribution
We formalize an alternative CGKA design, stemming from TreeKEM, first proposed by Millican
on the MLS mailing list in February 20184, which we call Tainted TreeKEM, or TTKEM for
short. In our publication [KPW+21] we compare the efficiency of TTKEM and TreeKEM by
running simulations and show TTKEM to be more efficient than TreeKEM in certain realistic
scenarios; this is not part of this thesis and we refer to [KPW+21] for details. Furthermore,
we prove TTKEM to satisfy a comprehensive security statement which captures the intuition
that an Update fixes a compromised state. Our proof can easily be adapted to TreeKEM,
for which one can get a similar security statement, and constitutes the first adaptive security
proof with subexponential loss for any CGKA protocol. In the following we elaborate on these
contributions.

4[MLS] Removing members from groups, Jon Millican {jmillican@fb.com}, 12 February 2018, https:
//mailarchive.ietf.org/arch/msg/mls/4-gvXpc-LGbWoUS7DKGYG65lkxs

90

https://mailarchive.ietf.org/arch/msg/mls/4-gvXpc-LGbWoUS7DKGYG65lkxs
https://mailarchive.ietf.org/arch/msg/mls/4-gvXpc-LGbWoUS7DKGYG65lkxs

5.1. Introduction

Asynchronous Ratcheting Tree (ART)

a b c d

e = gab f = gcd

gef

(a)

a b c d

e = gab f = gcd

gef

d′

f ′ = gcd′

gef ′

(b)

TreeKEM

A H

(c)

A HA

(d)

A H

(e)

A H

(f)

Figure 5.1: Top: Illustration of an Update in the ART protocol. The state of the tree changes
from (a) to (b) when Dave (node d) updates his internal state to d′. Bottom: Update and
Remove in naïve TreeKEM and TreeKEM with blanking. The state of a completely filled tree
is shown in (c). The state changes from (c) to (d) when Alice (node A) performs an Update
operation. This changes to (e) when Alice removes Harry (node H) in naïve TreeKEM (with
the nodes that Alice should not know in red) or to (f) in the actual TreeKEM protocol which
uses blanking.

91

5. Adaptively Secure Continuous Group Key Agreement

Tainted TreeKEM (TTKEM). As just outlined, the reason TreeKEM can be inefficient
comes from the fact that once a node is blanked, we cannot simply encrypt to it, but instead
must encrypt to both its parents, if those are blanked, to their parents, and so forth. The
rationale for blanking is to enforce an invariant which states that the secret key of any
(non-blanked) node is only known to parties whose leaves are ancestors of this node. This
seems overly paranoid, assume Alice removed Henry as illustrated in Figure 5.1, then the
red nodes must be blanked as Alice knows their value, but it is instructive to analyze when
this knowledge becomes an issue if no blanking takes place: If Alice is not corrupted when
sending the Remove operation to the delivery server there is no issue as she will delete secret
keys she should not know right after sending the message. If Alice is corrupted then the
adversary learns those secret keys. But even though now the invariant doesn’t hold, it is not
a security issue as an adversary who corrupted Alice will know the group key anyway. Only
once Alice updates (by replacing the values on the path from her leaf to the root) there is a
problem, as without blanking not all secret keys known by the adversary are replaced, and
thus the adversary will be able to decrypt the new group key; something an Update should
have prevented (more generally, we want the group key to be safe once all the parties whose
state leaked have updated).

Keeping dirty nodes around, tainting versus blanking. In TTKEM we use an alternative
approach, where we do not blank nodes, but instead keep track of which secret keys of nodes
have been created by parties who are not supposed to know them. Specifically, we refer to
nodes whose secret keys were created by a party IDi which is not an ancestor of the node as
tainted (by IDi). The group keeps track of which nodes are tainted and by whom. A node
tainted by IDi will be treated like a regular node, except for the cases where IDi performs an
Update or is removed, in which it must get updated. Let us remark that tainted nodes can
heal similarly to blanked nodes: once a party performs an Update, all nodes on the path from
its leaf to the root are no longer tainted.

Efficiency of TTKEM vs TreeKEM. Efficiency-wise TreeKEM and TTKEM are incompa-
rable. Depending on the sequence of operations performed either TreeKEM or TTKEM can
be more efficient (or they can be identical). Thus, which one will be more efficient in practice
will depend on the distribution of operation patterns we observe. In [KPW+21] we show that
for some natural cases TTKEM will significantly outperform TreeKEM. This improvement is
most patent in the case where a small subset of parties perform most of the Add and Remove
operations. In practice, this could correspond to a setting where we have a small group of
administrators who are the only parties allowed to add/remove parties. The efficiency gap
grows further if the administrators have a lower risk of compromise than other group members
and thus can be required to update less frequently. In this setting, TTKEM approaches the
efficiency of naïve TreeKEM.

When we compare the efficiency of the CGKA protocols we focus on the number of ciphertexts
a party must exchange with the delivery server for an (Update, Add or Remove) operation.
The reason for this is that the alternative metric of measuring the number of ciphertexts a
party needs to download to process an operation is not as relevant, since, for all protocols
considered, this number will be logarithmic in the worst case.5 We refer to [KPW+21] for the
details and precise results of our efficiency analysis.

5There is, however, still room for improvement in the case where a group member comes online and must
process a large number of operations, as these could potentially be somehow batched by the server.

92

5.1. Introduction

Security of (Tainted) TreeKEM. A main contribution of our publication [KPW+21] is a
security proof for TTKEM for a comprehensible security statement that intuitively captures
how Updates ensure FS and PCS, in a strong security model. In particular, this constitutes the
first adaptive security proof for any TreeKEM-related protocol. Moreover, both the security
statement and the proof can be easily adapted to TreeKEM. We elaborate in the following
section.

5.1.3 The Adversarial Model
We anticipate an adversary who works in rounds, in each round it may adaptively choose an
action, including start/stop corrupting a party, instruct a party to initalize an operation or
relay a message. The adversary can choose to corrupt any party, after which its state becomes
fully visible to the adversary. In particular, corrupting a party gives the adversary access to the
random coins used by said party when executing any group operation, deeming the party’s
actions deterministic in the eyes of the adversary throughout the corruption. We would like to
stress that security in this strong model implies security in weaker and potentially more realistic
models, e.g. consider the setting where malware in a device leaks some of the randomness bits
but cannot modify them. He can also choose to stop the corruption of a currently corrupted
party. The adversary can instruct a party to initalize an Init/Update/Remove/Add operation.
This party then immediately outputs the corresponding message to be sent to the delivery
server. The goal of the adversary is to break the security of a group key (i.e., a secret key
that is contained in the root in the view of at least one party) that – given the sequence of
actions performed – it should not trivially know.

We now discuss different possible restrictions on the adversary corresponding to qualitatively
different levels of security.

Adaptiveness. The literature distinguishes between selective and adaptive adversaries. In
the selective case, an adversary is required to make all or some of its choices (here this means
the sequence of operations and which key it is going to break) at the beginning of the security
experiment, without seeing any public keys or the results of previous actions. While it is often
more convenient to prove security in this setting, it is clearly unrealistic, since in the real
world adversaries may adjust their behaviour based on what they observe during the attack.
So obviously, security against adaptive adversaries is desirable. There is a generic reduction
from selective to adaptive adversaries that simply guesses what the adversary may choose
(this is the approach effectively taken in [CCG+18]). However, this involves a loss in the
advantage that is exponential (or even superexponential) in the size of the group. This means
that in order to provably achieve meaningful security, one needs to set the underlying security
parameter linear in the group size, which results in the Update messages having size linear
in the group size (since they usually consist of encryptions of secret keys). But the trivial
construction based on pairwise channels also has message size that is linear in the number of
group members, so such a security proof defeats the whole purpose of the protocol: having
small Update messages! The adversaries we consider are adaptive while the security loss we
achieve is only quasipolynomial (or even polynomial) in the standard model (in the random
oracle model, resp.; see details below).

Activeness. One can classify adversaries with respect to their power to interact with the
protocol during the attack. For example, the weakest form of adversary would be a passive
adversary, i.e. an eavesdropper that only observes the communication but does not alter

93

5. Adaptively Secure Continuous Group Key Agreement

Constraints Forward Adversary Tightness
on PKE Secrecy Selective Adaptive

ART
[CCG+18]

ElGamal (any
with contributive

NIKE)
Standard Passive O(M) RO Ω

(︂
(MQ)M

)︂
RO

TreeKEM
[BBM+20]** None Standard Passive O (M) S Ω

(︂
(MQ)M

)︂
S*

rTreeKEM
[ACDT20] UPKE Strong Passive O (M) RO Ω

(︂
(MQ)M

)︂
RO*

TTKEM
(this work) None Standard Part. active O(M) S,RO O

(︂
M2Qlog(M)

)︂
S

O ((MQ)2) RO

Table 5.1: Table depicting the different security levels satisfied by CGKA protocols. M, Q
denote upper bounds on the number of group members and Init/Update/Remove/Add queries,
respectively. The first two columns correspond to protocol characteristics, and the right-most
three to the best known proofs. S and RO stand Standard and Random Oracle Models,
respectively. (*) These would follow from the selective proof via a straightforward complexity
leveraging argument. Such an argument is implicit in the proof of [CCG+18]. (**) [ACDT20]
provides a sketch for a proof against passive adaptive adversaries with a quasi-polynomial loss
in the SM; this paper suggests proofs against part. active, adaptive adversaries both in the
SM and ROM, with the same tightness as the ones for TTKEM.

any messages, whereas the strongest notion would be an active adversary who can behave
completely arbitrarily. In this work we consider “partially" active adversaries who can arbitrarily
schedule the messages of the delivery server, and thus force different users into inconsistent
states. But we do not consider adversaries who can arbitrarily deviate and for example use
secret keys of corrupted parties to create malformed messages. Restricting to partially active
adversaries is fairly common in this setting [ACD19, CHK19, JMM19] (also somewhat implied
by the model of [DV19], where communication must halt after an active attack). Achieving
or even defining meaningful security against fully active adversaries is the subject of ongoing
research [ACJM20].

Forward Secrecy. FS (and PCS) are standard notions expected to hold in modern messaging
protocols. However, in contrast to the two-party setting, formalizing FS in the group setting
is more nuanced. One natural notion is to require that a key is secure if all parties have
performed an update before being corrupted. This is the notion considered in [CCG+18] and
the one we adopt here and call it standard FS. In contrast, [ACDT20] defines a stronger
notion we refer to as strong FS. It requires keys to be secure as soon as possible subject to
not violating basic completeness of the CGKA protocol. However, this is only required in
executions where protocol packets are delivered in the same order to all group members.6 The
construction in [ACDT20] in fact achieves strong FS, but only for adversaries that are much
less active than ours. We provide some details in the next section.

6Going even further, the (efficient but impractical) CGKA protocols of [ACJM20] enjoys optimal FS. That
is, keys must become secure as soon as possible for arbitrary delivery order. In fact, two of their protocols
enjoy optimal FS even against adversaries that can arbitrarily manipulate and generate traffic; a type of active
security even stronger than the one considered in this work.

94

5.1. Introduction

The safe predicate. Providing PCS and FS requires to clearly define which keys we expect
to be secure given a sequence of adversarial actions. Given the asynchronous setting where
group members might be in different states, and an active adversary that may force users into
inconsistent states, this is quite involved. Note that group members might even have different
views of who is currently a member of the group. We give a compact and intuitive predicate
that captures exactly what PCS and FS guarantees TTKEM provides.

The reduction in the standard model via piecewise guessing. Recall that there is a
trivial reduction between selective and adaptive adversaries that simply guesses the necessary
information and fails if the guess was incorrect. This loses an exponential factor in the amount
of information that needs to be guessed. In Chapter 3 we proposed a general framework
(refered to as Piecewise-Guessing) that allows to reduce this loss under certain conditions.
The resulting loss depends on the graph structure that naturally arises from the security
experiment. Applying the framework in the obvious way (which already requires non-trivial
effort) we achieve a quasipolynomial security loss ≈ (M · Q)2 log(M) against partially active
adversaries, where M is an upper bound on the number of group members and Q is the number
of Init/Update/Remove/Add queries the adversary issues. Using a more careful analysis and
taking the more restrictive structure of the queries and the graph constructed in the CGKA
security game for TTKEM into account, we can improve this to ≈ Qlog(M). We note that all
steps of the proof strategy also apply to TreeKEM, and so an equivalent proof for it would
easily follow.

The reduction in the random oracle model. In (Tainted) TreeKEM, a node is identified
with a short seed s, from which the public/secret key pairs of this node are derived. If the
randomness used to sample those keys is a hash of s, and we model this hash as a random
oracle, we can give a much better polynomial bound for the adaptive security of TTKEM.

This proof is very different from the proof in the standard model and does not use the
Piecewise-Guessing framework. Some of the techniques resemble a security proof of Logical
Key Hierarchies (cf. Section 5.1.4) by Panjwani [Pan07], but otherwise the proof is entirely
self-contained and novel. Again, our proof can also be applied to TreeKEM. As a sidenote, we
prove and employ a new result on a public-key version of GSD in the random oracle model,
which we believe to be of independent interest.

5.1.4 Related Work
The basic idea of TreeKEM can be traced back to Logical Key Hierarchies (LKH) [WHA98,
WGL98, CGI+99]. These were introduced as an efficient solution to multicast key distribution
(MKD), where a trusted and central authority wants to encrypt messages to a dynamically
changing group of receivers. Clearly, the main difference to continuous group key agreements
is the presence of a central authority that distributes the keys to users and may add and
remove users. At the heart of TreeKEM is the realization that if one replaces symmetric key
encryption with public key encryption in LKH, then any group member can perform the actions
that the central authority does in MKD. But, as described above, this introduces the problem
that some users now know the secret keys in parts of the tree they are not supposed to, which
creates security problems. This is where the main novelties of TreeKEM and follow up work
lies: in providing mechnanisms to achieve PCS and FS nonetheless.

LKH has been proven secure even against adaptive adversaries with a quasi-polynomial bound
[Pan07]. Unfortunately, there are several important differences between LKH that do not allow

95

5. Adaptively Secure Continuous Group Key Agreement

us to simply rely on [Pan07] to prove TTKEM or TreeKEM secure: 1) their proof is in the
symmetric key setting, while we are using public key encryption; 2) their proof assumes a
central authority and there is no concept of PCS or FS; 3) for efficiency reasons, TTKEM
and TreeKEM use hierarchical key derivation, which the proof in [Pan07] does not take into
account (even though it had already been proposed in optimized versions of LKH [CGI+99])
and it is a priori unclear how this affects the proof; 4) we are also interested in proving security
in the random oracle model, which, as we show, gives tighter bounds.

Since the appearance of the double ratchet algorithm [PM16], implemented in applications like
Signal or Whatsapp, secure messaging has received a lot of attention, particularly in the two
party case [BSJ+17, DV19, JS18, JMM19, PR18, ACD19]. In the group setting, the main
example of such a protocol is TreeKEM [BBR18, BBM+20], currently in development by the
IETF MLS working group. Its predecesor was the ART protocol [CCG+18], whose proposal
motivated the creation of the mentioned working group. A study of PCS in settings with
multiple groups was done by Cremers et al. [CHK19], and Weidner [Mat19] explored a variant
of TreeKEM allowing for less reliance on the server for correctness. In a follow-up work, Alwen
et al. [ACJM20] study the security of CGKA protocols against insider attacks. Finally, in
[AAB+21] we consider the setting of several overlapping groups and suggest a protocol for
multicast encryption or CGKA for static subgroup structures.

rTreeKEM. Recently, Alwen et al. [ACDT20] introduced another variant of TreeKEM,
termed re-randomized TreeKEM (rTreeKEM). Since their paper structure shares similarities
with ours, we will discuss the differences between them.

First, it should be noted that the aims of the protocols are very different: while TTKEM seeks
to improve the efficiency of TreeKEM by removing the need for blanks, rTreeKEM’s focus is
on improving its forward secrecy guarantees to achieve strong FS. However, we see no reason
why one could not combine both protocols, endowing TTKEM with strong FS. Moreover, it
seems plausible that the proof techniques developed in this work can also be applied to the
rTreeKEM construction or to the combination of the two.

Second, their work already defines CGKA as an abstraction of the main problem TreeKEM
aims to solve. We use their completeness notion, but add a Confirm and Deliver algorithm to
their definition. The reason for this is that we work in the more general model that allows a
malicious delivery server, i.e. the adversary can reorder and withhold messages at will. The
model in [ACDT20] requires the delivery server to be basically honest: the server can delay,
but never send inconsistent messages to parties, i.e. the adversary in [ACDT20] is almost
passive.

Last, both works provide security proofs, albeit these differ considerably. Their paper provides
proofs for both TreeKEM and rTreeKEM with a polynomial security loss, although these
concern selective security only. They also sketch a security proof against adaptive adversaries
losing a quasi-polynomial factor (for TreeKEM in the standard model, for rTreeKEM in the
random oracle model). In contrast, we give formal proofs for the adaptive security of TTKEM
with only polynomial loss in the random oracle model and quasi-polynomial in the standard
model; and, as mentioned, against a stronger partially active adversary. Also, proofs with the
same bounds would follow for TreeKEM.

96

5.2. Description of TTKEM

5.1.5 Impact on MLS
As of writing, the current version of the MLS draft (MLS v9) differs substantially from TTKEM,
mainly due to the Proposal-Commit structure. However, it should be noted that TTKEM
can be cast in that same fashion, as it is indeed done in [ACJM20]. As with TreeKEM, the
application of this framework would bring an efficiency tradeoff that should be studied carefully
and which we leave for further work, though noting the challenge in doing so without real
world data. As for our security proofs, a security proof for TreeKEM follows from the one
given in the paper, so we believe this work to be of relevance to the MLS community.

5.2 Description of TTKEM
5.2.1 Asynchronous Continuous Group Key Agreement Syntax

Definition 35 (Asynchronous continuous group key agreement). An asynchronous continuous
group key agreement (CGKA) scheme is an 8-tuple of algorithms CGKA = (keygen, init, add,
rem, upd, dlv, proc, key) with the following syntax and semantics:

Key Generation: Fresh InitKey pairs are generated using (pk,sk)← keygen(1λ) by users
prior to joining a group. Public keys are used to invite parties to join a group.

Initialize a Group: For i ∈ [2, n] let pki be an InitKey public key belonging to party IDi.
Let U = (ID1, . . . , IDn). Party ID1 creates a new group with membership U by running:

(γ, [W2, . . . ,Wn])← init (U , [pk1, . . . ,pkn])

and sending welcome message Wi for party IDi to the server. Finally, ID1 stores its local
state γ for later use.

Adding a Member: A group member with local state γ can add party ID to the group
by running (γ′,W,T) ← add(γ, ID,pk) and sending welcome message W for party ID
and the add message T for all group members (including ID) to the server. They store
the old state γ and new pending state γ′ until getting a confirmation from the delivery
server as defined below.

Removing a Member: A group member with local state γ can remove group member
ID by running (γ′,T) ← rem(γ, ID) and sending the remove message T for all group
members (incl. ID) to the server and storing γ, γ′.

Update: A group member with local state γ can perform an update by running (γ′,T)←
upd(γ) and sending the update message T for all group members to the server and
storing γ, γ′.

Confirm and Deliver: The delivery server upon receiving a (set of) CGKA protocol
message(s) T (including welcome messages) generated by a party ID by running dlv(ID,T)
either sends T to the corresponding member(s) and sends a message confirm to ID, in
which case ID deletes their old state γ and replaces it with the new pending state γ′, or
sends a message reject to ID, in which case ID deletes γ′.

Process: Upon receiving an incoming (set of) CGKA protocol message(s) T (including
welcome messages) a party immediately processes them by running (γ,K)← proc(γ,T).

97

5. Adaptively Secure Continuous Group Key Agreement

Get Group Key: At any point a party can extract the current group key K from their local
state γ by running (γ,K)← key(γ).

We remark that while the protocol allows any group member to add a new party to the group
as well as remove any member from the group it is up to the higher level message protocol (or
even higher level application) to decide if such an operation is indeed permitted. (If not, then
clients can always simply choose to ignore the add/remove message.) At the CGKA level,
though, all such operations are possible.

5.2.2 Overview
In this work, a directed binary tree B ∈ B is defined recursively as a graph that is either the
empty graph, a root node, or a root node whose parents are root nodes of trees themselves.
Note that this corresponds to a standard definition of trees with reversed edges. We choose
this definition since it is much more intuitive in our context and highlights the connection
between the protocol and the GSD game used for the security proof (cf. Definition 41). Note
that paths in the tree now start at leaves and end at the root node.

The nodes in the tree are associated with the following values:

• a seed ∆
• (all nodes except the root) a secret/public key pair derived deterministically from the

seed: (pk,sk)← Gen(∆)
• (only leaf nodes) a credential
• (all except leaves and root) a tainter ID

The root has no associated public/secret key pair, instead its seed is the current group key.

To achieve FS and PCS, and to manage group membership, it is necessary to constantly renew
the secret keys used in the protocol. We will do this through the group operations Update,
Remove and Add. We will use the term refresh to refer to the renewal of a particular (set of)
key(s) (as opposed to the group operation). Each group operation will refresh a part of the
tree, always including the root and thus resulting in a new group key which can be decrypted
by all members of the current group. Users will also have a list of Initialization Keys (init keys)
stored in some key-server, widely available and regularly updated, and used to add users to
new groups.

Each group member should have a consistent view of the public information in the tree, namely
public keys, credentials, tainter IDs and past operations. We assume that a party will only
process operations issued by parties that (at the time of issuing) shared the same view of
the tree. This can easily be enforced by adding a (collision-resistant) hash of the operations
processed so far [DV19, JMM19]7. Furthermore, group members will have a partial view of
the secret keys. More precisely, every user has an associated protocol state γ(ID) (or state for
short when there is no ambiguity), which represents everything users need to know to stay part
of the group (we implicitly assume a particular group, considering different groups’ secrets
independent). In particular, we define a state as the triple γ(ID) = (U , B, h), where

• U denotes the set of group members, i.e. ID’s that are part of the group
• B denotes a binary tree defined as above, where for each group member, their credential

is associated to a leaf node.
7For efficiency reasons one could use a Merkle-Damgård hash so that from the hash of a (potentially long)

string T we can efficiently compute the hash of T concatenated with a new operation t.

98

5.2. Description of TTKEM

• h denotes the hash of the group transcript so far, to ensure consistency.

Each user also has a, typically empty, pending state γ′(ID) which stores the updated group
state resulting from the last issued group operation while they wait for confirmation.

As mentioned, a user will generally not have knowledge of the secret keys associated to all
tree nodes. However, if they add or remove parties, they will potentially gain knowledge of
secret keys outside their path. We observe that this will not be a problem as long as we have
a mechanism to keep track of those nodes and refresh them when necessary – towards this
end we introduce the concept of tainting.

Tainting. Whenever party IDi refreshes a node not lying on their path to the root, that
node becomes tainted by IDi. Whenever a node is tainted by a party IDi, that party has
potentially had knowledge of its current secret in the past. So, if IDi was corrupted in the
past, the secrecy of that value is considered compromised (even if IDi deleted that value right
away and is no longer compromised). Even worse, all values that were encrypted to that node
are compromised too. We will assign a tainter ID to all nodes. This can be empty, i.e. the
node is untainted, or corresponds to a single party’s ID, that who last generated this node’s
secret but is not supposed to know it. The tainter ID of a node is determined by the following
simple rules.

• After ID initialises, all internal nodes not on ID’s path become tainted by ID.
• If ID updates or adds/removes someone, refreshed nodes on ID’s path become untainted.
• If ID updates or adds/removes someone, all refreshed nodes not on ID’s path become

tainted by ID.

Hierarchical derivation of updates. When refreshing a whole path we sample a seed ∆0
and derive all the secrets for that path from it. This way, we reduce the number of decryptions
needed to process the update, as parties only need to recover the seed for the “lowest" node
that concerns them, and then can derive the rest locally. To derive the different new secrets
we follow the specification of TreeKEMv9 [BBM+20]. Essentially, we consider a hash function
H, fix two tags x1 and x2 and consider the two hash functions H1, H2 with Hi(·) = H(·, xi).
Together with a Gen function that outputs a public/secret key pair, we derive the keys for the
nodes as follows:

∆i+1 := H1(∆i)
(pki,ski)← Gen(H2(∆i)),

(5.1)

where ∆i is the seed for the ith node (the leaf being the 0th node, its child the 1st etc.) on
the path and (pki,ski) its new key pair. For the proof in the standard model we only require
Hi to be pseudorandom functions, with ∆i the key and xi the input.

With the introduction of tainting, it is no longer the case that all nodes to be refreshed lie
on a path. Hence, we partition the set of all the nodes to be refreshed into paths and use
a different seed for each path. For this we need a unique path cover, as users processing
the update will need to know which nodes’ secrets depend on which; see Figure 5.2. Any
unambiguous partition suffices, the only condition required is that the updating of paths is
done in a particular common order that allows for encryptions to to-be-refreshed nodes to be
done under the respective updated public key (one cannot hope for PCS otherwise).

Let us stress that a party processing an update involving tainted nodes might need to retrieve
and decrypt more than one encrypted seed, as the refreshed nodes on its path might not all

99

5. Adaptively Secure Continuous Group Key Agreement

be derived hierarchically. Nonetheless, any party needs to decrypt at most log n ciphertexts in
the worst case.

Figure 5.2: Path partition resulting from an update by Charlie (3rd leaf node), with nodes
tainted by him shown in black. To process it the grey node must be updated before the green
path and the blue path before Charlie’s (in red).

5.2.3 TTKEM Dynamics
Whenever a user IDi wants to perform a group operation, they will generate the appropriate
Initialize, Update, Add or Remove message, store the updated state resulting from processing
such a message in γ′, and send the appropriate information to the delivery server, which will
then respond with a confirm or reject, prompting IDi to move to state γ′ (i.e. set γ ← γ′)
or to delete γ′, respectively. If the (honest) delivery server confirms an operation, it will also
deliver it to all the group members, who will process it and update their states accordingly.
Messages should contain the identity of the sender, the operation type, encryptions of the
new seeds, any new public keys, and a hash h of the transcript so far, ensuring consistency.
A more detailed description, as well as pseudo-code for the distinct operations is out of the
scope of this work and can be found in the full version of our paper [ACC+19].

Initialize. To create a new group with parties U = {ID1, . . . , IDn}, a user ID1 generates a
new tree B, where the leaves have associated the init keys corresponding to the group members.
The group creator then samples new key pairs for all the other nodes in B (optimizing with
hierarchical derivation) and crafts welcome messages for each party. These welcome messages
should include an encryption of the seed that allows the computation of the keys of the
appropriate path, together with U and the public part of B.

Add. To add a new member IDj to the group, IDi identifies a free spot for them, hashes her
secret key together with some freshly sampled randomness to obtain a seed ∆8, and derives
seeds for the nodes along the path to the root. She then encrypts the new seeds to all the
nodes in the co-path (one ciphertext per node suffices given the hierarchical derivation) and
sends them over together with the identity IDj of the added party and the current transcript
hash h. IDi will also craft a welcome message for the added party containing an encryption of
the appropriate seed, U , h and the public part of B.

8This way the new keys will be secure against an adversary that does not have either knowledge of IDi’s
secret key or control/knowledge of the randomness used.

100

5.3. Security of TTKEM

Update. To perform an Update, a user computes a path partition for the set of nodes not
on her path that need to be refreshed (nodes tainted or with a tainted ancestor), samples a
seed per such path, plus a seed for their path, and derives the new key-pairs for each node, as
described above. She then encrypts the secret keys under the appropriate public keys in the
copaths and sends this information together with the current transcript hash h to the server.

Remove. To remove IDj, user IDi performs an Update as if it was IDj, refreshing all nodes
in IDj’s path to the root, as well as all her tainted nodes (which will become tainted by IDi

after the removal). Note that a user cannot remove herself. Instead, we imagine a user could
request for someone to remove her and delete her state.

Process. When a user receives a protocol message T, she first checks whether the included
transcript hash matches her own stored transcript hash h; if this is not the case, she ignores the
message. Otherwise, she identifies which kind of message it is and performs the appropriate
update of their state, by updating the list of participants if necessary, overwriting any keys,
and updating the tainter ID’s. If it is a confirm or a reject, i.e. it was an operation issued by
herself, she updates the current state γ to γ′ or simply deletes γ′, respectively. Finally, she
updates the transcript hash.

5.3 Security of TTKEM
We will prove security for TTKEM against fully adaptive, partially active adversaries, even
when group members are in inconsistent states. In Section 5.3.1 we present the security game
we consider and in Section 5.3.2 we present a simple predicate which allows to determine for
which group keys we can guarantee security. The latter predicate incorporates the intuition
that Updates allow a party to heal her state. It should be noted that we consider initialization
keys as representing identities, as otherwise we would neglect some other cases which we
would intuitively also consider secure, such as removing a corrupted party and adding them
again once uncorrupted (this is secure per our predicate as they would be treated as a new
identity, generated at the time the init key was).
Throughout our proofs, we only consider a single challenge per game for simplicity; a standard
hybrid argument allows us to extend security to multiple challenges, with a loss linear in the
number of challenges. In order to simulate extra challenges, an extra oracle that reveals group
keys would be needed, but this would have no effect on the security proof - in particular
GSD-like proofs already allow for the corruption of individual keys.

5.3.1 Security Model
Definition 36 (Asynchronous CGKA security). The security for CGKA is modelled using
a game between a challenger C and an adversary A. At the beginning of the game, the
adversary A initialises the group U0 by querying initialise(IDi,U0). The adversary A
can then make a sequence of queries, enumerated below, in any arbitrary order. On a high
level, add and remove allow the adversary to control the structure of the group, whereas
the queries confirm and process allow it to control the scheduling of the messages. The
query update simulates the refreshing of a local state. Finally, start-corrupt and
end-corrupt enable the adversary to corrupt the users for a time period. The entire state
(old and pending) and random coins of a corrupted user are leaked to the adversary during
this period.

101

5. Adaptively Secure Continuous Group Key Agreement

1. add(ID, ID′): a user ID requests to add another user ID′ to the group.

2. remove(ID, ID′): a user ID requests to remove another user ID′ from the group.

3. update(ID): the user ID requests to refresh its current local state γ.

4. confirm(q, β): the q-th query in the game, which must be an action a ∈ {add,
remove,update} by some user ID, is either confirmed (if β = 1) or rejected (if
β = 0). In case the action is confirmed, C updates ID’s state and deletes the previous
state; otherwise ID keeps its previous state).

5. process(q, ID′): if the q-th query is as above, this action forwards the (W or T)
message to party ID′ which immediately processes it.

6. start-corrupt(ID): from now on the entire internal state and randomness of ID is
leaked to the adversary.

7. end-corrupt(ID): ends the leakage of user ID’s internal state and randomness to
the adversary.

8. challenge(q∗): A picks a query q∗ corresponding to an action a∗ ∈ {add,remove,
update} or the initialization (if q∗ = 1). Let K0 denote the group key that is sampled
during this operation and K1 be a fresh random key. The challenger tosses a coin b and
– if the safe predicate below is satisfied – the key Kb is given to the adversary (if the
predicate is not satisfied the adversary gets nothing).

At the end of the game, the adversary outputs a bit b′ and wins if b′ = b. We call a CGKA
scheme (Q, M, t, ϵ)-CGKA-secure if for any adversary A making at most Q queries of the form
add(·, ·), remove(·, ·), or update(·) on a group of size9 at most M and running in time t
it holds

AdvCGKA(A) := |Pr[1← A|b = 0]− Pr[1← A|b = 1]| < ϵ.

5.3.2 The Safe Predicate
We define the safe predicate to rule out trivial winning strategies and at the same time
restrict the adversary as little as possible. For example, if the adversary challenges the first
(initialise) query and then corrupts a user in the group, they can trivially distinguish
the real group key from random. Thus, intuitively, we call a query q∗ safe if the group key
generated in response to query q∗ is not computable from any compromised state. Since each
group key is encrypted to at most one init key for each party, this means that the users which
are group members10 at time q∗ must not be compromised as long as these init keys are part
of their state. However, defining a reasonable safe predicate in terms of allowed sequences of
actions is very subtle.

To gain some intuition, consider the case where query q∗ is an update for a party ID∗. Then,
clearly, ID∗ must not be compromised right after it generated the update. On the other

9Note that we consider an asynchronous setting were users might have different view on the current state
of the group and, even worse, in our partially active security model A might force users into inconsistent states.
Thus, the size of the group at some time point q is not well-defined. To be precise, M is an upper bound on
the number of group members in the view of any user.

10To be precise, since parties might be in inconsistent states, group membership is not unique but rather
depends on the users’ views on the group state. We will discuss this below.

102

5.3. Security of TTKEM

hand, since the update function was introduced to heal a user’s state and allow for PCS, any
corruption of ID∗ before q∗ should not harm security. Similarly, any corruption of ID∗ after
a further processed update operation for ID∗ should not help the adversary either (compare
FS). Finally, also in the case where the update generated at time q∗ is rejected to ID∗ and
ID∗ processes this message of the form confirm(q∗, 0) by returning to its previous state,
any corruption of ID∗ after processing the reject message should not affect security of the
challenge group key. All these cases should be considered safe.

Additionally, we have to take care of other users which are part of the group when the challenge
key is generated: For a challenge to be safe, we must make sure that the challenge group key is
not encrypted to any compromised key. At the same time, one has to be aware of the fact that
in the asynchronous setting the view of different users might differ substantially. As mentioned
above, we consider inconsistency of users’ states rather a matter of functionality than security,
and aim to define the safe predicate as unrestrictive as possible, to also guarantee security for
inconsistent group states. For example, consider the following scenario: user ID generates an
update during an uncompromised time period and processes a reject for this update still in the
uncompromised time period, but this update is confirmed to and processed by user ID∗ before
she does her challenge update q∗; this results in a safe challenge, since the challenge group
key is only encrypted to the new init key, which is not part of ID’s state at any compromised
time point. However, one has to be careful here, since in a similar scenario where ID does
not process the reject for its own update, the challenge group key would clearly not be safe
anymore.

For the following definitions we consider discrete time steps measured in terms of the number
of queries that have been issued by the adversary so far.

We first identify for each user a critical window in the view of a specific user ID∗. The idea is
to define exactly the time frame in which a user may leak a group key if ID∗ generates it at a
specific point in time and distributes it to the group. Clearly, the users may not be corrupted
in this time frame if this happens to be the challenge group key.

Definition 37 (Critical window, safe user). Let ID and ID∗ be two (not necessarily different)
users and q∗ ∈ [1, Q] be some query. Let q− ≤ q∗ be the query that set ID’s current key in
the view of ID∗ at time q∗, i.e. the query q− ≤ q∗ that corresponds to the last update message
a−

ID := update(ID) processed by ID∗ at some time point [q−, q∗] (see Figure 5.3). If ID∗

does not process such a query then we set q− = 1, the first query. Analogously, let q+ ≥ q−

be the first query that invalidates ID’s current key, i.e. ID processes one of the following two
confirmations:

1. confirm(a−
ID, 0), the rejection of action a−

ID; or
2. confirm(a+

ID, 1), the confirmation of an update a+
ID := update(ID) ̸= a−

ID.

If ID does not process any such query then we set q+ = Q, the last query. We say that the
window [q−, q+] is critical for ID at time q∗ in the view of ID∗. Moreover, if the user ID is not
corrupted at any time point in the critical window, we say that ID is safe at time q∗ in the
view of ID∗.

We are now ready to define when a group key should be considered safe. The group key is
considered to be safe if all the users that ID∗ considers to be in the group are individually safe,
i.e., not corrupted in its critical window, in the view of ID∗. We point out that there is an
exception when the action that generated the group key K∗ is a self-update by ID∗ where, to
allow healing, instead of the normal critical window we use the window [q∗, q+] as critical.

103

5. Adaptively Secure Continuous Group Key Agreement

1 q−

ID ID∗

q∗ q+

ID

Q

a−
ID a−

ID confirm(a−
ID, 0)

1 q−

ID ID∗

q∗

ID

q+

ID

Q

a−
ID a−

ID a+
ID confirm(a+

ID, 1)

Figure 5.3: A schematic diagram showing the critical window for a user ID in the view of
another user ID∗ with respect to query q∗. An arrow from a user to the timeline is interpreted
as a request by the user, whereas an arrow in the opposite direction is interpreted as the user
processing the message. The figure at top (resp., bottom) corresponds to the first (resp.,
second) case in Definition 37.

Definition 38 (Safe predicate). Let K∗ be a group key generated in an action

a∗ ∈ {add(ID∗, ·),remove(ID∗, ·),update(ID∗),initialise(ID∗, ·)}

at time point q∗ ∈ [1, Q] and let U∗ be the group of users which would end up in the group if
query q∗ was processed, as viewed by the generating user ID∗. Then the key K∗ is considered
safe if for all users ID ∈ U∗ (including ID∗) we have that ID is safe at time q∗ in the view of ID∗

(as per Definition 37) with the following exceptional case: if ID = ID∗ and a∗ = update(ID∗)
then we require ID∗ to be safe w.r.t. the window [q∗, q+].

5.3.3 The Challenge Graph
In the last section, we defined what it means for a group key to be safe via a safe predicate.
In this section, we try to interpret the safe predicate for the TTKEM protocol. That is, our
goal is to show that if the safe predicate is satisfied for a group key K∗ = ∆∗ generated while
playing the CGKA game on TTKEM, then none of the seeds or secret keys used to derive this
group key are leaked to the adversary (Lemma 21) – this fact will be crucial in Section 5.3.5,
where we argue the security of TTKEM using the Piecewise-Guessing framework presented
in Chapter 3. To this end, we view the CGKA game for TTKEM as a game on a graph and
then define the challenge graph for challenge group key K∗ as a sub-graph of the whole CGKA
graph.

The CGKA graph. A node i in the CGKA graph for TTKEM is associated with seeds ∆i

and si := H2(∆i) and a key-pair (pki,ski) := Gen(si) (as defined in Equation 5.1). The
edges of the graph, on the other hand, are induced by dependencies via the hash function H1
or (public-key) encryptions. To be more precise, an edge (i, j) might correspond to either:

1. a ciphertext of the form Encpki
(∆j); or

2. an application of H1 of the form ∆j = H1(∆i) used in hierarchical derivation.

Naturally, the structure of the CGKA graph depends on the update, add or remove queries
made by the adversary, and is therefore generated adaptively.

104

5.3. Security of TTKEM

The challenge graph. The challenge graph for K∗ = ∆∗, intuitively, is the sub-graph of the
CGKA graph induced on the nodes from which ∆∗ is trivially derivable. Therefore, according
to the definition of the CGKA graph, this consists of nodes from which ∆∗ is reachable and
the corresponding edges (used to reach ∆∗). For instance, in the case where the adversary
maintains all users in a consistent state and there are no tainted nodes, the challenge graph
would simply be the binary tree rooted at ∆∗ with leaves corresponding to init keys of users in
the group at that point. When the group view is inconsistent among the users these leaves
would correspond to the init keys of users in the view of ID∗. Moreover, if there are tainted
nodes, the tree could also have (non-init key) leaves corresponding to these tainted nodes.
Below we state and prove the key lemma which connects the safe predicate to the challenge
graph of TTKEM.

Lemma 21. For any safe challenge group key in TTKEM it holds that none of the seeds and
secret keys in the challenge graph is leaked to the adversary via corruption.

Proof. We first observe that in the CGKA game, when a user is corrupted all secret keys and
seeds in its memory are also corrupt and therefore leaked to the adversary. This could consist
of the secret keys and seeds on the current path from the user’s leaf to the root (in the tree
as currently viewed by the user itself), secret keys on a pending path (if one exists) and, by
definition, all tainted nodes (as viewed by any user). Let’s consider the challenge graph of any
group key ∆∗ generated by a user ID∗ during an action

a∗ ∈ {add,remove,update,initialise}

at a time point q∗. Intuitively, the safe predicate for TTKEM ensures that none of the keys in
this graph is leaked to the adversary by requiring that every node has been refreshed (via an
update) before the generation of ∆∗. Therefore, information on ∆∗ (via ciphertexts or hash
dependencies) are sent only to refreshed and therefore uncorrupt nodes. Since the rest of the
simulation in the CGKA game is independent of ∆∗, an adversary learns nothing about it.
We formalise this intuition below via a proof by contradiction: assuming ∆∗ is leaked to the
adversary, we show that the safe predicate for ∆∗ is somehow violated in the view of ID∗ at q∗.

Let’s first consider a restricted adversary that does not issue reject queries (i.e, confirm(·, 0)).
The fact that ∆∗ is leaked to the adversary means that some secret key sk or a seed s or ∆
in the challenge graph was leaked during the CGKA game; assume some key sk was leaked
(the argument when a seed s or ∆ is leaked is similar). This in turn means that some user was
corrupted while having sk in its memory. There are two possibilities: either sk corresponds to
a leaf node and is a user key for a user ID (possibly same as ID∗) which is in the group in the
view of ID∗ at time q∗ (we argue on that in the end of the proof) (Case A) or sk corresponds
to an internal node (Case B). Let’s argue these cases separately.

Case A. Let’s suppose first that ID ̸= ID∗. As sk is leaked to the adversary it follows that ID
was corrupted after ID generated the update (a−

ID) and before ID processed the update
a+

ID ̸= a−
ID (see Figure 5.4, top). The reason being that this is the only window in which

this key is present in the memory of ID (and this key is not present in the memory of any
other user). However, this violates the safe predicate (restricted to the case where there
are no rejects) as ID is not a safe user. In the complementary case where ID = ID∗, the
argument is similar except that the window in which sk is present in the memory is
different (as in the exceptional case in Definition 38).

105

5. Adaptively Secure Continuous Group Key Agreement

1 q−

ID ID∗

q∗

ID

q+

ID

Q

a−
ID a−

ID a+
ID confirm(a+

ID, 1)

1 q−

ID ID∗

q∗ q+

ID

Q

a−
ID a−

ID confirm(a−
ID, 0)

Figure 5.4: Violation of the safe predicate. The critical window for ID is shaded in green, and
the windows where ID was corrupt is shaded in red. In all the cases, there is an intersection
between the critical and corrupt window and therefore the safe predicate is violated.

Case B. When sk is part of an internal node, we apply the argument in Case A to every user
that is an ancestor of (the node) sk in the challenge graph: it would then follow that at
least one of these users violates the safe predicate. However, if not every leaf in the set
of ancestors of (the node) sk in the challenge graph corresponds to a particular user,
which can only happen when it corresponds to a tainted node, we apply this argument
to the owner of the tainted node. Note that, by construction, the owner must be part
of the group as viewed by ID∗ (even if their states are inconsistent at time q∗) as all
tainted nodes corresponding to a removed user are also removed from the state.

Now, in the case where the adversary does reject queries, the argument is similar except that
we have to take into account the case where a user key sk is invalidated by such rejects. To
be precise, in the case where a−

ID is rejected to ID it could be the case that the safe predicate is
violated when a corruption occurs before a−

ID is rejected to ID (see Figure 5.4, bottom). Finally,
note that in the above argument it was implicitly assumed that all users corresponding to
the leaf nodes of ∆∗ were part of the group U∗ viewed by ID∗ at time q∗. This is guaranteed
by the fact that users only process messages if the corresponding transcript hash coincides
with the hash in their current state, which in particular guarantees that the view of the group
coincides among a user generating a message and a user processing that message, i.e. ID∗

is aware of all edges in the challenge tree of ∆∗. This is crucial since the safe predicate is
applied only to the users in U∗.

5.3.4 Security Proof for TTKEM in the Standard Model
To prove security of TTKEM in the standard model, we will use the Piecewise-Guessing
framework (Chapter 3). Recall that in the CGKA security game, the aim of the adversary is to
distinguish a safe challenge group key K∗ = ∆∗ from a uniformly random and independent seed.
We first consider the selective CGKA game, where the adversary has to do all its queries at
once. We call the two possible executions of the game the real and random CGKA game and
aim to proof indistiguishability of these two games via a sequence of indistinguishable hybrid
games. Similar to several other applications of the framework in Chapter 3, we will define
these hybrid games via the so-called reversible black pebbling game, introduced by Bennett
[Ben89], where, given a directed acyclic graph with unique sink (here, the challenge graph), in
each step one can put or remove one pebble on a node following certain rules, and the goal is
to reach the pebbling configuration where there is only one pebble on the sink of the graph.
Each pebbling configuration Pℓ then uniquely defines a hybrid game Hybℓ: a node v in the

106

5.3. Security of TTKEM

tree being pebbled means that in this hybrid game whenever ∆v would be used to answer a
query, a freshly chosen random seed (independent of ∆v) is used instead in the simulation.
This applies to all cases where ∆v would be used as input for H1 or H2, or as the challenge
output (if v is the challenge node). All remaining nodes and edges are simulated as in the real
CGKA game. Thus, the real game Hybreal is represented as the empty pebbling configuration
P0 where there is no pebble at all, while the random game Hybrandom corresponds to the final
configuration Pτ where only the sink node is pebbled (where τ denotes the length of the
pebbling sequence).

Definition 39 (Reversible black pebbling). A reversible pebbling of a directed acyclic graph
G = (V, E) with unique sink T is a sequence P = (P0, . . . ,Pτ) with Pℓ ⊆ V (ℓ ∈ [0, τ]),
such that P0 = ∅ and Pτ = {T}, and for all ℓ ∈ [1, τ] there is a unique v ∈ V such that:

• Pℓ = Pℓ−1 ∪ {v} or Pℓ = Pℓ−1 \ {v},

• for all u ∈ parents(v): u ∈ Pℓ−1.

By Lemma 21, we know that none of the seeds or secret keys in the challenge graph is leaked
to the adversary throughout the entire game. This will allow us to prove indistinguishability of
subsequent hybrid games from IND-CPA security of the underlying encryption scheme and
pseudorandomness of the hash functions H1, H2. Recall, the functions H1, H2 were defined by
a hash function H which takes some ∆i as secret key and publicly known fixed strings x1, x2 as
inputs. To guarantee security, H is assumed to be a pseudorandom function, where we will use
the following non-standard but equivalent (to the standard) definition of pseudorandomness:

Definition 40 (Pseudorandom function, alternative definition). Let H : {0, 1}λ × {0, 1}λ →
{0, 1}λ be a keyed function. We define the following game PRF(λ): First, a key k ← {0, 1}λ

is chosen uniformly at random and the adversary is given access to an oracle H(k, ·). When
the adversary outputs a string x← {0, 1}λ, a uniformly random bit b← {0, 1} is chosen and
the adversary receives either H(k, x) in the case b = 0, or y ∈ {0, 1}λ uniformly at random if
b = 1. Finally, the adversary outputs a bit b′. If x was never queried to the oracle H(k, ·) and
b′ = b, then the output of the game is 1, otherwise 0. We call H (t, ϵ)-pseudorandom if for
all adversaries A running in time t we have

AdvPRF(A) := |Pr[1← PRF(λ)|b = 0]− Pr[1← PRF(λ)|b = 1]| < ϵ.

It is an easy exercise to prove that the above definition is equivalent to the standard textbook
definition of pseudorandom functions (i.e., only a polynomial loss in security is involved by the
respective reductions).

Lemma 22. Let P = (P0, . . . ,Pτ) be a valid pebbling sequence on the challenge graph.
If H is an (t, ϵ)-secure pseudorandom function and Π = (Gen, Enc, Dec) is a (t, ϵ)-IND-
CPA secure encryption scheme, then any two subsequent hybrid games Hybℓ, Hybℓ+1 are
(t, 5 · ϵ)-indistinguishable11.

Proof. Let Hybℓ, Hybℓ+1 be two subsequent hybrid games. We assume that Pℓ+1 differs
from Pℓ by one additional pebble on a node v∗ with ingoing encryption edge (u, v∗) and

11Technically, the t in Lemma 22 changes slightly due to the reduction and thus should not actually be
the same t. For simplicity, in all our security reductions we will ignore such miniscule running time overheads
incurred by simulating challengers of the security games or sampling (a small number of) random bits.

107

5. Adaptively Secure Continuous Group Key Agreement

ingoing H1 edge (u′, v∗). The case where Pℓ+1 is obtained from Pℓ by removing one pebble
can be proven in a similar way. We proof indistinguishability by a sequence of hybrids
Hybℓ := Hybℓ,0, Hybℓ,1, . . . , Hybℓ,5 := Hybℓ+1, where the intermediate hybrids are defined as
follows:

• Hybℓ,1 is defined similarly to Hybℓ,0 except that the key pair (pku,sku) is generated
from a uniformly random seed instead of the output su of H2.

• Hybℓ,2 is defined similarly to Hybℓ,1 except that the encryption Encpku
(∆v∗) is replaced

by an encryption of a uniformly random seed.

• Hybℓ,3 is defined similarly to Hybℓ,2 except that instead of ∆v∗ a uniformly random seed
is used as input to H1, or H2, or the challenge output (if v∗ is the challenge node)
whenever needed to answer any queries of the adversary.

• Hybℓ,4 is defined similarly to Hybℓ,3 except that the encryption of a uniformly random
seed is replaced by Encpku

(∆v∗).

• Hybℓ,5 is defined similarly to Hybℓ,3 except that the key pair (pku,sku) is generated
from su = H2(∆u) again, instead of using a uniformly random seed. Note that indeed
Hybℓ,5 = Hybℓ+1 holds.

Indistinguishability of Hybℓ,0 and Hybℓ,1 follows from the pseudorandomness of the hash
function H: Since by the pebbling rules it must hold that node u is pebbled, in game Hybℓ,0
the seed su for key generation is computed by applying H2 to a uniformly random seed instead
of ∆u. Thus, by pseudorandomness of H the seed su is indistinguishable from a uniformly
random seed, as used in Hybℓ,1. Furthermore, all the remaining seeds and edges needed
during simulation of the hybrid games can be perfectly simulated, which implies that any
advantage ϵ of an adversary in distinguishing Hybℓ,0 from Hybℓ,1 leads to the same advantage
ϵ in distinguishing H from a random function.

Indistinguishability of Hybℓ,1 and Hybℓ,2 follows from the IND-CPA security of the encryption
scheme: Since in game Hybℓ,1 the key pair (pku,sku) is generated just as in Gen, a reduction
can embed an IND-CPA challenge for messages ∆v∗ and a uniformly random seed at the
encryption edge (u, v∗) and otherwise perfectly simulate all answers to queries of the adversary.
Thus, any adversary distinguishing Hybℓ,1 from Hybℓ,2 with advantage ϵ can be used to break
IND-CPA security of the encryption scheme with the same advantage.

Indistinguishability of Hybℓ,2 and Hybℓ,3 follows from the pseudorandomness of the hash
function H: This is similar to the case of Hybℓ,0 and Hybℓ,1, and the indistinguishability of ∆v∗

again cruicially relies on the fact that node u′ is pebbled. However, the alternative definition
of pseudorandomness must be used for the reduction, since the seed su′ used to generate
the key pair (pku′ ,sku′) is the output of H with the same random seed as used to compute
∆v∗ . Again, the remaining simulation can be done perfectly and the reduction preserves the
advantage.

Similar to the case of Hybℓ,1 and Hybℓ,2, indistinguishability of Hybℓ,3 and Hybℓ,4 follows from
the IND-CPA security of the encryption scheme.

Finally, indistinguishability of Hybℓ,4 and Hybℓ,5 follows from pseudorandomness of the hash
function H, similar to the case of Hybℓ,0 and Hybℓ,1.

108

5.3. Security of TTKEM

Note that in all the sketched reductions, the running time remains essentially the same. Thus,
the claim follows.

Choosing a trivial pebbling sequence of the challenge graph, this already implies selective
CGKA security of TTKEM. Unfortunately, in the adaptive setting, the challenge graph is
not known to the reduction until the adversary does its challenge query, but by this time it
will be too late for the reduction to embed a challenge, since seeds and public keys in the
challenge graph might have been used already before when answering previous queries by the
adversary. Thus, to simulate a hybrid game Hybℓ, the reduction needs to guess (some of) the
adaptive choices the adversary will do. Naïvely, this would result in an exponential security loss.
However, the Piecewise-Guessing framework from Chapter 3 allows to do significantly better:

The problem of proving CGKA security of TTKEM now reduces to finding a sequence of
indistinguishable hybrids such that each hybrid can be simulated by only a small amount of
random guessing. Defining hybrid games via pebbling configurations as above and using the
space-optimal pebbling sequence for binary trees, described in Algorithm 4.8 in Section 4.3.2,
which uses τ = M2 steps and only 2 log(M) + 1 pebbles12 (where M denotes an upper bound
on the number of users in any group), implies a security reduction for TTKEM with only a
quasipolynomial loss in security.

Theorem 16. If H is an (t, ϵ)-pseudorandom function and Π = (Gen, Enc, Dec) is an (t, ϵ)-
IND-CPA secure encryption scheme, then TTKEM is (Q, M, t, 5 ·M2 ·Qlog(M)+2 · ϵ)-CGKA
secure.

Proof. Note that the challenge graph is a complete binary tree of depth log(M) in the worst
case and let P = (P0, . . . ,Pτ) be the recursive pebbling strategy for binary trees from
Algorithm 4.8, which uses τ = M2 steps and at most 2 log(M) + 1 pebbles. We will prove
that each pebbling configuration Pℓ can be represented using (log(M) + 2) · log Q bits. The
claim then follows by Lemma 22 and Theorem 2.

We need the following property of the strategy P : For all ℓ ∈ [0, τ], there exists a leaf in
the tree such that all pebbled nodes lie either on the path from that leaf to the sink or on
the copath. Furthermore, the subgraph on this set of potentially pebbled nodes contains
2 log(M) + 1 nodes which are connected by at most log(M) + 1 encryption and H1 edges,
respectively. Throughout the game, the reduction always knows in which position in the binary
tree a node ends up, but it does not know which of the up to Q versions of the node will end
up in the challenge tree. However, nodes connected by an H1 edge are generated at the same
time, so the reduction only needs to guess for at most log(M) + 2 nodes which of the up to
Q versions of that node will be in the challenge graph. This proves the claim.

Since the above proof mainly relies on the depth of the challenge tree, it can easily be adapted
to prove CGKA security of TreeKEM, the main difference being the different challenge graph
structure (i.e. higher indegree) induced by blanking.

12Although the original Lemma 8 in Section 4.3.2 states that 3 log(M) pebbles are required to pebble a
binary tree, the bound is loose since it is derived from Lemma 7. It is not difficult to see that a tighter analysis
of Algorithm 1 for the case of binary trees leads to a bound of 2 log M + 1.

109

5. Adaptively Secure Continuous Group Key Agreement

5.3.5 Security Proof for TTKEM in the Random Oracle Model
The security of TTKEM is closely related to the notion of generalized selective decryption
(GSD), which we adapt to the public key setting for our purposes:

Definition 41 (Generalized selective decryption (GSD), adapted to public-key setting). Let
(Gen, Enc, Dec) be a public key encryption scheme with secret key space K and message space
M such that K ⊆ U . The GSD game (for public key encryption schemes) is a two-party game
between a challenger C and an adversary A. On input an integer N , for each v ∈ [1, N] the
challenger C picks a key pair (pkv,skv)← Gen(r) (where r is a random seed) and initializes
the key graph G = (V , E) := ([1, N], ∅) and the set of corrupt users C = ∅. A can adaptively
do the following queries:

• (encrypt, u, v): On input two nodes u and v, C returns an encryption c = Encpku
(skv)

of skv under pku along with pku and adds the directed edge (u, v) to E . Each pair
(u, v) can only be queried at most once.

• (corrupt, v): On input a node v, C returns skv and adds v to C.

• (challenge, v), single access: On input a challenge node v, C samples b ← {0, 1}
uniformly at random and returns skv if b = 0, otherwise it returns a new secret key
generated by Gen using a new independent uniformly random seed. In the context of
GSD we denote the challenge graph as the graph induced by all nodes from which the
challenge node v is reachable. We require that none of the nodes in the challenge graph
are in C, that G is acyclic and that the challenge node v is a sink. Note that A does
not receive the public key of the challenge node, since it is a sink.

Finally, A outputs a bit b′ and it wins the game if b′ = b. We call the encryption scheme
(t, ϵ)-adaptive GSD-secure if for any adversary A running in time t it holds

AdvGSD(A) := |Pr[1← A|b = 0]− Pr[1← A|b = 1]| < ϵ.

We first prove a general result for our version of GSD, which could be of independent interest.

Theorem 17. For any public key encryption scheme Π = (Gen, Enc, Dec) and hash function
H let the encryption scheme Π′ = (Gen′, Enc′, Dec′) be defined as follows: 1) Gen′ simply
picks a random seed s as secret key and runs Gen(H(s)) to obtain the corresponding public
key, 2) Enc′ is identical to Enc and 3) Dec′, given the secret key s, extracts the secret key
from Gen(H(s)) and uses Dec to decrypt the ciphertext.
If Π is (t, ϵ̃)-IND-CPA secure and H is modelled as a random oracle, then Π′ is (t, ϵ)-adaptive
GSD secure, where ϵ = 3N2 · ϵ̃ + 3mN

2λ , with N the number of nodes, m the number of oracle
queries to H, λ the seed length.

Proof. Note that the GSD graph contains nodes u ∈ [1, N] corresponding to seeds su that are
hashed using the RO H to obtain seeds for the encryption scheme Π. We prove GSD security
by a sequence of hybrids interpolating between the real game GSD0 where the challenge query
v is answered with the real seed sv and the random game GSD1 where it is answered with an
independent uniformly random seed in S, where S denotes the seed space.

• Define G0 := GSD0, the real GSD game.

110

5.3. Security of TTKEM

• Let s′ ∈ S and v be the challenge node. For 1 ≤ i ≤ δin(v) we define the hybrid
game Gi as follows: The game is similar to Gi−1 except that the ith query of the form
(encrypt, u, v) is answered by Encpku

(s′).

Note, the game Gδin(v) is distributed exactly the same as GSD1. Thus, in this case, for
any GSD-adversary A with advantage ϵ, the advantages of A in distinguishing hybrid games
Gi−1 from Gi sum up to at least ϵ. Since two subsequent hybrid games differ in exactly one
encryption edge, we will use this distinguishing advantage to solve an IND-CPA challenge. To
simulate game Gi, the reduction simply guesses the challenge node v as well as the source
node u of the ith encryption incident on v. We denote these guesses by v∗ and u∗. This
simulation, however, is only possible if A does not query its oracle H on any of the seeds
corresponding to the parents of v∗ = v, since otherwise A can trivially distinguish G0 from
Gδin(v). We encompass this issue by the following (more general) event.

• Event E: A queried a seed s∗ to the random oracle which corresponds to a node that
was not corrupted and is not reachable by any corrupted node, and no challenge query
was issued for it.

Intuitively, event E is true if A queried the random oracle H on some seed which it doesn’t
trivially know and which is associated with a node that might end up in the challenge graph.

We make a case distinction on the probability γ0 = Pr[A triggers E | GSD0] is the probability
that A triggers E when playing the GSD0 game: If γ0 < ϵ/2, apply Lemma 54, which results in
an advantage > ϵ

2N2 against IND-CPA security. Else, apply Corollary 21 to obtain an IND-CPA
adversary with advantage > ϵ

2N2 − m
N2λ .

In either case we obtain an adversary with advantage > ϵ
2N2 − m

N2λ against IND-CPA security,
which proves the claim.13

For ease of exposition, we prove a slightly weaker result in the main body of this work and
refer to the appendix (Section A.1) for a more involved optimized proof. The proof of Lemma
23 – simplifying Lemma 54 in the appendix – relies on the Piecewise-Guessing framework
(Cha). The framework allows for a more modular reduction and we believe that the proof of
Lemma 23 already gives a good intuition on the final reduction presented in Lemma 54. This
approach involves an additional loss in the indegree of the key graph. While the indegree is
a small constant for the case of TTKEM, it can be up to linear in n, the number of users,
for TreeKEM. Thus, the optimized proof of Theorem 17 is of particular interest if applied to
TreeKEM, similar to Theorem 18. We mention that Panjwani [Pan07] already gave a very
similar proof for (private-key) GSD on graphs of bounded depth and the result we obtain in
Lemma 54 is similar to Panjwani’s result for the special case of graphs of depth 1. This is not
a coincidence, since as long as the adversary does not query a seed in the challenge graph,
the random oracle ensures that the adverdary is effectively playing a GSD game on a depth 1
graph. Since Panjwani’s proof is very long and technical, we provide a self-contained proof
in the appendix, which is precisely adapted to our setting of public-key GSD in the random
oracle model. In the following, by the GSD game we refer to the public-key GSD game on the
encryption scheme Π from Theorem 17.

We first consider the case of GSD adversaries which trigger event E only with small probability.
13Note, this reduction is non-uniform. One can get a uniform reduction by combining these two reductions

and guessing whether event E will happen.

111

5. Adaptively Secure Continuous Group Key Agreement

Lemma 23. Let the event E be defined as in the proof of Theorem 17 and A an adversary
against GSD such that

• Pr[A→ 0 | GSD0]− Pr[A→ 0 | GSD1] = ϵ and
• γ0 ≤ ϵ

2 where γb = Pr[A triggers E | GSDb].

Then, in the random oracle model, there exists an IND-CPA adversary A′ (that has essentially
the same running time) against the underlying encryption scheme with advantage > ϵ

2δinN2 ,
where N is the number of nodes in the key graph and δin is an upper bound on the maximium
indegree of the key graph queried by A.

Proof. We first consider a variant GSD′ of GSD where the game aborts as soon as E happens
(we consider this as A outputting 1, i.e. no advantage can be gained on this event). We have

ϵ = Pr[A→ 0 | GSD0]− Pr[A→ 0 | GSD1]
= Pr[(A→ 0) ∧ E | GSD0]− Pr[(A→ 0) ∧ E | GSD1]

+ Pr[(A→ 0) ∧ ¬E | GSD0]− Pr[(A→ 0) ∧ ¬E | GSD1]
= Pr[A→ 0 | E ∧ GSD0] · γ0 − Pr[A→ 0 | E ∧ GSD1] · γ1

+ Pr[(A→ 0) ∧ ¬E | GSD0]− Pr[(A→ 0) ∧ ¬E | GSD1]

≤ ϵ

2 + Pr[(A→ 0) ∧ ¬E | GSD0]− Pr[(A→ 0) ∧ ¬E | GSD1]

So clearly A has advantage > ϵ/2 in GSD′. We now show that GSD′
0 and GSD′

1 are indis-
tinguishable. We will do so by applying the piecewise guessing technique from Theorem 2.
To this aim, first consider the selective version of the GSD′ game, where the adversary has
to commit to all its queries in the beginning of the game, i.e., the entire graph structure,
the challenge v, as well as the subset of corrupted nodes are known to the reduction before
executing the GSD game. Let Hi denote the selective version (with v∗ = v) of the game Gi

for i ∈ [1, δin(v∗)].

From an adversary that distinguishes two subsequent games Hi−1 and Hi one can easily
construct an adversary A′ with the same advantage against the IND-CPA game: A′ chooses
two random seeds s, s′ as its messages and receives a challenge ciphertext c in return. It then
simulates the GSD′ game to A and embeds the challenge c in the edge where Hi−1 and Hi

differ. Denote this edge by (u, v). Since A′ generates almost all of the remaining information
of the hybrid itself, it can respond faithfully to any query of the adversary. The only tricky
queries are 1) a corruption of u and 2) encryption queries of the form (i, u), since this requires
to respond with (an encryption of) a seed su such that H(su) = ru and applying the key
generation algorithm to ru results in the public key associated to u. Luckily, since u is a
parent of the challenge v, u may not be corrupted nor reachable from a corrupted node, so
querying H for su would trigger E and the game aborts. It follows that we can assign a
random seed to u, which to A is information-theoretically indistinguishable to using the correct
seed. Now clearly A′ has the same advantage as A since if c encrypts s it is simulating Hi−1,
while otherwise A′ is simulating Hi.

In the adaptive setting, A′ can simulate game Gi by only guessing the challenge node (v) and
the source (u) of the ith edge incident on v. Thus, it requires 2 log(N) bits of information on
the adversary’s choices. Then by Theorem 2 it follows that the advantage of A′ is at least

ϵ
2δin·N2 .

112

5.3. Security of TTKEM

The following Lemma shows that any GSD adversary triggering event E can be reduced to an
adversary against a partially selective version of GSD where the challenger aborts whenever
event E happens.

Lemma 24. Let the event E be defined as in the proof of Theorem 17. We consider a slightly
modified version of GSD: let GSD′′

b be defined like GSDb with the two differences that a) the
game will abort if E happens (we will consider this equivalent to the adversary outputting 1)
and b) the adversary has to commit to the challenge node at the beginning of the game, i.e.
GSD′′ is partially selective. Then for any adversary A which triggers event E with probability
ϵ in the GSD0 game on N nodes there exists an adversary A′′ (that has essentially the same
running time) in the GSD′′ game on N + 1 nodes such that

Pr[A′′ → 0 | GSD′′
0]− Pr[A′′ → 0 | GSD′′

1] ≥ ϵ

N
− m

2λ
,

where m is the number of oracle queries to H, λ the seed length.

Proof. In the following we consider event E with respect to A playing the normal GSD
game. We construct the adversary A′′ as follows. First, A′′ guesses the node v∗ which will
be associated with the seed which turns E true, i.e., A′′ samples v∗ ← [1, N] uniformly at
random and issues a challenge query for v∗; let s∗ be the response it receives. Then it runs A.
If A queries (encrypt, u, u′) for u ̸= v∗, then A′′ just forwards this query to the challenger
and returns to A whatever it receives in response. For u = v∗, on the other hand, A′′ issues
a query (encrypt, N + 1, u′). Note that the node N + 1 is never used by A and it will
associate the key pkN+1 it receives to the node v∗. Unless a seed associated with v∗ is queried
to the random oracle H, this is indistinguishable from the real GSD game and if this event
happens then – assuming the guess v∗ was correct – this means that event E turned true.
Since A′′ aims to use the event E to break its own GSD challenge, it is enough that the game
simulated to A until E happens is indistinguishable from the real GSD game.

If A queries (corrupt, u), A′′ simply forwards this query to the challenger and returns the
response it receives. If A issues a corruption or encryption query such that v∗ is reachable
from a corrupted node, A′′ aborts and outputs 1.

When A queries (challenge, v) for v ̸= v∗, A′′ sends (corrupt, v) to the challenger and
receives sv. Then it samples a bit c ← {0, 1} uniformly at random, sets s0 := sv, samples
s1 ← S unifomly at random, and returns sc to A. Note that v must be a sink node, hence
this corruption does not affect the validity of v∗ as a GSD challenge. If A happens to choose
v∗ as its challenge, A′′ aborts and outputs 1.

If A makes an oracle query H(s), then A′′ just forwards this query to the challenger if s ̸= s∗,
otherwise A′′ aborts and outputs the bit b = 0. If the seed s∗ is never queried (and the game
GSD′′ does not abort), A′′ outputs 1.

Let V denote the event that v∗ is associated with the seed which turns E true. Let b∗ be the
GSD′′ challenge bit. Now we first note that

Pr[A′′ → 0 | b∗ = 1] ≤ m

2λ

113

5. Adaptively Secure Continuous Group Key Agreement

because if b∗ = 1, s∗ is information-theoretically hidden from A. Furthermore,

Pr[A′′ → 0 | b∗ = 0] = Pr[(A′′ → 0) ∧ E | b∗ = 0] because A′′ → 0 implies E

= ϵ · Pr[A′′ → 0 | E ∧ (b∗ = 0)] because Pr[E | b∗ = 0] = ϵ

= ϵ · Pr[(A′′ → 0) ∧ V | E ∧ (b∗ = 0)] since ¬V implies A′′ → 1
= ϵ · Pr[A′′ → 0 | V ∧ E ∧ (b∗ = 0)] Pr[V | E ∧ (b∗ = 0)]

≥ ϵ

N

Where the last step follows since v∗ was chosen uniformly at random and the simulation is
independent of this choice until E happens and/or A′′ aborts, and because V ∧ E ∧ (b∗ = 0)
implies A′′ → 0. In summary, we obtain

Pr[A′′ → 0 | b∗ = 0]− Pr[A′′ → 0 | b∗ = 1] ≥ ϵ

N
− m

2λ
.

This proves the claim.

The following Corollary now gives a reduction for GSD adversaries which trigger event E with
large probability. We optimize the result in Corollary 21 in the appendix.

Corollary 4. Let the event E be defined as in the proof of Theorem 17, and A an arbitrary
GSD adversary which triggers E with probability ϵ. Then there exists an IND-CPA adversary
A′ (that has essentially the same running time) with advantage

Pr[A′ → 0 | b∗ = 0]− Pr[A′ → 0 | b∗ = 1] ≥ ϵ

δinN2 −
m

δinN2λ
.

where N is the number of nodes, m the number of oracle queries to H, λ the seed length,
and δin an upper bound on the maximium indegree of the graph queried by A.

Proof. We first apply Lemma 24 to construct an adversary A′′ against GSD′′ with advantage
ϵ
N
− m

2λ . Then we apply a very similar proof as for Lemma 23 to construct an IND-CPA
adversary: This proof is exactly the same with the only difference being that GSD′′ (played on
N + 1 nodes) is less adaptive, i.e. A commits to the challenge node v at the beginning of the
game, so when applying Theorem 2 to switch from the selective to the adaptive version, A′

does not need to guess it. It follows that in order to simulate game Gi, A′ needs to guess only
the source u ̸= v of the ith encryption edge incident on v, which consists of log N many bits.
Accordingly, by Theorem 2, the IND-CPA adversary has advantage

1
δinN

(︃
ϵ

N
− m

2λ

)︃
.

We now adapt the above proof to show a polynomial time reduction for TTKEM in the random
oracle model. Intuitively, the CGKA graph corresponds to a GSD graph in the above sense
(i.e. for the transformed Π′, where H2 plays the role of the random oracle) , with the only
difference that there are additional edges corresponding to a second random oracle H1. The
following Theorem shows that this difference does not impact security.

114

5.4. Open Problems

Theorem 18. If the encryption scheme in TTKEM is (t, ϵ̃)-IND-CPA secure and H1, H2
are modelled as random oracles, then TTKEM is (Q, M, t, ϵ)-CGKA-secure, where ϵ =
ϵ̃ · 8(MQ)2 + negl(λ) (where λ denotes the seed length), where M is an upper bound on the
group size.

Sketch. In order to adapt the proof of Theorem 17 to the setting where some seeds may be
derived from others by the random oracle H1, we first slightly change the event E to also
include queries to H1, i.e. the event E is now that A queries H1 or H2 on a seed that it
doesn’t trivially know through corruptions or the challenge query. The case distinction in the
main proof on the probability of A remains the same.

The case where E happens in GSD0 with relatively small probability < ϵ/2 (cf. Lemma 23)
is easily handled, since in this case the reduction may generate all seeds independently as
before and when nodes get corrupted, it can simply program H1 to ensure consistency. The
seeds in the challenge graph are not consistent in this simulation, but since the adversary does
not query any of these seeds with high (enough) probability, this is indistinguishable and our
reduction retains most of the advantage.

The other case, where E happens in GSD0 with large probability ≥ ϵ/2 is handled similarly.
The key observation in Lemma 24 is that it is sufficient to simulate the GSD game correctly
until E happens. Using the approach of programming H1, this is still the case and thus
Corollary 4 also holds in this case.

We conclude by observing that the CGKA graph has at most N = 2MQ nodes and that
none of the seeds and secret keys in the challenge graph (for any safe group key) is leaked by
Lemma 21.

We remark that, similarly to the previous proof, one can easily adapt it to the case of TreeKEM
(with blanking) since the loss in security only depends on the maximal number of nodes in the
challenge graph but not on its structure.

5.4 Open Problems
In this chapter we provided the first adaptive security reductions with subexponential loss
for any CGKA protocol; all previous adaptive security proofs for various CGKA constructions
suffered from an exponential loss in security. More precisely, for TTKEM/TreeKEM we
presented an adaptive security proof with only a quasipolynomial loss in the standard model.
It remains an exciting open problem whether this upper bound could be strenghened to a
polynomial. While we do achieve a small polynomial bound in the random oracle model,
it seems hard to improve on our bounds in the standard model. In fact, in Chapter 7 we
exploit inherent limitations to currently used proof techniques and prove that no non-rewinding
blackbox reduction can prove adaptive security of TreeKEM/TTKEM based on the IND-CPA
security of the underlying encryption scheme with only a polynomial loss. Hence, in order to
achieve adaptive security for CGKA with only polynomial loss in the standard model, potential
directions could be to either 1) use more sophisticated (rewinding/non-blackbox) reductions,
2) make stronger assumptions on the underlying encryption scheme, or 3) come up with
completely new constructions of CGKA.

115

CHAPTER 6
Adaptive Indistinguishability of Yao’s

Garbling

6.1 Introduction
Suppose that Alice, who holds a function represented as a Boolean circuit C, and Bob, who
holds an input x to that function, want to jointly evaluate y = C(x) such that Alice learns
nothing about x while Bob learns nothing about C (except for some side-information that is
unavoidable). Yao put forward1 the following elegant solution:

1. Alice first sends ˜︁C, a “garbling” of the circuit C, to Bob,

2. Bob then obtains ˜︁x, a “garbling” of his input x, from Alice via oblivious transfer,

3. Bob finally evaluates ˜︁C on ˜︁x to learn y and sends it over to Alice.

Yao showed how the garbling steps above can be carried out using a symmetric-key encryption
(SKE) scheme – and hence based on the minimal assumption of one-way functions. This has
been referred to as Yao’s garbling scheme, and is the focus of this work. We describe it next
in slightly more details.

Yao’s garbling scheme. Let (Enc, Dec) be a (special) SKE. To garble a circuit C : {0, 1}n →
{0, 1}m with fan-in 2 and arbitrary fan-out:

1. Alice first samples a pair of secret keys (k0
w,k1

w) for each wire w in C.

2. For every gate g : {0, 1}2 → {0, 1} with left input wire u, right input wire v, and output
wire w, she then computes a garbling table ˜︁g consisting of the four ciphertexts listed in
Table 6.1.(a), in randomly permuted order.

This Chapter essentially replicates, with permission, the full version [KKP21b] of our publication [KKP21a],
© IACR 2021, to appear.

1According to [BHR12b], the idea was first presented by Yao in oral presentations on secure function-
evaluation [Yao82, Yao86] but formally described only in [GMW87].

117

6. Adaptive Indistinguishability of Yao’s Garbling

Enck0
u
(Enck0

v
(kg(0,0)

w)) Enck0
u
(Enck0

v
(k0

w)) Enck0
u
(Enck0

v
(k1

w))
Enck1

u
(Enck0

v
(kg(1,0)

w)) Enck0
u
(Enck1

v
(k0

w)) Enck0
u
(Enck1

v
(k1

w))
Enck0

u
(Enck1

v
(kg(0,1)

w)) Enck1
u
(Enck0

v
(k0

w)) Enck1
u
(Enck0

v
(k1

w))
Enck1

u
(Enck1

v
(kg(1,1)

w)) Enck1
u
(Enck1

v
(k0

w)) Enck1
u
(Enck1

v
(k1

w))
(a) (b) (c)

Table 6.1: Garbling tables for (a) general gate g (b) constant-0 gate and (c) constant-1 gate.
u and v denote the two input wires and w denotes the output wire. The two keys associated
with (say) the wire u are denoted by k0

u and k1
u.

3. Finally, she constructs the output mapping µ which, for each output wire w, maps each
of the keys (k0

w,k1
w) to the bit it “encodes”.

The garbled circuit ˜︁C, which Alice sends it over to Bob, consists of all the garbling tables ˜︁g
and the output map µ. This constitutes the offline phase of the protocol. To garble an input
x = x1∥ . . . ∥xn, Alice simply gives out, for each input wire wi, the key kxi

wi
corresponding to

the bit xi. This constitutes the online phase of the protocol. To evaluate the garbled circuit
on the garbled input, the encryption scheme must satisfy a special correcntess property : for
each ciphertext c ← Enck(m) there should exist a single key (i.e., k) such that decryption
passes. Using the keys in the garbling input, Bob can now evaluate C “over the encryption”
as follows:

1. Starting from the input level and in some topological order, he progressively decrypts
each garbling table in ˜︁C by trying the two keys in hand on all the four ciphertexts for
each garbling table. Thus, in each step, he learns one of the secret keys corresponding
to the output wire of the gate in consideration.

2. At the end of this process, Bob recovers exactly one of the two keys associated with
each output wire of the circuit. This allows him to use the output map µ to “decode”
the revealed output keys to the output string y ∈ {0, 1}m.

The scheme as described above is what is regarded to be the original formulation of Yao’s
garbling scheme [LP09, JW16]. A slight variant in which Alice defers sending the output map
µ to the online phase (along with ˜︁x) is also of interest [JW16], although it suffers from a
higher online complexity compared to the original formulation. To avoid confusion, we refer to
the original scheme as Yao’s offline garbling scheme and the modified scheme as Yao’s online
garbling scheme or, in short, online Yao and offline Yao respectively. Our work concerns the
security of offline Yao.

Security. Even though garbling schemes found several applications (see [BHR12b]), its
security was formally analyzed much later in [LP09]. They consider a simulation-based notion2

captured by the following experiment:

1. The adversary submits a circuit-input pair (C, x) to the challenger.
2This is an equivalent formulation of the definition in [LP09] and is taken from [JW16]. Our overview of

the proof in [LP09] to be discussed in Section 6.1.2 has been adapted accordingly.

118

6.1. Introduction

2. The challenger responds either with the real garbling (˜︁C, ˜︁x) (i.e., real game or Real)
or with a “simulated” garbling where a constant-0 circuit is used instead of C (i.e.,
simulated game or Sim). The constant-0 circuit has the same topology as C but with
all its gates replaced by constant-0 gates.

3. The adversary wins if it guesses which case it is.

Then they gave a reduction from the (special) indistinguishability of the underlying SKE for
offline Yao. Note that the adversary in the above security game must select the garbling
input x at the same time as the circuit C. This is in conflict with the online-offline nature of
the actual scheme where Bob (a potential adversary) sees ˜︁C before he commits to x. Hence
Bob could have chosen the input adaptively, based on ˜︁C. In fact, such a scenario does arise
in applications such as one-time programs and secure outsourcing [BHR12a]. Therefore it is
natural to consider strengthening the above selective definition of simulatability to an adaptive
definition where A gets to choose the input after it sees the garbling of a circuit of its choice.
Unfortunately, as it was shown in [AIKW13] this is too strong a notion to attain for offline
Yao. This is a consequence of their more general negative result that the online complexity of
a garbling scheme (or, more generally, a randomised encoding scheme) in the adaptive setting
must exceed the output-size of the circuit (given that one-way functions exist).3 Jafargholi and
Wichs [JW16] observed that this negative result does not apply to online Yao since the output
map there gets sent in the online phase, and even managed to prove adaptive simulatability
of online Yao. While security of other variants of Yao’s garbling scheme was also proven
[HJO+16, JSW17], the case of offline Yao was largely ignored.

6.1.1 Our Results
Although the negative result in [AIKW13] rules out adaptive simulatability of offline Yao, it is
not clear if it also applies to its adaptive indistinguishability [BHR12b], which is defined by
the following experiment:

1. The adversary submits a pair of circuits (C0, C1) of the same topology to the challenger.

2. The challenger flips a coin b and responds with ˜︁Cb.

3. The adversary then submits a pair of inputs (x0, x1) such that C0(x0) = C1(x1) and the
challenger responds with ˜︁xb.

4. The adversary wins if it guesses the bit b correctly.

Although it is a weaker notion of security, adaptive indistinguishability suffices for certain
applications (e.g., adaptively-indistinguishable symmetric-key functional encryption [JSW17]).

3On a high level, their argument for Offline Yao proceeds as follows. Consider garbling a PRG G (of
sufficient stretch) and suppose that |˜︁x| is less than that of output of the PRG. Then the (online) simulator for
such a scheme can be used to break the security of G. This exploits the fact that the ˜︁x loses information
when it encodes an element in the co-domain of G that is not an image (but not for an image). It is possible
to circumvent this result in the random-oracle model [BHR12a].

119

6. Adaptive Indistinguishability of Yao’s Garbling

Selective Adaptive
Offline Yao Online Yao Offline Yao Online Yao

Simulatability [LP09] [AIKW13] [JW16]Indistinguishability This work

Table 6.2: Security of the two variants of Yao’s garbling. The (only) negative result is
highlighted in red.

Our results. We help (partially) complete the landscape for security of Yao’s garbling (see
Table 7.1). To this end, we characterise the adaptive indistinguishability of offline Yao in terms
of the treewidth4 of the circuit. Our main results are informally stated below.

Theorem (main). Consider the class of Boolean circuits C of size N with treewidth w = w(N).
Offline Yao is adaptively indistinguishable for C with NO(w) loss in security.5

For Boolean circuits of constant (resp., poly-logarithmic) treewidth, we obtain the following
corollary.

Corollary. Offline Yao is adaptively indistinguishable for Boolean circuits of size N and O(1)
(resp., polylog(N)) treewidth with a polynomial (resp., quasi-polynomial) in N loss in security.

Finally, exploiting a classical result from graph theory – that planar circuits of size N have
treewidth at most

√
N [LT79] – we obtain the following corollary.

Corollary. Offline Yao is adaptively indistinguishable for planar Boolean circuits with a
sub-exponential loss in security.

Interpreting our results. Treewidth is a notion from algorithmic graph theory that has
found several applications in parametrised and circuit complexity (see Section 6.1.3) Intuitively,
it is a (graph) property that measures how “far” the circuit is from a formula (and, more
generally, how far a graph is from a tree): in particular, the smaller the treewidth the closer the
circuit is to a formula. Therefore, it is not surprising that having a low treewidth limits how
powerful a circuit can be. A precise characterisation of this (from above) was given in [GJ16]:
every circuit of size N and treewidth w = w(N) can be simulated in depth w log(N). Thus,
e.g., circuits of constant treewidth can be simulated in NC1. Whether the converse is true
in general – i.e., whether NCi can be simulated using circuits with treewidth O(logi−1(N)) –
is an open problem to the best of our knowledge.6 However it is partially true: namely, NC1

circuits can be simulated using polynomial-sized Boolean formulae (which, by definition, have
treewidth 1) [Spi71, Bre74]. Consequently, the first corollary applies to functions computable
in NC1.

Given the aforementioned negative result from [AIKW13], we find any proof of adaptive security
for offline Yao rather surprising. Nevertheless, there are scenarios where our results also lead
to improvements in concrete efficiency (even after the loss in security is taken into account).

4Since treewidth is defined for undirected graphs, whenever we refer to the treewidth of a directed graph
(or a circuit) we refer to the treewidth of the graph obtained by ignoring the direction of its edges.

5Consider a reduction R from a problem P to another problem Q. Suppose that R uses an (t, ϵ)-adversary
A that breaks Q in order to (ϵ′, T ′)-break P . Informally, the loss in security incurred by R can be defined as
the ratio (ϵT ′)/(ϵ′T).

6See this question (48504) posted on CSTheory, Stack Exchange.

120

https://cstheory.stackexchange.com/questions/48504/trading-treewidth-for-depth-in-boolean-circuits

6.1. Introduction

We describe one such scenario next. Recall from the discussion above that for functions
computable in NC1, we show security of offline Yao at only a polynomial loss. Moreover, the
online complexity of garbling such a function using offline Yao depends only on the input
length n (times the security parameter λ). Now, note that PRGs of arbitrary stretch (say nc

for a constant c ∈ N) exist in NC1 [CM01, IN96]. However, if one were to use online Yao,
then the online complexity is substantial (nc × λ). This example is particularly interesting
since offline Yao for such a function is not simulatable at all as a consequence of the negative
result.

Implications to simulatability of online Yao. It is worth pointing out that our results may
also imply tighter reductions for simulatability of online Yao. The reduction for simulatability
of online Yao from [JW16] loses a factor that is exponential in the width of a circuit: our
approach can be seen as an extension of their techniques. Since treewidth is bounded from
above by width, in cases where there is a gap between treewidth and width for a circuit class,
our approach would lead to a tighter reduction for simulatability of online Yao compared to
[JW16]. A more detailed explanation follows later in Remark 3.

Comparison with [JSW17]. We conclude the section by comparing our result with [JSW17],
which is also concerned with adaptively-indistinguishable garbled circuits. The construction in
[JSW17] builds on [HJO+16] and therefore has offline Yao as its basis. However, it requires
(i) applying an additional layer of somewhere equivocal encryption to the garbling table and
(ii) modifying the circuit to be garbled in order to make the security proof go through. These
modifications lead to their construction being less efficient compared to plain offline Yao, but
it does allow them to prove adaptive indistinguishability. It is not clear if any of the ideas
employed there can be used to argue the indistinguishability of offline Yao (this is, in fact,
posed as an open question there).

6.1.2 Technical Overview
Outline. Our starting point is the reduction proving adaptive simulatability of online Yao
[JW16]. The key idea in [JW16] is to abstract out the hybrid argument using a pebbling game
on the circuit, which we call the black-grey (BG) pebbling game (Definition 46). To be precise,
they showed that if a circuit allows a BG pebbling strategy of length τ that uses σ (black)
pebbles, then there exists a reduction proving adaptive simulatability of online Yao with a
loss in security at most O(τ2σ). This allows us to shift the focus from security reductions
to the conceptually-cleaner task of coming up with “pebble-efficient” strategies. We start
off below by describing this connection and then explain why this approach falls short when
it comes to arguing adaptive indistinguishability (or simulatability) of offline Yao. Next we
show how this issue can be remedied, key to it is a new pebbling game, which we call the
black-grey-red (BGR) pebbling game (Definition 50). Analogous to [JW16], we prove that if
there exists a BGR pebbling strategy of length τ that uses σ (“greyscale”, i.e. black or grey)
pebbles, then there exists a reduction proving adaptive indistinguishability of offline Yao where
the loss in security is at most O(τ2σ) (Theorem 24). Finally to complete the proof – and as
our main technical contribution – we describe a pebble-efficient strategy for the BGR pebbling
game in which the number of (greyscale) pebbles used grows only with the treewidth of the
circuit (Theorem 23). The strategy has a divide-and-conquer flavour and crucially relies on
the notion of separators from graph theory. We next elaborate on each of the steps above.

121

6. Adaptive Indistinguishability of Yao’s Garbling

Pebbling game and hybrids

The reduction in [JW16] builds on the reduction for selective simulatability of offline Yao
[LP09]. Both these works follow a sophisticated hybrid argument which can be described
abstractly using a BG pebbling strategy.

Pebbles and garbling modes. The BG pebbling game, as its name suggests, uses two types
of pebbles: black and grey. A pebbling configuration P for a circuit C determines how the
garbled circuit ˜︁C is simulated in the hybrid HP . To be more precise, the pebbling configuration
P can associate each gate g in C with a black or grey pebble. In order to translate P to the
garbling ˜︁C, the simulator in hybrid HP does the following:

• if g carries no pebble in P, then the corresponding garbling table in ˜︁C consists of an
honest garbling table of g (Table 6.1.(a))

• if g carries a grey pebble, then the garbling table encodes a constant-0 gate (Ta-
ble 6.1.(b)).

• if g carries a black pebble then the garbling table encodes either a constant-0 or a
constant-1 gate (Table 6.1.(c)) depending on the value of (the output wire of) g when
C is run on the garbling input x.

The three modes above of simulating individual gates are named real, simulated and input-
dependant modes respectively or, for short, Real, Sim and Input, respectively (Table 6.3.(a)).
Note that the real garbling game corresponds to the empty pebbling configuration (since all
the gates are honestly garbled), whereas the simulated game will correspond to the all-grey
configuration (since all the gates have been replaced by the constant-0 gate).

Pebbling rules. Note that any arbitrary configuration of pebbles P describes a valid hybrid
HP . The role of the pebbling rules is to model indistinguishability of neighbouring hybrids. To
be more precise, if a pebbling configuration Q can be obtained from another configuration P by
a valid pebbling move (or vice versa) then the hybrids HP and HQ should be indistinguishable.
Consequently a BG pebbling strategy P , which must start from an empty configuration and
end with the all-grey configuration, leads to a valid sequence of hybrids that establishes that
the real garbling game and simulated garbling game are indistinguishable, proving the security
of the garbling scheme. In the BG pebbling game, the following moves (see Figure 6.1) are
allowed:

1. a black pebble can be placed on or removed from a gate g if and only if g’s predecessor
gates are pebbled black; and

2. a black pebble on a gate g can be replaced by a grey pebble if g’s successor gates are
pebbled, either black or grey.

To understand the rationale behind the two rules, one needs to take a closer look at the
structure of a garbling table in Yao’s scheme. Since this is not that relevant to the current
discussion, we refer the readers interested in more details to Section 6.3.

122

6.1. Introduction

g g46.1
46.2

g g46.3

Figure 6.1: Rules for the BG pebbling game.

Selective Simulatability of Offline Yao. Observe that in order to simulate ˜︁C in a hybrid
HP , the simulator only needs to know the output value of those gates that are pebbled black
in P (i.e., the gates in Input mode). In the selective setting, since the adversary commits to
the garbling input x in the offline phase, the value of all the gates is available beforehand.
Hence, in this case the simulator has the luxury of using as many pebble as it needs. Therefore
the pebbling strategy (implicitly) employed in [LP09] is the following:

1. starting from the input gates, pebble the circuit completely black in some topological
order, and then

2. starting from the output gates and in reverse topological order, replace each black pebble
with a grey pebble.

To complete the description of the hybrid HP in the selective setting, one thing remains to
be addressed: For concreteness, let’s consider the simulated game, which corresponds to the
all-grey pebbling configuration (the argument for other hybrids is analogous). Note that it is
not possible to send the honestly-generated output map µ in HP since this will lead to the
output being mapped to the all-0 string. However, since x is available in the offline phase,
[LP09] resolved this issue by programming the output map to map the zero-keys of the output
wires to C(x). The adversary cannot tell this from the honest output map since the change is
information-theoretic.

Since the above pebbling strategy takes at most 2N moves (and uses N black pebbles) the
corresponding hybrid argument only loses a 2N factor. It is possible to further reduce to
adaptive simulatability via random guessing, but this incurs an additional loss in security that
is exponential in the length of x.

Adaptive Simulatability of Online Yao. In order to avoid this exponential loss in the
adaptive setting, [JW16] had to mainly tackle two issues, both arising from the fact that the
garbling input x is now only available in the online phase.

1. Firstly, simulating the hybrids could not rely on the knowledge of the values of too many
gates in C.

2. Secondly, the output map could no longer be programmed in the offline phase since the
output C(x) is only determined in the online phase.

The first issue was resolved in [JW16] by employing BG pebbling strategies that were more
frugal in terms of the number of black pebbles used. To this end, they proved that if there
exists a BG pebbling strategy of length τ that uses σ black pebbles, then the loss in the
resulting security is at most O(τ2σ). Here, loosely speaking, the 2σ factor is the cost of

123

6. Adaptive Indistinguishability of Yao’s Garbling

randomly guessing the output values of the gates pebbled black, which they require in order
to carry out the simulation of the hybrids (as well as the reduction).7 To complete their proof,
[JW16] described two (generic) pebbling strategies: one where σ grows only with the width of
the circuit and another where σ grows only with the depth of the circuit. A consequence of
the latter is the adaptive simulatability of log-depth (i.e., NC1) circuits with a polynomial loss
in security.

The second issue, on the other hand, was basically side-stepped by modifying the garbling
scheme to defer the sending of the output map to the online phase, i.e., by resorting to
online Yao. This tweak allowed [JW16] to carry out a “deferred programming” of the output
map since the garbling input is available in the online phase. The cost is an increased online
complexity which is now dependent also on the output size.

Indistinguishability of Offline Yao: Our Approach.

Unfortunately, given the negative result from [AIKW13], it is unlikely that a result as strong
as [JW16] could be shown for adaptive simulatability of offline Yao.8 However, as we will see,
relaxing the security requirement to adaptive indistinguishability offers some wiggle room. The
key to exploiting this, as we explain next, is to discard the simulated garbling mode (Sim)
in the hybrids altogether, which allows us to argue security without having to program the
output map.

Bypassing the simulated mode. A standard way to show that a simulation-based definition
implies an indistinguishability-based definition (e.g., think of semantic security and IND-CPA)
is to use a two-step hybrid argument where the simulated game acts as an intermediary
between the “left” and “right” indistinguishability games. If one attempts to use this approach
in our context and use the result from [JW16] to argue adaptive indistinguishability of offline
Yao garbling, we immediately run into the issue with programming the output map. Thus it
seems that the necessity to program the output map is tied to the simulated game, and hence
to the simulated mode of garbling. The main idea behind our reduction is therefore to avoid
the simulated mode and instead only work with the real and input-dependant modes, which do
not require programming the output map. Thus in all our hybrids, the output map is simply
the honestly-generated output map and therefore can be generated in the offline phase itself.

Our approach. Our idea is to directly replace – gate by gate – the honest garbling table of
gates in C0 (Real0) with that of gates in C1 (Real1). Since the luxury of programming the
output map is no longer available, it is crucial to ensure that the evaluation of the garbled
circuit in all intermediate hybrids is correct at all times: even though C0(x0) = C1(x1) holds
(by definition) there is no guarantee that the output of the internal gates of C0 and C1 match.
An error propagated as a result of one circuit influencing the computation of another may
render the hybrids trivially distinguishable to the adversary (via evaluation of the garbling).
To this end, we employ the input-dependant modes for (C0, x0) and (C1, x1) (resp., Input0
and Input1). In more details, in all our hybrids, we ensure that a gate in Real0 mode is never
adjacent to another gate in the Real1 mode. This is accomplished by maintaining a “frontier”
of gates in Input0 and Input1 mode in between the gates in real mode (see Figure 6.5). This

7This is one of the earliest applications of the Piecewise-Guessing framework from Chapter 3.
8Since pseudo-random generators (of arbitrary stretch) exist in NC1 [CM01, IN96], the result in [AIKW13]

rules out reductions with polynomial loss for offline Yao. This is in stark contrast to the aforementioned
positive result from [JW16] for online Yao for NC1 circuits.

124

6.1. Introduction

separation of the left (Real0 and Input0) and right (Real1 and Input1) modes guarantees that
the computations belonging to the two circuits do not “corrupt” each other. We point out
that this is reminiscent of (circuit) simulation strategies adopted in certain works in circuit
complexity [GJ16] (see Section 6.1.3).

The design of our black-grey-red (BGR) pebbling game is carried out keeping the above
blueprint in mind. Looking ahead, one can think of it as a symmetrised formulation of the BG
pebbling game. Our proof that a BGR strategy implies a valid sequence of hybrids is mostly
similar to that in [JW16]: we show that if there exists a BGR pebbling strategy of length τ
that uses σ greyscale pebbles, then there exists a reduction to adaptive indistinguishability of
offline Yao with a loss in security at most O(τ2σ) (Theorem 24).9 The bulk of our technical
work goes into coming up with pebble-efficient strategies for the BGR pebbling game. This
task turns out to be considerably more involved than for the BG pebbling game (primarily due
to the constraints introduced by the additional rules in the BGR game). The best strategy
we could come up with exploits the treewidth w of the circuit, and as a result the number of
(greyscale) pebbles used is roughly σ := wδ log(N), where N is the size of the circuit and δ
its fan-out. The strategy has a divide-and-conquer flavour and crucially relies on the notion of
separators from graph theory [RS86, Bod98]. In the remainder of the technical overview, we
informally present the BGR pebbling game and then briefly explain the treewidth-based BGR
strategy.

BGR pebbling game. Let g denote the location of a gate in G := Φ(C0) = Φ(C1),
the directed acyclic graph (DAG) underlying the circuits, and let g0 (resp., g1) denote the
corresponding gate in C0 (resp., C1). The BGR pebbling game, as its name suggests, uses
three types of pebbles: black, grey and red. In order to translate a BGR pebbling configuration
P to the garbling ˜︁C, the simulator in hybrid HP does the following for all internal gates g:

• if g carries no pebble in P , then its garbling table in ˜︁C will be the honest garbling table
of g0,

• if g carries a black pebble then the honest garbling table will be replaced by that of
constant-0 or constant-1 gate depending on the output value of g0 when C0 is run on
x0,

• if g carries a grey pebble, then the simulation is the same as in previous case except
that the garbling depends on the output value of g1 when C1 is run on x1,

• if g carries a red pebble, then its garbling table in ˜︁C will be the honest garbling table of
g1.

The input is then garbled as follows: For the ith input gate, if this gate carries no pebble or a
black pebble, then the ith key in ˜︁x is the key corresponding to the ith bit of x0, otherwise it
is the key corresponding to the ith bit of x1. (The pebbles on the output gates are simply
ignored.) The four modes of simulation above are real and input-dependant modes for the
left and right game respectively or, in short, Real0, Input0, Input1 and Real1 respectively (see
Table 6.3.(b)). Note that the semantics of gates that carry no pebble or a black pebble is
the same as in the BG pebbling game (if one sets (C0, x0) = (C, x)), but a grey pebble is
now interpreted differently. A BGR pebbling strategy starts off with a configuration with all

9We use the Piecewise-Guessing framework from Chapter 3 instead of a direct argument as in [JW16].

125

6. Adaptive Indistinguishability of Yao’s Garbling

50.1
50.2 50.5

50.3
50.4

50.3
50.4

Figure 6.2: Rules for the BGR pebbling game.

gates empty (i.e., honest garbling of C0) but the goal is now to pebble them all red (i.e.,
honest garbling of C1). Thus the extreme hybrids correspond to the left and right games in
the adaptive indistinguishability game. The pebbling rules, listed below (see Figure 6.2), are
designed keeping the above discussion in mind and so that indistinguishability of neighbouring
hybrids can be argued (Lemma 25):

1. a black pebble can be placed on or removed from a gate g if and only if g’s predecessor
gates are pebbled black; and

2. a black pebble on a gate g can be swapped with a grey pebble if g’s successor gates are
pebbled, either black or grey; and

3. a grey pebble on a gate g can be swapped with a red pebble if g’s predecessor gates are
pebbled grey.

Note that the dynamic between no pebbles and black pebbles is similar to the dynamic between
red and grey pebbles (hence the reason we consider it to be a symmetric version of the BG
pebbling game). Since the outpt values of gates which carry a black or grey pebble in P need
to be known to carry out the simulation of HP , the goal here is to minimise the number of
such “greyscale” pebbles.

Treewidth, separators and BGR pebbling strategies. Compared to the BG pebbling
game, pebble-efficient strategies for the BGR pebbling game are harder to come by. (This is
not surprising, in hindsight, given the negative result [AIKW13].) In particular, the generic
pebbling strategies used in [JW16] no longer work without incurring a blow-up in the number of
pebbles employed.10 Below we briefly explain our treewidth-based strategy, the best (generic)
strategy we could come up with.

Crucial to our strategy is the notion of separators. Informally, a separator for a circuit C
of size N is a subset of gates S such that removing S (and the edges incident on it) from
C partitions C into sub-circuits of “comparable” size. Slightly more formally, S partitions
C into sub-circuits C1, . . . , Cp such that for every sub-circuit Ci, |Ci| ≤ 2/3 · N (say). In
a classical result from graph theory, it is shown that the size of separator of a graph (and

10The width-based BG strategy from [JW16, HJO+16] can be modified to obtain a comparable BGR
strategy for levelled circuits. However, the resulting security bounds do not yield any advantage over simply
guessing the input (which we want to avoid).

126

6.1. Introduction

therefore a circuit) is at most its treewidth [RS86, Bod98]. Since treewidth is a monotonous
property – i.e., removing wires or gates from C can only decrease its treewidth – the process of
decomposition into sub-circuits using separators can be recursively carried out further (using a
different separator each time) till one ends up with constant-size sub-circuits. Such a recursive
decomposition is also carried out in the simulation in [GJ16, Theorem 2] (also see [Bod88]).

Our pebbling strategy exploits this recursive decomposition to minimise the number of greyscale
pebbles used. To this end, the pebbling strategy maintains long-term greyscale pebbles only at
the separators. These pebbles help reduce the task at hand to that of (recursively) pebbling the
resulting sub-circuits, one at a time reusing pebbles in that process. Therefore, our pebbling
strategy can be recursively described as follows:

• place greyscale pebbles at the separator S of G,

• recursively, one at a time, place red pebbles on each subcircuit Ci,

• replace the greyscale pebbles on S with red pebbles.

Since the depth of the recursion is bounded by O(log N) (thanks to the property of the
separator), the hope would be that the number of greyscale pebbles maintained overall
does not blow up. We show that this is indeed the case as our main technical contribution
(Theorem 23).

Theorem (main). Any circuit C of size N , fan-out δ and treewidth w can be BGR pebbled
using O(δw log(N)) greyscale pebbles.

Translating the above divide-and-conquer approach into an actual pebbling strategy (Sec-
tion 6.4) turns out to be tricky due to the intricate nature of the BGR pebbling rules. Therefore,
before presenting the strategy for arbitrary graphs (Section 6.4.2), we present a BGR pebbling
strategy for path graphs (P) as a warm-up (Section 6.4.1) – since paths have treewidth 1, the
latter can be viewed as a special case of the former. We refer the readers to Section 6.4 for
the details.

Epilogue. It is instructive to review the above pebbling strategy in terms of the actual
simulation. The (garbling tables of) circuit C0 is being progressively, piece by piece, replaced by
the (garbling tables of) circuit C1 as dictated by the recursion, with the bulk of the replacement
happening at the base of the recursion. It is exactly those long-term greyscale pebbles placed
on the separators which act as the frontier between the pieces of C0 and C1. This ensures
that computations of the two circuits are insulated from each other (see Figure 6.5).

Remark 3. We remark that our result on the BGR pebbling complexity can also be used
to prove tighter security bounds for simulatability of online Yao for circuit classes where the
treewidth is smaller as the width. This is true since any BGR sequence with complexity σ
implies a BG sequence with complexity at most σ: simply consider the BG sequence obtained
from a BGR sequence by substituting all the red pebbles with a grey pebble, and note that for
BG pebbling only the number of black pebbles is counted.

127

6. Adaptive Indistinguishability of Yao’s Garbling

6.1.3 Further Related Work
Adaptive security for garbled circuits. The problem of constructing adaptively-secure
garbling schemes was first raised by Bellare, Hoang and Rogaway in [BHR12a]; they gave a first
adaptively-secure construction in the random oracle model, which bypasses the lower bound of
Applebaum et al. [AIKW13]. Bellare, Hoang and Keelveedhi [BHK13] then proved the previous
scheme adaptively-secure in the standard model, but under non-standard assumptions on hash
functions. Further constructions from various assumption followed: Boneh et al. [BGG+14]
constructed an adaptively-secure scheme from the learning with errors (LWE) assumption,
where the online complexity depends on the depth of the circuit family. Ananth and Sahai
[AS16] constructed an optimal garbling scheme from iO. Later, Ananth and Lombardi [AL18]
constructed succinct garbling schemes from functional encryption. In [JSW17], Jafargholi et al.
relax the simulation-based security to indistinguishability and show how to construct adaptively-
secure garbling schemes from the minimal assumption of one-way functions, where the online
complexity only depends on the pebble complexity and the input-size, but is independent
of the output-size. A particularly strong result in this area was due to Garg and Srinivasan
[GS18], who constructed adaptively-secure garbling with near optimal online complexity that
can be based on standard assumptions such as the computational Diffie-Hellman (CDH), the
factoring, or the LWE assumption. While this list is far from complete, we finally mention
a recent work by Jafargholi and Oechsner [JO20] who analyze adaptive security of several
practical garbling schemes. They give positive as well as negative results, and argue why the
techniques from [JW16] cannot be applied to certain garbling schemes.

Treewidth, Separators and Computational Complexity. Treewidth [RS86] has its roots
in algorithmic graph theory. Many hard graph-theoretical problems become tractable when
one restricts to graphs of bounded treewidth. In some cases, this leads to even NC algorithms
for problems which are otherwise known to be NP-complete (e.g., [Bod88]). More often than
not, this is because bounding the treewidth leads to divide-and-conquer algorithms, sometimes
via separators (see [Bod93] for an instructive survey). Unsurprisingly, this also has several
consequences in circuit complexity (e.g., [AR11, ACL+14, LMPP18]), and perhaps the most
relevant to our work are [JS14, GJ16]. It was shown in [JS14] that circuits with constant
treewidth can be simulated in NC1; [GJ16] extended this result by using separators to show
that circuits of size N and treewidth w can be simulated in depth w log(N). Both these
results can be regarded as a generalization of Spira’s theorem that Boolean formulae can be
simulated by NC1 circuits [Spi71].

6.2 Preliminaries
6.2.1 Notation for circuits
We consider Boolean circuits with explicit input and output gates, associated with the input
and output wires respectively. For a circuit C : {0, 1}n → {0, 1}m with N gates (including
the n input and m output gates) and W wires of which n (resp., m) are input (resp., output)
wires, we denote the DAG that represents the topology of the circuit C by Φ(C). That is,
Φ(C) is a graph with V = [1, N] obtained by:

1. assigning the input (resp., output) gates to the vertices [1, n] (resp., [N −m + 1, N]),

2. assigning the internal gates to the vertices [n + 1, N −m], and

128

6.2. Preliminaries

3. assigning the wires of the circuit to the edges.

The wires are assigned an index from [1, W], with the input (resp., output) wires indexed from
[1, n] (resp., [W −m + 1, W]). An internal gate of a circuit is represented by a four-tuple
(g, u, v, w) where g : {0, 1}2 → {0, 1} denotes the predicate implemented, and u, v and w
denote the left input, right input and output wires, respectively. We use V0(w) (resp., V1(w))
as a short-hand for V0(C0, x0, w) (resp., V1(C1, x1, w)), the function that returns the value of
the wire w when the circuit C0 (resp., C1) is evaluated on the input x0 (resp., x1).

6.2.2 Garbling
The formal definition of syntax and security of garbling schemes is originally from [BHR12b].
Our definitions are taken mostly from [JSW17].

Definition 42. A garbling scheme GC is a tuple of PPT algorithms (GCircuit, GInput, GEval)
with syntax and semantics defined as follows.

• (˜︁C,K)← GCircuit(1λ, C): On inputs a security parameter λ and a circuit C : {0, 1}n →
{0, 1}m, the garble-circuit algorithm GCircuit outputs the garbled circuit ˜︁C and key K.

• ˜︁x← GInput(K, x): On input an input x ∈ {0, 1}n and key K, the garble-input algorithm
GInput outputs ˜︁x.

• y = GEval(˜︁C, ˜︁x): On input a garbled circuit ˜︁C and a garbled input ˜︁x, the evaluate
algorithm GEval outputs y ∈ {0, 1}m.

Correctness. There is a negligible function ϵ = ϵ(λ) such that for any λ ∈ N, any circuit C
and input x it holds that

Pr[C(x) = GEval(˜︁C, ˜︁x)] = 1− ϵ(λ),

where (˜︁C,K)← GCircuit(1λ, C), ˜︁x← GInput(K, x).

In this work we only consider the security notion of adaptive indistinguishability, which is
strictly weaker than the usually considered notion of adaptive simulatability.

Definition 43 (Adaptive indistinguishability.). A garbling scheme GC is (t, ϵ)-adaptively-
indistinguishable for a class of circuits C, if for any probabilistic adversary A running in time
t = t(λ), ⃓⃓⃓

Pr[GA,GC(1λ, 0) = 1]− Pr[GA,GC(1λ, 1) = 1]
⃓⃓⃓
≤ ϵ(λ).

where the experiment GA,GC,S(1λ, b) is defined as follows:

1. A selects two circuits C0, C1 ∈ C such that Φ(C0) = Φ(C1) and receives ˜︁Cb where
(˜︁Cb,K)← GCircuit(1λ, Cb).

2. A specifies x0, x1 such that C0(x0) = C1(x1) and receives ˜︁xb ← GInput(K, xb).

3. Finally, A outputs a bit b′, which is the output of the experiment.

For completeness, we also provide the definition of adaptive simulatability.

129

6. Adaptive Indistinguishability of Yao’s Garbling

Definition 44 (Adaptive simulatability.). A garbling scheme GC is (t, ϵ)-adaptively-simulatable
for a class of circuits C, if there exists a PPT time simulator S = (SCircuit, SInput) such that,
for any probabilistic adversary A running in time t = t(λ),⃓⃓⃓

Pr[FA,GC,S(1λ, 0) = 1]− Pr[FA,GC,S(1λ, 1) = 1]
⃓⃓⃓
≤ ϵ(λ).

where the experiment FA,GC,S(1λ, b) is defined as follows:

1. The adversary A specifies C ∈ C and gets ˜︁C created as follows:

• if b = 0: (˜︁C,K)← GCircuit(1λ, C),
• if b = 1: (˜︁C, z)← SCircuit(1λ, Φ(C)).

2. The adversary A specifies x and gets ˜︁x created as follows:

• if b = 0, ˜︁x← GInput(K, x),
• if b = 1, ˜︁x← SInput(C(x), z).

3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

In the selective counterparts of Definitions 43 and 44, the adversary has to select (along with
the circuit) the input also in the first step.

Remark 4. A few remarks concerning Definitions 43 and 44 are in order:

1. We call the experiments corresponding to b = 0 and b = 1 in Definition 44 “real” and
“simulated” experiments, respectively. We call the experiments corresponding to b = 0
and b = 1 in Definition 43 the “left” and “right” experiments, respectively.

2. When the context is clear, we use the simpler notion F0 and F1 to denote the experiments
FA,GC,S(1λ, 0) and FA,GC,S(1λ, 1), respectively. Similarly, we use G0 and G1 for the
experiments in Definition 43.

3. We use tG = tG(λ) to denote the time taken to run experiment G.

Offline Yao. In Algorithm 6.1 we describe Yao’s original garbling scheme YGCSKE for
Boolean circuits with fan-in 2, where the output map is sent along with the garbled circuit in
the offline phase. Recall that in the variant from [JW16], the output map is sent along with
the garbled input in the online phase. In addition to satisfying the standard notion of security
for SKE scheme (IND-CPA), the SKE needs to satisfy the following property for correctness of
the garbling schemes to hold.

Definition 45 (Special correctness [JW16]). We say that an SKE (Gen, Enc, Dec) with
message space M satisfies special correctness if for every security parameter λ, every key
k← Gen(1λ), every message m ∈ M, and encryption c← Enck(m), it holds Deck′(c) = ⊥
for all k′ ̸= k with overwhelming probability.

130

6.2. Preliminaries

Algorithm 6.1: Offline Yao scheme YGCSKE based on a symmetric-key encryption
scheme SKE := (Gen, Enc, Dec).

GCircuit(1λ, C)
input:

1. Security parameter λ in unary
2. Circuit C : {0, 1}n → {0, 1}m with N gates and W wires

1 for j ∈ [1, W] and γ ∈ {0, 1} do
2 kγ

j ← Gen(1λ) // Sample wire keys

3 Set µ =
{︂
(k0

j → 0,k1
j → 1)

}︂
j∈[W −m+1,W]

// Set output map

4 for j ∈ [n + 1, N −m] do // Garble circuit

5 Let (gj, u, v, w) denote the j-th gate in C
6 ˜︁gj ← Real(gj, {kγ

u,kγ
v ,kγ

w}γ∈{0,1}) // Real defined in Table 6.3

7 return ((˜︁C, µ),K = k), where ˜︁C := {˜︁gj}j∈[n+1,N−m] and k :=
{︂
(k0

j ,k
1
j)
}︂

j∈[1,n]

GInput(K, x)
input:

1. Garbling key K parsed as k as in Line 7
2. Input x ∈ {0, 1}n with bit decomposition {x1, . . . , xn}

8 Set kx :=
{︂
k

xj

j

}︂
j∈[1,n]

// Select input keys from k

9 return ˜︁x := kx

GEval((˜︁C, µ), ˜︁x)
input:

1. Garbled circuit ˜︁C parsed as {˜︁gj}j∈[n+1,N−m], output map µ
2. Garbled input ˜︁x = kx

Parse kx as {k1, . . . ,kn}
10 for j ∈ [n + 1, N −m] do // Decode circuit

Let (u, v, w) denote the wires of gj // The topology is assumed public

11 Parse ˜︁gj as ({c1, . . . ,c4}) // Parse the gate table

12 for l ∈ [1, 4] do // Decrypt each double ciphertext till successful

13 Let m := Decku(Deckv(cl))
14 if m ̸= ⊥ then // Use special correctness: Definition 45

15 set kw := m

Parse µ as
{︂
(k0

j → 0,k1
j → 1)

}︂
j∈[W −m+1,W]

for j ∈ [W −m + 1, W] do // Decode output

16 Set yj = 0 if kj = k0
j ; else set yj = 1

17 return y

6.2.3 Pebbling game
We recall the pebbling game that was used in [HJO+16, JW16] to argue adaptive security of
variants of Yao’s scheme.

Definition 46 (Black-grey (BG) pebbling game [HJO+16, JW16]). Consider a DAG G = (V , E)
with V = [1, N] and let XBG = {⊥,B,G} denote the set of colours of the pebbles. Consider
a sequence P := (P0, . . . ,Pτ) of pebbling configurations for G, where Pi ∈ X V

BG for all

131

6. Adaptive Indistinguishability of Yao’s Garbling

i ∈ [0, τ]. We call such a sequence a black-grey pebbling strategy for G if (i) every vertex
is empty in the initial configuration (i.e., P0 = (⊥, . . . ,⊥)), (ii) every vertex is grey-pebbled
in the final configuration (i.e., Pτ = (G, . . . ,G)) and (iii) every configuration is obtained by
applying one of the following rules to its preceding configuration (see Figure 6.2):

1. ⊥ ↦→ B: a black pebble can be placed on a vertex if its predecessors are black-pebbled,
i.e., exists j∗ ∈ V such that Pi+1(j∗) = B, Pi(j∗) = ⊥, Pi(j) = B for all j ∈ preG(j∗),
and Pi+1(j) = Pi(j) for all j ∈ V \ {j∗}.

2. B ↦→ ⊥: a black pebble can be removed from a vertex if its predecessors are black-
pebbled, i.e., exists j∗ ∈ V such that Pi+1(j∗) = ⊥, Pi(j∗) = B, Pi(j) = B for all
j ∈ preG(j∗), and Pi+1(j) = Pi(j) for all j ∈ V \ {j∗}.

3. B ↦→ G: a black pebble on a vertex v ∈ V can be replaced with a grey pebble
if v’s successors are pebbled (either black or grey), i.e., exists j∗ ∈ V such that
Pi+1(j∗) = G, Pi(j∗) = B, Pi(j) ∈ {B,G} for all j ∈ sucG(j∗), and Pi+1(j) = Pi(j)
for all j ∈ V \ {j∗}.

The space-complexity of a BG pebbling strategy P = (P0, . . . ,Pτ) for a DAG G is defined as
the maximum number of black pebbles used at any point in the strategy:

σG(P) := max
i∈[0,τ]

|{j ∈ [1, N] : Pi(j) = B}|.

Definition 47. If P = (P0, . . . ,Pτ) is a BG pebbling strategy of space-complexity σ for a
graph G, we say that P is a (σ, τ)-BG pebbling strategy for G. We say that a class of graphs
G has a (σ, τ)-BG pebbling strategy if every graph G ∈ G has a (σ, τ)-BG pebbling strategy.
Similarly, we say that a class of circuits C has a (σ, τ)-BG pebbling strategy if for every circuit
C ∈ C, the underlying graph Φ(C) has a (σ, τ)-strategy.

Similar definitions apply to all other pebble games considered in this section.

Remark 5. The rule to place (Rule 46.1) or remove (Rule 46.2) a black pebble in Definition 46
is the same as in the original reversible node-pebbling game from [Ben89] (Definition 54);
in the following we refer to the latter as reversible (black) pebbling (RB). Therefore the BG
pebbling game can be thought of as an extension of the RB pebbling game (with a different
goal).

6.2.4 Treewidth and separators
We recall the definition of treewidth and graph separators, and then state a crucial theorem
connecting them, which will be exploited in our pebbling strategy. We emphasise that
understanding the definition of treewidth is not essential to understanding our pebbling
strategies: it is the notion of separators, along with Theorem 19, which is key.

Definition 48 ([RS86, Bod98]). A tree decomposition of a graph11 G = (V , E) is a tree, T ,
with nodes X1, . . . ,Xp, where each Xi ⊆ V , satisfying the following properties:

1. Each graph vertex is contained in at least one tree node (i.e., ∪i∈[1,p]Xi = V).
11The notion of tree decomposition is usually considered for undirected graphs, however, the notion will

also turn out useful in our setting, where we consider directed graphs.

132

6.3. Hybrid Argument and the BGR Pebbling Game

2. For every edge (v, w) ∈ E , there exists a node Xi that contains both v and w.

3. The tree nodes containing a vertex v form a connected subtree of T .

The width of a tree decomposition is the size of its largest node Xi minus one. Its treewidth
w(G) is the minimum width among all possible tree decompositions.

Definition 49 ([RS86]). For a graph G = (V , E), a set S ⊆ V is said to be a separator if the
graph G|V\S has at least two components, and each of these components has size at most
2|V|/3.12

Theorem 19 ([RS86, Bod98]). A graph G with treewidth w(G) has a separator of size at
most w(G).

6.3 Hybrid Argument and the BGR Pebbling Game
In this section, we formally show that black-grey-red (BGR) pebbling strategies lead to security
reductions for Offline Yao. We start off in Section 6.3.1 by formally defining the BGR pebbling
game and then explain the semantics of its pebbles, described already (albeit informally) in
Section 6.1.2. This enables us to define a hybrid HP in terms of a pebbling configuration
P (Algorithm 6.2). Then, in Section 6.3.2, we justify the pebbling rules by proving that
neighbouring pebbling configurations can indeed be proven indistinguishable (Lemma 25).
Finally, we put these two steps together in Section 6.3.3 and show that BGR strategies
imply adaptive indistinguishability of Offline Yao (Theorem 22) using the piecewise-guessing
framework from Chapter 3. Since most of the ideas in Sections 6.3.2 and 6.3.3 are similar
to pre-existing works [JW16] and Chapter 3, we skip detailed proofs and resort to high-level
sketches.

6.3.1 Pebbling Configurations and Hybrids
The BGR pebbling game is a symmetric version of the BG pebbling game. In addition to
the ones in BG pebbling game (Rules 46.1 through 46.3), there are additional rules (Rules
50.4 and 50.5) which govern how the red pebbles interact with the grey pebbles. Intuitively
speaking, the dynamics between no pebbles and black pebble (Rules 50.1 and 50.2) are similar
to the dynamics between red pebbles and grey pebbles (Rule 50.5): see Remark 6. A more
formal definition of the game is given next.

Definition 50 (Black-grey-Red (BGR) pebbling game). Consider a DAG G = (V , E) with
V = [1, N] and let XBGR = {⊥,B,G,R} denote the set of colours of the pebbles. A
pebble is called greyscale if it is black or grey. Consider a sequence P := (P0, . . . ,Pτ)
of pebbling configurations for G, where Pi ∈ X V

BGR for all i ∈ [0, τ]. We call such a
sequence a BGR pebbling strategy for G if (i) every vertex is empty in the initial configuration
(i.e., P0 = (⊥, . . . ,⊥)), (ii) and every vertex is red-pebbled in the final configuration (i.e.,
Pτ = (R, . . . ,R)) and (iii) every configuration is obtained by applying one of the following
rules to its preceding configuration (see Figure 6.2):

12To be precise, such a separator is called “balanced” [GJ16]. In this paper, we only consider balanced
separators.

133

6. Adaptive Indistinguishability of Yao’s Garbling

1. ⊥ ↦→ B: a black pebble can be placed on an empty vertex if its predecessors are
black-pebbled, i.e., exists j∗ ∈ V such that Pi+1(j∗) = B, Pi(j∗) = ⊥, Pi(j) = B for
all j ∈ preG(j∗), and Pi+1(j) = Pi(j) for all j ∈ V \ {j∗}.

2. B ↦→ ⊥: a black pebble can be removed from a vertex if its predecessors are black-
pebbled, i.e., exists j∗ ∈ V such that Pi+1(j∗) = ⊥, Pi(j∗) = B, Pi(j) = B for all
j ∈ preG(j∗), and Pi+1(j) = Pi(j) for all j ∈ V \ {j∗}.

3. B ↦→ G: a black pebble on a vertex v ∈ V can be replaced with a grey pebble if v’s
successors carry greyscale pebbles (i.e., either black or grey), i.e., exists j∗ ∈ V such that
Pi+1(j∗) = G, Pi(j∗) = B, Pi(j) ∈ {B,G} for all j ∈ sucG(j∗), and Pi+1(j) = Pi(j)
for all j ∈ V \ {j∗}.

4. G ↦→ B: a grey pebble on a vertex v ∈ V can be replaced with a black pebble if v’s
successors carry greyscale pebbles, i.e., exists j∗ ∈ V such that Pi+1(j∗) = B, Pi(j∗) = G,
Pi(j) ∈ {B,G} for all j ∈ sucG(j∗), and Pi+1(j) = Pi(j) for all j ∈ V \ {j∗}.

5. G ↔ R: a grey pebble can be swapped with a red pebble if its predecessors are grey-
pebbled, i.e., exists j∗ ∈ V such that Pi+1(j∗),Pi(j∗) ∈ {G,R}, Pi+1(j∗) ̸= Pi(j∗),
Pi(j) = G for all j ∈ preG(j∗), and Pi+1(j) = Pi(j) for all j ∈ V \ {j∗}.

The space-complexity of a BGR pebbling strategy P = (P0, . . . ,Pτ) for a DAG G is defined
as the maximum number of greyscale pebbles used at any point in the strategy:

σG(P) := max
i∈[0,τ]

|{j ∈ [1, N] : Pi(j) ∈ {B,G}}|.

Remark 6. A few remarks on the BGR pebbling game are in order:

1. Note that Rules 50.1 through 50.3 correspond to Rules 46.1 through 46.3 in the BG
pebbling game. The end goals in the two games are however different.

2. When restricted to either black and empty (Rules 50.1 and 50.2) or grey and red pebbles
(Rule 50.5), the BGR pebbling game simplifies to the reversible black pebbling game of
Bennett [Ben89] defined in Definition 54. This is obvious for the black pebbles since
the BGR pebbling game is an extension of the BG pebbling game which, in turn, is an
extension of the reversible black pebbling game. To see why this is the case for grey and
red pebbles, simply think of vertices with red pebbles as being empty (i.e., R = ⊥) and
grey pebbles as black pebbles (i.e., G = B), and note that Rule 50.5 is now the same as
Rules 50.1 and 50.2. Therefore, if one starts with an all-red (i.e., empty) configuration,
the grey pebbles can be placed using reversible pebbling rules. Some of the reversible
pebbling strategies will serve as crucial subroutines in the BGR pebbling strategies in
the coming sections.

3. When restricted to black and grey pebbles, the BGR pebbling game again simplifies to
the reversible pebbling game played on the graph with the direction of the edges flipped.
However, we do not make use of this observation.

4. Only black pebbles can be placed on empty vertices. grey (resp., red) pebbles have to
replace black or red (resp., grey) pebbles, respectively.

134

6.3. Hybrid Argument and the BGR Pebbling Game

Real (⊥) Input (B) Sim (G)
c0,0 Enck0

u
(Enck0

v
(kg(0,0)

w)) Enck0
u
(Enck0

v
(kV (w)

w)) Enck0
u
(Enck0

v
(k0

w))
c0,1 Enck0

u
(Enck1

v
(kg(0,1)

w)) Enck0
u
(Enck1

v
(kV (w)

w)) Enck0
u
(Enck1

v
(k0

w))
c1,0 Enck1

u
(Enck0

v
(kg(1,0)

w)) Enck1
u
(Enck0

v
(kV (w)

w)) Enck1
u
(Enck0

v
(k0

w))
c1,1 Enck1

u
(Enck1

v
(kg(1,1)

w)) Enck1
u
(Enck1

v
(kV (w)

w)) Enck1
u
(Enck1

v
(k0

w))

(a)

Real0 (⊥) Input0 (B) Input1 (G) Real1 (R)
c0,0 Enck0

u
(Enck0

v
(kg0(0,0)

w)) Enck0
u
(Enck0

v
(kV0(w)

w)) Enck0
u
(Enck0

v
(kV1(w)

w)) Enck0
u
(Enck0

v
(kg1(0,0)

w))
c0,1 Enck0

u
(Enck1

v
(kg0(0,1)

w)) Enck0
u
(Enck1

v
(kV0(w)

w)) Enck0
u
(Enck1

v
(kV1(w)

w)) Enck0
u
(Enck1

v
(kg1(0,1)

w))
c1,0 Enck1

u
(Enck0

v
(kg0(1,0)

w)) Enck1
u
(Enck0

v
(kV0(w)

w)) Enck1
u
(Enck0

v
(kV1(w)

w)) Enck1
u
(Enck0

v
(kg1(1,0)

w))
c1,1 Enck1

u
(Enck1

v
(kg0(1,1)

w)) Enck1
u
(Enck1

v
(kV0(w)

w)) Enck1
u
(Enck1

v
(kV1(w)

w)) Enck1
u
(Enck1

v
(kg1(1,1)

w))

(b)

Table 6.3: (a) Garbling modes in [JW16]. The gate is denoted by g and the value of its output
wire w when run on input x is denoted by V (w). (b) Garbling modes in our case. The gates
g0 and g1 are the gates in the same position in the circuits C0 and C1, respectively. The value
V0(w) (resp., V1(w)) denotes the bit going over the wire w in the computation C0(x0) (resp.,
C1(x1)).

5. By the pebbling rules, in any strategy a vertex that is empty can never end up adjacent
to another vertex with a red pebble in any BGR pebbling strategy. Moreover, a vertex
with a grey (resp., black) pebble cannot be a predecessor of a vertex with no (resp.
a red) pebble; the converse is however possible. These properties will turn out to be
important sanity checks in ensuring the validity of BGR pebbling strategies in the later
sections. Moreover, they ensure correctness of the simulations they represent.

Template for Hybrids.

A pebbling configuration P ∈ X V
BGR is used to encode a selective hybrid HP . For an internal

gate v, the translation is carried out as described below:

• if v carries no pebble (⊥) in P then g is garbled as in the left game (Real0),

• a black pebble (B) on v indicates that the garbling of g is input-dependant on x0 and
C0, (Input0)

• a grey pebble (G) on v indicates that the garbling of g is input-dependant on x1 and C1
(Input1)

• a red pebble (R) on v indicates g is garbled as in the right game (Real1).

The distributions corresponding to the four garbling modes – Real0, Input0, Input1 and Real1
– are formally defined in Table 6.3(b). (Note that the semantics of grey pebbles is different
from that in the BG pebbling game.) This information is sufficient to construct the garbled
circuit ˜︁C. What remains to complete the description of HP , is describing how to generate the
input garbling ˜︁x and the output map. If an input gate carries no (resp., a red) pebble then the

135

6. Adaptive Indistinguishability of Yao’s Garbling

Algorithm 6.2: Selective hybrids: the adversary commits to the garbling inputs at
the beginning of the game (boxed).

HP(λ)
parameters:

1. Circuit parameters N (gates), W (wires), n and m (input and output size)
2. Selective adversary A
3. Symmetric encryption scheme SKE := (Gen, Enc, Dec)

index: A BGR pebbling configuration P ∈ X [1,N]
BGR

Receive circuits C0 and C1 from A // H← A
Receive inputs x0, x1 ∈ {0, 1}n as commitment from A // H← A

1 for j ∈ [1, W] and γ ∈ {0, 1} do
2 kγ

j ← Gen(1λ) // Sample wire keys

3 Set µ =
{︂
(k0

j → 0,k1
j → 1)

}︂
j∈[W −m+1,W]

// Set output map

4 for j ∈ [n + 1, N −m] // Garble circuit

5 do
6 For b ∈ {0, 1}, let the j-th gate in Cb be (gb,j, u, v, w)
7 if P(n + j) = ⊥ then
8 ˜︁gj ← Real0(g0,j, {kγ

u,kγ
v ,kγ

w}γ∈{0,1}) // No pebble

9 else if P(n + j) = B then
10 ˜︁gj ← Input0(g0,j, {kγ

u,kγ
v}γ∈{0,1} ,kV0(w)

w) // B-pebbled

11 else if P(n + j) = G then
12 ˜︁gj ← Input1(g1,j, {kγ

u,kγ
v}γ∈{0,1} ,kV1(w)

w) // G-pebbled

13 else
14 ˜︁gj ← Real1(g1,j, {kγ

u,kγ
v ,kγ

w}γ∈{0,1}) // R-pebbled

15 for j ∈ [1, n] // Garble input

16 do
17 if P(j) ∈ {⊥,B} then
18 Set ˜︁xj = k

x0,j

j

19 else
20 Set ˜︁xj = k

x1,j

j

21 Send (˜︁C, µ, ˜︁x) to A where ˜︁C := {˜︁gj}j∈[n+1,N−m] and ˜︁x := {˜︁xj}j∈[1,n] // H→ A
22 Receive a bit b′ from A // H← A
23 return b′

garbling key for x0 (resp., x1) is selected in that hybrid. The output map, on the other hand,
is simply the default one prescribed in the scheme and therefore the pebbles on the output
gates are ignored. We refer the readers to Algorithm 6.2 for a formal definition of HP .

Sequence of hybrids. A pebbling strategy P = {P0, . . . ,Pτ} will give rise to a sequence
of selective hybrids

H0 = HP0 , . . . , HPτ = H1, (6.1)

Note that the extreme games correspond to the left selective experiment H0 = HA,GC(1λ, 0)
(since P0 = (⊥, . . . ,⊥)) and right selective experiment H1 = HA,GC(1λ, 1) (since Pτ =

136

6.3. Hybrid Argument and the BGR Pebbling Game

(R, . . . ,R)), respectively. The exact pebbling strategy will be discussed later in Section 6.4.
In the next section, we prove the indistinguishability of two neighbouring hybrids in such a
sequence.

6.3.2 Indistinguishability of Neighbouring Hybrids
We will now prove that any two neighbouring hybrids in such a sequence of hybrids that was
derived from a BGR pebbling strategy are indeed indistinguishable.

Lemma 25 (neighbouring indistinguishability). Let P and Q denote two neighbouring configu-
rations in a BGR pebbling strategy. If the underlying encryption scheme SKE is (t, ϵ)-IND-CPA
secure, then HP and HQ (as defined in Algorithm 6.2) are (t− tH, 3ϵ)-indistinguishable, i.e.,
for any adversary A running in time at most t− tH

|Pr ⟨A, HP⟩ = 1− Pr ⟨A, HQ⟩ = 1| ≤ 3ϵ.

Proof. Recall that hybrids correspond to pebbling configurations and that two neighbouring
hybrids differ by a single pebble. We split the proof into three cases which correspond to
the pebbling moves ⊥ ↔ B, B↔ G and R↔ G respectively. The reduction in the first and
last case is similar, and relies on the indistinguishability of the underlying encryption scheme
(similar to [JW16, Lemma 1]). Therefore in the claim below we focus on the first case. In the
second case, we argue that the hybrids are identically distributed (similar to [JW16, Lemma 2]).
We only provide proof sketches here.
Claim 1 (Rules 50.1 and 50.2: ⊥ ↔ B). If the underlying encryption scheme SKE is (t, ϵ)-
IND-CPA secure, and if Q is obtained from P using Rule 50.1 or Rule 50.2 then the hybrids
HP and HQ are (t− tH, 3ϵ)-indistinguishable.

Proof (Sketch). Let’s consider the case where Q is obtained from P using Rule 50.1, i.e. Q
is obtained by placing a black pebble on an empty vertex g∗ in P – the complementary case
of Rule 50.2 can be argued in a symmetric manner. Recall that, by the BGR pebbling rules,
there are two possible cases:

1. g∗ is a source vertex. In this case HP and HQ are identical experiments.
2. g∗ is an internal vertex – let us denote the corresponding gate in C0 by (g∗, u∗, v∗, w∗). In

this case, the predecessors of g∗ are guaranteed to be pebbled black in the configuration
P. By the semantics of the pebbles, this means that both the predecessors of g∗ are
in Input0 mode in hybrids HP and HQ. This, in turn, means that one of the output
keys corresponding to the incoming wire u∗ is not used in the garbling table of that
predecessor gate; the same holds for the wire w∗. Therefore these keys are free and the
reduction can set them as challenge key of the underlying encryption scheme in order to
switch the garbling table of g∗ from Real0 to Input0 in three steps. This corresponds to
a black pebble on g∗ and therefore the hybrid HQ.

Claim 2 (Rules 50.3 and 50.4: B↔ G). If Q is obtained from P using Rule 50.3 or Rule 50.4
then the hybrids HP and HQ are identically distributed.

Proof (Sketch). Let’s restrict to the case where Q is obtained from P using Rule 50.3, i.e.,
Q is obtained by replacing a black pebble on a vertex g∗ in P with a grey pebble – as in the

137

6. Adaptive Indistinguishability of Yao’s Garbling

previous proof the complementary case of Rule 50.4 is symmetric. By the BGR pebbling rules,
there are two possible cases:

1. g∗ is a sink vertex. Since C0(x0) = C1(x1) and g∗ is in input-dependant mode in both
HP (Input0) and HQ (Input1) the simulations are identical.

2. g∗ is an internal vertex – let us denote the corresponding gates in C0 and C1 by
(g∗

0, u∗, v∗, w∗) and (g∗
1, u∗, v∗, w∗) respectively. This means that g∗ is in Input0 mode

in the hybrid HP and Input1 mode in the hybrid HQ (with all the successors in Input0 or
Input1 mode in both the hybrids). In case that the value of the output wire w∗ is the
same for both hybrids (i.e., V0(w∗) = V1(w∗)) then we are done by the same argument
as the case above in Item 1. So let’s focus on the case where the values are different.
Since both the keys corresponding to w∗ are treated symmetrically in the successor
gates, swapping them in the garbling table results in identical distributions and therefore
HP and HQ are also identically distributed.

This proves the lemma.

Selective indistinguishability. Combining Lemma 25 with the semantics of the pebbles
(Table 6.3) yields (via the standard hybrid argument) selective indistinguishability of Offline
Yao.

Theorem 20. Suppose that a class of circuits C has a (σ, τ)-BGR pebbling strategy. If the
encryption scheme SKE is (t, ϵ)-secure then YGCSKE is (t−tH, 3τϵ)-selectively-indistinguishable
for C.

Remark 7. Theorem 20 was already proven in a stronger form in [LP09]: it was shown there
that Offline Yao is selectively-simulatable under similar assumptions. Here it only serves as a
stepping stone to the main theorem (Theorem 22) to be proven in the next section.

6.3.3 Adaptive Indistinguishability via Piecewise Guessing
Observe that in the hybrid HP described in Algorithm 6.2, the knowledge of the committed
garbling inputs x0 and x1 (Algorithm 6.2) is used to compute the output value of gates
that carry greyscale pebbles in the configuration P (Lines 9 and 11). So, in principle, the
simulation of HP can be carried out if this information is available as an “advice”. Moreover,
the indistinguishability of two successive hybrids can be shown (Lemma 25) if such advice for
both the hybrids is available. In case the number of greyscale pebbles is small, the size of this
advice could potentially be smaller than the size of garbling inputs x0 and x1. This means
that it is possible to apply the Piecewise-Guessing framework from Chapter 3. We explain this
in detail next.

Applying the piecewise-guessing framework. The main theorem in Chapter 3 is stated
below in Theorem 21 after having been simplified and tailored for our application to circuit
garbing. The result of applying Theorem 21 to Offline Yao is stated in Theorem 22. Furthermore,
exploiting the properties of the pebbling strategies we design, we provide an optimised version
of Theorem 22 later in Section 6.4.3 (Theorem 24).

Theorem 21 (Theorem 2 in Chapter 3 tailored to Definition 43). Let G0 and G1 be as in
Definition 43, H0 and H1 the selective indistinguishability games. Furthermore, let H0 =
HP0 , . . . , HPτ = H1 be the sequence of hybrids from Equation (6.1) and suppose that every

138

6.4. BGR Pebbling Strategy

pebbling configuration Pi in the strategy P0, . . . ,Pτ can be be computed in time tP. Assume
that for each i ∈ [0, τ − 1], there exists a function αi : {0, 1}∗ → {0, 1}σ such that the
hybrids HPi

and HPi+1 are (t, ϵ)-indistinguishable when A commits to αi(C0, C1, x0, x1) as
advice at the beginning of the experiment (instead of (x0, x1)).13 Then G0 and G1 are
(t− tσ− tP, τ ·2σ · ϵ)-indistinguishable (where tσ denotes the time to sample a string in {0, 1}σ

uniformly at random).

Theorem 22. Suppose that a class of circuits C has a (σ, τ)-BGR pebbling strategy. If the
encryption scheme SKE is (t, ϵ)-secure then YGCSKE is (t− tH − tσ − tP, τ2σ · 3ϵ)-adaptively-
indistinguishable for C.

Proof Sketch. As already observed, the advice function αi should return the values of the
output wires of all those gates that carry greyscale pebbles in Pi and Pi+1. Therefore, in
Theorem 21 we set

αi(C0, C1, x0, x1) := (V0(w) : (g, u, v, w) ∈ C0 and P(g) = B)∥
(V1(w) : (g, u, v, w) ∈ C1 and P(g) = G)

(6.2)

where P := Pi+1 if Pi+1 is obtained from Pi by adding a greyscale pebble; and P := Pi

otherwise.14

The length of the advice is therefore smaller than in the selective hybrid in case the pebbling
complexity of G = Φ(C0) = Φ(C1) is smaller than the input length. What remains is
to show that indistinguishability of two consecutive hybrids can be shown relying only on
αi := αi(C0, C1, x0, x1). To see this note that the knowledge of the committed garbling
inputs x0 and x1 (Algorithm 6.2) is used to compute the output value of gates that carry
greyscale pebbles in the configuration P (Lines 9 and 11). Since these are already present
in the hint, the reduction algorithm can simply extract these values from αi and use them
instead of explicitly computing V0(·) and V1(·). Following the arguments in Lemma 25, we
get that if the encryption scheme is (t, ϵ)-secure then the experiments HPi

and HPi+1 are
(t, 3ϵ)-indistinguishable when A commits to αi, and the proof now follows Theorem 21.

6.4 BGR Pebbling Strategy
In this section, we describe our main strategy for the BGR pebbling game. As a warm up,
we describe a BGR pebbling strategy (Section 6.4.1) for paths on N ∈ N vertices that uses
O(log(N)) greyscale pebbles. It is instructive to go through it as it serves the following two
purposes.

1. Firstly, it highlights the fact that coming up with space-efficient BGR pebbling strategies
is non-trivial.

13To show this formlly, we need to show that for every pair of neighbouring hybrids Hi and Hi+1, there exist
partially-selective hybrids Ĥi,0 and Ĥi,1 and a function αi such that (i) Hi and Hi+1 are “partially-selectivised”
versions of Ĥi,0 and Ĥi,1 using the function αi and (ii) Ĥi,0 and Ĥi,1 are indistinguishable.

14Recall from the proof of Lemma 25 that for pebbling configurations Pi and Pi+1 that differ by a pebbling
move B↔ G, the corresponding hybrids HP1 and HPi+1 are identically distributed.

139

6. Adaptive Indistinguishability of Yao’s Garbling

2. More importantly, it serves as a stepping stone to the main strategy: paths can be
thought of as graphs of (tree)width one and our main strategy (Section 6.4.2) extends
this strategy using the notion of separators.

Finally, we discuss the implications of our pebbling strategy to the security of Offline Yao
(Section 6.4.3).

6.4.1 Warm up: BGR Strategy for Paths
Before describing BGRPath, the BGR stategy for paths, we describe RBPath, Bennett’s
[Ben89] space-optimal RB pebbling strategy, as it is used as a sub-strategy in BGRPath.
RBPath places a black pebble on the sink of a path of length N = 2n using n + 1 black
pebbles (in N log(3)) steps). Since the strategy is reversible, by RBPath−1 we denote the reverse
strategy that removes the black pebble on the sink. This strategy, thanks to the observation
in Remark 6.2, will also be used to both place or remove a grey pebble on an all-red-pebbled
graph.

Space-Optimal RB Pebbling.

For ease of presentation, let’s assume that the path has N = 2n vertices [1, N] – the strategy
can easily be extended to paths of arbitrary length by splitting it up appropriately. The strategy
RBPathn is described recursive in n. Since the strategy is reversible, we denote its inverse by
RBPath−1

n .

For the case n = 0, RBPath1 simply places a pebble on v∗.

For n > 0 and path P2n , let’s refer to P2n|[1,2n−1] and P2n|[2n−1+1,2n] as the first and second
halves respectively. RBPathn then does the following.

1. Recursively place a black pebble on the first half (RBPathn−1(P2n|[1,2n−1]))

2. Recursively place a black pebble on the second half (RBPathn−1(P2n|[2n−1,2n]))

3. Recursively remove the black pebble on the first half (RBPath−1
n−1(P2n|[1,2n−1]))

Lemma 26. P2n can be RB-pebbled using at most σ := n + 1 black pebbles in at most
τ := 3n = 2n log(3) steps.

Proof. For the base case of n = 0, RBPath0 simply places a pebble on v∗, hence requires 1
pebble and 1 step. Let’s assume that RBPathn−1 can Dpebble P2n−1 using log(2n−1) + 1 = n
pebbles in 3n−1 steps. Now, to pebble the sink of P2n , RBPathn first pebbles the sink of
the first half, i.e., the midpoint, then leaves the midpoint pebbled and pebbles the second
half, and finally keeps the sink pebbled while removing the pebble on the midpoint. Thus,
RBPathn requires at most n + 1 pebbles and takes at most 3 · 3n−1 = 3n steps. This proves
the lemma.

Lemma 27. Starting from the all-red configuration, P2n can be grey-pebbled using at most
σ := n + 1 grey pebbles in at most τ := 3n = 2n log(3) steps.

140

6.4. BGR Pebbling Strategy

Figure 6.3: Recursive step in the BGR pebbling strategy BGRPath. We start from an empty
configuration (leftmost path) and apply Item 1 through Item 6 to end up with the penultimate
configuration (rightmost path).

Space-Optimal BGR Strategy.

Let’s denote the pebbling strategy by BGRPath. For ease of presentation, we make two
simplifying assumptions:

1. the path has N = 2n − 1 vertices [1, N] – the strategy can easily be extended to paths
of arbitrary length; and

2. the final configuration produced by BGRPath is not the all-red configuration as prescribed
in Definition 50 but the penultimate one with a grey pebble on the source and the
rest pebbled red (i.e., (G,R, . . . ,R)) – getting to the all-red configuration from that is
possible in one move by applying Rule 50.5.

The strategy BGRPath is described below recursively in n.

For the base case of n = 2, BGRPath2 works as follows:

1. Place a black pebble on 1, 2 and 3 (in that order) (Rule 50.1: ⊥ ↦→ B)
2. Replace the black pebbles on 3, 2 and 1 (in that order) with a grey pebble (Rule 50.3:

B ↦→ G)
3. Replace the grey pebble on 3 and 2 (in that order) with a red pebble (Rule 50.5:

G ↦→ R)

For n > 2, let’s refer to the vertex 2n−1 as the midpoint of PN , the path with N = 2n − 1
vertices. Moreover, let’s refer to PN |[1,2n−1−1] and PN |[2n−1+1,N] as the first and second
halves of PN respectively. Then PN can be switched from the empty configuration to
the penultimate configuration as follows (see Figure 6.3).

1. Recursively place a black pebble on the midpoint 2n−1 (RBPath(PN |[1,2n−1]))
2. Recursively switch the second half to its penultimate configuration

(BGRPathn−1(PN |[2n−1+1,N]))
3. Replace the black pebble on the midpoint 2n−1 with a grey pebble (Rule 50.3)

141

6. Adaptive Indistinguishability of Yao’s Garbling

4. Replace the grey pebble on 2n−1 + 1 with a red pebble (Rule 50.5)
5. Recursively switch the first half to its penultimate configuration

(BGRPathn−1(PN |[1,2n−1−1]))
6. Recursively replace the grey pebble on the midpoint 2n−1 with a red pebble

(RGRPath−1(PN |[2,2n−1]))

Lemma 28. For N = 2n − 1, PN can be BGR-pebbled using at most σ := n + 2 greyscale
pebbles in at most τ := 2n+1 · 3n = 2n(log(3)+1)+1 steps.

Proof. For the base case of n = 2, BGRPath2 requires at most n + 2 = 3 greyscale pebbles
and a red pebble is never placed on the start vertex 1. Now, let’s assume that on input
P2n−1−1, the path with 2n−1 − 1 vertices, BGRPathn−1

1. switches P2n−1−1 from the empty configuration to the penultimate configuration using
n− 1 + 2 = n + 1 greyscale pebbles; and

2. never places a red pebble on the start vertex 1.

For the induction step, first note that the inductive step in Item 2 is only possible thanks to the
black pebble left as a “marker” on 2n−1 in the previous step. This ensures that whenever a black
pebble needs to be placed on 2n−1 + 1 this can be done thanks to the marker. Moreover, the
induction hypothesis ensures that a red pebble never has to be placed on 2n−1 + 1 throughout
the execution of BGRPathn−1(PN |[2n−1+1,N]) (since 2n−1 + 1 is the start vertex of the second
half). Analogously, in the inductive step in Item 5 the (now) grey pebble on 2n−1 acts as the
marker: whenever a black or grey pebble needs to be placed on 2n−1 − 1 this can be done
thanks to the marker.
To complete the proof, we have to argue that (i) the number of greyscale pebbles used in
BGRPathn is one more than that required for the inductive step BGRPathn−1; (ii) the number
of steps used in BGRPathn is 2n+1 · 3n; and (iii) the first vertex never carries a red pebble. To
see why (i) is true, note that the number of pebbles required for BGRPathn is governed by
the recursion

σ(n) = max(2, 1 + σ(n− 1), n + 2) ≤ n + 2
where the (n + 2) term is to account for the reversible pebbling carried out in Item 6 (while
keeping the first node grey-pebbled), and the last inequality follows by the induction hypothesis.
For (ii), write the time-complexity of BGRPathn as

τ(n) ≤ 2 · τ(RBPathn−1)− 2 + 2 · τ(n− 1) + 2 = 2 · (3n−1 + τ(n− 1)),

where we used the fact that in Item 6 the first node remains grey-pebbled, which clearly saves
at least two steps. For (iii), note that the first node is either not pebbled or black-pebbled in
Item 1, not pebbled throughout Items 2 to 4, never pebbled red by induction hypothesis in
Item 5, and left grey-pebbled in Item 6.

Extending to layered graphs. The above strategy can easily be extended to layered graphs
of depth D and width w by pebbling the whole layer in which a pebble lies. This will require
O(w log(D)) greyscale pebbles. However, since the number of pebbles that this strategy
requires is proportional to the width of the circuit (and therefore the input-length), the resulting
security bounds in Theorem 22 do not yield any advantage over simply guessing the input.
We partially remedy this in the next sections.

142

6.4. BGR Pebbling Strategy

G

C1 C2

C1,1 C1,2 C2,1 C2,2

S

S1 S2

Figure 6.4: Binary component tree of a graph G (for simplicity). The graphs C1 and C2 on
the second level denote the two components that result from the separator S1 for G. Similarly,
the vertices that form the leaves result from further splitting of C1 and C2 using S1 and S2,
respectively.

6.4.2 BGR Pebbling via Separators
The strategy we describe, BGRSwitch, is implicit in the simulation in [GJ16]. Intuitively, it is
obtained by substituting the notion of “midpoint” in BGRPath, the strategy for paths discussed
in Section 6.4.1, with that of a graph separator from Definition 49. As a consequence of
Theorem 19, a graph G with treewidth w(G) can be recursively decomposed using separators
of size at most w(G) into smaller and smaller “component” sub-graphs till the sub-graph
is of a manageable (constant) size.15 As a result, one gets a “component tree” out of the
graph, starting with the whole graph at the root and ending with manageable-sized sub-graphs
as leaves (see Figure 6.4). For a graph with N vertices and degree δ, the depth of the
component tree is at most O(log N) and its out-degree is at most δ · |S| for any separator S
(since each vertex in S can be connected to at most δ components). The pebbling strategy
using separators exploits this recursive structure to minimise the number of greyscale pebbles
employed.

Remark 8. Note that Theorem 19 does not provide any guarantees on whether such a
sequence of separators can be found efficiently. This becomes crucial when simulating the
hybrids since it determines the factor tP. We address this question at the end of this section.

RB Pebbling via Separators.

As in the case of BGRPath, we first describe RBTreewidth, a space-efficient RB pebbling
strategy that will be used as a subroutine in BGRSwitch. RBTreewidth places a black pebble
on any vertex on a graph G of size N and treewidth w using σ := O(w log(N)) pebbles. To
the best of our knowledge, this strategy is new and might be of independent interest. Since
the strategy is reversible, by RBTreewidth−1 we denote the reverse strategy that removes a
black pebble. This strategy, thanks to the observation in Remark 6.2, will also be used to
both place or remove a grey pebble on an all-red-pebbled graph (RGRTreewidth).

Lemma 29. Every node in a DAG G with N vertices and treewidth w can be black-pebbled
following the RB pebbling rules using at most σ := O((δin + w) log(N)) black pebbles in at
most τ := (δinw)O(log(N)) steps.

Lemma 30. Starting from the all-red configuration, every node in a DAG G with N vertices
and treewidth w can be grey-pebbled following the BGR pebbling rules using at most σ :=
O((δin + w) log(N)) grey(scale) pebbles in at most τ := (δinw)O(log(N)) steps.

15This exploits the fact that treewidth is a monotone property: removing vertices or edges from a graph
can only decrease its treewidth.

143

6. Adaptive Indistinguishability of Yao’s Garbling

Proof of Lemma 29. We denote the pebbling strategy by RBTreewidth and it takes as input a
graph (component) C and a vertex v∗ to be pebbled. It uses the same recursive decomposition
into components as will be in BGRSwitch (i.e., the component tree). The base case is when
the graph C is of small enough size (i.e., with O(1) vertices) and here RBTreewidth simply
places a black pebble on v∗ using as many black pebbles as needed; i.e.:

1. place black pebbles on all vertices in C in topological order; and then

2. remove the black pebbles on the ancestors of v∗ in reverse topological order.

Otherwise, RBTreewidth splits C into smaller components using its separator, recursively
places a black pebble on every vertex in the separator in topological order, places a black pebble
on v∗ by recursing on the component C∗ that contains v∗. Finally, it recursively removes the
black pebbles on the separator in reverse topological order. The details are given below.

1. Decomposes C into its components C1, . . . , Cp using its separator S ⊆ C, where
C = S ∪ C1 ∪ . . . ∪ Cp and Ci := C|Ci

.

2. Recursively place black pebbles on the vertices in S in topological order (analogous to
Item 1). That is, for each vertex s ∈ S chosen in topological order:

a) recursively place a black pebble on each predecessor of s (unless it already carries
a black pebble) in topological order,

b) place a black pebble on s, and
c) recursively remove the black pebbles on each predecessor of s which is not in S in

reverse topological order.

3. Recursively pebble the component C∗ ∈ C1, . . . , Cp which contains v∗ (analogous to
Item 2).

4. Undo Item 2 by recursively removing the black pebbles on the separator in reverse
topological order (analogous to Item 3). That is, for each vertex s ∈ S chosen in reverse
topological order:

a) recursively place a black pebble on each predecessor of s in topological order,
b) remove the black pebble on s, and
c) recursively remove the black pebbles on each predecessors of s in reverse topological

order.

As we explain next, carrying out Items 2 and 4 in topological and reverse topological order,
respectively, is crucial for the efficiency (and correctness) of RBTreewidth. Recall that the
property of the separator S guarantees that the components C1, . . . , Cp are themselves of
small enough size (see Definition 49). Therefore, once S is pebbled black, RBTreewidth can
be called on all the resulting components as there are no edges between the components.
However, pebbling a vertex s in S itself is tricky: the predecessors of s could very well be in
different components (since there are no guarantees for the vertices in the separator). However,
we do have the guarantee that all the predecessors of a predecessor of s which does not lie
in S belong to the same component or the separator, and are reachable via either source
vertices or vertices belonging to S. Therefore, as long as the vertices in S are black-pebbled

144

6.4. BGR Pebbling Strategy

in topological order, S can be completely pebbled in Item 2 by recursing on small enough
components. A similar argument applies when the black pebbles on the separator are removed
in Item 4.

With this in mind, we now analyze RBTreewidth. The reason this strategy requires at most
σ := O(w log(N)) black pebbles is similar to what we will see in the proof of Theorem 23.
The number of pebbles is governed by the expression

σ(i) ≤ (w + δin) + σ(i + 1), (6.3)

where the index i is the depth of the recursion of RBTreewidth. The factor (w + δin) is the
cost of black pebbles placed on the separator in Item 2 and the factor σ(i + 1) is the cost
of recursions in Items 2 to 4. Note that since the size of the components in each of these
recursive calls is at most 2/3 of the size of the original component C, the overall depth of
the recursion remains O(log(N)). The upper bound on the number of pebbles claimed in the
lemma follows by solving Equation (6.3).

As for the number of steps, it is governed by the expression

τ(i) ≤ τ(i + 1)O(δinw). (6.4)

since RBTreewidth is recursively called at most O(δinw) times on the (sub-)components. As
in the case of space-complexity, since we end up with constant-size components at the end of
the recursion, the base cost is O(1). The lemma follows by solving Equation (6.4).

Recursive Switching.

We are now primed to describe BGRSwitch. It takes as input:

1. the original graph G = (V , E) that is to be pebbled,
2. the vertices C ⊆ V that define the graph component C = G|C being currently considered,
3. the “higher” separator U , which is the union of all the separators in the “higher” recursive

calls that resulted in the creation of the current component C.

Note that C and U are disjoint sets by definition. Throughout the execution of BGRSwitch,
we maintain a few pebbling properties as invariants:

• At the start of the execution of BGRSwitch on the current component C, it is guaranteed
that the vertices in U are all black-pebbled. This, in some sense, “isolates” C from the
rest of the graph and, as a result, it can be pebbled independently of the rest.

• At the end of the execution of BGRSwitch, we guarantee that the vertices C in C are
red-pebbled (via black and then grey), except for the children of the higher separator U ,
which will be left grey-pebbled.

Next, let’s see what happens in BGRSwitch when called on (G, C,U) (in the first call C = V
and U = ∅). (For ease of understanding, in parenthesis we refer to the analogous step in
BGRPath, the BGR pebbling strategy for paths that was described in Section 6.4.1.) The
base case is when the current component C := G|C is of small enough size (i.e., with O(1)
vertices). Here BGRSwitch simply switches C to red by using as many pebbles as needed; i.e.:

1. place black pebbles on all vertices in C (Rule 50.1),

145

6. Adaptive Indistinguishability of Yao’s Garbling

2. replace them with grey pebbles (Rule 50.3), and

3. replace the grey pebbles with red pebbles (Rule 50.5) except if the vertex is a child of
the upper separator U .

Otherwise, BGRSwitch does the switching from no pebbles to red pebbles for C by recursively
splitting into smaller components using the separator for C as follows (see Figure 6.5).

1. Decompose C = G|C into its components C1, . . . , Cp using its separator S ⊆ C, where
C = S ∪ C1 ∪ . . . ∪ Cp and Ci := G|Ci

. (Midpoint-separator analogy)

2. Place black pebbles on the vertices in S using RBTreewidth. Note that this is possible
only because all the vertices that are required to carry this out are either empty or belong
to U and therefore are black-pebbled. (Analogous to Item 1)

3. Recursively switch each component C1, . . . , Cp using BGRSwitch. After all component
are switched, all vertices in C, except the ones that are children of S, are red-pebbled;
the children of S are left grey-pebbled. (Analogous to Items 2 and 5)

4. Replace the black pebbles on the separator S with grey pebbles by using Rule 50.3.

5. Replace the grey pebbles on S and its adjacent vertices with red pebbles (except if the
vertex is a child of the upper separator) using Rule 50.5 and RGRTreewidth. (Analogous
to Item 6)

Note that during the whole strategy, we maintain as invariant a black-grey frontier between
the empty and red-pebbled vertices, and this frontier is exactly at the separators. That is, at
any point of the pebbling no two vertices such that one is empty and the other is red-pebbled
are related (see Remark 6.5). As pointed out in the technical overview (Section 6.1.2), it is
this frontier that insulates the computations in the two circuits and help ensure correctness at
all times. In the following theorem we formally analyze its space- and time-complexity.

Theorem 23 (Main theorem). Every DAG G with N vertices, degree δ and treewidth w can
be BGR-pebbled using at most σ = O((δin + wδout) log(N)) greyscale pebbles in at most
τ := (δw)O(log(N)) steps.

Proof. To bound the space-complexity of BGRSwitch, first note that the algorithm indeed
maintains the invariants stated above: 1) At the start of the execution of BGRSwitch on the
current component C, it is guaranteed that the vertices in U are all black-pebbled. Hence,
on input a component at depth i ∈ [0, O(log(N))], there are |U(i)| = O(iw) pebbles that
remain black-pebbled. 2) At the end of the execution of BGRSwitch, all the vertices C in C
are red-pebbled, except for children of the higher separator U , which will be left grey-pebbled.
Hence, after the execution of BGRSwitch on a component at depth i > 0 there are up to
δout · |U(i)| = O(iδoutw) many grey pebbles on the graph.

Now, in Item 3 there are up to δw many components, among which some are already
switched, some not, and one is currently processed. For the former set of components, all
nodes within these which are children of U ∪ S are pebbled grey. Hence, by the above,
there are up to δout · (|U(i)| + 1) + |U(i)| = O(iδoutw) nodes that remain grey- or black-
pebbled while BGRSwitch is processed on a lower component. Now, while some node on
the separator S ′ in the currently processed component is pebbled using RBTreewidth or

146

6.4. BGR Pebbling Strategy

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 6.5: A schematic diagram demonstrating recursive switching using BGRSwitch. The
separator S, shown as a solid cross, divides the graph (in thick) into four components. The
dotted lines indicate vertices adjacent to S. The switching starts from an empty graph (1) and
then proceeds as follows: (2) pebble S black, (3-6) switch bottom-left, top-left, top-right and
bottom-right components (in that order), (7) replace black pebbles on S with grey pebbles,
(8) replace the grey pebbles on vertices adjacent to S with red pebbles, and (9) replace the
grey pebble on S with red pebbles.

RGRTreewidth (cf. Item 2), there are up to |S ′| ≤ w additional nodes that remain pebbled.
By Lemmas 29 and 30, the space-complexity of RBTreewidth/RGRTreewidth is bounded by
O((δin + w) log(N)). Thus, we arrive at

σ(i) ≤ O(iδoutw) + w + O((δin + wδout) log(N)) = O(wδ log(N)).

As for the number of steps, on input a component at depth i, the time-complexity of BGRSwitch
is governed by the expression

τ(i) ≤ (δinw)O(log(N)) · w + τ(i + 1)δw. (6.5)

The first factor is the cost of the subroutines used to pebble the separator black: the subroutine
is called at most |S| ≤ w times, each time incurring a cost of at most (δinw)O(log(N))

(Lemma 29). The second component is the cost of recursively calling BGRSwitch on at most
δw (sub-)components. Since we end up with constant-size components at the end of the
recursion, the base cost is O(1). On solving Equation (6.5), the theorem follows.

Computing separators. Finally, let us get back to the question of how to compute the
sequences of separators underlying our pebbling strategy. While we are not aware of an efficient
algorithm computing balanced separators, for our purposes (since we lose a similar factor in

147

6. Adaptive Indistinguishability of Yao’s Garbling

the distinguishing advantage) it is enough to note that a separator of size w can be found by
brute-force search in time at most Nw by simply enumerating all w-sized subsets of vertices
(note that given a separator it is easy to verify that it is indeed one). Since computing any
BGR pebbling configuration requires knowledge of at most O(log(N)) many separators, the
total time required to compute a pebbling configuration is at most tP = O(log(N)Nw).

6.4.3 Optimised Piecewise Guessing
Recall that in Theorem 22, the loss in adaptive security is exponential in the BGR pebbling
complexity. This is because the reduction requires as advice the value of the output wire of all
the gates that are greyscale pebbled. Therefore, when Theorem 22 is used in conjunction with
Theorem 23, the loss is exponential in the treewidth as well as degree. First, note that for
Yao’s garbling scheme, we only consider Boolean circuits with fan-in 2. We argue next that
the dependence on the degree can be removed thanks to the structure of the configurations in
the BGRSwitch pebbling strategy. The resulting theorem is stated in Theorem 24.

Let’s return to the recursive step in Item 3 which is the cause of the dependence on the degree.
At the start of this step, all the vertices in the separator S have been pebbled. Then each
component Ci is recursively switched to red one at a time. At the end of switching Ci, each
vertex in Ci is pebbled red, except for those vertices that are children of S (or U) which are
left grey. Therefore we can restrict our focus on those vertices that have its predecessors in
the separator – let’s consider one such vertex v∗. Note that in any configuration where v∗

carries a grey pebble, it is guaranteed that its predecessors in the separator are black-pebbled.
Therefore, instead of requiring the value of the gate g∗ corresponding to v∗ as an advice,
it can simply be computed as a function of the values of its predecessor gates (which are
included in the advice). To sum up, instead of providing as advice the values of the output
wires of all the gates that are greyscale pebbled as in Equation (6.2), it suffices to provide a
much smaller advice as outlined above. As a result of this observation, we get the following
optimised version of Theorem 22. This leads to the corollaries stated in Section 6.1.1.

Theorem 24. Suppose that a class of circuits C of size N , fan-in 2 has degree δ and treewidth
w. If the encryption scheme SKE is (t, ϵ)-secure then YGCSKE is (t− (tH + tσ + tP), 3τ2σ · ϵ)-
adaptively-indistinguishable for C where

τ := (δw)O(log(N)), σ := O(w log(N)) and tP := O(log(N)Nw).

6.5 Conclusion and Open Problems
Yao’s garbling scheme is one of the most fundamental cryptographic constructions. In this
work, we took another step towards completing the landscape of its security. Our result leads
to several interesting questions, the most natural being whether the upper bound on loss in
security can be improved. To this end, one could look at other (orthogonal) graph properties.
Another pressing question is whether there are other applications of treewidth in cryptography
(which seems relatively overlooked compared to other fields such as circuit complexity or
algorithmic graph theory). This closely concerns the divide-and-conquer approach employed
in our security reduction: it seems that the approach of surgically replacing one circuit with
another should find use in other scenarios. Our hope is that this work spurs further research
in this direction.

148

Part IV

Lower Bounds

149

CHAPTER 7
On the Cost of Adaptivity in Security

Games on Graphs

7.1 Introduction
In the previous chapters we have seen several cryptographic schemes, for which adaptive security
seemed hard to achieve: Generalized selective decryption (Section 3.3), the GGM construction
of a prefix-constrained psudorandom function (Section 3.4), proxy re-encryption schemes
(Chapter 4), the TreeKEM protocol for continuous group key agreement (Chapter 5), and
Yao’s garbling scheme (Chapter 6). For all these schemes, the best known security reductions
(in the standard model) applied the Piecewise-Guessing framework that we presented in
Chapter 3, and the technical difficulty consisted in finding good pebbling strategies for various
pebbling games on some underlying graph structures. It is a natural question whether the
existing security proofs obtained in the Piecewise-Guessing framework can be further improved.
In this chapter, we approach this question from the negative direction and argue that simply
using existing techniques, this will not be possible for some of the applications.

7.1.1 Our Results
We show that there do not exist non-rewinding PPT black-box reductions – henceforth called
“straight-line” reductions for brevity – that prove adaptive security of

• certain forms of restricted GSD (including its public key variant, see Section 3.3) based
on the IND-CPA security of the underlying encryption scheme (Section 7.6),

• popular protocols for continuous group key agreement (CGKA, see Chapter 5) based
on the IND-CPA security of the underlying public-key encryption (PKE) scheme (Sec-
tion 7.7),

• the GGM construction for prefix-constrained PRFs (see Section 3.4) based on the
pseudorandomness of the underlying PRG (Section 7.8)

This Chapter essentially replicates, with permission, the full version [KKPW21b] of our publica-
tion [KKPW21a], © IACR 2021, to appear.

151

7. On the Cost of Adaptivity in Security Games on Graphs

Application Underlying Graph Lower Bound Reduction Upper Bound

GSD

Path PN NΩ(log(N)) Oblivious NO(log(N))[FJP15], §3.3
Binary In-Tree Bn NΩ(log(N)) Oblivious NO(log(N)) [Pan07], §3.3

Tree1 NΩ(log(N)) Straight-line NO(log(N))[FJP15], §3.3
Arbitrary DAG 2Ω(

√
N) Oblivious NO(N) §3.3

PRE
Path PN NΩ(log(N)) Oblivious NO(log(N)) §4

Binary Tree Bn NΩ(log(N)) Oblivious NO(log(N)) §4
Arbitrary DAG 2Ω(N) Arbitrary NO(N/ log(N)) §4

GGM cPRF Tree nΩ(log(n)) Straight-line nO(log(n)) [FKPR14], §3.4
TreeKEM Regular Tree MΩ(log(log(M))) Straight-line QO(log(M)) §5

Table 7.1: Summary of lower bounds on the loss in security established in our work. N = 2n

denotes the size of the graph. Therefore, in the case of GGM constrained PRF, n denotes the
length of the input string. For TreeKEM, M denotes the number of users and Q refers to the
number of queries allowed to the adversary.

• proxy re-encryption (PRE) schemes (see Chapter 4) based on the IND-CPA security of
the PKE scheme and N -weak key privacy (Section 7.9)

with only polynomial loss in advantage. For PRE we can even rule out general (i.e., rewinding)
black-box reductions (see Discussion of Corollary 18). For the theorem statements of the
latter three results, we refer to the corresponding sections, but we will discuss GSD in a little
more detail, so we provide an informal statement here.

Informal Statement 1 (Corollary 9). Any straight-line reduction proving security of un-
restricted adaptive GSD based on the IND-CPA security of the underlying symmetric-key
encryption scheme loses at least a factor that is super-polynomial (NΩ(log N)) in the number
of users N .

For the proof we rely heavily on the adversary’s freedom to query arbitrary directed acyclic
graphs (DAG). (Actually, the graphs have some structure and so certain conditions may
be imposed on it but these restrictions are very weak.) In many applications however, the
adversary is much more restricted in terms of the graphs it can query, e.g. in protocols for
multicast encryption like logical key hierarchies (LKH) [WHA98, WGL00, CGI+99], and hence
our bound does not apply. However, for a certain sub-class of straight-line reductions, which
we term “oblivious” (see discussion below), we obtain results for such applications. These
results show that the upper bounds for GSD given in 3, which are oblivious, are essentially
tight and can only be improved by exploiting new non-oblivious techniques (and similarly for
the bounds for PRE given in 4), as stated informally below.

Informal Statement 2 (Corollaries 6 to 8). Any oblivious reduction proving security of
adaptive GSD restricted to paths or binary trees based on the IND-CPA security of the
underlying symmetric-key encryption scheme loses a factor that is super-polynomial (NΩ(log N))
in the number of users N ; for unrestricted GSD the loss is sub-exponential (2Ω(

√
N)).

Our results for PRE have a similar flavor, but are even stronger, since in this case the reduction
is naturally more restricted. A summary of the results can be found in Table 7.1.

1Recall that a tree does not necessarily have to be rooted, so this includes any DAG such that the
corresponding undirected graph does not contain any cycles.

152

7.1. Introduction

The common thread to the applications we consider is that their security game can be
abstracted out by a two-player multi-stage game which we call the “Builder-Pebbler Game”.
We are unable to establish lower bounds for other applications of the Piecewise-Guessing
framework (e.g., computational secret sharing or garbling circuits) from the results in this
chapter, because their security model is not quite captured by the Builder-Pebbler Game.
The high level reason for this is that the graphs (e.g., the circuit to be garbled or the access
structure) in these applications is fixed ahead of time and the adaptivity comes from other
sources (e.g., choice of garbling input or targeted user). Therefore we would require other
combinatorial abstractions to establish lower bounds for them. In fact, building on the high
level ideas introduced in this chapter, in Chapter 8 we show lower bounds for adaptive security
of Yao’s garbling (see Section 8.2.5 for a comparison).

We defer the discussion on the Builder-Pebbler Game to the next section (Section 7.2.2) and
explain informally what we mean by oblivious reductions next, mostly from the perspective of
GSD. We will then argue that this comprises a natural class of reductions.

Oblivious reductions. Oblivious reductions are a certain class of black-box reductions and
our definition is motivated by the reductions in 3 and other applications of the Piecewise-
Guessing framework. On a high level, the behaviour of an oblivious reduction is “independent”
of the adversary’s behaviour throughout the simulation of the security game. To see what we
mean by this, let’s return to the example of GSD. A reduction (simulating some consecutive
hybrids) can decide to answer an encryption query issued by the adversary either with a
consistent or an inconsistent ciphertext (let’s ignore the challenge ciphertext for the moment).
In particular, it has total control over the number of inconsistencies in the final simulation
(assuming it knows the number of queries the adversary will make). However, as the key-graph
is only gradually revealed to the reduction, it doesn’t know where the edge (representing
the encryption query) will end up within the key-graph. We call a GSD reduction oblivious
if it does not make use of the partial graph structure it learns during the game but rather
sticks to some strategy that is independent of the history of the adversary’s queries. There
are several ways one could formalise this: for example, one could require the reduction as
initially “committing” to which queries it will answer inconsistently. However, this does not
mean that for all queries it has to commit to its decision, but rather commit to some minimal
description of the edges it intends to respond inconsistently to. In order to capture as many
reductions as possible (while still being able to prove lower bounds), we ended up defining
them as reductions which commit to a minimal set of nodes which covers all inconsistent
edges, i.e., a minimal vertex cover.2 For example in the case of graphs of high indegree, clearly,
guessing the set of sinks of inconsistent edges gives a much more succinct representation. A
formal definition of an oblivious GSD reduction is given in Definition 68; the corresponding
definition for PREs is given in Definition 71.

Why oblivious reductions? We note that oblivious black-box reductions are a quite natural
notion, since they can easily be defined uniformly for all adversaries. Not surprisingly, they
encompass some of the key reductions in the literature. Beside the reductions proposed and
analyzed in this work (and other concurrent works applying the Piecewise-Guessing framework),
partitioning-based reductions, which have been successfully employed in a plethora of works

2Technically, we do not require minimal vertex cover, but a weaker notion which we call “non-trivial”
vertex cover (see Definition 52).

153

7. On the Cost of Adaptivity in Security Games on Graphs

[Cor00], also roughly behave in an oblivious manner.3 Moreover, oblivious black-box reductions
encompass the currently-known techniques for establishing upper bounds for primitives with
dynamic graph-based security games, like GSD, PRE, cPRFs etc. Therefore, our results imply
that in order to obtain better upper bounds on the loss function Λ even in the more restricted
settings, one needs to deviate significantly from the current proof techniques (i.e. non-oblivious
or rewinding reductions for GSD and restricted PRE). Accordingly, our results on oblivious
reductions should not be viewed as separations, but rather as a guide towards new avenues
to finding better reductions by ruling out a large class of reductions – such possibilities are
discussed in Section 7.10.

7.1.2 Related Work
Black-Box Separations

The study of limitations of black-box reductions was initiated in the seminal work of Impagliazzo
and Rudich [IR89]. They used the notion of oracle separations to rule out black-box reductions
of key agreement to symmetric-key primitives. This approach turned out quite useful and
has been further exploited to rule out black-box constructions of a variety of cryptographic
primitives from one another (e.g., [Rud88, Sim98]). A fine-grained study of the notion of
black-box reductions and oracle separations was later carried out by Reingold et al. [RTV04].

In addition to ruling out reductions, oracle techniques have also been used to study the
efficiency of a construction of one primitive from another [GT00, GGKT05, KST99]. This has
been applied to the case of adaptive security as well. Perhaps the works most relevant to
ours is that of Lewko and Waters [LW14], who showed that the security of adaptively-secure
hierarchical identity-based encryption must degrade exponentially in the depth, and Fuchsbauer
et al. [FKPR14], who showed that certain types of constrained PRFs must incur an exponential
loss (in the size of the input) in adaptive security. Note that this class of constrained PRFs
does not include the prefix-constrained PRF construction we consider in this work. Both
aforementioned works employ the more recent meta-reduction technique [BV98, GW11, Pas13],
which is of different flavour from oracle separations. Our work is thus similar in spirit to
[GT00, GGKT05, KST99].

Graph Pebbling

The notion of graph pebbing, first introduced in the 70’s to study programming languages,
turned out quite useful in computational complexity theory to study the relationship between
space and time; in recent years, pebbling has found applications in cryptography as well
[DNW05, DKW11b, AS15]. The notion of node pebbling first appeared (albeit implicitly) in
[PH70], whereas the notion of reversible node pebbling was introduced by Bennett to study
reversible computation [Ben89]. The notion of edge pebbling used in this work is defined in
3 . The lower bound on the reversible node pebbling complexity of paths was established
by Chung et al. [CDG01] and an alternative proof can be found in [Krá01]. As for the lower
bound on the node pebbling complexity for binary trees, a proof can be found in [Sav98].
We refer the reader to the textbook by Savage [Sav98] or the excellent survey by Nordström
[Nor15] for more details on pebbling.

3On every signature query issued by the adversary, the reduction in [Cor00] tosses a (biased) random
coin (independent of the history of the simulation) and depending on its outcome decides whether or not to
embed the (RSA) challenge in the signature. The simulation is identical if these coin-tosses are all carried out
together at the beginning of the game.

154

7.2. Technical Overview

7.2 Technical Overview
On a high level, our approach can be divided into two steps. In the first step (Section 7.2.2),
which is purely combinatorial, we analyze a two-player multi-stage game which we call the
Builder-Pebbler Game. In particular, we exploit ideas from pebbling lower bounds to establish
upper bounds for the success probability of the Pebbler (who is one of two players). These
upper bounds are then, in the second step (Section 7.2.3), translated to lower bounds on the
loss in security of concrete cryptographic protocols using oracle separation techniques to yield
the results stated in Section 7.1.1. Before explaining the two steps, we provide a summary
of the overall approach so that the two steps, especially the motivation behind some of the
underlying definitions, can be better appreciated.

7.2.1 Our Approach
Our goal is to design adversaries that break the GSD game but where any reduction (in
a specified class) to the security of the underlying SKE scheme loses a significant (super-
polynomial) factor in the advantage. Since we are aiming to rule out black-box reductions, we
have the luxury of constructing inefficient adversaries and SKE schemes. The output of our
adversaries will solely depend on the distribution of inconsistent edges in the final key-graph,
which we will denote as pebbles in the following. Clearly, in order to win the GSD game,
our adversaries need to output 0 if the final key-graph is entirely consistent (i.e., contains no
pebbles), and 1 if the final key-graph is entirely consistent except for the edges incident on
the challenge key. Otherwise, we have complete freedom in assigning output probabilities of 0
and 1 to the remaining pebbling configurations of the final key-graph.

As we prove formally in Section 3.3, any reduction attempting to take advantage of our
adversaries must send its IND-CPA challenge as a response to a query and exploit the fact
that the real and the random challenge will lead to different pebbling configurations of the
key-graph. Its hope is that the output distribution of the adversary differs significantly between
the two configurations. Note however, that when embedding the challenge in some edge (i, j)
of the key-graph, all edges incident to i will, with overwhelming probability, be inconsistent
independently of the challenge ciphertext, since the reduction does not know the challenge
secret key and thus is unlikely to be able to send consistent responses to queries incident to i.
In other words, the challenge can only be embedded into an edge where the edges incident to
the source are all pebbled. This naturally leads to studying configurations that are related by
valid moves in the reversible edge-pebbling game: a pebble on an edge may only be added or
removed if all edges incident to the source are pebbled.

We may now define the configuration graph of our key-graph G: The vertices of the configu-
ration graph PG, as the name suggests, consist of all possible pebbling configurations of G.
Therefore it is the power set of the edges of G = (V , E). An edge is present from a vertex Pi

to another vertex Pj if Pj can be obtained from Pi using a valid pebbling move. The edges
represent pairs of configurations, where the reduction may embed its IND-CPA challenge,
in other words, a hybrid (from the reduction’s point of view). Since we consider reversible
pebbling games, the edges in our configuration graphs are undirected. Therefore one can think
of PG as a subgraph of the Boolean hypercube on 2|E| vertices. Assuming that G has a single
sink vertex T , PG has two special vertices denoted Pstart = ∅ and Ptarget which consist of the
pebbling configuration where all incoming edges to T carry a pebble. The configuration graph
for C4, the path of length 4, is given in Figure 7.1. A more formal definition is given later in
Definition 55 (Section 7.3). A path from Pstart to Ptarget corresponds to a pebbling sequence

155

7. On the Cost of Adaptivity in Security Games on Graphs

0100 0101

0110 0111

1100
1101

1110
1111

0000 0001

0010 0011

1000
1001

1010
1011

Figure 7.1: Configuration graph for paths of length 4, C4 = ([1, 5], {(1, 2), (2, 3), (3, 4), (4, 5)}).
It is a subgraph of the Boolean hypercube of dimension four (the missing edges are dotted).
The labels of the vertices encode the pebbling status of the corresponding edge and therefore
represent a pebbling configuration: e.g., the vertex labelled 0000 is completely unpebbled
(configuration P = ∅) whereas the vertex labelled 1000 has a pebble only on the first edge (1, 2)
(configuration P = {(1, 2)}). An edge exists between a configuration Pi and Pj if Pj can be
obtained from Pi via one valid pebbling move. The special vertices for PC4 are Pstart = 0000
and Ptarget = 0001 (both boxed). A cut for this configuration graph is indicated by the hatched
plane (which lies parallel to the 1000− 1010− 1110− 1100 and 1001− 1011− 1111− 1101
planes). The cut consists of the set of (red) vertices that lie on the left of the plane, i.e., the set
of vertices with the least significant bit 0: {0000, 0010, 0110, 0100, 1000, 1010, 1110, 1100}.
The subset of edges that intersect this plane form the cut set, i.e., the edges which flip the
least significant bit: {(1110, 1111), (1010, 1011), (0010, 0011), (0110, 0111)}. This cut is of
a geometric nature – the cuts that we deploy in our lower bound, on the other hand, will have
a more combinatorial underpinning (see Sections 7.2.2 and 7.5).

in the reversible edge-pebbling game. Any such path can be used for a hybrid argument to
prove upper bounds for the loss in security, which is what prior works did [Pan07], Section 3.3.
In this work we are interested in ruling out the possibility of using any of the paths (or multiple
at once) to improve on these results.

Pebbling lower bounds: Barriers to better cryptographic upper bounds. In our
approach, we will show that in any sequence of hybrids there exist “bottleneck” configurations
related to pebbling lower bounds. These bottleneck configurations define a cut for the
configuration graph PG. Looking ahead, our adversaries will concentrate all their advantage
on these cut sets and we will show that it is hard for any reduction to guess the pebbled edges
of the corresponding pebbling configurations.

For example, let’s consider the pebbling lower bound for binary trees. It is known that the
number of pebbles that are needed to node-pebble a complete binary tree of N vertices is at
least log(N) (see [Sav98] for example), and the argument can be easily adapted for the case
of edge pebbling as follows. Consider a pebbling sequence for a complete binary tree. At the

156

7.2. Technical Overview

Figure 7.2: The pebbling configurations used to argue lower bounds for edge-pebbling of a
perfect binary tree B3 of depth 3. In the left configuration there exists a path from a leaf
(100) to the root (ε) that is not covered by a pebble highlighted by the thicker (red) path. In
the right configuration all the paths in B3 are covered by pebbles. The cut is defined at such
two configurations.

beginning of the sequence none of the N/2 paths from the leaves to the root carries a pebble;
whereas at the end of the sequence – at which point both the edges incident on the root
must carry a pebble – all the paths from the root to the leaves carry a pebble. Furthermore,
by the rules of edge pebbling, only new pebbles on edges going out of the sources, i.e., the
leaves, increase the number of paths that carry a pebble. So any pebbling move can only
decrease the number of paths that carry a pebble by one. Therefore there have to exist two
consecutive configurations in the pebbling sequence such that in the first configuration there
exists a path that does not carry a pebble but in the next configuration every path carries
a pebble (see Figure 7.2). At this point, for each node on the path (except the leaf) there
must be at least one pebble on the graph to pebble all paths going through this node via the
other in-going edge, and therefore there exists a pebbling configuration where there are at
least log(N) pebbles. Such pairs of configurations will serve as the cut for the case of binary
trees. An illustration can be found in Figure 7.2.

From pebbling lower bounds to cryptographic lower bounds via Builder-Pebbler Game.
The immediate idea would be to translate pebbling lower bounds directly to cryptographic
lower bounds. But pebbling lower bounds apply to fixed graphs. Therefore we are missing
a component that captures the dynamic nature of the security games, like that of GSD,
which involves (the adversary) choosing a graph G randomly from a class of graphs G. To
remedy this, we introduce a two-player multi-stage game that we call the Builder-Pebbler
Game and then show that pebbling lower bounds can be used to upper bound the probability
of success of the Pebbler (Step I: Section 7.2.2), one of the players. Then we will use oracle
separation techniques to translate these upper bounds into cryptographic lower bounds (Step
II: Section 7.2.3).

7.2.2 Step I: Combinatorial Upper Bounds
We start off with an informal description of the Builder-Pebbler Game, a two-player game
that will abstract out the combinatorial aspect of establishing lower bounds for cryptographic
protocols that are modelled by multi-user games where the adversary adaptively builds a graph
structure among the set of users, as in GSD (formal definition in Section 7.4). The game is
played between a Pebbler and a Builder, and intuitively, Pebblers play the role of reduction
algorithms whereas Builders correspond to adversaries in security games.

157

7. On the Cost of Adaptivity in Security Games on Graphs

Builder-Pebbler Game. For a parameter N ∈ N, the Builder-Pebbler Game is played
between a Builder and a Pebbler in rounds. The game starts with an empty DAG G = (V =
[1, N] , E = ∅) and an empty pebbling configuration P, and in each round the following
happens: the Builder first picks an edge e ∈ [1, N]2 \ E and adds it to the DAG and the
Pebbler then decides whether or not to place a pebble on e. This way the Builder and the
Pebbler will construct a graph G and a pebbling configuration P on this graph. The Builder
can stop the game at any point by choosing a sink in G as the challenge. This results in a
challenge DAG G∗ = (V∗, E∗), the subgraph of G that is induced by all nodes from which the
challenge is reachable. The Pebbler wins if it ends up with a pebbling configuration P that
is in a designated subset of all configurations. This winning set is determined by the graph
G. Otherwise, the Builder is declared the winner. In case the strategies are randomised, we
call the probability with which the Builder (resp., the Pebbler) wins the game as Builder’s
(resp., Pebbler’s) advantage, and denote it by β = β(N) (resp., π = π(N)). We also consider
restricted games where the Builder is restricted to query graphs G that are subgraphs of some
family of graphs G.

In summary, one can think of the game as the Builder building a graph and the Pebbler placing
pebbles on this graph with the aim of getting into a winning configuration and the Builder
preventing this from happening.4

Defining winning configurations via cuts of the configuration graph. Although the
Builder-Pebbler Game is meaningful for any notion of winning configuration, we are interested
in a particular definition that is essential in establishing our cryptographic lower bounds: we
will set the winning configurations as the ones that belong to bottleneck configurations in
the configuration graph of G. The goal is to prove that it will be difficult for Pebblers to get
into such configurations. In some cases we can do so directly, but in others the Pebbler may
be able to achieve this by “flooding” the graph with many pebbles. For example, recall the
bottleneck configurations of a binary tree, which consists of all configurations where exactly
one path from a source to the root is not pebbled. A randomised Pebbler that decides for
each query whether to pebble an edge or not using an unbiased coin, will leave any particular
path unpebbled with a probability that is inverse polynomial in the number of nodes in the
tree. With a bit more effort one can show that such a path is the only unpebbled path with
significant probability. Our solution is to “artificially” restrict the Pebbler to placing very few
pebbles by requiring it to leave the part of the query graph that is not in the challenge graph
entirely unpebbled, i.e. if at the end of the game there is a pebble on an edge that is not
rooted in the challenge graph, the Pebbler loses. Note that this does not trivialize our task
of finding a suitable Builder, because for our application to cryptographic lower bounds to
work, the Builder’s querying strategy (including the challenge) needs to be independent of the
pebbles placed by the Pebbler. (We call such Builders also oblivious, see below.) Returning
to our example of binary trees, the Builder may now query two binary trees and select one
of them to be the challenge graph at the end of the game. A Pebbler that places too many
pebbles will now lose the game with overwhelming probability. Of course, care must be taken
that this behaviour cannot be exploited by the reduction. Intuitively, the reason this works

4This is reminiscent of Maker-Breaker games [HKSS14], a class of positional games (which includes
Shannon Switching Game, Tic-Tac-Toe and Hex) which are played between a Maker, who is trying to end up
with a (winning) position and a Breaker, whose goal is to prevent the Maker from getting into such (winning)
positions. One fundamental difference between Maker-Breaker Games and the Builder-Pebbler Game is that in
Maker-Breaker games one usually considers optimal (deterministic) strategies, whereas we consider randomised
strategies for the Builder-Pebbler Game. (Another way of looking at this is that our “board" is dynamic.)
Another difference is the asymmetry in the nature of moves.

158

7.2. Technical Overview

is that in all our applications, if the reductions were to embed the challenge outside of the
challenge graph, our adversaries will almost always interpret it to be a pebble, no matter if the
challenge was real or random.

Combinatorial Upper Bounds in the Builder-Pebbler Game. We bound the advantage
of Pebblers from above against Builders with varying degree of freedom, i.e., Builders that are
restricted to querying certain classes of graphs. The upper bounds in Statements 3 to 5 are
(almost) tight since a random Pebbler yields (almost) matching lower bounds.

Informal Statement 3 (Theorems 25 and 27). Any oblivious5 Pebbler in the Builder-Pebbler
Game restricted to paths or binary trees has advantage at most inverse quasi-polynomial
(N−Ω(log N)) in N , the size of the graph.

Informal Statement 4 (Theorem 28). Any oblivious Pebbler in the unrestricted Builder-
Pebbler Game has advantage at most inverse sub-exponential (2−Ω(

√
N)) in N , the size of the

graph.

Informal Statement 5 (Theorem 30). Any Pebbler in the Builder-Pebbler Game restricted
to trees has advantage at most inverse quasi-polynomial (N−Ω(log N)) in N , the size of the
graph.

Remark 9 (On Builder Obliviousness). It is worth mentioning that all our Builder strategies
are also oblivious, where oblivious is defined different for Builders than for Pebblers: it means
that the query strategy is independent of the Pebbler’s responses (see Section 7.4.1).6 The
reason we restrict ourselves to such Builders is mostly for our convenience: looking ahead, it
means that we can ensure that the reductions in our cryptographic applications cannot exploit
the querying behaviour of the adversary to gain a larger advantage, rather they must rely
solely on the final output bit.

7.2.3 Step II: From Combinatorial Upper Bounds to Cryptographic
Lower Bounds

For translating upper bounds established in Step I into loss in security of concrete cryptographic
protocols, we adapt ideas from oracle separations.

Ruling out tight black-box reductions. Oracle separations are used to rule out reductions7

proving security of a primitive Q (e.g., PKE) based on the security of another primitive P
(e.g., SKE). Our case is slightly different since it involves a primitive P (e.g., SKE) that is
used in a graph-based “multi-instance” setting QP (e.g., GSD with SKE). In this setting, we
are interested in the more fine-grained question of bounding Λ, the loss in security incurred by

5The notion of obliviousness for Pebblers is naturally derived from the one for reductions, see discussion
above and Definition 60.

6One could think of the Builder playing the role of “nature” (who also adopts a strategy that is oblivious
of the opposing player) in Papadimitrou’s Games Against Nature [Pap85].

7The usage of the word ‘reduction’ here is in a constructive sense [RTV04]: a primitive Q is reduced to
another primitive P if (i) there is an efficient construction C that takes an implementation P of P and gives
an implementation Q of Q and (ii) there is an efficient security reduction R which takes an adversary AQ that
breaks Q and constructs an adversary AP that breaks P. For example, the most common type of reduction
used in cryptography is a fully black-box reduction where both R and C are black-box in that they only have
black-box access to P and AQ, respectively.

159

7. On the Cost of Adaptivity in Security Games on Graphs

any efficient black-box reduction R that breaks P when given black-box access to an adversary
that breaks QP . This means we must show that for every R, there exists

• an instance P (not necessarily efficiently-implementable) of P and

• an adversary AQ (not necessarily efficient) that breaks QP

such that the loss in security incurred by R in breaking P is at least Λ.8 To this end, we
establish a tight coupling between the security game for QP and the Builder-Pebbler Game
(e.g., Lemma 37). If QP involves a graph family G then the Builder-Pebbler Game will be
played on G (or sometimes another family related to G) and the winning condition is determined
by the cut for G. The coupling is established using a Builder strategy B and a related adversary
AQ such that

• every reduction R can be translated to a Pebbler strategy P against B on G, and

• if R has a security loss of at most Λ then B’s advantage against P is at least 1/Λ (up
to negligible additive factors).

If G is a class for which we derived an upper bound of π for Pebbler strategies (in Step I)
then any reduction R such that 1/Λ > π cannot exist. Put differently, an upper bound on the
success probability of the Pebbler in the Builder-Pebbler Game translates to a lower bound on
the loss in security for the reduction R. In the remainder of the section, we explain how the
coupling works in a bit more detail using GSD on binary trees as the running example. To keep
the exposition simple, we will brush a lot of issues (e.g., dealing with ‘flooding’ reductions)
under the rug and refer the readers to Section 7.6 for a more formal treatment.

Example: GSD on Binary Trees. Let’s consider the case where P is SKE and QP is
the GSD game played on G = Bn, the class of binary trees of depth n. Intuitively, the GSD
adversary AQ “simulates” the oblivious Builder B used to derive Statement 3. That is, it

1. chooses a binary tree Bn ∈ Bn uniformly at random,

2. queries, in a random order, each edge (u, v) ∈ E(Bn) to obtain the corresponding
ciphertext Encku(kv) from the reduction R and

3. challenges the sole sink T at the end of the game.

For it to be a valid adversary, AQ must distinguish the extreme games, i.e., the real game
where all the ciphertexts are real and the random game where the ciphertexts incoming to
T are both random. To this end, it looks at the ciphertexts it obtained and extracts a
pebbling configuration P from it (as described in Section 7.2.1). Note that the extreme
hybrids corresponds to Pstart = ∅ (real) and Ptarget such that both the edges incoming to T
carry a pebble (random). AQ distinguishes these by concentrating all its advantage in the cut
in the configuration graph of Bn defined in Section 7.2.1: i.e., it outputs 0 if P is on the “left”
of the cut and 1 otherwise (see Figure 7.2). To help AQ faithfully distinguish real ciphertexts
from random ones so that it can infer the exact pebbling configuration P , we fix P to be an
ideal implementation (Enc, Dec) of SKE:

8This is obtained by simply negating the definition of a black-box reduction: there exists an efficient
reduction R such that for every (not necessarily efficient) implementation P of P and for every (not necessarily
efficient) adversary AQ that breaks QP the loss in security is at most Λ.

160

7.3. Notation and Definitions

• Enc is a random expanding function that implements encryption and

• Dec is the decryption function defined to be “consistent” with Enc.9

Since Enc is injective with overwhelming probability, given a ciphertext AQ can brute force
Enc to determine (exactly) whether or not the ciphertext corresponding to an edge is real. By
carrying this out for all the edges, it can extract a unique pebbling configuration corresponding
to R’s simulation. Since AQ concentrates its advantage in the cut, for R to have any chance
of winning, its own challenge c∗ must be ‘embedded at the cut’ so that – depending on
whether or not c∗ is real – P switches from left of the cut to its right. Since this is the
only way R can exploit AQ, we may infer that a reduction with loss in security at most Λ
ends up in the cut with probability at least 1/Λ. However, thanks to the fidelity of the
extraction, this also means that the natural Pebbler strategy P that underlies R, which simply
places a pebble whenever R fakes, wins against B in the Builder-Pebbler Game on Bn with an
advantage at least π = 1/Λ (formally, Lemma 34). In particular, if Λ is significantly less than
quasi-polynomial in N = 2n, it would imply the existence of a Pebbler that is successful with
a probability greater than inverse quasi-polynomial, a contradiction to Statement 3 (formally,
Corollary 7). Since Statement 3 only holds for oblivious Pebblers, the bound on Λ only holds
for oblivious GSD reductions.

7.3 Notation and Definitions
In this chapter, let G = (V , E) define a directed acyclic graph (DAG) with vertex set V = [1, N],
edge set E ⊂ [1, N]× [1, N], and a set of sinks T . By Bn, we denote a binary tree of depth
n – the binary tree is perfect if it has all 2n+1 − 1 vertices. We assume the standard indexing
of the vertices in Bn by associating them with binary strings in {0, 1}≤n determined by their
position in the tree: i.e., the root has index ε and the left (resp., right) child of a vertex with
index i is i∥0 (resp., i∥1). We will consider the edges

Definition 51 (Cuts, cut-sets, frontiers). Let G = (V , E) be an undirected graph. A cut S
of G is a subset of the nodes V . For two nodes v1, v2 ∈ V an s-t-cut that separates v1 and v2
is a cut S such that v1 ∈ S and v2 /∈ S. The cut-set of a cut S is the set of edges with one
endpoint in S and the other outside of S. We call the frontier of a cut S the set of all nodes
in S that have an incident edge in the cut-set of S.

Definition 52 (Vertex covers). Let G = (V , E) be a directed or undirected graph and P ⊆ E
be a subset of edges. A vertex cover of P is a subset S of [1, N] such that for each edge
(i, j) ∈ P either the source i or the sink j lies in S. We define a non-trivial vertex cover to be
a vertex cover S such that S ⊆ V(P). We denote the size of a minimal vertex cover of P by

VC(P) := min{|S| : S ⊆ [1, N] covers P}.

7.3.1 Graph Pebbling
A pebbling configuration on the graph G is a set P ⊆ E defining the subset of pebbled
edges. Let |P| denote the number of pebbles in the configuration and V(P) the set of nodes

9Since most of our ideal functionalities are implemented using random oracles, it is possible using standard
tricks [IR89] to switch the order of the quantifiers and establish the stronger statement that there exists a
single oracle P and adversary AQ which work for all reductions.

161

7. On the Cost of Adaptivity in Security Games on Graphs

involved in the pebbling. We define the complexity of a pebbling configuration P as the
size of a minimal vertex cover of P .10 For a pebbling sequence P = (P0, . . . ,Pℓ), we define
VC(P) := maxi∈[0,L] VC(Pi).

Let Pstart denote the unique configuration with |Pstart| = VC(Pstart) = 0, i.e., Pstart = ∅, and
Ptarget = in(T) = {(i, T) ∈ E} denote the configuration where only all the edges incident
on some sink T ∈ T are pebbled. We will consider sequences of pebbling configurations
P = (Pstart, . . . ,Ptarget) where subsequent configurations have to follow the reversible edge-
pebbling rules from Definition 8 in Chapter 3:

Definition 53 (Edge-pebbling). An edge pebbling of a DAG G = (V , E) with unique sink T
is a pebbling sequence P = (P0, . . . ,Pℓ) with P0 = Pstart and Pτ = Ptarget, such that for all
i ∈ [1, τ] there is a unique (u, v) ∈ E such that:

• Pi = Pi−1 ∪ {(u, v)} or Pi = Pi−1 \ {(u, v)},

• in(u) ⊆ Pi−1.

For some applications, we will actually consider the classical reversible node-pebbling as in
[Ben89], where pebbling configurations Pi are subsets of nodes: A node is deemed pebbled
whenever all ingoing edges are pebbled, and two subsequent pebbling configurations differ
by a node. Since any node-pebbling sequence induces an edge-pebbling sequence, we view
node-pebbling as a more restricted version of edge pebbling. The following definition of
node-pebbling is equivalent to the traditional notion from [Ben89].

Definition 54 (Node-pebbling). A node pebbling of a DAG G = (V , E) with unique sink T is
a pebbling sequence P = (P0, . . . ,Pτ) with P0 = Pstart and Pτ = Ptarget, such that for all
i ∈ [1, τ] there is a unique v ∈ [1, N] such that:

• Pi = Pi−1 ∪ in(v) or Pi = Pi−1 \ in(v),

• for all u ∈ parents(v): in(u) ⊆ Pi−1.

Definition 55 (Configuration graph). Let G = (V , E) be some graph. We define the
associated configuration graph PG as the graph that has as its vertex set all 2|E| possible
pebbling configurations of G. The edge set will contain an edge between two vertices, if the
transisition between the two vertices is an allowed pebbling move according to the pebbling
game rules.

Note that the configuration graph depends on the pebbling game. If we consider reversible
pebbling as in Definitions 53 and 54, the configuration graph is undirected.

7.4 Builder-Pebbler Game
In this work, we consider security games for multi-user schemes where an adversary can
adaptively do the following actions:

10Recall, in Chapter 3 we used the lateral space complexity (Definition 10) to prove upper bounds on the
loss in security for GSD. It is easy to see that our notion of pebbling complexity in terms of minimal vertex
cover lower bounds the lateral space complexity.

162

7.4. Builder-Pebbler Game

• query for information between pairs of users,

• corrupt users and gain secret information associated to these users,

• issue a distinguishing challenge query associated to a target user of its choice,

• guess a bit b ∈ {0, 1}.

We consider such games as games on graphs, where users represent the nodes of the graph
and edges are defined by the adversary’s pairwise queries. If the pairwise information depends
asymmetrically on the two users, then this is represented by the direction of the corresponding
edge and after the game one can extract a directed graph structure from the transcript of the
game. Here, we only consider the case of directed acyclic graphs, i.e., where the adversary is
forbidden to query cycles. Furthermore, to avoid trivial winning strategies, the adversary must
not query a challenge on a node which is reachable from a corrupt node.

To prove a scheme secure under such an adaptive game based on standard assumptions (e.g.,
the security of some involved primitive), a common approach is to construct a reduction that
has black-box access to an adversary against the scheme and tries to use the advantage of
this adversary to break the basic assumption. To this aim, the reduction has to simulate the
game to the adversary and at the same time embed some challenge c on the basic assumption
into its answers so that the adversary’s output varies depending on this embedded challenge.
Hence, the reduction might not answer all queries correctly but rather “fakes” some of the
edges; such wrong answers will be represented as pebbled edges in the graph. However, if the
reduction answers all queries connected to the challenge node independent of the challenge
user’s secrets, then the edge queries do not help the adversary to distinguish its challenge
and its advantage in this game can be at most the advantage it has in an alternative security
game where no edge queries are possible. Indistinguishability in such a weaker scenario usually
follows trivially by some basic assumption.

Thus, we are interested in games that can be abstracted by the following two-player game.

Definition 56 (N - and (N,G)-Builder-Pebbler Game). For a parameter N ∈ N, the N -
Builder-Pebbler Game is played between two players, called Builder and Pebbler, in at most
N · (N − 1)/2 rounds. The game starts with an empty DAG G = ([1, N] , E = ∅) and an
empty set P = ∅. In each round:

1. the Builder first picks an edge e ∈ [1, N]2 \ E and adds it to G (i.e., E := E ∪ {e}); the
Builder is restricted to only query edges that do not form cycles; and

2. the Pebbler then either places a pebble on e (i.e., P := P ∪{e}) or not (i.e., P remains
the same).

The Builder can stop the game at any point by choosing a sink in G as the challenge. This
results in a challenge DAG G∗ = (V∗, E∗), the subgraph of G that is induced by all nodes
from which the challenge is reachable.
In an (N,G)-Builder-Pebbler Game, the Builder is restricted to building graphs (isomorphic to
subgraphs of) G ∈ G for a class of graphs G.

Definition 57 (Winning condition and advantage for (N,G)-Builder-Pebbler Game). Con-
sider an (N,G)-Builder-Pebbler Game and let G = (V , E), G∗ = (V∗, E∗) and P be as in

163

7. On the Cost of Adaptivity in Security Games on Graphs

Definition 56. We model the winning condition for the game through a function X that
maps a graph to a collection of subsets of its own edges. We say that the Pebbler wins the
(N,G)-Builder-Pebbler Game under winning condition X if the following two conditions are
satisfied:

1. only edges rooted in V∗ are pebbled, i.e. P ⊆ {(u, v) ∈ E | u ∈ V∗}

2. the pebbling induced on G∗ satisfies the winning condition, i.e., P|G∗ ∈ X(G∗).

Otherwise, the Builder is declared the winner. In case the strategies are randomised, we call
the probability (over the randomness of the strategies) with which the Builder (resp., Pebbler)
wins the game the Builder’s (resp., Pebbler’s) advantage, and denote it by β = β(N) (resp.,
π = π(N)). Since there are no draws, we have β + π = 1.

Remark 10. The corresponding definitions for the N -Builder-Pebbler Game can be obtained
by simply ignoring the restriction to G.

In our setting we will be interested in functions X that output sets of vertices that represent
the frontier of a cut in the configuration graph of the input.

Definition 58 (Cut function). For a family G = (V , E) of graphs, a function X : G ↦→ 2E

is called a cut function if X(G) is the frontier of an s-t-cut of the configuration graph PG

that separates Pstart from Ptarget for any input G ∈ G. For a cut function X defined on G
and G /∈ G, we set X(G) = ∅.

7.4.1 Player Strategies
Builder strategies. As motivated in Remark 9, we will mostly be dealing with a class of
Builders who play independently of Pebbler’s strategy.11

Definition 59 (Oblivious Builders). We say that a Builder’s strategy in the (N,G)-Builder-
Pebbler Game is oblivious if its choice of graph G ∈ G and order of edge queries are independent
of (i.e., oblivious to) the Pebbler’s strategy.

This restriction on the Builder serves two main purposes.

1. Firstly, it ensures that the Builder-Pebbler Game is not trivial for the cut functions we
are interested in: otherwise, it is easy to come up with Builder strategies in which any
Pebbler has advantage 0.

2. Moreover, non-oblivious Builder strategies are less interesting in our setting since they
could potentially allow reductions to exploit the query behaviour of the adversary built
on top of a non-oblivious Builder to gain advantage in the security game.

11The exact definition of the strategy will depend on the graph and the application: e.g., see Theorem 25
for an oblivious Builder strategy for paths that is later used in Corollary 6.

164

7.5. Combinatorial Upper Bounds

Pebbler strategies. Ideally, we would like to establish lower bounds that hold against all
Pebblers. Since this is not always possible, we consider Builder-Pebbler Games where the
Pebbler strategy is restricted. The first such class of restricted Pebbler strategies are oblivious
Pebblers.

Definition 60 (Oblivious Pebbler). We say that a Pebbler’s strategy is oblivious if it fixes a
subset of vertices S ⊆ [1, N] at the beginning of the game, and at the end of the game S is
always a non-trivial vertex cover of the pebbling P .

Note that the notion of obliviousness differs from that in Definition 59.12 Definition 60 is
motivated by oblivious reductions used in this work (see Section 7.1.1) and the goal is to
capture prior knowledge that a Pebbler may have about the graph structure that a Builder
builds during the query phase. This is captured in Definition 60 by requiring the Pebbler to
commit to a non-trivial vertex cover of the pebbling configuration. This allows compressing
of pebbling configurations based on the graph structure: e.g., if the Pebbler knows that the
graph contains nodes with high degree and it aims to pebble all (or some) of the incident
edges of such a node, it may guess this node ahead of time and then adjust its query responses
assuming the guess is correct. In the known upper bounds for the applications we consider,
this is used to compress the amount of information that needs to be guessed ahead of time.
The fact that the vertex cover is required to be non-trivial ensures that this restriction is also
non-trivial: otherwise, the Pebbler may simply output the entire set [1, N]. On the other hand,
using a minimal vertex cover seems too strong, since we do not actually require it to prove
our bounds.

The second class of restricted Pebbler strategies that we consider are node Pebblers. The
definition is motivated by the reductions from Chapters 3 and 4 that rely on the node-pebbling
game from Definition 54. Thus, the restriction placed on Pebbler is natural: whenever it
places a pebble on a vertex v, it must place pebbles on all edges incident on v.

Definition 61 (Node Pebbler). A Pebbler is a node Pebbler, if for all nodes v ∈ [1, N] it
either places a pebble on all edges incident on v or on none.

Remark 11. Note that restricting the Builder strategy does not weaken our results: we
are constructing lower bounds for reductions and an oblivious Builder gives rise to oblivious
adversaries. In contrast restricting to oblivious or node Pebblers does weaken the result.
However, looking ahead, these restrictions allow us to prove much stronger bounds compared
to an unrestricted Pebbler.

7.5 Combinatorial Upper Bounds
In this section we show upper bounds for Pebblers in the Builder-Pebbler Game by constructing
Builders (potentially in a restricted Builder-Pebbler Game) and then showing that no Pebbler
can have a good advantage against such a Builder. We start by considering oblivious Pebblers
(Section 7.5.1), before focussing on Pebblers that may only pebble all or none of the edges
incident on any node, i.e. node Pebblers (Section 7.5.2). Finally, we show a bound that holds
for arbitrary Pebblers (Section 7.5.3).

12We considered changing the name of at least one of the players to make the distinction clearer, but did
not find another suitable term, since both concepts capture a kind of obliviousness. So we stick with this
nomenclature and simply hope it does not cause too much confusion.

165

7. On the Cost of Adaptivity in Security Games on Graphs

7.5.1 Oblivious Pebbler
We first construct Builders that are restricted to certain families of graphs, which are common
in applications. At the end of the section we consider Builders in the unrestricted Builder-
Pebbler Game, which allows to deduce a much stronger bound, but which may not be as
widely applicable.

Paths

For the Builder-Pebbler Game restricted to paths of length N (i.e., the class CN), we show
that any oblivious Pebbler playing the Builder-Pebbler Game against a random Builder (which
is oblivious) with a definition of cut that is closely related to pebbling lower bounds for paths
(see Section 7.5.1) has advantage at most quasi-polynomial in N (Section 7.5.1). We exploit
the observation that whenever the Pebbler behaves obliviously and the Builder queries edges
uniformly at random, the nodes from the vertex cover will be uniformly distributed on the
path. Our result matches the best known Pebbler strategy (of simply guessing the nodes in
the cut) that has an advantage π ≥ 1/N log(N) up to constant factors in the exponent.

Pebbling Characteristics of Paths. To define a suitable cut in the configuration graph, we
use a known lower bound on the number of pebbles needed to reversibly pebble a path [CDG01]:
For any k ≥ 1 and every pebbling sequence Pk = (Pstart, . . . ,Pk), where (2k, 2k + 1) ∈ Pk ,
it must hold |Pk| := max{|P| | P ∈ Pk} ≥ k + 1. One can prove this by induction: First,
note that pebbling the second edge (2, 3) requires 2 pebbles. Now assume the claim is true for
k− 1 with k > 1. Clearly, any valid pebbling sequence Pk must contain a configuration where
the 2k−1th edge is pebbled for the first time, i.e., the 2k−1th edge is pebbled and all subsequent
edges are unpebbled. Assume |Pk| ≤ k and consider the following two cases: Either the
2k−1th edge remains pebbled until the 2kth edge is pebbled, which would immediately imply a
pebbling strategy to pebble the 2k−1th edge using only k− 1 pebbles – a contradiction. Or the
pebble on the 2k−1th edge is removed while there is at least one pebble on some subsequent
edge (to guarantee progress), which would imply that the pebble on the 2k−1th edge can be
removed using only k − 2 additional pebbles – again a contradiction due to the reversible
pebbling rules. This proves the claim. The above lower bound is indeed tight and a matching
reversible pebbling strategy can be found, for example, in [Ben89].

In particular, for all valid edge pebbling sequences P = (Pstart, . . . ,Ptarget) of a path on
N = 2n +1 nodes, with Pstart = ∅ and Ptarget being the configuration where only the last edge
is pebbled, there must exist a pebbling configuration P ∈ P such that |P| = ⌊log(N)⌋+ 1.
Thus, we define a cut in the configuration graph as follows:

Definition 62 (Good pebbling configurations, cuts and cut function for paths). We call a
pebbling configuration P for a path C = CN of on N nodes good if it contains ⌊log(N)⌋
pebbles and there exists a valid pebbling sequence P = (Pstart, . . . ,P) such that |P | =
⌊log(N)⌋. We define a cut set X in the configuration graph PC as the set of all edges
consisting of a good pebbling configuration and a configuration which can be obtained from
this good configuration by adding one pebble (following the pebbling rules). The cut function
XC is defined as in Definition 58 as the frontier of this cut.

Remark 12. A complete characterisation of such reachable configurations is given in [LTV98].
Let the pebbles in a configuration P be {(vi, vi + 1)}i∈[1,log(N)] for vi ∈ [0, N − 1]. Then P is
reachable if and only if for every i ∈ [1, log(N)], P has a pebble in the range {(vi−2i, vi−2i+1),
. . . , (vi − 1, vi)}.

166

7.5. Combinatorial Upper Bounds

The Upper Bound. Since we consider oblivious Pebbler strategies, this means that a
successful Pebbler must choose a vertex cover S ⊆ [1, N] such that each node in S is either
source or sink of a pebbled edge in P. If the adversary queries a uniformly random path
on [1, N], then S will be a uniformly random subset of nodes. Obviously, we must have
(log(N))/2 ≤ |S| ≤ 2 log(N). In the following Lemma we bound the probability that a
uniformly random subset S of nodes of some fixed size s ∈ [(log(N))/2, 2 log(N)] is a vertex
cover of a good configuration P and S is a subset of the nodes V (P) involved in P .

Lemma 31. Let S ⊆ [1, N] be a uniformly random subset of size s ∈ [(log(N))/2, 2 log(N)],
σ = min{s, log(N)}, and P be the set of good pebbling configurations on paths on N nodes.
Then

Pr[∃P ∈ P : S covers P ∧ S ⊆ V (P)] ≤ s2s

N s−σ2σ(σ+1)/2 ≤
N log(log(N))

N log(N)/8 .

Proof. We call S good if it covers a good pebbling configuration P and S ⊆ V (P). First,
we count the number of subsets of size s which are good. To this aim, note that since we
consider reversible pebbling, a configuration P with |P| = log(N) is good if and only if all
pebbles can be removed without the need of any additional pebbles.
Now, assume S covers a good pebbling configuration P and S ⊆ V (P). If s ≥ log(N), then
it must be the case that there are s̄ ≥ s− log(N) pairs of nodes in S such that both nodes
cover the same edge in P, respectively, and one node from each pair can be removed from
S such that the remaining set S ′ ⊆ S still covers P. Let s̄ be maximal with this property,
hence S ′ a minimal vertex cover of P ; we denote its size by s′ = s− s̄. Clearly s′ ≤ log(N),
and there must exist log(N)− s′ nodes in S ′ which each cover two edges and the pairs of
consecutive edges are pairwise disjoint.
Considering the edges in P to be pebbled, one pebble of each such pair of consecutive pebbles
can be removed trivially from the graph. These log(N) − s′ pebbles can now be used to
remove further pebbles. Note, in general, using k pebbles, one can remove a pebble at distance
at most 2k from its predecessor. This in particular implies that the set S ′ must contain a pair
of nodes u1, v1 that have distance at most 2log(N)−s′ in the path. After removing the pebble
incident on node v1, we have one more pebble at our disposal to remove a further pebble
incident on a node in S ′ \ {v1} at distance ≤ 2log(N)−s′+1 of its predecessor in S ′ \ {v1} on
the path. Pursuing this idea, in the kth step, there must be a node at distance ≤ 2k+log(N)−s′

from its preceding node on the path. In total, there are log(N)− s′ gaps between nodes in
S ′, where one gap is of size ∈ [1, 2log(N)−s′], another one is of size ∈ [1, 2log(N)−s′+1], another
one of size ∈ [1, 2log(N)−s′+2], and so on, up to size ∈ [1, N/2].13

In total, for the s gaps on the path between the nodes in S it holds: s−σ ≤ s̄ gaps must be of
size 1, the remaining σ− s′ gaps of size 1 are in particular one gap of size ∈ [1, 2log(N)−σ], one
of size ∈ [1, 2log(N)−σ+1], and so on, up to size ∈ [1, 2log(N)−s′−1]. For the remaining s′ gaps,
as stated above, there must be one gap of size ∈ [1, 2log(N)−s′], one of size ∈ [1, 2log(N)−s′+1],
up to size ∈ [1, N/2]. Thus, independent of s̄, there must be s− σ gaps of size 1 and σ gaps
of sizes ∈ [1, 2log(N)−σ+k−1] for k ∈ [1, σ], respectively.
Thus, we can upper bound the number of good subsets of size s as the number of possible
subsets of s nodes having the required gap sizes on the path as discussed. Of course, the s
gaps do not need to be in order, so we get an upper bound on the number of different good

13Note, we also consider the distance between the source node and the first node in S on the path as a
gap.

167

7. On the Cost of Adaptivity in Security Games on Graphs

subsets S by

good subsets ≤ s! ·
σ−1∏︂
k=0

2log(N)−σ+k ≤ ss · 2
∑︁log(N)−1

k=log(N)−σ
k = ss · 2σ(2 log(N)−σ−1)/2.

On the other hand, the total number of subsets of s nodes is
(︂

N
s

)︂
. Thus, we can upper bound

the probability of S being good by

Pr[S is good] ≤ ss · 2σ(2 log(N)−σ−1)/2(︂
N
s

)︂ ≤ ss · 2σ log(N)−σ(σ+1)/2 · ss

N s
≤ s2s

N s−σ2σ(σ+1)/2 .

This upper bound is maximal when s = log(N)/2, where it attains
(log(N)/2)log(N)

2(log(N)/2)·(log(N)/2+1)/2 ≤
N log(log(N))

N log(N)/8 .

On the other hand, the probability of S being good is 0 whenever it has size < log(N)/2 or
> 2 log(N). The claim follows.

Lemma 31 immediately allows us to prove the following upper bound on the advantage π(N)
of an oblivious Pebbler whenever we restrict the Builder-Pebbler Game to paths.

Theorem 25 (Combinatorial Upper Bound for Paths). The advantage of any oblivious Pebbler
against a random Builder in the (N, CN)-Builder-Pebbler Game with the winning condition
XC defined as in Definition 62 is at most

π ≤ 1/N log(N)/8−log(log(N)).

Proof. Consider the following random Builder strategy B.

1. Pick a path PN uniformly at random from PN the set of all paths of length N .

2. Query the edges of PN , one at a time in random order.

3. Challenge the (only) sink of PN .

Since the Pebbler is oblivious it has to commit to some vertex cover S ⊆ [1, N] in the
beginning of the game. Since B queries edges uniformly at random, S is a uniformly random
subset of [1, N]. Thus, by Lemma 31, the probability that P̃ is good is at most

N log(log(N))

N log(N)/8 = 1
N log(N)/8−log(log(N)) .

This proves the theorem.

Binary In-Trees

In the case we restrict the Builder-Pebbler Game to binary trees directed from the leaves to
the root – short, “in-trees”; but we will simply refer to them as binary trees in this entire
section – we show that any oblivious Pebbler playing the Builder-Pebbler Game against a
random Builder with a definition of cut that is again related to pebbling lower bounds for trees
(see Section 7.5.1) has advantage at most quasi-polynomial in N (Section 7.5.1). As a warm
up, we analyze in Section 7.5.1 the advantage of an oblivious Pebbler when the size of the
vertex cover is bounded (i.e, o(N) to be precise). We then extend this to arbitrary oblivious
strategies for Pebbler (Section 7.5.1). The main idea is to borrow ideas from pebbling lower
bounds for binary trees as described in the introduction (and recalled below).

168

7.5. Combinatorial Upper Bounds

Pebbling Characteristics of Binary Trees. It is known that the number of pebbles that
are needed to pebble a perfect binary tree Bn of depth n, and therefore of size N = 2n+1 − 1,
is at least n, and the argument is as follows (refer to [Sav98] for example). Consider a pebbling
sequence for a perfect binary tree: at the beginning of the sequence none of the 2n paths
from the root to the leaves carries a pebble, whereas at the end of the sequence (at which
point the edges incident on the root carry a pebble) all the paths from the leaves to the root
carry a pebble. Furthermore, only new pebbles outgoing from leaves decrease the number of
paths that carry a pebble, because a pebble can only be placed on an inner edge if both edges
incident on its source are already pebbled. Hence, all paths through the source of this this
inner edge already carry a pebble. So any pebbling move can only decrease the number of
paths that carry a pebble by 1. Therefore there has to exist two consecutive configurations
in the pebbling sequence such that in the first configuration there exists a path that does
not carry a pebble but in the next configuration every path carries a pebble. At this point
at least all the edges incident on this path which do not lie on the path themselves need to
be pebbled, and in particular there exists a pebbling configuration where there are at least
log(N) pebbles. Such pairs of configurations serve as the cut for the winning condition. A
formal definition follows.

Definition 63 (Good pebbling configurations, cuts and cut function for binary trees). Let P
be the set of pebbling configurations on Bn such that Bn contains at least one path from a
leaf to the root that does not carry a pebble, i.e. all edges on this path are unpebbled. As the
cut-set on (the configuration graph of) Bn we choose X = {(Pi,Pj) | Pi ∈ P ∧ Pj /∈ P}.
Note that any Pi with (Pi,Pj) ∈ X for some Pi must have exactly one path from some leaf
to the root not carry a pebble while every other path must carry a pebble. The cut function
XB is defined as in Definition 58 as the frontier of this cut.

Warm-up: Upper Bound for Bounded Vertex Cover. Consider an oblivious Pebbler
that selects at most s (random) vertices on the binary tree as the vertex cover. (Note that
since the Pebbler is oblivious and the Builder picks a uniformly random permutation of the
graph, we can view any oblivious Pebbler as selecting the vertices in the cover at random.) For
the ease of analysis, we will consider a slightly different Pebbler which – instead of selecting
s vertices at random – will include each vertex in the cover with probability α := s/N . We
first show in Lemma 32 that this cannot decrease the success probability too much, so any
super-polynomial lower bound we obtain in this way holds in general.

Lemma 32. Let Ps be a Pebbler that selects s vertices at random and let Pα(s) be a Pebbler
that behaves exactly like Ps but for every one of the N vertices chooses to include it in the
vertex cover i.i.d. with probability α(s) = s/N . Then for any event E over the output of Ps

we have Pr[Ps → E] = O(
√

N)Pr[Pα(s) → E].

Proof. Let L be the event that Pα(s) selects exactly s vertices. Then we have Pr[Ps → E] =
Pr[Pα(s) → E | L]. On the other hand, we have

Pr[Pα(s) → E] = Pr[Pα(s) → E | L]Pr[L] + Pr[Pα(s) → E | L̄]Pr[L̄]

where L̄ is the complementary event to L. This implies

Pr[Ps → E] ≤ Pr[Pα(s) → E]/Pr[L].

169

7. On the Cost of Adaptivity in Security Games on Graphs

It remains to bound Pr[L] from below:

Pr[L] =
(︄

N

s

)︄(︃
s

N

)︃s (︃N − s

N

)︃N−s

= N !
NN

ss

s!
(N − s)N−s

(N − s)! ≥
√︄

N

2πes(N − s) .

Theorem 26 (Combinatorial Upper Bound for Binary Trees: Bounded VC). Let Bn be the
class of perfect binary trees of depth n and size N = 2n+1 − 1. Then any oblivious Pebbler
P in the (N,Bn)-Builder-Pebbler Game with perfect binary trees with cut XB defined as in
Definition 63 has an advantage of at most

π ≤

⎧⎨⎩1/N log(N) for s = o(N)
1/Nω(1) for s = N ϵ with ϵ < 1 constant.

against a random Builder B.

Proof. Note first that since B queries a random graph Bn ∈ Bn, one can view Ps as choosing
the s vertices in the cover uniformly at random. By Lemma 32 we can instead bound the
advantage of Pα(s), which chooses for each vertex i.i.d. if it will be included in the cover with
probability α = s/N .

Fix a path p from a leaf to the root in Bn. Define Pp ⊂ P to be the set of configurations in
which p does not carry a pebble but every other path does. In the following we say that a
subtree is covered by S, if there exists a configuration P in which all paths from the leaves to
the root of this subtree carry a pebble, such that S is a vertex cover of P and S ⊂ P. Let
P (d) denote the probability that a perfect binary tree of depth d is covered when vertices are
included in the cover independently using coin toss of bias α = s/N . We argue via induction
that P (d) ≤ 2α. For the base case, note that P (1) = α + (1−α)α2 ≤ 2α. Suppose that the
hypothesis is true for binary tree of depth d− 1. It is not hard to see that

P (d) = α + (1− α)P (d− 1)2.

It follows that P (d) ≤ α + (1− α)4α2, and it suffices to show that

(1− α)4α2 ≤ α⇔ (1− α)α ≤ 1/4.

This is indeed true since (1− α)α is a quadratic polynomial which is maximized at α = 1/2.

In order for a configuration to be in Pp, all subtrees that are rooted in the copath of p must
be covered by the selected vertex cover or the parent in the path must be in the vertex cover.
The probability of this is ≤ α + 2α = 3α. Finally, since the vertices involved in each subtree
are disjoint, we get that the probability of a vertex cover that is minimal for some configuration
in Pp is less than

n−1∏︂
i=1

3α = (3α)n−1

where n, if you recall, is the depth of Bn.

By applying the union bound, we have that the probability that there exists some unpebbled
path is at most N/2 · (3α)n+1. It follows that Λ ≥ 2/(N · (3α)n+1), which is quasi-polynomial
when s = N ϵ for a constant ϵ < 1, and super-polynomial when s = o(N).

170

7.5. Combinatorial Upper Bounds

Upper Bound for Unbounded Vertex Cover. Unfortunately, the above Builder strategy
does not work when the Pebbler is allowed an unbounded number of vertices in the cover: in
particular, in case the bias α = 1/2 — in which case it places around N/2 pebbles — it gets
into the cut with high probability. Thus, we need to somehow limit the number of pebbles that
the Pebbler places, and this is accomplished by adding a second binary tree in the game. In
the new strategy, the Builder randomly queries two binary trees and then proceeds to challenge
one of these trees picked uniformly at random; Recall that if any edge in the other binary tree
is pebbled, the Pebbler immediately loses. In case the Pebbler places too many pebbles, it is
likely that it gets caught in this process. We show in the analysis that this intuition is in fact
correct and consequently we obtain a tighter upper bound.

Theorem 27 (Combinatorial upper bound for binary trees: Unbounded VC). Let Bn be the
class of perfect binary trees of depth n and size N = 2n+1 − 1. Then any oblivious Pebbler
Ps which commits to a vertex cover of bounded size s in the (N,Bn)−Builder-Pebbler Game
with the cut function XB defined as in Definition 63 has an advantage of at most

π ≤ 1/N log(N)−log(log(N))

against a random Builder B.

Proof. The random Builder B plays the Builder-Pebbler Game on Bn as follows: it picks
Bn ∈ Bn at random, queries all edges except for the two edges incident on the root uniformly
at random, and then uniformly at random challenges the root of one of the two binary subtrees
(Bn−1,b). Again, as in Theorem 26, by Lemma 32 we can bound the advantage of a Pebbler
Pα(s), which chooses for each vertex i.i.d. if it will be included in the cover with probability
α = s/N . Clearly, such a Pebbler has probability (1− α)N/2 of not selecting any vertex in
Bn−1,1−b (note that this is a requirement, since by definition of oblivious Pebblers any node in
the vertex cover must be adjacent to at least one pebbled edge and there must not be any
pebbled edges in the non-challenge part of the graph). By combining this with the bound
obtained in Theorem 26, the probability of Pα(s) selecting a vertex cover that is minimal for a
configuration that is in X and is entirely unpebbled in Bn−1,1−b is less than

N

2 3n−1(1− α)N/2αn−1.

As a function of α, this expression is maximized for α = 2n/(N + 2n) and yields the bound

N− log(N)+log(log(N/2))+o(1).

Unrestricted Games

In the following we prove an almost exponential upper bound on the advantage of oblivious
Pebblers in the Builder-Pebbler Game on complete graphs. Obviously, this implies a subexpo-
nential upper bound for oblivious Pebblers whenever the Builder is not restricted at all and, in
particular, can query a complete graph.

Pebbling Characteristics of Complete Graphs. The best known pebbling strategy P =
(Pstart, . . . ,Ptarget) for a complete graph KN of size N has vertex cover VC(P) = N/2 + 1,
which implies an exponential upper bound. Note, this is not trivial since the complete graph

171

7. On the Cost of Adaptivity in Security Games on Graphs

has VC-complexity N − 1. The strategy works as follows: First, greedily pebble all edges
connected to the first half [1, N/2] of the nodes in topological order; this can trivially be
done at VC-complexity N/2. Next, unpebble all edges within the first half starting from those
incident on node N/2 up to those on node 2; this still has VC-complexity N/2 since only
edges were removed. At this point, all edges from [1, N/2] to [N/2 + 1, N] are pebbled, but
there are no pebbles within either part of the graph; this configuration can be covered by
the set [1, N/2], but also by [N/2 + 1, N] which will be a minimal cover for all subsequent
configurations. Now, pebble all edges within the second half starting with those outgoing from
node N/2 + 1 up to node N − 1, which can be done since all ingoing edges from the first half
are already pebbled; all these configurations can be covered by the set [N/2 + 1, N]. Finally,
unpebble all edges not incident on N by following the sequence in reverse order, keeping N in
each minimal vertex cover. This gives a valid pebbling strategy with VC-complexity N/2 + 1.

Unfortunately, our lower bound doesn’t match this upper bound, but clearly gives a nontrivial
result as stated in the lemma below.

Lemma 33 (Lower bound on VC-complexity of complete graphs). Let PN = (Pstart,
. . . ,Ptarget) be a valid (edge-)pebbling sequence of the complete graph KN of size N . Then

VC(PN) ≥
√

N − 1.

Proof. We argue via induction on N . For N = 1, the claim is trivially true. Now, assume it
holds for all N ′ < N . Let P be a minimal (w.r.t. VC-complexity) pebbling sequence. W.l.o.g.,
we can assume that P is reduced and, in particular, edges incident on N are never unpebbled
again. Let P∗ be the first configuration in P where an edge (i∗, N) incident on N is pebbled
and S∗ be a minimal vertex cover of P∗. If VC(P∗) ≥

√
N − 1 the claim trivially follows from

VC(PN) ≥ VC(P∗). Thus, in the following we consider the case |S∗| = VC(P∗) <
√

N − 1.
When we remove the set S∗ as well as the two nodes i∗ and N (where at least one of them
is contained in S∗) from the graph KN , we end up with a complete (sub)graph K∗ which is
entirely unpebbled and will be pebbled during the configurations P∗, . . . ,Ptarget. It holds

N − 2 ≥ |V (K∗)| ≥ |KN | − |S∗| − 1 > N − (
√

N − 1)− 1 = N −
√

N.

By induction hypothesis, any valid pebbling sequence on K∗ has VC-complexity at least√︂
|V (K∗)| − 1 ≥

√︂
N −

√
N − 1; this in particular also holds for the pebbling sequence on

K∗ induced by P . Since the edge (i∗, N) remains pebbled throughout P∗, . . . ,Ptarget and is
node-disjoint with K∗, it follows

VC(PN) ≥ VC(P) ≥ (
√︂

N −
√

N − 1) + 1 =
√︂

N −
√

N.

The claim now follows since
√︂

N −
√

N ≥
√

N − 1 for all N ≥ 1.

This also yields the following definition of good configuration for the complete graph.

Definition 64 (Good pebbling configurations, cuts and cut function for complete graphs). We
call a pebbling configuration P for the complete graph KN of size N good if the VC-complexity
of P is

√
N − 2 and there exists a valid pebbling sequence P = (Pstart, . . . ,P) such that the

VC-complexity of the sequence VC(P) ≤
√

N − 2. As the cut-set on (the configuration graph
of) KN we choose the X to be defined as the set of pairs (Pi,Pj) such that Pi is good, Pj is
not good, and Pj differs from Pi in one valid pebbling step. The cut function XK is defined
as in Definition 58 as the frontier of this cut.

172

7.5. Combinatorial Upper Bounds

The Upper Bound. Lemma 33 implies the following upper bound on the advantage π
for oblivious Pebblers against a random Builder on the Builder-Pebbler Game played on a
complete challenge graph.

Theorem 28 (Combinatorial upper bound for complete graphs). Let KN denote the class
of complete directed graphs on N vertices. Then any oblivious Pebbler in the (N,KN)-
Builder-Pebbler Game with the cut function XK defined in Definition 64 has advantage at
most

π ≤ e−2(
√

N/(e3)−1).

against a random Builder B.

Proof. We use the following random Builder: the graph structure B queries consists of two
complete directed graphs of sizes n and N − n, respectively, where we will define n later
in this proof. Since, by assumption, the reduction committed to a non-trivial vertex cover
S ⊆ [1, N] in the beginning of the game and B chose a permutation of [1, N] independently
and uniformly at random, the probability that S lies completely in the first part of the graph
is at most (︂

n√
n−1

)︂
(︂

N√
n−1

)︂ ≤ (︄ n√
n− 1

)︄√
n−1 (︄(

√
n− 1) · e

N

)︄√
n−1

=
(︃

ne

N

)︃√
n−1

.

By computing the derivative of the latter function one finds that it takes its minimum close
to n = N/e3, hence B will use this value for n. Thus, π ≤ e−2(

√
N/(e3)−1). This proves the

claim.

7.5.2 Node Pebbler
Here, we consider node Pebblers as defined in Definition 61, i.e., the Pebbler is only allowed to
either pebble all ingoing edges to a node, or none as in the node-pebbling game (Definition 54).
As we will see in Section 7.9, for certain applications it is sufficient to restrict to this class
of Pebblers. Looking ahead, since node-pebbling reductions are a subclass of edge-pebbling
reductions (and node pebbling strategies are a subclass of all pebbling strategies), all previous
results carry over. For certain graphs of high indegree, however, we will prove much stronger
bounds. These are stronger not only quantitatively, but also qualitatively as they will lead to
cryptographic lower bounds which hold for arbitrary (potentially non-oblivious and rewinding)
black-box reductions.

Complete Graphs

For node Pebblers in an unrestricted Builder-Pebbler Game, we prove an exponential upper
bound on the Pebbler’s advantage. To define a suitable cut, we exploit the crucial difference
between edge and node pebbling in terms of VC-complexity regarding graphs of high indegree:
Let u be an intermediate node which has high indegree in the challenge graph. In the edge
pebbling game, to be able to pebble an edge (u, v), we need to have all edges incident on u
pebbled; there might be up to N edges involved but, however, one can cover all these edges
with the single node u. On the other hand, in the node pebbling game, to pebble node u,
all the parent nodes need to be pebbled and, in general, the only way for the reduction to
get into this configuration is to guess all parents correctly. This is formalised in the following
definition and theorem.

173

7. On the Cost of Adaptivity in Security Games on Graphs

Definition 65. For a node v ∈ V , let the reachability graph Sv ⊆ G be the subgraph induced
by the nodes in V that can be reached from v (but not v itself). Furthermore, define the level
2 predecessor graph P2

v ⊆ G as the subgraph induced by all the nodes in V from which v can
be reached through a path of length at most 2 (but again not v itself). Finally, for a graph
G = (V , E) define D(G) = max{|Ed| | Ed ⊆ E ∧ |{u | (u, v) ∨ (v, u) ∈ Ed}| = 2|Ed|} to be
the maximum number of pairwise disjoint edges in G.

Theorem 29. For any graph family G containing all graphs isomorphic to some connected
DAG G = (V , E) ∈ G, there exists a cut function X and a Builder B such that any (not
necessarily oblivious) node Pebbler P has advantage at most

π ≤
(︄

max
v∈V

(︄
D(Sv) + D(P2

v)
D(P2

v)

)︄)︄−1

in the (N,G)-Builder-Pebbler Game.

We remark that for any v ∈ V, D(P2
v) must be smaller than or equal to the in-degree of v.

So, Theorem 29 only yields interesting results for graphs with large degree (but not all of
them). Furthermore, if Sv and P2

v contain long paths, then they have many disjoint edges.

Proof. Let v be such that it maximizes the quantity in the theorem. We define a cut S on
PG as containing all configurations where v and Sv are entirely unpebbled. The cut function
X is now defined as the frontier of that cut (after applying the isomorphism). Note that for
any configuration in X(G) all edges in P2

v are pebbled, while all edges in Sv are unpebbled.
The Builder B picks a random graph G′ in G and first queries for the disjoint edges in P2

v and
Sv in a random order. Note that the Pebbler P has no information about which edge is in P2

v

and which is in Sv. Accordingly, the probability of the challenge graph being in X(G′) at the
end of the query phase is at most (︄

D(Sv) + D(P2
v)

D(P2
v)

)︄−1

. (7.1)

Note that the above argument still works if we let B send all the queries of the first phase (i.e.,
randomly permuted P2

v and Sv edges) at once: as they are disjoint, getting them all at once
is of no help to P for guessing whether an edge belongs to P2

v or Sv. As for a single query
there’s no distinction between an oblivious or non-oblivious Pebbler (as there’s no second
query that could depend on the answer to the first), this upper bound applies to non-oblivious
Pebblers.

Corollary 5. For any graph family G containing all graphs isomorphic to the complete directed
graph KN , there exists a cut function X and a Builder B such that any (not necessarily
oblivious) node Pebbler P has advantage at most

π ≤ 2−Ω(N)

in the (N,G)-Builder-Pebbler Game.

Proof. Invoke Theorem 29 with v = N/2. Note that P2
v is the entire subgraph induced by

[1, N/2− 1], and similarily Sv is the entire subgraph induced by {N/2 + 1, . . . , N}. Both P2
v

174

7.5. Combinatorial Upper Bounds

and Sv have about N/4 disjoint edges (simply pick every second edge along the longest path),
so by Theorem 29 any node Pebbler P has advantage at most

π ≤
(︄

N/2
N/4

)︄−1

≤ 2−Ω(N).

7.5.3 Unrestricted Pebbler
Trees

In this section we prove a first combinatorial upper bound for unrestricted – i.e., non-oblivious –
Pebblers in the Builder-Pebbler Game. While our upper bound on the advantage of unrestricted
Pebblers is significantly weaker than the result for oblivious Pebblers, it is still non-trivial. It
relies on a generalization of the known pebbling characteristics for paths from Section 7.5.1.

Generalized Pebbling Characteristics of Paths. Let k ∈ [1, N] be arbitrary. We prove
that any pebbling sequence on a path of length N must contain a pebbling configuration
such that ⌊log(⌈N/k⌉)⌋+ 1 of the ⌈N/k⌉ subpaths of length ≤ k contain at least one pebble
respectively. Note, for k = 1 this result is already known and was proven in Section 7.5.1.
Assume, for contradiction, that there exists a k > 1 and a valid pebbling strategy P for paths
of length N such that the claim was false. Then this strategy implies a pebbling strategy
P ′ of complexity less than ⌊log(⌈N/k⌉)⌋+ 1 for paths of length ⌈N/k⌉ as follows: For each
pebbling configuration P in P , define P ′ in P ′ to contain a pebble on the ith edge if the
ith subpath of P contains a pebble. Cancelling redundant steps in P ′, i.e., configurations
that equal the preceding configuration in the sequence, implies a valid pebbling sequence of
complexity less than ⌊log(⌈N/k⌉)⌋+ 1 for paths of length ⌈N/k⌉ – a contradiction.

We will use the following definition of k-cuts for paths matching this generalized pebbling
lower bound.

Definition 66 (k-good pebbling configurations, k-cuts and k-cut function for paths). For
k ∈ N we call a pebbling configuration P for a path C = CN on N nodes k-good if
⌊log(⌈N/k⌉ − 1)⌋ of the ⌈N/k⌉ − 1 non-source subpaths of C of length (≤)k contain at
least one pebble respectively14, and there exists a valid pebbling sequence P = (Pstart, . . . ,P)
such that in all configurations in P at most ⌊log(⌈N/k⌉ − 1)⌋ of the subpaths simultaneously
carry a pebble. We define a k-cut set X in the configuration graph PC as the set of all edges
consisting of a k-good pebbling configuration and a configuration which can be obtained from
this good configuration by adding one pebble (following the pebbling rules) in a previously
unpebbled subpath. The k-cut function XC,k is defined as in Definition 58 as the frontier of
this cut.

The Upper Bound. The Builder strategy is to query a (polynomial-sized) subgraph of an
exponential-sized tree of outdegree δout ≥ 2, so that in order to pebble any edge in the final
challenge path the Pebbler has to guess one out of many source nodes at the same depth in
the tree (see Figure 7.3).

14For technical reasons, we exclude the first subpath of length k in C.

175

7. On the Cost of Adaptivity in Security Games on Graphs

Theorem 30 (Combinatorial upper bound for unrestricted Pebblers). Let G be the family of
directed trees on N = 2n nodes (with n ∈ N). Then there exists a Builder strategy querying
a challenge path G∗ ∈ C√

N , such that the advantage of any Pebbler against this Builder in
the (N,G)-Builder-Pebbler Game with the winning condition XC√

N
defined as in Definition 62

is at most
π ≤ 1/N log(N)/8.

Let G2 ⊂ G be the subset of graphs in G of bounded outdegree δout = 2. Then there exists a
Builder strategy querying a challenge path G∗ ∈ C√

N , such that the advantage of any Pebbler
against Builder in the (N,G2)-Builder-Pebbler Game with the winning condition XC√

N
,k for

k = log(N)/4 defined as in Definition 66 is at most

π ≤ 1/N log(N)/8−log(log(N))/4.

Proof. We define a Builder strategy B for graph family Gδout of outdegree bounded by δout

as follows: First, B chooses a source node in [1, N] uniformly at random. It then proceeds
in D = N/δout

2k rounds (where k is the ‘overlap parameter’ and will be specified later),
increasing the current graph’s depth by 1 in each round. In each round R ≤ 2k and each round
R ̸≡ 1 mod k, for all sinks at depth R− 1 in the current graph B queries δout outgoing edges
respectively. Note, after the first 2k rounds, B’s queries form a δout-regular tree directed from
root to leaves, with δout

2k sinks at depth 2k (see Figure 7.3). For all rounds such that R > 2k
and R ≡ 1 mod k, the Builder B first chooses an integer i ∈ [1, δout

k] and then only queries
edges outgoing from the ith batch of δout

k sinks at depth R− 1. Finally, B chooses the target
node uniformly at random from the δout

2k sinks at depth D = N/δout
2k (see Figure 7.3).

First note that B’s queries involve less than D · δout
2k = N nodes and the challenge graph

forms a path of length D. To win the game, the Pebbler needs to place at least one pebble
on ⌊log(⌈D/k⌉ − 1)⌋ of the disjoint subpaths of length k in the challenge path respectively.
But whenever it wants to place a pebble in a subpath starting from depth i · k with i ≥ 1,
the Pebbler has to at least guess which of the δout

k sources of edges at depth i · k will end
up in the challenge graph. Since this choice is made uniformly at random by the Builder B
only after all queries at depth (i + 1) · k were made, the advantage of the Pebbler to correctly
pebble an edge in the subpath sourced at depth i · k is at most 1/δout

k. Since this bound
holds also conditioned on the event that previous guesses were done correctly, and to win the
game, the Pebbler has to pebble ⌊log(⌈D/k⌉ − 1)⌋ subpaths of the challenge path, we obtain

π ≤ 1/δout
k·⌊log(⌈D/k⌉−1)⌋. (7.2)

Now, for the graph family G of unbounded outdegree, we set δout = N1/4 and k = 1
to obtain D =

√
N and hence π ≤ 1/N1/4 log(

√
N) = 1/N log(N)/8 (e.g., Figure 7.3.(a)).

For δout = 2, on the other hand, we set k = log(N)/4 to obtain D =
√

N and π ≤
1/N1/4(log(

√
N)−log(log(N)/4)) = 1/N log(N)/8−log log(N)/4 (e.g., Figure 7.3.(b)).

7.6 Cryptographic Lower Bound I: Generalized Selective
Decryption

The generalized selective decryption game (GSD) was already introduced in Section 3.3. In
this section, we interpret the lower bounds from Section 7.5.1 and 7.5.3 for GSD. Then, in
Section 7.6.2, we define a public-key analogue of GSD, where PKE is used instead of SKE

176

7.6. Cryptographic Lower Bound I: Generalized Selective Decryption

(a)

(b)

Figure 7.3: (a) Highlighted in blue is a regular tree of out-degree δout = 3 and depth D = 4
that could result from the Builder strategy in Theorem 30 with overlap parameter k = 1. It is
a subgraph of the perfect regular tree of out-degree δout = 3 and depth D = 4 which is in
the background in grey. The challenge path is highlighted in red. (b) Similar to (a), but with
δout = 2, depth D = 6 and overlap parameter k = 2 and the supergraph is a perfect binary
tree. In both (a) and (b), the perfect subgraphs of depth 2k and out-degree δout is shaded in
blue.

177

7. On the Cost of Adaptivity in Security Games on Graphs

as the underlying primitive – for technical reasons the definition slightly differs from the one
which we introduced in Definition 41 in Chapter 5 to prove adaptive security of the CGKA
protocol TTKEM in the random oracle model. We will establish lower bounds for this version
of public-key GSD analogously to the bounds for secret-key GSD, which will serve as a basis
for the lower bound on TreeKEM in Section 7.7.

7.6.1 Lower Bounds for GSD
In many applications one considers games where the adversary’s queries are restricted to
certain graph structures, e.g., paths, “in-trees” (i.e. rooted trees directed from the leaves to
the root), or low-depth graphs. These restrictions depend on the protocol under consideration
and often allow to construct stronger reductions.

Interesting upper bounds are known for specific settings for (oblivious) black-box reductions
R proving adaptive GSD security based on IND-CPA security (short, GSD reductions). Our
results now allow us to prove lower bounds on Λ for GSD with various restrictions (which
cover similar settings as known upper bounds). Note that our lower bounds are stronger and
more widely applicable the more restrictions they can handle.

Definition 67 (Black-box and straight-line GSD reduction). R is a black-box GSD reduction
if for every secret-key encryption scheme SKE = (Enc, Dec) and every adversary A that wins
the GSD game played on SKE, R breaks SKE. Moreover, if A is an (t, ϵ) GSD adversary and
R (t′, ϵ′)-breaks SKE (where t′ and ϵ′ are functions of t and ϵ) then the loss in security is
defined to be (t′ϵ)/(tϵ′). A black-box GSD reduction R is straight-line if it, additionally, does
not rewind A.

The following definition mirrors the obliviousness of Pebblers in the context of the Builder-
Pebbler Game (cf. Definition 60).

Definition 68 (Oblivious GSD reduction). A straight-line GSD reduction R (Definition 67) is
oblivious if it commits to a non-trivial vertex cover of all inconsistent edges at the beginning
of the game.

In all our bounds we require the reduction to assign keys to nodes at the beginning of the
game.

Definition 69 (Key-committing GSD reduction). A black-box GSD reduction R is key-
commiting if it commits to an assignment of keys to all nodes at the beginning of the
game.

This is due to the fact that Pebblers in the Builder-Pebbler Game commit to whether an edge
is pebbled or not as soon as they respond to the query. Without this requirement, this is
not true for reductions in the GSD game, since they could potentially respond to a query
and decide later if that edge is consistent or inconsistent by choosing the key for the target
accordingly (as long as this node does not have an outgoing edge). However, this requirement
should not be seen as a very limiting restriction, but we introduce it for ease of exposition,
since there are several “work arounds” to this issue. 1) One could use an adversary that
“fingerprints” the keys by querying the encryption of some message under each key before
starting the rest of the query phase. This would entail adding the corresponding oracle to the
GSD game, which seems reasonable in many (but not all) applications, since the keys are often

178

7.6. Cryptographic Lower Bound I: Generalized Selective Decryption

not created for their own sake, but to encrypt messages. 2) In case the adversary is not too
restricted (which is application dependent), there is a generic fix where the adversary abuses
the encrypt oracle to achieve this fingerprinting by introducing a new node and querying
the edges from every other node to this new node. This introduces only a slight loss in the
number N of nodes.

Both of these approaches work, but would make the proof more complicated: recall that the
challenge node must be a sink, so neither of the two fixes can be applied to it. We can still fix
all other nodes (which is sufficient), thereby giving away the challenge node right at the start
of the game. But this can only increase the reduction’s advantage by a factor N , since it
could also simply guess the challenge node. Since we are only interested in super-polynomial
losses in this work, this would not affect the results. But for the sake of clarity we refrain
from applying this workaround and simply keep this mild condition on the GSD reductions.
Looking ahead, we will see that some protocols are based on a public key version of GSD (cf.
7.6.2) rather than the secret key version we consider here. In such cases the public keys are
known to the adversary and commit the reduction to the corresponding secret keys and thus
no assumption or extra fix are required.

We now give a general lemma that allows to turn lower bounds for the Builder-Pebbler Game
into lower bounds for the GSD game.

Lemma 34 (Coupling lemma for GSD). Let G be a family of DAGs and X a cut function.
Let B be an oblivious Builder in the (N,G)-Builder-Pebbler Game with winning condition X.
Then there exists

1. an ideal SKE scheme Π = (Enc, Dec)

2. a GSD adversary A in PSPACE

such that for any key-committing straight-line GSD reduction R there exists a Pebbler P such
that the advantage 1/Λ of R is at most the advantage π of P against B (up to an additive
term poly(N)/2Ω(N)). Moreover, if R is oblivious then so is P.

Proof. We first construct Π = (Enc, Dec): We will pick Enc to be a random expanding
function (which is injective with overwhelming probability). More precisely, assuming (for
simplicity) the key k, the message m and the randomness r are all λ-bit long, Enc(k,m; r)
maps to a random ciphertext of length, say, 6λ with λ = Θ(N). Dec is simulated accordingly
to be always consistent with Enc.

We now define a map ϕ from GSD adversaries and reductions to Builder-Pebbler Game Builders
and Pebblers:

• The number N of nodes in the Builder-Pebbler Game corresponds to the number N of
keys in the GSD game.

• An encryption query (encrypt, vi, vj) maps to an edge query (i, j) in the Builder-
Pebbler Game.

• A response to a query (encrypt, vi, vj) is mapped to “no pebble” if it consists of a
valid encryption of kj under the key ki, and to “pebble” otherwise. (Note that this is
always well-defined for key-committing GSD reductions.)

179

7. On the Cost of Adaptivity in Security Games on Graphs

• A corruption query (corrupt, vi) is ignored in the Builder-Pebbler Game.

• The challenge query (challenge, vt) is mapped to the challenge node t.

Let A ∈ PSPACE be the following preimage of B under ϕ: A performs the same encryption
queries as B and selects its GSD challenge node as the challenge node chosen by B. It then
corrupts all nodes not in the challenge graph Gt. If there is an inconsistency (i.e. a pebble) in
G \Gt, A aborts and outputs 0. Finally, it uses its computational power to decrypt all the
received ciphertexts and determines the resulting pebbling configuration P on Gt. If P is in
the cut defined by the frontier X(Gt), A outputs 0, otherwise it outputs 1. Clearly, A wins
the GSD game against Π with probability 1. We will now show that the advantage of R in
using the GSD-adversary A to break the IND-CPA security of Π is at most the advantage of
P = ϕ(R) against B (up to a negligible additive term).

Note that since Enc is a random function, the GSD game is entirely independent of the
challenge bit b until the tuple (k,mb, r) such that c∗ = Enc(k,mb; r) (where c∗ is the
challenge ciphertext) is queried to Enc. Since R is PPT, the probability of R doing this is
at most poly(N)/2Ω(N). Accordingly, to gain a larger advantage, R must send c∗ to A as
response to some edge query. Since B = ϕ(A) is oblivious, the behaviour of A does not depend
on c∗ (and thus not on b) during the entire query phase. This means that the statistical
distance of A induced by b = 0 and b = 1 is∑︂

(Pi,Pj)∈PGt

pi,j|Pr[A(Pi)→ 1]− Pr[A(Pj)→ 1]|

where pi,j is the probability that the query phase results in the configuration Pi or Pj depending
on c∗. More formally, for an edge (Pi,Pj) in the configuration graph PGt , let Pc

ij be the
“configuration” that is equal to Pi if c∗ represents a consistent encryption edge (i.e. is not a
pebble) and equal to Pj if c∗ is inconsistent (i.e. a pebble). Then we define pi,j as the probability
of the query phase resulting in Pc

ij . Clearly, we have |Pr A(P1)→ 1− Pr A(P2)→ 1| = 0 for
any edge (P1,P2) where P1 /∈ X(Gt) and 1 otherwise. The statistical distance of A induced
by b is thus bounded by the probability of the querying phase ending up in a configuration in
X(Gt) (if c∗ is considered not a pebble for this argument). This is exactly the advantage of
Pebbler P = ϕ(R) in the Builder-Pebbler Game against B. By data processing inequality, this
also means that the advantage of R is bounded from above by the same quantity.

For the final statement of the lemma, note that ϕ maps oblivious GSD reductions to oblivious
Pebblers.

The following lower bounds on GSD now easily follow from Lemma 34 and the theorems in
the previous section (Theorems 25, 27, 28 and 30, resp.).

Corollary 6 (Lower bound for GSD on paths, oblivious reductions). Let N be the number
of users in the GSD game. Then any key-committing oblivious reduction proving adaptive
GSD-security restricted to paths based on the IND-CPA security of the underlying encryption
scheme loses at least a factor

Λ ≥ N log(N)/8−log(log(N)).

Corollary 7 (Lower bound for GSD on binary trees, oblivious reductions). Let N be the
number of users in the GSD game. Any key-committing oblivious reduction proving adaptive

180

7.6. Cryptographic Lower Bound I: Generalized Selective Decryption

GSD-security restricted to rooted binary in-trees based on the IND-CPA security of the
underlying encryption scheme loses at least a factor

Λ ≥ N log(N)−log(log(N)).

For adversaries which are allowed to query any acyclic graph structure on N vertices and
choose an arbitrary challenge, Theorem 28 gives the following result.

Corollary 8 (Lower bound for GSD on arbitrary DAGs, oblivious reductions). Any key-
committing oblivious reduction proving adaptive security of unrestricted GSD with N users
based on the IND-CPA security of the underlying encryption scheme loses at least a factor

Λ ≥ 22(
√

N/(e3)−1).

Finally, we can extend our results on paths to non-oblivious reductions. However, in this case
our adversary needs to be able to query outside of the challenge graph and thus the restrictions
we are able to handle outside of the challenge graph are not arbitrary as in Corollary 6.

Corollary 9 (Lower bound for GSD on trees, straight-line reductions). Let N be the number
of users in the GSD game. Any key-committing straight-line reduction proving adaptive GSD
restricted to trees based on the IND-CPA security of the underlying encryption scheme loses
at least a factor

Λ ≥ N log(N)/8.

Even if the adversary is restricted to querying graphs with outdegree 2, the reduction loses at
least a factor

Λ ≥ N log(N)/8−log(log(N))/4.

7.6.2 Public-Key GSD
In this section we define the public-key analogue of GSD, where PKE is used instead of SKE
as the underlying primitive. Such a public-key version of GSD was already introduced in
Definition 41 in Chapter 5 to analyze the security of continuous group key agreement protocols
like TreeKEM [BBR18, BBM+20]. We define a slightly different notion of public-key GSD in
Definition 70 and then extend the lower bounds that we established for GSD in Corollaries 6
to 9 to public-key GSD (Corollaries 10 to 13). Corollary 13 will be used later in Section 7.7 to
show a lower bound for TreeKEM. But first we highlight some important differences in the
modelling of the game for public-key and symmetric-key GSD.

Public-key GSD vs. (symmetric-key) GSD. The natural way to adapt the notion of
key-graph to public-key GSD, played with a PKE (Gen, Enc, Dec), is as follows:

• a vertex v is associated with a pair of public and secret keys (pkv,skv); and

• an edge (u, v) encodes the ciphertext Enc(pku,skv).

However, compared to symmetric-key GSD, there is a small subtlety with respect to the
challenge node. In particular, the adversary must never learn the public key associated to the
challenge node, since it could otherwise trivially distinguish the corresponding secret key from
a random one. So instead one can think of the challenge node being associated only with a

181

7. On the Cost of Adaptivity in Security Games on Graphs

secret key. (In fact, in applications like TreeKEM, the root is not associated with a PKE key
pair, but with an SKE key or a seed used as input for a KDF.) We recommend the reader
think of all secret keys in this game as randomness for the key generation algorithm. Then,
secret keys of PKE key pairs can be thought of as secret keys for SKEs as long as the public
key remains hidden.
In contrast to symmetric-key GSD, in public-key GSD there needs to be a mechanism for the
adversary to learn the public keys, even if they are not all created at the beginning of the game.
In Definition 41 in Chapter 5 this issue was solved by sending public keys of the source nodes
along with encryptions. This also ensured that the adversary would never learn the public key
of the challenge, since the challenge must be a sink, and thus can be thought of as being
associated to a secret key. We will slightly change this mechanism and introduce a new oracle
for this, reveal, which allows the adversary to retrieve the public keys of nodes. Using this
oracle the adversary can learn the public keys of nodes that are currently sinks (but will not be
sinks at a later stage) and thus commit the reduction to placing a pebble immediately after
an edge query. Clearly, the adversary must not call this oracle on the challenge as discussed
above.
This change is purely for technical reasons. We argue that the mechanism through which
the adversary learns the public keys does not matter too much for the applications, since any
reduction that relies on public keys remaining secret (even for a limited time) is probably not
very meaningful.

Definition 70 (Public-key GSD). Let (Gen, Enc, Dec) be a public key encryption scheme with
secret key space K and message space M such that K ⊆M. The public-key GSD game is
a two-party game between a challenger C and an adversary A. On input an integer N , for
each i ∈ [1, N] the challenger C generates a key pair (pki,ski) and initializes the key-graph
G = (V , E) := ({v1, . . . , vN}, ∅), the set of corrupt users C = ∅ and the set of revealed users
R = ∅. A can adaptively do the following queries:

• (encrypt, vi, vj): On input two nodes vi and vj, C returns an encryption c ←
Encpki

(skj) of skj under pki and adds the directed edge (vi, vj) to E .

• (corrupt, vi): On input a node vi, C returns ski and adds vi to C.

• (reveal, vi): On input a node vi, C returns pki and adds vi to R.

• (challenge, vi), single access: On input a challenge node vi, C samples b← {0, 1}
uniformly at random and returns ski if b = 0, otherwise it returns a new secret key
generated by Gen using a new independent uniformly random seed. In the context of
GSD we denote the challenge graph as the graph induced by all nodes from which the
challenge node vi is reachable. We require that none of the nodes in the challenge graph
are in C, that G is acyclic and that the challenge node vi is a sink and not in R.

Finally, A outputs a bit b′ and it wins the game if b′ = b. We call the encryption scheme
(t, ϵ)-adaptive GSD-secure if for any adversary A running in time t the distinguishing advantage
is at most ϵ.

We now give a general lemma that is the analogue of Lemma 34, i.e., it allows to turn lower
bounds for the Builder-Pebbler Game into lower bounds for the public-key GSD game. The
definition of oblivious, straight-line and black-box reductions for public-key GSD can be defined
similarly to (symmetric-key) GSD (i.e., Definitions 67 and 68).

182

7.6. Cryptographic Lower Bound I: Generalized Selective Decryption

Lemma 35 (Coupling lemma for public-key GSD). Let G be a family of DAGs and X a cut
function. Let B be an oblivious Builder in the (N,G)-Builder-Pebbler Game with winning
condition X. Then there exists

1. an ideal PKE scheme Π = (Gen, Enc, Dec)

2. a public-key GSD adversary A in PSPACE

such that for any key-committing straight-line reduction R for public-key GSD there exists a
Pebbler P such that the advantage 1/Λ of R is at most the advantage of P against B (up to
an additive term poly(N)/2Ω(N)). Moreover, if R is oblivious then so is P.

Proof (Sketch). The proof of this lemma is similar to that of Lemma 34 except that we use
an ideal PKE scheme as defined in [GMR01] in place of an ideal SKE scheme. Therefore, we
only highlight the difference in the ideal scheme here. The key-generation algorithm Gen in Π
is defined to be a random expanding function from λ bits to 2λ bits. The encryption function
Enc is then defined similar to that in Lemma 34 except that the domain and co-domain are
adjusted to be 4λ and 8λ to accommodate the public-key. Dec is defined to be consistent
with Enc.

The following lower bounds on public-key GSD now follow from Lemma 35 and the Theorems 25,
27, 28 and 30, resp., in Section 7.5. These are analogous to Corollaries 6 to 9 for GSD.
Note that oblivious reductions for public-key GSD can be defined similar to Definition 60. As
mentioned, we do not need to assume that the reduction is key-committing, since the public
keys sent as response to the queries act as a fingerprint on the private key.

Corollary 10 (Lower Bound for Public-Key GSD on Paths, Oblivious Reductions). Let N
be the number of users in the public-key GSD game. Then any oblivious reduction proving
adaptive security for public-key GSD restricted to paths based on the IND-CPA security of the
underlying encryption scheme loses at least a factor

Λ ≥ N log(N)/8−log(log(N)).

Corollary 11 (Lower bound for public-key GSD on binary trees, oblivious reductions). Let N
be the number of users in the public-key GSD game. Any oblivious reduction proving adaptive
security for public-key GSD restricted to rooted binary in-trees based on the IND-CPA security
of the underlying encryption scheme loses at least a factor

Λ ≥ N log(N)−log(log(N)).

Corollary 12 (Lower bound for public-key GSD on arbitrary DAGs, oblivious reductions). Any
oblivious reduction proving adaptive security for unrestricted public-key GSD with N users
based on the IND-CPA security of the underlying encryption scheme loses at least a factor

Λ ≥ 22(
√

N/(e3)−1).

Corollary 13 (Lower bound for public-key GSD on trees, straight-line reductions). Let N
be the number of users in the public-key GSD game. Any straight-line reduction proving
adaptive security for public-key GSD restricted to trees based on the IND-CPA security of the
underlying encryption scheme loses at least a factor

Λ ≥ N log(N)/8.

183

7. On the Cost of Adaptivity in Security Games on Graphs

Even if the adversary is restricted to querying graphs with outdegree 2, the reduction loses at
least a factor

Λ ≥ N log(N)/8−log(log(N))/4.

7.7 Cryptographic Lower Bound II: Continuous Group
Key Agreement

The main motivation behind the definition of GSD in [Pan07] was to analyze the security of a
particular protocol for multicast encryption [FN94] called logical key hierarchy (LKH) [WGL00].
The recent constructions of (asynchronous) continuous group key agreement (CGKA) protocols
like TreeKEM [BBR18, BBM+20] (and its variant Tainted TreeKEM from Chapter 5) can
roughly be regarded to be the public-key analogue of LKH – the security of TreeKEM (and its
variants) is, in fact, analyzed using the public-key GSD game (Definition 70).

Although abstracting TreeKEM as public-key GSD suffices for establishing upper bounds for
loss in adaptive security, we have to be careful when it comes to establishing lower bounds. In
particular, the lower bounds established for public-key GSD in Section 7.6.2 do not quite carry
over to a lower bound for TreeKEM. The high level reason is that the key-graphs that result in
its security analysis are more ‘structured’ than in the case of public-key GSD, and as a result
the querying strategies that we deployed in the public-key GSD adversaries in Corollaries 6
to 9 cannot be used in this setting per se.

Nevertheless, we show in Section 7.7.2 that it is possible to ‘emulate’ some of these strategies:
in particular, the Builder strategy from Theorem 30 can be emulated within a TreeKEM
adversarial strategy. Consequently, we get that any straight-line reduction for TreeKEM
(and its variants) must lose a factor that is super-polynomial in M , the number of users
(Corollary 14). Rather surprisingly, we are unable to show any results for LKH as the security
model for multicast encryption is rather weak compared to that for CGKA (see Section 7.10.4).

7.7.1 Definitions and Construction
For sake of space, we keep the discussion on CGKA and TreeKEM at an informal level sufficient
to explain the lower bound, and refer the readers to [ACDT20] and Chapter 5 (where we
introduced Tainted TreeKEM – short, TTKEM – a variant of TreeKEM) for a more formal
treatment.

CGKA: Syntax

CGKA is a public-key, multi-user primitive which involves M users denoted ID0, . . . , IDM−1.
Any user IDi can initialise a group U0 ⊆ {ID0, . . . , IDM−1} by sending protocol messages to all
group members, from which each group member can compute a shared group key K0. To this
aim, IDi must know the (current) public key pkj of each invitee IDj ∈ U0. Once a group has
been created, CGKA allows any group member IDi to update their key using (update, IDi).
The role of the update operation is to allow the user to ‘refresh’ their state in case their
previous state was leaked to an adversary and help achieve post-compromise security. This is
accomplished by replacing their old public key with a new one, and then accordingly updating
the group key. Any group member IDi can use (add, IDi, IDj) to add a new user IDj, and
use (remove, IDi, IDj) to remove an already-existing member IDj. Carrying out these group

184

7.7. Cryptographic Lower Bound II: Continuous Group Key Agreement

operations results in the evolution of the group through epochs from U0 to UQ, Q being the
total number of epochs, with the corresponding group keys K0, . . . ,KQ.15

Handling asynchronicity. The group operations – update, add and remove – require
sending protocol messages to all members of the group. Since it is not assumed that the parties
are online at the same time (asynchronicity), all protocol messages are instead exchanged via
an untrusted delivery server. It is possible that the server receives conflicting requests (e.g.,
(remove, IDi, IDj) and (remove, IDj, IDi)). This is handled in CGKA via the confirm
operation: (confirm, IDi, ai) is used to confirm or reject IDi’s request for a group operation
ai (IDi then proceeds to update their own local state accordingly). In case the group operation
ai is confirmed, the server delivers the message to the members and a member IDj ̸= IDi

uses (process, IDj, ai) to process the group operation. These two operations – confirm
and process – constitute the delivery operations. Although the delivery server can always
prevent any communication taking place, it is required that the shared group key in the CGKA
protocol – and thus the messages encrypted in the messaging system built upon it – remains
private. For a formal security definition we refer to Definition 36 in Chapter 5.

TreeKEM: Protocol and Security

For simplicity, we consider a vanilla version of TreeKEM which suffices to explain our lower
bound. In particular, we make the following simplifying assumptions to the protocol (version
9) described in [BBM+20]. (The assumptions will make more sense once the protocol is
described.)

1. TreeKEM uses a propose-commit mechanism, where one member IDi ‘proposes’ a group
operation gi and another member IDj (potentially same as IDi) ‘commits’ gi by executing
it and generating the corresponding protocol messages. Moreover, batches of proposed
group operations (assuming they are mutually-consistent) can be committed by IDj in
one go. We assume that the member proposing a group operation gi (i.e., IDi above)
themself generate the protocol messages for gi and leave it to the delivery server to
confirm or reject gi. Moreover, we prohibit batching and limit members to only one
group operation per proposal.

2. TreeKEM is built on top of a PKE scheme and its group-key-generation algorithm invokes
the key-generation algorithm of this PKE scheme multiple times. TreeKEM optimises
this process using so-called hierarchical key-derivation, where a member IDi uses a
hash-based key-derivation function (HKDF) to generate the key-pairs (of the underlying
PKE) on ‘its path to the root’. The motivation is to decrease the communication
complexity. We, on the other hand, assume that all the keys are generated independently
by IDi. This will result in a simpler key-graph at the cost of a slightly less efficient
protocol.

3. The TreeKEM protocol is based on ratchet trees and its structure evolves over time
along with the structure of the group. We assume

a) unlike in TreeKEM, a priori upper bound M = 2m on the number of users, and
therefore the size of the group; and

15Note that if the operation at epoch q was an update operation, then Uq+1 = Uq but the group key does
get updated.

185

7. On the Cost of Adaptivity in Security Games on Graphs

b) that the leaf i ∈ {0, 1}m in the ratchet tree is reserved for the user IDi: in
TreeKEM the position of a user is not fixed and when a user is added it is assigned
the ‘leftmost’ free leaf in the current ratchet tree.

As a result of these assumptions, the ratchet tree for every epoch will be the perfect
binary tree Bm and we can avoid having to deal with extending this tree.

The lower bound we establish for vanilla TreeKEM can be extended to the TreeKEM protocol
described in [BBM+20] and Tainted TreeKEM (Chapter 5) without much difficulty. Henceforth,
by TreeKEM we refer to the vanilla formulation.

Ratchet tree. The TreeKEM protocol is based on so-called ratchet trees and the structure of
the ratchet tree evolves over the epochs along with the structure of the group. The key-graph
corresponding to the ratchet tree for an epoch q ∈ [0, Q] is a perfect binary tree Bm of depth
m (see Figure 7.4). The vertices in Bm are classified into two: normal and ‘blank’. A normal
vertex is associated with a key-pair of the underlying PKE scheme, whereas a blank vertex is
not – the exact role of these blank vertices will be explained along with the add operation
later in the section. The vertices have the following semantics16:

• Members are associated with leaves: the leaf i ∈ {0, 1}m of member IDi ∈ Uq is
associated their key-pair and is therefore normal. All unoccupied leaves are blank.

• The root ε is associated with the current group key Kq and is therefore normal. In fact,
the root is normal for all epochs.

• Each normal internal vertex v ∈ {0, 1}<m is associated with an independently sampled
key-pair (pkv,skv).

The edges in Bm encode the ciphertexts generated to enable the members to compute the
group key Kq. To this end, the following invariant is maintained throughout the epochs: each
member IDi ∈ Uq only knows the secret keys corresponding to the vertices on its path Pi to
the root

i = i [0, m− 1]→ i [0, m− 2]→ . . .→ i [0, 1]→ i [0, 0]→ ε

where i[0, b] denotes the prefix of i of length b+1. Therefore, the protocol messages designated
to a member IDi ∈ Uq consists of the ciphertexts Encpku

(skv) for every edge (u, v) ∈ E(Pi)
(see Figure 7.4.(a)). Since there are no keys corresponding to a blank vertex, the idea is to
ignore these vertices when computing ciphertexts, i.e.:

• If a leaf i is blank no ciphertext is computed for i. The same holds for any blank internal
vertex v whose ancestors are all blank.

• When an internal vertex v (with some normal ancestor) is blank, it is skipped and the
ciphertext corresponding to the (unique) successor v′ of v is computed – in case v′ is
also blank this rule is applied recursively until a normal node is encountered (recall that
the root is guaranteed to be normal).

16To be precise, each vertex v should be accompanied by a superscript which specifies the epoch it belongs
to: e.g., v(q) when v is from epoch q. However, to avoid the cluttering introduced by this notation, we simply
assume that the epoch to which a vertex belongs is clear from the context. In case there are two vertices that
need disambiguation, we use a prime in the exponent, with the prime usually referring to v in a later epoch:
e.g., v and v′ instead of v(q) and v(q+1).

186

7.7. Cryptographic Lower Bound II: Continuous Group Key Agreement

(a) (b)

(c) (d)

Figure 7.4: Ratchet tree and group operations in TreeKEM. (a) The ratchet tree of the group
in epoch q. The blank (resp., normal) vertices are shown as squares (resp., circles). The group
currently has six members Uq = {ID0, . . . , ID4, ID7} assigned the leaves 000, . . . , 100 and 111
respectively. The leaves 101 and 110 are unpopulated and hence blank. The dotted edges
represent the actual ciphertexts corresponding to paths involving blank vertices: the shorter
(resp., longer) of the dotted edges represents the ciphertext Encpk10(Kq) (resp., Encpk111(Kq))
which is encoded by the path (10, 1)→ (1, ε) (resp, (111, 11)→ (11, 1)→ (1, ε)) . Note that
there are no ciphertexts corresponding to the empty leaves 101 and 110. (b) The key-graph
after ID7 updates themself. A normal path P ′

111 from the leaf 111′ to the (new) root ε′ (and
its co-path edges) replaces the old path P111 (and its co-path edges) which is shown in grey.
This results in the new ratchet tree for epoch q + 1 as shown in black and the part of the
key-graph in grey is outdated. (c) The ratchet tree after ID5 is added to the group by ID7. A
blank path from the leaf 110′ to the root (ε′′) is added after which ID7 updates themself (the
two steps have been merged into one in the picture). Note that the node 10′ is blanked in
order to maintain the invariant: otherwise ID7 would know a secret key associated to a node
on the path from ID4/ID5 to the root. However further nodes on the path are normal as these
also lie on the path from ID7 to the root which lies outside its own path to the root. (d) The
ratchet tree after ID1 is removed from the group by ID3. A blank path from the leaf 001′ to
the root (ε′′′) is added after which ID3 updates themself (the two steps have been merged
into one in the picture). The node 00′ is blanked for the same reason as in (c).

For example, when all the internal vertices from a leaf i ∈ {0, 1}m to the root are blank then
there is a single ciphertext which is the encryption of the group key under the public key of
IDi.

Group operations. Since both add and remove are dependant on it, we start off with
update. Looking ahead, update is the only group operation that our adversary (Algo-

187

7. On the Cost of Adaptivity in Security Games on Graphs

Figure 7.5: The path P100 = 100→ 10→ 1→ ε is highlighted in red. Its co-path vertices –
101, 11 and 0 – are also highlighted (in blue).

rithm 7.1) will employ (it also crucially uses the delivery operations though).

• Update. To update themself (see Figure 7.4.(b)), a user IDi ∈ Uq first generates a fresh
path P ′

i

i′ → i [0, m− 2]′ → . . .→ i [0, 1]′ → i [0, 0]′ → ε′

with normal vertices to the root. That is, for each vertex v′ ∈ V (P ′
i) it generates a

fresh key-pair (pkv′ ,skv′) and for each edge (u′, v′) ∈ E(P ′
i) it generates a ciphertext

Encpku′ (skv′). Next, to enable the other members in the group to process this update,
it adds edges from all ‘co-path’ vertices (see Figure 7.5) of Pi to P ′

i , i.e.,

{v0 . . . vl−1v̄l : v = v0, . . . , vl−1vl ∈ V (Pi)},

where v̄l is the bit complement. By the semantics described above, this means that for
each co-path vertex u and its successor v′ (which lies on P ′

i and is hence normal), IDi

generates

– ciphertext Encpku
(skv′) if u is normal; or

– ciphertexts Encpkw
(skv′) for each normal ancestor w of u such that all internal

nodes on the path from w to v′ are blank, in case u is blank.

Finally, it sends all the ciphertexts and the newly-generated public keys to the delivery
server. In case the update is indeed confirmed, the group moves to the new epoch q + 1
with the new ratchet tree B′

m obtained by replacing Pi and the edges incoming to it
with P ′

i and its co-path edges, while retaining the rest of Bm (see Figure 7.4.(b)).

• Add and remove. Suppose that a member IDi ∈ Uq wants to add a user IDj to the
group. According to the protocol specification IDi does the following (see Figure 7.4):

1. Perform an update operation ‘on behalf of’ IDj but using blank internal vertices:
i.e., IDi adds a path P ′

j that has a normal leaf j′ (associated with the key-pair of
IDj) but with the rest of the vertices blank and then adds edges from the co-path
vertices of Pj.

2. Update themself.

The reason to use blank vertices in Item 1 instead of normal vertices as, e.g., in Item 1
is to maintain the aforementioned invariant: if IDi samples keys on behalf of IDj then it
would know secret keys corresponding to vertices other than the ones that lie on its own
path to the root. It is worth mentioning that Items 1 and 2 have been separated above

188

7.7. Cryptographic Lower Bound II: Continuous Group Key Agreement

only for the sake of exposition: in Figure 7.4 they have been clubbed together into one
step. The steps for a member IDi ∈ Uq to remove another member IDj ∈ Uq is mostly
similar to that in add (see Figure 7.4.(d)):

1. Perform an update operation ‘on behalf of’ IDj but using only blank vertices: i.e.,
IDi adds a path P ′

j with only blank vertices and then adds edges from the co-path
vertices of Pj.

2. Update themself.

Authentication. The (base) protocol described thus far only takes care of the privacy aspect
of CGKA. It is thus secure in a restricted setting where the delivery server behaves honestly and
the group is always in a consistent state (i.e., in an attack model where the adversary cannot
make delivery queries). To deal with dishonest delivery servers, the full protocol employs
authentication on top of the base protocol and, furthermore, each ratchet tree Bm is tagged
with a

1. tree hash, a commitment to (the public part of) Bm; and

2. transcript hash, a commitment to the history of operations that led to Bm as in a
blockchain.

Therefore, whenever a user IDi commits a group operation a and the group enters a new
epoch, they have to – in addition to the protocol message of the base protocol for a – compute
the tree hash of the new ratchet tree and generate the transcript hash using the previous
transcript hash, the new tree hash and the particulars of a. Moreover, another member IDj

processes a only if the accompanying hashes are consistent with the ones stored locally as
part of their own state. This enables group members to ensure that they agree on the public
cryptographic state of the group and guarantees that only users that are in consistent state
can communicate with each other.

Security. As a consequence of the structure of the group operations, the overall key-graph
consists of a DAG of depth m and in-degree two (but the out-degree can depend on the
number and order of group operations). The security game for TreeKEM can therefore be
considered to be a special case of public-key GSD played on graphs of depth m and in-degree
two. A security reduction for such a public-key GSD game was shown in Section 5.3.4 in
Chapter 5 with a quasi-polynomial (in M = 2m) loss of security, which translates to the
following theorem for TreeKEM.

Theorem 31 (Theorem 16, restated for TreeKEM). If the underlying PKE scheme is IND-CPA
secure and the hash function is collision resistant then TreeKEM is CGKA-secure with a loss
in security of O(M2QO(m)), where M = 2m is the number of users and Q is the number of
queries.

7.7.2 Lower Bound for TreeKEM
Note that in comparison to public-key GSD, an adversary A trying to break TreeKEM does not
have complete freedom over the structure of the key-graph since the edges added for group
operations always form a path to a root (with additional edges from the co-path vertices)
as described in Section 7.7.1. Furthermore, A cannot corrupt arbitrary nodes in the ratchet

189

7. On the Cost of Adaptivity in Security Games on Graphs

tree but is restricted to corruption of users, which are associated with leaves in the tree.
Therefore, the strategy of the public-key GSD adversary used in the lower bound, e.g., using
Theorem 30 (via Lemma 35 and Corollary 13), does not directly carry over since it requires
more fine-grained control on which edges are added and which nodes are corrupted. However,
we show that the querying strategy there can still be emulated by a TreeKEM adversary
through appropriate group and delivery operations. The adversarial query strategy is formally
described in Algorithm 7.1, and below we provide an intuitive overview.

Overview of the query strategy. Recall that the Builder strategy B in Theorem 30 (with
the overlap parameter k = 1) is to construct, level by level, a regular tree Tk with in-degree 1,
out-degree (denoted here by) k and depth D. Let’s denote the d-th vertex in the ℓ-th level of
this tree by vℓ,d. Our goal is to embed Tk into the TreeKEM key-graph (see Figure 7.6) with
the root v0,1 of Tk set as the user ID0. Before describing the query strategy of our TreeKEM
adversary A, we make two observations about the TreeKEM protocol (Section 7.7.1) and the
attack model (Definition 36) that will help with the description:

1. The only way to increase the out-degree of a vertex v (leaf or internal) in the key-graph
is indirectly by performing a group operation on a member IDi such that v is a co-path
vertex of the path Pi, or – in case of blank nodes – v is connected to a co-path vertex
v′ of Pi such that all nodes on the path from v to v′ except v itself are blank (see
Figure 7.4). We say that IDi extends the vertex v. In case the group is in a consistent
state – i.e., all members have processed all the group operations – then only vertices
in the current ratchet tree can be extended. Therefore, if delivery operations are not
available to an adversary then vertices ‘in the past’ cannot be extended.

2. The adversary can only indirectly corrupt an internal node v of the key-graph by (i)
corrupting a user IDi (on leaf i) that is an ancestor of v to obtain their internal state and
(ii) using the (public) knowledge of protocol messages to decrypt the chain of ciphertexts
from i to v. Moreover, only the current internal state of a user can be obtained via
such corruptions. Even though a internal state might be part of the key-graph (in some
user’s view), these are inaccessible to a TreeKEM adversary due to the restriction placed
by the CGKA attack model. In other words, the adversary is not permitted to corrupt
‘in the past’.17

With these observations in mind, our approach to simulate B is as follows (the value of k and
D in terms of M will be specified later in Corollary 14):

1. Let’s assume the initial group was created by a user in the right half of Bm, i.e. all
internal nodes on the path 0m → 0m−1, . . . , 0→ ε from 0m to the root are blank (see
Figure 7.6.(a)). To embed the level 1, A updates a set U0,1 of k users such that each
user IDi ∈ U0,1 extends 0m – since we assumed the internal nodes from 0m to the root
to be blank, such users are guaranteed to exist. These level-0 updates result in a set of
level-1 vertices V1 := {v1,0, . . . , v1,k−1}, which A extends in Item 2 (see Figure 7.6.(b)
and Figure 7.6.(c)).

17Note that adding this capability to the adversary strengthens the model. In fact the proof in [ACC+19]
holds in this stronger model. This boils down to the fact that the public-key GSD game has no notion of time
and it is possible to corrupt any node as long as it does not render the challenge trivial.

190

7.7. Cryptographic Lower Bound II: Continuous Group Key Agreement

2. To embed level 2, for each level-1 vertex v1,i ∈ V1 just added in Item 1, A fixes a set of
k members U1,i such that each member IDj ∈ U1,i extends v1,i. Then it forks the state
of the group as follows:

a) IDj processes all messages IDi processed so that they share the same group state,
b) both IDj and IDi process the update of IDi (which created node v1,i), and
c) IDj extends v1,i by updating themself.

At the end of these level-1 updates, A will have embedded a set of k2 level-2 vertices
{v2,0, . . . , v2,k2−1} (see Figure 7.6.(d)).

3. As in B, A randomly selects a k-sized batch of level-2 vertices

V2 =
{︂
v2,d∗

1k, . . . , v2,(d∗
1+1)k−1

}︂
⊂ {v2,0, . . . , v2,k2−1},

where d∗
1 ∈ [0, k − 1], which will be extended to get the next level.

4. A repeats Items 2 and 3 above another D − 3 times to complete the tree Tk: i.e., for
ℓ ∈ [3, D], in the ℓ-th iteration

a) vertices in Vℓ−1 are extended by forking the group state to get level-ℓ vertices
{vℓ,0, . . . , vℓ,k2−1}; and

b) a random batch Vℓ =
{︂
vℓ,d∗

ℓ−1k, . . . , vℓ,(d∗
ℓ−1+1)k−1

}︂
⊂ {vℓ,0, . . . , vℓ,k2−1} is selected

to be extended in the next iteration.

5. Finally, A chooses an update corresponding to a random level-D vertex in vD,d∗
D
∈ VD as

the challenge epoch. Then, for each level ℓ, it indirectly (recall the second observation
above) corrupts every level-ℓ vertex v ∈ Vℓ bar the one that lies in the challenge path

v0,d∗
0

= 0m → v1,d∗
1
→ . . .→ vD,d∗

D

by corrupting the member which generated v. This is to make sure the reduction
answers the edges not rooted in the final challenge graph honestly.

The query strategy is formally described in Algorithm 7.1 and an example of the resulting
graph structure is shown in Figure 7.6. Note that A crucially exploits the process operation in
Item 2 in order to force the group into an inconsistent state and get around the two issues
we noted above, viz., inability to extend vertices in past ratchet trees or corrupt past states.
Let’s consider the first of the issues: if the level-0 updates made by U0,1 in Item 1 are all
processed by all the members in the group – i.e., the group is in a consistent state – then
all members in U1,j would (by protocol specification) extend v1,k, the level-1 vertex that was
added in the last level-0 update. Instead, in Item 2, A makes only select members (i.e., U1,j)
process select updates (i.e., level-0 update by IDj ∈ U0,1). This necessarily forks the state
of the group, which means that the ratchet tree that a member perceives as current will be
determined by the update they process. Consequently the vertices they extend will belong
to what they perceive as the current ratchet tree (see Figure 7.6). However, this also means
that members belonging to two different ‘forks’ of the group state will – due to the layer of
authentication – no longer be able to communicate with each other (e.g., add each other).
This is an issue though as A’s query strategy does not require doing this anyway. Finally, note
that forking the group state also solves the second issue: since the current ratchet tree of
each fork is considered to be ‘in the present’ in the model, the members belonging to any fork
can be corrupted (we still have to be careful not to render the challenge trivial though).

191

7. On the Cost of Adaptivity in Security Games on Graphs

(a)

(b)

(c)

(d)

Figure 7.6: Embedding a regular tree of outdegree k = 2, depth D = 2 and overlap k = 1
in the TreeKEM key-graph. (a) Initial ratchet tree. The ratchet tree after the group was
initialised by IDM−1 and all invitees process this initialisation. (b) and (c) The key-graph
after level-0 updates. The key-graph after ID4 on leaf 0100 and ID5 on leaf 0101 update
themself (before either operations are processed). These key-graphs have the same structure
and the only difference is in what ID4 and ID5 perceive (viz., (b) and (c) respectively) as
current ratchet tree after they process their own updates and the group state is forked. The
first-level embedding is highlighted in blue (with U1,0 = {ID4, ID5}). (d) The key-graph after
level-1 updates. The point of view is of ID11 on leaf 1011. The embedding is complete
(with U2,0 = {ID8, ID9} and U2,1 = {ID10, ID11}): since the vertices 000 and 00 on the path
0000→ 000→ 00 are blanked, the embedding actually is rooted at 0000 according to our
convention for blank vertices from Section 7.7.1. The challenge path is highlighted in red.

192

7.7. Cryptographic Lower Bound II: Continuous Group Key Agreement

Algorithm 7.1: Query strategy for the TreeKEM adversary A, parametrised by the
number of users M = 2m and degree of embedding k = 2δ. Only details pertaining
to the embedding of Tk has been included.
1 (initialise, IDM−1, {ID0, . . . , IDM−1}) // IDM−1 fully populates the

group, IDi assigned leaf i

2 for each i ∈ {0, 1}m do
3 (process, 0, IDi) // All users process the group initialisation

// U0,1 set as {IDk2 , . . . , IDk2+k−1}
for d ∈ [0, k − 1] do // Each user IDd ∈ U0,1...

4 (update, IDk2+d): query update0,d // ...updates themself to extend

root 0m and generate level-1 vertices V1 = {v1,0, . . . , v1,k−1}
5 Set d∗

0 := 0 // Challenge path v0,d∗
0
→ . . .→ vD,d∗

D
initiated at the leaf 0m

6 for ℓ ∈ [1, m− 2δ] do // For each higher level ℓ of Tk...

7 for c ∈ [0, k − 1] do // fork the group for each extendable vℓ,d∗
ℓ−1k+c ∈ Vℓ

// Set Uℓ,c :=
{︁

ID2ℓk2+ck, . . . , ID2ℓk2+(c+1)k−1
}︁
and IDi := ID2ℓ−1k2+d∗

ℓ−1k+c

for each d ∈ [0, k − 1] do // For each user IDj = ID2ℓk2+ck+d ∈ Uℓ,c...

8 for l ∈ [0, ℓ− 2] do // IDj processes all messages that...

9 (process,updatel,d∗
l
k, ID2ℓk2+ck+d) // ...IDi processed and

both IDi and IDj end up in the same state

10 (process,updateℓ−1,d∗
ℓ−1k+c, ID2ℓ−1k2+d∗

ℓ−1k+c) // Both IDi and...

11 (process,updateℓ−1,d∗
ℓ−1k+c, ID2ℓk2+ck+d) // IDj process IDi’s

update

12 (update, ID2ℓk2+ck+d): query updateℓ,ck+d // IDj extends vℓ,d∗
ℓ−1k+c

// Added vℓ+1,ck, . . . , vℓ+1,(c+1)k−1

Sample d∗
ℓ ← [0, k − 1] // Part of level ℓ to be extended in

iteration ℓ + 1
13 (challenge,updatem−2δ,d∗

m−2δ
) // Challenge epoch q∗

14 for ℓ ∈ [1, m− 2δ − 1] do // For each (but extreme) level ℓ of Tk

indirectly...

15 for d ∈ [0, k − 1] \ {d∗
ℓ−1} do // ...corrupt the unextended level-ℓ

vertices by...

16 (start-corrupt, ID2ℓk2+d∗
l
k+d) // ...corrupting the user that

generated it

17 (end-corrupt, ID2ℓk2+d∗
l
k+d)

The lower bound. In Lemma 36 we establish a tight coupling between the security game
for TreeKEM and the Builder-Pebbler Game played on trees. Our lower bound for TreeKEM,
Corollary 14, follows once the parameters are set appropriately.

Lemma 36 (Coupling lemma for TreeKEM). Let G be the family of DAGs of depth m and
size N . Furthermore, let B and XCm,1 be the Builder and the cut from Theorem 30. Then
there exists

1. an ideal PKE scheme Π = (Gen, Enc, Dec)

2. a CGKA adversary A in PSPACE

193

7. On the Cost of Adaptivity in Security Games on Graphs

such that for any straight-line reduction R that proves CGKA security of TreeKEM for groups
of size M = 2m based on the security of the underlying PKE scheme there exists a Pebbler P
such that the advantage 1/Λ of R is at most the advantage of P against B (up to a negligible
additive term poly(M)/2Ω(M)).

Proof (Sketch). The proof proceeds similar to Lemma 35. The ideal PKE is defined exactly
as in Lemma 35 (with λ = Θ(M)) and the query strategy of the adversary A is defined in
Algorithm 7.1. The map ϕ from the CGKA game for TreeKEM to Builder-Pebbler Game can
be carried out in two steps: in the first step we map the CGKA game for TreeKEM to the
public-key GSD game by simply following the protocol description, and in the second step we
use the map from Lemma 35 to end up with a Builder-Pebbler Game. Since Algorithm 7.1
embeds a k-regular tree Tk of depth m in the TreeKEM key-graph G, it follows that the
corresponding Builder B obtained by mapping Algorithm 7.1 using ϕ also ends up building a
graph G such that Tk is embedded in it. The proof now follows by the observation that the
bound we established for Lemma 35 can be extended to any graph that has Tk embedded in it
and because the order in which the embedding is carried out in G is exactly as by the Builder
in Lemma 35.

Corollary 14 (Lower bound for TreeKEM). Let M = 2m be an upper bound on the number
of users. Then any straight-line reduction proving CGKA security of TreeKEM based on the
security of the underlying encryption scheme loses at least a factor

Λ ≥MΩ(log(m)).

Proof. Simply set k = 1, k = M1/4 (denoted δout there) and D = m/2 in Equation (7.2) in
the proof of Theorem 30 to arrive at an upper bound of π ≤ 1/MO(log(m)) on the Pebbler’s
advantage. This proves the claim.

Remark 13. It is possible to slightly improve on the constant factors in the exponent in
Corollary 14 by using a more frugal query strategy that uses add and remove operations
instead of just update. However, there will still remain a significant asymptotic gap in the
upper bound from Theorem 31 and our lower bound (see Table 7.1). It is unclear whether or
not the techniques used in the lower bound can be extended to close this gap and therefore a
resolution in either direction is an interesting open question.

7.8 Cryptographic Lower Bound III: Constrained
Pseudorandom Function

In this section we use our combinatorial results for the Builder-Pebbler Game to prove that
the constrained pseudorandom function (cPRF) [BW13, BGI14, KPTZ13] based on the GGM
PRF [GGM84] cannot be proven adaptively-secure based on the security of the underlying
pseudorandom generator (PRG) using a straight-line reduction. Our lower bound almost
matches the best-known upper bound by Fuchsbauer et al. [FKPR14], see Section 3.4 in
Chapter 3. For definition, construction and security assumption, we refer to Section 3.4.1.

7.8.1 Lower Bound for the GGM cPRF
To prove a lower bound for GGM, we use the combinatorial upper bound from Section 7.5.3
for non-oblivious Pebblers, restricted to the class of graphs with outdegree 2. The main

194

7.8. Cryptographic Lower Bound III: Constrained Pseudorandom Function

challenge here is that – in contrast to our Builder from Section 7.5.3 – the constrain queries
of an adversary in the security game for prefix-constrained PRFs correspond to paths in an
exponentially large binary tree (see Figure 7.7). But it’s not only that the adversary has to
follow a certain query pattern, but more importantly for each query (which corresponds to a
path of up to n edges) it only receives a single evaluation (and this evaluation allows A to
efficiently compute any evaluations for the entire subtree below it). While A might be able
to use its unrestricted computational power to distinguish whether the answer to its query
lies in the image of the PRG (for an appropriately chosen PRG), it is impossible to extract
a pebbling configuration on the entire path given just the single evaluation. This is why we
follow a different approach and instead of choosing a PRG with sparse output range construct
a PRG from two random permutations, which allows A to invert the function and compare
whether two queries were computed from the same seed. Similar to the Builder strategy in
Section 7.5.3, our adversary A makes bunches of queries forming complete binary subtrees,
threaded along the challenge path. However, these queries are now paths of length n such
that their prefixes cover the binary subtrees, respectively. Accordingly, we then map these
bunches of queries to a pebbling strategy on the corresponding binary subtrees, instead of
mapping single edges to a pebble or no pebble, as we did in previous applications. Fortunately,
the combinatorial bound from Section 7.5.3 still holds for Builders revealing such bunches of
queries at once.

Lemma 37 (Coupling lemma for GGM cPRF). Let G be the family of trees of depth D,
size N = poly(D), indegree 1, outdegree 2 and a single source; i.e. G denotes the set of
poly(D)-sized subtrees of the binary tree of depth D which include the root, where edges are
directed from the root to the leaves. Furthermore, let B and XCD,k for k = log(D)/2 be the
Builder and the cut from Theorem 30. Then there exists

1. an information-theoretically secure length-doubling PRG scheme PRG

2. a cPRF adversary A in PSPACE

such that for any straight-line reduction R that proves cPRF security of the GGM construction
for input length D + 1 based on the security of the underlying PRG scheme there exists a
Pebbler P such that the advantage 1/Λ of R is at most the advantage of P against B (up to
a negligible additive term poly(D)/2Ω(D)).

To prove this lemma, we will use the following construction of an information-theoretically
secure PRG scheme (see Definition 11).

Lemma 38. Let π0, π1 : {0, 1}λ → {0, 1}λ be two random permutations. Then PRG :
{0, 1}λ → {0, 1}2λ defined by PRG(x) := (π0(x), π1(x)) is a poly(λ)/2λ/2-secure length-
doubling PRG.

Proof. Since random permutations are indistinguishable from random functions using only
polynomially many queries, we may consider the PRG as a concatenation of two poly(λ)/2λ/2-
secure PRFs by a hybrid argument. Again by hybrid argument, the concatenation of two secure
PRFs yields a PRF from {0, 1}λ to {0, 1}2λ. The lemma follows, since length extending PRFs
are PRGs.

Having a construction of a PRG in place, we are now ready to prove Lemma 37.

195

7. On the Cost of Adaptivity in Security Games on Graphs

Proof of Lemma 37. We pick the PRG from Lemma 38 for λ = Θ(D).

Analogously to the proof of Lemma 34 we define a map ϕ between the cPRF game and the
Builder-Pebbler Game:

• For a constrain query by adversary A, (constrain, x), we make a case distinction on
the length l of x:

– if l = D + 1, the Builder B extends the current tree in the natural way, ignoring
k-sized blocks of trailing zeros in x and adding random nodes as needed. More
formally, write x = x1||x2||x3 ∈ {0, 1}l1×{0, 1}l2×{0}l3×{0, 1} with l1, l2, l3 ≥ 0
and k|l3, where x1 is the longest prefix of x that has been queried so far. For each
prefix x′ of x with length between l1 + 1 and l1 + l2, B chooses a uniformly random
node (that is not associated to any prefix yet) and associates it to x′. Writing
x2 = (x2

1, x2
2, . . .), it then queries the edges between the nodes associated with x1

and x1||x2
1, between x1||x2

1 and x1||x2
1||x2

2, etc.
– if l ≤ D, B ignores the query.

• For the challenge query (challenge, x∗), proceed as for constrain queries to extend
the tree. Choose the node associated to x∗ as the challenge T .

• Pebbles are determined in the following way. Recall that the Builder from Theorem 30
always extends the tree in chunks of entire subtrees (and the queries comprising such a
chunk can be sent at the same time). So we may restrict the definition of ϕ to preimages
of such Builders. To determine which edges in such a subtree are pebbled, consider
the responses yi corresponding to the queries xi in such a chunk. For each yi invert π0
repeatedly to obtain the seed associated to the i-th leaf in the subtree. Then for every
node, bottom-up, if

– the children are associated with seeds s0, s1, resp., check if π−1
0 (s0) = π−1

1 (s1). If
this is true, associate the node with this computed seed. Otherwise, consider both
outgoing edges from this node as pebbled and set the seed of this node to ⊥.

– only the left (right) child is associated with a seed s, set the seed of this node to
π−1

0 (s) (π−1
1 (s), resp.).

– neither of the children is associated with a seed, set the seed of the current node
to ⊥.

For the root of the subtree, which already has a seed s (or ⊥) associated to it, check if
s is consistent with its children; if not, update to ⊥ and pebble both outgoing edges.

Let A be the preimage under ϕ of B from Theorem 30 as follows: A first queries cPRF
evaluations for {0, 1}2k||0D−2k+1 in reverse order (i.e. starting from 12k||0D−2k+1)18 – this is in
analogy to the first 2k rounds of B (see Figure 7.7). Then it proceeds in [1, D/k − 2] rounds,
where in round j ∈ [1, D/k − 2] it first samples x∗

j ∈ {0, 1}k and then makes 22k queries
x∗

1|| . . . ||x∗
j ||{0, 1}2k||0D−(j+2)k+1 in reverse order, starting with x∗

1|| . . . ||x∗
j ||12k||0D−(j+2)k+1.

18This is for technical reasons: We defined the mapping ϕ to ignore k-blocks of trailing zeros in order to
associate queries x||0D−2k+1 to (non-disjoint) paths of length 2k. To this aim ϕ prolongs the longest already
existing subpath associated to some prefix x′ of x. If A now starts querying the string 0D+1, this query would
simply be ignored. On the other hand, if there was a preceding query 02k−1||1||0D−2k+1, then the query 0D+1

is mapped to an edge extending the path associated with the prefix 02k−1.

196

7.8. Cryptographic Lower Bound III: Constrained Pseudorandom Function

1

2

3

4

5

6

Figure 7.7: A schematic diagram showing the adversarial query strategy for the GGM cPRF
in Lemma 37. The outer (grey) triangle represents the perfect binary tree of depth D =
7k + 1 (also see Figure 7.3) representing the GGM PRF. The internal (blue) triangles
represent perfect binary trees of depth 2k with the j-th triangle representing the 22k queries
x∗

1|| . . . ||x∗
j ||{0, 1}2k||0D−(j+2)k+1. The challenge x∗ is highlighted (in red) with the label j

indicating the string x∗
j .

Next, A samples a challenge x∗ = (x∗
1, . . . , x∗

D, 1) in x∗
1|| . . . ||x∗

D/k−2||{0, 1}2k||1 uniformly
at random. Furthermore, it makes constrain queries for all prefixes (x∗

1, . . . , x∗
j−1, x̄j) for

j ∈ [1, D]. If the answers to the prefixes are not consistent with the previous cPRF queries,
then A aborts and outputs 0. Otherwise, A uses its unrestricted computational power to
compute the mapping ϕ from the reduction’s answers to its queries to a pebbling configuration
on the subtree. Note that due to the previous check, there must not be any pebbles on
edges rooted at nodes outside the challenge path. A now considers the pebbling configuration
induced on the challenge path. If this pebbling configuration lies in the cut defined by XCD,k,
the adversary A outputs 0, otherwise 1.

Clearly, A wins the cPRF game with probability 1. Now, let R be an arbitrary straight-line
reduction. First, note that the probability that R queries PRG on the challenge seed is
negligibly small (poly(D)/2Ω(D)). Assuming this does not happen, R can only gain a bigger
advantage if it embeds its PRG challenge when interacting with A and manages to hit a
pebbling configuration in the cut, i.e. such that depending on the challenge being real or
random the pebbling configuration which A extracts lies either in the cut set or not. Note
that choosing a value in the tree at random instead of applying PRG to the correct output
is equivalent (w.r.t. A’s behavior) to responding to the respective queries inconsistently and
will thus yield a pebble with overwhelming probability. Furthermore, the consistency check
after the constrain queries ensures that R may only place pebbles on edges rooted in the
challenge graph and can only embed its challenge in the challenge graph. Similar to the proof
in Lemma 34, one can see that R maps (under ϕ) to a Pebbler in the Builder-Pebbler Game
which has at least the same advantage of achieving such a configuration.

Using the above lemma, the following corollary now easily follows from Theorem 30.

197

7. On the Cost of Adaptivity in Security Games on Graphs

Corollary 15 (Lower bound for GGM). Let n be the input length of the GGM cPRF scheme.
Then any straight-line reduction proving cPRF security of the GGM construction based on the
security of the underlying PRG scheme loses at least a factor

Λ ≥ nlog(n)/2−log(log(n))/2.

7.9 Cryptographic Lower Bound IV: Proxy Re-encryption
As an application of our results on node Pebblers, we consider our results from Chapter 4 on
adaptively secure proxy re-encryption (PRE). In particular, we identified two natural security
properties – indistinguishability of ciphertexts and δ-weak key privacy – which allow to prove
adaptive CPA-security via an (oblivious) black-box reduction. The notion of δ-weak key privacy
clearly translates to node pebbling and a relation to the more general edge pebbling is not
clear. The results from this chapter now allow us to prove lower bounds on the security loss
involved by any black-box reduction that proves adaptive CPA security of a PRE scheme based
on these two basic security properties.

Remark 14. Also other applications of the Piecewise-Guessing framework, such as Secret
Sharing [JKK+17a] and Yao’s Garbled Circuit (Chapter 6), as well as the recent application
to ABE by Kowalczyk and Wee [KW19] use node-pebbling reductions. However, in all three
of these applications of the framework, the graph structure is known to the reduction in
the beginning of the game, which allows for some compression of the representation of the
pebbling configurations. (However, we will show lower bounds for Yao’s Garbled Circuit in
Chapter 8.)

Recall, a PRE scheme is a public-key encryption scheme that allows the holder of a key pk to
derive a re-encryption key (short, rekey) rk for any other key pk′ [BBS98b]. This rekey lets
anyone transform ciphertexts under pk into ciphertexts under pk′ without having to know the
underlying message. We say that a PRE is unidirectional if rk does not allow transformations
from pk′ to pk [AFGH05]. Moreover if ciphertext c′ for pk′ that was derived from a ciphertext
c for pk, can be further transformed to another ciphertext c′′ corresponding to public key pk′′

using a rekey rk′, the PRE is said to allow two “hops”. A PRE that allows multiple hops, i.e.
a multi-hop PRE, can be defined analogously.

A more formal definition of multi-hop, unidirectional PRE, to which we apply our lower bounds,
is given in Section 4.2.

We consider the CPA-security from Chapter 4 as defined in Game 4.3. In the security game
an adversary first receives the public keys of all users and then can adaptively do the following
queries: It can corrupt a party and receive its secret key, it can query for rekeys between two
users or for a re-encryption of a ciphertext encrypted under the public key of one user to an
encryption of the same plaintext under the public key of another user, and, only once, it can
issue a challenge query where it chooses a challenge user, two messages m0, m1 as well as a
level and receives an encryption of mb to the chosen levelunder the challenge user’s public key.
The adversary’s goal is to guess the bit b.

Consider the graph structure on the set of users which is defined throughout the game as
follows: Whenever the adversary queries a rekey or a reencryption of some ciphertext from

198

7.9. Cryptographic Lower Bound IV: Proxy Re-encryption

user i to user j, this is represented as an edge from j to i (note, for CPA-security we do not
distinguish between rekey and reencryption queries).19

To avoid trivial wins, we need to restrict the adversary so that it can not simply reencrypt the
challenge ciphertext to a corrupted party and then use the known secret key to decrypt. Thus,
for CPA-security20, the adversary is not allowed to query any paths of rekey or reencryption
queries from the challenge user to a corrupted user. Considering the query graph, this
corresponds to the requirement that the challenge node is not reachable from any corrupt
node.

In Chapter 4 we reduced the CPA security of a PRE scheme to the following two basic security
properties which are naturally satisfied by the popular constructions we analyzed. The first
basic security property is indistinguishability of ciphertexts, as defined for public-key encryption
in [GM82], but on all levels; see Definition 22. The second security property is δ-weak key
privacy, which says that a set of δ re-encryption keys rk0,i from a given source key (pk0,sk0)
to δ given target public keys pki, where i ∈ [1, δ], is indistinguishable from a set of δ rekeys
which were generated from a freshly sampled source key pair (pk′

0,sk
′
0); see Definition 23.

7.9.1 Lower Bounds
In applications of PRE schemes it often makes sense to only consider security against restricted
classes of adversaries where the recoding graph can only have a specific form, such as a path
(e.g., in the application of key rotation) or binary trees (e.g., in a hierarchy of low depth).
While for these cases quasi-polynomial upper bounds on the security loss involved when proving
CPA-security of the PRE scheme based on IND-CPA security and δ-weak key privacy are
known (see Chapter 4), our results allow us to prove quasi-polynomial lower bounds for all
oblivious reductions, which basically means, that only the development of new techniques can
lead to significally better reductions and hence stronger security guarantees.

Definition 71 (Oblivious PRE reduction). A straight-line PRE reduction R is oblivious if it
commits to a non-trivial vertex cover of all inconsistent edges (rekey queries) at the beginning
of the game.

In all our bounds we require the reduction to assign keys to nodes at the beginning of the
game.

Definition 72 (Key-committing PRE reduction). A PRE reduction R is key-committing if it
commits to an assignment of keys to all nodes at the beginning of the game.

Lemma 39 (Coupling lemma for PRE). Let G be a family of DAGs and X a cut function.
Let B be an oblivious Builder in the (N,G)-Builder-Pebbler Game with winning condition X.
Then there exists

19In Chapter 4, edges were defined in a more natural way, opposite to here, which led to an inverse pebbling
game where a node can be pebbled/unpebbled if all its children are pebbled. For the ease of presentation, we
chose to define the query graph so that it fits our general framework and the usual reversible pebbling game.
Analogously to the GSD game, corrupting a node allows the adversary to decrypt ciphertexts encrypted under
the public key of any node which is reachable from it in the graph.

20In Chapter 4, we also considered the stronger and less restrictive notion of security under honest re-
encryption attack (HRA) which was introduced in [Coh19] and distinguishes between (iterated) re-encryptions
of the challenge ciphertext and unrelated ciphertexts. There we proved HRA-security for PRE schemes which
satisfy one more basic property called source-hiding. Our lower bounds also hold for black-box reductions
proving HRA-security of the scheme based on these three basic properties.

199

7. On the Cost of Adaptivity in Security Games on Graphs

1. an ideal PRE scheme Π = (S, K, RK, E, D, RE)

2. a PRE adversary A in PSPACE

such that for any key-committing straight-line reduction R that proves adaptive PRE-CPA
security of a PRE scheme based on the IND-CPA security of the underlying PKE scheme and
the δ-weak key privacy there exists an oblivious Pebbler P such that the advantage 1/Λ of R
is at most the advantage of P against B (up to an additive term poly(N)/2Ω(N)). Moreover,
if R is oblivious, then so is P.

Proof. The proof is analogous to the one of Lemma 34, so we only point out the differences
here. The ideal PRE scheme Π is defined as follows: we build on the ideal public-key encryption
scheme from Section 7.6.2, from which ideal IND-CPA security follows. We now equip the
PKE scheme with PRE capabilities by defining RK to respond with the output of a random
function (with large enough co-domain, so that rekeys are sparsely distributed in the range of
the function) under the query input. Upon re-encryption queries, the oracle 1) computes the
secret and public keys that are consistent with the rekey and the ciphertext, 2.a) if the source
key pair of the rekey coincides with the key pair associated with the ciphertext, it correctly
decrypts the ciphertext and re-encrypts the message using the target public key of the rekey,
2.b) and otherwise (i.e., if the source key pair of the rekey and the key pair associated with the
ciphertext do not match), it outputs a uniformly random string from the ciphertext space (i.e.,
co-domain of E). The scheme described is clearly correct, and one can show that it satisfies
weak key privacy information-theoretically.

We now decribe the map ϕ that maps the parties in the PRE game to parties in a Builder-Pebbler
Game:

• The number N of nodes in the Builder-Pebbler Game corresponds to the number N of
keys in the PRE game.

• A rekey query (rekey, i, j) maps to an edge query (j, i) (sic!) in the Builder-Pebbler
Game.

• A response to a query (rekey, i, j) is mapped to “no pebble” if it consists of a valid
rekey from pki to pkj , and to “pebble” otherwise. (Note that this is always well-defined
for oblivious PRE reductions, because these need to commit to an assignment of keys
at the beginning.)

• Corruption and re-encryption queries are ignored in the Builder-Pebbler Game.

• The challenge query (challenge, i∗) is mapped to the challenge node T .

Analogously to the adversary in Lemma 34, A is the preimage of B under ϕ: A performs the
same rekey queries as B. When B selects a challenge node, A issues a challenge query on the
same node with randomly chosen messages m0 ≠ m1. A then corrupts all nodes that are not
in the challenge graph. If there are any inconsistencies in the corrupted part, A aborts and
outputs 0. Finally, A extracts the pebbling configuration P from the transcript and checks
whether the challenge ciphertext is an encryption of m0 or m1 under the correct key. If the
encrypted message is m0 (resp. m1) and the pebbling configuration is a valid node pebbling in
the cut defined by X(GT), then A outputs 0 (resp. 1). Otherwise A outputs always 0. Clearly,
this adversary has advantage 1 in the PRE-CPA game.

200

7.10. Open Problems

Since Π is information-theoretically IND-CPA secure, R can only gain any advantage in the
IND-CPA game by sending A the challenge ciphertext as response to the challenge query.
However, this means the challenge node is associated to the challenge public key. R does
not know the corresponding secret key and thus, with overwhelming probability, will respond
with a fake rekey when queried for the edge(s) incident on the challenge node. This means in
the extracted configuration, the target node is pebbled, so the configuration is not in the cut.
Accordingly, the output of A is independent of the IND-CPA challenge bit.

This means, R must attempt to break δ-key privacy. The remaining proof is the same as for
Lemma 34, with the δ-key privacy challenge taking the role of the IND-CPA challenge.

Corollary 16 (Lower bound for PRE restricted to paths). Let N be the number of users.
Then any oblivious, key-committing black-box reduction proving adaptive PRE-CPA security
of a PRE scheme restricted to paths based on IND-CPA security and 1-weak key privacy loses
at least a factor

Λ ≥ 2 ·N log(N)/8−log(log(N)).

Corollary 17 (Lower bound for PRE restricted to binary trees). Any oblivious, key-committing
black-box reduction proving adaptive PRE-CPA security of a PRE scheme restricted to rooted
binary in-trees on N users based on IND-CPA and 2-weak key privacy loses at least a factor

Λ ≥ N log(N)−log(log(N)).

For adversaries that are allowed to query complete (directed acyclic) graphs, Corollary 5 implies
an exponential lower bound on the security loss even for non-oblivious black-box reductions:

Corollary 18 (Lower bound for PRE). Let N be the number of users. Any key-committing,
straight-line reduction (possibly non-oblivious) proving unrestricted adaptive PRE-CPA security
of a PRE scheme based on IND-CPA security and N -weak key privacy loses at least a factor
2Ω(N).

Handling Rewinding Reductions Theorem 29 does not hold (and thus neither Corollary 5)
if we allow Pebbler P to rewind Builder B: P can invoke B once to learn which edges queried
in the first phase belong to P2

v and Sv, respectively. Then rewind B, and in this 2nd execution
the reduction can easily put pebbles so the graph ends up in the cut.

However, Corollary 18 can be extended to rewinding reductions in the following way. We can
consider another adversary A∗ who only at the end of the first phase decides which edges
should belong to P2

v and Sv. A∗ will derive the randomness for this assignment by using a
random function (only known to A∗) on input the transcript of the first query phase. The
reduction can get a fresh shot at guessing which edges belong to P2

v and Sv by rewinding A∗,
but the probability of any such guess being correct is upper bounded as in Equation (7.1)
because every time the transcript changes, there’s a completely new assignment, and thus the
reduction cannot gradually learn anything about the edge assignments.

7.10 Open Problems
We conclude this work by explaining some of the open questions and avenues for further
improving our results.

201

7. On the Cost of Adaptivity in Security Games on Graphs

7.10.1 Rewinding Reductions
A large class of reductions that we do not consider in this work are rewinding reductions. While
our lower bound for black-box reductions against unrestricted adversaries in the PRE game
allows rewinding (see discussion after Corollary 18), this is not the case for our applications of
the bounds on edge-pebbling Pebblers. To see this, let us consider the oblivious adversary
restricted to paths, which we constructed in the proof of Theorem 25. Since this adversary
chooses a uniformly random path in the beginning of the game and then obliviously sticks
to this graph structure, we can define a reduction which manages to get into any pebbling
configuration it wishes: First, R runs the adversary once on an arbitrary pebbling strategy, e.g.,
it answers all queries real. Then it rewinds the adversary until the point after it chose the
path. But now R knows the full path structure and can trivially embed the pebbles and its
challenge such that it ends up in a configuration in the cut.

To fix this issue, we could consider an adversary who follows the same oblivious threshold
strategy, but chooses the edges of the path uniformly at random while the game proceeds; i.e.,
it first chooses a uniform edge e = (u, v)← E := [1, N]0 × [1, N]0 \ {(x, x) | x ∈ [1, N]0},
then a uniform edge e′ ← E \ {(u′, v′) | u′ = u ∨ v′ = v}, and so on. In particular, this
adversary behaves randomly in each step, conditioned on ending up with a path structure
on the set of nodes. However, also this oblivious adversary can be exploited by a rewinding
reduction: Assume, R wants to end up with a specific pebbling configuration P. When
receiving A’s first query, R guesses the position (i, i + 1) of this query on the path. If i is its
challenge key it embeds the challenge ciphertext, if (i, i + 1) ∈ P it places a pebble, otherwise
it answers real. For the next query R rewinds the adversary until it receives a query which is
connected to the first edge and, in particular, assuming its initial guess was correct, knows
the position of this edge on the path. Thus, it answers this query according to the pebbling
configuration it has in mind. R acts similarly for all following queries. If it realises that its
initial guess was wrong, R stops and rewinds the adversary until the first query and starts
another run of the game. Following this strategy, the reduction has to rewind on expectation
O(N2) times for each of the expected O(N) runs until its initial guess is correct. Thus, this
reduction can use the considered adversary at an only polynomial slow-down.

This example shows that assuming non-rewinding (i.e., straight-line) reductions is necessary
for our proof to go through, and one can make similar observations for the other adversaries
considered in this work. We consider it an interesting open problem to extend (some of) our
lower bounds to rewinding reductions. Note that the Builder-Pebbler Game might not be the
right abstraction here, since it doesn’t capture additional sources of randomness the reduction
might choose (e.g. encryption randomness in the case of GSD).

7.10.2 Reductions Exploiting Rewinding or Non-Obliviousness
Instead of extending our lower bounds to rewinding reductions, a promising approach would
be to find better reductions using rewinding. It might even be possible to find polynomial
reductions for many applications. We believe the GGM prefix-constrained PRF might be a
suitable target, due to the general interest of the primitive and because we think this might
be technically feasible. Using a similar approach as we laid out for paths in Section 7.10.1
it is easy to see that our lower bound established in Corollary 15 indeed does not hold for
rewinding reductions, so this avenue remains open.

Similarly, it would be of interest to find better non-oblivious reductions in the more restricted
settings, where we needed to exclude such reductions. This would help clarify in which

202

7.10. Open Problems

settings non-obliviousness is required and where it is simply an artifact of our proof technique.
Considering the broader implications, determining the exact restrictions on the adversary that
require non-oblivious and/or rewinding reductions could provide guidance towards reductions
for new applications that involve dynamic graph-based security games.

7.10.3 Better Reductions for Other Graph Families
We showed in Section 7.4 that the advantage of a Pebbler in the (Restricted) Builder-Pebbler
Game is intimately related to cuts in the configuration graph of the challenge graph. Our
lower bounds exploited that certain configuration graphs have low weight cuts, such that they
are hard to exploit for a reduction. Assume, we could show that for certain graphs there is no
such cut in the configuration graph. Could this be exploited to obtain better Pebbler strategies
in the Builder-Pebbler Game restricted to such graphs? This has the potential of resulting in
better reductions for such graphs in certain applications.

7.10.4 Resoving LKH
The tree-based protocols for CGKA and LKH are extremely related. While we are able to use
our techniques to show lower bounds for the former, we are unable to obtain any bounds for
LKH as pointed out in Section 7.7. The reason lies in the difference in the security games:
while in both games the adversary may force parties into inconsistent states, only in the CGKA
game the adversary can exploit this to prompt these parties to generate encryptions to almost
arbitrary previous keys. This is not true in the security game for LKH (Multicast Encryption),
where all encryptions are generated by a trusted authority, which, by definition, is never in an
inconsistent state. Still, the setting is so tantalizingly close to the one of CGKA (and, more
generally, GSD on specific graph families), that it seems unlikely that such a bound could not
be established. However, at this point we cannot even rule out oblivious reductions, so there
might be better reductions lurking even in this class.

203

CHAPTER 8
Limits on the Adaptive Security of Yao’s

Garbling

8.1 Introduction
Recall from Chapter 6 that a garbling scheme allows one to garble a circuit C and an input x
such that only the output C(x) can be learned while everything else – besides some leakage
such as the size or topology of the circuit – remains hidden. It was originally used by Yao as
a means to achieve secure function-evaluation [Yao82, Yao86]. Despite its huge impact on
cryptography, it was formally defined as a stand-alone primitive only much later by Bellare,
Hoang and Rogaway [BHR12b]. In addition to a syntactic definition, they propose two different
security notions for garbling schemes: simulatability and indistinguishability. They show the
equivalence of the two definitions1 in the presence of a selective adversary, which sends the
circuit and input to be garbled in one shot. In contrast, for the more general case in which the
adversary first – in an offline phase – chooses a circuit C and then (after receiving its garbling)
– in the online phase – adaptively chooses its input x, the notion of indistinguishability turns
out to be strictly weaker than simulatability. Many applications require security in such an
adaptive setting, and for the sake of efficiency the cost during the online phase is to be kept
minimal.

Prior work on security. Whilst there exist several constructions of provably-secure (even in
the adaptive sense) garbling schemes (see related work section 6.1.3 in Chapter 6), a feature
of Yao’s scheme (and variants thereof) is that security can be proven under the minimal
assumption of one-way functions. At the same time, this scheme offers almost-optimal online
complexity, with the size of the garbled input being linear in the input-size, and independent
of the output- as well as circuit-size. While a formal security proof of Yao’s scheme in the
selective setting was given by Lindell and Pinkas [LP09], Applebaum et al. [AIKW13] showed
that the online complexity of any adaptively-simulatable garbling scheme must exceed the
output-size of the circuit, thereby proving a first limitation of Yao’s scheme.

This Chapter essentially replicates, with permission, the full version [KKPW21d] of our publica-
tion [KKPW21c], © IACR 2021, https://doi.org/10.1007/978-3-030-84245-1_17.

1In the security game for simulatability, the simulator has to simulate ˜︁C given only the output y = C(x)
and some leakage Φ(C). While equivalence of selective simulatability and selective indistinguishability holds
for the most natural leakage functions (e.g. the size or topology of C), it does not hold for arbitrary leakage
functions Φ.

205

https://doi.org/10.1007/978-3-030-84245-1_17

8. Limits on the Adaptive Security of Yao’s Garbling

All of this led Jafargholi and Wichs [JW16] to consider a natural adaptation of Yao’s garbling
scheme (described in Section 8.1.1), where the mapping of output labels to output bits is
sent in the online phase as part of the garbled input (see below for the construction). The
negative result by Applebaum et al. does not apply to this adaptation of Yao’s garbling scheme
since its online complexity exceeds the output size. Therefore, this adaptation is the natural
version of Yao’s garbling scheme for the case of adaptive security, and is the scheme that we
consider in this work and will simply refer to as “Yao’s garbling” from now on. Jafargholi
and Wichs [JW16] were able to show that it satisfies adaptive security for a wide class of
circuits, including NC1 circuits. More precisely, they prove adaptive security of Yao’s garbling
via a black-box reduction to the IND-CPA security of the underlying symmetric-key encryption
(SKE) scheme with a loss in security that is exponential in the depth of the circuit. Their
proof employs a specially tailored pebble game on graphs, and can be seen as an application
of the Piecewise-Guessing framework (see Section 3.1.3 in Chapter 3 and the more detailed
discussion in Chapter 6). Since our work concerns the optimality of this proof, let’s recall it in
a bit more detail.

8.1.1 Yao’s Scheme and Adaptive Indistinguishability
Let’s first informally recall Yao’s garbling scheme. A circuit C : {0, 1}n → {0, 1}m is garbled
in the offline phase as follows:

1. For each wire w in C, choose a pair of secret keys k0
w,k1

w ← Gen(1λ) for a SKE
(Gen, Enc, Dec).

2. For every gate g : {0, 1}×{0, 1} → {0, 1} with left input wire u, right input wire v, and
output wire w, compute a garbling table ˜︁g consisting of the following four ciphertexts
(in a random order).

c1 := Enck0
u
(Enck0

v
(kg(0,0)

w)) c2 := Enck1
u
(Enck0

v
(kg(1,0)

w))
c3 := Enck0

u
(Enck1

v
(kg(0,1)

w)) c4 := Enck1
u
(Enck1

v
(kg(1,1)

w))
(8.1)

3. If C has W wires and output wires denoted by wW −m+1, . . . , wW , assemble the output
mapping {kb

w → b}i∈[W −m+1,W], b∈{0,1}.

The garbled circuit ˜︁C consists of all the garbling tables ˜︁g as well as the output mapping. To
garble an input x = (b1, . . . , bn) in the online phase, simply set

˜︁x := (kb1
w1 , . . . ,kbn

wn
)

where wi denotes the ith input wire. The only difference in the variant from [JW16] is that
the sending of the output mapping is moved to the online phase, which leads to an increase in
the online complexity to linear in the input- and output-size.

To evaluate the garbled circuit on the garbled input, one requires the following special property
of the SKE: For each ciphertext c← Enck(m) there exists a unique key – namely k – such
that decryption doesn’t fail. Evaluation of the garbled circuit given the garbled input then
works starting from the gates at the lowest level by simply trying which of the four ciphertexts
can be decrypted using the two given input keys. This allows to recover exactly one of the two
keys associated to the output wire of the respective gate and in the end the output mapping
is used to map the sequence of revealed output keys to an output string y ∈ {0, 1}m.

206

8.1. Introduction

Adaptive indistinguishability. A garbling scheme is adaptively indistinguishable if no PPT
adversary can succeed in the following experiment2 with non-negligible advantage:

1. The adversary submits a circuit C to the challenger, who responds with ˜︁C.

2. The adversary then submits a pair of inputs (x0, x1) such that C(x0) = C(x1).

3. The challenger flips a coin b and responds with ˜︁xb.

4. The adversary wins if it guesses the bit b correctly.

In the following, we will refer to the two games for b = 0 and b = 1 as the “left” and “right”
games, respectively.

To prove adaptive indistinguishability3 of Yao’s scheme for an arbitrary SKE (satisfying the
special property), Jafargholi and Wichs construct a black-box reduction from the IND-CPA
security of the SKE. More precisely, they proceed by a hybrid argument, where they define a
sequence of hybrid games interpolating between the left and the right game such that each
pair of subsequent hybrid games only differs in a single ciphertext (in the garbling table) and
can be proven indistinguishable by relying on the IND-CPA security of the SKE.

The loss in security incurred by such a reduction then depends on the length of the sequence
and the amount of information required to simulate the hybrid games. To end up with a
meaningful security guarantee, thus, the sequence of hybrid games must not be too long and it
must be possible to simulate any of the hybrid games without relying on too much information,
particularly the knowledge of the entire input. Jafargholi and Wichs design such a sequence
of hybrid games by using an appropriate pebble game on the topology graph underlying the
circuit. In that game, pebble on a gate indicates that the gate is not honestly garbled (as in
Equation (8.1)) but is, instead, garbled in some input-dependent mode. The pebble rules,
which dictate when a pebble can be placed on or removed from a vertex, guarantee that two
subsequent hybrids can be proven indistinguishable, and the loss in security directly relates to
the number of pebbles on the graph.

Keeping this proof technique in mind, the main idea of this work is to turn a pebble lower
bound (w.r.t. an appropriate pebble game) into a lower bound on the security loss inherent to
any black-box reduction of adaptive indistinguishability of Yao’s scheme. Such an approach we
already explored in Chapter 7, also in the context of adaptive security but for primitives that
are of a different flavour (e.g., multi-cast encryption). However, the case of garbled circuits
turns out very different for several reasons we will highlight later (see Section 8.2.5).

8.1.2 Our Results
We prove a lower bound on the loss in security incurred by any black-box reduction from
IND-CPA security of the SKE to adaptive indistinguishability of Yao’s garbling scheme [JW16].
This immediately implies a similar lower bound with respect to the (stronger) more common

2In fact, we define a weaker security notion than indistinguishability as defined in [BHR12b] (see Defi-
nition 43); according to their definition the adversary can choose two circuits C0, C1 of the same topology
and inputs x0, x1 such that C0(x0) = C1(x1). Aiming at a lower bound on the gap between the security of
Yao’s scheme and the security of the underlying SKE, the additional restriction we put on our adversary only
strengthens our results.

3To be precise, [JW16] prove the stronger security notion of simulatability, which implies indistinguishability.

207

8. Limits on the Adaptive Security of Yao’s Garbling

security notion of adaptive simulatability. Our lower bound is subexponential in the depth d of
the circuit, hence almost matches the best known upper bound from [JW16].

Theorem (main). Any black-box reduction from adaptive indistinguishability (and thus also
simulatability) of Yao’s garbling scheme on the class of circuits with input length n and depth
D ≤ 2n to the IND-CPA security of the underlying SKE loses at least a factor Λ = 1

Q
· 2

√
D/61,

where Q denotes the number of times the reduction rewinds the adversary.

Two remarks concerning the theorem are in order. Firstly, we are proving a negation of the
statement in [JW16], which upper bounds Λ for every graph in a class. Therefore, when we
say that the class of circuits above loses at least a factor Λ, we mean that there exists some
circuit Γ in that class such that any reduction loses by that factor (and not that every circuit
in that class loses by that factor). The design of this circuit Γ is one of the main technical
contributions of this work. The second remark concerns the design of this circuit Γ. In addition
to some structural properties that we will come to later, we design Γ to output the constant bit
0. This implies that the output mapping can easily be guessed by a reduction, and therefore
the difference, in this case, between Yao’s original scheme and [JW16] is only marginal.

Comparison with Applebaum et al. [AIKW13]. The result in [AIKW13] rules out
adaptively-simulatable randomised encodings with online complexity less than the output-size
of the function it encodes. Since Yao’s garbling is one instantiation of randomised encodings,
their result immediately rules out its adaptive simulatability. However, [AIKW13] does not apply
to our setting for three reasons. Firstly, their result only applies to the original construction of
Yao’s garbled circuits where the garbled input can be smaller than the output size. In this work
we consider the adaptation of Yao’s garbling scheme [JW16] where the output mapping is
sent in the online phase, hence the online complexity always exceeds the output size. Secondly,
their result applies to circuits with large output, while our result holds even for Boolean circuits
with outputs of length 1. Finally, their result only applies to simulation security, while our
result even holds for indistinguishability.

Comparison with Hemenway et al. [HJO+16]. We would like to emphasise that our
lower bound only holds for the specific construction of Yao’s garbled circuits, and it does not
rule out other constructions, even potentially from one-way functions. In fact, the construction
of Hemenway et al. already circumvents our result and it is instructive to see how. On a high
level, their idea (similar to [BHR12a]) is to take Yao’s garbling scheme and then encrypt all
the resulting garbling tables with an additional layer of “somewhere equivocal” encryption
on top. This change allows them to prove adaptive security with only a polynomial loss in
security (at the cost of increased online complexity). The intuitive reason why our approach
does not apply to this construction is that the additional layer of encryption somehow “blurs
out” all the details about the individual garbling tables, on which our argument depends (see
Extracting the Pebble Configuration in Section 8.2.4).

8.2 Technical Overview
We aim to prove fine-grained lower bounds on loss in security incurred by black-box reductions
in a setting where a primitive F is used in a protocol ΠF . In our case F is SKE and ΠF is
Yao’s garbling scheme using the SKE. In order to bound Λ, the loss in security incurred by any

208

8.2. Technical Overview

efficient black-box reduction R that breaks F when given black-box access to an adversary
that breaks ΠF (i.e., from F to ΠF), we must show that for every R, there exists

• an instance F (not necessarily efficiently-implementable) of F and

• an adversary A (not necessarily efficient) that breaks ΠF

such that loss in security incurred by R in breaking F is at least Λ.4 We next describe how the
instance and the adversary are defined in our setting.

8.2.1 Our Oracles.
We define two oracles F and A implementing an ideal SKE and an adversary, respectively,
such that

• the SKE scheme F = (Gen, Enc, Dec) satisfies IND-CPA security information-theoretically,

• the (inefficient) adversary A breaks indistinguishability of the garbling scheme ΠF , but
is not helpful in breaking the IND-CPA security of F .

Ideal encryption. We will define the ideal SKE oracle F such that Enc is defined through
a random expanding function (which is injective with overwhelming probability). Since the
security of F is information-theoretic, any advantage against IND-CPA which a reduction with
oracle access to F and A obtains must stem (almost) entirely from the interaction with A.
This is true since the reduction only makes polynomially many queries and thus the probability
that the answer to one of its oracle queries coincides with the IND-CPA challenge is negligible.
On the other hand, a computationally unbounded adversary using an unlimited number of
queries can break the scheme and (thanks to injectivity) perfectly recover messages and secret
keys from any ciphertext.

The adversary. As for the (inefficient) adversary A, we define a so-called threshold adversary
which does the following in the indistinguishability game:

1. A chooses a particular circuit Γ (see Section 8.2.3) which has constant output (bit) 0
and sends Γ to the challenger.

2. After receiving the garbled circuit ˜︁Γ, A chooses garbling inputs x0 and x1 uniformly at
random and sends them to the challenger. Note that Γ(x0) = Γ(x1) trivially holds since
Γ has constant output.

3. On receipt of the garbled input ˜︁xb along with an output mapping, A first runs some
initial checks on (˜︁Γ, ˜︁xb) to verify that the garbling has the correct syntax, and then
extracts a pebble configuration P on Γ. That is, every gate in Γ is either assigned a
pebble or not, depending on the content of its garbling table in ˜︁Γ and the garbled input˜︁xb. To compute this mapping, the inefficient adversary A simply breaks the underlying
encryption by brute force. Finally, A outputs 0 (denoting ‘left’) if the extracted pebble

4This is obtained by simply negating the definition of a black-box reduction: there exists an efficient
reduction R for every implementation (not necessarily efficient) F of F and for every (not necessarily efficient)
adversary A that breaks ΠF such that the loss in security is at most Λ.

209

8. Limits on the Adaptive Security of Yao’s Garbling

configuration is good (defined later through some pebble game), and 1 (denoting ‘right’)
otherwise.

By design, the left indistinguishability game (where b = 0) will correspond to a good configu-
ration, whereas the right game will not. Therefore the above adversary is a valid distinguisher
for the indistinguishability game (Lemma 45). Moreover, A concentrates all its distinguishing
advantage at the threshold of good and bad configurations (hence the name). Therefore,
loosely speaking, for any reduction to exploit A’s distinguishing advantage, it must somehow
embed its own (IND-CPA) challenge at the threshold. All the technicality in proving our main
theorem goes into formalising this intuition, which we summarise next in Section 8.2.2.

8.2.2 High-Level Idea
To prove a lower bound on Λ (Theorem 32), we construct a punctured adversary A[c∗] (see
Section 8.3.5) which behaves similar to A except when it comes to the hardcoded challenge
ciphertext c∗ ← Enck∗(m) (for some arbitrary message m). We aim to puncture A[c∗] such
that it never decrypts c∗ but instead just proceeds by assuming that c∗ decrypts to the all-0
string, and hence cannot be of any help to a reduction that aims to break c∗. However, we
have to be careful here since the reduction embedding c∗ in ˜︁Γ will also embed other ciphertexts
under key k∗ (which it can derive through querying its IND-CPA encryption oracle Enck∗), and
hence A[c∗] would learn the key k∗ when brute-force decrypting these ciphertexts. We solve
this issue by endowing A[c∗] with a decryption oracle Deck∗ that allows to find and decrypt
those ciphertexts under k∗. Since our ideal encryption scheme actually satisfies the stronger
notion of IND-CCA security, this decryption oracle is of no help to the reduction.

The core of our lower bound is now to define the circuit Γ and the notion of good pebble
configurations such that the following holds:

• Our threshold adversary A indeed breaks the garbling scheme.

• It is hard to distinguish A from A[c∗].

For the latter property, note that any efficient reduction R can only distinguish A from A[c∗]
if their outputs differ, which only happens if they extract different pebbling configurations
P ̸= P∗ such that one of them is good and the other bad. Thus, to bound the success
probability of R, it suffices to establish the following two properties:

1. The pebbling configurations P and P∗ extracted by A and A[c∗] (in the same execution
of the game, using the same randomness) differ by at most one valid pebbling move in
some natural pebble game5, where a pebble can be placed on or removed from a gate if
at least one of its parent gates carries a pebble.

2. It is hard for any reduction to produce (˜︁Γ, ˜︁x) such that A extracts a threshold configura-
tion, i.e. a pebble configuration that is good but can be switched to a bad configuration
within one valid pebbling move.

5In Section 8.3.3 we actually consider a much more finegrained pebble game, where different types of
pebbles represent different garbling modes of a gate. For this exposition, it suffices to focus on this simplified
game.

210

8.2. Technical Overview

Intuitively, pebbles on gates in the circuit represent malformed gates, i.e., gates whose garbling
table is different from the honest garbling table. When considering circuits consisting only of
non-constant gates, the pebbling rule in Property 1 captures the fact that a reduction cannot
produce ciphertexts encrypting the key k∗ under which its challenge ciphertext c∗ ← Enck∗(m)
(for some arbitrary m) was encrypted. Hence, in order to embed c∗ at a gate, the reduction
has to first output a malformed garbling (not encoding k∗) for its predecessor gate. Now, to
see why Property 1 holds – i.e., the pebbling configurations P and P∗ extracted by A and
A[c∗] follow the same dynamics – note that the behaviour of A and A[c∗] can only differ if
k∗ is not encrypted in any ciphertext.

The tricky part of our proof is to establish Property 2 which, on a high level, works as follows.
For a reduction R to simulate a threshold configuration we first force it to maul – and hence
pebble – several gates. Then, for this mauling to go ‘undetected’ we force R to correctly guess
the value of these gates when Γ is evaluated at x0. This, intuitively, will be the source of its
loss. To this end, we design our circuit Γ to consist of two blocks6, Γ⊕ and Γ∧. Looking ahead,
whether there is a pebble on a gate in Γ⊕ will be independent of the input and correspond to
R’s attempt at guessing x0 (this relies on the properties of XOR gates). The pebbles on Γ∧, in
contrast, will be extractable with respect to the input garbling ˜︁xb and indicate whether or not
the guesses on x0 in the Γ⊕ block were correct (this relies on the properties of AND gates).
Moreover, by definition:

• In case of a proper garbling of (Γ, x0) (i.e., the left game), the adversary A will not
extract any pebble on Γ⊕ or Γ∧.

• In case of a proper garbling of (Γ, x1) (i.e., the right game), on the other hand, the
adversary A will not extract any pebbles on Γ⊕, but will extract some pebbles on Γ∧

(since x1 ̸= x0).

Accordingly, we define the good predicate such that the empty configuration is good, whereas
any configuration containing a pebble on Γ∧ is bad, and therefore the above ensures that A
breaks the security of the garbling scheme. Furthermore, the threshold configurations contain
many pebbles on Γ⊕, but no pebbles on Γ∧. In other words, threshold configurations require R
to make many guesses about x0 and all of them need to be correct, which is unlikely to occur.
This establishes Property 2.

8.2.3 The Circuit Γ and the Good Predicate
The design of topology of the circuit Γ⊕ is such that it has high pebbling complexity with
respect to our pebble game: i.e., every valid pebbling sequence starting from the initial empty
configuration and reaching a final configuration that has a pebble on an output gate of Γ⊕,
must contain a “heavy” configuration with many, say d, pebbles. To guarantee that threshold
configurations contain many pebbles, we define the good configurations as those that are
reachable with d − 1 pebbles following valid pebbling moves. Since Γ∧ will (topologically)
succeed Γ⊕ in Γ, any configuration with a pebble on Γ∧ is in particular bad (since an output
gate of Γ⊕ must have been pebbled first). At the same time, to allow for our “control
mechanism”, we construct Γ so that each gate g in Γ⊕ has a ‘companion’ successor gate in
Γ∧ that helps check correctness of g’s output. Thus for each AND gate in Γ∧, one of the

6For this high-level overview, we ignore the third block Γ0 consisting of a binary tree of AND gates, whose
sole purpose is to guarantee constant 0 (bit) output.

211

8. Limits on the Adaptive Security of Yao’s Garbling

inputs comes from the output of Γ⊕ and the other from the output of its companion gate
(see Figure 8.1). This fixes the topology of Γ and we choose the type of gate as to enforce
Property 2, as explained below.

• The Γ⊕ circuit is composed only of XOR gates, since these gates allow us to maintain
high entropy (of the input), and hence guarantee that it is hard to guess the outputs of
the pebbled gates in Γ⊕ (see Section 8.3.2). Furthermore, XOR gates are symmetric with
respect to their input in the sense that from the garbling table alone even an inefficient
adversary cannot distinguish which keys are associated with which bits. This property
allows A to extract the pebbling configuration of Γ⊕ just from ˜︁Γ, independently of the
input (see next section).

• The Γ∧ circuit, on the other hand, is composed of AND gates. Since AND gates are
asymmetric (since only (1, 1) maps to 1, while all three other input pairs map to 0),
we can use them to detect errors in the Γ⊕ circuit: i.e., looking at a garbling table of
an AND gate our adversary A can exploit this asymmetry to easily associate keys to
bits. Thus, whenever during evaluation of ˜︁Γ on input ˜︁x the adversary A receives wrong
input keys for a (properly garbled) AND gate, A considers this gate as malformed and
associates it with a pebble. (The case of AND gates which are not properly garbled is
rather technical and we refer the reader to Section 8.3.4.)

8.2.4 Extracting the Pebble Configuration
Since it is central to the working of our adversary A (and is a somewhat subtle matter), here
we provide a high-level description of the extraction mechanism.7 First of all, recall that
pebbles on Γ⊕ and Γ∧ have different meanings: a pebbled XOR gate indicates that its garbling
table is malformed whereas a pebbled AND gate indicates that R’s guess for the companion
XOR gate is wrong. This, coupled with the fact that the gates have differently-structured gate
tables (i.e., symmetric vs. asymmetric) means that the extraction mechanism for the two gates
(and hence the blocks) is also different. In particular, as we will see, the pebble status of an
XOR gate is something that can inferred solely from the garbled circuit ˜︁Γ (and thus can be
done in the offline phase) whereas the pebble status of an AND gate is something that also
depends on the garbled input ˜︁x and is necessarily done in the online phase. Let’s look at how
the respective extraction is carried out. First, given ˜︁Γ, A extracts a key pair for each wire
in Γ from the encryptions associated with its successor gates, or the output mapping; if this
cannot be done uniquely, A aborts and outputs 1 (we refer to Section 8.3.4 for more details).
In the following, for a gate g, let u and v denote the input wires, w the output wire, and ku,
k′

u, kv, k′
v, kw, k′

w the corresponding keys associated with these wires.

• If g is an XOR gate, then the honest garbling table of g can be derived from Equation (8.1)
as

Encku(Enckv(kw)) Enck′
u
(Enckv(k′

w))
Encku(Enck′

v
(k′

w)) Enck′
u
(Enck′

v
(kw)).

7In Section 8.3.4 we consider a more general extraction mechanism that can be extended to arbitrary gates
and assigns different types of pebbles, representing the “distance” of a garbling table ˜︁g′ for a gate g from an
honest garbling table ˜︁g. For ease of exposition, here we consider a simplified pebble game and only discuss
how to extract pebbles for XOR and AND gates, where a pebble in this simplified game would correspond to
different sets of pebbles for XOR and AND gates in the more fine-grained pebble game.

212

8.3. Lower Bound for Yao’s Garbling Scheme

Whenever a garbling table ˜︁g differs from this representation (i.e., not symmetric), A
assigns g a pebble and this assignment is independent of the bits running over the wires
u, v, w and the keys revealed during evaluation. Thus, A can extract pebbles on Γ⊕

already before it chose the inputs x0, x1, in particular independently of ˜︁x.

• For an AND gate g, on the other hand, the garbling table of g consists of four ciphertexts
derived from Equation (8.1) as

Encku(Enckv(kw)) Enck′
u
(Enckv(kw))

Encku(Enck′
v
(kw)) Enck′

u
(Enck′

v
(k′

w)).

Since the roles of the keys are asymmetric, the pebble extraction will depend on the bits
bu, bv, bw running over the wires and the keys kr

u, kr
v, kr

w revealed during evaluation. A
first attempt would be to simply map keys to bits as ku,kv,kw → 0 and k′

u,k′
v,k′

w → 1,
and assign g a pebble if kr

η ̸→ bη for some η ∈ {u, v, w}. Unfortunately, this simple idea
does not work since a reduction R might embed its challenge ciphertext c∗ ← Enck∗(m)
in the garbling of an AND gate (recall from Section 8.2.3 that the gates in Γ∧ receive
one input from an output gate of Γ⊕ and the other input from their companion gate
within the circuit Γ⊕). Now, if R embeds the challenge key k∗ at an output wire of Γ⊕,
it must pebble an output gate in Γ⊕, hence end up with a bad pebbling configuration
independently of c∗. However, this is not true if R embeds k∗ at the other input wire
of the AND gate. Thus, A must not extract a pebble for a garbling table that can
be derived from an honest garbling table by embedding a challenge key at this wire.
We show in Section 8.3.4 that such malformed garblings of AND gates either involve
guessing the input bits or they can still be used for our “control mechanism”.

8.2.5 Comparison with Chapter 7
While here as well as in Chapter 7 we model choices made by a reduction by putting pebbles on
a graph structure, the analogy basically ends there. In Chapter 7 an interactive game between
a “builder” and a “pebbler” is considered in which the builder chooses edges and the pebbler
decides adaptively whether to pebble them. The goal of the pebbler is to get into a “good”
configuration, and the difficulty for the reduction (playing the role of the pebbler) there lies in
the fact that the graph is only revealed edge-by-edge. In contrast, in the setting of garbling
the graph structure is initially known and the game has just two rounds. The difficulty for
the reduction here comes from having to guess the bits running over a subset of wires during
evaluation of the circuit. None of the main ideas from Chapter 7 seem applicable in this setting
and vice versa. For example, many of the results in Chapter 7 are restricted to the limited class
of so-called oblivious reductions, while our setting doesn’t share the difficulties encountered in
Chapter 7; in particular, our result holds for arbitrary (even rewinding) black-box reductions.

8.3 Lower Bound for Yao’s Garbling Scheme
For the notation and definitions, we refer to Section 6.2 in Chapter 6.

Let Π denote the variant of Yao’s garbling scheme as analyzed in [JW16]. In this section,
we aim to prove a lower bound on the loss in security involved when proving adaptive
indistinguishability of Π based on the IND-CPA security of the underlying symmetric encryption
scheme (Gen, Enc, Dec). As explained in the introduction, we follow the approach in Chapter 7

213

8. Limits on the Adaptive Security of Yao’s Garbling

and define two oracles F and A implementing an ideal SKE scheme and an adversary,
respectively, such that A is not helpful in breaking IND-CPA security of F . For the precise
description of F we refer to Section 8.3.5. The (inefficient) threshold adversary A we define
as follows:

1. On input the security parameter in unary, 1λ, the adversary A chooses a circuit Γ with
input size n = Θ(λ), constant output, and depth D(d) ∈ O(n) for a parameter d. The
circuit Γ consists of three parts, i.e., Γ = Γ0 ◦ Γ∧ ◦ Γ⊕. A sends Γ to the challenger.

2. After receiving ˜︁Γ, the adversary A chooses x0, x1 ← {0, 1}n uniformly at random. Note
that Γ(x0) = Γ(x1) trivially holds since Γ has constant output. A sends x0, x1 to the
challenger.

3. On receipt of ˜︁xb = (k1, . . . ,kn) along with an output mapping, A extracts a pebbling
configuration on the graph Γ \Γ0 corresponding to Γ∧ ◦ Γ⊕ as described in Section 8.3.4.
A outputs b′ = 0 if the pebbling configuration is good as per Definition 74, and b′ = 1
otherwise.

We will first provide a precise definition of the candidate circuit Γ in Section 8.3.1 and then
show the following two properties of this circuit: First, in Section 8.3.2 we will prove that if
a large subset of gates in Γ⊕ is malformed, then on uniformly random input some of these
gates will not evaluate correctly. Second, in Section 8.3.3, we introduce a new pebbling game
on DAGs and prove a pebbling lower bound on the graph Γ underlying Γ. The definition of
good pebbling configurations in Definition 74 then gives a cut in the configuration graph
of Γ \ Γ0 w.r.t. this new pebbling game. Having proven these properties of the circuit, in
Section 8.3.4 we will then describe a mapping from garbled circuit/input pair (˜︁Γ, ˜︁x) to a
pebbling configuration on Γ \ Γ0. This mapping together with the cut in the configuration
graph will guarantee that the threshold adversary A indeed breaks indistinguishability of the
garbling scheme ΠF . Finally, in Section 8.3.5, it then remains to combine these results. First,
we will essentially prove that any black-box reduction proving adaptive indistinguishability
of the garbling scheme based on the IND-CPA security of the underlying encryption scheme
must follow the pebbling rules, i.e., it must define two hybrid games such that the extracted
pebbling configurations differ by one valid pebbling move; this step will crucially rely on our
choice of gates. The pebbling lower bound from Section 8.3.3 then implies that any threshold
configuration contains many pebbles on Γ⊕. We will then use the result from Section 8.3.2 as
well as the technical fix from Section 8.3.4 concerning equivocation of keys to show that the
simulation of any garbling (˜︁Γ, ˜︁x) that is mapped to a threshold configuration requires to guess
many input bits. This will allow us to state our final theorem.

8.3.1 The Circuit
We construct a family of circuits {Γd}d∈N and show that the loss in security for Γd is exponential
in
√

d, a parameter linear in the depth D. The circuit is designed keeping our high-level idea
in mind, we denote its underlying graph by Γd. The circuit Γd := Γ0

d ◦ Γ∧
d ◦ Γ⊕

d consists of the
three blocks Γ⊕

d , Γ∧
d and Γ0

d, with underlying graphs denoted by Γ⊕
d , Γ∧

d and Γ0
d, respectively.

The graph Γ⊕
d (see Figure 8.2.(b)) is a so-called tower graph [DKW11a], and is obtained from

so-called pyramid graphs of depth d (see Figure 8.2.(a)).

• Γ⊕
d is obtained from Γ⊕

d by substituting each vertex with an XOR gate as shown in
Figure 8.2. On a high level, the pyramid structure ensures high pebbling complexity

214

8.3. Lower Bound for Yao’s Garbling Scheme

Γ⊕

Γ∧

Γ0

1

d

d + 1

d + 2

2d + 1

Figure 8.1: A schematic diagram for the candidate circuit of width 5 and depth 4. The input
and output wires are coloured green. The layer number is indicated on the left. The first two
blocks are the XOR and AND layers respectively; the final pyramid denotes the binary tree.

whereas the XOR gates preserve (most) entropy in the input, which makes it hard for a
reduction to obtain correct evaluation of pebbled gates.

• Γ0
d consists of a binary tree of AND gates and its sole role is to set the output of the

circuit Γ to constant 0 (Lemma 40).8

• Γ∧
d sits in between the Γ⊕

d and Γ0
d blocks (see Figure 8.1), and consists of one AND gate

serving as “control” gate for each XOR gate in Γ⊕
d and each input gate. Each AND gate

g in Γ∧
d receives its inputs from (i) the output of its companion XOR gate in Γ⊕

d (resp.
input gate) and (ii) the XOR gate in the last layer of Γ⊕

d in (vertical) alignment with g
(see Figure 8.1, formal definition below). As mentioned previously, intuitively, this block
will act as an “error detection” mechanism for the Γ⊕

d block in the sense that it helps
detect if (malformed) garblings of XOR gates evaluate wrongly.

More formally, for input size n = 2κ − 1 with κ ∈ N, and d ≤ n, we describe the candidate
circuit Γ = Γd based on its underlying graph structure G = Gd as follows, see Figure 8.1: Γ
contains D(d) := 2d + ⌈log((d + 1)n)⌉+ 2 layers, each containing n nodes. The input gates
(layer 0) have outdegree 2, the nodes on layers [1, 2d + 1] all have in- and outdegree 2, and
the nodes in the last ⌈log(d · n)⌉ layers have indegree 2 and outdegree 1. Since we will need
to differentiate between left and right parents a node, we will define the edge sets of these
graphs as the union of “right” and “left” edges. The first d + 1 layers [0, d] build a graph Γ⊕

8In principle we could have used constant-0 gates in place of the AND gates, or simply a single constant-0
gate of high fan-in (which would considerably simplify the description). But we prefer to stick to the standard
Boolean basis.

215

8. Limits on the Adaptive Security of Yao’s Garbling

(a) (b)

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

(c)

Figure 8.2: The graphs and the circuit for parameter d = 6: (a) A pyramid graph of depth
d, (b) Extending the pyramid graph to get a tower graph Γ⊕

d of depth d and (c) Circuit Γ⊕
d

obtained replacing the vertices in Γ⊕
d with XOR gates.

of high pebbling complexity (see Section 8.3.3), defined as

Γ⊕ :=([0, (d + 1) · n− 1], E⊕), where E⊕ := E⊕
L ∪ E⊕

R with
E⊕

L :={((i− 1) · n + k, i · n + k) | i ∈ [1, d] , k ∈ [0, n]},
E⊕

R :={((i− 1) · n + l, i · n + k) | i ∈ [1, d] , k, l ∈ [0, n] , l = k + 1 mod n},

where we number the input gates by {0, . . . , n − 1}. Graph Γ⊕ is followed by d + 1 layers
[d + 1, 2d + 1] building Γ∧, defined as

Γ∧ :=([(d + 1) · n, (2d + 2) · n− 1], E∧), where E∧ := E∧
L ∪ E∧

in,R ∪ E∧
R with

E∧
L :={(d · n + k, (d + i) · n + k) | i ∈ [1, d + 1] , k ∈ [0, n]},

E∧
in,R :={(d · n + l, (d + 1) · n + k) | k, l ∈ [0, n] , l = k + 1 mod n},
E∧

R :={((i− 2) · n + k, (d + i) · n + k) | i ∈ [2, d + 1], k ∈ [0, n]}.

Finally, there is a binary tree structure Γ0 on top of the (d + 1) · n output gates of Γ∧, to
guarantee constant output 0 of the circuit.

The candidate circuit Γ is now defined based on the graph structure Γ as follows:

- All gates on layers [1, d] implement XOR gates.
- All other gates consist of AND gates.

In the following lemma we prove that Γ is indeed constant.

Lemma 40. Γ(x) = 0 for all x ∈ {0, 1}n, i.e., Γ is constant.

Proof. To see that this circuit has constant output 0, first note that Γ0 outputs 1 only on the
all-1 string 1n. In Section 8.3.2 we will provide an explicit representation of the output of Γ⊕

that in particular implies that the range of Γ⊕ consists of strings (y1, . . . , yn) ∈ {0, 1}n that
contain an even number of 1s (see Corollary 19). As we chose n = 2κ − 1 odd, this implies
that any output of Γ⊕ must contain at least one 0. Hence, the input to Γ∧ contains at least
one 0, and since Γ∧ only contains AND gates, the output of Γ∧ must contain a 0. This proves
that Γ is constant.

216

8.3. Lower Bound for Yao’s Garbling Scheme

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

Figure 8.3: Circuit Γ⊕ with n = d = 7.

8.3.2 Vulnerability of the Circuit Γ⊕

In Section 8.3.5 we will prove that any black-box reduction R that aims to use A to gain
advantage in breaking the IND-CPA security of encryption scheme F has to simulate (˜︁Γ, ˜︁x)
such that the extracted pebbling configuration on Γ⊕ contains d− 1 or d grey or black pebbles.
Each of these pebbles implies that at least one of the ciphertexts associated to that gate must
be malformed and modify the output of some input key pair. In the case that all AND gates
are properly garbled, all keys can be mapped to bits and hence such a switch of the output
can be detected (cf. Lemma 46). Thus, we consider the following game.

• On input a circuit C and a parameter d, R chooses a circuit C′ of the same topology as
C such that all except exactly d (non-input) gates coincide with the corresponding gates
in C. R sends C′ to A.

• On receipt of C′, A samples x← {0, 1}n uniformly at random.

• R wins if for all gates in C′ the output during evaluation on input x coincides with the
corresponding output bit when evaluating C.

We now prove that for C = Γ⊕, no algorithm R wins the above game with non-negligible (in
d) probability.

Lemma 41. Let d ∈ [1, n]. For C = Γ⊕ and any R, the probability that R wins the above
game is at most (3

4)
√

d/4.

First, note that all except d gates in C′ are XOR gates, and in particular a linear function
over Z2. For each of the remaining d malformed gates, on the other hand, at least one input
pair is mapped to a different output bit than it would be in an XOR operation. We call the
corresponding gates in the original circuit Γ⊕ pebbled. To prove Lemma 41, we will show
that there exists a subset of at least

√
d/4 of those d pebbled gates such that their input is

determined by independent linear functions. This implies that instead of choosing x← {0, 1}∗,
A can equivalently choose the

√
d/2 input bits uniformly at random, and then choose x

uniformly under the constraint that the values running over these wires during evaluation of

217

8. Limits on the Adaptive Security of Yao’s Garbling

Γ⊕ must be consistent with the predetermined bits. Clearly, x chosen this way is still uniformly
random in {0, 1}n. By definition of the game, R only wins the game if for all gates in C′

the output during evaluation on input x coincides with the corresponding output bit when
evaluating C, and this must in particular also hold for the pebbled gates. Since each of the
malformed gates in C′ flips the output of at least one of the four possible input pairs, and the
input bits of

√
d/4 of the pebbled gates were chosen independently and uniformly at random,

the probability that R wins is at most (3
4)

√
d/4.

Towards proving Lemma 41, let M denote the linear mapping corresponding to one layer of
gates in the circuit Γ⊕, i.e., written in matrix notation,

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 . . . 0 0 0
0 1 1 . . . 0 0 0
...
0 0 0 . . . 0 1 1
1 0 0 . . . 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

The output of the µth layer of Γ⊕ on input x ∈ {0, 1}n is given by Mµ · x, hence we denote
the degree-1 polynomial in Z2[x1, . . . , xn] which determines its ν-th bit by Mµ

ν (for µ ∈ [0, n]
and ν ∈ [1, n]). Denoting by ν + 1 the representation of the residue class ν + 1 mod n in
[1, n], we have e.g.,

M0
ν = xν , M1

ν = xν ⊕ xν+1, M2
ν = xν ⊕ xν+2, M3

ν = xν ⊕ xν+1 ⊕ xν+2 ⊕ xν+3

and in general it holds
Mµ

ν = Mµ−1
ν ⊕Mµ−1

ν+1 (8.2)

for all µ, ν ∈ [1, n]. In the following we will associate gates with the corresponding polynomials
that determine their outputs.

If the input length n is odd – for convenience we assume n to be one less than a power of 2 –
then Γ⊕ maintains high entropy; to prove this, we use the following explicit representation of
the polynomials Mµ

ν .

Lemma 42 (explicit formula for the polynomials Mµ
ν). Let n = 2κ − 1, κ ∈ N, M defined

above, µ ∈ N, and ν ∈ [1, n]. For µ ̸= n and βk ∈ {0, 1} its binary decomposition, i.e.
µ = ∑︁

k∈[0,κ−1] βk2k, it holds:

Mµ
ν =

⨁︂
i∈[1,n]

αixi, where αi =

⎧⎨⎩1 if i ∈ ν +∑︁
k∈[0,κ−1]{0, βk} · 2k mod n,

0 else.
(8.3)

Note, Mµ
ν only depends on µ, not on µ. For µ = n = 2κ − 1, it holds:

Mµ
ν =

⨁︂
i∈[1,n]

αixi, where αi =

⎧⎨⎩1 if i ̸= ν,

0 else.
(8.4)

Proof. We prove the claim via induction on µ ∈ N. For µ = 1, we have Mµ
ν = xν ⊕ xν+1.

On the other hand, for µ = 1 we have β0 = 1 and βk = 0 for all k ∈ [1, κ], which implies
αν = 1, αν+1 and αi = 0 for all i ∈ [1, n] \ {ν, ν + 1}. Hence, the claim is true for µ = 1.

218

8.3. Lower Bound for Yao’s Garbling Scheme

For 2 ≤ µ ≤ n − 1, let µ − 1 = ∑︁
k∈[0,κ−1] β′

k2k, hence for µ = ∑︁
k∈[0,κ−1] βk2k =∑︁

k∈[0,κ−1] β′
k2k + 1 we obtain

βk =

⎧⎨⎩1− β′
k for k ≤ k′ := min{k ∈ [0, κ− 1] | β′

k = 0},
β′

k for k > k′.

By induction hypothesis, we have

Mµ−1
ν =

⨁︂
i∈[1,n]

α
(0)
i xi, where α

(0)
i =

⎧⎨⎩1 if i ∈ I(0) := {ν +∑︁
k∈[0,κ−1] [0, β′

k] · 2k mod n},
0 else.

Mµ−1
ν+1 =

⨁︂
i∈[1,n]

α
(1)
i xi, where α

(1)
i =

⎧⎨⎩1 if i ∈ I(1) := {ν + 1 +∑︁
k∈[0,κ−1] [0, β′

k] · 2k mod n},
0 else.

Let I(0)∆I(1) := (I(0) \ I(1)) ∪ (I(1) \ I(0)) denote the symmetric difference of I(0) and I(1).
Then, by Equation (8.2), we get

Mµ
ν =

⨁︂
i∈[1,n]

αixi with αi = α
(0)
i ⊕ α

(1)
i =

⎧⎨⎩1 if i ∈ I(0)DI(1),

0 else.

Since β′
k′ = 0 and β′

k = 1 for k < k′, we have for 0 ≤ k < k′:

ν + 1 +
k−1∑︂
l=0

2l +
κ−1∑︂

l=k+1
[0, β′

l] 2l mod n = ν + 2k +
κ−1∑︂

l=k+1
[0, β′

l] 2l mod n ∈ I(1) ∩ I(0),

and for k = k′:

ν + 1 +
k′−1∑︂
l=0

2l +
κ−1∑︂

l=k′+1
[0, β′

l] 2l mod n = ν + 2k′ +
κ−1∑︂

l=k′+1
[0, β′

l] 2l mod n ∈ I(1) \ I(0),

and ν +
κ−1∑︂

l=k′+1
[0, β′

l] 2l mod n ∈ I(0) \ I(1).

Combining the above cases and using that βk′ = 1 and βk = 0 for k < k′, proves Equation (8.3)
for µ ∈ [1, n− 1].
To prove Equation (8.4), note that for µ− 1 = n− 1 = 2κ− 2 = ∑︁

k∈[1,κ−1] 2k, Equation (8.3)
gives

Mµ−1
ν =

⨁︂
i∈[1,n]

α
(0)
i xi, where α

(0)
i =

⎧⎪⎪⎨⎪⎪⎩
1 if i ∈ I(0) := {ν + 2 · [0, (n− 1)/2] mod n}

= {ν, ν + 2, . . . , ν − 1},
0 else.

Mµ−1
ν+1 =

⨁︂
i∈[1,n]

α
(1)
i xi, where α

(1)
i =

⎧⎪⎪⎨⎪⎪⎩
1 if i ∈ I(1) := {ν + 1 + 2 · [0, (n− 1)/2] mod n}

= {ν + 1, ν + 3, . . . , ν},
0 else.

Using I(0)∆I(1) = {ν + [1, n− 1] mod n} = [1, n] \ {ν} now proves Equation (8.4).
Finally, for µ = 2κ = n + 1, Equation (8.4) implies

M2κ

ν = Mn
ν ⊕Mn

ν+1 =
⎛⎝ ⨁︂

i∈[1,n]\{ν}
xi

⎞⎠⊕
⎛⎝ ⨁︂

i∈[1,n]\{ν+1}

xi

⎞⎠ = xν ⊕ xν+1 = M1
ν ,

where we used the fact that n = 2κ − 1 by definition. This proves the Lemma.

219

8. Limits on the Adaptive Security of Yao’s Garbling

Lemma 42 directly implies several useful properties, which we summarize in the following
corollary.

Corollary 19 (Properties of M and Γ⊕). For M defined as above, n = 2κ− 1, κ ∈ N, it holds

• M2κ = M , which implies rank(Mk) = n− 1 for all k ≥ 1, i.e., Γ⊕ is 2-to-1 for any d.

• Any n− 1 output bits of Mk (k ≥ 1) are determined by linearly independent degree-1
polynomials.

• Image(Γ⊕) = {x = (x1, . . . , xn) ∈ {0, 1}n | ⨁︁i∈[1,n] xi = 0}, i.e., all vectors in the
image of Γ⊕ contain an even number of 1s.

The first property immediately follows from Lemma 42 since for µ = 2κ we have µ = 1. The
second property then follows from rank(Mk) = n− 1. For the last property, note that the set
ν +∑︁

k∈[0,κ−1]{0, βk} · 2k mod n is even whenever a single bit βk is nonzero (which is true
for all µ > 0), and also the set {i ∈ [1, n] | i ̸= ν} is even since n is odd.

The following Lemma now immediately implies Lemma 41.

Lemma 43. Any subset S ⊂ {Mµ
ν }µ∈[0,n],ν∈[1,n] of polynomials in Z2[x1, . . . , xn] with s := |S|

contains a subset S ′ of size √s/4 such that |parents(S ′)| =
√

s/2 and parents(S ′) is linearly
independent, where parents(Mµ

ν) := {Mµ−1
ν , Mµ−1

ν+1 }.

Proof. We split the (n + 1) × n gates {Mµ
ν }µ∈[0,n],ν∈[1,n] into four equal-sized quarters

Mi, i ∈ [1, 4], each containing a subset of (n + 1)/2× (n + 1)/2 gates, see Figure 8.4. Since
S has size s, at least one of these quarters must contain ≥ s/4 gates from S. Furthermore,
considering the (n + 1)/2 vertical paths within such a quarter; then either 1) there is one
vertical path which contains ≥

√
s/2 gates from S, or 2) there exist ≥

√
s/2 + 1 vertical

paths which contain at least one pebble each.

For case 1), note that for all ν ∈ [1, n] the set of gates within any vertical path within Mi,
i.e., {Mµ

ν }µ∈[0,n] ∩Mi = {Mµi+j
ν }j∈[0,(n−1)/2] with µ1 = µ2 = 0, µ3 = µ4 = (n + 1)/2, is

linearly independent. To see this, first note that by Corollary 19 {Mµi
ν , . . . , Mµi

ν+(n−1)/2} is
linearly independent for any i ∈ [1, 4] and generates the vertical path {Mµi+j

ν }j∈[0,(n−1)/2] in
Mi. Now, consider the explicit representation of Mµi+j

ν with j = ∑︁
k∈[0,κ−2] βk2k in the basis

{Mµi
ν , . . . , Mµi

ν+(n−1)/2} (which follows from Equation (8.3)):

Mµi+j
ν =

⨁︂
l∈[0,(n−1)/2]

αlM
µi

ν+l
, where αl =

⎧⎨⎩1 if l ∈ ν +∑︁
k∈[0,κ−2] [0, βk] · 2k mod n,

0 else.

In particular, it follows that Mµi+j
ν = ⨁︁

l∈[0,j] αlM
µi

ν+l
with αj = 1 and αl = 0 for all

l ∈ [j + 1, (n− 1)/2]. This implies that for bj ∈ {0, 1}∗

⨁︂
j∈[0,(n−1)/2]

bj ·Mµi+j
ν = 0 ⇒ bj = 0 ∀j ∈ [0, (n− 1)/2] .

Thus, any subset of gates {Mµi+j
ν }j∈[0,(n−1)/2] along the ν-th vertical path in Mi is linearly

independent over Z2. This implies that the set of ≥
√

s/2 gates in S which lie on one vertical
path is linearly independant. It immediately follows that the left parents of this set are linearly
independent as well. By basic linear algebra, replacing an element from a set of linearly

220

8.3. Lower Bound for Yao’s Garbling Scheme

x1 x2 x3 x4 x5 x6 x7

x1 ⊕ x2 x2 ⊕ x3 x3 ⊕ x4 x4 ⊕ x5 x5 ⊕ x6 x6 ⊕ x7 x7 ⊕ x1

x1 ⊕ x3 x2 ⊕ x4 x3 ⊕ x5 x4 ⊕ x6 x5 ⊕ x7 x6 ⊕ x1 x7 ⊕ x2

x1 ⊕ x2
⊕x3 ⊕ x4

x2 ⊕ x3
⊕x4 ⊕ x5

x3 ⊕ x4
⊕x5 ⊕ x6

x4 ⊕ x5
⊕x6 ⊕ x7

x5 ⊕ x6
⊕x7 ⊕ x1

x6 ⊕ x7
⊕x1 ⊕ x2

x7 ⊕ x1
⊕x2 ⊕ x3

x1 ⊕ x5 x2 ⊕ x6 x3 ⊕ x7 x4 ⊕ x1 x5 ⊕ x2 x6 ⊕ x3 x7 ⊕ x4

· · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . .

· · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . .

· · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . .

x =

Figure 8.4: The circuit Γ⊕ split into four equal-sized quarters.

independent equations by a linear combination of this element with other elements of the set
preserves linear independence. Using Equation (8.2) and removing at most half of the left
parents, we obtain a set S ′ of ≥

√
s/4 gates whose parents are distinct and form a linearly

independent set.

For case 2), by assumption there exists a set S ′ consisting of
√

s/4 gates in S such that
their parents lie on distinct vertical paths in Mi.9 Furthermore, since ≥

√
s/2 + 1 vertical

paths contain gates from S, we can choose S ′ such that parents(S ′) does not contain the
bottom right gate M

µi+(n−1)/2
νi+(n−1)/2 with ν1 = ν3 = 1, ν2 = ν4 = (n − 1)/2 (which is not

necessary but more convenient for the analysis below). We will now argue that the set of
parents of S ′ is linearly independent. Similar to above, we can uniquely represent the elements
of parents(S ′) := {Mµi+µj

νi+νj
}j∈[1,

√
s/2] with µj, νj ∈ [0, (n− 1)/2], and νj < νj+1 for all

j ∈ [1,
√

s/2− 1] as a linear combination of the linearly independent set {Mµi
νi

, . . . , Mµi

νi+n−1}:

M
µi+µj

νi+νj
=

⨁︂
l∈[0,µj]

αlM
µi

νi+νj+l
with α0 = 1 and µj + νj ≤ n− 1.

This implies that for bj ∈ {0, 1}∗

⨁︂
j∈[1,

√
s/2]

bj ·M
µi+µj

νi+νj
= 0 ⇒ bj = 0 ∀j ∈ [1,

√
s/2].

Hence, S ′ is indeed linearly independent over Z2. This proves the claim.
9Technically, for i ∈ {3, 4} we have to shift the window Mi by setting µi ← µi − 1.

221

8. Limits on the Adaptive Security of Yao’s Garbling

Lemma 41 now follows, since for any set of d pebbled gates, by Lemma 43 there exists a subset
S ′ of

√
d/4 pebbled gates such that their parents are distinct and form a linearly independent

set.

8.3.3 Pebbling Game and Threshold
Recall that in Yao’s garbling scheme, each gate g is associated with a (honest) garbling table˜︁g, which consists of four double encryptions that encode g’s gate table. However, a reduction
is free to alter the contents of the honest garbling table in any way. In fact, the upper bounds
in [LP09, JW16] crucially rely on the ability to do this in an indistinguishable manner: in the
real game the garbling tables are all honest, whereas in the simulated game the garbling tables
all encode the constant-0 gate, and the hybrids involve replacing the honest garbling tables
one by one with that of the constant-0 gate.10 We introduce a pebble game to precisely model
such different simulations of the garbled circuit ˜︁Γ (by the reduction). Loosely speaking, the
extracted pebble configuration is an abstract representation of the simulation (˜︁Γ, ˜︁xb), and the
pebbling rules model the reduction’s ability to maul garbling tables in ˜︁Γ without being noticed
(indistinguishability).

The pebbles. Intuitively, the pebble on a gate g encodes how “different” the garbling table˜︁g′ which A receives is from an honest garbling ˜︁g. To this end, we employ three different
pebbles: white, grey and black.

• A white pebble on g indicates that ˜︁g′ and ˜︁g are at “distance” 0 (defined below), i.e., ˜︁g
is (distributed identically to) an honest garbling table of g.

• A grey or black pebble on g indicates that ˜︁g′ is malformed. What differentiates grey
from black is the degree of malformation: loosely speaking, a grey pebble indicates that˜︁g′ is at a distance 1 from ˜︁g, whereas a black pebble indicates that ˜︁g′ is at a distance 2
(or more).

To understand what we mean by distance, we need to take a closer look at the structure of
a garbling table. An honest garbling table ˜︁g consists of the four double encryptions shown
in Table 8.1.(a). We assign a grey pebble to a gate g if the garbling table of g in ˜︁Γ can
be proven indistinguishable from ˜︁g by embedding a single IND-CPA challenge key (among
k0

u, k1
u, k0

v and k1
v). For example, let’s consider an AND gate and its honest garbling table

(Table 8.1.(b)): a malformed table that is at distance one (via the key k1
u or k1

v) from it is,
e.g., a garbling table that encodes the constant-0 gate (Table 8.1.(d)). A garbling of an XOR
gate, in contrast, is at distance 2 from a garbling of a constant gate: If ka

u and kb
v are the keys

revealed during evaluation, then the garbling of an XOR gate can be proven indistinguishable
from the constant-(a⊕ b) gate only by first embedding a challenge key at k1−a

u and then a
second challenge key at k1−b

v , or vice versa; i.e. the reduction needs to embed challenges at
each input wire.

Pebbling rules. To complete the description of a pebble game, we need to describe
the pebbling rules. These rules essentially capture the following observation: a reduction
(with overwhelming probability) cannot possess encryptions of its (IND-CPA) challenge key.

10Note, this simulation crucially relies on the fact that keys can be equivocated : While the output keys are
all associated to 0, when altering the output mapping accordingly evaluation will still succeed. Note that in the
selective setting for Yao’s original scheme as well as in the adaptive setting for the modified scheme [JW16]
the input is known before the output mapping is sent.

222

8.3. Lower Bound for Yao’s Garbling Scheme

Ek0
u
(Ek0

v
(kg(0,0)

w)) Ek0
u
(Ek0

v
(k0

w)) Ek0
u
(Ek0

v
(k0

w)) Ek0
u
(Ek0

v
(k0

w))
Ek1

u
(Ek0

v
(kg(1,0)

w)) Ek1
u
(Ek0

v
(k0

w)) Ek1
u
(Ek0

v
(k1

w)) Ek1
u
(Ek0

v
(k0

w))
Ek0

u
(Ek1

v
(kg(0,1)

w)) Ek0
u
(Ek1

v
(k0

w)) Ek0
u
(Ek1

v
(k1

w)) Ek0
u
(Ek1

v
(k0

w))
Ek1

u
(Ek1

v
(kg(1,1)

w)) Ek1
u
(Ek1

v
(k1

w)) Ek1
u
(Ek1

v
(k0

w)) Ek1
u
(Ek1

v
(k0

w))
(a) (b) (c) (d)

Table 8.1: Garbling tables for (a) general gate g, (b) AND gate, (c) XOR gate, and (d)
constant-0 gate. u and v denote the two input wires, whereas w denotes the output wire.

Therefore, whenever the garbling table ˜︁g of a gate g has been switched to a malformed garbling˜︁g′ (say) at distance one, (at least) one of the garbling tables associated to its predecessor
gates, say gu, must have been first switched to a garbling that encodes only one of gu’s output
keys. This is required to “free up” one of gu’s output keys (so that it can now be set as the
challenge key). Looking ahead, we will be interested in pebbling the circuit Γ⊕ which consists
of XOR gates only. Hence, the pebbling rules are designed to capture the structure of XOR
gates. Recall that an XOR gate is at distance 2 from a constant gate, thus, we end up with
the following rules (where gu and gv denote the two predecessors of g):

1. a grey pebble can be placed on or removed from a gate g only if (at least) one of its
predecessor gates (say gu) carries a black pebble; and

2. a grey pebble on a gate g can be swapped with a black pebble if the other predecessor
gate (i.e., gv) carries a black pebble.

The actual game. The above white-grey-black (WGB) pebble game is a simplified version of
the (WG3B) pebble game we end up using, but it is sufficient to convey the essential ideas that
we use. The actual game, defined in Definition 73 (Section 8.3.3), is more fine-grained: in
order to keep track of the inner and outer encryptions, we introduce three types of grey pebbles
(grey-left, grey-right and grey-free), and the pebbling rules are also modified accordingly.

Definition 73 (Reversible WG3B pebbling game for indegree-2 graphs). Consider a directed
acyclic graph Γ = (V , E) with V = [1, N] and let X = {W,G∗,GL,GR,B} denote the set of
colours of the pebbles. Consider a sequence P := (P0, . . . ,Pτ) of pebbling configurations for
Γ, where Pi ∈ X V for all i ∈ [0, τ]. We call such a sequence a WG3B pebbling strategy for Γ
if the following two criteria are satisfied:

1. In the initial configuration all the vertices are pebbled white (i.e., P0 = (W, . . . ,W)) and
in the final configuration at least one sink of G is pebbled grey (i.e., Pτ = (. . . ,G·, . . .)),
where G. denotes an arbitrary type of grey, i.e. G. ∈ {G∗,GL,GR}.

2. Two subsequent configurations differ only in one vertex and the following rules are
respected in each move:

a) W↔ G∗: a white pebble can be replaced by a G∗ pebble (and vice versa) if one of
its parents is black-pebbled

b) W/G∗ ↔ GL: a white or G∗ pebble can be replaced by a GL pebble (and vice versa)
if its left parent is black-pebbled

c) W/G∗ ↔ GR: a white or G∗ pebble can be replaced by a GR pebble (and vice versa)
if its right parent is black-pebbled

223

8. Limits on the Adaptive Security of Yao’s Garbling

d) GL ↔ B: a GL pebble can be replaced by a black pebble (and vice versa) if its
right parent is black-pebbled

e) GR ↔ B: a GR pebble can be replaced by a black pebble (and vice versa) if its left
parent is black-pebbled

The space-complexity of a WG3B pebbling strategy P = (P0, . . . ,Pτ) for a DAG Γ is defined
as

σΓ(P) := max
i∈[0,τ]

|{j ∈ [1, N] : Pi(j) ∈ {G∗,GL,GR,B}}|.

For a subgraph Γ′ induced on vertex set V ′ ⊂ V , the space-complexity of P restricted to Γ′ is
defined as

σ|Γ′(P) := max
i∈[0,τ]

|{j ∈ V ′ : Pi(j) ∈ {G∗,GL,GR,B}}|.

The space-complexity of a DAG Γ is the minimum space-complexity over all of its strategies
PΓ:

σ(Γ) := min
P∈PΓ

σΓ(P). (8.5)

Remark 15. Note that for upper bounds the G∗ pebbles would be redundant in the following
sense: any WG3B pebbling sequence including G∗ pebbles can be replaced by a valid WG3B
sequence (potentially including redundant steps) that does not contain G∗ pebbles and has
a smaller or equal space-complexity. The reader familiar with pebbling games might notice
that – ignoring the G∗ pebbles – our WG3B pebbling rules exactly correspond to reversible
edge-pebbling (see Definition 8 in Chapter 3) : In this game, pebbles are placed on edges
instead of nodes, and a pebble can be placed on/removed from an edge (u, v) ∈ E if and only
if all edges incident on u are pebbled.

The following lemma gives a lower bound on the WG3B pebbling complexity of the graph Γ\Γ0

underlying the first two blocks Γ∧ ◦ Γ⊕ of our candidate circuit Γ.

Lemma 44 (Pebbling lower bound on Γ \ Γ0). Let Γ \ Γ0 be the graph underlying the circuit
Γ∧ ◦ Γ⊕. To grey-pebble a gate on layer d′ ∈ [1, d + 1] following the reversible WG3B pebbling
rules from Definition 73, one requires space-complexity at least d′− 1. Furthermore, to GL- or
B-pebble a gate on layer d′ ≥ d+1, one requires at least d grey or black pebbles simultaneously
on the first d layers.

Proof. We rely on the crucial observation that the ancestor graph of any vertex v in layer
d′ ∈ [1, d + 1] of Γ forms a so-called pyramid graph of depth d′, with v as the unique sink.
Let’s denote this graph by Dd′ . To prove the lemma, first note, that pebbling any node on
layer d′ requires to black-pebble one of its parents (see Figure 8.5). Thus, to prove the Lemma,
it suffices to argue that it takes space-complexity ≥ d′ − 1 to place a black pebble on the sink
of Dd′−1. We will prove the following slightly stronger claim:

Claim 3. Any WG3B pebbling sequence P = (P0, . . . ,PL) on Dd′ with unique sink v∗, where
P0 = {W, . . . ,W} is the all-white configuration and PL = {. . . ,B} is a configuration where
the sink of Dd′ is black-pebbled, contains a pebbling configuration P∗ such that σ(P∗) ≥ d′

and each path from a source to v∗ contains at least one grey or black pebble.

224

8.3. Lower Bound for Yao’s Garbling Scheme

⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕

x1 x2 x3 x4 x5

g∗

(a)

v∗

u∗
l u∗

r

Dd′−1,vl

Dd′−1,vr

C
(l

)
d

′ ,
v

∗

(b)

Figure 8.5: Pyramid graph used in the proof of Lemma 44. (a) The gates in Γ⊕ from which
the gate g∗ can be reached are highlighted (b) The correponding pyramid graph Dd′ . The
subgraphs of interest are highlighted.

We prove the claim via induction on d′. For d′ = 1 the claim is obviously true. For the
induction step, note that, to black-pebble node v∗, one needs to black-pebble its parents vl

and vr before, not necessarily at the same time though. Let Dd′−1,vl
, Dd′−1,vr denote the

ancestor graphs of vl and vr, respectively, each being pyramid graphs of depth d′ − 1. By
induction hypothesis, there must exist configurations Pl, Pr in P which contain d′− 1 grey or
black pebbles in Dd′−1,vl

and Dd′−1,vr , respectively, such that each path from a source to vl/vr

contains at least one grey or black pebble. Let Pl, Pr denote the last such configurations.
Let C

(l)
d′,v∗ denote the left-most path in Dd′ , which passes through vl.

Let’s first consider the case that Pl = Pr. Since C
(l)
d′,v∗ and Dd′−1,vr are disjoint, the properties

of Pl and Pr imply that there must be at least d′ grey or black pebbles in Pl = Pr and since
all paths to v∗ either go through vl or through vr, also the second property is true and the
claim follows with P∗ := Pl = Pr.

Now, w.l.o.g., assume Pl occurs before Pr in P . Thus, either 1) there are less than d′ − 1
pebbles on Dd′−1,vl

in configuration Pr or 2) there must exist a path C ′ ∈ Dd′−1,vl
from a

source to vl which does not carry any grey or black pebbles, in particular also one of vl’s
parents is white-pebbled; and this is true for all configurations in (Pr, . . . ,PL). If case 2) does
not occur, then similar to the case Pl = Pr we can argue that there must be a grey or black
pebble on C

(l)
d′,v∗ and the claim follows. The same is true if node v∗ is grey or black pebbled.

Finally, let’s assume 2) is true for Pr and v∗ is white-pebbled. Since vl and v∗ are W-pebbled,
there must exist a configuration P ′ ∈ (Pr, . . . ,PL) such that vl is black-pebbled in P ′. Let
P ′ be the first such configuration in (Pr, . . . ,PL). We will now construct a pebbling sequence
on Dd′−1,vl

which does not contain any configuration with at least d′− 1 grey or black pebbles
such that all paths to vl carry at least one pebble – a contradiction to the induction hypothesis.
Note that it suffices to show that the pebbling configuration on Dd′−1,vl

induced by Pr can be
reached by such a sequence, and then append this sequence by the pebbling strategy induced
on Dd′−1,vl

by (Pr, . . . ,P ′). To define a pebbling strategy on Dd′−1,vl
from the all-white

225

8. Limits on the Adaptive Security of Yao’s Garbling

configuration to the one induced by Pr, which always keeps one path all-white pebbled, we
introduce some further notation: Let C ′ = (u1, . . . , ud′−1) with ud′−1 = vl be represented
as (b2, . . . , bd−1) ∈ {0, 1}d′−2, where bi = 0/1 indicates that ui−1 is the left/right parent of
vi. Furthermore, let C

(0)
i,u /C

(1)
i,u denote the leftmost/rightmost path to node u on layer i. To

define our pebbling strategy, we make the following simple observation: For any i ∈ [2, d′− 1],
one can reach any configuration on C

(1−bi)
i,ui

with ui white-pebbled while keeping the path
C

(bi)
i,ui

all-W pebbled; this can be done by greedily black-pebbling all ancestors of grey or black
pebbled nodes in C

(1−bi)
i,ui

and then reversibly switching all ancestors outside this set back to
white (note, there are no ancestors in C

(bi)
i,ui

, so this path remains white-pebbled). Thus, we
define our pebbling strategy as follows

• For i = d′ − 1, . . . , 2: Greedily black-pebble all ancestors of nodes in C
(1−bi)
i,ui

which are
grey or black pebbled, and reach the pebbling configuration Pr induces on C

(1−bi)
i,ui

, then
reversibly white-pebble all ancestors of C

(1−bi)
i,ui

.

Note, throughout the i-th step the path C
(bi)
i,ui
∪ (ui, . . . , ud′−1) remains white-pebbled and the

pebbling configuration reached after the i-th step coincides with Pr on ⋃︁j∈[i,d′−1] C
(1−bi)
i,ui

, and
since ui is white-pebbled in Pr the algorithm indeed terminates at the configuration which is
induced on Dd′−1,vl

by Pr. This proves the claim.

The following definition now gives a cut in the configuration graph; our adversary A will be a
threshold adversary with respect to this cut.

Definition 74 (Good pebbling configurations). A pebbling configuration P on DAG Γ \ Γ0

is called good if it is reachable by reversible WG3B pebbling moves using less than d grey or
black pebbles on the first d layers simultaneously, i.e., there exists a WG3B pebbling strategy
P := (P0, . . . ,P) for Γ such that σ|Γ⊕(P) ≤ d− 1.

In particular, by Lemma 44, any pebbling configuration P with a GL or B pebble on a gate in
Γ∧ is bad.

8.3.4 Extraction of Pebbling Configuration on Γ \ Γ0

Given the garbled circuit ˜︁Γ and input ˜︁x, our adversary A maps (˜︁Γ, ˜︁x) to a pebbling configuration
on the subgraph Γ \ Γ0 of the DAG Γ underlying Γ. It’s output behaviour then depends on
whether this pebbling configuration lies in the cut defined by Definition 74. In this section we
will discuss how to extract such a pebbling configuration. Note, that A is computationally
unbounded, hence can extract messages and keys from ciphertexts by brute-force search.

1. First, check whether (˜︁Γ, ˜︁x) evaluates correctly , i.e., GEval(˜︁Γ, ˜︁x) = Γ(x0).
If the evaluation check passes, check whether ˜︁Γ, ˜︁x have the correct syntax : Check
whether ˜︁Γ consists of four ciphertexts for each gate, which have the following form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(m2)),
{c3,c4} = {Enck2(m3), Enck2(m4)},

(8.6)

226

8.3. Lower Bound for Yao’s Garbling Scheme

for distinct keys k1,k2,k3,k4,k5 and arbitrary (not necessarily distinct) messages
m2,m3,m4, where keys k1 and k3 are revealed during evaluation GEval(˜︁Γ, ˜︁x). I.e., two
of the four ciphertexts are encryptions under the same left secret keys k1 and k2,
respectively, one of them is a double encryption Enck1(Enck3(k5)) under left key k1 and
some right key k3 of an output key k5 (all these being revealed throughout evaluation),
and the second encryption under k1 encrypts an encryption under a second right key k4
(of an arbitrary message m2).
Finally, check consistency of keys : For each gate, extract key pairs (k1,k2) and (k3,k4)
corresponding to left and right input wires, and check whether they are consistent with
the keys extracted from sibling gates: If gate g is the left sibling of g′, then g’s right input
key pair must coincide with the left key pair extracted from g′, i.e., (k3,k4) = (k′

1,k
′
2).

Note, if this check passes, then all wires in the circuit can be uniquely associated with a
key pair. Finally, check that all extracted keys are distinct.
If any of these checks fails, map (˜︁Γ, ˜︁x) to a bad pebbling configuration, e.g., to the
pebbling configuration on G where all gates at levels [d + 1, 2d + 1] are black pebbled11

and quit.

Remark 16. Note, syntax and consistency checks allow a reduction to distinguish

• a ciphertext from a non-ciphertext,
• a ciphertext under key k from a ciphertext under key k′ ̸= k.

We will argue in Section 8.3.5 that this is of no help to the reduction for breaking IND-CPA
security of the information-theoretic encryption scheme F .

For all garblings (˜︁Γ, ˜︁x) that pass correctness, syntax, and consistency checks, A will extract a
pebbling configuration on Γ \ Γ0 by mapping each gate to a color in {W,G∗,GL,GR,B}.

2. For each XOR gate gj (j ∈ [1, d] · n + [0, n]): Check whether gj is garbled correctly with
respect to input x0. To this aim, let bl, br, and bo = gj(bl, br) = bl⊕br denote the left/right
input and the output bit of gj, respectively, when evaluating Γ on x0. We use the same
notation as in Equation 8.6 above; furthermore, let k6 be the second key associated with
the output wire (which was extracted from the garbling tables of the successor gates).

• If gj is garbled similar to the case of an honest garbling of (Γ, x0), i.e., m2 = k6,
m3 = Enck3(k6), and m4 = Enck4(k5) (or the roles of m3,m4 permuted), then associate
gj with a W pebble.

• If m2 and m3 are as in the previous case, but m4 = Enck4(m) for some message m ̸= k5,
then associate gj with a G∗ pebble. Similarly for the case where the roles of m3,m4
are permuted.

• If m3 is as in the first case, m4 = Enck4(m) for an arbitrary message m, but m2 ̸= k6,
then associate gj with a GR pebble. Similarly for the case where the roles of m3,m4
are permuted.

• If m2 = k6 is as in the first case, but {m3,m4} differs from the previous cases, then
associate gj with a GL pebble.

• For all other cases, associate gj with a B pebble.
11This choice was made for convenience (see Lemmas 46 to 48), but in principle could be an arbitrary bad

configuration, and should simply guarantee that no reduction can gain any advantage by departing from the
protocol in an obvious way.

227

8. Limits on the Adaptive Security of Yao’s Garbling

Remark 17. Due to symmetry of the XOR operation, whether a gate is considered properly
garbled (i.e. mapped to a white pebble) or not (i.e. mapped to grey or black) does not
depend on the input keys. Thus, the set of black and grey pebbles on Γ⊕ can be extracted
independently of x0 and ˜︁x.

3. For each AND gate gj (j ∈ [d + 1, 2d + 1] · n + [0, n]): Similar to the case of XOR gates,
check whether the gate is correctly garbled with respect to x0. Using the same notation as
above, associate gj with a pebble as follows:

• If gj is garbled similar to the case of an honest garbling of (Γ, x0), i.e., for
(bl, br) = (0, 0), we have m2 = k5, m3 = Enck3(k5), and m4 = Enck4(k6),
(bl, br) = (0, 1), we have m2 = k5, m3 = Enck3(k6), and m4 = Enck4(k5),
(bl, br) = (1, 0), we have m2 = k6, m3 = Enck3(k5), and m4 = Enck4(k5),
(bl, br) = (1, 1), we have m2 = k6, m3 = Enck3(k6), and m4 = Enck4(k6),

(or the roles of m3,m4 permuted) then associate gj with a W pebble.
• If m2 and m3 are as in the previous case, but m4 = Enck4(m) for some message m that

differs from above, then associate gj with a G∗ pebble. (Similarly for the case where
the roles of m3,m4 are permuted.)

• If m3 is as in the first case, m4 = Enck4(m) for an arbitrary message m, but m2 differs
from the previous case, then associate gj with a GR pebble. (Similarly for the case
where the roles of m3,m4 are permuted.)

• If m2 is as in the first case, but {m3,m4} differs from the previous cases, then associate
gj with a GL pebble.

• For all other cases, associate gj with a B pebble.

Remark 18. At first sight, it might seem counterintuitive that the mapping from gates to
colours not only depends on the associated ciphertexts, but also on the input x0. This however
is unavoidable since the adversary A cannot simply map keys to bits, but can only relate them
to the keys it learned from ˜︁x, which might be properly garbled or not.

In the following lemma, we prove that the adversary A using the above pebbling extraction
indeed breaks indistinguishability of Yao’s garbling scheme.

Lemma 45. A breaks indistinguishability of the garbling scheme with probability 1− 1/2n−1.

Proof. We defined our adversary A to output b′ = 0 whenever the extracted pebbling
configuration is good, and b′ = 1 else. In particular, Definition 74 guarantees that A outputs
b′ = 0 if there are only white pebbles on the subgraph Γ \Γ0 of the topology graph Γ of Γ, i.e.,
when (˜︁Γb, ˜︁xb) is distributed identically to (˜︁Γ, ˜︁x0). On the other hand, when x1 was garbled,
then – as we will show below – there will be at least one grey or black pebble on layer d + 1.
Hence, since by Lemma 44 switching a pebble on layer d′ = d + 1 from W to G∗, GR, GL or B
requires at least d grey or black pebles simultanously on the first d layers, A outputs b′ = 1 in
this case.

It remains to show that (with all but negligible probability) a proper garbling (˜︁Γ, ˜︁x1) will be
mapped to a pebbling configuration which has at least one grey or black pebble on layer
d + 1. To this aim, we use the following properties of the circuit Γ⊕, which were established in

228

8.3. Lower Bound for Yao’s Garbling Scheme

Section 8.3.2, Corollary 19: First, Γ⊕ is 2-to-1, with x0 and x0 ⊕ 1n being the two preimages
of Γ⊕(x0). Second, the image of Γ⊕ only consists of strings containing an even number of 1s.

Now, assume x1 /∈ {x0, x0 ⊕ 1n} (which happens with probability 1− 1/2n−1), and Γ⊕(x0)
and Γ⊕(x1) differ in the i-th bit and coincide in the i + 1-th bit; note that such an i must
exist, since Γ⊕(x0)⊕ 1n is not in the image of Γ⊕ (by the second property of Γ⊕). Assume
the i-th and i + 1-th bits of Γ⊕(x0) are 0, i.e., using the same notation as above, we analyze
the case (bl, br) = (0, 0); the other cases work similarly. Consider the garbling of the i-th AND
gate G on layer d + 1 w.r.t. the keys k1,k3,k5 revealed through evaluation of ˜︁Γ on input ˜︁x1.
Then this coincides with the case (bl, br) = (1, 0), in particular, m2 = k6 and m4 = Enck4(k5)
differ from the garbling for input x0, while m3 is similar. Hence, A associates this gate with
a GR pebble. Similarly, we can see that if the left input coincides but the right differs, A
associates G with a GL pebble. Finally, if both inputs differ, this implies that in the garbling
m2 and m3 differ, hence A maps G to a B pebble. This proves the claim.

Since A extracts the pebble mode of a gate with regard to the garbled input (i.e., the keys it
learns through evaluation), the reduction can still change the mode of a gate after it output ˜︁Γ
by choosing different input keys for ˜︁x. In the following lemmas we prove that this flexibility
of choosing the input keys is of not much help to a reduction aiming at a good pebbling
configuration, where in particular all gates at layers [d + 1, 2d + 1] are mapped to W, G∗, or
GR pebbles.

First, we consider the case of a properly garbled AND gates. In this case, due to the asymmetry
of the AND operation, input keys can be associated with bits and hence a properly garbled
layer of AND gates has a similar function as an output mapping.

Lemma 46. For any garbling of an AND gate on layer [d + 1, 2d + 1], and any input bits
bl, br, there exists at most one input key pair (k1,k3) such that the gate will be mapped to a
W pebble.

Proof. For the claim on gates mapped to W pebbles, we only consider the case (bl, br) = (0, 0),
the others work similarly. Let g∧ be an AND gate that is mapped to a W pebble. Hence, the
four associated ciphertexts must have the following form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(k5)),

c3 = Enck2(Enck3(k5)), c4 = Enck2(Enck4(k6)).

Since g∧ is mapped to a W pebble, in particular evaluation, syntax, and consistency checks
must pass. Hence, all keys are distinct, k1,k2 are associated to the left input wire, k3,k4 are
associated to the right input wire, and during evaluation two input keys kl ∈ {k1,k2} and
kr ∈ {k3,k4} are reveiled. We will now show that it must hold (kl,kr) = (k1,k3). Assume,
for contradiction, (kl,kr) = (k2,k3). Then g∧ will be mapped to a GR pebble, because
the inner encryptions (under key k4) of ciphertexts c2 and c4 are malformed. Similarly, if
(kl,kr) = (k1,k4), then c3 and c4 are considered malformed and g∧ is mapped to a GL pebble.
Finally, if (kl,kr) = (k2,k4), then c2, and c3 are considered malformed and g∧ is mapped to
a B pebble. This implies that g∧ is mapped to a W pebble only if (kl,kr) = (k1,k3).

The situation becomes a bit more involved if AND gates are not properly garbled, since in
this case asymmetry might be broken. However, if the left input keys can be mapped to bits,
then we can still obtain some meaningful guarantees. We first consider the case that an AND

229

8. Limits on the Adaptive Security of Yao’s Garbling

gate is garbled in G∗ mode, i.e. one ciphertext is malformed and there exist some input bits
(bl, br) such that it will be mapped to a G∗ pebble. In the following Lemma we prove that for
a different right input bit 1− br the gate will be mapped to a GL pebble instead.

Lemma 47. For any garbling of an AND gate, any left input bit bl, and fixed left input key,
there exists at most one br ∈ {0, 1}∗ such that there exists a (not necessarily unique) right
input key such that the gate will be mapped to a G∗ pebble. If such a right input bit br exists,
then for right input bit 1− br the gate will be mapped to a GL pebble.

Proof. Consider the case that an AND gate g∧ is mapped to a G∗ pebble for (bl, br) = (0, 0) .
In this case, the four ciphertexts associated to g∧ must have the form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(k5)),

c3 = Enck2(Enck3(k5)), c4 = Enck2(Enck4(m)),

for some message m ̸= k6 and left input key kl = k1. Now, for (bl, br) = (0, 1) and kl = k1,
a gate garbled as above will be mapped to a GL pebble, no matter whether the right input
key is k3 or k4.
Next, consider the case that an AND gate g∧ is mapped to a G∗ pebble for (bl, br) = (1, 0). In
this case, the four ciphertexts associated to g∧ must have the form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(k6)),

c3 = Enck2(Enck3(k5)), c4 = Enck2(Enck4(m)),

for some message m ̸= k5 and left input key kl = k1. Then, for (bl, br) = (1, 1) and kl = k1,
a gate garbled as above will be mapped to a GL pebble, no matter whether the right input
key is k3 or k4.

Next we consider the case of an AND gate that is garbled in GR mode w.r.t. some input bits
(bl, br). In this case we have to distinguish two different ways to garble a gate such that it
will be mapped to a GR pebble. For one type of GR pebble we can map keys to bits, just as
in the case of properly garbled gates. For the second type of GR pebble we obtain a similar
guarantee as for G∗ pebbles.

Lemma 48. For any garbling of an AND gate on layer [d + 1, 2d + 1], any left input bit bl,
and fixed left input key, one of the following is true:

1. For any right input bit br ∈ {0, 1}∗ there exists at most one right input key such that
the gate will be mapped to a GR pebble. If such a key exists, then for any other right
input key the gate will be mapped to a B pebble.

2. There exists at most one input bit br ∈ {0, 1}∗ such that there exists a right input key
kr such that the gate will be mapped to a GR pebble. If such a bit exists, then for right
input bit 1− br and any right input key the gate will be mapped to a B pebble.

These two cases characterize two different types of GR pebbled gates, where we denote a gate
as GR-type-1 if case 1 is true, and GR-type-2 if only case 2 is true.

230

8.3. Lower Bound for Yao’s Garbling Scheme

Proof. First, consider the case that an AND gate g∧ is mapped to a GR pebble for (bl, br) =
(0, 0). In this case, the four ciphertexts associated to g∧ must have the form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(m)),

c3 = Enck2(Enck3(k5)), c4 = Enck2(Enck4(m′)),

for some message m ̸= k5, an arbitrary message m′, and left input key kl = k1. We first
consider the case m = k6, m′ = k5. Then, for br = 0 and right input key kr = k4, a gate
garbled as above will be mapped to a B pebble; i.e. case 1 happens. Similarly, for br = 1 and
right input key kr = k3, a gate garbled as above will be mapped to a B pebble; i.e. case 1
happens. Next consider the case m = k6, m′ = k6. Then, for br = 1 and any right input key
kr, a gate garbled as above will be mapped to a B pebble, i.e. case 2 happens. Finally, for
m,m′ /∈ {k5,k6}, evaluation fails for kr = k4, hence the gate will be mapped to a B pebble.
However, also for br = 1 the gate will be mapped to a B pebble; hence both cases 1 and 2 are
true.

Next, consider the case that an AND gate g∧ is mapped to a GR pebble for (bl, br) = (1, 0).
In this case, the four ciphertexts associated to g∧ must have the form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(m)),

c3 = Enck2(Enck3(k5)), c4 = Enck2(Enck4(m′)),

for some message m ̸= k6, an arbitrary message m′, and left input key kl = k1. Then, for
m = k5, m′ = k5, and br = 1, the gate will be mapped to a B pebble, independently of the
right input key, i.e. case 2 happens. For m = k5, m′ = k6, on the other hand, if br = 0 and
the right input key is kr = k4, then the gate will be mapped to a B pebble; and analogously,
if br = 1 and the right input key is kr = k3, then the gate will be mapped to a B pebble, i.e.
case 1 happens. For m,m′ /∈ {k5,k6} the gate will be mapped to a B pebble and both cases
are true.

Next, consider the case that an AND gate g∧ is mapped to a GR pebble for (bl, br) = (0, 1).
In this case, the four ciphertexts associated to g∧ must have the form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(m)),

c3 = Enck2(Enck3(k6)), c4 = Enck2(Enck4(m′)),

for some message m ̸= k5, an arbitrary message m′, and left input key kl = k1. Then, for
m = k6, m′ = k5, and br = 0, the gate will be mapped to a B pebble, independently of the
right input key, i.e. case 2 happens. For m = k6, m′ = k6, on the other hand, if br = 0 and
the right input key is kr = k3, then the gate will be mapped to a B pebble; and analogously,
if br = 1 and the right input key is kr = k4, then the gate will be mapped to a B pebble, i.e.
case 1 happens. For m,m′ /∈ {k5,k6} the gate will be mapped to a B pebble and both cases
are true.

Finally, consider the case that an AND gate g∧ is mapped to a GR pebble for (bl, br) = (1, 1).
In this case, the four ciphertexts associated to g∧ must have the form

c1 = Enck1(Enck3(k6)), c2 = Enck1(Enck4(m)),

c3 = Enck2(Enck3(k5)), c4 = Enck2(Enck4(m′)),

231

8. Limits on the Adaptive Security of Yao’s Garbling

for some message m ̸= k5, an arbitrary message m′, and left input key kl = k1. Then, for
m = k6, m′ = k5, and br = 0, the gate will be mapped to a B pebble, independently of the
right input key, i.e. case 2 happens. For m = k6, m′ = k6, on the other hand, if br = 0 and
the right input key is kr = k3, then the gate will be mapped to a B pebble; and analogously,
if br = 1 and the right input key is kr = k4, then the gate will be mapped to a B pebble, i.e.
case 1 happens. For m,m′ /∈ {k5,k6} the gate will be mapped to a B pebble and both cases
are true.

8.3.5 Lower Bound on Security Loss for any Reduction
In this section we will combine all previous results to prove a lower bound on adaptive security
of Yao’s garbling scheme. More precisely, we will prove that any black-box reduction which
aims to exploit A’s distinguishing advantage to break IND-CPA security of the underlying
encryption scheme loses a factor subexponential in the depth of the circuit.

Let R be an arbitrary PPT reduction which has black-box access to an adversary A that breaks
indistinguishability of Yao’s garbling scheme, and attempts to solve an IND-CPA challenge with
respect to an encryption scheme (Gen, Enc, Dec). Following the approach from Chapter 7, we
define an information-theoretically secure encryption scheme F = (Gen, Enc, Dec) as follows:
For l ∈ {1, 6}, let El : {0, 1}(l+2)λ → {0, 1}2(l+2)λ be a random expanding function (which is
injective with overwhelming probability).

• Key generation Gen(1λ): On input a security parameter λ in unary, output a key
k← {0, 1}∗ uniformly at random.

• Encryption Enc(k,m): On input a key k ∈ {0, 1}λ and a message m ∈ {0, 1}l·λ with
l ∈ {1, 6}, sample randomness r ← {0, 1}λ, and output El(k,m; r).

• Decryption Dec(k,c) is simulated to be consistent with Enc: On input a key k ∈ {0, 1}λ

and a ciphertext c ∈ {0, 1}2(l+2)λ with l ∈ {1, 6}, check whether c lies in the image of
El(k, ·; ·), if so extract m ∈ {0, 1}l·λ, r ∈ {0, 1}λ such that c = El(k,m; r) and output
m, otherwise output ⊥.

Choosing El (l ∈ {1, 6}) to be random functions implies that F is information-theoretically
IND-CCA secure. Thus, since R only makes polynomially many queries, the only non-negligible
advantage R has in breaking the IND-CPA security of F must stem from its interaction
with A. Furthermore, with all but negligible (in λ) probability F satisfies special correctness
(Definition 45), hence can be used in Yao’s garbling scheme.

We first argue that neither checking correctness, syntax, nor consistency (cf. Section 8.3.4)
is of any help to R. Obviously, this is true for the correctness check, since R can efficiently
evaluate GEval(˜︁Γ, ˜︁x). However, we have to argue a bit more to prove that also syntax and
consistency checks are of no help to R. To this aim, we construct an oracle O that allows to
distinguish

• a ciphertext from an arbitrary string in {0, 1}2(l+2)λ for l ∈ {1, 6},
• a ciphertext under key k ∈ {0, 1}λ from a ciphertext under key k′ ̸= k.

More precisely, O takes as input two strings s ∈ {0, 1}2(l+2)λ and s′ ∈ {0, 1}2(l′+2)λ (l, l′ ∈
{1, 6}) and checks whether s, s′ lie in the image of El, El′ , respectively. If this check fails for
one of the strings, then O outputs ⊥. Otherwise, it extracts preimages (k,m, r) ∈ {0, 1}(l+2)λ

under El and (k′,m′, r′) ∈ {0, 1}(l′+2)λ under El′ . If k = k′, O outputs 1, otherwise 0.

232

8.3. Lower Bound for Yao’s Garbling Scheme

We will first prove that access to oracle O allows R to efficiently carry out syntax and
consistency checks. Then we will prove that F remains information-theoretically IND-CPA
secure even against adversaries that have access to O.

Lemma 49. There exists an algorithm BF ,O with oracle access to O that given a garbled
circuit and input pair (˜︁Γ, ˜︁x) such that GEval(˜︁Γ, ˜︁x) = Γ(x0) efficiently checks whether (˜︁Γ, ˜︁x)
satisfies syntax and consistency (as defined in Section 8.3.4).

Proof. We first describe how BF ,O check the syntax of the four strings s1, s2, s3, s4 ∈ {0, 1}16λ

associated to a gate g. Since evaluation succeeds, one of these strings must have the form
c1 = Enck1(Enck3(k5)) for three keys k1,k3,k5 ∈ {0, 1}λ that are revealed during evaluation;
w.l.o.g., assume s1 = c1. Given k1, B can easily check if the strings s2, s3, s4 can be decrypted
under k1 by querying the decryption oracle Dec on (k1, si) for all i ∈ {2, 3, 4}. The algorithm
B aborts except if exactly on of the strings s2, s3, s4 can be decrypted under k1, w.l.o.g.,
assume this string is s2. Now given the decryption Dec(k1, s2), B now checks whether this
is a valid ciphertext by querying O(Dec(k1, s1), Dec(k1, s2)). If the output of O is ⊥, then
Dec(k1, s2) is not a valid ciphertext and B aborts. If the output is 1, then both s1 and s2 are
double encryptions under the same key pair (k1,k4) = (k1,k3), hence B aborts. Otherwise,
B continues and queries O(s3, s4). B aborts, whenever the output to this query is not 1, i.e.,
s3 and s4 are not encryptions under the same key k2. Finally, B has to check that all keys
used to generate s1, s2, s3, s4 are distinct. It already learned by previous queries that k1 ̸= k2
and k3 ̸= k4, hence it suffices to query O(Dec(k1, si), sj) for i = 1, 2, j = 1, 3 and abort if
any output is not 0. Otherwise accept the syntax of (˜︁Γ, ˜︁x).

Consistency of keys can be verified in a similar way using th oracle O: Assume (k1,k2), (k3,k4)
are the (partially unknown) distinct keys involved in the encryptions c1,c2,c3,c4 (as guaran-
teed by the syntax check) associated to gate g; and similarly (k′

1,k
′
2), (k′

3,k
′
4) and c′

1,c
′
2,c

′
3,c

′
4

are the keys and ciphertexts associated with its right sibling g′. Since k3 and k′
1 are revealed

through evaluation, it is trivially true that k3 = k′
1. For the unknown keys k4 and k′

2, on the
other hand, B can check equality using O on (Dec(k1,c2),c′

3).

After checking that each wire in the circuit can uniquely be associated to a key pair, finally, B
checks that all these keys are distinct: This works in a similar way as before by querying the
oracle O on appropriate ciphertexts.

Lemma 50. The encryption scheme F is information-theoretically IND-CPA secure against
adversaries with oracle access to O.

Proof. To see this, we show how the oracle O can be simulated by an IND-CPA challenger with
oracle access to F that sees all the adversary’s queries to F . First, note that the probability
of sampling a ciphertext from {0, 1}2(l+2)λ (l ∈ {1, 6}) without either calling Enc on a triple
(k,m, r) ∈ {0, 1}(l+2)λ or querying the IND-CPA oracle is negligible in λ. Thus, an oracle
that allows to distinguish a ciphertext from an arbitrary string can be implemented simply by
checking whether the queried string was output of a previous query; this is indistinguishable
from the real functionality for any computationally bounded reduction. Furthermore, for all
ciphertexts the reduction sees, it actually knows the corresponding keys, except for those
derived from the IND-CPA challenger. Hence, distinguishing whether two given ciphertexts
were derived under the same key is easy: In the case that both ciphertexts were derived from
the IND-CPA challenger, obviously both ciphertexts were derived under the same key. In the
case that at least one of the associated keys is known, the reduction can query the Dec oracle

233

8. Limits on the Adaptive Security of Yao’s Garbling

on this key and the other ciphertext. Since Enc is injective with all-but-negligible probability,
the answer to this query will be ⊥ if the keys do not coincide.

Now, to prove that any black-box reduction from indistinguishability of Yao’s garbling scheme to
IND-CPA security of the underlying encryption scheme suffers from a loss that is subexponential
in the depth D of the circuit, we construct an adversary A[c∗] that behaves just like A but
doesn’t decrypt challenge ciphertext c∗. More precisely, A[c∗] with input a ciphertext c∗, has
oracle access to O, F , as well as an IND-CCA decryption oracle Deck∗ that it can query on
any ciphertext c ̸= c∗. We construct A[c∗] such that it never decrypts c∗ unless it already
knows the encryption key k∗ from other keys and ciphertexts in ˜︁Γ, ˜︁x:

• First A[c∗] runs evaluation, syntax, and consistency checks using oracle O. If these
checks pass, similar to A, the algorithm A[c∗] uses brute-force search to decrypt all
ciphertexts except for those encrypted under k∗ (to check whether a ciphertext is
encrypted under k∗ it uses O and c∗). Ciphertexts c ≠ c∗ encrypted under k∗ it
decrypts using oracle Deck∗ . For c∗, there are two cases:

– If the key k∗ was learned from previous decryptions (this can be checked by
decrypting c∗ under all known keys), A[c∗] simply decrypts c∗ using k∗.

– If the k∗ is not known to A[c∗], then it simply assumes c∗ ∈ {0, 1}2(l+2)λ with
l ∈ {1, 6} would decrypt to 0l·λ.

A[c∗] then continues analogous to A by mapping (˜︁Γ, ˜︁x) to a pebbling configuration
and outputting 0 whenever the pebbling configuration is good per Definition 74, and 1
otherwise.

Clearly, since A[c∗] never decrypts c∗ except if k∗ is known, there is no chance for R to use
A[c∗] to break IND-CPA security of F .12 It remains to bound the success probability of any
PPT distinguisher D to distinguish A[c∗] from A.13 To this aim, we will first show how the
WG3B pebbling game relates to this issue.

Lemma 51. Let c∗ ← Enck∗(m) be an arbitrary ciphertext and let P , P∗ be the two pebbling
configurations extracted by A and A[c∗], respectively, in the same execution of the game, i.e.
using the same randomness. Then P∗ differs from P by at most one valid WG3B pebbling
move.

Proof. First, note that whenever c∗ is not embedded into ˜︁Γ then A[c∗] is trivially indistin-
guishable from A, as A[c∗] ≡ A in this case. Similarly, if k∗ ∈ ˜︁x or there exists any encryption
of k∗ in ˜︁Γ, then also A[c∗] ≡ A; in particular, P = P∗. Now, assume that evaluation fails
for A[c∗] but passes in A. Then the key k∗ must be revealed through GEval(˜︁Γ, ˜︁x). But then
A[c∗] properly decrypts c∗; hence this cannot happen and evaluation fails for A[c∗] if and
only it fails for A. Also syntax and consistency checks A[c∗] passes if and only if A passes.
Thus, whenever such an initial check fails, then P = P∗.

In the following we will assume that c∗ is embedded in ˜︁Γ, the key k∗ is never encrypted or
opened in ˜︁x, and all initial checks pass. The second assumption implies that the key k∗

12Recall that our ideal encryption scheme F is IND-CCA secure, hence access to the oracle Deck∗ used by
A[c∗] is of no help to R.

13Note, we assume that A[c∗] has private access to its oracles and D cannot observe its oracle queries to
distinguish it from A.

234

8.3. Lower Bound for Yao’s Garbling Scheme

must either be embedded at a non-opened input wire or at the output wire of a gate whose
associated ciphertexts only encode one of the two output keys. We will now argue that such
XOR gates will be mapped to B pebbles: Using the notation from Section 8.3.4, the key k5 is
learned during evaluation, while k6 is the second key associated to the output wire. If the
garbling of the XOR gate is independent of k6, this implies that messages m2 and m3 differ from
the case of an honest garbling. By definition, such gates are mapped to B pebbles. Hence, c∗

can only be embedded in the garbling table of a gate g if at least one of g’s parents is black
pebbled.
Now, assume there exists a (XOR or AND) gate that is W in P and B in P∗; the case opposite
case works analogously. For ease of notation, we consider the case of an XOR gate here, the
case of AND gates follows analogously. By definition, an XOR gate is only mapped to a B gate,
if either (1) m2 ̸= k6 and m3 /∈ Enck3(k6), or (2) m2 ̸= k6 and m4 /∈ Im(Enck4). For case (1),
note that since k3 is known, m2 and m3 can only be switched by embedding c∗ twice, for right
key k4 and left key k2. The same is true for case (2). But since by consistency k2 ̸= k4, this
implies that P and P∗ cannot differ by a switch from W to B.
Next, consider the case that a gate is mapped to W in P and to GL in P∗. We will argue
that in this case the key k∗ must be embedded at the left input wire. Again, for ease of
notation, we consider the case of an XOR gate g; the case of AND gates follows analogously.
Since A maps g to W and A[c∗] maps it to GL, g must be properly garbled and the change
arrises from A[c∗] “decrypting” c∗ to 0. Hence, c∗ must be embedded either at c3 or c4,
in particular k∗ = k2 the left input key. Furthermore, since g is properly garbled, it must
hold either c∗ ← Enck∗(Enck3(k6)) or c∗ ← Enck∗(Enck4(k5)), i.e. c∗ can only be embedded
once in this gate. If c∗ was additionally embedded in another gate, then this must be the left
sibling g′ of g due to consistency and distinctness of keys. In g′, however, k∗ is employed as
a right input key, hence c∗ can only be embedded as an inner encryption and in particular
constitutes a malformed encryption (note the difference in length between inner and outer
encryptions). Thus, both A and A[c∗] will map g′ to the same pebble.
In a similar way, one can prove that whenever a gate is mapped to W in P and to GR in P∗,
then the key k∗ must be embedded at the right input wire. Also in this case it follows that c∗

can be embedded in at most one further gate – the right sibling – and there will be considered
as a malformed ciphertext by both A and A[c∗].
For the case that a gate is mapped to W in P and to G∗ in P∗, the key k∗ can be embedded
either at the right or the left input wire – however (by consistency) not at both. Also in this
case it follows that c∗ can be embedded in at most one further gate, and for this other gate
c∗ will be considered as a malformed ciphertext by both A and A[c∗].
Analogously, one can verify the remaining WG3B pebbling rules by analyzing the cases of a gate
being mapped to G∗ (GL/GR) in P and to GL/GR (B) in P∗. Also in these cases, embedding
c∗ at any further gate leads to A and A[c∗] extracting the same pebble for this further
gate.

We will now bound the distinguishing advantage of DF . Recall that a pebbling configuration
on Γ \ Γ0 is good per Definition 74 if it can be reached by WG3B pebbling moves using at
most d− 1 pebbles on the first d layers. Thus, by Lemma 51, any successful distinguisher D
has to simulate ˜︁Γ and ˜︁x such that the pebbling configurations P ,P∗ on Γ extracted by A
and A[c∗], respectively, contain exactly d− 1 or d black and grey pebbles on the first d layers
(depending on the IND-CPA challenge bit b∗), contain only W, G∗, and GR pebbles on higher
layers, and differ by a valid WG3B pebbling move within layers [1, d + 1].

235

8. Limits on the Adaptive Security of Yao’s Garbling

In the following we will first restrict our analysis to non-rewinding distinguishers and assume
x0, x1 were chosen uniformly at random by A after it sees ˜︁Γ. Finally we will discuss how to
slightly modify our adversary A to also cover the case that D chooses A’s randomness and
rewinds A.
To bound the success probability of D, let r be arbitrary random coins and consider two cases:

(1) there exists s such that the output of A(s) and A[c∗](s) after interaction with D(r,c∗)
differs and in P and P∗ there are more than d̄ many G∗ and GR-type-2 (as defined in
Lemma 48) pebbles in layers [d + 2, 2d + 1],

(2) there exists s such that the output of A(s) and A[c∗](s) after interaction with D(r,c∗)
differs and in P and P∗ there are at most d̄ many G∗ and GR-type-2 pebbles in layers
[d + 2, 2d + 1].

We leave the parameter d̄ < d/3 undefined for now and optimze it later. In Lemmas 52 and 53,
we will argue that, intuitively, in both cases the distinguisher D must have correctly guessed
many of the input bits in x0.

Lemma 52. Let r be arbitrary coins such that case (1) is true. Then the probability (over
uniformly random coins s) that the output of A(s) and A[c∗](s) differs after interaction with
D(r,c∗) is at most (3/4)

√
d̄/7.

Proof. To prove this lemma, we will use Lemmas 46 to 48. First, note that D can only succeed
if at most one of the gates at layer d + 1 is not mapped to a W pebble, since the adversary
A outputs 1 whenever any gate at layer d + 1 is not W pebbled. Now, by Lemma 46, there
is at most one pair of input keys to an AND gate that leads to this gate being mapped to a
W pebble. As the input to all but one gate at layer d + 1 comprises all input to layer d + 1,
this implies that D can only succeed, if it properly garbles all gates at layer d + 1 and the
input keys which are revealed through GEval(˜︁Γ, ˜︁x) are associated with the corresponding bits
in Γ⊕(x0).
Next, consider the AND gates at layers [d + 2, 2d + 1]. For D to succeed, these gates must
not end up GL or B pebbled. Since all these gates have their left input from layer d and by
the previous argument all these keys are fixed, we can apply Lemmas 47 and 48: Let S denote
the set of d̄ gates in layers [d + 2, 2d + 1] that are mapped to G∗ or GR-type-2 pebbles (for
some random coins s such that (1) is true). Then by Lemma 43 there exists a subset S ′ ⊆ S
of size

√
d̄/4 such that the set of right parents SR of S ′ is linearly independent over Z2; and

for each gate g ∈ S ′ left and right parent are linearly independent. To see that the latter is
true, note that any subset smaller than n of gates within one layer or within one column is
linearly independent (cf. Lemma 42). It directly follows that left and right parents of any gate
g ∈ S ′ since they lie in the same column. Furthermore, the set of left parents SL to S ′ is
linearly independent since it is a subset of ≤ d̄ < n gates at layer d.
To argue that D must have guessed many of the right input bits to S∧ correctly, we use the
following simple result from linear algebra.
Claim 4. Let m ∈ [1, n] and S1 = {ui}i∈[1,m] a subset of {0, 1}n that is linearly independent
over Z2. Let S2 = {vi}i∈[1,m] be a multiset of elements in {0, 1}n such that S2 as a set
is linearly independent over Z2. Furthermore, assume {ui, vi} is linearly independent for
all i ∈ [1, m]. Then there exists an index set I ⊂ [1, m] of size |I| = ⌊m/4⌋ such that⋃︁

i∈I{ui} ∪ {vi} is linearly independent.

236

8.3. Lower Bound for Yao’s Garbling Scheme

Proof of the claim. Let i1 ∈ [1, m] be arbitrary and set I1 := {i1}. Then clearly |I1| = 1 and
U1 := ⋃︁

j∈I1{uj} ∪ {vj} is linearly independent. For k > 1, choose ik ∈ [1, m] \ Ik−1 such
that Uk := Uk−1 ∪ {uik

} ∪ {vik
} is linearly independent, if exists, otherwise set ik := ik−1; set

Ik := Ik−1 ∪ {ik}. We show that such ik ∈ [1, m] \ Ik−1 must exist as long as k ≤ m/4:
Since dim(Uk−1) ≤ 2(k − 1) ≤ m/2 − 2 and S1 is linearly independent, it must hold
|S1 ∩ ⟨Uk−1⟩| ≤ m/2 − 2; we denote the index set of S1 ∩ ⟨Uk−1⟩ by IS1,k−1. For S2, on
the other hand, it also holds that |S2 ∩ ⟨Uk−1⟩| ≤ m/2 − 2, but since S2 is a multiset we
don’t obtain a lower bound on |S2 \ ⟨Uk−1⟩|. However, since for any linearly independent
set U and v ∈ U the set U ∪ {v} = U is linearly independent, we choose IS2,k−1 ⊂ [1, m]
minimal such that ⋃︁j∈IS2,k−1{uj} = S2 ∩ ⟨Uk−1⟩. Then again we have |IS2,k−1| ≤ m/2− 2.
Thus, by pigeonhole principle, there must exist ik ∈ [1, m] \ (IS1,k−1 ∪ IS2,k−1) such that
Uk := Uk−1 ∪ {uik

} ∪ {vik
} is linearly independent and we have |Ik| = |Ik−1 ∪ {ik}| = k.

Since the multiset SL and the set SR of left and right parents of S ′ are linearly independent
(as sets), respectively, and for any g ∈ S ′ left and right input to G are linearly independent,
we can apply the claim to obtain a subset S ′′ ⊂ S ′ of size |S ′|/4 such that the union of the
parents of S ′′ is linearly independent. For S ′′, we can now use Lemmas 47 and 48 to see that
any successful D must have correctly guessed all right input bits to S ′′; i.e., for s sampled
uniformly at random, the probability that D succeeds is at most (1/2)|S′′|. As |S ′| ≥

√
d̄/4,

the probability that D succeeds can be upper-bounded by

Pr[D succeeds in case (1)] ≤
(︃1

2

)︃√
d̄/16

<
(︃3

4

)︃√
d̄/7

.

Lemma 53. Let r be arbitrary coins such that case (2) is true. Then the probability (over
uniformly random coins s) that the output of A(s) and A[c∗](s) differs after interaction with
D(r,c∗) is at most (3/4)

√
d−3d̄/4.

Proof. Recall that whenever the consistency check passes, each wire in ˜︁Γ can be uniquely
associated with two keys. Now, in case (2), for all but d̄ wires in Γ \ Γ0 the following holds:
By Lemmas 46 and 48, for each bit running over the wire w in Γ, there exists at most one
key associated with w in ˜︁Γ⊕ such that the AND gates with right input wire w is mapped to a
“good” (W or GR-type-1) pebble, while for the other key associated to w it would be mapped
to a “bad” pebble (GL or B). Note that in the latter case D immediately fails.

This allows us to map keys associated with wires in ˜︁Γ⊕ to bits, hence implies a mapping from
(˜︁Γ, ˜︁x) to a circuit Γ̂ and input x̂, where Γ̂ contains at most 3d̄ “undefined” gates (note, each
internal wire effects 3 gates in Γ⊕). Now, for D to succeed, it has to simulate (˜︁Γ, ˜︁x) such that
at least d′ := d− 3d̄ “well-defined” gates in the circuit Γ̂ differ from XOR gates and x̂ = x0.
At the same time, all input and output wires of the well-defined gates have to carry the correct
bits during evaluation (for “evaluation” of Γ̂ on x̂ we apply the mapping from keys to bits to
Eval(˜︁Γ, ˜︁x) to extract a bit for all wires connected to well-defined gates).

Ignoring the undefined gates in Γ̂, this exactly corresponds to the game introduced in Sec-
tion 8.3.2: D simulates a circuit such that all but d′ gates are garbled correctly as XOR gates,
and D succeeds, if for all gates the (input and) output bits correspond to the respective bits
during evaluation of Γ⊕ on input x0. Lemma 41 now implies an upper bound on D’s success

237

8. Limits on the Adaptive Security of Yao’s Garbling

probability in case (2):

Pr[D succeeds in case (2)] ≤
(︃3

4

)︃√
d′/4

=
(︃3

4

)︃√d−3d̄/4
.

Thus, Lemmas 52 and 53 imply the following bound on any non-rewinding PPT distinguisher
D (choose d̄ = d/4):

Corollary 20. No non-rewinding PPT distinguisher DF can distinguish A[c∗] from A with
probability larger than (3/4)

√
d/14.

To handle arbitrary – potentially rewinding – distinguishers D, we modify A as follows: Instead
of sampling x0, x1 using random coins s, we assume a pseudorandom function fk with uniformly
random key k was hardcoded in A, which takes as input a garbled circuit ˜︁Γ and coins s,
and outputs a tuple (x0, x1). Since D only has black-box access to A/A[c∗], the secret key
k is hidden from D, thus for two different inputs (˜︁Γ, s), (˜︁Γ′, s′) to A/A[c∗] the input pairs
(x0, x1), (x′

0, x′
1) look like independently sampled uniformly random strings.

With this modification in place, we finally arrive at the following lower bound on the security
loss of any black-box reduction R (where we used D < 3d, hence

√
d/14 >

√
D/25). Note

that our bounds naturally only apply to d ≤ n, hence we assume D < 2n in our theorem
statement.

Theorem 32. Any black-box reduction from the indistinguishability of Yao’s garbling scheme
(or its variant from [JW16]) on the class of circuits with input length n and depth D ≤ 2n to
the IND-CPA security of the underlying encryption scheme loses at least a factor 1

q
·(4

3)
√

D/25 >
1
q
· 2

√
D/61, where q denotes the number of times the reduction rewinds the adversary.

8.4 Conclusion and Open Problems
In this work we prove that any blackbox reduction from indistinguishability of (the modification
[JW16] of) Yao’s garbling scheme to IND-CPA security of the underlying encryption scheme
must involve a loss in security that is subexponential in the depth of the circuit. This clearly
also implies limitations to the stronger and more common simulation-based security and shows
that the approach of [JW16] is essentially optimal. However, we leave it to future work if our
finegrained separation can be turned into an actual attack against Yao’s garbling scheme.

Beside this most exciting open problem, one can also consider if our approach can be optimized.
It might be possible to push our lower bound to an exponential loss, which would exactly match
the upper bound from [JW16]. Following our approach, this requires a more sophisticated
pebbling lower bound. Another interesting question would be if an even stronger bound can
be found for the original construction of Yao, where the output mapping is sent in the offline
phase, and certain limitations are already known from [AIKW13].

238

Part V

Conclusion

239

CHAPTER 9
Conclusion

In this thesis we have explored the problem of proving adaptive security, both from a positive and
a negative direction. We started by analyzing several existing reductions for generalized selective
decryption (GSD) [Pan07, FJP15], the [GGM84] construction of constrained psudorandom
functions (cPRF) [FKPR14], and a natural variant of Yao’s garbling scheme [JW16]. We
extracted out the underlying ideas these works have in common by providing a framework
for proving adaptive security (Chapter 3). This Piecewise-Guessing framework allowed us to
present the former results in a unified and simplified way.

We then applied our framework to several constructions of other cryptographic primitives for
which previously only selective security had been proven: various proxy re-encryption schemes
(PRE, Chapter 4), the TreeKEM [BBR18] protocol for continuous group key agreement (CGKA,
Chapter 5), and Yao’s (original) garbling scheme [Yao82, Yao86] (Chapter 6). While in some
settings we indeed achieved adaptive security at only a (quasi-)polynomial loss in security, we
also encountered limitations of the techniques provided by the framework.

These limitations we explored in the last part of this thesis, where we showed that currently used
techniques cannot lead to significantly better bounds on adaptive security: First (Chapter 7),
we considered multi-round security games such as GSD and PRE, where an adversary queries
edges of some graph and the difficulty for the reduction lies in guessing where these edges will
end up in the final graph. We note that all known reductions for such games are oblivious
to the adversary’s behaviour, i.e. they do not make use of the partial information they learn
during the game. While obliviousness obviously is a very strong restriction to a reduction
and we obtain significantly stronger lower bounds for oblivious reductions, it remains an open
problem whether non-obliviousness can be exploited to obtain better upper bounds. Another
(though related) restriction common to all known reductions is that they are non-rewinding.
Most of our lower bounds only hold for non-rewinding reductions and rewinding seems to be a
very strong tool in such multi-round games. However, it is not at all clear at this point how
this tool could be exploited towards improved upper bounds.

The picture is significantly clearer in the setting of Yao’s garbling scheme (Chapter 8), where
the entire circuit is sent in one step and the difficulty for the reduction lies in guessing (parts
of) the input. Here we proved a lower bound almost matching the known upper bound, which
holds for arbitrary (potentially rewinding) black-box reductions. While this result indicates
some weakness of Yao’s garbling, it does not provide an attack against the scheme. We leave it
as an exciting open problem if our lower bound can be turned into a concrete counter example,

241

9. Conclusion

i.e. an efficient IND-CPA secure encryption scheme that allows the attacker to efficiently
break adaptive security of the scheme. We expect this to require rather strong additional
assumptions.

While we leave many interesting questions open, we hope that this thesis still contributes to
a better understanding of the difficulty in proving adaptive security and will inspire future
research in this area.

242

Bibliography

[AAB+21] Joel Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto-Noval, Karen
Klein, Guillermo Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. Grafting
key-trees: Efficient key-management for overlapping groups. TCC 2021, to
appear, 2021.

[ABH09] Giuseppe Ateniese, Karyn Benson, and Susan Hohenberger. Key-private proxy
re-encryption. In Marc Fischlin, editor, Topics in Cryptology – CT-RSA 2009,
pages 279–294, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[ACC+16] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin.
Delegating RAM computations with adaptive soundness and privacy. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS,
pages 3–30. Springer, Heidelberg, October / November 2016.

[ACC+19] Joël Alwen, Margarita Capretto, Miguel Cueto, Chethan Kamath, Karen Klein,
Ilia Markov, Guillermo Pascual-Perez, Krzysztof Pietrzak, Michael Walter, and
Michelle Yeo. Keep the dirt: Tainted TreeKEM, adaptively and actively secure
continuous group key agreement. Cryptology ePrint Archive, Report 2019/1489,
2019. https://eprint.iacr.org/2019/1489.

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security
notions, proofs, and modularization for the Signal protocol. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 129–158. Springer, Heidelberg, May 2019.

[ACDT20] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security
analysis and improvements for the IETF MLS standard for group messaging.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I,
volume 12170 of LNCS, pages 248–277. Springer, Heidelberg, August 2020.

[ACJM20] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous
group key agreement with active security. In TCC 2020, Theory of Cryptography
Conference, Durham, NC, USA, November, 2020.

[ACK+21] Benedikt Auerbach, Suvradip Chakraborty, Karen Klein, Guillermo Pascual-Perez,
Krzysztof Pietrzak, Michael Walter, and Michelle Yeo. Inverse-sybil attacks
in automated contact tracing. In Kenneth G. Paterson, editor, CT-RSA 2021,
volume 12704 of LNCS, pages 399–421. Springer, Heidelberg, May 2021.

[ACL+14] Eric Allender, Shiteng Chen, Tiancheng Lou, Periklis A. Papakonstantinou,
and Bangsheng Tang. Width-parametrized SAT: time–space tradeoffs. Theory
Comput., 10:297–339, 2014.

243

https://eprint.iacr.org/2019/1489

[AFGH05] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved
proxy re-encryption schemes with applications to secure distributed storage. In
NDSS 2005. The Internet Society, February 2005.

[AGK+18] Joël Alwen, Peter Gazi, Chethan Kamath, Karen Klein, Georg Osang, Krzysztof
Pietrzak, Leonid Reyzin, Michal Rolinek, and Michal Rybár. On the memory-
hardness of data-independent password-hashing functions. In Jong Kim, Gail-
Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo Kim, editors,
ASIACCS 18, pages 51–65. ACM Press, April 2018.

[AIKW13] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding
functions with constant online rate or how to compress garbled circuits keys. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of
LNCS, pages 166–184. Springer, Heidelberg, August 2013.

[AKK+19] Hamza Abusalah, Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Michael
Walter. Reversible proofs of sequential work. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 277–291.
Springer, Heidelberg, May 2019.

[AL18] Prabhanjan Ananth and Alex Lombardi. Succinct garbling schemes from functional
encryption through a local simulation paradigm. In Amos Beimel and Stefan
Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages 455–472.
Springer, Heidelberg, November 2018.

[AR11] Michael Alekhnovich and Alexander Razborov. Satisfiability, branch-width and
tseitin tautologies. computational complexity, 20(4):649–678, 2011.

[AS15] Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-
hard functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM
STOC, pages 595–603. ACM Press, June 2015.

[AS16] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for turing
machines. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I,
volume 9562 of LNCS, pages 125–153. Springer, Heidelberg, January 2016.

[BBM+20] Richard Barnes, Benjamin Beurdouche, Jon Millican, Emad Omara, Katriel Cohn-
Gordon, and Raphael Robert. The Messaging Layer Security (MLS) Protocol.
Internet-Draft draft-ietf-mls-protocol-09, Internet Engineering Task Force, March
2020. Work in Progress.

[BBR18] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM: Asyn-
chronous Decentralized Key Management for Large Dynamic Groups. May
2018.

[BBS98a] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and
atomic proxy cryptography. In Kaisa Nyberg, editor, Advances in Cryptology
— EUROCRYPT’98, pages 127–144, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

[BBS98b] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic
proxy cryptography. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of
LNCS, pages 127–144. Springer, Heidelberg, May / June 1998.

244

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Matt Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of
Lecture Notes in Computer Science, pages 41–55. Springer Berlin Heidelberg,
2004.

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM
Journal on Computing, 18(4):766–776, 1989.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of
LNCS, pages 501–519. Springer, Heidelberg, March 2014.

[BHK13] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random
oracles via UCEs. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 398–415. Springer, Heidelberg, August
2013.

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling
with applications to one-time programs and secure outsourcing. In Xiaoyun
Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages
134–153. Springer, Heidelberg, December 2012.

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS
2012, pages 784–796. ACM Press, October 2012.

[BKP14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (Hierarchical) identity-based encryption
from affine message authentication. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 408–425. Springer,
Heidelberg, August 2014.

[Bod88] Hans L. Bodlaender. Nc-algorithms for graphs with small treewidth. In Jan
van Leeuwen, editor, Graph-Theoretic Concepts in Computer Science, 14th
International Workshop, WG ’88, Amsterdam, The Netherlands, June 15-17,
1988, Proceedings, volume 344 of Lecture Notes in Computer Science, pages
1–10. Springer, 1988.

[Bod93] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-
2):1–21, 1993.

[Bod98] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209(1):1 – 45, 1998.

[Bre74] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J.
ACM, 21(2):201–206, April 1974.

245

[BRS03] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security
in the presence of key-dependent messages. In Kaisa Nyberg and Howard M. Heys,
editors, SAC 2002, volume 2595 of LNCS, pages 62–75. Springer, Heidelberg,
August 2003.

[BSJ+17] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors
Stepanovs. Ratcheted encryption and key exchange: The security of messaging.
In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part III, volume
10403 of LNCS, pages 619–650. Springer, Heidelberg, August 2017.

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent
to factoring. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS,
pages 59–71. Springer, Heidelberg, May / June 1998.

[BV11] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, pages 97–106, Oct 2011.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part II, volume 8270 of LNCS, pages 280–300. Springer, Heidelberg, December
2013.

[CCG+18] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner.
On ends-to-ends encryption: Asynchronous group messaging with strong security
guarantees. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, ACM CCS 2018, pages 1802–1819. ACM Press, October 2018.

[CCL+14] Nishanth Chandran, Melissa Chase, Feng-Hao Liu, Ryo Nishimaki, and Keita
Xagawa. Re-encryption, functional re-encryption, and multi-hop re-encryption:
A framework for achieving obfuscation-based security and instantiations from
lattices. In Public-Key Cryptography - PKC 2014, volume 8383, pages 95–112.
Springer, March 2014.

[CCV12] Nishanth Chandran, Melissa Chase, and Vinod Vaikuntanathan. Functional
re-encryption and collusion-resistant obfuscation. In Ronald Cramer, editor,
Theory of Cryptography, pages 404–421, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[CDG01] Fan Chung, Persi Diaconis, and Ronald Graham. Combinatorics for the east
model. Advances in Applied Mathematics, 27(1):192–206, 2001.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable
zero-knowledge (extended abstract). In 32nd ACM STOC, pages 235–244. ACM
Press, May 2000.

[CGI+99] Ran Canetti, Juan A. Garay, Gene Itkis, Daniele Micciancio, Moni Naor, and
Benny Pinkas. Multicast security: A taxonomy and some efficient constructions.
In IEEE INFOCOM’99, pages 708–716, New York, NY, USA, March 21–25, 1999.

[CH07] Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-
encryption. In Proceedings of the 14th ACM Conference on Computer and

246

Communications Security, CCS ’07, pages 185–194, New York, NY, USA, 2007.
ACM.

[CHK19] Cas Cremers, Britta Hale, and Konrad Kohbrok. Efficient post-compromise
security beyond one group. Cryptology ePrint Archive, Report 2019/477, 2019.
https://eprint.iacr.org/2019/477.

[CM01] Mary Cryan and Peter Bro Miltersen. On pseudorandom generators in NC. In
MFCS, volume 2136 of Lecture Notes in Computer Science, pages 272–284.
Springer, 2001.

[Coh19] Aloni Cohen. What about bob? The inadequacy of CPA security for proxy
reencryption. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume
11443 of LNCS, pages 287–316. Springer, Heidelberg, April 2019.

[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir
Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 229–235. Springer,
Heidelberg, August 2000.

[DKW11a] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. Key-evolution schemes
resilient to space-bounded leakage. In Phillip Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 335–353. Springer, Heidelberg, August 2011.

[DKW11b] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time computable
self-erasing functions. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS,
pages 125–143. Springer, Heidelberg, March 2011.

[DNW05] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work.
In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 37–54.
Springer, Heidelberg, August 2005.

[DS16] Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In Marc Fischlin
and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT
2016, pages 294–310, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[DV19] F. Betül Durak and Serge Vaudenay. Bidirectional asynchronous ratcheted key
agreement with linear complexity. In Nuttapong Attrapadung and Takeshi Yagi,
editors, IWSEC 19, volume 11689 of LNCS, pages 343–362. Springer, Heidelberg,
August 2019.

[FJP15] Georg Fuchsbauer, Zahra Jafargholi, and Krzysztof Pietrzak. A quasipolynomial
reduction for generalized selective decryption on trees. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS,
pages 601–620. Springer, Heidelberg, August 2015.

[FKKP18] Georg Fuchsbauer, Chethan Kamath, Karen Klein, and Krzysztof Pietrzak. Adap-
tively secure proxy re-encryption. Cryptology ePrint Archive, Report 2018/426,
2018. https://eprint.iacr.org/2018/426.

[FKKP19] Georg Fuchsbauer, Chethan Kamath, Karen Klein, and Krzysztof Pietrzak. Adap-
tively secure proxy re-encryption. In Dongdai Lin and Kazue Sako, editors,
PKC 2019, Part II, volume 11443 of LNCS, pages 317–346. Springer, Heidelberg,
April 2019.

247

https://eprint.iacr.org/2019/477
https://eprint.iacr.org/2018/426

[FKPR14] Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Vanishree Rao.
Adaptive security of constrained PRFs. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 82–101. Springer,
Heidelberg, December 2014.

[FL19] Xiong Fan and Feng-Hao Liu. Proxy re-encryption and re-signatures from lattices.
In Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung,
editors, ACNS 19, volume 11464 of LNCS, pages 363–382. Springer, Heidelberg,
June 2019.

[FN94] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 480–491. Springer, Heidelberg, August
1994.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09,
pages 169–178, New York, NY, USA, 2009. ACM.

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds
on the efficiency of generic cryptographic constructions. SIAM J. Comput.,
35(1):217–246, 2005.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic
applications of random functions. In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 276–288. Springer, Heidelberg, August
1984.

[GHK17] Romain Gay, Dennis Hofheinz, and Lisa Kohl. Kurosawa-desmedt meets tight
security. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part III,
volume 10403 of LNCS, pages 133–160. Springer, Heidelberg, August 2017.

[GJ16] Anna Gál and Jing-Tang Jang. A generalization of spira’s theorem and circuits
with small segregators or separators. Inf. Comput., 251:252–262, 2016.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play
mental poker keeping secret all partial information. In 14th ACM STOC, pages
365–377. ACM Press, May 1982.

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing
trapdoor functions on trapdoor predicates. In 42nd FOCS, pages 126–135. IEEE
Computer Society Press, October 2001.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

[GPV07] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. Electronic Colloquium on Compu-
tational Complexity (ECCC), 14(133), 2007.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with near
optimal online complexity. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 535–565. Springer,
Heidelberg, April / May 2018.

248

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In 41st FOCS, pages 305–313. IEEE Computer
Society Press, November 2000.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors,
43rd ACM STOC, pages 99–108. ACM Press, June 2011.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and
Daniel Wichs. Adaptively secure garbled circuits from one-way functions. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume
9816 of LNCS, pages 149–178. Springer, Heidelberg, August 2016.

[HKSS14] D. Hefetz, M. Krivelevich, M. Stojakovic, and T. Szabó. Positional Games.
Birkhäuser Basel, 2014.

[Hof16] Dennis Hofheinz. Algebraic partitioning: Fully compact and (almost) tightly
secure cryptography. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A,
Part I, volume 9562 of LNCS, pages 251–281. Springer, Heidelberg, January
2016.

[Hof17] Dennis Hofheinz. Adaptive partitioning. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages
489–518. Springer, Heidelberg, April / May 2017.

[HRsV07] Susan Hohenberger, Guy N. Rothblum, abhi shelat, and Vinod Vaikuntanathan.
Securely obfuscating re-encryption. In Salil P. Vadhan, editor, Theory of Cryp-
tography, pages 233–252, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle:
Full domain hash from indistinguishability obfuscation. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
201–220. Springer, Heidelberg, May 2014.

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as
secure as subset sum. Journal of Cryptology, 9(4):199–216, September 1996.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences
of one-way permutations. In 21st ACM STOC, pages 44–61. ACM Press, May
1989.

[JKK+17a] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof
Pietrzak, and Daniel Wichs. Be adaptive, avoid overcommitting. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of
LNCS, pages 133–163. Springer, Heidelberg, August 2017.

[JKK+17b] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof
Pietrzak, and Daniel Wichs. Be adaptive, avoid overcommitting. Cryptology
ePrint Archive, Report 2017/515, 2017. https://eprint.iacr.org/
2017/515.

249

https://eprint.iacr.org/2017/515
https://eprint.iacr.org/2017/515

[JMM19] Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting: Almost-
optimal guarantees for secure messaging. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 159–188.
Springer, Heidelberg, May 2019.

[JO20] Zahra Jafargholi and Sabine Oechsner. Adaptive security of practical garbling
schemes. In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran,
editors, INDOCRYPT 2020, volume 12578 of LNCS, pages 741–762. Springer,
Heidelberg, December 2020.

[JS14] Maurice J. Jansen and Jayalal Sarma. Balancing bounded treewidth circuits.
Theory Comput. Syst., 54(2):318–336, 2014.

[JS18] Joseph Jaeger and Igors Stepanovs. Optimal channel security against fine-grained
state compromise: The safety of messaging. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 33–62.
Springer, Heidelberg, August 2018.

[JSW17] Zahra Jafargholi, Alessandra Scafuro, and Daniel Wichs. Adaptively indistin-
guishable garbled circuits. In Yael Kalai and Leonid Reyzin, editors, TCC 2017,
Part II, volume 10678 of LNCS, pages 40–71. Springer, Heidelberg, November
2017.

[JW16] Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled circuits.
In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985
of LNCS, pages 433–458. Springer, Heidelberg, October / November 2016.

[KKP21a] Chethan Kamath, Karen Klein, and Krzysztof Pietrzak. On treewidth, separators
and yao’s garbling. TCC 2021, to appear, 2021.

[KKP21b] Chethan Kamath, Karen Klein, and Krzysztof Pietrzak. On treewidth, separators
and yao’s garbling. Cryptology ePrint Archive, Report 2021/926, 2021. https:
//eprint.iacr.org/2021/926.

[KKPW21a] Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Michael Walter. The
cost of adaptivity in security games on graphs. TCC 2021, to appear, 2021.

[KKPW21b] Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Michael Walter. The
cost of adaptivity in security games on graphs. Cryptology ePrint Archive, Report
2021/059, 2021. https://eprint.iacr.org/2021/059.

[KKPW21c] Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Daniel Wichs. Limits on
the adaptive security of yao’s garbling. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part II, volume 12826 of LNCS, pages 486–515, Virtual Event,
August 2021. Springer, Heidelberg.

[KKPW21d] Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Daniel Wichs. Limits
on the adaptive security of yao’s garbling. Cryptology ePrint Archive, Report
2021/945, 2021. https://eprint.iacr.org/2021/945.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second
Edition. CRC Press, 2014.

250

https://eprint.iacr.org/2021/926
https://eprint.iacr.org/2021/926
https://eprint.iacr.org/2021/059
https://eprint.iacr.org/2021/945

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages
669–684. ACM Press, November 2013.

[KPW+21] Karen Klein, Guillermo Pascual Perez, Michael Walter, Chethan Kamath, Mar-
garita Capretto, Miguel Cueto, Ilia Markov, Michelle Yeo, Joel Alwen, and
Krzysztof Pietrzak. Keep the dirt: Tainted treekem, adaptively and actively
secure continuous group key agreement. In 2021 IEEE Symposium on Security
and Privacy, pages 268–284. IEEE Computer Society Press, May 2021.

[Krá01] Richard Královič. Time and space complexity of reversible pebbling. In Leszek
Pacholski and Peter Ružička, editors, SOFSEM 2001: Theory and Practice of
Informatics, pages 292–303, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[KST99] Jeong Han Kim, Daniel R. Simon, and Prasad Tetali. Limits on the efficiency of
one-way permutation-based hash functions. In 40th FOCS, pages 535–542. IEEE
Computer Society Press, October 1999.

[KW19] Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure ABE for NC1

from k-Lin. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part I, volume 11476 of LNCS, pages 3–33. Springer, Heidelberg, May 2019.

[LMPP18] Daniel Lokshtanov, Ivan Mikhailin, Ramamohan Paturi, and Pavel Pudlák. Beat-
ing brute force for (quantified) satisfiability of circuits of bounded treewidth. In
Artur Czumaj, editor, 29th SODA, pages 247–261. ACM-SIAM, January 2018.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for
two-party computation. Journal of Cryptology, 22(2):161–188, April 2009.

[LT79] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar
graphs. SIAM Journal on Applied Mathematics, 36(2):177–189, 1979.

[LTV98] Ming Li, John Tromp, and Paul Vitányi. Reversible simulation of irreversible com-
putation. Physica D: Nonlinear Phenomena, 120(1):168 – 176, 1998. Proceedings
of the Fourth Workshop on Physics and Consumption.

[LV08] Benoît Libert and Damien Vergnaud. Unidirectional chosen-ciphertext secure
proxy re-encryption. In Ronald Cramer, editor, Public Key Cryptography – PKC
2008, volume 4939 of Lecture Notes in Computer Science, pages 360–379.
Springer Berlin Heidelberg, 2008.

[LW14] Allison B. Lewko and Brent Waters. Why proving HIBE systems secure is difficult.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 58–76. Springer, Heidelberg, May 2014.

[Mat19] Matthew A. Weidner. Group Messaging for Secure Asynchronous Collaboration.
Master’s thesis, University of Cambridge, June 2019.

[mls] Message Layer Security (mls) WG. https://datatracker.ietf.org/wg/mls/about/.

[MO14] Antonio Marcedone and Claudio Orlandi. Obfuscation ⇒ (IND-CPA security ̸⇒
circular security). In Michel Abdalla and Roberto De Prisco, editors, SCN 14,
volume 8642 of LNCS, pages 77–90. Springer, Heidelberg, September 2014.

251

[Nor15] Jakob Nordström. New Wine into Old Wineskins: A Survey of SomePebbling
Classics with Supplemental Results. 2015.

[Pan07] Saurabh Panjwani. Tackling adaptive corruptions in multicast encryption protocols.
In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 21–40.
Springer, Heidelberg, February 2007.

[Pap85] Christos H. Papadimitriou. Games against nature. Journal of Computer and
System Sciences, 31(2):288 – 301, 1985.

[Pas13] Rafael Pass. Unprovable security of perfect NIZK and non-interactive non-
malleable commitments. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS,
pages 334–354. Springer, Heidelberg, March 2013.

[PH70] Michael S. Paterson and Carl E. Hewitt. Record of the project mac conference on
concurrent systems and parallel computation. chapter Comparative Schematology,
pages 119–127. ACM, New York, NY, USA, 1970.

[PM16] Trevor Perrin and Moxie Marlinspike. The Double Ratchet Algorithm.
https://signal.org/docs/specifications/doubleratchet/, 2016.

[PR18] Bertram Poettering and Paul Rösler. Towards bidirectional ratcheted key exchange.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I,
volume 10991 of LNCS, pages 3–32. Springer, Heidelberg, August 2018.

[PWA+16] Le Trieu Phong, Lihua Wang, Yoshinori Aono, Manh Ha Nguyen, and Xavier
Boyen. Proxy re-encryption schemes with key privacy from lwe. Cryptology
ePrint Archive, Report 2016/327, 2016. https://eprint.iacr.org/
2016/327.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory
of Computing, STOC ’05, pages 84–93, New York, NY, USA, 2005. ACM.

[RS86] Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of
tree-width. J. Algorithms, 7(3):309–322, 1986.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility
between cryptographic primitives. In Moni Naor, editor, TCC 2004, volume 2951
of LNCS, pages 1–20. Springer, Heidelberg, February 2004.

[Rud88] Steven Rudich. Limits on the Provable Consequences of One-way Functions.
PhD thesis, EECS Department, University of California, Berkeley, Dec 1988.

[Sav98] John E. Savage. Models of computation - exploring the power of computing.
Addison-Wesley, 1998.

[Sco02] Mike Scott. Authenticated ID-based key exchange and remote log-in with simple
token and PIN number. Cryptology ePrint Archive, Report 2002/164, 2002.
https://eprint.iacr.org/2002/164.

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In Kaisa Nyberg, editor, EUROCRYPT’98,
volume 1403 of LNCS, pages 334–345. Springer, Heidelberg, May / June 1998.

252

https://eprint.iacr.org/2016/327
https://eprint.iacr.org/2016/327
https://eprint.iacr.org/2002/164

[Spi71] P.M. Spira. On time-hardware complexity of tradeoffs for boolean functions. In
Proc. 4th Hawaii Symp. System Sciences, page 525–527. North Hollywood and
Western Periodicals, 1971.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM STOC,
pages 475–484. ACM Press, May / June 2014.

[WGL98] Chung Kei Wong, Mohamed G. Gouda, and Simon S. Lam. Secure group
communications using key graphs. In Proceedings of ACM SIGCOMM, pages
68–79, Vancouver, BC, Canada, August 31 – September 4, 1998.

[WGL00] Chung Kei Wong, Mohamed G. Gouda, and Simon S. Lam. Secure group
communications using key graphs. IEEE/ACM Trans. Netw., 8(1):16–30, 2000.

[WHA98] D. M. Wallner, E. J. Harder, and R. C. Agee. Key management for multicast:
Issues and architectures. Internet Draft, September 1998. http://www.ietf.
org/ID.html.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).
In 23rd FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

253

http://www.ietf.org/ID.html
http://www.ietf.org/ID.html

APPENDIX A
Appendix

A.1 Optimize Lemma 23 and Corollary 4 from Chapter 5
In the proof of Lemma 23 we considered a variant GSD′ of GSD, where the challenger
aborts once event E is triggered. Here we optimize the result by prooving that GSD′-security
reduces to IND-CPA security of the underlying encryption scheme at a loss in security which is
independent of the degree of the key graph.

Lemma 54. Let the event E be defined as in the proof of Theorem 17 and A an adversary
against GSD′ with advantage ϵ, where GSD′ is defined similar to GSD but the challenger
aborts once event E is triggered. Then, in the random oracle model, there exists an IND-CPA
adversary A′ (that has essentially the same running time) against the underlying encryption
scheme with advantage > ϵ

N2 , where N is the number of nodes.

Proof. We define an adversary A′ against IND-CPA security of Π as follows (see Figure A.1):
On receipt of a challenge public key pk∗, A′ samples two independent uniformly random seeds
s, s′ ∈ S and sends them to the IND-CPA challenger. In response it receives a challenge
ciphertext c∗ which encrypts either s in case b∗ = 0, or s′ if b∗ = 1. To guess the secret bit b∗,
the algorithm A′ now attempts to simulate a hybrid game to A and embed the challenge c∗ in
such a way that, for some i, the execution of the game will look just like G′

i−1 if b∗ = 0 and
like G′

i if b∗ = 1 (where G′
i is a variant of Gi from the proof of Theorem 17 where the game

aborts in case E happens). To this aim, A′ first samples v∗ ← [1, N] uniformly at random
(i.e., it guesses the challenge node). Then it samples independent seeds su ∈ S uniformly
at random for all nodes u ∈ [1, N] \ {v∗} and sets sv∗ := s. Instead of sampling a fresh
seed s′, A′ just uses the seed s′ which it used in the IND-CPA game. Hence, both sv∗ and s′

are associated with node v∗. Next, A′ chooses u∗ ← [1, N] uniformly at random and for all
u ∈ [1, N] \ {u∗} queries the random oracle H on su to receive ru := H(su). Just the same
as in the GSD game, A′ then computes (pku,sku)← Gen(ru). To embed the challenge, it
sets pku∗ := pk∗.

A′ now answers all encryption queries just as in the game GSD0 except for the edges incident
on v∗: All queries (encrypt, u, v∗) are answered with encryptions Encpku

(s′), until A queries
(encrypt, u∗, v∗), which is answered with c∗; all further queries are answered with encryptions
of s. All corrupt queries are answered just the same as in the GSD game and the challenge

255

query v is answered with sv. For all queries A makes to the random oracle, A′ just queries its
own oracle H and returns the output.

In this way A′ aims to simulate some game G′
i and if the guess v∗ was correct this simulation

is perfect, except for the case that A queries the random oracle H on su∗ : To answer this
query consistently, A′ would have to output a seed ru∗ satisfying Gen(ru∗) = (pk∗,sk∗). This
however implies that either 1) the node u∗ was challenged or corrupted, hence, u∗ can not be
a parent of the challenge node so the simulation failed due to an incorrect guess anyway; or
2) A triggered event E, in which case G′

i aborts and thus A′ can simply abort and output 1,
which faithfully preserves the simulation. Accordingly, as soon as A′ sees that its guesses u∗

and v∗ are incorrect, i.e., v∗ is not the challenge node or u∗ is corrupted or reachable from a
corrupted node, it aborts the game and outputs b′ = 1.

The following events will now determine the output behaviour of A′:

• Event U : A queried (encrypt, u∗, v), where v denotes the challenge node.
• Event V : The challenge node v coincides with v∗.

After running the game with A, the reduction A′ evaluates whether these events happened
and chooses its final output b′ as follows: If U and V are true, this means that A′ correctly
guessed the challenge node v, managed to embed the IND-CPA challenge key pk∗ at u∗

and some game G′
i was executed. In this case A′ outputs the bit b it received from A. Note

that if (encrypt, u∗, v∗) happens to be the first encryption query incident on the challenge
node v = v∗ and b∗ = 0, then the game simulated to A looks exactly the same as GSD′

0. If
(encrypt, u∗, v∗) happens to be the last encryption query incident on the challenge node
v = v∗ and b∗ = 1, then the game simulated to A looks exactly the same as GSD′

1. If either
U or V fails, as mentioned above, A′ outputs b′ = 1.

If A either doesn’t make a challenge query or the challenge node v is a source node, then the
advantage ϵ̃ of A in winning the GSD game is 0 (information-theoretically; note by definition the
challenge node must be a sink). Hence, we assume that v is not a source node. Furthermore,
we assume that v constitutes a valid GSD challenge, since otherwise, again, the advantage of
A is 0. If any of these assumptions fail, A′ outputs b′ = 1.

For the advantage of A′ in breaking the IND-CPA security of the encryption scheme we have

Pr[A′ → 0 |b∗ = 0]− Pr[A′ → 0 | b∗ = 1]
= Pr[(A′ → 0) ∧ U ∧ V | b∗ = 0]− Pr[(A′ → 0) ∧ U ∧ V | b∗ = 1].

For technical reasons, we slightly modify A′ as follows: After the interaction with A, the
reduction A′ one by one adds further edges incident on v, where it starts with edges outgoing
from nodes which are neither corrupted nor reachable from a corrupted node, if such nodes
exist. This neither changes the output behaviour of A′ nor validity of the challenge node,
since it happens after the execution of the GSD′ game. We consider N − 1 disjoint events
Ui denoting the event that u∗ is the source of the ith encryption edge incident on v (with
respect to the chronological order of the queries). Let δin be an upper bound on the indegree
of the (final) key graph G. We denote the event that A queries exactly j encryptions incident
on the challenge node by ∆j . Hence, if V , Ui and ∆j for some j ≥ i happen, then depending
on the challenge bit b∗, the game simulated to A is distributed exactly the same as G′

i−1 or G′
i.

Since V and A′ → 0 implies U and we are guaranteed that one of the Ui and one of the ∆j

256

Algorithm A.1: Security reduction R for proof in the random oracle model. C is the
IND-CPA challenger, the oracles are defined in A.2.

RC,A,H
Π=(Gen,Enc,Dec)(pk∗)

1 Û , V, E, FAIL← FALSE
2 E , C ← ∅, G← ([1, N], E) // initialize key graph, set of corrupt nodes

3 s∗ ← ⊥
4 v∗ ← [1, N] // guess challenge node

5 s, s′ ← S // choose challenge seeds

6 (pk∗,c∗)←$ C(s, s′) // receive IND-CPA challenge

7 for u ∈ [1, N] \ {v∗} do // sample remaining seeds

8 su ← S
9 sv∗ ← s

10 u∗ ← [1, N] // guess parent of challenge node

11 for u ∈ [1, N] \ {u∗} do // sample keys

12 ru ← H(su)
13 (pku,sku)←$ Gen(ru)
14 pku∗ ← pk∗ // embed challenge key

15 b← AO-enc,O-corr,O-chall,O-H

16 if (no challenge query was issued) or (v reachable in G from a node in C) or (v not a
sink node in G) or (v a source node in G) then

17 FAIL← TRUE
18 if ¬V or ¬Û or E or FAIL then
19 return 1
20 else
21 return b

happens, we have for all i, j:

Pr[(A′ → 0) ∧ U ∧ V | b∗ = 0] =
δin∑︂
j=1

N−1∑︂
i=1

Pr[A′ → 0 | ∆j ∧ V ∧ Ui ∧ (b∗ = 0)]

· Pr[∆j | V ∧ Ui ∧ (b∗ = 0)] · Pr[V ∧ Ui | b∗ = 0]
(A.1)

and similarly for the case b∗ = 1. Let U∗ denote the subevent of U that u∗ is neither corrupted
nor reachable from a corrupted node. Then for all i ∈ [2, N − 1], (since E doesn’t happen)
the game simulated to A is identically distributed in the two cases U∗ ∧ Ui ∧ (b∗ = 0) and
U∗ ∧ Ui−1 ∧ (b∗ = 1). This is true no matter if the ith encryption was queried by A or not.
Thus, we have

Pr[A′ → 0 | ∆j ∧ V ∧ U∗ ∧ Ui ∧ (b∗ = 0)] = Pr[A′ → 0 | ∆j ∧ V ∧ U∗ ∧ Ui−1 ∧ (b∗ = 1)].

On the other hand, if U∗ is false and u∗ is corrupted or reachable by a corrupted node, then A′

outputs 1, independently of any other events to happen. For the probability that U∗ happens,
note that if A makes at least i encryption queries incident on the challenge node v, then U∗

must be true in both cases V ∧ Ui ∧ (b∗ = 0) and V ∧ Ui−1 ∧ (b∗ = 1). Thus, we obtain for

257

Algorithm A.2: Oracles for the security reduction in the random oracle model.
O-enc(u1, u2)

1 E ← E ∪ {(u1, u2)}
2 if u2 = v∗ then
3 if u1 = u∗ then
4 Û ← TRUE
5 return c∗

6 else if Û then
7 return Encpku1

(s)
8 else
9 return Encpku1

(s′)
10 return Encpku1

(su2)

O-corr(u)
11 C ← C ∪ {u}
12 return su

O-chall(v) // one time use only

13 if v = v∗ then
14 V ← TRUE
15 C ← C ∪ {v}
16 return sv

O-H(s̄)
17 if s̄ = su∗ then
18 FAIL← TRUE
19 return ⊥
20 if (s̄ = su for some u ∈ [1, N] \ {v}) or (not V and s̄ = s′) then
21 if u (resp. v) is not reachable in G from any of the u′ ∈ C then
22 E ← TRUE
23 abort A
24 return H(s̄)

all j ∈ [1, δin], i ∈ [2, N − 1] such that j ≥ i:

Pr[A′ → 0 |∆j ∧ V ∧ Ui ∧ (b∗ = 0)]
= Pr[A′ → 0 | ∆j ∧ V ∧ U∗ ∧ Ui ∧ (b∗ = 0)] · Pr[U∗ | ∆j ∧ V ∧ Ui ∧ (b∗ = 0)]
= Pr[A′ → 0 | ∆j ∧ V ∧ U∗ ∧ Ui−1 ∧ (b∗ = 1)] · Pr[U∗ | ∆j ∧ V ∧ Ui−1 ∧ (b∗ = 1)]
= Pr[A′ → 0 | ∆j ∧ V ∧ Ui−1 ∧ (b∗ = 1)].

(A.2)

If A queries less than i encryption queries incident on v, then Ui implies that A′ outputs 1,
independently of b∗. Thus, for all j ∈ [1, δin], i ∈ [2, N − 1] such that j < i:

Pr[A′ → 0 | ∆j ∧ V ∧ Ui ∧ (b∗ = b)] = 0 (A.3)

258

for either b ∈ {0, 1}. By a similar argument as above, we have for all j > i:

Pr[∆j | V ∧ Ui ∧ (b∗ = 0)] = Pr[∆j | V ∧ Ui−1 ∧ (b∗ = 1)] (A.4)

In fact, (A.4) also holds in case j = i, but this is more subtle. Here, it is crucial that A′

starts with uncorrupted nodes when choosing additional edges after the interaction with A:
Clearly, if there are only i nodes (including v) which are neither corrupted nor reachable from
a corrupted node, then ∆i cannot happen. On the other hand, if there are more than i such
nodes, then Ui implies that u∗ is such a node and the claim follows by noting that after the
i− 1th query the case V ∧ Ui−1 ∧ (b∗ = 1) is indistinguishable from the case where the edge
(u∗, v∗) has not yet been made.

Since Ui is equally distributed for all i ∈ [1, N − 1] and independent of b∗, it also holds

Pr[V ∧ Ui | b∗ = 0] = Pr[V | Ui ∧ (b∗ = 0)] Pr[Ui | b∗ = 0]
= Pr[V | Ui ∧ (b∗ = 0)] Pr[Ui]
= Pr[V | Ui−1 ∧ (b∗ = 1)] Pr[Ui−1]
= Pr[V | Ui−1 ∧ (b∗ = 1)] Pr[Ui−1 | b∗ = 1]
= Pr[V ∧ Ui−1 | b∗ = 1].

(A.5)

This implies
δin∑︂
j=1

N−1∑︂
i=1

Pr[A′ → 0 | ∆j ∧ V ∧ Ui ∧ (b∗ = 0)] · Pr[∆j | V ∧ Ui ∧ (b∗ = 0)] · Pr[V ∧ Ui | b∗ = 0]

=
δin∑︂
j=1

(︂
Pr[A′ → 0 | ∆j ∧ V ∧ U1 ∧ (b∗ = 0)] · Pr[∆j | V ∧ U1 ∧ (b∗ = 0)] · Pr[V ∧ U1 | b∗ = 0]

+
j∑︂

i=2
Pr[A′ → 0 | ∆j ∧ V ∧ Ui−1 ∧ (b∗ = 1)] · Pr[∆j | V ∧ Ui−1 ∧ (b∗ = 1)]

· Pr[V ∧ Ui−1 | b∗ = 1]
)︂

(A.6)

Thus, when computing the difference of the probabilities of (A′ → 0) ∧ V ∧ U conditioned on
b∗ = 0 and b∗ = 1, respectively, most terms cancel, except for the terms for the two extreme
cases U1 ∧ (b∗ = 0) and Uj ∧ (b∗ = 1).

Pr[(A′ → 0) ∧ U ∧ V | b∗ = 0]− Pr[(A′ → 0) ∧ U ∧ V | b∗ = 1]

=
δin∑︂
j=1

(Pr[(A′ → 0) ∧∆j ∧ V ∧ U1 | b∗ = 0]− Pr[(A′ → 0) ∧∆j ∧ V ∧ Uj | b∗ = 1])

= Pr[(A′ → 0) ∧ V ∧ U1 | b∗ = 0]− Pr[(A′ → 0) ∧ V ∧ Ulast | b∗ = 1],
(A.7)

where Ulast denotes the event that u∗ is the source of the last encryption query incident on v
which A makes. If V and U1 happen and b∗ = 0, then the game simulated to A is exactly
the same as the real game GSD′

0; similarly, if V and Ulast happen and b∗ = 1, then the game
simulated to A is exactly the same as the random game GSD′

1. In other words,

Pr[A′ → 0 | V ∧ U1 ∧ (b∗ = 0)] = Pr[A(GSD′
0)→ 0]

259

and
Pr[A′ → 0 | V ∧ Ulast ∧ (b∗ = 1)] = Pr[A(GSD′

1)→ 0]. (A.8)

Now, as long as A does not issue the challenge query, the games simulated to A are identically
distributed in both cases1 V ∧ U1 ∧ (b∗ = 0) and V ∧ Ulast ∧ (b∗ = 1): All edges incident on
v∗ encrypt the same seed (s in the first case and s′ in the latter), and both seeds associated
with v∗ were neither queried to H nor reveiled by a corruption or challenge query. Hence, v∗

looks just the same as any other potential challenge node and we have

Pr[V | U1 ∧ (b∗ = 0)] = Pr[V | Ulast ∧ (b∗ = 1)] ≥ 1
N

. (A.9)

Since we’re guaranteed that the challenge node will not be a source node, we also have that

Pr[U1 | b∗ = 0] = Pr[Ulast | b∗ = 1] ≥ 1
N

. (A.10)

Combining equations (A.1)-(A.10), we finally arrive at

Pr[(A′ → 0) ∧ U ∧ V | b∗ = 0]− Pr[(A′ → 0) ∧ U ∧ V | b∗ = 1]
= Pr[A′ → 0 | V ∧ U1 ∧ (b∗ = 0)] · Pr[V ∧ U1 | b∗ = 0]
− Pr[A′ → 0 | V ∧ Ulast ∧ (b∗ = 1)] · Pr[V ∧ Ulast | b∗ = 1]

=
(︂

Pr[A′ → 0 | V ∧ U1 ∧ (b∗ = 0)]− Pr[A′ → 0 | V ∧ Ulast ∧ (b∗ = 1)]
)︂
· Pr[V ∧ U1 | b∗ = 0]

≥ 1
N2 ·

(︂
Pr[A(GSD′

0)→ 0]− Pr[A(GSD′
1)→ 0]

)︂
.

This proves the claim.

Corollary 21. Let the event E be defined as in the proof of Theorem 17, and A an arbitrary
GSD adversary which triggers E with probability ϵ. Then there exists an IND-CPA adversary
A′ (that has essentially the same running time) with advantage

Pr[A′ → 0 | b∗ = 0]− Pr[A′ → 0 | b∗ = 1] ≥ ϵ

N2 −
m

N2λ
,

where N is the number of nodes, m the number of oracle queries to H, and λ the seed length.

Proof. We first apply Lemma 24 to construct an adversary against GSD′′ with advantage
ϵ
N
− m

2λ . Then we apply a very similar proof as for Lemma 54 to construct an IND-CPA
adversary: This proof is exactly the same with the only difference being that GSD′′ is less
adaptive, i.e. A commits to the challenge node at the beginning of the game. This means that
A′ does not have to guess v∗ and the event V is always true. Thus, we only lose an additional
factor 1/N due to guessing u∗. Finally, we note that, since A′ is sampling the keys itself for
all nodes except u∗, the increase in the number of nodes from N to N + 1 due to Lemma 24
can be ignored, since A′ does not actually need to create the additional node, since it knows
the seed sv∗ .

1Note that not all encryption queries incident on v might have been issued at this point, but this does not
affect the analysis.

260

	Abstract
	Acknowledgements
	About the Author
	List of Collaborators and Publications
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction and Preliminaries
	Introduction
	Our Contributions

	Preliminaries
	Notation and Basic Definitions
	IND-CPA Secure Encryption

	Framework
	A Framework for Adaptive Security
	Introduction
	The Framework
	Application I: Generalized Selective Decryption
	Application II: Constrained Pseudorandom Functions
	Open Problems

	Upper Bounds
	Adaptively Secure Proxy Re-encryption
	Introduction
	Formal Definitions
	Preliminaries
	Framework for Adaptive Security
	Adaptively Secure PRE Schemes
	Application to Key Rotation
	Open Problems

	Adaptively Secure Continuous Group Key Agreement
	Introduction
	Description of TTKEM
	Security of TTKEM
	Open Problems

	Adaptive Indistinguishability of Yao's Garbling
	Introduction
	Preliminaries
	Hybrid Argument and the BGR Pebbling Game
	BGR Pebbling Strategy
	Conclusion and Open Problems

	Lower Bounds
	On the Cost of Adaptivity in Security Games on Graphs
	Introduction
	Technical Overview
	Notation and Definitions
	Builder-Pebbler Game
	Combinatorial Upper Bounds
	Cryptographic Lower Bound I: Generalized Selective Decryption
	Cryptographic Lower Bound II: Continuous Group Key Agreement
	Cryptographic Lower Bound III: Constrained Pseudorandom Function
	Cryptographic Lower Bound IV: Proxy Re-encryption
	Open Problems

	Limits on the Adaptive Security of Yao's Garbling
	Introduction
	Technical Overview
	Lower Bound for Yao's Garbling Scheme
	Conclusion and Open Problems

	Conclusion
	Conclusion
	Bibliography
	Appendix
	Optimize Lemma 23 and Corollary 4 from Chapter 5

